2023-01-11T21:14:25.0839617Z Requested labels: linux.2xlarge 2023-01-11T21:14:25.0839718Z Job defined at: pytorch/pytorch/.github/workflows/_linux-test.yml@refs/tags/ciflow/trunk/91627 2023-01-11T21:14:25.0839878Z Reusable workflow chain: 2023-01-11T21:14:25.0839917Z pytorch/pytorch/.github/workflows/trunk.yml@refs/tags/ciflow/trunk/91627 (8419ddda87c8a47eacc63b54bc7ec98c1f27c26e) 2023-01-11T21:14:25.0839960Z -> pytorch/pytorch/.github/workflows/_linux-test.yml@refs/tags/ciflow/trunk/91627 (8419ddda87c8a47eacc63b54bc7ec98c1f27c26e) 2023-01-11T21:14:25.0839985Z Waiting for a runner to pick up this job... 2023-01-11T21:14:25.7232456Z Job is about to start running on the runner: i-06cf3037fd0558aaa (organization) 2023-01-11T21:14:29.9740659Z Current runner version: '2.300.2' 2023-01-11T21:14:29.9746339Z Runner name: 'i-06cf3037fd0558aaa' 2023-01-11T21:14:29.9746845Z Runner group name: 'Default' 2023-01-11T21:14:29.9747402Z Machine name: 'ip-10-0-1-101' 2023-01-11T21:14:29.9749439Z ##[group]GITHUB_TOKEN Permissions 2023-01-11T21:14:29.9750073Z Actions: write 2023-01-11T21:14:29.9750398Z Checks: write 2023-01-11T21:14:29.9750655Z Contents: write 2023-01-11T21:14:29.9750999Z Deployments: write 2023-01-11T21:14:29.9751310Z Discussions: write 2023-01-11T21:14:29.9751574Z Issues: write 2023-01-11T21:14:29.9751892Z Metadata: read 2023-01-11T21:14:29.9752220Z Packages: write 2023-01-11T21:14:29.9752475Z Pages: write 2023-01-11T21:14:29.9752790Z PullRequests: write 2023-01-11T21:14:29.9753138Z RepositoryProjects: write 2023-01-11T21:14:29.9753435Z SecurityEvents: write 2023-01-11T21:14:29.9753767Z Statuses: write 2023-01-11T21:14:29.9754071Z ##[endgroup] 2023-01-11T21:14:29.9757088Z Secret source: Actions 2023-01-11T21:14:29.9757879Z Prepare workflow directory 2023-01-11T21:14:30.6234895Z Prepare all required actions 2023-01-11T21:14:30.6390045Z Getting action download info 2023-01-11T21:14:30.9235374Z Download action repository 'pytorch/test-infra@main' (SHA:2c225610d00fb13c04fcd60389d3e4d8326167c3) 2023-01-11T21:14:31.2003414Z Download action repository 'pytorch/pytorch@master' (SHA:c5836153f5332ca83d5cacde38f2829a4d54793e) 2023-01-11T21:14:33.9077603Z Download action repository 'seemethere/upload-artifact-s3@v5' (SHA:baba72d0712b404f646cebe0730933554ebce96a) 2023-01-11T21:14:34.1571349Z Getting action download info 2023-01-11T21:14:34.4625699Z Download action repository 'malfet/checkout@silent-checkout' (SHA:c7b8fef48edfe1bca0044a44b1f7f7c4318a3076) 2023-01-11T21:14:34.6589171Z Getting action download info 2023-01-11T21:14:34.8244636Z Download action repository 'nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482' (SHA:3e91a01664abd3c5cd539100d10d33b9c5b68482) 2023-01-11T21:14:34.9565709Z Uses: pytorch/pytorch/.github/workflows/_linux-test.yml 2023-01-11T21:14:34.9567314Z ##[group] Inputs 2023-01-11T21:14:34.9567610Z build-environment: linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T21:14:34.9568716Z test-matrix: { include: [ { config: "default", shard: 1, num_shards: 4, runner: "linux.4xlarge.nvidia.gpu" }, { config: "default", shard: 2, num_shards: 4, runner: "linux.4xlarge.nvidia.gpu" }, { config: "default", shard: 3, num_shards: 4, runner: "linux.4xlarge.nvidia.gpu" }, { config: "default", shard: 4, num_shards: 4, runner: "linux.4xlarge.nvidia.gpu" }, { config: "functorch", shard: 1, num_shards: 1, runner: "linux.4xlarge.nvidia.gpu" }, { config: "nogpu_AVX512", shard: 1, num_shards: 1, runner: "linux.2xlarge" }, { config: "nogpu_NO_AVX2", shard: 1, num_shards: 1, runner: "linux.2xlarge" }, { config: "jit_legacy", shard: 1, num_shards: 1, runner: "linux.4xlarge.nvidia.gpu" }, { config: "distributed", shard: 1, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" }, { config: "distributed", shard: 2, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" }, { config: "distributed", shard: 3, num_shards: 3, runner: "linux.8xlarge.nvidia.gpu" }, ]} 2023-01-11T21:14:34.9570177Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:14:34.9570545Z sync-tag: 2023-01-11T21:14:34.9571275Z timeout-minutes: 240 2023-01-11T21:14:34.9571451Z use-gha: 2023-01-11T21:14:34.9571636Z ##[endgroup] 2023-01-11T21:14:34.9572117Z Complete job name: linux-bionic-cuda11.7-py3.10-gcc7 / test (nogpu_AVX512, 1, 1, linux.2xlarge) 2023-01-11T21:14:35.0235628Z ##[group]Run pytorch/test-infra/.github/actions/setup-ssh@main 2023-01-11T21:14:35.0235909Z with: 2023-01-11T21:14:35.0236372Z github-secret: *** 2023-01-11T21:14:35.0236702Z instructions: All testing is done inside the container, to start an interactive session run: docker exec -it $(docker container ps --format '{{.ID}}') bash 2023-01-11T21:14:35.0237042Z activate-with-label: false 2023-01-11T21:14:35.0237332Z label: with-ssh 2023-01-11T21:14:35.0237523Z remove-existing-keys: true 2023-01-11T21:14:35.0237695Z env: 2023-01-11T21:14:35.0237871Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:14:35.0238058Z ##[endgroup] 2023-01-11T21:14:35.0982178Z ciflow reference detected, attempting to extract PR number 2023-01-11T21:14:35.5039575Z Grabbing public ssh keys from https://github.com/pytorch-bot[bot].keys 2023-01-11T21:14:35.5818835Z No SSH keys found for user pytorch-bot[bot] 2023-01-11T21:14:35.5819177Z Grabbing public ssh keys from https://github.com/LucaLumetti.keys 2023-01-11T21:14:35.6971231Z ~/.ssh/authorized_keys file found on node, removing ~/.ssh and starting fresh 2023-01-11T21:14:35.6983859Z Public keys pulled and installed to /home/ec2-user/.ssh/authorized_keys 2023-01-11T21:14:35.7006641Z Login using: ssh ec2-user@ec2-3-239-182-156.compute-1.amazonaws.com 2023-01-11T21:14:35.7007313Z All testing is done inside the container, to start an interactive session run: 2023-01-11T21:14:35.7007753Z docker exec -it $(docker container ps --format '{{.ID}}') bash 2023-01-11T21:14:35.7212707Z ##[group]Run pytorch/pytorch/.github/actions/checkout-pytorch@master 2023-01-11T21:14:35.7212986Z with: 2023-01-11T21:14:35.7213176Z submodules: recursive 2023-01-11T21:14:35.7213389Z fetch-depth: 0 2023-01-11T21:14:35.7213581Z env: 2023-01-11T21:14:35.7213772Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:14:35.7213985Z ##[endgroup] 2023-01-11T21:14:35.7414198Z ##[group]Run retry () { 2023-01-11T21:14:35.7414463Z retry () { 2023-01-11T21:14:35.7414721Z  $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*) 2023-01-11T21:14:35.7414951Z } 2023-01-11T21:14:35.7415168Z echo "${GITHUB_WORKSPACE}" 2023-01-11T21:14:35.7415419Z if [ -z "${NO_SUDO}" ]; then 2023-01-11T21:14:35.7415664Z  retry sudo rm -rf "${GITHUB_WORKSPACE}" 2023-01-11T21:14:35.7415899Z else 2023-01-11T21:14:35.7416129Z  retry rm -rf "${GITHUB_WORKSPACE}" 2023-01-11T21:14:35.7416353Z fi 2023-01-11T21:14:35.7416600Z mkdir "${GITHUB_WORKSPACE}" 2023-01-11T21:14:35.7431833Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:14:35.7432083Z env: 2023-01-11T21:14:35.7432297Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:14:35.7432512Z NO_SUDO: 2023-01-11T21:14:35.7432699Z ##[endgroup] 2023-01-11T21:14:35.7523233Z /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T21:14:38.1135558Z ##[group]Run malfet/checkout@silent-checkout 2023-01-11T21:14:38.1135767Z with: 2023-01-11T21:14:38.1135969Z ref: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:14:38.1136168Z fetch-depth: 0 2023-01-11T21:14:38.1136345Z submodules: recursive 2023-01-11T21:14:38.1136529Z quiet-checkout: true 2023-01-11T21:14:38.1136713Z repository: pytorch/pytorch 2023-01-11T21:14:38.1137035Z token: *** 2023-01-11T21:14:38.1137206Z ssh-strict: true 2023-01-11T21:14:38.1137397Z persist-credentials: true 2023-01-11T21:14:38.1137579Z clean: true 2023-01-11T21:14:38.1137749Z lfs: false 2023-01-11T21:14:38.1137928Z set-safe-directory: true 2023-01-11T21:14:38.1138093Z env: 2023-01-11T21:14:38.1138264Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:14:38.1138445Z ##[endgroup] 2023-01-11T21:14:38.2199742Z Syncing repository: pytorch/pytorch 2023-01-11T21:14:38.2201068Z ##[group]Getting Git version info 2023-01-11T21:14:38.2201479Z Working directory is '/home/ec2-user/actions-runner/_work/pytorch/pytorch' 2023-01-11T21:14:38.2201949Z [command]/usr/bin/git version 2023-01-11T21:14:38.2202221Z git version 2.38.1 2023-01-11T21:14:38.2203413Z ##[endgroup] 2023-01-11T21:14:38.2217338Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/16626393-b543-4033-8ad5-53b59506932d' before making global git config changes 2023-01-11T21:14:38.2218006Z Adding repository directory to the temporary git global config as a safe directory 2023-01-11T21:14:38.2222014Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T21:14:38.2258507Z Deleting the contents of '/home/ec2-user/actions-runner/_work/pytorch/pytorch' 2023-01-11T21:14:38.2263012Z ##[group]Initializing the repository 2023-01-11T21:14:38.2265863Z [command]/usr/bin/git init /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T21:14:38.2397396Z hint: Using 'master' as the name for the initial branch. This default branch name 2023-01-11T21:14:38.2398017Z hint: is subject to change. To configure the initial branch name to use in all 2023-01-11T21:14:38.2398578Z hint: of your new repositories, which will suppress this warning, call: 2023-01-11T21:14:38.2398936Z hint: 2023-01-11T21:14:38.2399387Z hint: git config --global init.defaultBranch 2023-01-11T21:14:38.2399717Z hint: 2023-01-11T21:14:38.2400215Z hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and 2023-01-11T21:14:38.2400736Z hint: 'development'. The just-created branch can be renamed via this command: 2023-01-11T21:14:38.2400981Z hint: 2023-01-11T21:14:38.2401279Z hint: git branch -m 2023-01-11T21:14:38.2401657Z Initialized empty Git repository in /home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/ 2023-01-11T21:14:38.2406817Z [command]/usr/bin/git remote add origin https://github.com/pytorch/pytorch 2023-01-11T21:14:38.2434294Z ##[endgroup] 2023-01-11T21:14:38.2434678Z ##[group]Disabling automatic garbage collection 2023-01-11T21:14:38.2437599Z [command]/usr/bin/git config --local gc.auto 0 2023-01-11T21:14:38.2462271Z ##[endgroup] 2023-01-11T21:14:38.2462619Z ##[group]Setting up auth 2023-01-11T21:14:38.2468932Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2023-01-11T21:14:38.2496239Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || : 2023-01-11T21:14:38.2726261Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2023-01-11T21:14:38.2750414Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || : 2023-01-11T21:14:38.2976188Z [command]/usr/bin/git config --local http.https://github.com/.extraheader AUTHORIZATION: basic *** 2023-01-11T21:14:38.3012919Z ##[endgroup] 2023-01-11T21:14:38.3013294Z ##[group]Fetching the repository 2023-01-11T21:14:38.3019373Z [command]/usr/bin/git -c protocol.version=2 fetch --prune --quiet --no-recurse-submodules origin +refs/heads/*:refs/remotes/origin/* +refs/tags/*:refs/tags/* 2023-01-11T21:15:32.8994586Z [command]/usr/bin/git rev-parse --verify --quiet 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e^{object} 2023-01-11T21:15:32.9019767Z 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:15:32.9023750Z ##[endgroup] 2023-01-11T21:15:32.9024203Z ##[group]Determining the checkout info 2023-01-11T21:15:32.9024958Z ##[endgroup] 2023-01-11T21:15:32.9025529Z ##[group]Checking out the ref 2023-01-11T21:15:32.9029729Z [command]/usr/bin/git checkout --quiet --force 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:15:34.1924225Z ##[endgroup] 2023-01-11T21:15:34.1924632Z ##[group]Setting up auth for fetching submodules 2023-01-11T21:15:34.1930073Z [command]/usr/bin/git config --global http.https://github.com/.extraheader AUTHORIZATION: basic *** 2023-01-11T21:15:34.1974073Z [command]/usr/bin/git config --global --unset-all url.https://github.com/.insteadOf 2023-01-11T21:15:34.2001564Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf git@github.com: 2023-01-11T21:15:34.2027499Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf org-21003710@github.com: 2023-01-11T21:15:34.2052593Z ##[endgroup] 2023-01-11T21:15:34.2053028Z ##[group]Fetching submodules 2023-01-11T21:15:34.2056625Z [command]/usr/bin/git submodule sync --recursive 2023-01-11T21:15:34.2302530Z [command]/usr/bin/git -c protocol.version=2 submodule update --init --force --recursive 2023-01-11T21:15:34.2539415Z Submodule 'android/libs/fbjni' (https://github.com/facebookincubator/fbjni.git) registered for path 'android/libs/fbjni' 2023-01-11T21:15:34.2540414Z Submodule 'third_party/NNPACK_deps/FP16' (https://github.com/Maratyszcza/FP16.git) registered for path 'third_party/FP16' 2023-01-11T21:15:34.2542650Z Submodule 'third_party/NNPACK_deps/FXdiv' (https://github.com/Maratyszcza/FXdiv.git) registered for path 'third_party/FXdiv' 2023-01-11T21:15:34.2544977Z Submodule 'third_party/NNPACK' (https://github.com/Maratyszcza/NNPACK.git) registered for path 'third_party/NNPACK' 2023-01-11T21:15:34.2547316Z Submodule 'third_party/QNNPACK' (https://github.com/pytorch/QNNPACK) registered for path 'third_party/QNNPACK' 2023-01-11T21:15:34.2549888Z Submodule 'third_party/VulkanMemoryAllocator' (https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git) registered for path 'third_party/VulkanMemoryAllocator' 2023-01-11T21:15:34.2552411Z Submodule 'third_party/XNNPACK' (https://github.com/google/XNNPACK.git) registered for path 'third_party/XNNPACK' 2023-01-11T21:15:34.2554989Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/benchmark' 2023-01-11T21:15:34.2557696Z Submodule 'third_party/cpuinfo' (https://github.com/pytorch/cpuinfo.git) registered for path 'third_party/cpuinfo' 2023-01-11T21:15:34.2560700Z Submodule 'third_party/cub' (https://github.com/NVlabs/cub.git) registered for path 'third_party/cub' 2023-01-11T21:15:34.2563645Z Submodule 'third_party/cudnn_frontend' (https://github.com/NVIDIA/cudnn-frontend.git) registered for path 'third_party/cudnn_frontend' 2023-01-11T21:15:34.2566650Z Submodule 'third_party/cutlass' (https://github.com/NVIDIA/cutlass.git) registered for path 'third_party/cutlass' 2023-01-11T21:15:34.2570217Z Submodule 'third_party/eigen' (https://gitlab.com/libeigen/eigen.git) registered for path 'third_party/eigen' 2023-01-11T21:15:34.2573229Z Submodule 'third_party/fbgemm' (https://github.com/pytorch/fbgemm) registered for path 'third_party/fbgemm' 2023-01-11T21:15:34.2576597Z Submodule 'third_party/flatbuffers' (https://github.com/google/flatbuffers.git) registered for path 'third_party/flatbuffers' 2023-01-11T21:15:34.2580000Z Submodule 'third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/fmt' 2023-01-11T21:15:34.2583499Z Submodule 'third_party/foxi' (https://github.com/houseroad/foxi.git) registered for path 'third_party/foxi' 2023-01-11T21:15:34.2587325Z Submodule 'third_party/gemmlowp/gemmlowp' (https://github.com/google/gemmlowp.git) registered for path 'third_party/gemmlowp/gemmlowp' 2023-01-11T21:15:34.2590966Z Submodule 'third_party/gloo' (https://github.com/facebookincubator/gloo) registered for path 'third_party/gloo' 2023-01-11T21:15:34.2594946Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/googletest' 2023-01-11T21:15:34.2598862Z Submodule 'third_party/ideep' (https://github.com/intel/ideep) registered for path 'third_party/ideep' 2023-01-11T21:15:34.2602977Z Submodule 'third_party/ios-cmake' (https://github.com/Yangqing/ios-cmake.git) registered for path 'third_party/ios-cmake' 2023-01-11T21:15:34.2607091Z Submodule 'third_party/ittapi' (https://github.com/intel/ittapi.git) registered for path 'third_party/ittapi' 2023-01-11T21:15:34.2611569Z Submodule 'third_party/kineto' (https://github.com/pytorch/kineto) registered for path 'third_party/kineto' 2023-01-11T21:15:34.2615889Z Submodule 'third_party/nccl/nccl' (https://github.com/NVIDIA/nccl) registered for path 'third_party/nccl/nccl' 2023-01-11T21:15:34.2620357Z Submodule 'third_party/neon2sse' (https://github.com/intel/ARM_NEON_2_x86_SSE.git) registered for path 'third_party/neon2sse' 2023-01-11T21:15:34.2624996Z Submodule 'third_party/nlohmann' (https://github.com/nlohmann/json.git) registered for path 'third_party/nlohmann' 2023-01-11T21:15:34.2629623Z Submodule 'third_party/onnx' (https://github.com/onnx/onnx.git) registered for path 'third_party/onnx' 2023-01-11T21:15:34.2635242Z Submodule 'third_party/onnx-tensorrt' (https://github.com/onnx/onnx-tensorrt) registered for path 'third_party/onnx-tensorrt' 2023-01-11T21:15:34.2639354Z Submodule 'third_party/pocketfft' (https://github.com/mreineck/pocketfft) registered for path 'third_party/pocketfft' 2023-01-11T21:15:34.2644435Z Submodule 'third_party/protobuf' (https://github.com/protocolbuffers/protobuf.git) registered for path 'third_party/protobuf' 2023-01-11T21:15:34.2650186Z Submodule 'third_party/NNPACK_deps/psimd' (https://github.com/Maratyszcza/psimd.git) registered for path 'third_party/psimd' 2023-01-11T21:15:34.2654986Z Submodule 'third_party/NNPACK_deps/pthreadpool' (https://github.com/Maratyszcza/pthreadpool.git) registered for path 'third_party/pthreadpool' 2023-01-11T21:15:34.2660453Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/pybind11' 2023-01-11T21:15:34.2666071Z Submodule 'third_party/python-enum' (https://github.com/PeachPy/enum34.git) registered for path 'third_party/python-enum' 2023-01-11T21:15:34.2671432Z Submodule 'third_party/python-peachpy' (https://github.com/malfet/PeachPy.git) registered for path 'third_party/python-peachpy' 2023-01-11T21:15:34.2676951Z Submodule 'third_party/python-six' (https://github.com/benjaminp/six.git) registered for path 'third_party/python-six' 2023-01-11T21:15:34.2682541Z Submodule 'third_party/sleef' (https://github.com/shibatch/sleef) registered for path 'third_party/sleef' 2023-01-11T21:15:34.2688316Z Submodule 'third_party/tbb' (https://github.com/01org/tbb) registered for path 'third_party/tbb' 2023-01-11T21:15:34.2695034Z Submodule 'third_party/tensorpipe' (https://github.com/pytorch/tensorpipe.git) registered for path 'third_party/tensorpipe' 2023-01-11T21:15:34.2700963Z Submodule 'third_party/zstd' (https://github.com/facebook/zstd.git) registered for path 'third_party/zstd' 2023-01-11T21:15:34.2723590Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/android/libs/fbjni'... 2023-01-11T21:15:34.5896430Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/FP16'... 2023-01-11T21:15:34.7996010Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/FXdiv'... 2023-01-11T21:15:35.0107756Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/NNPACK'... 2023-01-11T21:15:35.2801646Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/QNNPACK'... 2023-01-11T21:15:35.5443549Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/VulkanMemoryAllocator'... 2023-01-11T21:15:37.6467539Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/XNNPACK'... 2023-01-11T21:15:44.1100573Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/benchmark'... 2023-01-11T21:15:44.5071382Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cpuinfo'... 2023-01-11T21:15:45.0588684Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cub'... 2023-01-11T21:15:46.4379527Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cudnn_frontend'... 2023-01-11T21:15:47.5660083Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/cutlass'... 2023-01-11T21:15:48.7099181Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/eigen'... 2023-01-11T21:15:54.7733462Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm'... 2023-01-11T21:15:55.5053627Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/flatbuffers'... 2023-01-11T21:15:57.0051178Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fmt'... 2023-01-11T21:15:58.2707720Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/foxi'... 2023-01-11T21:15:58.5081133Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/gemmlowp/gemmlowp'... 2023-01-11T21:15:58.9580850Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/gloo'... 2023-01-11T21:15:59.2601776Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/googletest'... 2023-01-11T21:16:00.3108396Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ideep'... 2023-01-11T21:16:00.8103777Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ios-cmake'... 2023-01-11T21:16:01.0636081Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ittapi'... 2023-01-11T21:16:01.4414642Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/kineto'... 2023-01-11T21:16:02.8849535Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/nccl/nccl'... 2023-01-11T21:16:03.2293067Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/neon2sse'... 2023-01-11T21:16:03.6082125Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/nlohmann'... 2023-01-11T21:16:12.4369651Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx'... 2023-01-11T21:16:14.2883981Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt'... 2023-01-11T21:16:14.7336331Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/pocketfft'... 2023-01-11T21:16:14.9911021Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/protobuf'... 2023-01-11T21:16:20.7479284Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/psimd'... 2023-01-11T21:16:20.9527903Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/pthreadpool'... 2023-01-11T21:16:21.2109396Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/pybind11'... 2023-01-11T21:16:22.1624698Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/python-enum'... 2023-01-11T21:16:22.4070508Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/python-peachpy'... 2023-01-11T21:16:22.7386252Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/python-six'... 2023-01-11T21:16:23.0480850Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/sleef'... 2023-01-11T21:16:23.6120895Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tbb'... 2023-01-11T21:16:25.4112851Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe'... 2023-01-11T21:16:25.8774605Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/zstd'... 2023-01-11T21:16:28.2600713Z Submodule path 'android/libs/fbjni': checked out '7e1e1fe3858c63c251c637ae41a20de425dde96f' 2023-01-11T21:16:28.2694557Z Submodule path 'third_party/FP16': checked out '4dfe081cf6bcd15db339cf2680b9281b8451eeb3' 2023-01-11T21:16:28.2767079Z Submodule path 'third_party/FXdiv': checked out 'b408327ac2a15ec3e43352421954f5b1967701d1' 2023-01-11T21:16:28.2963993Z Submodule path 'third_party/NNPACK': checked out 'c07e3a0400713d546e0dea2d5466dd22ea389c73' 2023-01-11T21:16:28.3162518Z Submodule path 'third_party/QNNPACK': checked out '7d2a4e9931a82adc3814275b6219a03e24e36b4c' 2023-01-11T21:16:28.3482859Z Submodule path 'third_party/VulkanMemoryAllocator': checked out 'a6bfc237255a6bac1513f7c1ebde6d8aed6b5191' 2023-01-11T21:16:28.8969301Z Submodule path 'third_party/XNNPACK': checked out 'ae108ef49aa5623b896fc93d4298c49d1750d9ba' 2023-01-11T21:16:28.9156655Z Submodule path 'third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2023-01-11T21:16:29.0055603Z Submodule path 'third_party/cpuinfo': checked out '8ec7bd91ad0470e61cf38f618cc1f270dede599c' 2023-01-11T21:16:29.0354247Z Submodule path 'third_party/cub': checked out 'd106ddb991a56c3df1b6d51b2409e36ba8181ce4' 2023-01-11T21:16:29.2953243Z Submodule path 'third_party/cudnn_frontend': checked out '171a7a986f7fbd9ed71bd0cf3c7ad4f55843d6b3' 2023-01-11T21:16:29.6630042Z Submodule path 'third_party/cutlass': checked out 'b72cbf957df8cf84a6d0ff91c190ad51a9c1d24a' 2023-01-11T21:16:29.8820756Z Submodule path 'third_party/eigen': checked out '3147391d946bb4b6c68edd901f2add6ac1f31f8c' 2023-01-11T21:16:29.9230779Z Submodule path 'third_party/fbgemm': checked out '80d64206c07879fd4683be66873de7cefa1a0a71' 2023-01-11T21:16:29.9243496Z Submodule 'third_party/asmjit' (https://github.com/asmjit/asmjit.git) registered for path 'third_party/fbgemm/third_party/asmjit' 2023-01-11T21:16:29.9245353Z Submodule 'third_party/cpuinfo' (https://github.com/pytorch/cpuinfo) registered for path 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T21:16:29.9247482Z Submodule 'third_party/googletest' (https://github.com/google/googletest) registered for path 'third_party/fbgemm/third_party/googletest' 2023-01-11T21:16:29.9249991Z Submodule 'third_party/hipify_torch' (https://github.com/ROCmSoftwarePlatform/hipify_torch.git) registered for path 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T21:16:29.9270399Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/asmjit'... 2023-01-11T21:16:30.9177227Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/cpuinfo'... 2023-01-11T21:16:31.4715233Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/googletest'... 2023-01-11T21:16:32.5203779Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/hipify_torch'... 2023-01-11T21:16:32.8387448Z Submodule path 'third_party/fbgemm/third_party/asmjit': checked out 'd3fbf7c9bc7c1d1365a94a45614b91c5a3706b81' 2023-01-11T21:16:32.9293663Z Submodule path 'third_party/fbgemm/third_party/cpuinfo': checked out 'ed8b86a253800bafdb7b25c5c399f91bff9cb1f3' 2023-01-11T21:16:32.9819342Z Submodule path 'third_party/fbgemm/third_party/googletest': checked out 'cbf019de22c8dd37b2108da35b2748fd702d1796' 2023-01-11T21:16:32.9908069Z Submodule path 'third_party/fbgemm/third_party/hipify_torch': checked out '1840658c184f3eeba787dae0f06c45756c1daaf5' 2023-01-11T21:16:33.0664854Z Submodule path 'third_party/flatbuffers': checked out 'd0cede9c90c5257537c293517a21376408b549fa' 2023-01-11T21:16:33.0994038Z Submodule path 'third_party/fmt': checked out '7bdf0628b1276379886c7f6dda2cef2b3b374f0b' 2023-01-11T21:16:33.1072061Z Submodule path 'third_party/foxi': checked out 'c278588e34e535f0bb8f00df3880d26928038cad' 2023-01-11T21:16:33.1426831Z Submodule path 'third_party/gemmlowp/gemmlowp': checked out '3fb5c176c17c765a3492cd2f0321b0dab712f350' 2023-01-11T21:16:33.1634591Z Submodule path 'third_party/gloo': checked out '4a5e339b764261d20fc409071dc7a8b8989aa195' 2023-01-11T21:16:33.2046079Z Submodule path 'third_party/googletest': checked out 'e2239ee6043f73722e7aa812a459f54a28552929' 2023-01-11T21:16:33.2147711Z Submodule path 'third_party/ideep': checked out 'e533c771a1e75a1c225c14b2261eefa62681d9e6' 2023-01-11T21:16:33.2160513Z Submodule 'mkl-dnn' (https://github.com/intel/mkl-dnn.git) registered for path 'third_party/ideep/mkl-dnn' 2023-01-11T21:16:33.2179797Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ideep/mkl-dnn'... 2023-01-11T21:16:41.7065565Z Submodule path 'third_party/ideep/mkl-dnn': checked out '404ad76ee633c939d705eb583ffe50a806969d5e' 2023-01-11T21:16:41.7081212Z Submodule 'third_party/oneDNN' (https://github.com/oneapi-src/oneDNN.git) registered for path 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T21:16:41.7102501Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/ideep/mkl-dnn/third_party/oneDNN'... 2023-01-11T21:16:49.8802309Z Submodule path 'third_party/ideep/mkl-dnn/third_party/oneDNN': checked out 'fbec3e25a559ee252022ae066817b204e106a6ba' 2023-01-11T21:16:49.8893257Z Submodule path 'third_party/ios-cmake': checked out '8abaed637d56f1337d6e1d2c4026e25c1eade724' 2023-01-11T21:16:49.9020261Z Submodule path 'third_party/ittapi': checked out '5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42' 2023-01-11T21:16:49.9857870Z Submodule path 'third_party/kineto': checked out '6c1629809068efd78a8d56b4aa479c7ec49ae562' 2023-01-11T21:16:49.9871522Z Submodule 'libkineto/third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T21:16:49.9873505Z Submodule 'libkineto/third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T21:16:49.9894727Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/fmt'... 2023-01-11T21:16:51.1783819Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/googletest'... 2023-01-11T21:16:52.2060365Z Submodule path 'third_party/kineto/libkineto/third_party/fmt': checked out '2591ab91c3898c9f6544fff04660276537d32ffd' 2023-01-11T21:16:52.2548161Z Submodule path 'third_party/kineto/libkineto/third_party/googletest': checked out '7aca84427f224eeed3144123d5230d5871e93347' 2023-01-11T21:16:52.2731841Z Submodule path 'third_party/nccl/nccl': checked out 'f89fd4777d2ef9229c039ff750ae21da01626f52' 2023-01-11T21:16:52.2853504Z Submodule path 'third_party/neon2sse': checked out '97a126f08ce318023be604d03f88bf0820a9464a' 2023-01-11T21:16:52.3819732Z Submodule path 'third_party/nlohmann': checked out '87cda1d6646592ac5866dc703c8e1839046a6806' 2023-01-11T21:16:52.5984847Z Submodule path 'third_party/onnx': checked out 'f7ee1ac60d06abe8e26c9b6bbe1e3db5286b614b' 2023-01-11T21:16:52.6010540Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/onnx/third_party/benchmark' 2023-01-11T21:16:52.6012638Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/onnx/third_party/pybind11' 2023-01-11T21:16:52.6035445Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx/third_party/benchmark'... 2023-01-11T21:16:53.0079626Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx/third_party/pybind11'... 2023-01-11T21:16:53.9488738Z Submodule path 'third_party/onnx/third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2023-01-11T21:16:53.9763410Z Submodule path 'third_party/onnx/third_party/pybind11': checked out 'ffa346860b306c9bbfb341aed9c14c067751feb8' 2023-01-11T21:16:53.9894834Z Submodule path 'third_party/onnx-tensorrt': checked out 'c153211418a7c57ce071d9ce2a41f8d1c85a878f' 2023-01-11T21:16:53.9906930Z Submodule 'third_party/onnx' (https://github.com/onnx/onnx.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T21:16:53.9927801Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx'... 2023-01-11T21:16:56.0244337Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx': checked out '765f5ee823a67a866f4bd28a9860e81f3c811ce8' 2023-01-11T21:16:56.0261467Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T21:16:56.0263308Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T21:16:56.0286237Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark'... 2023-01-11T21:16:56.4621784Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11'... 2023-01-11T21:16:57.4096373Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark': checked out 'e776aa0275e293707b6a0901e0e8d8a8a3679508' 2023-01-11T21:16:57.4688654Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11': checked out 'a1041190c8b8ff0cd9e2f0752248ad5e3789ea0c' 2023-01-11T21:16:57.4700947Z Submodule 'tools/clang' (https://github.com/wjakob/clang-cindex-python3) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T21:16:57.4722668Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang'... 2023-01-11T21:16:57.6822158Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2023-01-11T21:16:57.6901763Z Submodule path 'third_party/pocketfft': checked out 'ea778e37710c07723435b1be58235996d1d43a5a' 2023-01-11T21:16:57.9220379Z Submodule path 'third_party/protobuf': checked out 'd1eca4e4b421cd2997495c4b4e65cea6be4e9b8a' 2023-01-11T21:16:57.9238113Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/protobuf/third_party/benchmark' 2023-01-11T21:16:57.9240185Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/protobuf/third_party/googletest' 2023-01-11T21:16:57.9262393Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/protobuf/third_party/benchmark'... 2023-01-11T21:16:58.3304091Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/protobuf/third_party/googletest'... 2023-01-11T21:16:59.5237557Z Submodule path 'third_party/protobuf/third_party/benchmark': checked out '5b7683f49e1e9223cf9927b24f6fd3d6bd82e3f8' 2023-01-11T21:16:59.5856023Z Submodule path 'third_party/protobuf/third_party/googletest': checked out '5ec7f0c4a113e2f18ac2c6cc7df51ad6afc24081' 2023-01-11T21:16:59.5932037Z Submodule path 'third_party/psimd': checked out '072586a71b55b7f8c584153d223e95687148a900' 2023-01-11T21:16:59.6025296Z Submodule path 'third_party/pthreadpool': checked out 'a134dd5d4cee80cce15db81a72e7f929d71dd413' 2023-01-11T21:16:59.6318092Z Submodule path 'third_party/pybind11': checked out '80dc998efced8ceb2be59756668a7e90e8bef917' 2023-01-11T21:16:59.6396890Z Submodule path 'third_party/python-enum': checked out '4cfedc426c4e2fc52e3f5c2b4297e15ed8d6b8c7' 2023-01-11T21:16:59.6645035Z Submodule path 'third_party/python-peachpy': checked out 'f45429b087dd7d5bc78bb40dc7cf06425c252d67' 2023-01-11T21:16:59.6726520Z Submodule path 'third_party/python-six': checked out '15e31431af97e5e64b80af0a3f598d382bcdd49a' 2023-01-11T21:16:59.7117466Z Submodule path 'third_party/sleef': checked out 'e0a003ee838b75d11763aa9c3ef17bf71a725bff' 2023-01-11T21:16:59.8088832Z Submodule path 'third_party/tbb': checked out 'a51a90bc609bb73db8ea13841b5cf7aa4344d4a9' 2023-01-11T21:16:59.8317379Z Submodule path 'third_party/tensorpipe': checked out '52791a2fd214b2a9dc5759d36725909c1daa7f2e' 2023-01-11T21:16:59.8330059Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/tensorpipe/third_party/googletest' 2023-01-11T21:16:59.8332457Z Submodule 'third_party/libnop' (https://github.com/google/libnop.git) registered for path 'third_party/tensorpipe/third_party/libnop' 2023-01-11T21:16:59.8335105Z Submodule 'third_party/libuv' (https://github.com/libuv/libuv.git) registered for path 'third_party/tensorpipe/third_party/libuv' 2023-01-11T21:16:59.8337359Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T21:16:59.8358387Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/googletest'... 2023-01-11T21:17:01.0067555Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/libnop'... 2023-01-11T21:17:01.3780938Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/libuv'... 2023-01-11T21:17:02.7280709Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/pybind11'... 2023-01-11T21:17:04.7179430Z Submodule path 'third_party/tensorpipe/third_party/googletest': checked out 'aee0f9d9b5b87796ee8a0ab26b7587ec30e8858e' 2023-01-11T21:17:04.7312049Z Submodule path 'third_party/tensorpipe/third_party/libnop': checked out '910b55815be16109f04f4180e9adee14fb4ce281' 2023-01-11T21:17:04.7877968Z Submodule path 'third_party/tensorpipe/third_party/libuv': checked out '1dff88e5161cba5c59276d2070d2e304e4dcb242' 2023-01-11T21:17:04.8130302Z Submodule path 'third_party/tensorpipe/third_party/pybind11': checked out 'a23996fce38ff6ccfbcdc09f1e63f2c4be5ea2ef' 2023-01-11T21:17:04.8143632Z Submodule 'tools/clang' (https://github.com/wjakob/clang-cindex-python3) registered for path 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T21:17:04.8172595Z Cloning into '/home/ec2-user/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/pybind11/tools/clang'... 2023-01-11T21:17:05.1232049Z Submodule path 'third_party/tensorpipe/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2023-01-11T21:17:05.2475763Z Submodule path 'third_party/zstd': checked out 'aec56a52fbab207fc639a1937d1e708a282edca8' 2023-01-11T21:17:05.2501470Z [command]/usr/bin/git submodule foreach --recursive git config --local gc.auto 0 2023-01-11T21:17:05.2763995Z Entering 'android/libs/fbjni' 2023-01-11T21:17:05.2803138Z Entering 'third_party/FP16' 2023-01-11T21:17:05.2839450Z Entering 'third_party/FXdiv' 2023-01-11T21:17:05.2872011Z Entering 'third_party/NNPACK' 2023-01-11T21:17:05.2909863Z Entering 'third_party/QNNPACK' 2023-01-11T21:17:05.2947750Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T21:17:05.2984435Z Entering 'third_party/XNNPACK' 2023-01-11T21:17:05.3031101Z Entering 'third_party/benchmark' 2023-01-11T21:17:05.3068302Z Entering 'third_party/cpuinfo' 2023-01-11T21:17:05.3105525Z Entering 'third_party/cub' 2023-01-11T21:17:05.3147243Z Entering 'third_party/cudnn_frontend' 2023-01-11T21:17:05.3189027Z Entering 'third_party/cutlass' 2023-01-11T21:17:05.3232283Z Entering 'third_party/eigen' 2023-01-11T21:17:05.3271043Z Entering 'third_party/fbgemm' 2023-01-11T21:17:05.3308455Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T21:17:05.3345514Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T21:17:05.3383289Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T21:17:05.3420118Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T21:17:05.3458314Z Entering 'third_party/flatbuffers' 2023-01-11T21:17:05.3497623Z Entering 'third_party/fmt' 2023-01-11T21:17:05.3535244Z Entering 'third_party/foxi' 2023-01-11T21:17:05.3568456Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T21:17:05.3603650Z Entering 'third_party/gloo' 2023-01-11T21:17:05.3636556Z Entering 'third_party/googletest' 2023-01-11T21:17:05.3674827Z Entering 'third_party/ideep' 2023-01-11T21:17:05.3711925Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T21:17:05.3747924Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T21:17:05.3787507Z Entering 'third_party/ios-cmake' 2023-01-11T21:17:05.3820862Z Entering 'third_party/ittapi' 2023-01-11T21:17:05.3853505Z Entering 'third_party/kineto' 2023-01-11T21:17:05.3886079Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T21:17:05.3918744Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T21:17:05.3952731Z Entering 'third_party/nccl/nccl' 2023-01-11T21:17:05.3986524Z Entering 'third_party/neon2sse' 2023-01-11T21:17:05.4019465Z Entering 'third_party/nlohmann' 2023-01-11T21:17:05.4053411Z Entering 'third_party/onnx' 2023-01-11T21:17:05.4097738Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T21:17:05.4130707Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T21:17:05.4165472Z Entering 'third_party/onnx-tensorrt' 2023-01-11T21:17:05.4199234Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T21:17:05.4237064Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T21:17:05.4270723Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T21:17:05.4304601Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T21:17:05.4341468Z Entering 'third_party/pocketfft' 2023-01-11T21:17:05.4375126Z Entering 'third_party/protobuf' 2023-01-11T21:17:05.4411839Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T21:17:05.4444265Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T21:17:05.4478242Z Entering 'third_party/psimd' 2023-01-11T21:17:05.4510876Z Entering 'third_party/pthreadpool' 2023-01-11T21:17:05.4544083Z Entering 'third_party/pybind11' 2023-01-11T21:17:05.4577165Z Entering 'third_party/python-enum' 2023-01-11T21:17:05.4610077Z Entering 'third_party/python-peachpy' 2023-01-11T21:17:05.4643264Z Entering 'third_party/python-six' 2023-01-11T21:17:05.4680286Z Entering 'third_party/sleef' 2023-01-11T21:17:05.4717509Z Entering 'third_party/tbb' 2023-01-11T21:17:05.4756779Z Entering 'third_party/tensorpipe' 2023-01-11T21:17:05.4794117Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T21:17:05.4831151Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T21:17:05.4869194Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T21:17:05.4906094Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T21:17:05.4945810Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T21:17:05.4981905Z Entering 'third_party/zstd' 2023-01-11T21:17:05.5023649Z ##[endgroup] 2023-01-11T21:17:05.5025023Z ##[group]Persisting credentials for submodules 2023-01-11T21:17:05.5030146Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'url\.https\:\/\/github\.com\/\.insteadOf' && git config --local --unset-all 'url.https://github.com/.insteadOf' || : 2023-01-11T21:17:05.5305766Z Entering 'android/libs/fbjni' 2023-01-11T21:17:05.5340087Z Entering 'third_party/FP16' 2023-01-11T21:17:05.5373017Z Entering 'third_party/FXdiv' 2023-01-11T21:17:05.5404314Z Entering 'third_party/NNPACK' 2023-01-11T21:17:05.5437964Z Entering 'third_party/QNNPACK' 2023-01-11T21:17:05.5470529Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T21:17:05.5503651Z Entering 'third_party/XNNPACK' 2023-01-11T21:17:05.5546637Z Entering 'third_party/benchmark' 2023-01-11T21:17:05.5579656Z Entering 'third_party/cpuinfo' 2023-01-11T21:17:05.5612998Z Entering 'third_party/cub' 2023-01-11T21:17:05.5645683Z Entering 'third_party/cudnn_frontend' 2023-01-11T21:17:05.5683613Z Entering 'third_party/cutlass' 2023-01-11T21:17:05.5721878Z Entering 'third_party/eigen' 2023-01-11T21:17:05.5757475Z Entering 'third_party/fbgemm' 2023-01-11T21:17:05.5789827Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T21:17:05.5821491Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T21:17:05.5854340Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T21:17:05.5885959Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T21:17:05.5919573Z Entering 'third_party/flatbuffers' 2023-01-11T21:17:05.5953852Z Entering 'third_party/fmt' 2023-01-11T21:17:05.5986469Z Entering 'third_party/foxi' 2023-01-11T21:17:05.6019638Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T21:17:05.6052718Z Entering 'third_party/gloo' 2023-01-11T21:17:05.6085277Z Entering 'third_party/googletest' 2023-01-11T21:17:05.6118556Z Entering 'third_party/ideep' 2023-01-11T21:17:05.6150368Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T21:17:05.6184818Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T21:17:05.6223104Z Entering 'third_party/ios-cmake' 2023-01-11T21:17:05.6256131Z Entering 'third_party/ittapi' 2023-01-11T21:17:05.6289596Z Entering 'third_party/kineto' 2023-01-11T21:17:05.6322418Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T21:17:05.6355505Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T21:17:05.6389925Z Entering 'third_party/nccl/nccl' 2023-01-11T21:17:05.6423118Z Entering 'third_party/neon2sse' 2023-01-11T21:17:05.6455710Z Entering 'third_party/nlohmann' 2023-01-11T21:17:05.6489598Z Entering 'third_party/onnx' 2023-01-11T21:17:05.6534000Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T21:17:05.6565793Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T21:17:05.6600043Z Entering 'third_party/onnx-tensorrt' 2023-01-11T21:17:05.6633698Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T21:17:05.6672291Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T21:17:05.6710005Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T21:17:05.6747514Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T21:17:05.6783302Z Entering 'third_party/pocketfft' 2023-01-11T21:17:05.6816550Z Entering 'third_party/protobuf' 2023-01-11T21:17:05.6852594Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T21:17:05.6888728Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T21:17:05.6927825Z Entering 'third_party/psimd' 2023-01-11T21:17:05.6963389Z Entering 'third_party/pthreadpool' 2023-01-11T21:17:05.6999806Z Entering 'third_party/pybind11' 2023-01-11T21:17:05.7036113Z Entering 'third_party/python-enum' 2023-01-11T21:17:05.7070419Z Entering 'third_party/python-peachpy' 2023-01-11T21:17:05.7106833Z Entering 'third_party/python-six' 2023-01-11T21:17:05.7144326Z Entering 'third_party/sleef' 2023-01-11T21:17:05.7178690Z Entering 'third_party/tbb' 2023-01-11T21:17:05.7216118Z Entering 'third_party/tensorpipe' 2023-01-11T21:17:05.7252703Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T21:17:05.7287585Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T21:17:05.7323976Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T21:17:05.7360923Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T21:17:05.7395993Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T21:17:05.7434462Z Entering 'third_party/zstd' 2023-01-11T21:17:05.7482438Z [command]/usr/bin/git submodule foreach --recursive git config --local 'http.https://github.com/.extraheader' 'AUTHORIZATION: basic ***' && git config --local --show-origin --name-only --get-regexp remote.origin.url 2023-01-11T21:17:05.7735267Z Entering 'android/libs/fbjni' 2023-01-11T21:17:05.7768432Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/android/libs/fbjni/config remote.origin.url 2023-01-11T21:17:05.7786269Z Entering 'third_party/FP16' 2023-01-11T21:17:05.7817850Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FP16/config remote.origin.url 2023-01-11T21:17:05.7834757Z Entering 'third_party/FXdiv' 2023-01-11T21:17:05.7869873Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FXdiv/config remote.origin.url 2023-01-11T21:17:05.7887364Z Entering 'third_party/NNPACK' 2023-01-11T21:17:05.7921471Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK/config remote.origin.url 2023-01-11T21:17:05.7936225Z Entering 'third_party/QNNPACK' 2023-01-11T21:17:05.7971415Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/QNNPACK/config remote.origin.url 2023-01-11T21:17:05.7985630Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T21:17:05.8020769Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/VulkanMemoryAllocator/config remote.origin.url 2023-01-11T21:17:05.8034609Z Entering 'third_party/XNNPACK' 2023-01-11T21:17:05.8065438Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/XNNPACK/config remote.origin.url 2023-01-11T21:17:05.8090127Z Entering 'third_party/benchmark' 2023-01-11T21:17:05.8120519Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/benchmark/config remote.origin.url 2023-01-11T21:17:05.8133756Z Entering 'third_party/cpuinfo' 2023-01-11T21:17:05.8167761Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpuinfo/config remote.origin.url 2023-01-11T21:17:05.8182282Z Entering 'third_party/cub' 2023-01-11T21:17:05.8213536Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cub/config remote.origin.url 2023-01-11T21:17:05.8228126Z Entering 'third_party/cudnn_frontend' 2023-01-11T21:17:05.8258695Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cudnn_frontend/config remote.origin.url 2023-01-11T21:17:05.8277483Z Entering 'third_party/cutlass' 2023-01-11T21:17:05.8309485Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cutlass/config remote.origin.url 2023-01-11T21:17:05.8328915Z Entering 'third_party/eigen' 2023-01-11T21:17:05.8359369Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/eigen/config remote.origin.url 2023-01-11T21:17:05.8376772Z Entering 'third_party/fbgemm' 2023-01-11T21:17:05.8411208Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/config remote.origin.url 2023-01-11T21:17:05.8425212Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T21:17:05.8455944Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/asmjit/config remote.origin.url 2023-01-11T21:17:05.8472688Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T21:17:05.8503239Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cpuinfo/config remote.origin.url 2023-01-11T21:17:05.8517577Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T21:17:05.8548404Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/googletest/config remote.origin.url 2023-01-11T21:17:05.8561923Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T21:17:05.8593183Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/hipify_torch/config remote.origin.url 2023-01-11T21:17:05.8607722Z Entering 'third_party/flatbuffers' 2023-01-11T21:17:05.8638168Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flatbuffers/config remote.origin.url 2023-01-11T21:17:05.8653667Z Entering 'third_party/fmt' 2023-01-11T21:17:05.8687157Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fmt/config remote.origin.url 2023-01-11T21:17:05.8702551Z Entering 'third_party/foxi' 2023-01-11T21:17:05.8732790Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/foxi/config remote.origin.url 2023-01-11T21:17:05.8746487Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T21:17:05.8777874Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gemmlowp/gemmlowp/config remote.origin.url 2023-01-11T21:17:05.8792139Z Entering 'third_party/gloo' 2023-01-11T21:17:05.8826124Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gloo/config remote.origin.url 2023-01-11T21:17:05.8839820Z Entering 'third_party/googletest' 2023-01-11T21:17:05.8873770Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/googletest/config remote.origin.url 2023-01-11T21:17:05.8890470Z Entering 'third_party/ideep' 2023-01-11T21:17:05.8925002Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/config remote.origin.url 2023-01-11T21:17:05.8938767Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T21:17:05.8972631Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/config remote.origin.url 2023-01-11T21:17:05.8988583Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T21:17:05.9023463Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/modules/third_party/oneDNN/config remote.origin.url 2023-01-11T21:17:05.9047898Z Entering 'third_party/ios-cmake' 2023-01-11T21:17:05.9083111Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ios-cmake/config remote.origin.url 2023-01-11T21:17:05.9096734Z Entering 'third_party/ittapi' 2023-01-11T21:17:05.9132975Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ittapi/config remote.origin.url 2023-01-11T21:17:05.9150708Z Entering 'third_party/kineto' 2023-01-11T21:17:05.9185352Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/config remote.origin.url 2023-01-11T21:17:05.9199782Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T21:17:05.9232909Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/fmt/config remote.origin.url 2023-01-11T21:17:05.9247204Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T21:17:05.9282275Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/googletest/config remote.origin.url 2023-01-11T21:17:05.9297224Z Entering 'third_party/nccl/nccl' 2023-01-11T21:17:05.9328108Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nccl/nccl/config remote.origin.url 2023-01-11T21:17:05.9342377Z Entering 'third_party/neon2sse' 2023-01-11T21:17:05.9372942Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/neon2sse/config remote.origin.url 2023-01-11T21:17:05.9387086Z Entering 'third_party/nlohmann' 2023-01-11T21:17:05.9419600Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nlohmann/config remote.origin.url 2023-01-11T21:17:05.9434234Z Entering 'third_party/onnx' 2023-01-11T21:17:05.9465013Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/config remote.origin.url 2023-01-11T21:17:05.9489662Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T21:17:05.9519753Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/benchmark/config remote.origin.url 2023-01-11T21:17:05.9534423Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T21:17:05.9564264Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2023-01-11T21:17:05.9580285Z Entering 'third_party/onnx-tensorrt' 2023-01-11T21:17:05.9610308Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/config remote.origin.url 2023-01-11T21:17:05.9623387Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T21:17:05.9657631Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/config remote.origin.url 2023-01-11T21:17:05.9676152Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T21:17:05.9706688Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/benchmark/config remote.origin.url 2023-01-11T21:17:05.9719647Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T21:17:05.9755984Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2023-01-11T21:17:05.9768529Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T21:17:05.9803616Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2023-01-11T21:17:05.9821357Z Entering 'third_party/pocketfft' 2023-01-11T21:17:05.9855780Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pocketfft/config remote.origin.url 2023-01-11T21:17:05.9872919Z Entering 'third_party/protobuf' 2023-01-11T21:17:05.9908630Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/config remote.origin.url 2023-01-11T21:17:05.9924978Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T21:17:05.9960189Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/benchmark/config remote.origin.url 2023-01-11T21:17:05.9977295Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T21:17:06.0012462Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/googletest/config remote.origin.url 2023-01-11T21:17:06.0031980Z Entering 'third_party/psimd' 2023-01-11T21:17:06.0067398Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/psimd/config remote.origin.url 2023-01-11T21:17:06.0080722Z Entering 'third_party/pthreadpool' 2023-01-11T21:17:06.0114380Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/pthreadpool/config remote.origin.url 2023-01-11T21:17:06.0132067Z Entering 'third_party/pybind11' 2023-01-11T21:17:06.0167438Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pybind11/config remote.origin.url 2023-01-11T21:17:06.0186107Z Entering 'third_party/python-enum' 2023-01-11T21:17:06.0221200Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-enum/config remote.origin.url 2023-01-11T21:17:06.0234961Z Entering 'third_party/python-peachpy' 2023-01-11T21:17:06.0269591Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-peachpy/config remote.origin.url 2023-01-11T21:17:06.0283645Z Entering 'third_party/python-six' 2023-01-11T21:17:06.0320461Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-six/config remote.origin.url 2023-01-11T21:17:06.0337547Z Entering 'third_party/sleef' 2023-01-11T21:17:06.0371751Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/sleef/config remote.origin.url 2023-01-11T21:17:06.0389155Z Entering 'third_party/tbb' 2023-01-11T21:17:06.0424487Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tbb/config remote.origin.url 2023-01-11T21:17:06.0444524Z Entering 'third_party/tensorpipe' 2023-01-11T21:17:06.0479188Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/config remote.origin.url 2023-01-11T21:17:06.0493881Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T21:17:06.0527580Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/googletest/config remote.origin.url 2023-01-11T21:17:06.0545286Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T21:17:06.0578999Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libnop/config remote.origin.url 2023-01-11T21:17:06.0595650Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T21:17:06.0630759Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libuv/config remote.origin.url 2023-01-11T21:17:06.0680741Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T21:17:06.0711650Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/config remote.origin.url 2023-01-11T21:17:06.0724558Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T21:17:06.0760359Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2023-01-11T21:17:06.0776594Z Entering 'third_party/zstd' 2023-01-11T21:17:06.0806528Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/zstd/config remote.origin.url 2023-01-11T21:17:06.1773916Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'git@github.com:' 2023-01-11T21:17:06.2035419Z Entering 'android/libs/fbjni' 2023-01-11T21:17:06.2075201Z Entering 'third_party/FP16' 2023-01-11T21:17:06.2114724Z Entering 'third_party/FXdiv' 2023-01-11T21:17:06.2152777Z Entering 'third_party/NNPACK' 2023-01-11T21:17:06.2192524Z Entering 'third_party/QNNPACK' 2023-01-11T21:17:06.2229119Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T21:17:06.2270708Z Entering 'third_party/XNNPACK' 2023-01-11T21:17:06.2324411Z Entering 'third_party/benchmark' 2023-01-11T21:17:06.2365469Z Entering 'third_party/cpuinfo' 2023-01-11T21:17:06.2398945Z Entering 'third_party/cub' 2023-01-11T21:17:06.2439365Z Entering 'third_party/cudnn_frontend' 2023-01-11T21:17:06.2483399Z Entering 'third_party/cutlass' 2023-01-11T21:17:06.2522774Z Entering 'third_party/eigen' 2023-01-11T21:17:06.2558706Z Entering 'third_party/fbgemm' 2023-01-11T21:17:06.2596666Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T21:17:06.2630220Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T21:17:06.2663835Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T21:17:06.2698251Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T21:17:06.2732354Z Entering 'third_party/flatbuffers' 2023-01-11T21:17:06.2770362Z Entering 'third_party/fmt' 2023-01-11T21:17:06.2802737Z Entering 'third_party/foxi' 2023-01-11T21:17:06.2838389Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T21:17:06.2870685Z Entering 'third_party/gloo' 2023-01-11T21:17:06.2903484Z Entering 'third_party/googletest' 2023-01-11T21:17:06.2937424Z Entering 'third_party/ideep' 2023-01-11T21:17:06.2974168Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T21:17:06.3008306Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T21:17:06.3051820Z Entering 'third_party/ios-cmake' 2023-01-11T21:17:06.3084924Z Entering 'third_party/ittapi' 2023-01-11T21:17:06.3119761Z Entering 'third_party/kineto' 2023-01-11T21:17:06.3156959Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T21:17:06.3191119Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T21:17:06.3228253Z Entering 'third_party/nccl/nccl' 2023-01-11T21:17:06.3263623Z Entering 'third_party/neon2sse' 2023-01-11T21:17:06.3297411Z Entering 'third_party/nlohmann' 2023-01-11T21:17:06.3339954Z Entering 'third_party/onnx' 2023-01-11T21:17:06.3384999Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T21:17:06.3418305Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T21:17:06.3453983Z Entering 'third_party/onnx-tensorrt' 2023-01-11T21:17:06.3486426Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T21:17:06.3524091Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T21:17:06.3557926Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T21:17:06.3591211Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T21:17:06.3629351Z Entering 'third_party/pocketfft' 2023-01-11T21:17:06.3662805Z Entering 'third_party/protobuf' 2023-01-11T21:17:06.3699654Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T21:17:06.3733368Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T21:17:06.3767767Z Entering 'third_party/psimd' 2023-01-11T21:17:06.3802036Z Entering 'third_party/pthreadpool' 2023-01-11T21:17:06.3836361Z Entering 'third_party/pybind11' 2023-01-11T21:17:06.3870595Z Entering 'third_party/python-enum' 2023-01-11T21:17:06.3904150Z Entering 'third_party/python-peachpy' 2023-01-11T21:17:06.3937136Z Entering 'third_party/python-six' 2023-01-11T21:17:06.3971581Z Entering 'third_party/sleef' 2023-01-11T21:17:06.4005744Z Entering 'third_party/tbb' 2023-01-11T21:17:06.4040697Z Entering 'third_party/tensorpipe' 2023-01-11T21:17:06.4074325Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T21:17:06.4107588Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T21:17:06.4141885Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T21:17:06.4176354Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T21:17:06.4209867Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T21:17:06.4244762Z Entering 'third_party/zstd' 2023-01-11T21:17:06.4290079Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'org-21003710@github.com:' 2023-01-11T21:17:06.4533789Z Entering 'android/libs/fbjni' 2023-01-11T21:17:06.4566511Z Entering 'third_party/FP16' 2023-01-11T21:17:06.4599504Z Entering 'third_party/FXdiv' 2023-01-11T21:17:06.4634292Z Entering 'third_party/NNPACK' 2023-01-11T21:17:06.4667424Z Entering 'third_party/QNNPACK' 2023-01-11T21:17:06.4701050Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T21:17:06.4733801Z Entering 'third_party/XNNPACK' 2023-01-11T21:17:06.4776125Z Entering 'third_party/benchmark' 2023-01-11T21:17:06.4808865Z Entering 'third_party/cpuinfo' 2023-01-11T21:17:06.4842615Z Entering 'third_party/cub' 2023-01-11T21:17:06.4876548Z Entering 'third_party/cudnn_frontend' 2023-01-11T21:17:06.4913675Z Entering 'third_party/cutlass' 2023-01-11T21:17:06.4952980Z Entering 'third_party/eigen' 2023-01-11T21:17:06.4988285Z Entering 'third_party/fbgemm' 2023-01-11T21:17:06.5021328Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T21:17:06.5053587Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T21:17:06.5086124Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T21:17:06.5118912Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T21:17:06.5152942Z Entering 'third_party/flatbuffers' 2023-01-11T21:17:06.5187985Z Entering 'third_party/fmt' 2023-01-11T21:17:06.5221523Z Entering 'third_party/foxi' 2023-01-11T21:17:06.5255130Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T21:17:06.5288660Z Entering 'third_party/gloo' 2023-01-11T21:17:06.5322848Z Entering 'third_party/googletest' 2023-01-11T21:17:06.5357310Z Entering 'third_party/ideep' 2023-01-11T21:17:06.5390543Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T21:17:06.5424960Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T21:17:06.5463956Z Entering 'third_party/ios-cmake' 2023-01-11T21:17:06.5497462Z Entering 'third_party/ittapi' 2023-01-11T21:17:06.5530518Z Entering 'third_party/kineto' 2023-01-11T21:17:06.5563452Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T21:17:06.5596057Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T21:17:06.5630090Z Entering 'third_party/nccl/nccl' 2023-01-11T21:17:06.5740564Z Entering 'third_party/neon2sse' 2023-01-11T21:17:06.5773604Z Entering 'third_party/nlohmann' 2023-01-11T21:17:06.5807551Z Entering 'third_party/onnx' 2023-01-11T21:17:06.5851888Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T21:17:06.5885172Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T21:17:06.5920197Z Entering 'third_party/onnx-tensorrt' 2023-01-11T21:17:06.5952959Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T21:17:06.5990143Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T21:17:06.6023683Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T21:17:06.6057129Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T21:17:06.6094908Z Entering 'third_party/pocketfft' 2023-01-11T21:17:06.6128424Z Entering 'third_party/protobuf' 2023-01-11T21:17:06.6165843Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T21:17:06.6198696Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T21:17:06.6233787Z Entering 'third_party/psimd' 2023-01-11T21:17:06.6267138Z Entering 'third_party/pthreadpool' 2023-01-11T21:17:06.6301802Z Entering 'third_party/pybind11' 2023-01-11T21:17:06.6335971Z Entering 'third_party/python-enum' 2023-01-11T21:17:06.6368875Z Entering 'third_party/python-peachpy' 2023-01-11T21:17:06.6402443Z Entering 'third_party/python-six' 2023-01-11T21:17:06.6436055Z Entering 'third_party/sleef' 2023-01-11T21:17:06.6469354Z Entering 'third_party/tbb' 2023-01-11T21:17:06.6504537Z Entering 'third_party/tensorpipe' 2023-01-11T21:17:06.6538589Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T21:17:06.6571731Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T21:17:06.6605444Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T21:17:06.6638025Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T21:17:06.6669712Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T21:17:06.6705737Z Entering 'third_party/zstd' 2023-01-11T21:17:06.6747337Z ##[endgroup] 2023-01-11T21:17:06.6783325Z [command]/usr/bin/git log -1 --format='%H' 2023-01-11T21:17:06.6807739Z '8419ddda87c8a47eacc63b54bc7ec98c1f27c26e' 2023-01-11T21:17:06.6919505Z Prepare all required actions 2023-01-11T21:17:06.6943458Z ##[group]Run ./.github/actions/setup-linux 2023-01-11T21:17:06.6943661Z env: 2023-01-11T21:17:06.6943839Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:06.6944321Z ##[endgroup] 2023-01-11T21:17:06.6957309Z ##[group]Run set -euo pipefail 2023-01-11T21:17:06.6957539Z set -euo pipefail 2023-01-11T21:17:06.6957745Z function get_ec2_metadata() { 2023-01-11T21:17:06.6957975Z  # Pulled from instance metadata endpoint for EC2 2023-01-11T21:17:06.6958330Z  # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html 2023-01-11T21:17:06.6958626Z  category=$1 2023-01-11T21:17:06.6958870Z  curl -fsSL "http://169.254.169.254/latest/meta-data/${category}" 2023-01-11T21:17:06.6959081Z } 2023-01-11T21:17:06.6959278Z echo "ami-id: $(get_ec2_metadata ami-id)" 2023-01-11T21:17:06.6959564Z echo "instance-id: $(get_ec2_metadata instance-id)" 2023-01-11T21:17:06.6959833Z echo "instance-type: $(get_ec2_metadata instance-type)" 2023-01-11T21:17:06.6960081Z echo "system info $(uname -a)" 2023-01-11T21:17:06.6971620Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:17:06.6971826Z env: 2023-01-11T21:17:06.6971998Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:06.6972185Z ##[endgroup] 2023-01-11T21:17:06.7046348Z ami-id: ami-096198a0bccc6bad4 2023-01-11T21:17:06.7094293Z instance-id: i-06cf3037fd0558aaa 2023-01-11T21:17:06.7140032Z instance-type: c5.2xlarge 2023-01-11T21:17:06.7145913Z system info Linux ip-10-0-1-101.ec2.internal 4.14.252-195.483.amzn2.x86_64 #1 SMP Mon Nov 1 20:58:46 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux 2023-01-11T21:17:06.7160796Z ##[group]Run if systemctl is-active --quiet docker; then 2023-01-11T21:17:06.7161101Z if systemctl is-active --quiet docker; then 2023-01-11T21:17:06.7161380Z  echo "Docker daemon is running..."; 2023-01-11T21:17:06.7161628Z else 2023-01-11T21:17:06.7161883Z  echo "Starting docker deamon..." && sudo systemctl start docker; 2023-01-11T21:17:06.7162145Z fi 2023-01-11T21:17:06.7172917Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:17:06.7173156Z env: 2023-01-11T21:17:06.7173365Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:06.7173588Z ##[endgroup] 2023-01-11T21:17:06.7212317Z Docker daemon is running... 2023-01-11T21:17:06.7227177Z ##[group]Run AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") 2023-01-11T21:17:06.7227556Z AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") 2023-01-11T21:17:06.7227872Z retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-01-11T21:17:06.7228278Z retry aws ecr get-login*** "$AWS_DEFAULT_REGION" | docker login --username AWS \ 2023-01-11T21:17:06.7228663Z  --password-stdin "$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" 2023-01-11T21:17:06.7238859Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:17:06.7239112Z env: 2023-01-11T21:17:06.7239319Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:06.7239534Z AWS_RETRY_MODE: standard 2023-01-11T21:17:06.7239752Z AWS_MAX_ATTEMPTS: 5 2023-01-11T21:17:06.7239978Z AWS_DEFAULT_REGION: us-east-1 2023-01-11T21:17:06.7240185Z ##[endgroup] 2023-01-11T21:17:07.9088740Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2023-01-11T21:17:07.9089486Z Configure a credential helper to remove this warning. See 2023-01-11T21:17:07.9090095Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2023-01-11T21:17:07.9090419Z 2023-01-11T21:17:07.9090530Z Login Succeeded 2023-01-11T21:17:07.9117381Z ##[group]Run env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-01-11T21:17:07.9117680Z env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-01-11T21:17:07.9118017Z env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-01-11T21:17:07.9128920Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:17:07.9129320Z env: 2023-01-11T21:17:07.9129497Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:07.9129682Z ##[endgroup] 2023-01-11T21:17:07.9203519Z ##[group]Run pytorch/test-infra/.github/actions/pull-docker-image@main 2023-01-11T21:17:07.9203765Z with: 2023-01-11T21:17:07.9204130Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:17:07.9204472Z env: 2023-01-11T21:17:07.9204642Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:07.9204825Z ##[endgroup] 2023-01-11T21:17:07.9219727Z ##[group]Run retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-01-11T21:17:07.9219989Z retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-01-11T21:17:07.9220252Z # ignore output since only exit code is used for conditional 2023-01-11T21:17:07.9220537Z # only pull docker image if it's not available locally 2023-01-11T21:17:07.9220833Z if ! docker inspect --type=image "${DOCKER_IMAGE}" >/dev/null 2>/dev/null; then 2023-01-11T21:17:07.9221123Z  retry docker pull "${DOCKER_IMAGE}" 2023-01-11T21:17:07.9221317Z fi 2023-01-11T21:17:07.9231363Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:17:07.9231579Z env: 2023-01-11T21:17:07.9231750Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:17:07.9232129Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:17:07.9232492Z ##[endgroup] 2023-01-11T21:17:08.1384751Z fd224c2e6c79d7fdec6408da598bf52bc5b201dd: Pulling from pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7 2023-01-11T21:17:08.1393848Z fb668870d8a7: Pulling fs layer 2023-01-11T21:17:08.1394239Z 4542784317be: Pulling fs layer 2023-01-11T21:17:08.1394494Z e0bec5df5af5: Pulling fs layer 2023-01-11T21:17:08.1394680Z 4053f75740ab: Pulling fs layer 2023-01-11T21:17:08.1396760Z 57e09105cdfd: Pulling fs layer 2023-01-11T21:17:08.1398129Z 606761d225e5: Pulling fs layer 2023-01-11T21:17:08.1398378Z 69473a703fb4: Pulling fs layer 2023-01-11T21:17:08.1398652Z a08ab4e0594b: Pulling fs layer 2023-01-11T21:17:08.1398843Z 4cd507bccac2: Pulling fs layer 2023-01-11T21:17:08.1399042Z fa92f16621a4: Pulling fs layer 2023-01-11T21:17:08.1399298Z 6dc2b05bd224: Pulling fs layer 2023-01-11T21:17:08.1399489Z ce4a87d45645: Pulling fs layer 2023-01-11T21:17:08.1399682Z 41860ea59b6c: Pulling fs layer 2023-01-11T21:17:08.1402933Z 87d0ffa55850: Pulling fs layer 2023-01-11T21:17:08.1403393Z f9f75aaba8d7: Pulling fs layer 2023-01-11T21:17:08.1403718Z 4053f75740ab: Waiting 2023-01-11T21:17:08.1404019Z 0c06be5c20e0: Pulling fs layer 2023-01-11T21:17:08.1404300Z 57e09105cdfd: Waiting 2023-01-11T21:17:08.1404599Z d23c0a07b67c: Pulling fs layer 2023-01-11T21:17:08.1405128Z 606761d225e5: Waiting 2023-01-11T21:17:08.1405504Z 1001f0d2f3d0: Pulling fs layer 2023-01-11T21:17:08.1405898Z fa92f16621a4: Waiting 2023-01-11T21:17:08.1406275Z e1c655e7ec0e: Pulling fs layer 2023-01-11T21:17:08.1406612Z 69473a703fb4: Waiting 2023-01-11T21:17:08.1406955Z ce4a87d45645: Waiting 2023-01-11T21:17:08.1407261Z a11b4b5fd784: Pulling fs layer 2023-01-11T21:17:08.1407623Z a08ab4e0594b: Waiting 2023-01-11T21:17:08.1407967Z 41860ea59b6c: Waiting 2023-01-11T21:17:08.1408342Z bc41eab7f454: Pulling fs layer 2023-01-11T21:17:08.1408734Z 4cd507bccac2: Waiting 2023-01-11T21:17:08.1409233Z f9f75aaba8d7: Waiting 2023-01-11T21:17:08.1409615Z b8f759fd0191: Pulling fs layer 2023-01-11T21:17:08.1409867Z 87d0ffa55850: Waiting 2023-01-11T21:17:08.1410210Z f410dcc9d0be: Pulling fs layer 2023-01-11T21:17:08.1410559Z 0c06be5c20e0: Waiting 2023-01-11T21:17:08.1410919Z 90d8f9bbe048: Pulling fs layer 2023-01-11T21:17:08.1411301Z d23c0a07b67c: Waiting 2023-01-11T21:17:08.1411660Z 1001f0d2f3d0: Waiting 2023-01-11T21:17:08.1412041Z eedfbaa04e4f: Pulling fs layer 2023-01-11T21:17:08.1412424Z 2f2308643d60: Pulling fs layer 2023-01-11T21:17:08.1412844Z c1a92fad2c2c: Pulling fs layer 2023-01-11T21:17:08.1413207Z bc41eab7f454: Waiting 2023-01-11T21:17:08.1413602Z 47037a50f270: Pulling fs layer 2023-01-11T21:17:08.1414119Z a11b4b5fd784: Waiting 2023-01-11T21:17:08.1414442Z b8f759fd0191: Waiting 2023-01-11T21:17:08.1414821Z 1a2fd7b216d7: Pulling fs layer 2023-01-11T21:17:08.1415218Z 765839304d2e: Pulling fs layer 2023-01-11T21:17:08.1415607Z f410dcc9d0be: Waiting 2023-01-11T21:17:08.1415980Z e51794baeb92: Pulling fs layer 2023-01-11T21:17:08.1416409Z ea4bfeaa0fc7: Pulling fs layer 2023-01-11T21:17:08.1416833Z d8065d17513d: Pulling fs layer 2023-01-11T21:17:08.1417182Z 90d8f9bbe048: Waiting 2023-01-11T21:17:08.1417556Z 6d83ca3dedf3: Pulling fs layer 2023-01-11T21:17:08.1417929Z 12ddc57b99eb: Pulling fs layer 2023-01-11T21:17:08.1418312Z eedfbaa04e4f: Waiting 2023-01-11T21:17:08.1418679Z 47037a50f270: Waiting 2023-01-11T21:17:08.1419060Z b590670d273c: Pulling fs layer 2023-01-11T21:17:08.1419417Z 2f2308643d60: Waiting 2023-01-11T21:17:08.1419799Z 8afbc57dfec9: Pulling fs layer 2023-01-11T21:17:08.1420219Z 29a7c0d5fa4c: Pulling fs layer 2023-01-11T21:17:08.1420606Z 16825bb02017: Pulling fs layer 2023-01-11T21:17:08.1421029Z bdf297d7f88c: Pulling fs layer 2023-01-11T21:17:08.1421424Z 1a2fd7b216d7: Waiting 2023-01-11T21:17:08.1421802Z 885c12efa4ae: Pulling fs layer 2023-01-11T21:17:08.1422195Z c1a92fad2c2c: Waiting 2023-01-11T21:17:08.1422561Z 765839304d2e: Waiting 2023-01-11T21:17:08.1422937Z 28c5689cb975: Pulling fs layer 2023-01-11T21:17:08.1423334Z cca768f96df4: Pulling fs layer 2023-01-11T21:17:08.1423738Z 904b81494b5e: Pulling fs layer 2023-01-11T21:17:08.1424244Z 61eecfa8b34e: Pulling fs layer 2023-01-11T21:17:08.1424620Z 95c1ac011645: Pulling fs layer 2023-01-11T21:17:08.1425010Z 07cee023724c: Pulling fs layer 2023-01-11T21:17:08.1425410Z 6d83ca3dedf3: Waiting 2023-01-11T21:17:08.1425786Z 195d560d8cf6: Pulling fs layer 2023-01-11T21:17:08.1426190Z 12ddc57b99eb: Waiting 2023-01-11T21:17:08.1426591Z a399389c7f8e: Pulling fs layer 2023-01-11T21:17:08.1426933Z ea4bfeaa0fc7: Waiting 2023-01-11T21:17:08.1427318Z 7447f84b33ef: Pulling fs layer 2023-01-11T21:17:08.1427738Z 0d8aeb1421f9: Pulling fs layer 2023-01-11T21:17:08.1428137Z 02048a597c22: Pulling fs layer 2023-01-11T21:17:08.1428548Z 25d615d8a5e2: Pulling fs layer 2023-01-11T21:17:08.1428882Z bdf297d7f88c: Waiting 2023-01-11T21:17:08.1429257Z 09d400b86049: Pulling fs layer 2023-01-11T21:17:08.1429625Z 885c12efa4ae: Waiting 2023-01-11T21:17:08.1430005Z 8afbc57dfec9: Waiting 2023-01-11T21:17:08.1430340Z cca768f96df4: Waiting 2023-01-11T21:17:08.1430708Z 28c5689cb975: Waiting 2023-01-11T21:17:08.1431030Z 95c1ac011645: Waiting 2023-01-11T21:17:08.1431363Z 29a7c0d5fa4c: Waiting 2023-01-11T21:17:08.1431714Z 16825bb02017: Waiting 2023-01-11T21:17:08.1432067Z 904b81494b5e: Waiting 2023-01-11T21:17:08.1432402Z 07cee023724c: Waiting 2023-01-11T21:17:08.1432752Z 09d400b86049: Waiting 2023-01-11T21:17:08.1433245Z 7447f84b33ef: Waiting 2023-01-11T21:17:08.1433579Z 0d8aeb1421f9: Waiting 2023-01-11T21:17:08.1433938Z a399389c7f8e: Waiting 2023-01-11T21:17:08.1434302Z 195d560d8cf6: Waiting 2023-01-11T21:17:08.1434635Z 25d615d8a5e2: Waiting 2023-01-11T21:17:08.1434995Z 02048a597c22: Waiting 2023-01-11T21:17:08.2665711Z 4542784317be: Verifying Checksum 2023-01-11T21:17:08.2665943Z 4542784317be: Download complete 2023-01-11T21:17:08.3525784Z 4053f75740ab: Download complete 2023-01-11T21:17:08.4273353Z 57e09105cdfd: Download complete 2023-01-11T21:17:08.4614540Z fb668870d8a7: Verifying Checksum 2023-01-11T21:17:08.4614878Z fb668870d8a7: Download complete 2023-01-11T21:17:08.5265200Z 69473a703fb4: Download complete 2023-01-11T21:17:08.6159888Z a08ab4e0594b: Verifying Checksum 2023-01-11T21:17:08.6160150Z a08ab4e0594b: Download complete 2023-01-11T21:17:08.6763563Z e0bec5df5af5: Verifying Checksum 2023-01-11T21:17:08.6763822Z e0bec5df5af5: Download complete 2023-01-11T21:17:08.6981208Z 4cd507bccac2: Download complete 2023-01-11T21:17:08.7722238Z 6dc2b05bd224: Verifying Checksum 2023-01-11T21:17:08.7722657Z 6dc2b05bd224: Download complete 2023-01-11T21:17:08.8557002Z ce4a87d45645: Download complete 2023-01-11T21:17:09.1500378Z fb668870d8a7: Pull complete 2023-01-11T21:17:09.4008352Z 4542784317be: Pull complete 2023-01-11T21:17:10.1656324Z e0bec5df5af5: Pull complete 2023-01-11T21:17:10.2732749Z 4053f75740ab: Pull complete 2023-01-11T21:17:10.3722054Z 57e09105cdfd: Pull complete 2023-01-11T21:17:12.7041697Z 41860ea59b6c: Verifying Checksum 2023-01-11T21:17:12.7042082Z 41860ea59b6c: Download complete 2023-01-11T21:17:12.7976666Z 87d0ffa55850: Verifying Checksum 2023-01-11T21:17:12.7977164Z 87d0ffa55850: Download complete 2023-01-11T21:17:12.8979569Z f9f75aaba8d7: Verifying Checksum 2023-01-11T21:17:12.8979980Z f9f75aaba8d7: Download complete 2023-01-11T21:17:13.0393889Z 0c06be5c20e0: Verifying Checksum 2023-01-11T21:17:13.0394363Z 0c06be5c20e0: Download complete 2023-01-11T21:17:15.8631973Z d23c0a07b67c: Verifying Checksum 2023-01-11T21:17:15.8632327Z d23c0a07b67c: Download complete 2023-01-11T21:17:15.9413342Z 1001f0d2f3d0: Download complete 2023-01-11T21:17:16.0663810Z e1c655e7ec0e: Download complete 2023-01-11T21:17:19.3629550Z 606761d225e5: Verifying Checksum 2023-01-11T21:17:19.3629835Z 606761d225e5: Download complete 2023-01-11T21:17:19.4388284Z bc41eab7f454: Verifying Checksum 2023-01-11T21:17:19.4389041Z bc41eab7f454: Download complete 2023-01-11T21:17:19.5970984Z b8f759fd0191: Verifying Checksum 2023-01-11T21:17:19.5971380Z b8f759fd0191: Download complete 2023-01-11T21:17:19.6807032Z f410dcc9d0be: Verifying Checksum 2023-01-11T21:17:19.6807918Z f410dcc9d0be: Download complete 2023-01-11T21:17:19.7556774Z 90d8f9bbe048: Verifying Checksum 2023-01-11T21:17:19.7557266Z 90d8f9bbe048: Download complete 2023-01-11T21:17:19.8627740Z eedfbaa04e4f: Download complete 2023-01-11T21:17:19.9623671Z 2f2308643d60: Verifying Checksum 2023-01-11T21:17:19.9624154Z 2f2308643d60: Download complete 2023-01-11T21:17:21.1057752Z c1a92fad2c2c: Verifying Checksum 2023-01-11T21:17:21.1058200Z c1a92fad2c2c: Download complete 2023-01-11T21:17:21.1896596Z 47037a50f270: Download complete 2023-01-11T21:17:21.2634707Z 1a2fd7b216d7: Verifying Checksum 2023-01-11T21:17:21.2635027Z 1a2fd7b216d7: Download complete 2023-01-11T21:17:21.3918524Z 765839304d2e: Download complete 2023-01-11T21:17:21.4717914Z e51794baeb92: Verifying Checksum 2023-01-11T21:17:21.4718374Z e51794baeb92: Download complete 2023-01-11T21:17:21.5511522Z ea4bfeaa0fc7: Verifying Checksum 2023-01-11T21:17:21.5511952Z ea4bfeaa0fc7: Download complete 2023-01-11T21:17:22.8454533Z fa92f16621a4: Verifying Checksum 2023-01-11T21:17:22.8454948Z fa92f16621a4: Download complete 2023-01-11T21:17:23.0053748Z 6d83ca3dedf3: Download complete 2023-01-11T21:17:23.0824094Z 12ddc57b99eb: Verifying Checksum 2023-01-11T21:17:23.0824367Z 12ddc57b99eb: Download complete 2023-01-11T21:17:23.9377637Z b590670d273c: Verifying Checksum 2023-01-11T21:17:23.9378094Z b590670d273c: Download complete 2023-01-11T21:17:24.0173907Z 8afbc57dfec9: Download complete 2023-01-11T21:17:24.0995210Z 29a7c0d5fa4c: Verifying Checksum 2023-01-11T21:17:24.0995642Z 29a7c0d5fa4c: Download complete 2023-01-11T21:17:24.8022742Z 16825bb02017: Verifying Checksum 2023-01-11T21:17:24.8023190Z 16825bb02017: Download complete 2023-01-11T21:17:24.9034662Z bdf297d7f88c: Verifying Checksum 2023-01-11T21:17:24.9035021Z bdf297d7f88c: Download complete 2023-01-11T21:17:26.7445617Z 885c12efa4ae: Verifying Checksum 2023-01-11T21:17:26.7446040Z 885c12efa4ae: Download complete 2023-01-11T21:17:26.8492793Z 28c5689cb975: Verifying Checksum 2023-01-11T21:17:26.8493211Z 28c5689cb975: Download complete 2023-01-11T21:17:26.9644898Z cca768f96df4: Download complete 2023-01-11T21:17:30.3302598Z d8065d17513d: Verifying Checksum 2023-01-11T21:17:30.3302907Z d8065d17513d: Download complete 2023-01-11T21:17:30.4254404Z 61eecfa8b34e: Verifying Checksum 2023-01-11T21:17:30.4254660Z 61eecfa8b34e: Download complete 2023-01-11T21:17:30.5108105Z 95c1ac011645: Download complete 2023-01-11T21:17:30.6192832Z 07cee023724c: Verifying Checksum 2023-01-11T21:17:30.6193260Z 07cee023724c: Download complete 2023-01-11T21:17:30.7039076Z 195d560d8cf6: Verifying Checksum 2023-01-11T21:17:30.7039504Z 195d560d8cf6: Download complete 2023-01-11T21:17:31.4086002Z a399389c7f8e: Verifying Checksum 2023-01-11T21:17:31.4086259Z a399389c7f8e: Download complete 2023-01-11T21:17:31.5363539Z 7447f84b33ef: Download complete 2023-01-11T21:17:34.4435787Z 0d8aeb1421f9: Verifying Checksum 2023-01-11T21:17:34.4436217Z 0d8aeb1421f9: Download complete 2023-01-11T21:17:34.5339639Z 02048a597c22: Download complete 2023-01-11T21:17:37.7655586Z 904b81494b5e: Verifying Checksum 2023-01-11T21:17:37.7656431Z 904b81494b5e: Download complete 2023-01-11T21:17:37.8479539Z 09d400b86049: Download complete 2023-01-11T21:17:43.0952578Z 606761d225e5: Pull complete 2023-01-11T21:17:43.5784998Z 69473a703fb4: Pull complete 2023-01-11T21:17:43.8745364Z a08ab4e0594b: Pull complete 2023-01-11T21:17:44.0988024Z 4cd507bccac2: Pull complete 2023-01-11T21:18:13.2918704Z fa92f16621a4: Pull complete 2023-01-11T21:18:13.7753816Z 6dc2b05bd224: Pull complete 2023-01-11T21:18:14.0762161Z ce4a87d45645: Pull complete 2023-01-11T21:18:18.6758744Z 41860ea59b6c: Pull complete 2023-01-11T21:18:18.8967378Z 87d0ffa55850: Pull complete 2023-01-11T21:18:19.1308916Z f9f75aaba8d7: Pull complete 2023-01-11T21:18:19.3709027Z 0c06be5c20e0: Pull complete 2023-01-11T21:18:21.0171110Z d23c0a07b67c: Pull complete 2023-01-11T21:18:21.2138555Z 1001f0d2f3d0: Pull complete 2023-01-11T21:18:21.4378275Z e1c655e7ec0e: Pull complete 2023-01-11T21:18:25.1936477Z a11b4b5fd784: Verifying Checksum 2023-01-11T21:18:25.1936825Z a11b4b5fd784: Download complete 2023-01-11T21:18:56.6319971Z 25d615d8a5e2: Verifying Checksum 2023-01-11T21:18:56.6320275Z 25d615d8a5e2: Download complete 2023-01-11T21:19:01.2467524Z a11b4b5fd784: Pull complete 2023-01-11T21:19:01.8492055Z bc41eab7f454: Pull complete 2023-01-11T21:19:02.0504003Z b8f759fd0191: Pull complete 2023-01-11T21:19:02.2705378Z f410dcc9d0be: Pull complete 2023-01-11T21:19:02.5146567Z 90d8f9bbe048: Pull complete 2023-01-11T21:19:02.7275399Z eedfbaa04e4f: Pull complete 2023-01-11T21:19:02.9449553Z 2f2308643d60: Pull complete 2023-01-11T21:19:04.8745471Z c1a92fad2c2c: Pull complete 2023-01-11T21:19:05.1095970Z 47037a50f270: Pull complete 2023-01-11T21:19:05.3224157Z 1a2fd7b216d7: Pull complete 2023-01-11T21:19:05.5341145Z 765839304d2e: Pull complete 2023-01-11T21:19:05.6706010Z e51794baeb92: Pull complete 2023-01-11T21:19:05.8789034Z ea4bfeaa0fc7: Pull complete 2023-01-11T21:19:10.0160041Z d8065d17513d: Pull complete 2023-01-11T21:19:10.2384546Z 6d83ca3dedf3: Pull complete 2023-01-11T21:19:10.4629440Z 12ddc57b99eb: Pull complete 2023-01-11T21:19:11.3382889Z b590670d273c: Pull complete 2023-01-11T21:19:11.5625209Z 8afbc57dfec9: Pull complete 2023-01-11T21:19:11.7833239Z 29a7c0d5fa4c: Pull complete 2023-01-11T21:19:12.2089037Z 16825bb02017: Pull complete 2023-01-11T21:19:12.4177358Z bdf297d7f88c: Pull complete 2023-01-11T21:19:13.6921013Z 885c12efa4ae: Pull complete 2023-01-11T21:19:13.8994380Z 28c5689cb975: Pull complete 2023-01-11T21:19:14.1083495Z cca768f96df4: Pull complete 2023-01-11T21:19:17.8847669Z 904b81494b5e: Pull complete 2023-01-11T21:19:18.0670770Z 61eecfa8b34e: Pull complete 2023-01-11T21:19:18.2609994Z 95c1ac011645: Pull complete 2023-01-11T21:19:18.4857665Z 07cee023724c: Pull complete 2023-01-11T21:19:18.7227496Z 195d560d8cf6: Pull complete 2023-01-11T21:19:19.4068723Z a399389c7f8e: Pull complete 2023-01-11T21:19:19.6293505Z 7447f84b33ef: Pull complete 2023-01-11T21:19:21.1244624Z 0d8aeb1421f9: Pull complete 2023-01-11T21:19:21.2780574Z 02048a597c22: Pull complete 2023-01-11T21:19:45.2357719Z 25d615d8a5e2: Pull complete 2023-01-11T21:19:45.7097652Z 09d400b86049: Pull complete 2023-01-11T21:19:45.9000666Z Digest: sha256:0da23f4faf0ce20770149c4a783e08eaa91c07112511dc5511c77937c66edb24 2023-01-11T21:19:45.9137185Z Status: Downloaded newer image for 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:19:45.9270125Z 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:19:45.9567119Z ##[group]Run python3 -m pip install psutil==5.9.1 2023-01-11T21:19:45.9567400Z python3 -m pip install psutil==5.9.1 2023-01-11T21:19:45.9567628Z python3 -m pip install pynvml==11.4.1 2023-01-11T21:19:45.9567891Z python3 -m tools.stats.monitor > usage_log.txt 2>&1 & 2023-01-11T21:19:45.9568174Z echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}" 2023-01-11T21:19:46.4979977Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:19:46.4980206Z env: 2023-01-11T21:19:46.4980393Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:19:46.4980569Z ##[endgroup] 2023-01-11T21:19:49.0347611Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T21:19:49.0610580Z Requirement already satisfied: psutil==5.9.1 in /home/ec2-user/.local/lib/python3.7/site-packages (5.9.1) 2023-01-11T21:19:49.4922677Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T21:19:49.5098847Z Requirement already satisfied: pynvml==11.4.1 in /home/ec2-user/.local/lib/python3.7/site-packages (11.4.1) 2023-01-11T21:19:49.7164573Z Prepare all required actions 2023-01-11T21:19:49.7164829Z Getting action download info 2023-01-11T21:19:49.9358896Z Download action repository 'seemethere/download-artifact-s3@v4' (SHA:4a8bfae15cc25cc0785c1603ee87a9da8fd442ea) 2023-01-11T21:19:50.1008251Z Download action repository 'actions/download-artifact@v3' (SHA:9bc31d5ccc31df68ecc42ccf4149144866c47d8a) 2023-01-11T21:19:50.3353572Z ##[group]Run ./.github/actions/download-build-artifacts 2023-01-11T21:19:50.3353784Z with: 2023-01-11T21:19:50.3353990Z name: linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T21:19:50.3354196Z env: 2023-01-11T21:19:50.3354356Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:19:50.3354550Z ##[endgroup] 2023-01-11T21:19:50.3375859Z ##[group]Run seemethere/download-artifact-s3@v4 2023-01-11T21:19:50.3376075Z with: 2023-01-11T21:19:50.3376279Z name: linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T21:19:50.3376494Z s3-bucket: gha-artifacts 2023-01-11T21:19:50.3376686Z region: us-east-1 2023-01-11T21:19:50.3376887Z env: 2023-01-11T21:19:50.3377043Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:19:50.3377226Z ##[endgroup] 2023-01-11T21:19:50.7751620Z Found 1 objects with prefix pytorch/pytorch/3896346758/linux-bionic-cuda11.7-py3.10-gcc7/ 2023-01-11T21:19:50.7752500Z Starting download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2023-01-11T21:20:04.6391708Z Finished download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2023-01-11T21:20:04.6392116Z 2023-01-11T21:20:04.6415398Z ##[warning]The `set-output` command is deprecated and will be disabled soon. Please upgrade to using Environment Files. For more information see: https://github.blog/changelog/2022-10-11-github-actions-deprecating-save-state-and-set-output-commands/ 2023-01-11T21:20:04.6427701Z Artifact download has finished successfully 2023-01-11T21:20:04.6599163Z ##[group]Run unzip -o artifacts.zip 2023-01-11T21:20:04.6599381Z unzip -o artifacts.zip 2023-01-11T21:20:04.6610949Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:20:04.6611170Z env: 2023-01-11T21:20:04.6611331Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:20:04.6611518Z ##[endgroup] 2023-01-11T21:20:04.6678797Z Archive: artifacts.zip 2023-01-11T21:20:04.6680186Z creating: dist/ 2023-01-11T21:20:06.2847539Z inflating: dist/torch-2.0.0a0+git8419ddd-cp310-cp310-linux_x86_64.whl 2023-01-11T21:20:06.2848066Z creating: build/custom_test_artifacts/ 2023-01-11T21:20:06.2848628Z creating: build/custom_test_artifacts/custom-op-build/ 2023-01-11T21:20:06.2849529Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/ 2023-01-11T21:20:06.2854654Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeOutput.log 2023-01-11T21:20:06.2855418Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/ 2023-01-11T21:20:06.2856187Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeSystem.cmake 2023-01-11T21:20:06.2856968Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdC/ 2023-01-11T21:20:06.2857684Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdC/tmp/ 2023-01-11T21:20:06.2858680Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdC/CMakeCCompilerId.c 2023-01-11T21:20:06.2859943Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdC/a.out 2023-01-11T21:20:06.2860715Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCXX/ 2023-01-11T21:20:06.2861473Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCXX/tmp/ 2023-01-11T21:20:06.2863632Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCXX/CMakeCXXCompilerId.cpp 2023-01-11T21:20:06.2864697Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCXX/a.out 2023-01-11T21:20:06.2866403Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_C.bin 2023-01-11T21:20:06.2867264Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeCCompiler.cmake 2023-01-11T21:20:06.2868437Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_CXX.bin 2023-01-11T21:20:06.2869409Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeCXXCompiler.cmake 2023-01-11T21:20:06.2870234Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/ 2023-01-11T21:20:06.2870996Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/ 2023-01-11T21:20:06.2913013Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp1.ii 2023-01-11T21:20:06.2914086Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.c 2023-01-11T21:20:06.2915133Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.gpu 2023-01-11T21:20:06.2916191Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.stub.c 2023-01-11T21:20:06.2917178Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.module_id 2023-01-11T21:20:06.2918108Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.ptx 2023-01-11T21:20:06.2919078Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.sm_52.cubin 2023-01-11T21:20:06.2920177Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin 2023-01-11T21:20:06.2921134Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin.c 2023-01-11T21:20:06.2951174Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp4.ii 2023-01-11T21:20:06.2983256Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.cpp 2023-01-11T21:20:06.2984430Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.o 2023-01-11T21:20:06.2984969Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.sm_52.cubin 2023-01-11T21:20:06.2985463Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.reg.c 2023-01-11T21:20:06.2986059Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.fatbin 2023-01-11T21:20:06.2987019Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.fatbin.c 2023-01-11T21:20:06.2987869Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.o 2023-01-11T21:20:06.2989423Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/CMakeCUDACompilerId.cu 2023-01-11T21:20:06.3046574Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CompilerIdCUDA/a.out 2023-01-11T21:20:06.3103844Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_CUDA.bin 2023-01-11T21:20:06.3104526Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.22.1/CMakeCUDACompiler.cmake 2023-01-11T21:20:06.3105005Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeTmp/ 2023-01-11T21:20:06.3105785Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeError.log 2023-01-11T21:20:06.3106434Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/cmake.check_cache 2023-01-11T21:20:06.3106846Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/ 2023-01-11T21:20:06.3107288Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.ts 2023-01-11T21:20:06.3108262Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.make 2023-01-11T21:20:06.3109097Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/depend.make 2023-01-11T21:20:06.3109920Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/link.txt 2023-01-11T21:20:06.3110755Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/cmake_clean.cmake 2023-01-11T21:20:06.3111570Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/build.make 2023-01-11T21:20:06.3112415Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/DependInfo.cmake 2023-01-11T21:20:06.3113219Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/flags.make 2023-01-11T21:20:06.3114019Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/progress.make 2023-01-11T21:20:06.3129945Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o.d 2023-01-11T21:20:06.3220435Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o 2023-01-11T21:20:06.3221361Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/ 2023-01-11T21:20:06.3222364Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.ts 2023-01-11T21:20:06.3223266Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.make 2023-01-11T21:20:06.3224213Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/depend.make 2023-01-11T21:20:06.3225043Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/link.txt 2023-01-11T21:20:06.3225884Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/cmake_clean.cmake 2023-01-11T21:20:06.3226731Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/build.make 2023-01-11T21:20:06.3227549Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/DependInfo.cmake 2023-01-11T21:20:06.3228364Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/flags.make 2023-01-11T21:20:06.3229190Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/progress.make 2023-01-11T21:20:06.3243163Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o.d 2023-01-11T21:20:06.3310592Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o 2023-01-11T21:20:06.3311514Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeDirectoryInformation.cmake 2023-01-11T21:20:06.3312361Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/TargetDirectories.txt 2023-01-11T21:20:06.3313139Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/progress.marks 2023-01-11T21:20:06.3313847Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile2 2023-01-11T21:20:06.3314588Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile.cmake 2023-01-11T21:20:06.3315326Z inflating: build/custom_test_artifacts/custom-op-build/detect_cuda_version.cc 2023-01-11T21:20:06.3316883Z inflating: build/custom_test_artifacts/custom-op-build/CMakeCache.txt 2023-01-11T21:20:06.3317865Z inflating: build/custom_test_artifacts/custom-op-build/Makefile 2023-01-11T21:20:06.3318671Z inflating: build/custom_test_artifacts/custom-op-build/cmake_install.cmake 2023-01-11T21:20:06.3392284Z inflating: build/custom_test_artifacts/custom-op-build/libcustom_ops.so 2023-01-11T21:20:06.3442700Z inflating: build/custom_test_artifacts/custom-op-build/test_custom_ops 2023-01-11T21:20:06.3443333Z creating: build/custom_test_artifacts/jit-hook-build/ 2023-01-11T21:20:06.3443951Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/ 2023-01-11T21:20:06.3449448Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeOutput.log 2023-01-11T21:20:06.3450175Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/ 2023-01-11T21:20:06.3450911Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeSystem.cmake 2023-01-11T21:20:06.3451658Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdC/ 2023-01-11T21:20:06.3452408Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdC/tmp/ 2023-01-11T21:20:06.3453245Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdC/CMakeCCompilerId.c 2023-01-11T21:20:06.3454574Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdC/a.out 2023-01-11T21:20:06.3455359Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCXX/ 2023-01-11T21:20:06.3456117Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCXX/tmp/ 2023-01-11T21:20:06.3458050Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCXX/CMakeCXXCompilerId.cpp 2023-01-11T21:20:06.3459132Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCXX/a.out 2023-01-11T21:20:06.3460711Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_C.bin 2023-01-11T21:20:06.3461572Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeCCompiler.cmake 2023-01-11T21:20:06.3462904Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_CXX.bin 2023-01-11T21:20:06.3463940Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeCXXCompiler.cmake 2023-01-11T21:20:06.3464745Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/ 2023-01-11T21:20:06.3465517Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/ 2023-01-11T21:20:06.3507396Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp1.ii 2023-01-11T21:20:06.3508421Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.c 2023-01-11T21:20:06.3509446Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.gpu 2023-01-11T21:20:06.3510512Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.stub.c 2023-01-11T21:20:06.3511528Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.module_id 2023-01-11T21:20:06.3512450Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.ptx 2023-01-11T21:20:06.3513407Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.sm_52.cubin 2023-01-11T21:20:06.3514354Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin 2023-01-11T21:20:06.3515322Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin.c 2023-01-11T21:20:06.3545739Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp4.ii 2023-01-11T21:20:06.3577785Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.cpp 2023-01-11T21:20:06.3578894Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.o 2023-01-11T21:20:06.3579827Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.sm_52.cubin 2023-01-11T21:20:06.3580711Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.reg.c 2023-01-11T21:20:06.3581567Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.fatbin 2023-01-11T21:20:06.3582441Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.fatbin.c 2023-01-11T21:20:06.3583279Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.o 2023-01-11T21:20:06.3584240Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/CMakeCUDACompilerId.cu 2023-01-11T21:20:06.3641860Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CompilerIdCUDA/a.out 2023-01-11T21:20:06.3699395Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_CUDA.bin 2023-01-11T21:20:06.3700267Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.22.1/CMakeCUDACompiler.cmake 2023-01-11T21:20:06.3701038Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeTmp/ 2023-01-11T21:20:06.3701891Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeError.log 2023-01-11T21:20:06.3702634Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/cmake.check_cache 2023-01-11T21:20:06.3703350Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/ 2023-01-11T21:20:06.3704254Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.ts 2023-01-11T21:20:06.3705106Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.make 2023-01-11T21:20:06.3705934Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/depend.make 2023-01-11T21:20:06.3706754Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/link.txt 2023-01-11T21:20:06.3707589Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/cmake_clean.cmake 2023-01-11T21:20:06.3708986Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/build.make 2023-01-11T21:20:06.3709804Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/DependInfo.cmake 2023-01-11T21:20:06.3710596Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/flags.make 2023-01-11T21:20:06.3711384Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/progress.make 2023-01-11T21:20:06.3725152Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o.d 2023-01-11T21:20:06.3777271Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o 2023-01-11T21:20:06.3778277Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeDirectoryInformation.cmake 2023-01-11T21:20:06.3779128Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/TargetDirectories.txt 2023-01-11T21:20:06.3779928Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/progress.marks 2023-01-11T21:20:06.3780643Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile2 2023-01-11T21:20:06.3781348Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile.cmake 2023-01-11T21:20:06.3782162Z inflating: build/custom_test_artifacts/jit-hook-build/detect_cuda_version.cc 2023-01-11T21:20:06.3784273Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeCache.txt 2023-01-11T21:20:06.3785061Z inflating: build/custom_test_artifacts/jit-hook-build/Makefile 2023-01-11T21:20:06.3785764Z inflating: build/custom_test_artifacts/jit-hook-build/cmake_install.cmake 2023-01-11T21:20:06.3825327Z inflating: build/custom_test_artifacts/jit-hook-build/test_jit_hooks 2023-01-11T21:20:06.3825695Z creating: build/custom_test_artifacts/custom-backend-build/ 2023-01-11T21:20:06.3826067Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/ 2023-01-11T21:20:06.3831451Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeOutput.log 2023-01-11T21:20:06.3831881Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/ 2023-01-11T21:20:06.3832730Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeSystem.cmake 2023-01-11T21:20:06.3833178Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdC/ 2023-01-11T21:20:06.3833599Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdC/tmp/ 2023-01-11T21:20:06.3835745Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdC/CMakeCCompilerId.c 2023-01-11T21:20:06.3837003Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdC/a.out 2023-01-11T21:20:06.3837449Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCXX/ 2023-01-11T21:20:06.3838012Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCXX/tmp/ 2023-01-11T21:20:06.3839891Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCXX/CMakeCXXCompilerId.cpp 2023-01-11T21:20:06.3841133Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCXX/a.out 2023-01-11T21:20:06.3842519Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_C.bin 2023-01-11T21:20:06.3843464Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeCCompiler.cmake 2023-01-11T21:20:06.3844870Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_CXX.bin 2023-01-11T21:20:06.3845898Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeCXXCompiler.cmake 2023-01-11T21:20:06.3846747Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/ 2023-01-11T21:20:06.3847559Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/ 2023-01-11T21:20:06.3889287Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp1.ii 2023-01-11T21:20:06.3890390Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.c 2023-01-11T21:20:06.3891467Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.gpu 2023-01-11T21:20:06.3892556Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.stub.c 2023-01-11T21:20:06.3893638Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.module_id 2023-01-11T21:20:06.3894624Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.ptx 2023-01-11T21:20:06.3895655Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.sm_52.cubin 2023-01-11T21:20:06.3896724Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin 2023-01-11T21:20:06.3897727Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin.c 2023-01-11T21:20:06.3927550Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp4.ii 2023-01-11T21:20:06.3959743Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.cpp 2023-01-11T21:20:06.3960598Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/CMakeCUDACompilerId.o 2023-01-11T21:20:06.3961172Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.sm_52.cubin 2023-01-11T21:20:06.3961736Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.reg.c 2023-01-11T21:20:06.3962453Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.fatbin 2023-01-11T21:20:06.3963395Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.fatbin.c 2023-01-11T21:20:06.3964285Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/tmp/a_dlink.o 2023-01-11T21:20:06.3965880Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/CMakeCUDACompilerId.cu 2023-01-11T21:20:06.4023103Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CompilerIdCUDA/a.out 2023-01-11T21:20:06.4080565Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeDetermineCompilerABI_CUDA.bin 2023-01-11T21:20:06.4081077Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.22.1/CMakeCUDACompiler.cmake 2023-01-11T21:20:06.4081514Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeTmp/ 2023-01-11T21:20:06.4082214Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeError.log 2023-01-11T21:20:06.4082670Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/cmake.check_cache 2023-01-11T21:20:06.4083109Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/ 2023-01-11T21:20:06.4084066Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.ts 2023-01-11T21:20:06.4085019Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.make 2023-01-11T21:20:06.4085935Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/depend.make 2023-01-11T21:20:06.4086784Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/link.txt 2023-01-11T21:20:06.4087655Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/cmake_clean.cmake 2023-01-11T21:20:06.4088525Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/build.make 2023-01-11T21:20:06.4089565Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/DependInfo.cmake 2023-01-11T21:20:06.4090443Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/flags.make 2023-01-11T21:20:06.4091299Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/progress.make 2023-01-11T21:20:06.4094047Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o.d 2023-01-11T21:20:06.4214880Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o 2023-01-11T21:20:06.4215892Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/ 2023-01-11T21:20:06.4216798Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.ts 2023-01-11T21:20:06.4217747Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.make 2023-01-11T21:20:06.4218645Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/depend.make 2023-01-11T21:20:06.4219534Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/link.txt 2023-01-11T21:20:06.4220439Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/cmake_clean.cmake 2023-01-11T21:20:06.4221339Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/build.make 2023-01-11T21:20:06.4222212Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/DependInfo.cmake 2023-01-11T21:20:06.4223082Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/flags.make 2023-01-11T21:20:06.4224014Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/progress.make 2023-01-11T21:20:06.4237689Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o.d 2023-01-11T21:20:06.4285382Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o 2023-01-11T21:20:06.4286359Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeDirectoryInformation.cmake 2023-01-11T21:20:06.4287343Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/TargetDirectories.txt 2023-01-11T21:20:06.4288146Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/progress.marks 2023-01-11T21:20:06.4288900Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile2 2023-01-11T21:20:06.4289879Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile.cmake 2023-01-11T21:20:06.4290317Z inflating: build/custom_test_artifacts/custom-backend-build/detect_cuda_version.cc 2023-01-11T21:20:06.4291236Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeCache.txt 2023-01-11T21:20:06.4292006Z inflating: build/custom_test_artifacts/custom-backend-build/Makefile 2023-01-11T21:20:06.4292472Z inflating: build/custom_test_artifacts/custom-backend-build/cmake_install.cmake 2023-01-11T21:20:06.4387201Z inflating: build/custom_test_artifacts/custom-backend-build/libcustom_backend.so 2023-01-11T21:20:06.4423388Z inflating: build/custom_test_artifacts/custom-backend-build/test_custom_backend 2023-01-11T21:20:06.4423665Z creating: build/lib/ 2023-01-11T21:20:06.4424335Z inflating: build/lib/libclog.a 2023-01-11T21:20:06.4478140Z inflating: build/lib/libgtest.a 2023-01-11T21:20:06.4485950Z inflating: build/lib/libpthreadpool.a 2023-01-11T21:20:06.4561015Z inflating: build/lib/libbenchmark.a 2023-01-11T21:20:06.4567954Z inflating: build/lib/libittnotify.a 2023-01-11T21:20:06.4650256Z inflating: build/lib/libprotobuf-lite.a 2023-01-11T21:20:06.4674987Z inflating: build/lib/libtensorpipe_uv.a 2023-01-11T21:20:06.4734845Z inflating: build/lib/libasmjit.a 2023-01-11T21:20:06.5150579Z inflating: build/lib/libprotobuf.a 2023-01-11T21:20:06.5260146Z inflating: build/lib/libgloo.a 2023-01-11T21:20:06.5285852Z inflating: build/lib/libfmt.a 2023-01-11T21:20:06.5286530Z inflating: build/lib/libfoxi_loader.a 2023-01-11T21:20:06.5287867Z inflating: build/lib/libcaffe2_nvrtc.so 2023-01-11T21:20:06.5352379Z inflating: build/lib/libc10.so 2023-01-11T21:20:06.5353244Z inflating: build/lib/libtorch_global_deps.so 2023-01-11T21:20:06.5797959Z inflating: build/lib/libprotoc.a 2023-01-11T21:20:06.5805401Z inflating: build/lib/libcpuinfo.a 2023-01-11T21:20:06.5807164Z inflating: build/lib/libnnpack_reference_layers.a 2023-01-11T21:20:06.5814029Z inflating: build/lib/libcpuinfo_internals.a 2023-01-11T21:20:06.5827690Z inflating: build/lib/libgmock.a 2023-01-11T21:20:06.5828154Z inflating: build/lib/libgtest_main.a 2023-01-11T21:20:06.5828711Z inflating: build/lib/libbenchmark_main.a 2023-01-11T21:20:06.6336674Z inflating: build/lib/libtensorpipe.a 2023-01-11T21:20:07.3881474Z inflating: build/lib/libdnnl.a 2023-01-11T21:20:07.3991144Z inflating: build/lib/libXNNPACK.a 2023-01-11T21:20:07.4033903Z inflating: build/lib/libc10_cuda.so 2023-01-11T21:20:07.4046184Z inflating: build/lib/libqnnpack.a 2023-01-11T21:20:07.4046915Z inflating: build/lib/libgmock_main.a 2023-01-11T21:20:07.5237161Z inflating: build/lib/libfbgemm.a 2023-01-11T21:20:07.5254788Z inflating: build/lib/libpytorch_qnnpack.a 2023-01-11T21:20:07.6149273Z inflating: build/lib/libdnnl_graph.a 2023-01-11T21:20:07.6551369Z inflating: build/lib/libkineto.a 2023-01-11T21:20:07.6775567Z inflating: build/lib/libtensorpipe_cuda.a 2023-01-11T21:20:07.6810453Z inflating: build/lib/libcaffe2_protos.a 2023-01-11T21:20:07.6827535Z inflating: build/lib/libnnpack.a 2023-01-11T21:20:07.6865024Z inflating: build/lib/libonnx_proto.a 2023-01-11T21:20:07.7391496Z inflating: build/lib/libonnx.a 2023-01-11T21:20:07.7721879Z inflating: build/lib/libgloo_cuda.a 2023-01-11T21:20:09.6231088Z inflating: build/lib/libtorch_cpu.so 2023-01-11T21:20:09.6239347Z inflating: build/lib/libunbox_lib.a 2023-01-11T21:20:11.2824462Z inflating: build/lib/libtorch_cuda.so 2023-01-11T21:20:11.2824896Z inflating: build/lib/libtorch.so 2023-01-11T21:20:11.2827444Z inflating: build/lib/libc10d_cuda_test.so 2023-01-11T21:20:12.0555016Z inflating: build/lib/libtorch_cuda_linalg.so 2023-01-11T21:20:12.0602711Z inflating: build/lib/libtorchbind_test.so 2023-01-11T21:20:12.0622148Z inflating: build/lib/libjitbackend_test.so 2023-01-11T21:20:12.0646809Z inflating: build/lib/libbackend_with_compiler.so 2023-01-11T21:20:12.0651096Z inflating: build/lib/libshm.so 2023-01-11T21:20:12.2097864Z inflating: build/lib/libtorch_python.so 2023-01-11T21:20:12.2129617Z inflating: build/lib/libnnapi_backend.so 2023-01-11T21:20:12.2130009Z creating: build/bin/ 2023-01-11T21:20:12.2173519Z inflating: build/bin/c10_CompileTimeFunctionPointer_test 2023-01-11T21:20:12.2219006Z inflating: build/bin/c10_DeviceGuard_test 2023-01-11T21:20:12.2263360Z inflating: build/bin/c10_Device_test 2023-01-11T21:20:12.2314594Z inflating: build/bin/c10_DispatchKeySet_test 2023-01-11T21:20:12.2356741Z inflating: build/bin/c10_StreamGuard_test 2023-01-11T21:20:12.2399962Z inflating: build/bin/c10_SymInt_test 2023-01-11T21:20:12.2448703Z inflating: build/bin/c10_InlineDeviceGuard_test 2023-01-11T21:20:12.2497997Z inflating: build/bin/c10_InlineStreamGuard_test 2023-01-11T21:20:12.2548021Z inflating: build/bin/c10_SizesAndStrides_test 2023-01-11T21:20:12.2590009Z inflating: build/bin/c10_Array_test 2023-01-11T21:20:12.2636632Z inflating: build/bin/c10_Bitset_test 2023-01-11T21:20:12.2798014Z inflating: build/bin/c10_C++17_test 2023-01-11T21:20:12.2839771Z inflating: build/bin/c10_ConstexprCrc_test 2023-01-11T21:20:12.2882600Z inflating: build/bin/c10_DeadlockDetection_test 2023-01-11T21:20:12.2925600Z inflating: build/bin/c10_Half_test 2023-01-11T21:20:12.2974831Z inflating: build/bin/c10_LeftRight_test 2023-01-11T21:20:12.3028706Z inflating: build/bin/c10_Metaprogramming_test 2023-01-11T21:20:12.3072108Z inflating: build/bin/c10_Synchronized_test 2023-01-11T21:20:12.3196813Z inflating: build/bin/c10_SmallVectorTest 2023-01-11T21:20:12.3246011Z inflating: build/bin/c10_ThreadLocal_test 2023-01-11T21:20:12.3292061Z inflating: build/bin/c10_TypeIndex_test 2023-01-11T21:20:12.3335778Z inflating: build/bin/c10_TypeList_test 2023-01-11T21:20:12.3377484Z inflating: build/bin/c10_TypeTraits_test 2023-01-11T21:20:12.3422888Z inflating: build/bin/c10_accumulate_test 2023-01-11T21:20:12.3471495Z inflating: build/bin/c10_bfloat16_test 2023-01-11T21:20:12.3519533Z inflating: build/bin/c10_complex_math_test 2023-01-11T21:20:12.3567221Z inflating: build/bin/c10_complex_test 2023-01-11T21:20:12.3660295Z inflating: build/bin/c10_either_test 2023-01-11T21:20:12.3706123Z inflating: build/bin/c10_exception_test 2023-01-11T21:20:12.3749572Z inflating: build/bin/c10_flags_test 2023-01-11T21:20:12.3892704Z inflating: build/bin/c10_intrusive_ptr_test 2023-01-11T21:20:12.3936376Z inflating: build/bin/c10_irange_test 2023-01-11T21:20:12.3985795Z inflating: build/bin/c10_logging_test 2023-01-11T21:20:12.4049474Z inflating: build/bin/c10_optional_test 2023-01-11T21:20:12.4102766Z inflating: build/bin/c10_ordered_preserving_dict_test 2023-01-11T21:20:12.4150649Z inflating: build/bin/c10_registry_test 2023-01-11T21:20:12.4201116Z inflating: build/bin/c10_string_view_test 2023-01-11T21:20:12.4246052Z inflating: build/bin/c10_tempfile_test 2023-01-11T21:20:12.4294600Z inflating: build/bin/c10_typeid_test 2023-01-11T21:20:12.4342527Z inflating: build/bin/c10_intrusive_ptr_benchmark 2023-01-11T21:20:12.4752855Z inflating: build/bin/protoc-3.13.0.0 2023-01-11T21:20:12.5162743Z inflating: build/bin/protoc 2023-01-11T21:20:12.5209275Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_catches_stream 2023-01-11T21:20:12.5255279Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_1_var_test 2023-01-11T21:20:12.5301238Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_catches_thread_and_block_and_device 2023-01-11T21:20:12.5346607Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_from_2_processes 2023-01-11T21:20:12.5392836Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_multiple_writes_from_blocks_and_threads 2023-01-11T21:20:12.5439104Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_multiple_writes_from_multiple_blocks 2023-01-11T21:20:12.5481097Z inflating: build/bin/c10_cuda_CUDATest 2023-01-11T21:20:12.5527255Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_multiple_writes_from_same_block 2023-01-11T21:20:12.5779071Z inflating: build/bin/vec_test_all_types_DEFAULT 2023-01-11T21:20:12.6059351Z inflating: build/bin/vec_test_all_types_AVX2 2023-01-11T21:20:12.6106136Z inflating: build/bin/HashStoreTest 2023-01-11T21:20:12.6158091Z inflating: build/bin/TCPStoreTest 2023-01-11T21:20:12.6204771Z inflating: build/bin/FileStoreTest 2023-01-11T21:20:12.6217413Z inflating: build/bin/ProcessGroupMPITest 2023-01-11T21:20:12.6266728Z inflating: build/bin/test_edge_op_registration 2023-01-11T21:20:12.6269153Z inflating: build/bin/example_allreduce 2023-01-11T21:20:12.6315288Z inflating: build/bin/Dimname_test 2023-01-11T21:20:12.6378211Z inflating: build/bin/Dict_test 2023-01-11T21:20:12.6433671Z inflating: build/bin/MaybeOwned_test 2023-01-11T21:20:12.6483116Z inflating: build/bin/NamedTensor_test 2023-01-11T21:20:12.6534618Z inflating: build/bin/apply_utils_test 2023-01-11T21:20:12.6587161Z inflating: build/bin/basic 2023-01-11T21:20:12.6638017Z inflating: build/bin/atest 2023-01-11T21:20:12.6684844Z inflating: build/bin/broadcast_test 2023-01-11T21:20:12.6735005Z inflating: build/bin/cpu_generator_test 2023-01-11T21:20:12.6780543Z inflating: build/bin/cpu_profiling_allocator_test 2023-01-11T21:20:12.6856207Z inflating: build/bin/cpu_rng_test 2023-01-11T21:20:12.6899486Z inflating: build/bin/dispatch_key_set_test 2023-01-11T21:20:12.6942318Z inflating: build/bin/dlconvertor_test 2023-01-11T21:20:12.6992970Z inflating: build/bin/extension_backend_test 2023-01-11T21:20:12.7041015Z inflating: build/bin/half_test 2023-01-11T21:20:12.7083547Z inflating: build/bin/lazy_tensor_test 2023-01-11T21:20:12.7130938Z inflating: build/bin/math_kernel_test 2023-01-11T21:20:12.7212224Z inflating: build/bin/ivalue_test 2023-01-11T21:20:12.7258961Z inflating: build/bin/memory_format_test 2023-01-11T21:20:12.7305607Z inflating: build/bin/memory_overlapping_test 2023-01-11T21:20:12.7349660Z inflating: build/bin/operator_name_test 2023-01-11T21:20:12.7395247Z inflating: build/bin/mobile_memory_cleanup 2023-01-11T21:20:12.7443443Z inflating: build/bin/native_test 2023-01-11T21:20:12.7486956Z inflating: build/bin/operators_test 2023-01-11T21:20:12.7532986Z inflating: build/bin/packedtensoraccessor_test 2023-01-11T21:20:12.7582882Z inflating: build/bin/quantized_test 2023-01-11T21:20:12.7639958Z inflating: build/bin/pow_test 2023-01-11T21:20:12.7682601Z inflating: build/bin/reduce_ops_test 2023-01-11T21:20:12.7726934Z inflating: build/bin/reportMemoryUsage_test 2023-01-11T21:20:12.7775971Z inflating: build/bin/scalar_tensor_test 2023-01-11T21:20:12.7825509Z inflating: build/bin/scalar_test 2023-01-11T21:20:12.7871203Z inflating: build/bin/stride_properties_test 2023-01-11T21:20:12.7938608Z inflating: build/bin/tensor_iterator_test 2023-01-11T21:20:12.7986208Z inflating: build/bin/type_ptr_test 2023-01-11T21:20:12.7988690Z inflating: build/bin/thread_init_test 2023-01-11T21:20:12.8037170Z inflating: build/bin/test_parallel 2023-01-11T21:20:12.8079906Z inflating: build/bin/variant_test 2023-01-11T21:20:12.8125813Z inflating: build/bin/undefined_tensor_test 2023-01-11T21:20:12.8178612Z inflating: build/bin/type_test 2023-01-11T21:20:12.8179651Z inflating: build/bin/verify_api_visibility 2023-01-11T21:20:12.8239311Z inflating: build/bin/legacy_vmap_test 2023-01-11T21:20:12.8283570Z inflating: build/bin/weakref_test 2023-01-11T21:20:12.8327813Z inflating: build/bin/wrapdim_test 2023-01-11T21:20:12.8420828Z inflating: build/bin/List_test 2023-01-11T21:20:12.8472571Z inflating: build/bin/IListRef_test 2023-01-11T21:20:12.8514941Z inflating: build/bin/xla_tensor_test 2023-01-11T21:20:12.8619342Z inflating: build/bin/kernel_function_legacy_test 2023-01-11T21:20:12.8675508Z inflating: build/bin/KernelFunction_test 2023-01-11T21:20:12.8758093Z inflating: build/bin/kernel_function_test 2023-01-11T21:20:12.8868199Z inflating: build/bin/kernel_lambda_legacy_test 2023-01-11T21:20:12.8920260Z inflating: build/bin/kernel_stackbased_test 2023-01-11T21:20:12.9008641Z inflating: build/bin/kernel_lambda_test 2023-01-11T21:20:12.9053033Z inflating: build/bin/CppSignature_test 2023-01-11T21:20:12.9135148Z inflating: build/bin/make_boxed_from_unboxed_functor_test 2023-01-11T21:20:12.9176747Z inflating: build/bin/op_allowlist_test 2023-01-11T21:20:12.9224100Z inflating: build/bin/inline_container_test 2023-01-11T21:20:12.9273292Z inflating: build/bin/backend_fallback_test 2023-01-11T21:20:12.9517913Z inflating: build/bin/op_registration_test 2023-01-11T21:20:12.9563564Z inflating: build/bin/cuda_apply_test 2023-01-11T21:20:12.9624823Z inflating: build/bin/cuda_complex_math_test 2023-01-11T21:20:12.9667313Z inflating: build/bin/cuda_device_test 2023-01-11T21:20:12.9714102Z inflating: build/bin/cuda_caching_host_allocator_test 2023-01-11T21:20:12.9765770Z inflating: build/bin/cuda_atomic_ops_test 2023-01-11T21:20:12.9809009Z inflating: build/bin/cuda_dlconvertor_test 2023-01-11T21:20:12.9859543Z inflating: build/bin/cuda_complex_test 2023-01-11T21:20:12.9910998Z inflating: build/bin/cuda_cub_test 2023-01-11T21:20:12.9954763Z inflating: build/bin/cuda_integer_divider_test 2023-01-11T21:20:13.0012529Z inflating: build/bin/cuda_distributions_test 2023-01-11T21:20:13.0058430Z inflating: build/bin/cuda_reportMemoryUsage_test 2023-01-11T21:20:13.0111394Z inflating: build/bin/cuda_stream_test 2023-01-11T21:20:13.0162323Z inflating: build/bin/cuda_generator_test 2023-01-11T21:20:13.0204399Z inflating: build/bin/cuda_optional_test 2023-01-11T21:20:13.0247029Z inflating: build/bin/cuda_half_test 2023-01-11T21:20:13.0291464Z inflating: build/bin/cuda_packedtensoraccessor_test 2023-01-11T21:20:13.0305369Z inflating: build/bin/tutorial_tensorexpr 2023-01-11T21:20:13.0361643Z inflating: build/bin/ProcessGroupGlooTest 2023-01-11T21:20:13.0403790Z inflating: build/bin/cuda_cudnn_test 2023-01-11T21:20:13.0450157Z inflating: build/bin/ProcessGroupUCCTest 2023-01-11T21:20:13.0496932Z inflating: build/bin/test_dist_autograd 2023-01-11T21:20:13.0547565Z inflating: build/bin/ProcessGroupGlooAsyncTest 2023-01-11T21:20:13.0597845Z inflating: build/bin/ProcessGroupNCCLErrorsTest 2023-01-11T21:20:13.0651262Z inflating: build/bin/ProcessGroupNCCLTest 2023-01-11T21:20:13.0711648Z inflating: build/bin/test_cpp_rpc 2023-01-11T21:20:13.0713575Z inflating: build/bin/parallel_benchmark 2023-01-11T21:20:13.0772840Z inflating: build/bin/test_mobile_nnc 2023-01-11T21:20:13.0781624Z inflating: build/bin/aot_model_compiler_test 2023-01-11T21:20:13.0827181Z inflating: build/bin/cuda_vectorized_test 2023-01-11T21:20:13.0831676Z inflating: build/bin/torch_shm_manager 2023-01-11T21:20:13.1133329Z inflating: build/bin/test_lazy 2023-01-11T21:20:13.1842241Z inflating: build/bin/test_tensorexpr 2023-01-11T21:20:13.2870736Z inflating: build/bin/test_api 2023-01-11T21:20:13.3808778Z inflating: build/bin/test_jit 2023-01-11T21:20:13.3811142Z inflating: .pytorch-test-times.json 2023-01-11T21:20:13.3836986Z ##[group]Run df -H 2023-01-11T21:20:13.3837166Z df -H 2023-01-11T21:20:13.3848356Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T21:20:13.3848648Z env: 2023-01-11T21:20:13.3848828Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:20:13.3849017Z ##[endgroup] 2023-01-11T21:20:13.4208717Z Filesystem Size Used Avail Use% Mounted on 2023-01-11T21:20:13.4209286Z devtmpfs 8.2G 0 8.2G 0% /dev 2023-01-11T21:20:13.4212564Z tmpfs 8.2G 13M 8.2G 1% /dev/shm 2023-01-11T21:20:13.4212984Z tmpfs 8.2G 431k 8.2G 1% /run 2023-01-11T21:20:13.4213362Z tmpfs 8.2G 0 8.2G 0% /sys/fs/cgroup 2023-01-11T21:20:13.4213647Z /dev/nvme0n1p1 162G 26G 136G 16% / 2023-01-11T21:20:13.4247331Z ##[group]Run .github/scripts/parse_ref.py 2023-01-11T21:20:13.4247573Z .github/scripts/parse_ref.py 2023-01-11T21:20:13.4257795Z shell: /usr/bin/bash -e {0} 2023-01-11T21:20:13.4257979Z env: 2023-01-11T21:20:13.4258142Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:20:13.4258327Z ##[endgroup] 2023-01-11T21:20:13.4883314Z ##[group]Run set -x 2023-01-11T21:20:13.4883585Z set -x 2023-01-11T21:20:13.4883756Z  2023-01-11T21:20:13.4883952Z if [[ $TEST_CONFIG == 'multigpu' ]]; then 2023-01-11T21:20:13.4884214Z  TEST_COMMAND=.jenkins/pytorch/multigpu-test.sh 2023-01-11T21:20:13.4884477Z elif [[ $BUILD_ENVIRONMENT == *onnx* ]]; then 2023-01-11T21:20:13.4884892Z  TEST_COMMAND=.jenkins/onnx/test.sh 2023-01-11T21:20:13.4885123Z else 2023-01-11T21:20:13.4885329Z  TEST_COMMAND=.jenkins/pytorch/test.sh 2023-01-11T21:20:13.4885577Z fi 2023-01-11T21:20:13.4885846Z  2023-01-11T21:20:13.4886093Z COMMIT_MESSAGES=$(git cherry -v "origin/${GIT_DEFAULT_BRANCH:-master}") 2023-01-11T21:20:13.4886379Z  2023-01-11T21:20:13.4886650Z # sanitize the input commit message and PR body here: 2023-01-11T21:20:13.4886917Z # 2023-01-11T21:20:13.4887276Z # trim all new lines from commit messages + PR_BODY to avoid issues with batch environment 2023-01-11T21:20:13.4887734Z # variable copying. see https://github.com/pytorch/pytorch/pull/80043#issuecomment-1167796028 2023-01-11T21:20:13.4888053Z COMMIT_MESSAGES="${COMMIT_MESSAGES//[$'\n\r']}" 2023-01-11T21:20:13.4888319Z PR_BODY="${PR_BODY//[$'\n\r']}" 2023-01-11T21:20:13.4888549Z  2023-01-11T21:20:13.4888845Z # then trim all special characters like single and double quotes to avoid unescaped inputs to 2023-01-11T21:20:13.4889282Z # wreak havoc internally 2023-01-11T21:20:13.4889555Z export COMMIT_MESSAGES="${COMMIT_MESSAGES//[\'\"]}" 2023-01-11T21:20:13.4889837Z export PR_BODY="${PR_BODY//[\'\"]}" 2023-01-11T21:20:13.4890089Z  2023-01-11T21:20:13.4890332Z # detached container should get cleaned up by teardown_ec2_linux 2023-01-11T21:20:13.4890682Z # TODO: Stop building test binaries as part of the build phase 2023-01-11T21:20:13.4890990Z # Used for GPU_FLAG since that doesn't play nice 2023-01-11T21:20:13.4891236Z # shellcheck disable=SC2086,SC2090 2023-01-11T21:20:13.4891533Z container_name=$(docker run \ 2023-01-11T21:20:13.4891781Z  ${GPU_FLAG:-} \ 2023-01-11T21:20:13.4891995Z  -e BUILD_ENVIRONMENT \ 2023-01-11T21:20:13.4892250Z  -e PR_NUMBER \ 2023-01-11T21:20:13.4892526Z  -e GITHUB_ACTIONS \ 2023-01-11T21:20:13.4892772Z  -e BASE_SHA \ 2023-01-11T21:20:13.4892980Z  -e BRANCH \ 2023-01-11T21:20:13.4893211Z  -e SHA1 \ 2023-01-11T21:20:13.4893460Z  -e AWS_DEFAULT_REGION \ 2023-01-11T21:20:13.4893690Z  -e IN_WHEEL_TEST \ 2023-01-11T21:20:13.4893937Z  -e SHARD_NUMBER \ 2023-01-11T21:20:13.4914515Z  -e TEST_CONFIG \ 2023-01-11T21:20:13.4914724Z  -e NUM_TEST_SHARDS \ 2023-01-11T21:20:13.4914912Z  -e PR_BODY \ 2023-01-11T21:20:13.4915112Z  -e COMMIT_MESSAGES \ 2023-01-11T21:20:13.4915312Z  -e CONTINUE_THROUGH_ERROR \ 2023-01-11T21:20:13.4915644Z  -e PYTORCH_RETRY_TEST_CASES \ 2023-01-11T21:20:13.4915855Z  -e PYTORCH_OVERRIDE_FLAKY_SIGNAL \ 2023-01-11T21:20:13.4916058Z  -e PR_LABELS \ 2023-01-11T21:20:13.4916265Z  -e MAX_JOBS="$(nproc --ignore=2)" \ 2023-01-11T21:20:13.4916468Z  -e SCCACHE_BUCKET \ 2023-01-11T21:20:13.4916671Z  -e SCCACHE_S3_KEY_PREFIX \ 2023-01-11T21:20:13.4916870Z  -e XLA_CUDA \ 2023-01-11T21:20:13.4917067Z  -e XLA_CLANG_CACHE_S3_BUCKET_NAME \ 2023-01-11T21:20:13.4917307Z  -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK \ 2023-01-11T21:20:13.4917549Z  -e PYTORCH_TEST_RERUN_DISABLED_TESTS \ 2023-01-11T21:20:13.4917794Z  --env-file="/tmp/github_env_${GITHUB_RUN_ID}" \ 2023-01-11T21:20:13.4918031Z  --ulimit stack=10485760:83886080 \ 2023-01-11T21:20:13.4918316Z  --security-opt seccomp=unconfined \ 2023-01-11T21:20:13.4918542Z  --cap-add=SYS_PTRACE \ 2023-01-11T21:20:13.4918722Z  --ipc=host \ 2023-01-11T21:20:13.4918914Z  --shm-size="${SHM_SIZE}" \ 2023-01-11T21:20:13.4919100Z  --tty \ 2023-01-11T21:20:13.4919261Z  --detach \ 2023-01-11T21:20:13.4919462Z  --name="${container_name}" \ 2023-01-11T21:20:13.4919664Z  --user jenkins \ 2023-01-11T21:20:13.4919886Z  -v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \ 2023-01-11T21:20:13.4920143Z  -w /var/lib/jenkins/workspace \ 2023-01-11T21:20:13.4920349Z  "${DOCKER_IMAGE}" 2023-01-11T21:20:13.4920512Z ) 2023-01-11T21:20:13.4920733Z echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}" 2023-01-11T21:20:13.4921067Z docker exec -t "${container_name}" sh -c "pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}" 2023-01-11T21:20:13.4931392Z shell: /usr/bin/bash -e {0} 2023-01-11T21:20:13.4931567Z env: 2023-01-11T21:20:13.4931742Z GIT_DEFAULT_BRANCH: master 2023-01-11T21:20:13.4932000Z BUILD_ENVIRONMENT: linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T21:20:13.4932219Z PR_NUMBER: 2023-01-11T21:20:13.4932379Z BRANCH: 2023-01-11T21:20:13.4932586Z SHA1: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:13.4932825Z BASE_SHA: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:13.4933054Z PYTORCH_RETRY_TEST_CASES: 1 2023-01-11T21:20:13.4933263Z PYTORCH_OVERRIDE_FLAKY_SIGNAL: 1 2023-01-11T21:20:13.4933454Z TEST_CONFIG: nogpu_AVX512 2023-01-11T21:20:13.4933639Z SHARD_NUMBER: 1 2023-01-11T21:20:13.4933812Z NUM_TEST_SHARDS: 1 2023-01-11T21:20:13.4933970Z PR_BODY: 2023-01-11T21:20:13.4934151Z CONTINUE_THROUGH_ERROR: False 2023-01-11T21:20:13.4934591Z SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2 2023-01-11T21:20:13.4934842Z SCCACHE_S3_KEY_PREFIX: trunk 2023-01-11T21:20:13.4935028Z SHM_SIZE: 2g 2023-01-11T21:20:13.4935407Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:20:13.4935773Z XLA_CUDA: 2023-01-11T21:20:13.4936025Z XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla 2023-01-11T21:20:13.4936306Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: 0 2023-01-11T21:20:13.4936528Z PYTORCH_TEST_RERUN_DISABLED_TESTS: 0 2023-01-11T21:20:13.4936709Z ##[endgroup] 2023-01-11T21:20:13.4959598Z + [[ nogpu_AVX512 == \m\u\l\t\i\g\p\u ]] 2023-01-11T21:20:13.4960312Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *onnx* ]] 2023-01-11T21:20:13.4960613Z + TEST_COMMAND=.jenkins/pytorch/test.sh 2023-01-11T21:20:13.4962579Z ++ git cherry -v origin/master 2023-01-11T21:20:16.7402923Z + COMMIT_MESSAGES='+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into '\''input'\'' 2023-01-11T21:20:16.7403366Z + 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch 2023-01-11T21:20:16.7404127Z + 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e '\''other'\'' instead of '\''output'\'' in documentation' 2023-01-11T21:20:16.7405385Z + COMMIT_MESSAGES='+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into '\''input'\''+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e '\''other'\'' instead of '\''output'\'' in documentation' 2023-01-11T21:20:16.7406202Z + PR_BODY= 2023-01-11T21:20:16.7406880Z + export 'COMMIT_MESSAGES=+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation' 2023-01-11T21:20:16.7407846Z + COMMIT_MESSAGES='+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation' 2023-01-11T21:20:16.7408266Z + export PR_BODY= 2023-01-11T21:20:16.7408431Z + PR_BODY= 2023-01-11T21:20:16.7414420Z +++ nproc --ignore=2 2023-01-11T21:20:16.7490024Z ++ docker run -e BUILD_ENVIRONMENT -e PR_NUMBER -e GITHUB_ACTIONS -e BASE_SHA -e BRANCH -e SHA1 -e AWS_DEFAULT_REGION -e IN_WHEEL_TEST -e SHARD_NUMBER -e TEST_CONFIG -e NUM_TEST_SHARDS -e PR_BODY -e COMMIT_MESSAGES -e CONTINUE_THROUGH_ERROR -e PYTORCH_RETRY_TEST_CASES -e PYTORCH_OVERRIDE_FLAKY_SIGNAL -e PR_LABELS -e MAX_JOBS=6 -e SCCACHE_BUCKET -e SCCACHE_S3_KEY_PREFIX -e XLA_CUDA -e XLA_CLANG_CACHE_S3_BUCKET_NAME -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK -e PYTORCH_TEST_RERUN_DISABLED_TESTS --env-file=/tmp/github_env_3896346758 --ulimit stack=10485760:83886080 --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --ipc=host --shm-size=2g --tty --detach --name= --user jenkins -v /home/ec2-user/actions-runner/_work/pytorch/pytorch:/var/lib/jenkins/workspace -w /var/lib/jenkins/workspace 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T21:20:24.4003411Z + container_name=ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T21:20:24.4004119Z + echo DOCKER_CONTAINER_ID=ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T21:20:24.4007767Z ++ echo dist/torch-2.0.0a0+git8419ddd-cp310-cp310-linux_x86_64.whl 2023-01-11T21:20:24.4010064Z + docker exec -t ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 sh -c 'pip install dist/torch-2.0.0a0+git8419ddd-cp310-cp310-linux_x86_64.whl[opt-einsum] && .jenkins/pytorch/test.sh' 2023-01-11T21:20:24.9747361Z Processing ./dist/torch-2.0.0a0+git8419ddd-cp310-cp310-linux_x86_64.whl 2023-01-11T21:20:25.6914512Z Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch==2.0.0a0+git8419ddd) (1.11.1) 2023-01-11T21:20:25.6916879Z Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch==2.0.0a0+git8419ddd) (2.6.3) 2023-01-11T21:20:25.6919995Z Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.10/site-packages (from torch==2.0.0a0+git8419ddd) (4.4.0) 2023-01-11T21:20:25.6931510Z Requirement already satisfied: opt-einsum>=3.3 in /opt/conda/lib/python3.10/site-packages (from torch==2.0.0a0+git8419ddd) (3.3.0) 2023-01-11T21:20:25.6983041Z Requirement already satisfied: numpy>=1.7 in /opt/conda/lib/python3.10/site-packages (from opt-einsum>=3.3->torch==2.0.0a0+git8419ddd) (1.21.2) 2023-01-11T21:20:25.7125010Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch==2.0.0a0+git8419ddd) (1.2.1) 2023-01-11T21:20:26.3169415Z Installing collected packages: torch 2023-01-11T21:20:33.1661136Z Successfully installed torch-2.0.0a0+git8419ddd 2023-01-11T21:20:33.2959121Z + echo 'Environment variables:' 2023-01-11T21:20:33.2959382Z Environment variables: 2023-01-11T21:20:33.2959563Z + env 2023-01-11T21:20:33.2982196Z SHARD_NUMBER=1 2023-01-11T21:20:33.2982735Z NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1 2023-01-11T21:20:33.2983234Z NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7 2023-01-11T21:20:33.2983499Z LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 2023-01-11T21:20:33.2983874Z NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7 2023-01-11T21:20:33.2984095Z UCC_HOME=/usr 2023-01-11T21:20:33.2984553Z BUILD_ENVIRONMENT=linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T21:20:33.2985023Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2023-01-11T21:20:33.2985485Z NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1 2023-01-11T21:20:33.2985845Z INSTALLED_DB=yes 2023-01-11T21:20:33.2986144Z HOSTNAME=ecb438e252c9 2023-01-11T21:20:33.2986459Z GITHUB_REF_NAME=ciflow/trunk/91627 2023-01-11T21:20:33.2986876Z GITHUB_API_URL=https://api.github.com 2023-01-11T21:20:33.2993294Z GITHUB_REPOSITORY_OWNER_ID=21003710 2023-01-11T21:20:33.2993571Z OPENSSL_DIR=/opt/openssl 2023-01-11T21:20:33.2993970Z UCC_COMMIT=1c7a7127186e7836f73aafbd7697bbc274a77eee 2023-01-11T21:20:33.2994526Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.2994878Z CUDA_PATH=/usr/local/cuda 2023-01-11T21:20:33.2995253Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2023-01-11T21:20:33.2995593Z GITHUB_RUN_ATTEMPT=1 2023-01-11T21:20:33.2995787Z TEST_CONFIG=nogpu_AVX512 2023-01-11T21:20:33.2995993Z NV_LIBNPP_VERSION=11.7.3.21-1 2023-01-11T21:20:33.2996286Z NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1 2023-01-11T21:20:33.2996551Z GITHUB_REPOSITORY_OWNER=pytorch 2023-01-11T21:20:33.2996735Z GITHUB_ACTIONS=true 2023-01-11T21:20:33.2996925Z NVIDIA_VISIBLE_DEVICES=all 2023-01-11T21:20:33.2997139Z NV_NVPROF_VERSION=11.7.50-1 2023-01-11T21:20:33.2997353Z NV_LIBCUSPARSE_VERSION=11.7.3.50-1 2023-01-11T21:20:33.2997665Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/trunk.yml@refs/tags/ciflow/trunk/91627 2023-01-11T21:20:33.2997955Z NVIDIA_PRODUCT_NAME=CUDA 2023-01-11T21:20:33.2998121Z CI=true 2023-01-11T21:20:33.2998304Z PYTORCH_OVERRIDE_FLAKY_SIGNAL=1 2023-01-11T21:20:33.2998603Z NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1 2023-01-11T21:20:33.2998801Z BRANCH= 2023-01-11T21:20:33.2998962Z GITHUB_HEAD_REF= 2023-01-11T21:20:33.2999190Z UCX_COMMIT=31e74cac7bee0ef66bef2af72e7d86d9c282e5ab 2023-01-11T21:20:33.2999450Z GITHUB_ACTOR=pytorch-bot[bot] 2023-01-11T21:20:33.2999686Z CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache 2023-01-11T21:20:33.2999945Z GITHUB_ACTION_REF= 2023-01-11T21:20:33.3000129Z NCCL_VERSION=2.13.4-1 2023-01-11T21:20:33.3000312Z GITHUB_ACTION=__self 2023-01-11T21:20:33.3000504Z GITHUB_REF_PROTECTED=false 2023-01-11T21:20:33.3000827Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2023-01-11T21:20:33.3001112Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2023-01-11T21:20:33.3001795Z *** 2023-01-11T21:20:33.3001965Z INSTALLED_VISION=yes 2023-01-11T21:20:33.3002132Z NVARCH=x86_64 2023-01-11T21:20:33.3002352Z NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1 2023-01-11T21:20:33.3002558Z HOME=/var/lib/jenkins 2023-01-11T21:20:33.3002950Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3003254Z CARGO_NET_GIT_FETCH_WITH_CLI=true 2023-01-11T21:20:33.3003454Z NVIDIA_CUDA_END_OF_LIFE=1 2023-01-11T21:20:33.3003685Z GITHUB_ACTION_REPOSITORY= 2023-01-11T21:20:33.3003874Z GITHUB_REF_TYPE=tag 2023-01-11T21:20:33.3004093Z NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1 2023-01-11T21:20:33.3004284Z GITHUB_RETENTION_DAYS=90 2023-01-11T21:20:33.3004569Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2023-01-11T21:20:33.3004870Z NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7 2023-01-11T21:20:33.3005268Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3005566Z DEBIAN_FRONTEND=noninteractive 2023-01-11T21:20:33.3005831Z NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev 2023-01-11T21:20:33.3006055Z GITHUB_REF=refs/tags/ciflow/trunk/91627 2023-01-11T21:20:33.3006357Z NV_CUDA_LIB_VERSION=11.7.0-1 2023-01-11T21:20:33.3006591Z GITHUB_SHA=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3006815Z INSTALLED_PROTOBUF=yes 2023-01-11T21:20:33.3006999Z GITHUB_REPOSITORY_ID=65600975 2023-01-11T21:20:33.3009841Z GITHUB_RUN_ID=3896346758 2023-01-11T21:20:33.3010436Z NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1 2023-01-11T21:20:33.3010848Z NV_LIBNCCL_PACKAGE_NAME=libnccl2 2023-01-11T21:20:33.3011248Z LIBRARY_PATH=/usr/local/cuda/lib64/stubs 2023-01-11T21:20:33.3011639Z NV_NVTX_VERSION=11.7.50-1 2023-01-11T21:20:33.3011989Z CONTINUE_THROUGH_ERROR=False 2023-01-11T21:20:33.3049767Z GITHUB_SERVER_URL=https://github.com 2023-01-11T21:20:33.3050105Z MAX_JOBS=6 2023-01-11T21:20:33.3050443Z GITHUB_ACTOR_ID=54816060 2023-01-11T21:20:33.3050842Z NV_LIBCUBLAS_VERSION=11.10.1.25-1 2023-01-11T21:20:33.3051515Z NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1 2023-01-11T21:20:33.3051981Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2023-01-11T21:20:33.3052232Z UCX_HOME=/usr 2023-01-11T21:20:33.3052414Z PYTORCH_RETRY_TEST_CASES=1 2023-01-11T21:20:33.3052658Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2023-01-11T21:20:33.3052912Z BASE_SHA=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3053167Z NV_CUDA_CUDART_DEV_VERSION=11.7.60-1 2023-01-11T21:20:33.3053360Z PR_BODY= 2023-01-11T21:20:33.3053512Z GITHUB_BASE_REF= 2023-01-11T21:20:33.3053680Z TERM=xterm 2023-01-11T21:20:33.3053835Z XLA_CUDA= 2023-01-11T21:20:33.3054016Z NV_NVML_DEV_VERSION=11.7.50-1 2023-01-11T21:20:33.3054213Z TORCH_CUDA_ARCH_LIST=Maxwell 2023-01-11T21:20:33.3054401Z CUDA_VERSION=11.7.0 2023-01-11T21:20:33.3054639Z NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7 2023-01-11T21:20:33.3054856Z OPENSSL_ROOT_DIR=/opt/openssl 2023-01-11T21:20:33.3055268Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3055540Z GITHUB_JOB=test 2023-01-11T21:20:33.3055728Z SCCACHE_S3_KEY_PREFIX=trunk 2023-01-11T21:20:33.3056190Z COMMIT_MESSAGES=+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation 2023-01-11T21:20:33.3056705Z NVIDIA_DRIVER_CAPABILITIES=compute,utility 2023-01-11T21:20:33.3056916Z NUM_TEST_SHARDS=1 2023-01-11T21:20:33.3057075Z PR_NUMBER= 2023-01-11T21:20:33.3057465Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3057742Z SHLVL=1 2023-01-11T21:20:33.3057982Z NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7 2023-01-11T21:20:33.3058221Z GITHUB_REPOSITORY=pytorch/pytorch 2023-01-11T21:20:33.3059115Z NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 2023-01-11T21:20:33.3059964Z NV_LIBNPP_DEV_VERSION=11.7.3.21-1 2023-01-11T21:20:33.3060195Z SHA1=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3060402Z GITHUB_EVENT_NAME=push 2023-01-11T21:20:33.3060620Z NV_CUDA_CUDART_VERSION=11.7.60-1 2023-01-11T21:20:33.3060879Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2023-01-11T21:20:33.3061088Z GITHUB_RUN_NUMBER=22986 2023-01-11T21:20:33.3061345Z GITHUB_WORKFLOW=trunk 2023-01-11T21:20:33.3061650Z PATH=/opt/cache/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T21:20:33.3061982Z NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1 2023-01-11T21:20:33.3062227Z GITHUB_WORKFLOW_SHA=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3062575Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T21:20:33.3062883Z GITHUB_TRIGGERING_ACTOR=pytorch-bot[bot] 2023-01-11T21:20:33.3063072Z _=/usr/bin/env 2023-01-11T21:20:33.3063355Z ++ python -c 'import site; print(site.getsitepackages()[0])' 2023-01-11T21:20:33.3146448Z + TORCH_INSTALL_DIR=/opt/conda/lib/python3.10/site-packages/torch 2023-01-11T21:20:33.3147121Z + TORCH_BIN_DIR=/opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T21:20:33.3147834Z + TORCH_LIB_DIR=/opt/conda/lib/python3.10/site-packages/torch/lib 2023-01-11T21:20:33.3148439Z + TORCH_TEST_DIR=/opt/conda/lib/python3.10/site-packages/torch/test 2023-01-11T21:20:33.3148827Z + BUILD_DIR=build 2023-01-11T21:20:33.3149114Z + BUILD_RENAMED_DIR=build_renamed 2023-01-11T21:20:33.3149427Z + BUILD_BIN_DIR=build/bin 2023-01-11T21:20:33.3149707Z + export VALGRIND=ON 2023-01-11T21:20:33.3149873Z + VALGRIND=ON 2023-01-11T21:20:33.3150070Z + export TORCH_INDUCTOR_INSTALL_GXX=ON 2023-01-11T21:20:33.3150284Z + TORCH_INDUCTOR_INSTALL_GXX=ON 2023-01-11T21:20:33.3150581Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *clang9* ]] 2023-01-11T21:20:33.3150907Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *bazel* ]] 2023-01-11T21:20:33.3152397Z ++ realpath build/custom_test_artifacts 2023-01-11T21:20:33.3190012Z + CUSTOM_TEST_ARTIFACT_BUILD_DIR=/var/lib/jenkins/workspace/build/custom_test_artifacts 2023-01-11T21:20:33.3192627Z ++ dirname .jenkins/pytorch/test.sh 2023-01-11T21:20:33.3198308Z + source .jenkins/pytorch/common.sh 2023-01-11T21:20:33.3206806Z +++ dirname .jenkins/pytorch/common.sh 2023-01-11T21:20:33.3215662Z ++ source .jenkins/pytorch/common_utils.sh 2023-01-11T21:20:33.3223003Z +++ declare -f -t trap_add 2023-01-11T21:20:33.3227952Z ++ set -ex 2023-01-11T21:20:33.3228589Z ++ [[ linux-bionic-cuda11.7-py3.10-gcc7 == *rocm* ]] 2023-01-11T21:20:33.3228940Z ++ BUILD_TEST_LIBTORCH=0 2023-01-11T21:20:33.3229360Z + echo 'Environment variables' 2023-01-11T21:20:33.3229724Z Environment variables 2023-01-11T21:20:33.3229940Z + env 2023-01-11T21:20:33.3236050Z SHARD_NUMBER=1 2023-01-11T21:20:33.3236481Z NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1 2023-01-11T21:20:33.3236924Z NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7 2023-01-11T21:20:33.3237329Z LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 2023-01-11T21:20:33.3237831Z NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7 2023-01-11T21:20:33.3238166Z UCC_HOME=/usr 2023-01-11T21:20:33.3238883Z BUILD_ENVIRONMENT=linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T21:20:33.3239301Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2023-01-11T21:20:33.3239784Z NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1 2023-01-11T21:20:33.3240168Z INSTALLED_DB=yes 2023-01-11T21:20:33.3240482Z HOSTNAME=ecb438e252c9 2023-01-11T21:20:33.3240775Z GITHUB_REF_NAME=ciflow/trunk/91627 2023-01-11T21:20:33.3241015Z GITHUB_API_URL=https://api.github.com 2023-01-11T21:20:33.3241240Z GITHUB_REPOSITORY_OWNER_ID=21003710 2023-01-11T21:20:33.3241560Z OPENSSL_DIR=/opt/openssl 2023-01-11T21:20:33.3241790Z UCC_COMMIT=1c7a7127186e7836f73aafbd7697bbc274a77eee 2023-01-11T21:20:33.3242276Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3242588Z CUDA_PATH=/usr/local/cuda 2023-01-11T21:20:33.3242956Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2023-01-11T21:20:33.3243235Z GITHUB_RUN_ATTEMPT=1 2023-01-11T21:20:33.3243414Z TEST_CONFIG=nogpu_AVX512 2023-01-11T21:20:33.3243633Z NV_LIBNPP_VERSION=11.7.3.21-1 2023-01-11T21:20:33.3243913Z NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1 2023-01-11T21:20:33.3244259Z GITHUB_REPOSITORY_OWNER=pytorch 2023-01-11T21:20:33.3244457Z GITHUB_ACTIONS=true 2023-01-11T21:20:33.3244646Z NVIDIA_VISIBLE_DEVICES=all 2023-01-11T21:20:33.3244850Z NV_NVPROF_VERSION=11.7.50-1 2023-01-11T21:20:33.3245078Z NV_LIBCUSPARSE_VERSION=11.7.3.50-1 2023-01-11T21:20:33.3245366Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/trunk.yml@refs/tags/ciflow/trunk/91627 2023-01-11T21:20:33.3245620Z NVIDIA_PRODUCT_NAME=CUDA 2023-01-11T21:20:33.3245800Z CI=true 2023-01-11T21:20:33.3245983Z PYTORCH_OVERRIDE_FLAKY_SIGNAL=1 2023-01-11T21:20:33.3246267Z NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1 2023-01-11T21:20:33.3246480Z BRANCH= 2023-01-11T21:20:33.3246641Z GITHUB_HEAD_REF= 2023-01-11T21:20:33.3246858Z UCX_COMMIT=31e74cac7bee0ef66bef2af72e7d86d9c282e5ab 2023-01-11T21:20:33.3247132Z GITHUB_ACTOR=pytorch-bot[bot] 2023-01-11T21:20:33.3247414Z CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache 2023-01-11T21:20:33.3247618Z GITHUB_ACTION_REF= 2023-01-11T21:20:33.3247817Z NCCL_VERSION=2.13.4-1 2023-01-11T21:20:33.3248003Z GITHUB_ACTION=__self 2023-01-11T21:20:33.3248166Z VALGRIND=ON 2023-01-11T21:20:33.3248349Z GITHUB_REF_PROTECTED=false 2023-01-11T21:20:33.3248687Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2023-01-11T21:20:33.3248969Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2023-01-11T21:20:33.3249401Z *** 2023-01-11T21:20:33.3249567Z INSTALLED_VISION=yes 2023-01-11T21:20:33.3249745Z NVARCH=x86_64 2023-01-11T21:20:33.3249948Z NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1 2023-01-11T21:20:33.3250151Z HOME=/var/lib/jenkins 2023-01-11T21:20:33.3250549Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3250843Z CARGO_NET_GIT_FETCH_WITH_CLI=true 2023-01-11T21:20:33.3251044Z NVIDIA_CUDA_END_OF_LIFE=1 2023-01-11T21:20:33.3251240Z GITHUB_ACTION_REPOSITORY= 2023-01-11T21:20:33.3251419Z GITHUB_REF_TYPE=tag 2023-01-11T21:20:33.3251636Z NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1 2023-01-11T21:20:33.3251841Z GITHUB_RETENTION_DAYS=90 2023-01-11T21:20:33.3252109Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2023-01-11T21:20:33.3252528Z NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7 2023-01-11T21:20:33.3252943Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3253241Z DEBIAN_FRONTEND=noninteractive 2023-01-11T21:20:33.3253482Z NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev 2023-01-11T21:20:33.3253704Z GITHUB_REF=refs/tags/ciflow/trunk/91627 2023-01-11T21:20:33.3253933Z NV_CUDA_LIB_VERSION=11.7.0-1 2023-01-11T21:20:33.3254155Z GITHUB_SHA=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3254381Z INSTALLED_PROTOBUF=yes 2023-01-11T21:20:33.3254577Z GITHUB_REPOSITORY_ID=65600975 2023-01-11T21:20:33.3254758Z GITHUB_RUN_ID=3896346758 2023-01-11T21:20:33.3255009Z NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1 2023-01-11T21:20:33.3255229Z NV_LIBNCCL_PACKAGE_NAME=libnccl2 2023-01-11T21:20:33.3255504Z LIBRARY_PATH=/usr/local/cuda/lib64/stubs 2023-01-11T21:20:33.3255730Z NV_NVTX_VERSION=11.7.50-1 2023-01-11T21:20:33.3255924Z CONTINUE_THROUGH_ERROR=False 2023-01-11T21:20:33.3256133Z GITHUB_SERVER_URL=https://github.com 2023-01-11T21:20:33.3256329Z MAX_JOBS=6 2023-01-11T21:20:33.3256502Z GITHUB_ACTOR_ID=54816060 2023-01-11T21:20:33.3256702Z NV_LIBCUBLAS_VERSION=11.10.1.25-1 2023-01-11T21:20:33.3256978Z NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1 2023-01-11T21:20:33.3257339Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2023-01-11T21:20:33.3257579Z UCX_HOME=/usr 2023-01-11T21:20:33.3257765Z PYTORCH_RETRY_TEST_CASES=1 2023-01-11T21:20:33.3258002Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2023-01-11T21:20:33.3258264Z BASE_SHA=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3258506Z NV_CUDA_CUDART_DEV_VERSION=11.7.60-1 2023-01-11T21:20:33.3258697Z PR_BODY= 2023-01-11T21:20:33.3258862Z GITHUB_BASE_REF= 2023-01-11T21:20:33.3259016Z TERM=xterm 2023-01-11T21:20:33.3259196Z TORCH_INDUCTOR_INSTALL_GXX=ON 2023-01-11T21:20:33.3259451Z XLA_CUDA= 2023-01-11T21:20:33.3259633Z NV_NVML_DEV_VERSION=11.7.50-1 2023-01-11T21:20:33.3259828Z TORCH_CUDA_ARCH_LIST=Maxwell 2023-01-11T21:20:33.3260015Z CUDA_VERSION=11.7.0 2023-01-11T21:20:33.3260251Z NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7 2023-01-11T21:20:33.3260485Z OPENSSL_ROOT_DIR=/opt/openssl 2023-01-11T21:20:33.3260888Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3261159Z GITHUB_JOB=test 2023-01-11T21:20:33.3261342Z SCCACHE_S3_KEY_PREFIX=trunk 2023-01-11T21:20:33.3261840Z COMMIT_MESSAGES=+ 52a16ce42647731c772e14e7175afa40fda07b3d make torchgen rename also Number arguments into input+ 87db01a53ecb702267ec36787654e418a52f8e93 fix torch.where signature mismatch+ 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e other instead of output in documentation 2023-01-11T21:20:33.3262304Z NVIDIA_DRIVER_CAPABILITIES=compute,utility 2023-01-11T21:20:33.3262500Z NUM_TEST_SHARDS=1 2023-01-11T21:20:33.3262672Z PR_NUMBER= 2023-01-11T21:20:33.3263135Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_e8404cc3-23e5-4de6-aa65-12036809af7f 2023-01-11T21:20:33.3263398Z SHLVL=1 2023-01-11T21:20:33.3263648Z NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7 2023-01-11T21:20:33.3263972Z GITHUB_REPOSITORY=pytorch/pytorch 2023-01-11T21:20:33.3264867Z NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 2023-01-11T21:20:33.3265715Z NV_LIBNPP_DEV_VERSION=11.7.3.21-1 2023-01-11T21:20:33.3265933Z SHA1=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3266149Z GITHUB_EVENT_NAME=push 2023-01-11T21:20:33.3266399Z NV_CUDA_CUDART_VERSION=11.7.60-1 2023-01-11T21:20:33.3266642Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2023-01-11T21:20:33.3266851Z GITHUB_RUN_NUMBER=22986 2023-01-11T21:20:33.3267040Z GITHUB_WORKFLOW=trunk 2023-01-11T21:20:33.3267403Z PATH=/opt/cache/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T21:20:33.3267732Z NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1 2023-01-11T21:20:33.3267992Z GITHUB_WORKFLOW_SHA=8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T21:20:33.3268344Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T21:20:33.3268644Z GITHUB_TRIGGERING_ACTOR=pytorch-bot[bot] 2023-01-11T21:20:33.3268844Z _=/usr/bin/env 2023-01-11T21:20:33.3269050Z + echo 'Testing pytorch' 2023-01-11T21:20:33.3269221Z Testing pytorch 2023-01-11T21:20:33.3269414Z + export LANG=C.UTF-8 2023-01-11T21:20:33.3269603Z + LANG=C.UTF-8 2023-01-11T21:20:33.3345814Z + PR_NUMBER= 2023-01-11T21:20:33.3346156Z + [[ nogpu_AVX512 == \d\e\f\a\u\l\t ]] 2023-01-11T21:20:33.3346555Z + [[ nogpu_AVX512 == \d\i\s\t\r\i\b\u\t\e\d ]] 2023-01-11T21:20:33.3346903Z + [[ nogpu_AVX512 == \s\l\o\w ]] 2023-01-11T21:20:33.3347508Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *slow-gradcheck* ]] 2023-01-11T21:20:33.3348127Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *cuda* ]] 2023-01-11T21:20:33.3348558Z + export PYTORCH_TESTING_DEVICE_ONLY_FOR=cuda 2023-01-11T21:20:33.3348789Z + PYTORCH_TESTING_DEVICE_ONLY_FOR=cuda 2023-01-11T21:20:33.3349001Z + [[ nogpu_AVX512 == *crossref* ]] 2023-01-11T21:20:33.3349201Z + [[ nogpu_AVX512 == *dynamo* ]] 2023-01-11T21:20:33.3349507Z + [[ nogpu_AVX512 == *inductor* ]] 2023-01-11T21:20:33.3349793Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *rocm* ]] 2023-01-11T21:20:33.3350117Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *-bazel-* ]] 2023-01-11T21:20:33.3350384Z + pip_install --user ninja==1.10.2 2023-01-11T21:20:33.3350671Z + pip install --progress-bar off --user ninja==1.10.2 2023-01-11T21:20:33.7369008Z Collecting ninja==1.10.2 2023-01-11T21:20:33.7533094Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108 kB) 2023-01-11T21:20:34.3237393Z Installing collected packages: ninja 2023-01-11T21:20:34.3309211Z  WARNING: The script ninja is installed in '/var/lib/jenkins/.local/bin' which is not on PATH. 2023-01-11T21:20:34.3309902Z Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. 2023-01-11T21:20:34.3361382Z Successfully installed ninja-1.10.2 2023-01-11T21:20:34.3967340Z + export PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T21:20:34.3968196Z + PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-01-11T21:20:34.3969226Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *asan* ]] 2023-01-11T21:20:34.3969827Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *-tsan* ]] 2023-01-11T21:20:34.3970282Z + [[ nogpu_AVX512 == \n\o\g\p\u\_\N\O\_\A\V\X\2 ]] 2023-01-11T21:20:34.3970685Z + [[ nogpu_AVX512 == \n\o\g\p\u\_\A\V\X\5\1\2 ]] 2023-01-11T21:20:34.3971076Z + export ATEN_CPU_CAPABILITY=avx2 2023-01-11T21:20:34.3971448Z + ATEN_CPU_CAPABILITY=avx2 2023-01-11T21:20:34.3977984Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *tbb* ]] 2023-01-11T21:20:34.3989895Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *libtorch* ]] 2023-01-11T21:20:34.3990503Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *-bazel-* ]] 2023-01-11T21:20:34.3990836Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *-tsan* ]] 2023-01-11T21:20:34.3992591Z + cd test 2023-01-11T21:20:34.4002036Z + python -c 'import torch; print(torch.__config__.show())' 2023-01-11T21:20:35.7897726Z PyTorch built with: 2023-01-11T21:20:35.7898313Z - GCC 7.5 2023-01-11T21:20:35.7898699Z - C++ Version: 201703 2023-01-11T21:20:35.7899297Z - Intel(R) oneAPI Math Kernel Library Version 2022.0-Product Build 20211112 for Intel(R) 64 architecture applications 2023-01-11T21:20:35.7899748Z - Intel(R) MKL-DNN v2.7.2 (Git Hash fbec3e25a559ee252022ae066817b204e106a6ba) 2023-01-11T21:20:35.7900058Z - OpenMP 201511 (a.k.a. OpenMP 4.5) 2023-01-11T21:20:35.7900326Z - LAPACK is enabled (usually provided by MKL) 2023-01-11T21:20:35.7900566Z - NNPACK is enabled 2023-01-11T21:20:35.7900796Z - CPU capability usage: AVX2 2023-01-11T21:20:35.7903320Z - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/cache/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Werror -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, FORCE_FALLBACK_CUDA_MPI=1, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=ON, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 2023-01-11T21:20:35.7905387Z 2023-01-11T21:20:36.3966881Z + cd test 2023-01-11T21:20:36.3967345Z + python -c 'import torch; print(torch.__config__.parallel_info())' 2023-01-11T21:20:37.5180880Z ATen/Parallel: 2023-01-11T21:20:37.5192999Z at::get_num_threads() : 4 2023-01-11T21:20:37.5193267Z at::get_num_interop_threads() : 4 2023-01-11T21:20:37.5193514Z OpenMP 201511 (a.k.a. OpenMP 4.5) 2023-01-11T21:20:37.5193720Z omp_get_max_threads() : 4 2023-01-11T21:20:37.5194215Z Intel(R) oneAPI Math Kernel Library Version 2022.0-Product Build 20211112 for Intel(R) 64 architecture applications 2023-01-11T21:20:37.5194507Z mkl_get_max_threads() : 4 2023-01-11T21:20:37.5195078Z Intel(R) MKL-DNN v2.7.2 (Git Hash fbec3e25a559ee252022ae066817b204e106a6ba) 2023-01-11T21:20:37.5195339Z std::thread::hardware_concurrency() : 8 2023-01-11T21:20:37.5195567Z Environment variables: 2023-01-11T21:20:37.5195763Z OMP_NUM_THREADS : [not set] 2023-01-11T21:20:37.5195948Z MKL_NUM_THREADS : [not set] 2023-01-11T21:20:37.5196151Z ATen parallel backend: OpenMP 2023-01-11T21:20:37.5196277Z 2023-01-11T21:20:37.7282612Z + [[ nogpu_AVX512 == *backward* ]] 2023-01-11T21:20:37.7282973Z + [[ nogpu_AVX512 == *xla* ]] 2023-01-11T21:20:37.7283327Z + [[ nogpu_AVX512 == \j\i\t\_\l\e\g\a\c\y ]] 2023-01-11T21:20:37.7283999Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *libtorch* ]] 2023-01-11T21:20:37.7284421Z + [[ nogpu_AVX512 == distributed ]] 2023-01-11T21:20:37.7284733Z + [[ nogpu_AVX512 == deploy ]] 2023-01-11T21:20:37.7285203Z + [[ nogpu_AVX512 == *inductor_distributed* ]] 2023-01-11T21:20:37.7285604Z + [[ nogpu_AVX512 == *dynamo* ]] 2023-01-11T21:20:37.7285944Z + [[ nogpu_AVX512 == *dynamo* ]] 2023-01-11T21:20:37.7286326Z + [[ nogpu_AVX512 == *inductor_huggingface* ]] 2023-01-11T21:20:37.7286723Z + [[ nogpu_AVX512 == *inductor_timm* ]] 2023-01-11T21:20:37.7287119Z + [[ nogpu_AVX512 == *inductor_torchbench* ]] 2023-01-11T21:20:37.7287525Z + [[ nogpu_AVX512 == *inductor* ]] 2023-01-11T21:20:37.7287825Z + [[ 1 == 1 ]] 2023-01-11T21:20:37.7288172Z + [[ 1 -gt 1 ]] 2023-01-11T21:20:37.7288438Z + [[ 1 == 2 ]] 2023-01-11T21:20:37.7288776Z + [[ 1 -gt 2 ]] 2023-01-11T21:20:37.7289426Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *vulkan* ]] 2023-01-11T21:20:37.7290000Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *-bazel-* ]] 2023-01-11T21:20:37.7290410Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *-mobile-lightweight-dispatch* ]] 2023-01-11T21:20:37.7290769Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *-tsan* ]] 2023-01-11T21:20:37.7290986Z + [[ nogpu_AVX512 = docs_test ]] 2023-01-11T21:20:37.7291186Z + [[ nogpu_AVX512 == *functorch* ]] 2023-01-11T21:20:37.7291380Z + install_torchvision 2023-01-11T21:20:37.7291542Z + local commit 2023-01-11T21:20:37.7291733Z ++ get_pinned_commit vision 2023-01-11T21:20:37.7291944Z ++ cat .github/ci_commit_pins/vision.txt 2023-01-11T21:20:37.7324807Z + commit=32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:37.7325435Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/vision.git@32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:37.7326010Z + pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/vision.git@32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:38.0606999Z Collecting git+https://github.com/pytorch/vision.git@32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:38.0611622Z Cloning https://github.com/pytorch/vision.git (to revision 32d254bbfcf14975f846765775584e61ef25a5bc) to /tmp/pip-req-build-qe4b0fk6 2023-01-11T21:20:38.0781214Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/vision.git /tmp/pip-req-build-qe4b0fk6 2023-01-11T21:20:40.2055327Z Running command git rev-parse -q --verify 'sha^32d254bbfcf14975f846765775584e61ef25a5bc' 2023-01-11T21:20:40.2074636Z Running command git fetch -q https://github.com/pytorch/vision.git 32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:41.1480830Z Running command git checkout -q 32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:41.6720364Z Resolved https://github.com/pytorch/vision.git to commit 32d254bbfcf14975f846765775584e61ef25a5bc 2023-01-11T21:20:43.5625835Z Preparing metadata (setup.py) ... [?25l- done 2023-01-11T21:20:43.5680711Z [?25hRequirement already satisfied: typing_extensions in /opt/conda/lib/python3.10/site-packages (from torchvision==0.15.0a0+32d254b) (4.4.0) 2023-01-11T21:20:43.5683945Z Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from torchvision==0.15.0a0+32d254b) (1.21.2) 2023-01-11T21:20:43.5686875Z Requirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from torchvision==0.15.0a0+32d254b) (2.28.1) 2023-01-11T21:20:43.5692013Z Requirement already satisfied: torch in /opt/conda/lib/python3.10/site-packages (from torchvision==0.15.0a0+32d254b) (2.0.0a0+git8419ddd) 2023-01-11T21:20:43.5697477Z Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/conda/lib/python3.10/site-packages (from torchvision==0.15.0a0+32d254b) (9.3.0) 2023-01-11T21:20:43.5856358Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->torchvision==0.15.0a0+32d254b) (1.26.13) 2023-01-11T21:20:43.5861401Z Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->torchvision==0.15.0a0+32d254b) (2022.12.7) 2023-01-11T21:20:43.5866905Z Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->torchvision==0.15.0a0+32d254b) (3.4) 2023-01-11T21:20:43.5874121Z Requirement already satisfied: charset-normalizer<3,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->torchvision==0.15.0a0+32d254b) (2.0.4) 2023-01-11T21:20:43.5914151Z Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch->torchvision==0.15.0a0+32d254b) (1.11.1) 2023-01-11T21:20:43.5917106Z Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch->torchvision==0.15.0a0+32d254b) (2.6.3) 2023-01-11T21:20:43.6205728Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch->torchvision==0.15.0a0+32d254b) (1.2.1) 2023-01-11T21:20:43.6257201Z Building wheels for collected packages: torchvision 2023-01-11T21:21:37.1997538Z Building wheel for torchvision (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | done 2023-01-11T21:21:37.2029351Z [?25h Created wheel for torchvision: filename=torchvision-0.15.0a0+32d254b-cp310-cp310-linux_x86_64.whl size=1003186 sha256=6b656ed13309f08ee75611e0bd07879c65bc80f264e06dcc0d6675bfe8c82a1b 2023-01-11T21:21:37.2030578Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/ca/33/ae/1f7c8972d058d079236e7ca0a30b53b050afb405820b9ed787 2023-01-11T21:21:37.2065182Z Successfully built torchvision 2023-01-11T21:21:37.7250527Z Installing collected packages: torchvision 2023-01-11T21:21:38.0985044Z Successfully installed torchvision-0.15.0a0+32d254b 2023-01-11T21:21:38.1960371Z + install_triton 2023-01-11T21:21:38.1960588Z + local commit 2023-01-11T21:21:38.1960781Z + [[ nogpu_AVX512 == *rocm* ]] 2023-01-11T21:21:38.1963179Z ++ get_pinned_commit triton 2023-01-11T21:21:38.1963406Z ++ cat .github/ci_commit_pins/triton.txt 2023-01-11T21:21:38.1982540Z + commit=0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T21:21:38.1983190Z + pip_install --user git+https://github.com/openai/triton@0d7e7532279e45672555e344646f5c19c3972331#subdirectory=python 2023-01-11T21:21:38.1983828Z + pip install --progress-bar off --user git+https://github.com/openai/triton@0d7e7532279e45672555e344646f5c19c3972331#subdirectory=python 2023-01-11T21:21:38.5276785Z Collecting git+https://github.com/openai/triton@0d7e7532279e45672555e344646f5c19c3972331#subdirectory=python 2023-01-11T21:21:38.5280887Z Cloning https://github.com/openai/triton (to revision 0d7e7532279e45672555e344646f5c19c3972331) to /tmp/pip-req-build-6py_bze3 2023-01-11T21:21:38.5297135Z Running command git clone --filter=blob:none --quiet https://github.com/openai/triton /tmp/pip-req-build-6py_bze3 2023-01-11T21:21:39.1822034Z Running command git rev-parse -q --verify 'sha^0d7e7532279e45672555e344646f5c19c3972331' 2023-01-11T21:21:39.1839489Z Running command git fetch -q https://github.com/openai/triton 0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T21:21:39.5039224Z Running command git checkout -q 0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T21:21:39.8464567Z Resolved https://github.com/openai/triton to commit 0d7e7532279e45672555e344646f5c19c3972331 2023-01-11T21:21:39.8465760Z Running command git submodule update --init --recursive -q 2023-01-11T21:21:40.3222229Z Preparing metadata (setup.py) ... [?25l- done 2023-01-11T21:21:40.4638072Z [?25hCollecting cmake 2023-01-11T21:21:40.4891355Z Downloading cmake-3.25.0-py2.py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.7 MB) 2023-01-11T21:21:40.8240079Z Collecting filelock 2023-01-11T21:21:40.8494674Z Downloading filelock-3.9.0-py3-none-any.whl (9.7 kB) 2023-01-11T21:21:40.8528948Z Requirement already satisfied: torch in /opt/conda/lib/python3.10/site-packages (from triton==2.0.0) (2.0.0a0+git8419ddd) 2023-01-11T21:21:40.8707011Z Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch->triton==2.0.0) (2.6.3) 2023-01-11T21:21:40.8710339Z Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.10/site-packages (from torch->triton==2.0.0) (4.4.0) 2023-01-11T21:21:40.8713331Z Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch->triton==2.0.0) (1.11.1) 2023-01-11T21:21:40.8860140Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch->triton==2.0.0) (1.2.1) 2023-01-11T21:21:40.8909050Z Building wheels for collected packages: triton 2023-01-11T21:22:21.2331968Z Building wheel for triton (setup.py) ... [?25l- \ | / - \ | / - \ | / - done 2023-01-11T21:22:21.2701831Z [?25h Created wheel for triton: filename=triton-2.0.0-cp310-cp310-linux_x86_64.whl size=15377935 sha256=1afa21e5959155ed2bd815b9f7982252c103b5a50cf26a592ee40063a2f21ae8 2023-01-11T21:22:21.2702917Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/3f/1d/23/1c2bc47d618a44f9c949aea4b7e355e737a1f1ed208f009295 2023-01-11T21:22:21.2717807Z Successfully built triton 2023-01-11T21:22:21.8507861Z Installing collected packages: cmake, filelock, triton 2023-01-11T21:22:23.0320302Z Successfully installed cmake-3.25.0 filelock-3.9.0 triton-2.0.0 2023-01-11T21:22:23.1233529Z + pip_install --user jinja2 2023-01-11T21:22:23.1233890Z + pip install --progress-bar off --user jinja2 2023-01-11T21:22:23.5230779Z Collecting jinja2 2023-01-11T21:22:23.5387229Z Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB) 2023-01-11T21:22:23.5709266Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2) (2.1.1) 2023-01-11T21:22:24.1487726Z Installing collected packages: jinja2 2023-01-11T21:22:24.2841110Z Successfully installed jinja2-3.1.2 2023-01-11T21:22:24.3460470Z + install_monkeytype 2023-01-11T21:22:24.3460837Z + pip_install MonkeyType 2023-01-11T21:22:24.3461364Z + pip install --progress-bar off MonkeyType 2023-01-11T21:22:24.7258305Z Collecting MonkeyType 2023-01-11T21:22:24.7414800Z Downloading MonkeyType-22.2.0-py3-none-any.whl (37 kB) 2023-01-11T21:22:24.7669068Z Requirement already satisfied: mypy-extensions in /opt/conda/lib/python3.10/site-packages (from MonkeyType) (0.4.3) 2023-01-11T21:22:24.8397710Z Collecting libcst>=0.3.7 2023-01-11T21:22:24.8451338Z Downloading libcst-0.4.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB) 2023-01-11T21:22:24.9685045Z Collecting typing-inspect>=0.4.0 2023-01-11T21:22:24.9718611Z Downloading typing_inspect-0.8.0-py3-none-any.whl (8.7 kB) 2023-01-11T21:22:24.9970916Z Requirement already satisfied: pyyaml>=5.2 in /opt/conda/lib/python3.10/site-packages (from libcst>=0.3.7->MonkeyType) (6.0) 2023-01-11T21:22:24.9976698Z Requirement already satisfied: typing-extensions>=3.7.4.2 in /opt/conda/lib/python3.10/site-packages (from libcst>=0.3.7->MonkeyType) (4.4.0) 2023-01-11T21:22:25.6049331Z Installing collected packages: typing-inspect, libcst, MonkeyType 2023-01-11T21:22:26.4096834Z Successfully installed MonkeyType-22.2.0 libcst-0.4.9 typing-inspect-0.8.0 2023-01-11T21:22:26.4770315Z + test_python 2023-01-11T21:22:26.4770833Z + python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --verbose 2023-01-11T21:22:28.1110248Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:28.6766886Z Ignoring disabled issues: [] 2023-01-11T21:22:29.4861351Z /var/lib/jenkins/workspace/test/run_test.py:1169: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead. 2023-01-11T21:22:29.4861904Z if torch.version.cuda is not None and LooseVersion(torch.version.cuda) >= "11.6": 2023-01-11T21:22:29.4900017Z Selected tests: 2023-01-11T21:22:29.4900208Z backends/xeon/test_launch 2023-01-11T21:22:29.4901471Z benchmark_utils/test_benchmark_utils 2023-01-11T21:22:29.4901805Z distributions/test_distributions 2023-01-11T21:22:29.4902171Z dynamo/test_aot_autograd 2023-01-11T21:22:29.4902535Z dynamo/test_aot_cudagraphs 2023-01-11T21:22:29.4902851Z dynamo/test_comptime 2023-01-11T21:22:29.4903112Z dynamo/test_dynamic_shapes 2023-01-11T21:22:29.4903394Z dynamo/test_export 2023-01-11T21:22:29.4905948Z dynamo/test_export_mutations 2023-01-11T21:22:29.4906335Z dynamo/test_functions 2023-01-11T21:22:29.4906578Z dynamo/test_global 2023-01-11T21:22:29.4906775Z dynamo/test_global_declaration 2023-01-11T21:22:29.4906958Z dynamo/test_minifier 2023-01-11T21:22:29.4907147Z dynamo/test_misc 2023-01-11T21:22:29.4907339Z dynamo/test_model_output 2023-01-11T21:22:29.4907657Z dynamo/test_modules 2023-01-11T21:22:29.4907948Z dynamo/test_nops 2023-01-11T21:22:29.4908245Z dynamo/test_optimizations 2023-01-11T21:22:29.4908548Z dynamo/test_optimizers 2023-01-11T21:22:29.4908865Z dynamo/test_python_autograd 2023-01-11T21:22:29.4909191Z dynamo/test_recompile_ux 2023-01-11T21:22:29.4909511Z dynamo/test_replay_record 2023-01-11T21:22:29.4909877Z dynamo/test_repros 2023-01-11T21:22:29.4910272Z dynamo/test_skip_non_tensor 2023-01-11T21:22:29.4910659Z dynamo/test_subgraphs 2023-01-11T21:22:29.4911081Z dynamo/test_torchxla_integration 2023-01-11T21:22:29.4911537Z dynamo/test_torchxla_num_output 2023-01-11T21:22:29.4911947Z dynamo/test_torchxla_util 2023-01-11T21:22:29.4912342Z dynamo/test_unspec 2023-01-11T21:22:29.4912749Z dynamo/test_verify_correctness 2023-01-11T21:22:29.4913142Z inductor/test_minifier 2023-01-11T21:22:29.4913523Z inductor/test_perf 2023-01-11T21:22:29.4913911Z inductor/test_smoke 2023-01-11T21:22:29.4914299Z inductor/test_torchinductor 2023-01-11T21:22:29.4945841Z inductor/test_torchinductor_opinfo 2023-01-11T21:22:29.4946246Z lazy/test_bindings 2023-01-11T21:22:29.4946545Z lazy/test_debug_util 2023-01-11T21:22:29.4946859Z lazy/test_extract_compiled_graph 2023-01-11T21:22:29.4947129Z lazy/test_meta_kernel 2023-01-11T21:22:29.4947312Z lazy/test_reuse_ir 2023-01-11T21:22:29.4947497Z lazy/test_step_closures 2023-01-11T21:22:29.4947671Z lazy/test_ts_opinfo 2023-01-11T21:22:29.4947946Z nn/test_convolution 2023-01-11T21:22:29.4948240Z nn/test_dropout 2023-01-11T21:22:29.4948532Z nn/test_embedding 2023-01-11T21:22:29.4948847Z nn/test_init 2023-01-11T21:22:29.4949115Z nn/test_lazy_modules 2023-01-11T21:22:29.4949296Z nn/test_module_hooks 2023-01-11T21:22:29.4949486Z nn/test_multihead_attention 2023-01-11T21:22:29.4949681Z nn/test_packed_sequence 2023-01-11T21:22:29.4949873Z nn/test_parametrization 2023-01-11T21:22:29.4950053Z nn/test_pooling 2023-01-11T21:22:29.4950227Z nn/test_pruning 2023-01-11T21:22:29.4950409Z profiler/test_memory_profiler 2023-01-11T21:22:29.4950721Z profiler/test_profiler 2023-01-11T21:22:29.4951064Z profiler/test_profiler_tree 2023-01-11T21:22:29.4951241Z test_ao_sparsity 2023-01-11T21:22:29.4951420Z test_autocast 2023-01-11T21:22:29.4951670Z test_autograd 2023-01-11T21:22:29.4951917Z test_binary_ufuncs 2023-01-11T21:22:29.4952201Z test_bundled_inputs 2023-01-11T21:22:29.4952386Z test_comparison_utils 2023-01-11T21:22:29.4952547Z test_complex 2023-01-11T21:22:29.4952721Z test_cpp_api_parity 2023-01-11T21:22:29.4952912Z test_cpp_extensions_aot_ninja 2023-01-11T21:22:29.4953105Z test_cpp_extensions_aot_no_ninja 2023-01-11T21:22:29.4953308Z test_cpp_extensions_jit 2023-01-11T21:22:29.4953551Z test_cpp_extensions_open_device_registration 2023-01-11T21:22:29.4953785Z test_cuda 2023-01-11T21:22:29.4953947Z test_cuda_nvml_based_avail 2023-01-11T21:22:29.4954153Z test_cuda_primary_ctx 2023-01-11T21:22:29.4954419Z test_cuda_sanitizer 2023-01-11T21:22:29.4954586Z test_cuda_trace 2023-01-11T21:22:29.4954761Z test_dataloader 2023-01-11T21:22:29.4954939Z test_datapipe 2023-01-11T21:22:29.4955185Z test_decomp 2023-01-11T21:22:29.4955438Z test_deploy 2023-01-11T21:22:29.4955665Z test_dispatch 2023-01-11T21:22:29.4955908Z test_dlpack 2023-01-11T21:22:29.4956180Z test_dynamic_shapes 2023-01-11T21:22:29.4956474Z test_expanded_weights 2023-01-11T21:22:29.4956693Z test_fake_tensor 2023-01-11T21:22:29.4956929Z test_foreach 2023-01-11T21:22:29.4957262Z test_function_schema 2023-01-11T21:22:29.4957617Z test_functional_autograd_benchmark 2023-01-11T21:22:29.4957931Z test_functional_optim 2023-01-11T21:22:29.4958122Z test_functionalization 2023-01-11T21:22:29.4958285Z test_futures 2023-01-11T21:22:29.4958508Z test_fx 2023-01-11T21:22:29.4958822Z test_fx_experimental 2023-01-11T21:22:29.4959127Z test_fx_passes 2023-01-11T21:22:29.4959417Z test_fx_reinplace_pass 2023-01-11T21:22:29.4959679Z test_hub 2023-01-11T21:22:29.4959955Z test_import_stats 2023-01-11T21:22:29.4960208Z test_indexing 2023-01-11T21:22:29.4960462Z test_itt 2023-01-11T21:22:29.4960725Z test_jit 2023-01-11T21:22:29.4961016Z test_jit_autocast 2023-01-11T21:22:29.4961327Z test_jit_cuda_fuser 2023-01-11T21:22:29.4961618Z test_jit_disabled 2023-01-11T21:22:29.4961923Z test_jit_fuser_te 2023-01-11T21:22:29.4962235Z test_jit_llga_fuser 2023-01-11T21:22:29.4962502Z test_jiterator 2023-01-11T21:22:29.4962675Z test_legacy_vmap 2023-01-11T21:22:29.4962847Z test_license 2023-01-11T21:22:29.4962997Z test_linalg 2023-01-11T21:22:29.4963158Z test_logging 2023-01-11T21:22:29.4963321Z test_masked 2023-01-11T21:22:29.4963477Z test_maskedtensor 2023-01-11T21:22:29.4963650Z test_matmul_cuda 2023-01-11T21:22:29.4963841Z test_meta 2023-01-11T21:22:29.4964005Z test_mkl_verbose 2023-01-11T21:22:29.4964158Z test_mkldnn 2023-01-11T21:22:29.4964325Z test_mkldnn_fusion 2023-01-11T21:22:29.4964497Z test_mkldnn_verbose 2023-01-11T21:22:29.4964669Z test_mobile_optimizer 2023-01-11T21:22:29.4964851Z test_model_dump 2023-01-11T21:22:29.4965026Z test_module_init 2023-01-11T21:22:29.4965186Z test_modules 2023-01-11T21:22:29.4965346Z test_monitor 2023-01-11T21:22:29.4965518Z test_multiprocessing 2023-01-11T21:22:29.4965704Z test_multiprocessing_spawn 2023-01-11T21:22:29.4965894Z test_namedtensor 2023-01-11T21:22:29.4966080Z test_namedtuple_return_api 2023-01-11T21:22:29.4966258Z test_native_functions 2023-01-11T21:22:29.4966435Z test_native_mha 2023-01-11T21:22:29.4966606Z test_nestedtensor 2023-01-11T21:22:29.4966760Z test_nn 2023-01-11T21:22:29.4966930Z test_numba_integration 2023-01-11T21:22:29.4967114Z test_numpy_interop 2023-01-11T21:22:29.4967279Z test_nvfuser_dynamo 2023-01-11T21:22:29.4967459Z test_nvfuser_frontend 2023-01-11T21:22:29.4967637Z test_openmp 2023-01-11T21:22:29.4967784Z test_ops 2023-01-11T21:22:29.4967953Z test_ops_fwd_gradients 2023-01-11T21:22:29.4968134Z test_ops_gradients 2023-01-11T21:22:29.4968291Z test_ops_jit 2023-01-11T21:22:29.4968457Z test_optim 2023-01-11T21:22:29.4968620Z test_overrides 2023-01-11T21:22:29.4968772Z test_package 2023-01-11T21:22:29.4969227Z test_per_overload_api 2023-01-11T21:22:29.4969411Z test_prims 2023-01-11T21:22:29.4969567Z test_proxy_tensor 2023-01-11T21:22:29.4969743Z test_pruning_op 2023-01-11T21:22:29.4969921Z test_public_bindings 2023-01-11T21:22:29.4970094Z test_python_dispatch 2023-01-11T21:22:29.4970273Z test_pytree 2023-01-11T21:22:29.4970447Z test_quantization 2023-01-11T21:22:29.4970607Z test_reductions 2023-01-11T21:22:29.4970792Z test_scatter_gather_ops 2023-01-11T21:22:29.4970976Z test_schema_check 2023-01-11T21:22:29.4971138Z test_serialization 2023-01-11T21:22:29.4971341Z test_set_default_mobile_cpu_allocator 2023-01-11T21:22:29.4971540Z test_shape_ops 2023-01-11T21:22:29.4971701Z test_show_pickle 2023-01-11T21:22:29.4971927Z test_sort_and_select 2023-01-11T21:22:29.4972100Z test_sparse 2023-01-11T21:22:29.4972254Z test_sparse_csr 2023-01-11T21:22:29.4972502Z test_spectral_ops 2023-01-11T21:22:29.4972679Z test_stateless 2023-01-11T21:22:29.4972835Z test_subclass 2023-01-11T21:22:29.4973020Z test_tensor_creation_ops 2023-01-11T21:22:29.4973207Z test_tensorboard 2023-01-11T21:22:29.4973371Z test_tensorexpr 2023-01-11T21:22:29.4973554Z test_tensorexpr_pybind 2023-01-11T21:22:29.4973735Z test_testing 2023-01-11T21:22:29.4973885Z test_torch 2023-01-11T21:22:29.4974055Z test_transformers 2023-01-11T21:22:29.4974229Z test_type_hints 2023-01-11T21:22:29.4974386Z test_type_info 2023-01-11T21:22:29.4974559Z test_type_promotion 2023-01-11T21:22:29.4974740Z test_unary_ufuncs 2023-01-11T21:22:29.4974893Z test_utils 2023-01-11T21:22:29.4975055Z test_view_ops 2023-01-11T21:22:29.4975219Z test_vulkan 2023-01-11T21:22:29.4975365Z test_weak 2023-01-11T21:22:29.4975539Z test_xnnpack_integration 2023-01-11T21:22:29.4975714Z doctests 2023-01-11T21:22:29.7676071Z Prioritized test from test file changes. 2023-01-11T21:22:29.7676424Z reordering tests for PR: 2023-01-11T21:22:29.7677932Z prioritized: ['dynamo/test_export', 'dynamo/test_misc', 'dynamo/test_optimizations', 'dynamo/test_repros', 'dynamo/test_torchxla_integration', 'dynamo/test_unspec', 'inductor/test_torchinductor', 'inductor/test_torchinductor_opinfo', 'profiler/test_profiler_tree', 'test_ao_sparsity', 'test_autograd', 'test_cpp_extensions_jit', 'test_cuda', 'test_fake_tensor', 'test_foreach', 'test_function_schema', 'test_jit', 'test_masked', 'test_meta', 'test_nn', 'test_overrides', 'test_proxy_tensor', 'test_public_bindings', 'test_python_dispatch', 'test_scatter_gather_ops', 'test_sort_and_select', 'test_sparse', 'test_sparse_csr', 'test_stateless', 'test_testing', 'test_torch', 'test_transformers', 'test_utils'] 2023-01-11T21:22:29.7684432Z the rest: ['backends/xeon/test_launch', 'benchmark_utils/test_benchmark_utils', 'distributions/test_distributions', 'dynamo/test_aot_autograd', 'dynamo/test_aot_cudagraphs', 'dynamo/test_comptime', 'dynamo/test_dynamic_shapes', 'dynamo/test_export_mutations', 'dynamo/test_functions', 'dynamo/test_global', 'dynamo/test_global_declaration', 'dynamo/test_minifier', 'dynamo/test_model_output', 'dynamo/test_modules', 'dynamo/test_nops', 'dynamo/test_optimizers', 'dynamo/test_python_autograd', 'dynamo/test_recompile_ux', 'dynamo/test_replay_record', 'dynamo/test_skip_non_tensor', 'dynamo/test_subgraphs', 'dynamo/test_torchxla_num_output', 'dynamo/test_torchxla_util', 'dynamo/test_verify_correctness', 'inductor/test_minifier', 'inductor/test_perf', 'inductor/test_smoke', 'lazy/test_bindings', 'lazy/test_debug_util', 'lazy/test_extract_compiled_graph', 'lazy/test_meta_kernel', 'lazy/test_reuse_ir', 'lazy/test_step_closures', 'lazy/test_ts_opinfo', 'nn/test_convolution', 'nn/test_dropout', 'nn/test_embedding', 'nn/test_init', 'nn/test_lazy_modules', 'nn/test_module_hooks', 'nn/test_multihead_attention', 'nn/test_packed_sequence', 'nn/test_parametrization', 'nn/test_pooling', 'nn/test_pruning', 'profiler/test_memory_profiler', 'profiler/test_profiler', 'test_autocast', 'test_binary_ufuncs', 'test_bundled_inputs', 'test_comparison_utils', 'test_complex', 'test_cpp_api_parity', 'test_cpp_extensions_aot_ninja', 'test_cpp_extensions_aot_no_ninja', 'test_cpp_extensions_open_device_registration', 'test_cuda_nvml_based_avail', 'test_cuda_primary_ctx', 'test_cuda_sanitizer', 'test_cuda_trace', 'test_dataloader', 'test_datapipe', 'test_decomp', 'test_deploy', 'test_dispatch', 'test_dlpack', 'test_dynamic_shapes', 'test_expanded_weights', 'test_functional_autograd_benchmark', 'test_functional_optim', 'test_functionalization', 'test_futures', 'test_fx', 'test_fx_experimental', 'test_fx_passes', 'test_fx_reinplace_pass', 'test_hub', 'test_import_stats', 'test_indexing', 'test_itt', 'test_jit_autocast', 'test_jit_cuda_fuser', 'test_jit_disabled', 'test_jit_fuser_te', 'test_jit_llga_fuser', 'test_jiterator', 'test_legacy_vmap', 'test_license', 'test_linalg', 'test_logging', 'test_maskedtensor', 'test_matmul_cuda', 'test_mkl_verbose', 'test_mkldnn', 'test_mkldnn_fusion', 'test_mkldnn_verbose', 'test_mobile_optimizer', 'test_model_dump', 'test_module_init', 'test_modules', 'test_monitor', 'test_multiprocessing', 'test_multiprocessing_spawn', 'test_namedtensor', 'test_namedtuple_return_api', 'test_native_functions', 'test_native_mha', 'test_nestedtensor', 'test_numba_integration', 'test_numpy_interop', 'test_nvfuser_dynamo', 'test_nvfuser_frontend', 'test_openmp', 'test_ops', 'test_ops_fwd_gradients', 'test_ops_gradients', 'test_ops_jit', 'test_optim', 'test_package', 'test_per_overload_api', 'test_prims', 'test_pruning_op', 'test_pytree', 'test_quantization', 'test_reductions', 'test_schema_check', 'test_serialization', 'test_set_default_mobile_cpu_allocator', 'test_shape_ops', 'test_show_pickle', 'test_spectral_ops', 'test_subclass', 'test_tensor_creation_ops', 'test_tensorboard', 'test_tensorexpr', 'test_tensorexpr_pybind', 'test_type_hints', 'test_type_info', 'test_type_promotion', 'test_unary_ufuncs', 'test_view_ops', 'test_vulkan', 'test_weak', 'test_xnnpack_integration', 'doctests'] 2023-01-11T21:22:29.7687897Z 2023-01-11T21:22:29.7688341Z Downloading https://raw.githubusercontent.com/pytorch/test-infra/generated-stats/stats/slow-tests.json to /var/lib/jenkins/workspace/test/.pytorch-slow-tests.json 2023-01-11T21:22:29.7910237Z Downloading https://raw.githubusercontent.com/pytorch/test-infra/generated-stats/stats/disabled-tests-condensed.json to /var/lib/jenkins/workspace/test/.pytorch-disabled-tests.json 2023-01-11T21:22:29.8044575Z parallel (file granularity) tests: 2023-01-11T21:22:29.8047712Z dynamo/test_export 2023-01-11T21:22:29.8048130Z dynamo/test_misc 2023-01-11T21:22:29.8048476Z dynamo/test_optimizations 2023-01-11T21:22:29.8048737Z dynamo/test_repros 2023-01-11T21:22:29.8048940Z dynamo/test_torchxla_integration 2023-01-11T21:22:29.8049294Z dynamo/test_unspec 2023-01-11T21:22:29.8049474Z inductor/test_torchinductor 2023-01-11T21:22:29.8049685Z profiler/test_profiler_tree 2023-01-11T21:22:29.8049879Z test_ao_sparsity 2023-01-11T21:22:29.8050037Z test_foreach 2023-01-11T21:22:29.8050220Z test_function_schema 2023-01-11T21:22:29.8050393Z test_jit 2023-01-11T21:22:29.8050540Z test_masked 2023-01-11T21:22:29.8050705Z test_meta 2023-01-11T21:22:29.8050871Z test_proxy_tensor 2023-01-11T21:22:29.8051038Z test_public_bindings 2023-01-11T21:22:29.8051220Z test_python_dispatch 2023-01-11T21:22:29.8051407Z test_scatter_gather_ops 2023-01-11T21:22:29.8051580Z test_sort_and_select 2023-01-11T21:22:29.8051752Z test_sparse 2023-01-11T21:22:29.8051918Z test_stateless 2023-01-11T21:22:29.8052070Z test_testing 2023-01-11T21:22:29.8052238Z test_transformers 2023-01-11T21:22:29.8052407Z test_utils 2023-01-11T21:22:29.8052571Z backends/xeon/test_launch 2023-01-11T21:22:29.8052779Z benchmark_utils/test_benchmark_utils 2023-01-11T21:22:29.8052986Z dynamo/test_aot_autograd 2023-01-11T21:22:29.8053166Z dynamo/test_aot_cudagraphs 2023-01-11T21:22:29.8053356Z dynamo/test_comptime 2023-01-11T21:22:29.8053544Z dynamo/test_dynamic_shapes 2023-01-11T21:22:29.8053734Z dynamo/test_export_mutations 2023-01-11T21:22:29.8053926Z dynamo/test_functions 2023-01-11T21:22:29.8054105Z dynamo/test_global 2023-01-11T21:22:29.8054282Z dynamo/test_global_declaration 2023-01-11T21:22:29.8054594Z dynamo/test_minifier 2023-01-11T21:22:29.8054783Z dynamo/test_model_output 2023-01-11T21:22:29.8054956Z dynamo/test_modules 2023-01-11T21:22:29.8055135Z dynamo/test_nops 2023-01-11T21:22:29.8055318Z dynamo/test_optimizers 2023-01-11T21:22:29.8055500Z dynamo/test_python_autograd 2023-01-11T21:22:29.8055698Z dynamo/test_recompile_ux 2023-01-11T21:22:29.8055896Z dynamo/test_replay_record 2023-01-11T21:22:29.8056082Z dynamo/test_skip_non_tensor 2023-01-11T21:22:29.8056273Z dynamo/test_subgraphs 2023-01-11T21:22:29.8056473Z dynamo/test_torchxla_num_output 2023-01-11T21:22:29.8056663Z dynamo/test_torchxla_util 2023-01-11T21:22:29.8056864Z dynamo/test_verify_correctness 2023-01-11T21:22:29.8057058Z inductor/test_minifier 2023-01-11T21:22:29.8057230Z inductor/test_perf 2023-01-11T21:22:29.8057462Z inductor/test_smoke 2023-01-11T21:22:29.8057643Z lazy/test_bindings 2023-01-11T21:22:29.8057807Z lazy/test_debug_util 2023-01-11T21:22:29.8058009Z lazy/test_extract_compiled_graph 2023-01-11T21:22:29.8058205Z lazy/test_meta_kernel 2023-01-11T21:22:29.8058371Z lazy/test_reuse_ir 2023-01-11T21:22:29.8058553Z lazy/test_step_closures 2023-01-11T21:22:29.8058737Z lazy/test_ts_opinfo 2023-01-11T21:22:29.8058899Z nn/test_dropout 2023-01-11T21:22:29.8059073Z nn/test_embedding 2023-01-11T21:22:29.8059244Z nn/test_init 2023-01-11T21:22:29.8059401Z nn/test_lazy_modules 2023-01-11T21:22:29.8059581Z nn/test_module_hooks 2023-01-11T21:22:29.8059769Z nn/test_multihead_attention 2023-01-11T21:22:29.8059962Z nn/test_packed_sequence 2023-01-11T21:22:29.8060139Z nn/test_parametrization 2023-01-11T21:22:29.8060320Z nn/test_pruning 2023-01-11T21:22:29.8060509Z profiler/test_memory_profiler 2023-01-11T21:22:29.8060694Z profiler/test_profiler 2023-01-11T21:22:29.8060872Z test_autocast 2023-01-11T21:22:29.8061044Z test_binary_ufuncs 2023-01-11T21:22:29.8061209Z test_bundled_inputs 2023-01-11T21:22:29.8061393Z test_comparison_utils 2023-01-11T21:22:29.8061571Z test_complex 2023-01-11T21:22:29.8061727Z test_cuda_sanitizer 2023-01-11T21:22:29.8061903Z test_dataloader 2023-01-11T21:22:29.8062072Z test_datapipe 2023-01-11T21:22:29.8062222Z test_decomp 2023-01-11T21:22:29.8062384Z test_deploy 2023-01-11T21:22:29.8062544Z test_dlpack 2023-01-11T21:22:29.8062698Z test_dynamic_shapes 2023-01-11T21:22:29.8062880Z test_expanded_weights 2023-01-11T21:22:29.8063084Z test_functional_autograd_benchmark 2023-01-11T21:22:29.8063271Z test_functional_optim 2023-01-11T21:22:29.8063457Z test_functionalization 2023-01-11T21:22:29.8063710Z test_futures 2023-01-11T21:22:29.8063872Z test_fx_experimental 2023-01-11T21:22:29.8064054Z test_fx_passes 2023-01-11T21:22:29.8064236Z test_fx_reinplace_pass 2023-01-11T21:22:29.8064398Z test_hub 2023-01-11T21:22:29.8064564Z test_import_stats 2023-01-11T21:22:29.8064732Z test_itt 2023-01-11T21:22:29.8064884Z test_jit_autocast 2023-01-11T21:22:29.8065060Z test_jit_fuser_te 2023-01-11T21:22:29.8065236Z test_jit_llga_fuser 2023-01-11T21:22:29.8065404Z test_jiterator 2023-01-11T21:22:29.8065581Z test_legacy_vmap 2023-01-11T21:22:29.8065751Z test_license 2023-01-11T21:22:29.8065900Z test_logging 2023-01-11T21:22:29.8066067Z test_maskedtensor 2023-01-11T21:22:29.8066237Z test_matmul_cuda 2023-01-11T21:22:29.8066393Z test_mkl_verbose 2023-01-11T21:22:29.8066557Z test_mkldnn 2023-01-11T21:22:29.8066724Z test_mkldnn_fusion 2023-01-11T21:22:29.8066955Z test_mkldnn_verbose 2023-01-11T21:22:29.8067143Z test_model_dump 2023-01-11T21:22:29.8067313Z test_module_init 2023-01-11T21:22:29.8067466Z test_monitor 2023-01-11T21:22:29.8067633Z test_namedtensor 2023-01-11T21:22:29.8067809Z test_native_functions 2023-01-11T21:22:29.8067973Z test_native_mha 2023-01-11T21:22:29.8068145Z test_nestedtensor 2023-01-11T21:22:29.8068327Z test_numba_integration 2023-01-11T21:22:29.8068497Z test_numpy_interop 2023-01-11T21:22:29.8068680Z test_nvfuser_dynamo 2023-01-11T21:22:29.8068860Z test_nvfuser_frontend 2023-01-11T21:22:29.8069019Z test_openmp 2023-01-11T21:22:29.8069238Z test_optim 2023-01-11T21:22:29.8069402Z test_package 2023-01-11T21:22:29.8069564Z test_per_overload_api 2023-01-11T21:22:29.8069746Z test_pruning_op 2023-01-11T21:22:29.8069917Z test_pytree 2023-01-11T21:22:29.8070073Z test_quantization 2023-01-11T21:22:29.8070249Z test_schema_check 2023-01-11T21:22:29.8070426Z test_serialization 2023-01-11T21:22:29.8070618Z test_set_default_mobile_cpu_allocator 2023-01-11T21:22:29.8070818Z test_shape_ops 2023-01-11T21:22:29.8070985Z test_subclass 2023-01-11T21:22:29.8071173Z test_tensorboard 2023-01-11T21:22:29.8071418Z test_tensorexpr_pybind 2023-01-11T21:22:29.8071600Z test_type_hints 2023-01-11T21:22:29.8071757Z test_type_info 2023-01-11T21:22:29.8071929Z test_type_promotion 2023-01-11T21:22:29.8072109Z test_unary_ufuncs 2023-01-11T21:22:29.8072268Z test_view_ops 2023-01-11T21:22:29.8072497Z test_vulkan 2023-01-11T21:22:29.8072661Z test_weak 2023-01-11T21:22:29.8072823Z test_xnnpack_integration 2023-01-11T21:22:29.8073029Z serial (file granularity) tests: 2023-01-11T21:22:29.8073248Z inductor/test_torchinductor_opinfo 2023-01-11T21:22:29.8073433Z test_autograd 2023-01-11T21:22:29.8073616Z test_cpp_extensions_jit 2023-01-11T21:22:29.8073794Z test_cuda 2023-01-11T21:22:29.8073950Z test_fake_tensor 2023-01-11T21:22:29.8074115Z test_nn 2023-01-11T21:22:29.8074280Z test_overrides 2023-01-11T21:22:29.8074436Z test_sparse_csr 2023-01-11T21:22:29.8074603Z test_torch 2023-01-11T21:22:29.8074794Z distributions/test_distributions 2023-01-11T21:22:29.8074979Z nn/test_convolution 2023-01-11T21:22:29.8075155Z nn/test_pooling 2023-01-11T21:22:29.8075332Z test_cpp_api_parity 2023-01-11T21:22:29.8075512Z test_cpp_extensions_aot_ninja 2023-01-11T21:22:29.8075721Z test_cpp_extensions_aot_no_ninja 2023-01-11T21:22:29.8076020Z test_cpp_extensions_open_device_registration 2023-01-11T21:22:29.8076230Z test_cuda_nvml_based_avail 2023-01-11T21:22:29.8076420Z test_cuda_primary_ctx 2023-01-11T21:22:29.8076597Z test_cuda_trace 2023-01-11T21:22:29.8076756Z test_dispatch 2023-01-11T21:22:29.8076918Z test_fx 2023-01-11T21:22:29.8077076Z test_indexing 2023-01-11T21:22:29.8077232Z test_jit_cuda_fuser 2023-01-11T21:22:29.8077408Z test_jit_disabled 2023-01-11T21:22:29.8077578Z test_linalg 2023-01-11T21:22:29.8077739Z test_mobile_optimizer 2023-01-11T21:22:29.8077911Z test_modules 2023-01-11T21:22:29.8078085Z test_multiprocessing 2023-01-11T21:22:29.8078267Z test_multiprocessing_spawn 2023-01-11T21:22:29.8078470Z test_namedtuple_return_api 2023-01-11T21:22:29.8078648Z test_ops 2023-01-11T21:22:29.8078801Z test_ops_fwd_gradients 2023-01-11T21:22:29.8078984Z test_ops_gradients 2023-01-11T21:22:29.8079156Z test_ops_jit 2023-01-11T21:22:29.8079305Z test_prims 2023-01-11T21:22:29.8079470Z test_reductions 2023-01-11T21:22:29.8079641Z test_show_pickle 2023-01-11T21:22:29.8079806Z test_spectral_ops 2023-01-11T21:22:29.8079992Z test_tensor_creation_ops 2023-01-11T21:22:29.8080177Z test_tensorexpr 2023-01-11T21:22:29.8080328Z doctests 2023-01-11T21:22:31.4281152Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:31.4344725Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:31.4923119Z Ignoring disabled issues: [] 2023-01-11T21:22:31.4990126Z Ignoring disabled issues: [] 2023-01-11T21:22:31.5055423Z Running dynamo/test_export ... [2023-01-11 21:22:31.505334] 2023-01-11T21:22:31.5057507Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_export.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:31.505561] 2023-01-11T21:22:31.5120940Z Running dynamo/test_misc ... [2023-01-11 21:22:31.511887] 2023-01-11T21:22:31.5123151Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_misc.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:31.512129] 2023-01-11T21:22:36.4437638Z 2023-01-11T21:22:36.4438435Z Expand the folded group to see the log file of dynamo/test_export 2023-01-11T21:22:36.4444148Z ##[group]PRINTING LOG FILE of dynamo/test_export (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_export_oad0law8) 2023-01-11T21:22:36.4444568Z 2023-01-11T21:22:36.4444717Z Running tests... 2023-01-11T21:22:36.4445108Z ---------------------------------------------------------------------- 2023-01-11T21:22:36.4445498Z Test results will be stored in test-reports/python-unittest/dynamo.test_export 2023-01-11T21:22:36.4445806Z test_dict_return (__main__.ExportTests) ... ok (0.925s) 2023-01-11T21:22:36.4446281Z test_dict_return_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:36.4446695Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:36.4446926Z ok (0.038s) 2023-01-11T21:22:36.4447350Z test_dupes (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4447601Z ok (0.008s) 2023-01-11T21:22:36.4447954Z test_dupes_2 (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4448328Z ok (0.008s) 2023-01-11T21:22:36.4448729Z test_dupes_2_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4449002Z ok (0.020s) 2023-01-11T21:22:36.4449574Z test_dupes_and_bypass (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4449845Z ok (0.009s) 2023-01-11T21:22:36.4450244Z test_dupes_and_bypass_reorder_with_non_tensor_arg (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4450538Z ok (0.091s) 2023-01-11T21:22:36.4450976Z test_dupes_and_bypass_reorder_with_non_tensor_arg_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4451264Z ok (0.022s) 2023-01-11T21:22:36.4451658Z test_dupes_and_bypass_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4451941Z ok (0.021s) 2023-01-11T21:22:36.4452325Z test_dupes_and_bypass_with_non_tensor_arg (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4452605Z ok (0.010s) 2023-01-11T21:22:36.4453025Z test_dupes_and_bypass_with_non_tensor_arg_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4453324Z ok (0.021s) 2023-01-11T21:22:36.4453710Z test_dupes_and_bypass_with_non_tensor_output (__main__.ExportTests) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:36.4453993Z ok (0.013s) 2023-01-11T21:22:36.4454421Z test_dupes_and_bypass_with_non_tensor_output_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:36.4454725Z ok (0.013s) 2023-01-11T21:22:36.4455089Z test_dupes_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4455361Z ok (0.020s) 2023-01-11T21:22:36.4455620Z test_export (__main__.ExportTests) ... inline_call [] 2023-01-11T21:22:36.4455951Z stats [('calls_captured', 80), ('fusions_possible', 78), ('unique_graphs', 2)] 2023-01-11T21:22:36.4456178Z ok (0.118s) 2023-01-11T21:22:36.4456581Z test_export_compare_optimize_with_make_fx (__main__.ExportTests) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:36.4456848Z ok (0.266s) 2023-01-11T21:22:36.4457214Z test_export_decomp (__main__.ExportTests) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:36.4457478Z ok (0.071s) 2023-01-11T21:22:36.4457712Z test_export_decomp_asserts_bad_args (__main__.ExportTests) ... ok (0.001s) 2023-01-11T21:22:36.4458086Z test_export_decomp_asserts_bad_args_mode (__main__.ExportTests) ... ok (0.001s) 2023-01-11T21:22:36.4458532Z test_export_graph_bypass (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4458804Z ok (0.011s) 2023-01-11T21:22:36.4459189Z test_export_graph_bypass_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4459467Z ok (0.022s) 2023-01-11T21:22:36.4459862Z test_export_graph_with_complex_reorder (__main__.ExportTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:36.4460142Z ok (0.015s) 2023-01-11T21:22:36.4460593Z test_export_graph_with_complex_reorder_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:36.4460888Z ok (0.040s) 2023-01-11T21:22:36.4461268Z test_export_graph_with_list (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4461525Z ok (0.013s) 2023-01-11T21:22:36.4461925Z test_export_graph_with_list_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4462205Z ok (0.024s) 2023-01-11T21:22:36.4462567Z test_export_meta_val (__main__.ExportTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:36.4462816Z ok (0.092s) 2023-01-11T21:22:36.4463193Z test_export_mismatched_out (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4463464Z ok (0.009s) 2023-01-11T21:22:36.4463924Z test_export_mismatched_out_2 (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4464200Z ok (0.009s) 2023-01-11T21:22:36.4464710Z test_export_mismatched_out_2_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4464989Z ok (0.021s) 2023-01-11T21:22:36.4465432Z test_export_mismatched_out_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4465713Z ok (0.020s) 2023-01-11T21:22:36.4466030Z test_export_shape_control_flow_1 (__main__.ExportTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:36.4466383Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:36.4466606Z ok (0.052s) 2023-01-11T21:22:36.4466834Z test_export_with_aten_graph (__main__.ExportTests) ... inline_call [] 2023-01-11T21:22:36.4467179Z stats [('calls_captured', 80), ('fusions_possible', 78), ('unique_graphs', 2)] 2023-01-11T21:22:36.4467403Z ok (0.367s) 2023-01-11T21:22:36.4467800Z test_export_with_constant_dict_values (__main__.ExportTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:36.4468081Z ok (0.011s) 2023-01-11T21:22:36.4468466Z test_export_with_constant_free_function (__main__.ExportTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:36.4468748Z ok (0.016s) 2023-01-11T21:22:36.4469167Z test_export_with_constant_free_function_and_class_method (__main__.ExportTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:36.4469445Z ok (0.013s) 2023-01-11T21:22:36.4469878Z test_export_with_constant_free_function_and_class_method_multiarg (__main__.ExportTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:36.4470244Z ok (0.015s) 2023-01-11T21:22:36.4470761Z test_export_with_constant_free_function_and_class_method_multiarg_diff (__main__.ExportTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:36.4471150Z ok (0.008s) 2023-01-11T21:22:36.4471675Z test_export_with_constant_list_nonzero (__main__.ExportTests) ... stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:36.4471969Z ok (0.018s) 2023-01-11T21:22:36.4472444Z test_export_with_constant_list_nonzero_free_function (__main__.ExportTests) ... stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:36.4472795Z ok (0.019s) 2023-01-11T21:22:36.4473209Z test_export_with_constant_method_on_module (__main__.ExportTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:36.4473576Z ok (0.023s) 2023-01-11T21:22:36.4474084Z test_export_with_constant_method_on_module_invoke_twice (__main__.ExportTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:36.4474439Z ok (0.027s) 2023-01-11T21:22:36.4474856Z test_export_with_constant_none_control_flow (__main__.ExportTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:36.4475193Z ok (0.011s) 2023-01-11T21:22:36.4475684Z test_export_with_constant_none_control_flow_free_func (__main__.ExportTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:36.4476008Z ok (0.010s) 2023-01-11T21:22:36.4476469Z test_export_with_constant_not_none_control_flow (__main__.ExportTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:36.4476805Z ok (0.013s) 2023-01-11T21:22:36.4477296Z test_export_with_constant_not_none_control_flow_free_func (__main__.ExportTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:36.4477606Z ok (0.009s) 2023-01-11T21:22:36.4478081Z test_export_with_constant_not_none_control_flow_pos (__main__.ExportTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:36.4478426Z ok (0.008s) 2023-01-11T21:22:36.4478836Z test_export_with_constant_not_return_const (__main__.ExportTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:36.4479188Z ok (0.006s) 2023-01-11T21:22:36.4479653Z test_export_with_constant_tuple_nonzero (__main__.ExportTests) ... stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:36.4479989Z ok (0.018s) 2023-01-11T21:22:36.4480232Z test_export_with_module_layer (__main__.ExportTests) ... inline_call [] 2023-01-11T21:22:36.4480642Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:36.4480949Z ok (0.026s) 2023-01-11T21:22:36.4481341Z test_export_with_stack_trace (__main__.ExportTests) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:36.4481668Z ok (0.104s) 2023-01-11T21:22:36.4481938Z test_func_return (__main__.ExportTests) ... inline_call [] 2023-01-11T21:22:36.4482301Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:36.4482609Z ok (0.014s) 2023-01-11T21:22:36.4482897Z test_func_return_with_aten_graph (__main__.ExportTests) ... inline_call [] 2023-01-11T21:22:36.4483310Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:36.4483552Z ok (0.047s) 2023-01-11T21:22:36.4484007Z test_input_container_type (__main__.ExportTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:36.4484332Z ok (0.065s) 2023-01-11T21:22:36.4484709Z test_list_unpack (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4485033Z ok (0.013s) 2023-01-11T21:22:36.4485473Z test_list_unpack_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:36.4485779Z ok (0.024s) 2023-01-11T21:22:36.4486254Z test_zeroes_in_and_out_different_shape_on_test (__main__.ExportTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:36.4486645Z ok (0.014s) 2023-01-11T21:22:36.4487129Z test_zeroes_in_and_out_different_shape_on_test_with_aten_graph (__main__.ExportTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:36.4487445Z ok (0.038s) 2023-01-11T21:22:36.4487919Z test_zeroes_in_new_shape_scalar_out (__main__.ExportTests) ... stats [('calls_captured', 16), ('fusions_possible', 14), ('unique_graphs', 2)] 2023-01-11T21:22:36.4488298Z ok (0.021s) 2023-01-11T21:22:36.4488732Z test_zeroes_in_new_shape_scalar_out_permute (__main__.ExportTests) ... stats [('calls_captured', 22), ('fusions_possible', 20), ('unique_graphs', 2)] 2023-01-11T21:22:36.4489213Z ok (0.026s) 2023-01-11T21:22:36.4489866Z test_zeroes_in_new_shape_scalar_out_permute_dupe_and_bypass (__main__.ExportTests) ... stats [('calls_captured', 22), ('fusions_possible', 20), ('unique_graphs', 2)] 2023-01-11T21:22:36.4528602Z ok (0.026s) 2023-01-11T21:22:36.4528787Z 2023-01-11T21:22:36.4529223Z ---------------------------------------------------------------------- 2023-01-11T21:22:36.4529462Z Ran 60 tests in 3.016s 2023-01-11T21:22:36.4529571Z 2023-01-11T21:22:36.4529624Z OK 2023-01-11T21:22:36.4529710Z 2023-01-11T21:22:36.4529794Z Generating XML reports... 2023-01-11T21:22:36.4530197Z Generated XML report: test-reports/python-unittest/dynamo.test_export/TEST-ExportTests-20230111212233.xml 2023-01-11T21:22:36.4530416Z 2023-01-11T21:22:36.4530691Z ##[endgroup] 2023-01-11T21:22:36.4531075Z FINISHED PRINTING LOG FILE of dynamo/test_export (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_export_oad0law8) 2023-01-11T21:22:36.4531292Z 2023-01-11T21:22:37.8427489Z 2023-01-11T21:22:37.8427963Z Expand the folded group to see the log file of dynamo/test_misc 2023-01-11T21:22:37.8429017Z ##[group]PRINTING LOG FILE of dynamo/test_misc (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_misc_yb8r8erq) 2023-01-11T21:22:37.8429378Z 2023-01-11T21:22:37.8429501Z Running tests... 2023-01-11T21:22:37.8430506Z ---------------------------------------------------------------------- 2023-01-11T21:22:37.8431055Z Test results will be stored in test-reports/python-unittest/dynamo.test_misc 2023-01-11T21:22:37.8431484Z test_allow_in_graph (__main__.MiscTests) ... ok (0.925s) 2023-01-11T21:22:37.8431996Z test_autocast (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8432547Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:37.8433125Z skip: requires cuda (0.001s) 2023-01-11T21:22:37.8434042Z test_autocast_cpu (__main__.MiscTests) ... stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:37.8434679Z ok (0.030s) 2023-01-11T21:22:37.8435231Z test_autocast_device (__main__.MiscTests) ... skip: requires cuda (0.001s) 2023-01-11T21:22:37.8435980Z test_autocast_float64 (__main__.MiscTests) ... skip: requires cuda (0.001s) 2023-01-11T21:22:37.8439062Z test_autograd_function_equivalence (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8445725Z stats [('calls_captured', 4), ('unique_graphs', 4), ('fusions_possible', 0)] 2023-01-11T21:22:37.8446170Z ok (0.100s) 2023-01-11T21:22:37.8446922Z test_autograd_profiler (__main__.MiscTests) ... STAGE:2023-01-11 21:22:34 1287:1287 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:37.8447836Z STAGE:2023-01-11 21:22:34 1287:1287 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:37.8448658Z STAGE:2023-01-11 21:22:34 1287:1287 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:37.8449301Z [2023-01-11 21:22:34,096] torch._dynamo.variables.torch: [WARNING] Profiler will be ignored 2023-01-11T21:22:37.8449618Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8449801Z unimplemented [] 2023-01-11T21:22:37.8450039Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:22:37.8450544Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8450765Z ok (0.018s) 2023-01-11T21:22:37.8451389Z test_autograd_profiler_enabled (__main__.MiscTests) ... STAGE:2023-01-11 21:22:34 1287:1287 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:37.8451876Z STAGE:2023-01-11 21:22:34 1287:1287 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:37.8452321Z STAGE:2023-01-11 21:22:34 1287:1287 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:37.8452624Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:37.8452815Z unimplemented [] 2023-01-11T21:22:37.8453121Z graph_break [('torch.autograd._profiler_enabled not supported yet', 1)] 2023-01-11T21:22:37.8453527Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:37.8453763Z ok (0.011s) 2023-01-11T21:22:37.8454128Z test_boolarg (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:22:37.8454391Z ok (0.011s) 2023-01-11T21:22:37.8454599Z test_build_tuple_unpack (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8454950Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8455177Z ok (0.013s) 2023-01-11T21:22:37.8455488Z test_builder_for_class_with_metaclass (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8455862Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8456090Z ok (0.005s) 2023-01-11T21:22:37.8456449Z test_builtin_isinstance (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8456717Z ok (0.011s) 2023-01-11T21:22:37.8456964Z test_builtin_subclasses_as_method_on_class_type (__main__.MiscTests) ... ok (0.002s) 2023-01-11T21:22:37.8457273Z test_builtin_subclasses_as_method_on_var (__main__.MiscTests) ... ok (0.004s) 2023-01-11T21:22:37.8457573Z test_call_parent_non_class_methods_from_child (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8457943Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8458172Z ok (0.008s) 2023-01-11T21:22:37.8458524Z test_callpacked (__main__.MiscTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8458790Z ok (0.010s) 2023-01-11T21:22:37.8459082Z test_cell_output1 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8459419Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8459646Z ok (0.005s) 2023-01-11T21:22:37.8459937Z test_cell_output2 (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8460172Z unimplemented [] 2023-01-11T21:22:37.8460547Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:22:37.8460968Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8461190Z ok (0.009s) 2023-01-11T21:22:37.8461901Z test_change_backends (__main__.MiscTests) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. 2023-01-11T21:22:37.8462514Z warnings.warn("The TorchScript type system doesn't support " 2023-01-11T21:22:37.8462872Z stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:22:37.8463152Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8463321Z ok (0.057s) 2023-01-11T21:22:37.8463684Z test_cond (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8463909Z inline_call [] 2023-01-11T21:22:37.8464200Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8464475Z ok (0.013s) 2023-01-11T21:22:37.8464689Z test_cond_export (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8465033Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8465245Z ok (0.016s) 2023-01-11T21:22:37.8465472Z test_cond_export_single_arg (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8465823Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8466036Z ok (0.009s) 2023-01-11T21:22:37.8466324Z test_cond_nested (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8466550Z inline_call [] 2023-01-11T21:22:37.8466836Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8467095Z ok (0.015s) 2023-01-11T21:22:37.8467330Z test_cond_side_effects (__main__.MiscTests) ... expected failure (0.001s) 2023-01-11T21:22:37.8467691Z test_config_getattr_default (__main__.MiscTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:37.8468062Z stats [('calls_captured', 21), ('fusions_possible', 18), ('unique_graphs', 3)] 2023-01-11T21:22:37.8468291Z ok (0.034s) 2023-01-11T21:22:37.8468588Z test_config_log_level (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8468931Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8469159Z ok (0.006s) 2023-01-11T21:22:37.8469444Z test_config_obj (__main__.MiscTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:37.8469777Z stats [('calls_captured', 8), ('fusions_possible', 4), ('unique_graphs', 4)] 2023-01-11T21:22:37.8470003Z ok (0.021s) 2023-01-11T21:22:37.8470235Z test_const_dict_variable_python_type (__main__.MiscTests) ... ok (0.001s) 2023-01-11T21:22:37.8470831Z test_cross_entropy_loss_fancy_ctor (__main__.MiscTests) ... /opt/conda/lib/python3.10/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. 2023-01-11T21:22:37.8471240Z warnings.warn(warning.format(ret)) 2023-01-11T21:22:37.8471438Z ok (0.002s) 2023-01-11T21:22:37.8471667Z test_cross_entropy_loss_simple_ctor (__main__.MiscTests) ... ok (0.001s) 2023-01-11T21:22:37.8472014Z test_dataclass_fields (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8472246Z inline_call [] 2023-01-11T21:22:37.8472550Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:37.8472765Z ok (0.034s) 2023-01-11T21:22:37.8473075Z test_dict_mutation_side_effect (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8473438Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8473650Z ok (0.005s) 2023-01-11T21:22:37.8473991Z test_dict_reconstruct_keeps_original_order (__main__.MiscTests) ... frames [('total', 13), ('ok', 12)] 2023-01-11T21:22:37.8474462Z unimplemented [("Guard setup for uninitialized class ", 1)] 2023-01-11T21:22:37.8475395Z graph_break [('UnspecializedNNModuleVariable missing add_module', 3), ('construct nn.Module: ReLU', 1), ('call_function in skip_files /opt/conda/lib/python3.10/collections/__init__.py', 1), ('construct nn.Module: ModuleDict', 1), ('Patched init cannot be inlined.', 1), ('construct nn.Module: Linear', 1), ('construct nn.Module: Sigmoid', 1), ('call_method ConstDictVariable() update [TupleVariable()] {}', 1)] 2023-01-11T21:22:37.8476063Z inline_call [('inline __setitem__', 2), ('Patched init cannot be inlined.', 1)] 2023-01-11T21:22:37.8476282Z ok (0.036s) 2023-01-11T21:22:37.8476567Z test_dictcomp (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8476792Z inline_call [] 2023-01-11T21:22:37.8477079Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8477307Z ok (0.007s) 2023-01-11T21:22:37.8477554Z test_disable_flag (__main__.MiscTests) ... ok (0.002s) 2023-01-11T21:22:37.8477799Z test_disable_optimize (__main__.MiscTests) ... ok (0.002s) 2023-01-11T21:22:37.8478150Z test_disallow_in_graph (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8478389Z unimplemented [] 2023-01-11T21:22:37.8478758Z graph_break [('call_function UserDefinedObjectVariable(sub) [TensorVariable(), ConstantVariable(int)] {}', 1)] 2023-01-11T21:22:37.8479171Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8479396Z ok (0.011s) 2023-01-11T21:22:37.8479619Z test_dunder_methods (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8479948Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:37.8480179Z ok (0.020s) 2023-01-11T21:22:37.8480435Z test_duplicate_graph_break_warning (__main__.MiscTests) ... break 2023-01-11T21:22:37.8480644Z break 2023-01-11T21:22:37.8480855Z frames [('total', 9), ('ok', 9)] 2023-01-11T21:22:37.8481193Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2)] 2023-01-11T21:22:37.8481438Z unimplemented [] 2023-01-11T21:22:37.8481767Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 4)] 2023-01-11T21:22:37.8482143Z stats [('calls_captured', 6), ('unique_graphs', 4), ('fusions_possible', 2)] 2023-01-11T21:22:37.8482371Z ok (0.026s) 2023-01-11T21:22:37.8482589Z test_dynamo_min_operator_with_shape (__main__.MiscTests) ... ok (0.002s) 2023-01-11T21:22:37.8482937Z test_empty_list (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8483283Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:37.8483496Z ok (0.008s) 2023-01-11T21:22:37.8483875Z test_enum_no_graphbreaks (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:37.8484146Z ok (0.010s) 2023-01-11T21:22:37.8484442Z test_error_on_nested_fx_trace (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8484807Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8485032Z ok (0.005s) 2023-01-11T21:22:37.8485365Z test_fold (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8485622Z ok (0.004s) 2023-01-11T21:22:37.8486014Z test_frozenset_torch_func_contains (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:37.8486291Z ok (0.009s) 2023-01-11T21:22:37.8486650Z test_function_annotation (__main__.MiscTests) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:37.8486917Z ok (0.008s) 2023-01-11T21:22:37.8487270Z test_generate_tensor_from_list_of_numpy_primitive_type (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8487524Z unimplemented [] 2023-01-11T21:22:37.8487748Z graph_break [('numpy', 1)] 2023-01-11T21:22:37.8488057Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8488268Z ok (0.007s) 2023-01-11T21:22:37.8488493Z test_get_device (__main__.MiscTests) ... skip: requires cuda (0.000s) 2023-01-11T21:22:37.8488829Z test_grad (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8489245Z unimplemented [] 2023-01-11T21:22:37.8489494Z graph_break [('Tensor.backward', 1)] 2023-01-11T21:22:37.8489822Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8490050Z ok (0.012s) 2023-01-11T21:22:37.8490330Z test_grad_mode_guard (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8490565Z unimplemented [] 2023-01-11T21:22:37.8490801Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:22:37.8491113Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8491339Z ok (0.011s) 2023-01-11T21:22:37.8491705Z test_graph_break (__main__.MiscTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:37.8491923Z unimplemented [] 2023-01-11T21:22:37.8492297Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 2)] 2023-01-11T21:22:37.8492698Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:22:37.8492927Z ok (0.015s) 2023-01-11T21:22:37.8493284Z test_guard_failure_fn (__main__.MiscTests) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:37.8493548Z ok (0.012s) 2023-01-11T21:22:37.8493916Z test_guard_failure_fn2 (__main__.MiscTests) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:37.8494167Z ok (0.010s) 2023-01-11T21:22:37.8494566Z test_id_of_nn_module (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:37.8494834Z ok (0.010s) 2023-01-11T21:22:37.8495186Z test_if_cond_nn_mod (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:37.8495446Z ok (0.010s) 2023-01-11T21:22:37.8495738Z test_inference_mode (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8496089Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8496302Z ok (0.005s) 2023-01-11T21:22:37.8496603Z test_inline_dict_mutation (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8496836Z inline_call [] 2023-01-11T21:22:37.8497121Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8497347Z ok (0.016s) 2023-01-11T21:22:37.8497674Z test_inline_func_jump_on_tensor_condition (__main__.MiscTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:37.8498001Z inline_call [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:37.8498222Z unimplemented [] 2023-01-11T21:22:37.8498488Z graph_break [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:37.8498818Z stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:22:37.8499043Z ok (0.012s) 2023-01-11T21:22:37.8499347Z test_inline_list_mutation (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8499579Z inline_call [] 2023-01-11T21:22:37.8499864Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8500091Z ok (0.015s) 2023-01-11T21:22:37.8500443Z test_inplace (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8500689Z ok (0.011s) 2023-01-11T21:22:37.8501067Z test_inplace_param_update (__main__.MiscTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:37.8501337Z ok (0.007s) 2023-01-11T21:22:37.8501617Z test_is_compiling (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8501976Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8502199Z ok (0.009s) 2023-01-11T21:22:37.8502565Z test_is_floating_point (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8502814Z ok (0.006s) 2023-01-11T21:22:37.8503180Z test_is_floating_point2 (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8503443Z ok (0.006s) 2023-01-11T21:22:37.8503897Z test_is_tensor (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8504154Z ok (0.006s) 2023-01-11T21:22:37.8504454Z test_is_tensor2 (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8504791Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:37.8505015Z ok (0.012s) 2023-01-11T21:22:37.8505374Z test_is_tensor_like (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:37.8505657Z ok (0.012s) 2023-01-11T21:22:37.8505948Z test_is_tensor_like2 (__main__.MiscTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:37.8506178Z unimplemented [] 2023-01-11T21:22:37.8506486Z graph_break [('call_function args: UserDefinedObjectVariable(MyTensor) ', 1)] 2023-01-11T21:22:37.8506861Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:37.8507084Z ok (0.015s) 2023-01-11T21:22:37.8507429Z test_item (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8507668Z ok (0.016s) 2023-01-11T21:22:37.8508028Z test_item_changes (__main__.MiscTests) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:37.8508313Z ok (0.031s) 2023-01-11T21:22:37.8508679Z test_item_changes_new_shape (__main__.MiscTests) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:37.8508945Z ok (0.031s) 2023-01-11T21:22:37.8509158Z test_large_reduction_list (__main__.MiscTests) ... ok (0.011s) 2023-01-11T21:22:37.8509405Z test_linetable_writer (__main__.MiscTests) ... ok (0.001s) 2023-01-11T21:22:37.8509758Z test_list_append_return_none (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8510115Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8510341Z ok (0.005s) 2023-01-11T21:22:37.8510606Z test_list_mul (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8510817Z ok (0.002s) 2023-01-11T21:22:37.8511097Z test_listcomp (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8511302Z inline_call [] 2023-01-11T21:22:37.8511598Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:37.8511819Z ok (0.009s) 2023-01-11T21:22:37.8512044Z test_lnotab_writer (__main__.MiscTests) ... skip: use lnotab when python < 3.10 (0.000s) 2023-01-11T21:22:37.8512475Z test_manual_seed (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8512731Z ok (0.007s) 2023-01-11T21:22:37.8513081Z test_matmul1 (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8513319Z ok (0.004s) 2023-01-11T21:22:37.8513532Z test_module_complex_iter (__main__.MiscTests) ... ok (0.008s) 2023-01-11T21:22:37.8513873Z test_module_deepcopy (__main__.MiscTests) ... frames [('total', 6), ('ok', 6)] 2023-01-11T21:22:37.8514092Z unimplemented [] 2023-01-11T21:22:37.8514408Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/copy.py', 2)] 2023-01-11T21:22:37.8514649Z inline_call [] 2023-01-11T21:22:37.8514934Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:37.8515157Z ok (0.045s) 2023-01-11T21:22:37.8515371Z test_named_parameters (__main__.MiscTests) ... ok (0.019s) 2023-01-11T21:22:37.8515690Z test_namedtuple1 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8516036Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8516260Z ok (0.006s) 2023-01-11T21:22:37.8516545Z test_namedtuple2 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8516874Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8517095Z ok (0.007s) 2023-01-11T21:22:37.8517379Z test_namedtuple3 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8517710Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8517930Z ok (0.005s) 2023-01-11T21:22:37.8518203Z test_nan (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8518526Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8518775Z ok (0.005s) 2023-01-11T21:22:37.8518989Z test_nested_closure (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8519316Z stats [('calls_captured', 9), ('fusions_possible', 7), ('unique_graphs', 2)] 2023-01-11T21:22:37.8519537Z ok (0.032s) 2023-01-11T21:22:37.8519761Z test_nested_closure_mutation (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8520110Z stats [('calls_captured', 11), ('fusions_possible', 9), ('unique_graphs', 2)] 2023-01-11T21:22:37.8520319Z ok (0.024s) 2023-01-11T21:22:37.8520808Z test_nested_disable_decorator (__main__.MiscTests) ... [2023-01-11 21:22:35,066] torch._dynamo.convert_frame: [ERROR] WON'T CONVERT fn3 /var/lib/jenkins/workspace/test/dynamo/test_misc.py line 1197 2023-01-11T21:22:37.8521133Z due to: 2023-01-11T21:22:37.8521305Z Traceback (most recent call last): 2023-01-11T21:22:37.8521704Z File "/opt/conda/lib/python3.10/site-packages/torch/_dynamo/exc.py", line 67, in unimplemented 2023-01-11T21:22:37.8521981Z raise Unsupported(msg) 2023-01-11T21:22:37.8522336Z torch._dynamo.exc.Unsupported: call torch._dynamo.disable() wrapped function .fn1 at 0x7fb1e4b9c280> 2023-01-11T21:22:37.8522583Z 2023-01-11T21:22:37.8522653Z from user code: 2023-01-11T21:22:37.8522894Z File "/var/lib/jenkins/workspace/test/dynamo/test_misc.py", line 1199, in fn3 2023-01-11T21:22:37.8523125Z return fn2(x) 2023-01-11T21:22:37.8523353Z File "/var/lib/jenkins/workspace/test/dynamo/test_misc.py", line 1192, in fn2 2023-01-11T21:22:37.8523594Z x = fn1(x) # graph break 2023-01-11T21:22:37.8523709Z 2023-01-11T21:22:37.8523836Z Set torch._dynamo.config.verbose=True for more information 2023-01-11T21:22:37.8523995Z 2023-01-11T21:22:37.8524000Z 2023-01-11T21:22:37.8524121Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8524298Z unimplemented [] 2023-01-11T21:22:37.8524729Z graph_break [('call torch._dynamo.disable() wrapped function .fn1 at 0x7fb1e4b9c280>', 1)] 2023-01-11T21:22:37.8525162Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:37.8525627Z inline_call [('call torch._dynamo.disable() wrapped function .fn1 at 0x7fb1e4b9c280>', 1)] 2023-01-11T21:22:37.8525924Z ok (0.013s) 2023-01-11T21:22:37.8526290Z test_nested_optimize (__main__.MiscTests) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:37.8526553Z ok (0.014s) 2023-01-11T21:22:37.8526767Z test_nested_optimize_decorator (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8527120Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:37.8527347Z ok (0.008s) 2023-01-11T21:22:37.8527707Z test_nested_optimize_run (__main__.MiscTests) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:37.8527970Z ok (0.012s) 2023-01-11T21:22:37.8528345Z test_nn_functional_reduction (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8528602Z ok (0.006s) 2023-01-11T21:22:37.8528825Z test_nn_sequential_invocation (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8529326Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8529552Z ok (0.022s) 2023-01-11T21:22:37.8529787Z test_nn_sequential_invocation_reposition_indices (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8530158Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8530382Z ok (0.017s) 2023-01-11T21:22:37.8530679Z test_no_error_on_nested_fx_trace (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8531045Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8531265Z ok (0.005s) 2023-01-11T21:22:37.8531607Z test_no_grad (__main__.MiscTests) ... stats [('calls_captured', 40), ('fusions_possible', 32), ('unique_graphs', 8)] 2023-01-11T21:22:37.8531923Z ok (0.050s) 2023-01-11T21:22:37.8532221Z test_not_dynamic_scope (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8532438Z inline_call [] 2023-01-11T21:22:37.8532732Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8532955Z ok (0.005s) 2023-01-11T21:22:37.8533299Z test_numel (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8533538Z ok (0.006s) 2023-01-11T21:22:37.8533833Z test_numpy_int_constant (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8534183Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8534444Z ok (0.006s) 2023-01-11T21:22:37.8534760Z test_numpy_variable_isinstance (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8535127Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8535339Z ok (0.004s) 2023-01-11T21:22:37.8535559Z test_object_classmethod (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8535900Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8536120Z ok (0.010s) 2023-01-11T21:22:37.8536328Z test_object_staticmethod (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8536676Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8536898Z ok (0.010s) 2023-01-11T21:22:37.8537260Z test_onnx_shape_as_tensor (__main__.MiscTests) ... stats [('calls_captured', 15), ('fusions_possible', 10), ('unique_graphs', 5)] 2023-01-11T21:22:37.8537529Z ok (0.069s) 2023-01-11T21:22:37.8537897Z test_optimize_on_module (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8538146Z ok (0.005s) 2023-01-11T21:22:37.8538491Z test_pair (__main__.MiscTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:37.8538746Z ok (0.019s) 2023-01-11T21:22:37.8539031Z test_python_slice (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8539237Z ok (0.006s) 2023-01-11T21:22:37.8539524Z test_raise_on_backend_error (__main__.MiscTests) ... frames [('total', 1)] 2023-01-11T21:22:37.8539840Z stats [('calls_captured', 3), ('fusions_possible', 2)] 2023-01-11T21:22:37.8540031Z ok (0.005s) 2023-01-11T21:22:37.8540306Z test_raises (__main__.MiscTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:37.8540529Z unimplemented [] 2023-01-11T21:22:37.8540828Z graph_break [('call_function BuiltinVariable(str) [TensorVariable()] {}', 1)] 2023-01-11T21:22:37.8541191Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8541411Z ok (0.009s) 2023-01-11T21:22:37.8541615Z test_rand (__main__.MiscTests) ... skip: requires cuda (0.000s) 2023-01-11T21:22:37.8541879Z test_range_input (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8542214Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8542434Z ok (0.007s) 2023-01-11T21:22:37.8542735Z test_recursive_inline_list_mutation (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8542975Z inline_call [] 2023-01-11T21:22:37.8543267Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:37.8543477Z ok (0.014s) 2023-01-11T21:22:37.8543863Z test_release_input_memory (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8544220Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8544431Z ok (0.003s) 2023-01-11T21:22:37.8544733Z test_release_module_memory (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8545087Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8545342Z ok (0.008s) 2023-01-11T21:22:37.8545742Z test_repro_graph_breaks_in__get_item_by_idx (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8546023Z ok (0.009s) 2023-01-11T21:22:37.8546320Z test_restore_graphstate (__main__.MiscTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:37.8546631Z inline_call [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:37.8546845Z unimplemented [] 2023-01-11T21:22:37.8547105Z graph_break [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:37.8547429Z stats [('calls_captured', 6), ('unique_graphs', 4), ('fusions_possible', 2)] 2023-01-11T21:22:37.8547652Z ok (0.019s) 2023-01-11T21:22:37.8548070Z test_restore_graphstate_internals (__main__.MiscTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8548335Z ok (0.007s) 2023-01-11T21:22:37.8548638Z test_return_nested_function (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8548997Z stats [('calls_captured', 7), ('fusions_possible', 5), ('unique_graphs', 2)] 2023-01-11T21:22:37.8549219Z ok (0.014s) 2023-01-11T21:22:37.8549414Z test_sample_input (__main__.MiscTests) ... ok (1.241s) 2023-01-11T21:22:37.8549757Z test_setattr_mutation1 (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8550199Z unimplemented [('call_method UserDefinedObjectVariable(member_descriptor) __mul__ [ConstantVariable(int)] {}', 1)] 2023-01-11T21:22:37.8550718Z graph_break [("isinstance called on UserDefinedClass UserDefinedObjectVariable(member_descriptor) ", 1)] 2023-01-11T21:22:37.8551066Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8551384Z stats [('calls_captured', 12), ('fusions_possible', 11), ('unique_graphs', 1)] 2023-01-11T21:22:37.8551596Z ok (0.018s) 2023-01-11T21:22:37.8551891Z test_setattr_mutation2 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8552119Z inline_call [] 2023-01-11T21:22:37.8552413Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:37.8552625Z ok (0.014s) 2023-01-11T21:22:37.8552919Z test_setattr_mutation3 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8553143Z inline_call [] 2023-01-11T21:22:37.8553423Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:37.8553643Z ok (0.014s) 2023-01-11T21:22:37.8553931Z test_shape_unpack (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8554265Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8554488Z ok (0.004s) 2023-01-11T21:22:37.8554818Z test_side_effects_codegen_update_mutated (__main__.MiscTests) ... frames [('total', 6), ('ok', 6)] 2023-01-11T21:22:37.8555060Z unimplemented [] 2023-01-11T21:22:37.8555291Z graph_break [('Tensor.item', 4)] 2023-01-11T21:22:37.8555607Z stats [('calls_captured', 8), ('fusions_possible', 4), ('unique_graphs', 4)] 2023-01-11T21:22:37.8555828Z ok (0.119s) 2023-01-11T21:22:37.8556099Z test_size_input (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8556442Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:22:37.8556668Z ok (0.008s) 2023-01-11T21:22:37.8557013Z test_slice_input (__main__.MiscTests) ... stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:22:37.8557268Z ok (0.031s) 2023-01-11T21:22:37.8557575Z test_tensor_build_list_unpack (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8557922Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8558144Z ok (0.012s) 2023-01-11T21:22:37.8558500Z test_tensor_data (__main__.MiscTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8558756Z ok (0.013s) 2023-01-11T21:22:37.8559066Z test_tensor_dict1 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8559411Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8559630Z ok (0.006s) 2023-01-11T21:22:37.8559902Z test_tensor_dict2 (__main__.MiscTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:37.8560246Z stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:22:37.8560468Z ok (0.032s) 2023-01-11T21:22:37.8560771Z test_tensor_dot_grad_no_graph_break (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8561016Z unimplemented [] 2023-01-11T21:22:37.8561251Z graph_break [('Tensor.backward', 1)] 2023-01-11T21:22:37.8561563Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:37.8561814Z ok (0.014s) 2023-01-11T21:22:37.8562120Z test_tensor_is_contiguous (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8562478Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:22:37.8562687Z ok (0.069s) 2023-01-11T21:22:37.8562984Z test_tensor_item_capture (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8563338Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8563546Z ok (0.006s) 2023-01-11T21:22:37.8563847Z test_tensor_item_no_capture (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8564084Z unimplemented [] 2023-01-11T21:22:37.8564299Z graph_break [('Tensor.item', 1)] 2023-01-11T21:22:37.8564612Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8564833Z ok (0.006s) 2023-01-11T21:22:37.8565184Z test_tensor_layout (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8565444Z ok (0.010s) 2023-01-11T21:22:37.8565734Z test_tensor_types (__main__.MiscTests) ... frames [('total', 10), ('ok', 10)] 2023-01-11T21:22:37.8566091Z stats [('calls_captured', 10), ('unique_graphs', 10), ('fusions_possible', 0)] 2023-01-11T21:22:37.8566302Z ok (0.078s) 2023-01-11T21:22:37.8566667Z test_top_package_import (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8566932Z ok (0.005s) 2023-01-11T21:22:37.8567296Z test_torch_cuda_is_available (__main__.MiscTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8567567Z ok (0.005s) 2023-01-11T21:22:37.8567808Z test_torch_cudnn_is_acceptable (__main__.MiscTests) ... skip: requires cuda (0.000s) 2023-01-11T21:22:37.8568125Z test_torch_cudnn_is_acceptable_bad_inputs (__main__.MiscTests) ... skip: requires cuda (0.001s) 2023-01-11T21:22:37.8568533Z test_torch_nn_parameter_isinstance (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8568896Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8569265Z ok (0.011s) 2023-01-11T21:22:37.8570024Z test_torch_profiler (__main__.MiscTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/91868 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:22:37.8571077Z test_torch_seed (__main__.MiscTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/91867 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:22:37.8572113Z test_torch_size (__main__.MiscTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/91866 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:22:37.8572805Z test_type_copy (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8573153Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:37.8573366Z ok (0.013s) 2023-01-11T21:22:37.8573679Z test_typing_variable_isinstance (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8574043Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8574268Z ok (0.005s) 2023-01-11T21:22:37.8574606Z test_unpack4 (__main__.MiscTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:37.8574901Z ok (0.015s) 2023-01-11T21:22:37.8575250Z test_unpack5 (__main__.MiscTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:37.8575490Z ok (0.014s) 2023-01-11T21:22:37.8575827Z test_update_locals_and_stack_uses_shared_cache (__main__.MiscTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:37.8576082Z inline_call [] 2023-01-11T21:22:37.8576243Z unimplemented [] 2023-01-11T21:22:37.8576569Z graph_break [('call_method ListVariable() extend [ListIteratorVariable()] {}', 1)] 2023-01-11T21:22:37.8576811Z ok (0.007s) 2023-01-11T21:22:37.8577173Z test_user_defined_class_name (__main__.MiscTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8577442Z ok (0.008s) 2023-01-11T21:22:37.8577691Z test_user_function_variable_supports_enum_argument (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8577929Z ok (0.004s) 2023-01-11T21:22:37.8578171Z test_user_function_variable_supports_function_argument (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8578547Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8578772Z ok (0.005s) 2023-01-11T21:22:37.8579017Z test_user_function_variable_supports_type_abcmeta_argument (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8579398Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:37.8579618Z ok (0.005s) 2023-01-11T21:22:37.8579893Z test_user_getattr1 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8580113Z inline_call [] 2023-01-11T21:22:37.8580406Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8580626Z ok (0.006s) 2023-01-11T21:22:37.8580899Z test_user_getattr2 (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8581119Z inline_call [] 2023-01-11T21:22:37.8581413Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8581619Z ok (0.008s) 2023-01-11T21:22:37.8581905Z test_user_property (__main__.MiscTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:37.8582129Z inline_call [] 2023-01-11T21:22:37.8582411Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8582629Z ok (0.006s) 2023-01-11T21:22:37.8582846Z test_usr_cls_classmethod (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8583174Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8583393Z ok (0.007s) 2023-01-11T21:22:37.8583684Z test_usr_cls_staticmethod (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8584031Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:37.8584237Z ok (0.007s) 2023-01-11T21:22:37.8584439Z test_version_ci (__main__.MiscTests) ... ok (0.000s) 2023-01-11T21:22:37.8584708Z test_write_to_closures_in_inlining (__main__.MiscTests) ... inline_call [] 2023-01-11T21:22:37.8585047Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:37.8585311Z ok (0.009s) 2023-01-11T21:22:37.8585512Z test_jit_save (__main__.TestTracer) ... ok (0.042s) 2023-01-11T21:22:37.8585653Z 2023-01-11T21:22:37.8585842Z ---------------------------------------------------------------------- 2023-01-11T21:22:37.8586085Z Ran 161 tests in 4.287s 2023-01-11T21:22:37.8586198Z 2023-01-11T21:22:37.8586292Z OK (skipped=11, expected failures=1) 2023-01-11T21:22:37.8586422Z 2023-01-11T21:22:37.8586505Z Generating XML reports... 2023-01-11T21:22:37.8586884Z Generated XML report: test-reports/python-unittest/dynamo.test_misc/TEST-MiscTests-20230111212233.xml 2023-01-11T21:22:37.8587372Z Generated XML report: test-reports/python-unittest/dynamo.test_misc/TEST-TestTracer-20230111212233.xml 2023-01-11T21:22:37.8587584Z 2023-01-11T21:22:37.8587918Z ##[endgroup] 2023-01-11T21:22:37.8588337Z FINISHED PRINTING LOG FILE of dynamo/test_misc (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_misc_yb8r8erq) 2023-01-11T21:22:37.8588557Z 2023-01-11T21:22:38.2813624Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:38.3465810Z Ignoring disabled issues: [] 2023-01-11T21:22:38.3594468Z Running dynamo/test_optimizations ... [2023-01-11 21:22:38.359190] 2023-01-11T21:22:38.3596671Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_optimizations.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:38.359411] 2023-01-11T21:22:39.6925905Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:39.7577385Z Ignoring disabled issues: [] 2023-01-11T21:22:39.7707719Z Running dynamo/test_repros ... [2023-01-11 21:22:39.770483] 2023-01-11T21:22:39.7709116Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_repros.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:39.770719] 2023-01-11T21:22:40.7870158Z 2023-01-11T21:22:40.7870708Z Expand the folded group to see the log file of dynamo/test_optimizations 2023-01-11T21:22:40.7872051Z ##[group]PRINTING LOG FILE of dynamo/test_optimizations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_optimizations_9o69xgef) 2023-01-11T21:22:40.7872575Z 2023-01-11T21:22:40.7872722Z Running tests... 2023-01-11T21:22:40.7873417Z ---------------------------------------------------------------------- 2023-01-11T21:22:40.7875582Z Test results will be stored in test-reports/python-unittest/dynamo.test_optimizations 2023-01-11T21:22:40.7876173Z test_inplace_normalize (__main__.NormalizeIRTests) ... ok (0.301s) 2023-01-11T21:22:40.7876713Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:40.7877309Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:40.7877707Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:40.7878117Z test_example_inputs (__main__.TestOptimizations) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:40.7878397Z ok (0.090s) 2023-01-11T21:22:40.7878806Z test_example_inputs_runtime_use (__main__.TestOptimizations) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:40.7879079Z ok (0.007s) 2023-01-11T21:22:40.7879298Z test_has_mutation (__main__.TestOptimizations) ... ok (0.016s) 2023-01-11T21:22:40.7879689Z test_has_mutation_factory (__main__.TestOptimizations) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:40.7880048Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:40.7880275Z ok (0.015s) 2023-01-11T21:22:40.7880602Z test_inplacifier (__main__.TestOptimizations) ... optimizations [('out', 1), ('inplace', 1)] 2023-01-11T21:22:40.7880846Z ok (0.015s) 2023-01-11T21:22:40.7881069Z test_ipex_bf16 (__main__.TestOptimizations) ... skip: requires ipex (0.001s) 2023-01-11T21:22:40.7881369Z test_ipex_fp32 (__main__.TestOptimizations) ... skip: requires ipex (0.000s) 2023-01-11T21:22:40.7881745Z test_log_conv_args (__main__.TestOptimizations) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:40.7882093Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:40.7882521Z ok (0.149s) 2023-01-11T21:22:40.7882622Z 2023-01-11T21:22:40.7882827Z ---------------------------------------------------------------------- 2023-01-11T21:22:40.7883059Z Ran 9 tests in 0.594s 2023-01-11T21:22:40.7883176Z 2023-01-11T21:22:40.7883250Z OK (skipped=2) 2023-01-11T21:22:40.7883357Z 2023-01-11T21:22:40.7883443Z Generating XML reports... 2023-01-11T21:22:40.7883877Z Generated XML report: test-reports/python-unittest/dynamo.test_optimizations/TEST-NormalizeIRTests-20230111212239.xml 2023-01-11T21:22:40.7884417Z Generated XML report: test-reports/python-unittest/dynamo.test_optimizations/TEST-TestOptimizations-20230111212239.xml 2023-01-11T21:22:40.7884665Z 2023-01-11T21:22:40.7884929Z ##[endgroup] 2023-01-11T21:22:40.7885435Z FINISHED PRINTING LOG FILE of dynamo/test_optimizations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_optimizations_9o69xgef) 2023-01-11T21:22:40.7885678Z 2023-01-11T21:22:42.6029917Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:42.6676770Z Ignoring disabled issues: [] 2023-01-11T21:22:42.6809258Z Running dynamo/test_torchxla_integration ... [2023-01-11 21:22:42.680596] 2023-01-11T21:22:42.6810794Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_torchxla_integration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:42.680862] 2023-01-11T21:22:44.3854413Z 2023-01-11T21:22:44.3854927Z Expand the folded group to see the log file of dynamo/test_torchxla_integration 2023-01-11T21:22:44.3856153Z ##[group]PRINTING LOG FILE of dynamo/test_torchxla_integration (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_integration_ey256jfo) 2023-01-11T21:22:44.3856662Z 2023-01-11T21:22:44.3856792Z Running tests... 2023-01-11T21:22:44.3857471Z ---------------------------------------------------------------------- 2023-01-11T21:22:44.3858216Z Test results will be stored in test-reports/python-unittest/dynamo.test_torchxla_integration 2023-01-11T21:22:44.3858945Z test_basic (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T21:22:44.3859449Z test_inplace_update (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T21:22:44.3860035Z test_linear (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T21:22:44.3860470Z test_matmul (__main__.TorchXLAReuseGraphTest) ... skip: Skip the tests since torch_xla is not available or XLA devices are not specified (0.001s) 2023-01-11T21:22:44.3860705Z 2023-01-11T21:22:44.3860908Z ---------------------------------------------------------------------- 2023-01-11T21:22:44.3861153Z Ran 4 tests in 0.003s 2023-01-11T21:22:44.3861265Z 2023-01-11T21:22:44.3861336Z OK (skipped=4) 2023-01-11T21:22:44.3861430Z 2023-01-11T21:22:44.3861516Z Generating XML reports... 2023-01-11T21:22:44.3861981Z Generated XML report: test-reports/python-unittest/dynamo.test_torchxla_integration/TEST-TorchXLAReuseGraphTest-20230111212244.xml 2023-01-11T21:22:44.3862246Z 2023-01-11T21:22:44.3862479Z ##[endgroup] 2023-01-11T21:22:44.3862912Z FINISHED PRINTING LOG FILE of dynamo/test_torchxla_integration (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_integration_ey256jfo) 2023-01-11T21:22:44.3863160Z 2023-01-11T21:22:46.4220196Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:46.5043392Z Ignoring disabled issues: [] 2023-01-11T21:22:46.5174327Z Running dynamo/test_unspec ... [2023-01-11 21:22:46.517189] 2023-01-11T21:22:46.5176527Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_unspec.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:46.517438] 2023-01-11T21:22:47.9085371Z 2023-01-11T21:22:47.9086230Z Expand the folded group to see the log file of dynamo/test_repros 2023-01-11T21:22:47.9087445Z ##[group]PRINTING LOG FILE of dynamo/test_repros (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_repros_z7ucuz6t) 2023-01-11T21:22:47.9087801Z 2023-01-11T21:22:47.9087885Z Running tests... 2023-01-11T21:22:47.9088704Z ---------------------------------------------------------------------- 2023-01-11T21:22:47.9089573Z Test results will be stored in test-reports/python-unittest/dynamo.test_repros 2023-01-11T21:22:47.9090043Z test_Size (__main__.ReproTests) ... ok (0.316s) 2023-01-11T21:22:47.9090610Z test_abc_setattr (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9091240Z inline_call [('inline in skipfiles: assertIsInstance /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:47.9091510Z unimplemented [] 2023-01-11T21:22:47.9091968Z graph_break [('inline in skipfiles: assertIsInstance /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:47.9092360Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:47.9092633Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:47.9092820Z unimplemented [] 2023-01-11T21:22:47.9093531Z graph_break [('setattr(UserDefinedObjectVariable) .Derived.__setattr__ at 0x7fcf7bbf2290>', 1)] 2023-01-11T21:22:47.9094050Z inline_call [] 2023-01-11T21:22:47.9094532Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9094928Z ok (0.010s) 2023-01-11T21:22:47.9095448Z test_avoid_dupe_specialization (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9096060Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:47.9096531Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9096835Z ok (0.045s) 2023-01-11T21:22:47.9097181Z test_batch_norm_act (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9097774Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:47.9098188Z ok (0.100s) 2023-01-11T21:22:47.9098808Z test_batchnorm_e2e (__main__.ReproTests) ... No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:47.9099361Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9099589Z inline_call [] 2023-01-11T21:22:47.9099875Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:47.9100154Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9100338Z ok (1.255s) 2023-01-11T21:22:47.9100638Z test_bigbird_unsqueeze_inplace (__main__.ReproTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9101002Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:47.9101287Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9101473Z ok (0.034s) 2023-01-11T21:22:47.9101670Z test_boxes_len (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9102006Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9102231Z ok (0.009s) 2023-01-11T21:22:47.9102434Z test_chunk_reformer_ff (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9102772Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:47.9102992Z ok (0.065s) 2023-01-11T21:22:47.9103336Z test_class_member (__main__.ReproTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:47.9103670Z ok (0.014s) 2023-01-11T21:22:47.9103993Z test_convert_boxes_to_pooler_format (__main__.ReproTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9104222Z inline_call [] 2023-01-11T21:22:47.9104399Z unimplemented [] 2023-01-11T21:22:47.9104669Z graph_break [('dynamic shapes: repeat_interleave', 2)] 2023-01-11T21:22:47.9105013Z stats [('calls_captured', 10), ('fusions_possible', 6), ('unique_graphs', 4)] 2023-01-11T21:22:47.9105221Z ok (0.091s) 2023-01-11T21:22:47.9105451Z test_create_rand_mask_from_inputs (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9105893Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:22:47.9106099Z ok (0.135s) 2023-01-11T21:22:47.9106302Z test_dict_iter (__main__.ReproTests) ... ok (0.005s) 2023-01-11T21:22:47.9106637Z test_dict_list_values (__main__.ReproTests) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:22:47.9106858Z unimplemented [] 2023-01-11T21:22:47.9107304Z graph_break [('call_function in skip_files Builtin count', 2), ('call_function BuiltinVariable(zip) [UserDefinedObjectVariable(count), ListVariable()] {}', 2)] 2023-01-11T21:22:47.9107620Z ok (0.017s) 2023-01-11T21:22:47.9107913Z test_do_paste_mask (__main__.ReproTests) ... frames [('total', 12), ('ok', 11)] 2023-01-11T21:22:47.9108223Z unimplemented [('Dynamic slicing not supported', 1)] 2023-01-11T21:22:47.9108610Z graph_break [('dynamic shapes: arange', 6), ('Dynamic slicing not supported', 4)] 2023-01-11T21:22:47.9109057Z stats [('calls_captured', 159), ('fusions_possible', 148), ('unique_graphs', 11)] 2023-01-11T21:22:47.9109285Z ok (1.497s) 2023-01-11T21:22:47.9109669Z test_dynamic_shapes_right_side (__main__.ReproTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:47.9109932Z ok (0.082s) 2023-01-11T21:22:47.9110286Z test_ellipsis (__main__.ReproTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:47.9110541Z ok (0.018s) 2023-01-11T21:22:47.9110815Z test_exec_import (__main__.ReproTests) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:22:47.9111182Z inline_call [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9111430Z unimplemented [] 2023-01-11T21:22:47.9111736Z graph_break [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9111975Z ok (0.004s) 2023-01-11T21:22:47.9112283Z test_exec_wildcard_import (__main__.ReproTests) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:22:47.9112661Z inline_call [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9112896Z unimplemented [] 2023-01-11T21:22:47.9113216Z graph_break [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9113584Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:22:47.9113794Z ok (0.016s) 2023-01-11T21:22:47.9114095Z test_for_loop_graph_break (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9114326Z inline_call [] 2023-01-11T21:22:47.9114688Z unimplemented [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:22:47.9115088Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9115311Z ok (0.011s) 2023-01-11T21:22:47.9115625Z test_for_loop_graph_break_before (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9115856Z unimplemented [] 2023-01-11T21:22:47.9116226Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:22:47.9116495Z inline_call [] 2023-01-11T21:22:47.9116780Z stats [('calls_captured', 100), ('fusions_possible', 99), ('unique_graphs', 1)] 2023-01-11T21:22:47.9117005Z ok (0.131s) 2023-01-11T21:22:47.9117226Z test_get_parameter_dtype (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9117559Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:47.9117780Z ok (0.014s) 2023-01-11T21:22:47.9118029Z test_grad_mode_carrying_correct_state_after_graph_break (__main__.ReproTests) ... Break 2023-01-11T21:22:47.9118308Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:47.9118495Z unimplemented [] 2023-01-11T21:22:47.9118824Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9119241Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:47.9119539Z ok (0.011s) 2023-01-11T21:22:47.9119851Z test_guard_fail_nested_tuple (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9120209Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:47.9120417Z ok (0.021s) 2023-01-11T21:22:47.9120724Z test_guard_fail_tensor_bool (__main__.ReproTests) ... frames [('total', 12), ('ok', 12)] 2023-01-11T21:22:47.9121092Z unimplemented [('FOR_ITER UserDefinedObjectVariable(product)', 1)] 2023-01-11T21:22:47.9121696Z graph_break [('call torch._dynamo.disable() wrapped function .fn..get_expected at 0x7fd00e6a93f0>', 5), ('data dependent operator: aten.allclose.default', 5)] 2023-01-11T21:22:47.9122195Z stats [('calls_captured', 5), ('unique_graphs', 5), ('fusions_possible', 0)] 2023-01-11T21:22:47.9122450Z ok (0.078s) 2023-01-11T21:22:47.9122678Z test_guard_ordering_shape_fail (__main__.ReproTests) ... ok (0.002s) 2023-01-11T21:22:47.9122943Z test_hf_model_output (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9123281Z stats [('calls_captured', 4), ('unique_graphs', 4), ('fusions_possible', 0)] 2023-01-11T21:22:47.9123502Z ok (0.053s) 2023-01-11T21:22:47.9123703Z test_hf_t5_forward (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9124043Z stats [('calls_captured', 11), ('fusions_possible', 10), ('unique_graphs', 1)] 2023-01-11T21:22:47.9124265Z ok (0.575s) 2023-01-11T21:22:47.9124562Z test_indexing_with_list (__main__.ReproTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9124836Z inline_call [('Tensor.numpy', 1)] 2023-01-11T21:22:47.9125032Z unimplemented [] 2023-01-11T21:22:47.9125260Z graph_break [('Tensor.numpy', 1)] 2023-01-11T21:22:47.9125681Z stats [('unique_graphs', 2), ('calls_captured', 0), ('fusions_possible', -2)] 2023-01-11T21:22:47.9125909Z ok (0.023s) 2023-01-11T21:22:47.9126129Z test_is_symbolic_tracing (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9126463Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9126685Z ok (0.005s) 2023-01-11T21:22:47.9126899Z test_isinstance_dtype (__main__.ReproTests) ... ok (0.003s) 2023-01-11T21:22:47.9127497Z test_isinstance_storage (__main__.ReproTests) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1484: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:22:47.9128083Z bools = torch.BoolStorage.from_buffer(f, "big") 2023-01-11T21:22:47.9128342Z frames [('total', 9), ('ok', 9)] 2023-01-11T21:22:47.9128528Z unimplemented [] 2023-01-11T21:22:47.9129008Z graph_break [('call_function BuiltinVariable(bytearray) [ListVariable()] {}', 1), ('inline in skipfiles: from_buffer /opt/conda/lib/python3.10/site-packages/torch/storage.py', 1)] 2023-01-11T21:22:47.9129646Z inline_call [('inline in skipfiles: from_buffer /opt/conda/lib/python3.10/site-packages/torch/storage.py', 1)] 2023-01-11T21:22:47.9130150Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9130412Z expected failure (0.011s) 2023-01-11T21:22:47.9130675Z test_issue1466_size_aot_autograd (__main__.ReproTests) ... arf 2023-01-11T21:22:47.9130883Z arf 2023-01-11T21:22:47.9131088Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:47.9131264Z unimplemented [] 2023-01-11T21:22:47.9131588Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9131956Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:47.9132242Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9132413Z ok (0.032s) 2023-01-11T21:22:47.9132622Z test_issue175 (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9132955Z stats [('calls_captured', 12), ('fusions_possible', 11), ('unique_graphs', 1)] 2023-01-11T21:22:47.9133244Z ok (0.127s) 2023-01-11T21:22:47.9133611Z test_longformer_chunk (__main__.ReproTests) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:47.9133876Z ok (0.132s) 2023-01-11T21:22:47.9134094Z test_maml_item_capture (__main__.ReproTests) ... expected failure (0.001s) 2023-01-11T21:22:47.9134461Z test_maml_no_item_capture (__main__.ReproTests) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:22:47.9134820Z inline_call [('inlining disallowed: ', 1)] 2023-01-11T21:22:47.9135051Z unimplemented [] 2023-01-11T21:22:47.9135479Z graph_break [('Tensor.item', 2), ('call_function in skip_files /opt/conda/lib/python3.10/copy.py', 1), ('inlining disallowed: ', 1)] 2023-01-11T21:22:47.9135959Z stats [('calls_captured', 29), ('fusions_possible', 25), ('unique_graphs', 4)] 2023-01-11T21:22:47.9136185Z ok (0.148s) 2023-01-11T21:22:47.9136528Z test_modules (__main__.ReproTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:47.9136782Z ok (0.023s) 2023-01-11T21:22:47.9137077Z test_multi_dot_import (__main__.ReproTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9137509Z inline_call [('inline in skipfiles: symbolic_trace /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py', 1)] 2023-01-11T21:22:47.9137796Z unimplemented [] 2023-01-11T21:22:47.9138183Z graph_break [('inline in skipfiles: symbolic_trace /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py', 1)] 2023-01-11T21:22:47.9138585Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9138798Z ok (0.011s) 2023-01-11T21:22:47.9139036Z test_multi_import (__main__.ReproTests) ... skip: requires detectron2 (0.000s) 2023-01-11T21:22:47.9139471Z test_named_buffers (__main__.ReproTests) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:22:47.9139722Z ok (0.011s) 2023-01-11T21:22:47.9140012Z test_nn_parameter (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9140400Z inline_call [('inline in skipfiles: assertTrue /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:47.9140661Z unimplemented [] 2023-01-11T21:22:47.9141000Z graph_break [('inline in skipfiles: assertTrue /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:47.9141505Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:47.9141730Z ok (0.014s) 2023-01-11T21:22:47.9141944Z test_norm_dtype (__main__.ReproTests) ... skip: requires cuda (0.001s) 2023-01-11T21:22:47.9142346Z test_not_rewrite_assert (__main__.ReproTests) ... unimplemented [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:47.9142605Z ok (0.005s) 2023-01-11T21:22:47.9142919Z test_not_rewrite_assert_for_other_errors (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9143294Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:47.9143582Z ok (0.008s) 2023-01-11T21:22:47.9143869Z test_numpy_list (__main__.ReproTests) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:22:47.9144082Z unimplemented [] 2023-01-11T21:22:47.9144499Z graph_break [('call torch._dynamo.disable() wrapped function .rand_gen at 0x7fd00e4da440>', 1)] 2023-01-11T21:22:47.9144806Z expected failure (0.021s) 2023-01-11T21:22:47.9145113Z test_optimized_deepcopy (__main__.ReproTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9145469Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9145687Z ok (0.012s) 2023-01-11T21:22:47.9145961Z test_primtorch (__main__.ReproTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:47.9146386Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:22:47.9146716Z unimplemented [] 2023-01-11T21:22:47.9147096Z graph_break [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:22:47.9147358Z ok (0.004s) 2023-01-11T21:22:47.9147813Z test_primtorch_no_graph_break (__main__.ReproTests) ... inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:22:47.9148148Z expected failure (0.003s) 2023-01-11T21:22:47.9148446Z test_recursive_map (__main__.ReproTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9148671Z inline_call [] 2023-01-11T21:22:47.9148963Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:47.9149171Z ok (0.013s) 2023-01-11T21:22:47.9149416Z test_reformer_eval (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9149754Z stats [('calls_captured', 10), ('fusions_possible', 9), ('unique_graphs', 1)] 2023-01-11T21:22:47.9149979Z ok (0.043s) 2023-01-11T21:22:47.9150189Z test_reformer_min_chunk_len (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9150539Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:47.9150761Z ok (0.022s) 2023-01-11T21:22:47.9150965Z test_reformer_remove_unused_args (__main__.ReproTests) ... foo 2023-01-11T21:22:47.9151175Z foo 2023-01-11T21:22:47.9151376Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9151697Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9151948Z unimplemented [] 2023-01-11T21:22:47.9152272Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2)] 2023-01-11T21:22:47.9152631Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:47.9152914Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9153099Z ok (0.027s) 2023-01-11T21:22:47.9153303Z test_reformer_sorting (__main__.ReproTests) ... inline_call [] 2023-01-11T21:22:47.9153647Z stats [('calls_captured', 14), ('fusions_possible', 13), ('unique_graphs', 1)] 2023-01-11T21:22:47.9153867Z ok (0.049s) 2023-01-11T21:22:47.9154156Z test_reformer_train (__main__.ReproTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9154590Z inline_call [('inline in skipfiles: save_for_backward /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py', 1)] 2023-01-11T21:22:47.9154883Z unimplemented [] 2023-01-11T21:22:47.9155351Z graph_break [('autograd.Function with requires_grad', 1), ('inline in skipfiles: save_for_backward /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py', 1)] 2023-01-11T21:22:47.9155796Z stats [('calls_captured', 10), ('fusions_possible', 6), ('unique_graphs', 4)] 2023-01-11T21:22:47.9156023Z ok (0.090s) 2023-01-11T21:22:47.9156315Z test_reinplacing (__main__.ReproTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9156666Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:47.9156938Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9157120Z ok (0.232s) 2023-01-11T21:22:47.9157484Z test_relative_import (__main__.ReproTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:47.9157734Z ok (0.014s) 2023-01-11T21:22:47.9158121Z test_relative_import_no_modulename (__main__.ReproTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:47.9158397Z ok (0.006s) 2023-01-11T21:22:47.9158753Z test_rewrite_assert_noop (__main__.ReproTests) ... stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:22:47.9159016Z ok (0.021s) 2023-01-11T21:22:47.9159380Z test_rewrite_assert_with_fstring_msg (__main__.ReproTests) ... unimplemented [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:47.9159647Z ok (0.005s) 2023-01-11T21:22:47.9160010Z test_rewrite_assert_with_msg (__main__.ReproTests) ... stats [('calls_captured', 18), ('fusions_possible', 15), ('unique_graphs', 3)] 2023-01-11T21:22:47.9160317Z ok (0.023s) 2023-01-11T21:22:47.9160701Z test_rewrite_assert_without_msg (__main__.ReproTests) ... stats [('calls_captured', 12), ('fusions_possible', 10), ('unique_graphs', 2)] 2023-01-11T21:22:47.9160960Z ok (0.016s) 2023-01-11T21:22:47.9161244Z test_rng_state (__main__.ReproTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9161632Z unimplemented [('TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd', 1)] 2023-01-11T21:22:47.9162048Z graph_break [('TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd', 2)] 2023-01-11T21:22:47.9162413Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:47.9162639Z ok (0.028s) 2023-01-11T21:22:47.9163032Z test_seq_append_list (__main__.ReproTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:47.9163284Z ok (0.023s) 2023-01-11T21:22:47.9163977Z test_sigmoid_out (__main__.ReproTests) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1543: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3, 5]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:47.9164666Z torch.sigmoid(inp, out=out1) 2023-01-11T21:22:47.9165569Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:22:47.9166153Z warnings.warn(msg) 2023-01-11T21:22:47.9166814Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1543: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3, 5]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:47.9167445Z torch.sigmoid(inp, out=out1) 2023-01-11T21:22:47.9167665Z frames [('total', 7), ('ok', 7)] 2023-01-11T21:22:47.9167972Z inline_call [('call_function UserDefinedClassVariable() [] {}', 1)] 2023-01-11T21:22:47.9168202Z ok (0.032s) 2023-01-11T21:22:47.9168571Z test_slice_into_list_mutable (__main__.ReproTests) ... stats [('calls_captured', 30), ('fusions_possible', 29), ('unique_graphs', 1)] 2023-01-11T21:22:47.9168840Z ok (0.082s) 2023-01-11T21:22:47.9169343Z test_slicing_dynamic_shape (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9169682Z unimplemented [('Dynamic slicing not supported', 2)] 2023-01-11T21:22:47.9170009Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:47.9170233Z ok (0.020s) 2023-01-11T21:22:47.9170550Z test_slicing_dynamic_shape_setitem (__main__.ReproTests) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:22:47.9170874Z unimplemented [('Dynamic slicing not supported', 1)] 2023-01-11T21:22:47.9171174Z graph_break [('Dynamic slicing not supported', 1)] 2023-01-11T21:22:47.9171508Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9171783Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9171968Z ok (0.013s) 2023-01-11T21:22:47.9172740Z test_sort_out (__main__.ReproTests) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:47.9173497Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:22:47.9174559Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:47.9175210Z return node.target(*args, **kwargs) 2023-01-11T21:22:47.9175869Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:47.9176520Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:22:47.9177205Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:47.9177849Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:22:47.9178100Z frames [('total', 7), ('ok', 7)] 2023-01-11T21:22:47.9178396Z inline_call [('call_function UserDefinedClassVariable() [] {}', 1)] 2023-01-11T21:22:47.9178626Z ok (0.040s) 2023-01-11T21:22:47.9178930Z test_specialized_stride (__main__.ReproTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9179278Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9179503Z ok (0.010s) 2023-01-11T21:22:47.9179808Z test_swin_base_tensor_attr (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9180155Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:47.9180379Z ok (0.015s) 2023-01-11T21:22:47.9180686Z test_tensor_isinstance_tuple (__main__.ReproTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:47.9181047Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9181255Z ok (0.009s) 2023-01-11T21:22:47.9181543Z test_tokenization (__main__.ReproTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:47.9181936Z inline_call [('inline in skipfiles: __init__ /opt/conda/lib/python3.10/collections/__init__.py', 2)] 2023-01-11T21:22:47.9182179Z unimplemented [] 2023-01-11T21:22:47.9182522Z graph_break [('inline in skipfiles: __init__ /opt/conda/lib/python3.10/collections/__init__.py', 2)] 2023-01-11T21:22:47.9182852Z ok (0.008s) 2023-01-11T21:22:47.9183217Z test_torch_ops_aten (__main__.ReproTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9183562Z ok (0.010s) 2023-01-11T21:22:47.9183990Z test_vdd_duplicate_error (__main__.ReproTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:47.9184260Z ok (0.012s) 2023-01-11T21:22:47.9184554Z test_while_loop_graph_break (__main__.ReproTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:47.9184788Z inline_call [] 2023-01-11T21:22:47.9185159Z unimplemented [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:22:47.9185549Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:47.9185772Z ok (0.007s) 2023-01-11T21:22:47.9185995Z test_with_on_graph_break_inst (__main__.ReproTests) ... Hello world 2023-01-11T21:22:47.9186201Z Hello world 2023-01-11T21:22:47.9186413Z frames [('total', 6), ('ok', 6)] 2023-01-11T21:22:47.9186780Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:47.9187032Z unimplemented [] 2023-01-11T21:22:47.9187384Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2), ('Tensor.backward', 1)] 2023-01-11T21:22:47.9187772Z stats [('calls_captured', 11), ('fusions_possible', 7), ('unique_graphs', 4)] 2023-01-11T21:22:47.9187993Z ok (0.026s) 2023-01-11T21:22:47.9188083Z 2023-01-11T21:22:47.9188283Z ---------------------------------------------------------------------- 2023-01-11T21:22:47.9188522Z Ran 76 tests in 6.102s 2023-01-11T21:22:47.9188634Z 2023-01-11T21:22:47.9188727Z OK (skipped=2, expected failures=4) 2023-01-11T21:22:47.9188854Z 2023-01-11T21:22:47.9188925Z Generating XML reports... 2023-01-11T21:22:47.9189316Z Generated XML report: test-reports/python-unittest/dynamo.test_repros/TEST-ReproTests-20230111212241.xml 2023-01-11T21:22:47.9189538Z 2023-01-11T21:22:47.9189826Z ##[endgroup] 2023-01-11T21:22:47.9190204Z FINISHED PRINTING LOG FILE of dynamo/test_repros (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_repros_z7ucuz6t) 2023-01-11T21:22:47.9190427Z 2023-01-11T21:22:49.7532998Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:49.8190643Z Ignoring disabled issues: [] 2023-01-11T21:22:49.8324937Z Running inductor/test_torchinductor ... [2023-01-11 21:22:49.832246] 2023-01-11T21:22:49.8327340Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_torchinductor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:49.832483] 2023-01-11T21:22:55.3909997Z 2023-01-11T21:22:55.3910909Z Expand the folded group to see the log file of dynamo/test_unspec 2023-01-11T21:22:55.3911968Z ##[group]PRINTING LOG FILE of dynamo/test_unspec (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_unspec_m1lweub2) 2023-01-11T21:22:55.3912319Z 2023-01-11T21:22:55.3912426Z Running tests... 2023-01-11T21:22:55.3913171Z ---------------------------------------------------------------------- 2023-01-11T21:22:55.3913737Z Test results will be stored in test-reports/python-unittest/dynamo.test_unspec 2023-01-11T21:22:55.3914229Z test_access_by_keys_unspec (__main__.make_unspec_cls..UnspecTest) ... ok (0.335s) 2023-01-11T21:22:55.3914738Z test_basicmodule1_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3915292Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:55.3916134Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.3916686Z ok (0.018s) 2023-01-11T21:22:55.3917700Z test_basicmodule2_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.3918391Z ok (0.013s) 2023-01-11T21:22:55.3919048Z test_call_fn_with_non_const_inputs_safe_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3920044Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.3920565Z ok (0.023s) 2023-01-11T21:22:55.3921574Z test_cfgmod_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:22:55.3922550Z ok (0.026s) 2023-01-11T21:22:55.3923566Z test_children_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.3924242Z ok (0.019s) 2023-01-11T21:22:55.3925248Z test_constloop_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:22:55.3925969Z ok (0.026s) 2023-01-11T21:22:55.3926549Z test_densenet_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3927449Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:55.3927976Z ok (0.016s) 2023-01-11T21:22:55.3928703Z test_enumvalues_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3929877Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:55.3930434Z ok (0.016s) 2023-01-11T21:22:55.3931441Z test_fnmember_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3932118Z ok (0.012s) 2023-01-11T21:22:55.3933114Z test_fnmembercmp1_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3933822Z ok (0.012s) 2023-01-11T21:22:55.3934839Z test_fnmembercmp2_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3935554Z ok (0.012s) 2023-01-11T21:22:55.3936179Z test_forward_directly_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3937107Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.3937635Z ok (0.019s) 2023-01-11T21:22:55.3938226Z test_generation_tag_unspec (__main__.make_unspec_cls..UnspecTest) ... ok (0.002s) 2023-01-11T21:22:55.3939423Z test_hasattr_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3940104Z ok (0.009s) 2023-01-11T21:22:55.3941030Z test_intarg_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.3941725Z ok (0.012s) 2023-01-11T21:22:55.3942716Z test_iseval1_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3943398Z ok (0.011s) 2023-01-11T21:22:55.3944492Z test_iseval2_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3945192Z ok (0.011s) 2023-01-11T21:22:55.3946182Z test_isnonelayer_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.3946925Z ok (0.010s) 2023-01-11T21:22:55.3947931Z test_istraining1_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3948630Z ok (0.011s) 2023-01-11T21:22:55.3949651Z test_istraining2_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3950344Z ok (0.011s) 2023-01-11T21:22:55.3951324Z test_layerlist_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.3952008Z ok (0.016s) 2023-01-11T21:22:55.3953565Z test_lazy_module_unspec (__main__.make_unspec_cls..UnspecTest) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:22:55.3955161Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:22:55.3956837Z [2023-01-11 21:22:48,747] torch._dynamo.symbolic_convert: [WARNING] /opt/conda/lib/python3.10/site-packages/torch/nn/parameter.py [ShapeVariable()] {} missing a required argument: 'shape' 2023-01-11T21:22:55.3958716Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:22:55.3960022Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:22:55.3961487Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:22:55.3962715Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:22:55.3964376Z [2023-01-11 21:22:48,823] torch._dynamo.symbolic_convert: [WARNING] /opt/conda/lib/python3.10/site-packages/torch/nn/parameter.py [ShapeVariable()] {} missing a required argument: 'shape' 2023-01-11T21:22:55.3966252Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:22:55.3967457Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:22:55.3968153Z frames [('total', 16), ('ok', 14)] 2023-01-11T21:22:55.3970173Z inline_call [('Patched init cannot be inlined.', 3), ('arg mismatch inlining', 2), ('call_function UserDefinedObjectVariable(_infer_parameters) [NNModuleVariable(), TupleVariable()] {}', 1), ('call_function UserDefinedObjectVariable(_infer_parameters) [UnspecializedNNModuleVariable(LazyModule), TupleVariable()] {}', 1)] 2023-01-11T21:22:55.3971905Z unimplemented [("Guard setup for uninitialized class ", 2)] 2023-01-11T21:22:55.3972881Z graph_break [('Patched init cannot be inlined.', 3), ('arg mismatch inlining', 2)] 2023-01-11T21:22:55.3973778Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.3974326Z ok (0.237s) 2023-01-11T21:22:55.3974975Z test_module_attribute_precedence_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3975916Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.3976477Z ok (0.011s) 2023-01-11T21:22:55.3977104Z test_module_class_method_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3978072Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:55.3978599Z ok (0.028s) 2023-01-11T21:22:55.3979516Z test_module_forward_has_graph_break_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 3), ('ok', 2)] 2023-01-11T21:22:55.3980165Z inline_call [] 2023-01-11T21:22:55.3980837Z unimplemented [('reconstruct: ConstantVariable(dict)', 2)] 2023-01-11T21:22:55.3981964Z graph_break [('call_function BuiltinVariable(dict) [ListIteratorVariable()] {}', 1), ('call_method NNModuleVariable() buffers [] {}', 1)] 2023-01-11T21:22:55.3982967Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:55.3983585Z ok (0.073s) 2023-01-11T21:22:55.3984608Z test_module_name_string_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.3985342Z ok (0.014s) 2023-01-11T21:22:55.3985926Z test_module_property_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3986955Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.3987478Z ok (0.006s) 2023-01-11T21:22:55.3988069Z test_module_static_method_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3988992Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:55.3989518Z ok (0.027s) 2023-01-11T21:22:55.3990491Z test_moduledict_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.3991161Z ok (0.010s) 2023-01-11T21:22:55.3992224Z test_modulelist_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 40), ('fusions_possible', 39), ('unique_graphs', 1)] 2023-01-11T21:22:55.3992898Z ok (0.105s) 2023-01-11T21:22:55.3993459Z test_modulemethod1_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3994400Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:55.3994954Z ok (0.028s) 2023-01-11T21:22:55.3995539Z test_modulemethod2_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.3996459Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:22:55.3997013Z ok (0.027s) 2023-01-11T21:22:55.3998059Z test_nn_moduledict_contains_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:22:55.3998926Z frames [('total', 2), ('ok', 1)] 2023-01-11T21:22:55.3999583Z inline_call [('Patched init cannot be inlined.', 1)] 2023-01-11T21:22:55.4000741Z unimplemented [("Guard setup for uninitialized class .M'>", 1)] 2023-01-11T21:22:55.4001582Z graph_break [('Patched init cannot be inlined.', 1)] 2023-01-11T21:22:55.4001872Z ok (0.018s) 2023-01-11T21:22:55.4002221Z test_parameters1_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4002776Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4003109Z ok (0.009s) 2023-01-11T21:22:55.4003477Z test_parameters2_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4004077Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4004407Z ok (0.009s) 2023-01-11T21:22:55.4005051Z test_parameters3_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:55.4005474Z ok (0.022s) 2023-01-11T21:22:55.4006101Z test_self_mutating1_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:22:55.4006546Z ok (0.037s) 2023-01-11T21:22:55.4007147Z test_seq_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4007540Z ok (0.018s) 2023-01-11T21:22:55.4007934Z test_simple_torch_function_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4008535Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4008881Z ok (0.013s) 2023-01-11T21:22:55.4009647Z test_stringmember_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4010082Z ok (0.012s) 2023-01-11T21:22:55.4010458Z test_submodules1_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4011036Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:55.4011369Z ok (0.024s) 2023-01-11T21:22:55.4011846Z test_submodules2_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4012391Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:22:55.4012697Z ok (0.024s) 2023-01-11T21:22:55.4013058Z test_super1_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4013642Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4013955Z ok (0.015s) 2023-01-11T21:22:55.4014316Z test_super2_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4014859Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.4015176Z ok (0.014s) 2023-01-11T21:22:55.4015660Z test_super_class_method_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4016238Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4016590Z ok (0.007s) 2023-01-11T21:22:55.4017190Z test_tensorlist_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4017611Z ok (0.011s) 2023-01-11T21:22:55.4018259Z test_torch_function_with_closure_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4018710Z ok (0.008s) 2023-01-11T21:22:55.4019241Z test_unsupportedmethod_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4019972Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:22:55.4020411Z unimplemented [] 2023-01-11T21:22:55.4020994Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:22:55.4021633Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:22:55.4021985Z ok (0.028s) 2023-01-11T21:22:55.4022508Z test_unsupportedmodule_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4023205Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:22:55.4023681Z unimplemented [] 2023-01-11T21:22:55.4024214Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:22:55.4024832Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:22:55.4025184Z ok (0.029s) 2023-01-11T21:22:55.4025582Z test_viamodulecall_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4026148Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4026501Z ok (0.014s) 2023-01-11T21:22:55.4027015Z test_Size_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4027641Z inline_call [('inline in skipfiles: assertIsInstance /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:55.4028026Z unimplemented [] 2023-01-11T21:22:55.4028579Z graph_break [('inline in skipfiles: assertIsInstance /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:55.4029161Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4029492Z ok (0.013s) 2023-01-11T21:22:55.4030018Z test_abc_setattr_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4030420Z unimplemented [] 2023-01-11T21:22:55.4031050Z graph_break [('setattr(UserDefinedObjectVariable) .Derived.__setattr__ at 0x7fa82e5efa30>', 1)] 2023-01-11T21:22:55.4031517Z inline_call [] 2023-01-11T21:22:55.4031957Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4032364Z ok (0.008s) 2023-01-11T21:22:55.4032883Z test_avoid_dupe_specialization_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4033474Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:55.4033914Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4034186Z ok (0.042s) 2023-01-11T21:22:55.4034735Z test_batch_norm_act_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4035357Z inline_call [('data dependent operator: aten._local_scalar_dense.default', 2)] 2023-01-11T21:22:55.4035718Z unimplemented [] 2023-01-11T21:22:55.4036212Z graph_break [('data dependent operator: aten._local_scalar_dense.default', 2)] 2023-01-11T21:22:55.4036856Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4037195Z ok (0.030s) 2023-01-11T21:22:55.4037819Z test_batchnorm_e2e_unspec (__main__.make_unspec_cls..UnspecTest) ... No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:55.4038342Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4038615Z inline_call [] 2023-01-11T21:22:55.4039048Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.4039487Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4039753Z ok (0.895s) 2023-01-11T21:22:55.4040315Z test_bigbird_unsqueeze_inplace_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4040904Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4041367Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4041626Z ok (0.033s) 2023-01-11T21:22:55.4042033Z test_boxes_len_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4042595Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4042915Z ok (0.009s) 2023-01-11T21:22:55.4043284Z test_chunk_reformer_ff_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4043857Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4044193Z ok (0.062s) 2023-01-11T21:22:55.4044797Z test_class_member_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4045203Z ok (0.010s) 2023-01-11T21:22:55.4045757Z test_convert_boxes_to_pooler_format_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4046136Z inline_call [] 2023-01-11T21:22:55.4046392Z unimplemented [] 2023-01-11T21:22:55.4046799Z graph_break [('dynamic shapes: repeat_interleave', 2)] 2023-01-11T21:22:55.4047329Z stats [('calls_captured', 10), ('fusions_possible', 6), ('unique_graphs', 4)] 2023-01-11T21:22:55.4047679Z ok (0.057s) 2023-01-11T21:22:55.4048065Z test_create_rand_mask_from_inputs_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4048630Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:22:55.4048949Z ok (0.129s) 2023-01-11T21:22:55.4049445Z test_dict_iter_unspec (__main__.make_unspec_cls..UnspecTest) ... ok (0.005s) 2023-01-11T21:22:55.4050091Z test_dict_list_values_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:22:55.4050458Z unimplemented [] 2023-01-11T21:22:55.4051152Z graph_break [('call_function in skip_files Builtin count', 2), ('call_function BuiltinVariable(zip) [UserDefinedObjectVariable(count), ListVariable()] {}', 2)] 2023-01-11T21:22:55.4051625Z ok (0.017s) 2023-01-11T21:22:55.4052173Z test_do_paste_mask_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 13), ('ok', 12)] 2023-01-11T21:22:55.4052817Z unimplemented [('Dynamic slicing not supported', 1)] 2023-01-11T21:22:55.4053361Z graph_break [('dynamic shapes: arange', 7), ('Dynamic slicing not supported', 4)] 2023-01-11T21:22:55.4053914Z stats [('calls_captured', 131), ('fusions_possible', 119), ('unique_graphs', 12)] 2023-01-11T21:22:55.4054291Z ok (1.443s) 2023-01-11T21:22:55.4055050Z test_dynamic_shapes_right_side_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4055537Z ok (0.075s) 2023-01-11T21:22:55.4056110Z test_ellipsis_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.4056540Z ok (0.017s) 2023-01-11T21:22:55.4057189Z test_exec_import_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:22:55.4057873Z inline_call [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4058278Z unimplemented [] 2023-01-11T21:22:55.4058788Z graph_break [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4059161Z ok (0.004s) 2023-01-11T21:22:55.4059703Z test_exec_wildcard_import_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:22:55.4060344Z inline_call [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4060733Z unimplemented [] 2023-01-11T21:22:55.4061234Z graph_break [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4061806Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:22:55.4062149Z ok (0.016s) 2023-01-11T21:22:55.4062727Z test_for_loop_graph_break_before_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4063135Z unimplemented [] 2023-01-11T21:22:55.4063791Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:22:55.4064226Z inline_call [] 2023-01-11T21:22:55.4064662Z stats [('calls_captured', 100), ('fusions_possible', 99), ('unique_graphs', 1)] 2023-01-11T21:22:55.4065017Z ok (0.131s) 2023-01-11T21:22:55.4065575Z test_for_loop_graph_break_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4065962Z inline_call [] 2023-01-11T21:22:55.4066490Z unimplemented [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:22:55.4067111Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4067453Z ok (0.011s) 2023-01-11T21:22:55.4067852Z test_get_parameter_dtype_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4068432Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4068786Z ok (0.017s) 2023-01-11T21:22:55.4069205Z test_grad_mode_carrying_correct_state_after_graph_break_unspec (__main__.make_unspec_cls..UnspecTest) ... Break 2023-01-11T21:22:55.4069684Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4069977Z unimplemented [] 2023-01-11T21:22:55.4070487Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4071037Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:22:55.4071388Z ok (0.011s) 2023-01-11T21:22:55.4071946Z test_guard_fail_nested_tuple_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4072520Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:55.4072847Z ok (0.020s) 2023-01-11T21:22:55.4073400Z test_guard_fail_tensor_bool_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 12), ('ok', 12)] 2023-01-11T21:22:55.4074101Z unimplemented [('FOR_ITER UserDefinedObjectVariable(product)', 1)] 2023-01-11T21:22:55.4075276Z graph_break [('call torch._dynamo.disable() wrapped function .fn..get_expected at 0x7fa8c124ba30>', 5), ('data dependent operator: aten.allclose.default', 5)] 2023-01-11T21:22:55.4076035Z stats [('calls_captured', 5), ('unique_graphs', 5), ('fusions_possible', 0)] 2023-01-11T21:22:55.4076361Z ok (0.084s) 2023-01-11T21:22:55.4076739Z test_guard_ordering_shape_fail_unspec (__main__.make_unspec_cls..UnspecTest) ... ok (0.001s) 2023-01-11T21:22:55.4077244Z test_hf_model_output_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4077803Z stats [('calls_captured', 4), ('unique_graphs', 4), ('fusions_possible', 0)] 2023-01-11T21:22:55.4078133Z ok (0.054s) 2023-01-11T21:22:55.4078619Z test_hf_t5_forward_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4079188Z stats [('calls_captured', 11), ('fusions_possible', 10), ('unique_graphs', 1)] 2023-01-11T21:22:55.4079524Z ok (0.453s) 2023-01-11T21:22:55.4080068Z test_indexing_with_list_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4080549Z inline_call [('Tensor.numpy', 1)] 2023-01-11T21:22:55.4080836Z unimplemented [] 2023-01-11T21:22:55.4081193Z graph_break [('Tensor.numpy', 1)] 2023-01-11T21:22:55.4081678Z stats [('unique_graphs', 2), ('calls_captured', 0), ('fusions_possible', -2)] 2023-01-11T21:22:55.4082001Z ok (0.023s) 2023-01-11T21:22:55.4082386Z test_is_symbolic_tracing_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4082965Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4083293Z ok (0.006s) 2023-01-11T21:22:55.4083677Z test_isinstance_dtype_unspec (__main__.make_unspec_cls..UnspecTest) ... ok (0.003s) 2023-01-11T21:22:55.4084689Z test_isinstance_storage_unspec (__main__.make_unspec_cls..UnspecTest) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1484: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:22:55.4085640Z bools = torch.BoolStorage.from_buffer(f, "big") 2023-01-11T21:22:55.4086055Z frames [('total', 9), ('ok', 9)] 2023-01-11T21:22:55.4086338Z unimplemented [] 2023-01-11T21:22:55.4087112Z graph_break [('call_function BuiltinVariable(bytearray) [ListVariable()] {}', 1), ('inline in skipfiles: from_buffer /opt/conda/lib/python3.10/site-packages/torch/storage.py', 1)] 2023-01-11T21:22:55.4087934Z inline_call [('inline in skipfiles: from_buffer /opt/conda/lib/python3.10/site-packages/torch/storage.py', 1)] 2023-01-11T21:22:55.4088545Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4088922Z expected failure (0.012s) 2023-01-11T21:22:55.4089469Z test_issue1466_size_aot_autograd_unspec (__main__.make_unspec_cls..UnspecTest) ... arf 2023-01-11T21:22:55.4089820Z arf 2023-01-11T21:22:55.4090137Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4090417Z unimplemented [] 2023-01-11T21:22:55.4090917Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4091506Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:55.4091956Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4092241Z ok (0.031s) 2023-01-11T21:22:55.4092606Z test_issue175_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4093175Z stats [('calls_captured', 12), ('fusions_possible', 11), ('unique_graphs', 1)] 2023-01-11T21:22:55.4093523Z ok (0.125s) 2023-01-11T21:22:55.4094167Z test_longformer_chunk_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:55.4094744Z ok (0.126s) 2023-01-11T21:22:55.4095141Z test_maml_item_capture_unspec (__main__.make_unspec_cls..UnspecTest) ... expected failure (0.002s) 2023-01-11T21:22:55.4095817Z test_maml_no_item_capture_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:22:55.4096414Z inline_call [('inlining disallowed: ', 1)] 2023-01-11T21:22:55.4096772Z unimplemented [] 2023-01-11T21:22:55.4097453Z graph_break [('Tensor.item', 2), ('call_function in skip_files /opt/conda/lib/python3.10/copy.py', 1), ('inlining disallowed: ', 1)] 2023-01-11T21:22:55.4098191Z stats [('calls_captured', 29), ('fusions_possible', 25), ('unique_graphs', 4)] 2023-01-11T21:22:55.4098546Z ok (0.146s) 2023-01-11T21:22:55.4099160Z test_modules_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:55.4099590Z ok (0.021s) 2023-01-11T21:22:55.4100141Z test_multi_dot_import_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4100879Z inline_call [('inline in skipfiles: symbolic_trace /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py', 1)] 2023-01-11T21:22:55.4101292Z unimplemented [] 2023-01-11T21:22:55.4101855Z graph_break [('inline in skipfiles: symbolic_trace /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py', 1)] 2023-01-11T21:22:55.4102464Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4102804Z ok (0.011s) 2023-01-11T21:22:55.4103186Z test_multi_import_unspec (__main__.make_unspec_cls..UnspecTest) ... skip: requires detectron2 (0.000s) 2023-01-11T21:22:55.4104093Z test_named_buffers_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:22:55.4104530Z ok (0.010s) 2023-01-11T21:22:55.4105053Z test_nn_parameter_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4105651Z inline_call [('inline in skipfiles: assertTrue /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:55.4106026Z unimplemented [] 2023-01-11T21:22:55.4106529Z graph_break [('inline in skipfiles: assertTrue /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:22:55.4107087Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4107433Z ok (0.013s) 2023-01-11T21:22:55.4107825Z test_norm_dtype_unspec (__main__.make_unspec_cls..UnspecTest) ... skip: requires cuda (0.001s) 2023-01-11T21:22:55.4108527Z test_not_rewrite_assert_for_other_errors_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4109129Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.4109457Z ok (0.007s) 2023-01-11T21:22:55.4110078Z test_not_rewrite_assert_unspec (__main__.make_unspec_cls..UnspecTest) ... unimplemented [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:55.4110479Z ok (0.005s) 2023-01-11T21:22:55.4110994Z test_numpy_list_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:22:55.4111390Z unimplemented [] 2023-01-11T21:22:55.4112018Z graph_break [('call torch._dynamo.disable() wrapped function .rand_gen at 0x7fa8c113b9a0>', 1)] 2023-01-11T21:22:55.4112460Z expected failure (0.020s) 2023-01-11T21:22:55.4113050Z test_optimized_deepcopy_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4113607Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4114008Z ok (0.012s) 2023-01-11T21:22:55.4114778Z test_primtorch_no_graph_break_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:22:55.4115299Z expected failure (0.003s) 2023-01-11T21:22:55.4115832Z test_primtorch_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4116492Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:22:55.4116918Z unimplemented [] 2023-01-11T21:22:55.4117502Z graph_break [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:22:55.4117856Z ok (0.004s) 2023-01-11T21:22:55.4118456Z test_recursive_map_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4118843Z inline_call [] 2023-01-11T21:22:55.4119290Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4119630Z ok (0.012s) 2023-01-11T21:22:55.4120005Z test_reformer_eval_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4120568Z stats [('calls_captured', 10), ('fusions_possible', 9), ('unique_graphs', 1)] 2023-01-11T21:22:55.4120881Z ok (0.042s) 2023-01-11T21:22:55.4121263Z test_reformer_min_chunk_len_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4121831Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.4122153Z ok (0.015s) 2023-01-11T21:22:55.4122527Z test_reformer_remove_unused_args_unspec (__main__.make_unspec_cls..UnspecTest) ... foo 2023-01-11T21:22:55.4122882Z foo 2023-01-11T21:22:55.4123195Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4123696Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4124079Z unimplemented [] 2023-01-11T21:22:55.4124542Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2)] 2023-01-11T21:22:55.4125075Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:55.4125523Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4125793Z ok (0.024s) 2023-01-11T21:22:55.4126147Z test_reformer_sorting_unspec (__main__.make_unspec_cls..UnspecTest) ... inline_call [] 2023-01-11T21:22:55.4126696Z stats [('calls_captured', 14), ('fusions_possible', 13), ('unique_graphs', 1)] 2023-01-11T21:22:55.4127023Z ok (0.036s) 2023-01-11T21:22:55.4127527Z test_reformer_train_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4128243Z inline_call [('inline in skipfiles: save_for_backward /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py', 1)] 2023-01-11T21:22:55.4128674Z unimplemented [] 2023-01-11T21:22:55.4129482Z graph_break [('autograd.Function with requires_grad', 1), ('inline in skipfiles: save_for_backward /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py', 1)] 2023-01-11T21:22:55.4130156Z stats [('calls_captured', 10), ('fusions_possible', 6), ('unique_graphs', 4)] 2023-01-11T21:22:55.4130503Z ok (0.059s) 2023-01-11T21:22:55.4131041Z test_reinplacing_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4131607Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4132039Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4132326Z ok (0.245s) 2023-01-11T21:22:55.4132984Z test_relative_import_no_modulename_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4133448Z ok (0.007s) 2023-01-11T21:22:55.4134084Z test_relative_import_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4134634Z ok (0.006s) 2023-01-11T21:22:55.4135250Z test_rewrite_assert_noop_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:22:55.4135694Z ok (0.020s) 2023-01-11T21:22:55.4136319Z test_rewrite_assert_with_fstring_msg_unspec (__main__.make_unspec_cls..UnspecTest) ... unimplemented [('generic_jump TensorVariable()', 1)] 2023-01-11T21:22:55.4136740Z ok (0.004s) 2023-01-11T21:22:55.4155023Z test_rewrite_assert_with_msg_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 18), ('fusions_possible', 15), ('unique_graphs', 3)] 2023-01-11T21:22:55.4155603Z ok (0.022s) 2023-01-11T21:22:55.4156446Z test_rewrite_assert_without_msg_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 12), ('fusions_possible', 10), ('unique_graphs', 2)] 2023-01-11T21:22:55.4156910Z ok (0.015s) 2023-01-11T21:22:55.4157475Z test_rng_state_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4158155Z unimplemented [('TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd', 1)] 2023-01-11T21:22:55.4158779Z graph_break [('TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd', 2)] 2023-01-11T21:22:55.4159316Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:22:55.4159649Z ok (0.028s) 2023-01-11T21:22:55.4160275Z test_seq_append_list_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:55.4160692Z ok (0.022s) 2023-01-11T21:22:55.4161753Z test_sigmoid_out_unspec (__main__.make_unspec_cls..UnspecTest) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1543: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3, 5]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:55.4162818Z torch.sigmoid(inp, out=out1) 2023-01-11T21:22:55.4164240Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:22:55.4165130Z warnings.warn(msg) 2023-01-11T21:22:55.4166121Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1543: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3, 5]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:55.4167080Z torch.sigmoid(inp, out=out1) 2023-01-11T21:22:55.4167451Z frames [('total', 7), ('ok', 7)] 2023-01-11T21:22:55.4167922Z inline_call [('call_function UserDefinedClassVariable() [] {}', 1)] 2023-01-11T21:22:55.4168254Z ok (0.032s) 2023-01-11T21:22:55.4168893Z test_slice_into_list_mutable_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 30), ('fusions_possible', 29), ('unique_graphs', 1)] 2023-01-11T21:22:55.4169507Z ok (0.080s) 2023-01-11T21:22:55.4170093Z test_slicing_dynamic_shape_setitem_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:22:55.4170774Z unimplemented [('Dynamic slicing not supported', 1)] 2023-01-11T21:22:55.4171239Z graph_break [('Dynamic slicing not supported', 1)] 2023-01-11T21:22:55.4171744Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4172182Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4172443Z ok (0.012s) 2023-01-11T21:22:55.4172982Z test_slicing_dynamic_shape_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4173544Z unimplemented [('Dynamic slicing not supported', 2)] 2023-01-11T21:22:55.4174042Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:55.4174389Z ok (0.018s) 2023-01-11T21:22:55.4175546Z test_sort_out_unspec (__main__.make_unspec_cls..UnspecTest) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:55.4176634Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:22:55.4178149Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:55.4179122Z return node.target(*args, **kwargs) 2023-01-11T21:22:55.4180141Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:55.4181143Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:22:55.4182216Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:22:55.4183245Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:22:55.4183749Z frames [('total', 7), ('ok', 7)] 2023-01-11T21:22:55.4184213Z inline_call [('call_function UserDefinedClassVariable() [] {}', 1)] 2023-01-11T21:22:55.4184563Z ok (0.040s) 2023-01-11T21:22:55.4185124Z test_specialized_stride_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4185702Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4186046Z ok (0.010s) 2023-01-11T21:22:55.4186616Z test_swin_base_tensor_attr_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4187211Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:22:55.4187607Z ok (0.013s) 2023-01-11T21:22:55.4188137Z test_tensor_isinstance_tuple_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4188755Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4189077Z ok (0.009s) 2023-01-11T21:22:55.4189601Z test_tokenization_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4190293Z inline_call [('inline in skipfiles: __init__ /opt/conda/lib/python3.10/collections/__init__.py', 2)] 2023-01-11T21:22:55.4190656Z unimplemented [] 2023-01-11T21:22:55.4191195Z graph_break [('inline in skipfiles: __init__ /opt/conda/lib/python3.10/collections/__init__.py', 2)] 2023-01-11T21:22:55.4191583Z ok (0.008s) 2023-01-11T21:22:55.4192292Z test_torch_ops_aten_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4192724Z ok (0.010s) 2023-01-11T21:22:55.4193379Z test_vdd_duplicate_error_unspec (__main__.make_unspec_cls..UnspecTest) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:22:55.4193827Z ok (0.013s) 2023-01-11T21:22:55.4194350Z test_while_loop_graph_break_unspec (__main__.make_unspec_cls..UnspecTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:22:55.4194748Z inline_call [] 2023-01-11T21:22:55.4195338Z unimplemented [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:22:55.4195943Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4196267Z ok (0.007s) 2023-01-11T21:22:55.4196662Z test_with_on_graph_break_inst_unspec (__main__.make_unspec_cls..UnspecTest) ... Hello world 2023-01-11T21:22:55.4197030Z Hello world 2023-01-11T21:22:55.4197339Z frames [('total', 6), ('ok', 6)] 2023-01-11T21:22:55.4197853Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:22:55.4198234Z unimplemented [] 2023-01-11T21:22:55.4198765Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2), ('Tensor.backward', 1)] 2023-01-11T21:22:55.4199331Z stats [('calls_captured', 11), ('fusions_possible', 7), ('unique_graphs', 4)] 2023-01-11T21:22:55.4199654Z ok (0.026s) 2023-01-11T21:22:55.4200042Z test_builtin_functions_on_cuda (__main__.UnspecTests) ... skip: requires cuda (0.001s) 2023-01-11T21:22:55.4200586Z test_builtin_getitem (__main__.UnspecTests) ... frames [('total', 1)] 2023-01-11T21:22:55.4200936Z expected failure (0.008s) 2023-01-11T21:22:55.4201414Z test_builtin_max_min (__main__.UnspecTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4201921Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:22:55.4202254Z ok (0.009s) 2023-01-11T21:22:55.4202758Z test_feed_random_values_into_graph_only (__main__.UnspecTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4203300Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:22:55.4203637Z ok (0.013s) 2023-01-11T21:22:55.4204170Z test_multiple_consecutive_random_calls_before_graph (__main__.UnspecTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4204750Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4205068Z ok (0.028s) 2023-01-11T21:22:55.4205521Z test_no_recompilations (__main__.UnspecTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4206063Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4206387Z ok (0.007s) 2023-01-11T21:22:55.4206850Z test_numpy_correctness (__main__.UnspecTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:22:55.4207362Z unimplemented [('reconstruct: ConstantVariable(float64)', 1)] 2023-01-11T21:22:55.4207905Z graph_break [('Tensor.numpy', 2), ('numpy', 2)] 2023-01-11T21:22:55.4208396Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4208735Z ok (0.024s) 2023-01-11T21:22:55.4209352Z test_random_call_with_while_loop (__main__.UnspecTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4209910Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:22:55.4210256Z ok (0.007s) 2023-01-11T21:22:55.4210764Z test_random_values_with_graph_break (__main__.UnspecTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:22:55.4211133Z unimplemented [] 2023-01-11T21:22:55.4211479Z graph_break [('Tensor.item', 2)] 2023-01-11T21:22:55.4211938Z stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:22:55.4212264Z ok (0.020s) 2023-01-11T21:22:55.4212842Z test_unspec_float_precision (__main__.UnspecTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:22:55.4213427Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:22:55.4213781Z ok (0.105s) 2023-01-11T21:22:55.4213937Z 2023-01-11T21:22:55.4214256Z ---------------------------------------------------------------------- 2023-01-11T21:22:55.4214622Z Ran 137 tests in 6.810s 2023-01-11T21:22:55.4214809Z 2023-01-11T21:22:55.4214973Z OK (skipped=3, expected failures=5) 2023-01-11T21:22:55.4215166Z 2023-01-11T21:22:55.4215293Z Generating XML reports... 2023-01-11T21:22:55.4215959Z Generated XML report: test-reports/python-unittest/dynamo.test_unspec/TEST-UnspecNNModuleTests-20230111212248.xml 2023-01-11T21:22:55.4216749Z Generated XML report: test-reports/python-unittest/dynamo.test_unspec/TEST-UnspecReproTests-20230111212248.xml 2023-01-11T21:22:55.4217492Z Generated XML report: test-reports/python-unittest/dynamo.test_unspec/TEST-UnspecTests-20230111212248.xml 2023-01-11T21:22:55.4217834Z 2023-01-11T21:22:55.4218282Z ##[endgroup] 2023-01-11T21:22:55.4218878Z FINISHED PRINTING LOG FILE of dynamo/test_unspec (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_unspec_m1lweub2) 2023-01-11T21:22:55.4219212Z 2023-01-11T21:22:57.2187026Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:22:57.2874875Z Ignoring disabled issues: [] 2023-01-11T21:22:57.3007109Z Running profiler/test_profiler_tree ... [2023-01-11 21:22:57.300422] 2023-01-11T21:22:57.3008840Z Executing ['/opt/conda/bin/python', '-bb', 'profiler/test_profiler_tree.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:22:57.300670] 2023-01-11T21:22:59.2716450Z 2023-01-11T21:22:59.2717019Z Expand the folded group to see the log file of profiler/test_profiler_tree 2023-01-11T21:22:59.2718383Z ##[group]PRINTING LOG FILE of profiler/test_profiler_tree (/var/lib/jenkins/workspace/test/test-reports/profiler-test_profiler_tree_g35ii7qi) 2023-01-11T21:22:59.2718777Z 2023-01-11T21:22:59.2718882Z Running tests... 2023-01-11T21:22:59.2719480Z ---------------------------------------------------------------------- 2023-01-11T21:22:59.2720164Z Test results will be stored in test-reports/python-unittest/profiler.test_profiler_tree 2023-01-11T21:22:59.2721799Z test_profiler_experimental_tree (__main__.TestProfilerTree) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/82499 for platform(s) linux, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.227s) 2023-01-11T21:22:59.2723042Z test_profiler_experimental_tree_cuda (__main__.TestProfilerTree) ... skip: https://github.com/pytorch/pytorch/issues/83606 (0.001s) 2023-01-11T21:22:59.2723829Z test_profiler_experimental_tree_cuda_detailed (__main__.TestProfilerTree) ... skip: https://github.com/pytorch/pytorch/issues/83606 (0.001s) 2023-01-11T21:22:59.2724655Z test_profiler_experimental_tree_cuda_with_stream (__main__.TestProfilerTree) ... skip: https://github.com/pytorch/pytorch/issues/83606 (0.001s) 2023-01-11T21:22:59.2726693Z test_profiler_experimental_tree_with_memory (__main__.TestProfilerTree) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/82501 for platform(s) linux, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:22:59.2728044Z test_profiler_experimental_tree_with_memory_and_stack (__main__.TestProfilerTree) ... STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2728562Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2729293Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2729879Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2730319Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2730761Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2731182Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2731610Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2732050Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2732312Z ok (0.014s) 2023-01-11T21:22:59.2733121Z test_profiler_experimental_tree_with_record_function (__main__.TestProfilerTree) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/83246 for platform(s) linux, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:22:59.2733972Z test_profiler_experimental_tree_with_stack_and_modules (__main__.TestProfilerTree) ... STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2734485Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2734923Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2735340Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2735762Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2736200Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2736625Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2737040Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2737473Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2737730Z ok (0.013s) 2023-01-11T21:22:59.2738228Z test_profiler_experimental_tree_with_stack_and_torch_dispatch (__main__.TestProfilerTree) ... STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2738734Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2739207Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2739904Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2740632Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2741111Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2741541Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2741964Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2742385Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2742642Z ok (0.006s) 2023-01-11T21:22:59.2743173Z test_profiler_experimental_tree_with_stack_and_torch_function (__main__.TestProfilerTree) ... STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2743767Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2744194Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2744621Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2745046Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2745471Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2745898Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:22:59.2746320Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:22:59.2746762Z STAGE:2023-01-11 21:22:58 1526:1526 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:22:59.2747003Z ok (0.005s) 2023-01-11T21:22:59.2747108Z 2023-01-11T21:22:59.2747310Z ---------------------------------------------------------------------- 2023-01-11T21:22:59.2747553Z Ran 10 tests in 0.269s 2023-01-11T21:22:59.2747666Z 2023-01-11T21:22:59.2747725Z OK (skipped=6) 2023-01-11T21:22:59.2747830Z 2023-01-11T21:22:59.2747913Z Generating XML reports... 2023-01-11T21:22:59.2748341Z Generated XML report: test-reports/python-unittest/profiler.test_profiler_tree/TEST-TestProfilerTree-20230111212258.xml 2023-01-11T21:22:59.2748584Z 2023-01-11T21:22:59.2748850Z ##[endgroup] 2023-01-11T21:22:59.2749277Z FINISHED PRINTING LOG FILE of profiler/test_profiler_tree (/var/lib/jenkins/workspace/test/test-reports/profiler-test_profiler_tree_g35ii7qi) 2023-01-11T21:22:59.2749516Z 2023-01-11T21:23:01.1558698Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:23:01.2200867Z Ignoring disabled issues: [] 2023-01-11T21:23:01.2333182Z Running test_ao_sparsity ... [2023-01-11 21:23:01.233051] 2023-01-11T21:23:01.2336173Z Executing ['/opt/conda/bin/python', '-bb', 'test_ao_sparsity.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:23:01.233305] 2023-01-11T21:23:09.3628811Z 2023-01-11T21:23:09.3629344Z Expand the folded group to see the log file of test_ao_sparsity 2023-01-11T21:23:09.3630406Z ##[group]PRINTING LOG FILE of test_ao_sparsity (/var/lib/jenkins/workspace/test/test-reports/test_ao_sparsity_kknsuqq4) 2023-01-11T21:23:09.3630838Z 2023-01-11T21:23:09.3630949Z Running tests... 2023-01-11T21:23:09.3631594Z ---------------------------------------------------------------------- 2023-01-11T21:23:09.3632279Z Test results will be stored in test-reports/python-unittest/test_ao_sparsity 2023-01-11T21:23:09.3632949Z test_activation_sparsifier (ao.sparsity.test_activation_sparsifier.TestActivationSparsifier) 2023-01-11T21:23:09.3633645Z Simulates the workflow of the activation sparsifier, starting from object creation ... ok (0.287s) 2023-01-11T21:23:09.3634290Z test_constructor (ao.sparsity.test_data_scheduler.TestBaseDataScheduler) 2023-01-11T21:23:09.3634883Z Checks if the warning is thrown if the scheduler step is called ... ok (0.002s) 2023-01-11T21:23:09.3635688Z test_order_of_steps (ao.sparsity.test_data_scheduler.TestBaseDataScheduler) ... ok (0.007s) 2023-01-11T21:23:09.3636365Z test_state_dict (ao.sparsity.test_data_scheduler.TestBaseDataScheduler) ... ok (0.003s) 2023-01-11T21:23:09.3637027Z test_step (ao.sparsity.test_data_scheduler.TestBaseDataScheduler) ... ok (0.008s) 2023-01-11T21:23:09.3638461Z test_nn_embeddings (ao.sparsity.test_data_sparsifier.TestBaseDataSparsifier) ... /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/base_data_sparsifier.py:104: UserWarning: Replacing existing data of the same name. - Did you mean a different name? 2023-01-11T21:23:09.3639612Z warnings.warn("Replacing existing data of the same name. - Did you mean a different name?") 2023-01-11T21:23:09.3640116Z ok (0.020s) 2023-01-11T21:23:09.3640617Z test_nn_parameters (ao.sparsity.test_data_sparsifier.TestBaseDataSparsifier) ... ok (0.015s) 2023-01-11T21:23:09.3641308Z test_tensors (ao.sparsity.test_data_sparsifier.TestBaseDataSparsifier) ... ok (0.015s) 2023-01-11T21:23:09.3641962Z test_constructor (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3642605Z test_mask_squash (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.001s) 2023-01-11T21:23:09.3643272Z test_mask_squash_with_params1 (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3643953Z test_mask_squash_with_params2 (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3644615Z test_mask_squash_with_params3 (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3645273Z test_prepare_config (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3645913Z test_state_dict (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.003s) 2023-01-11T21:23:09.3646522Z test_step (ao.sparsity.test_sparsifier.TestBaseSparsifier) ... ok (0.001s) 2023-01-11T21:23:09.3647198Z test_complex_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) 2023-01-11T21:23:09.3647834Z Test fusion for models that contain Conv2d & Linear modules. ... ok (0.087s) 2023-01-11T21:23:09.3648496Z test_constructor (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.004s) 2023-01-11T21:23:09.3649454Z test_prepare_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.027s) 2023-01-11T21:23:09.3650147Z test_prepare_linear (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.012s) 2023-01-11T21:23:09.3650788Z test_prune_conv2d_activation_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.146s) 2023-01-11T21:23:09.3651458Z test_prune_conv2d_bias_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.088s) 2023-01-11T21:23:09.3652138Z test_prune_conv2d_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.049s) 2023-01-11T21:23:09.3652924Z test_prune_conv2d_padding_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.287s) 2023-01-11T21:23:09.3653616Z test_prune_conv2d_pool_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.046s) 2023-01-11T21:23:09.3654326Z test_prune_linear_activation_linear (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.060s) 2023-01-11T21:23:09.3655035Z test_prune_linear_bias_linear (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.060s) 2023-01-11T21:23:09.3655688Z test_prune_linear_linear (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) 2023-01-11T21:23:09.3656351Z test pruning linear-> linear modules ... ok (0.058s) 2023-01-11T21:23:09.3656883Z test_step_conv2d (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.027s) 2023-01-11T21:23:09.3657725Z test_step_linear (ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier) ... ok (0.009s) 2023-01-11T21:23:09.3659066Z test_convert_without_squash_mask (ao.sparsity.test_composability.TestComposability) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch. 2023-01-11T21:23:09.3659825Z warnings.warn( 2023-01-11T21:23:09.3660081Z ok (0.281s) 2023-01-11T21:23:09.3660490Z test_fusion_before_s_prep (ao.sparsity.test_composability.TestComposability) ... ok (0.282s) 2023-01-11T21:23:09.3661056Z test_q_prep_before_s_prep (ao.sparsity.test_composability.TestComposability) ... ok (0.277s) 2023-01-11T21:23:09.3661737Z test_qat_prep_before_s_prep (ao.sparsity.test_composability.TestComposability) ... ok (0.012s) 2023-01-11T21:23:09.3662325Z test_s_prep_before_fusion (ao.sparsity.test_composability.TestComposability) ... ok (0.277s) 2023-01-11T21:23:09.3662869Z test_s_prep_before_q_prep (ao.sparsity.test_composability.TestComposability) ... ok (0.280s) 2023-01-11T21:23:09.3663499Z test_s_prep_before_qat_prep (ao.sparsity.test_composability.TestComposability) ... ok (0.014s) 2023-01-11T21:23:09.3664044Z test_constructor (ao.sparsity.test_scheduler.TestCubicScheduler) ... ok (0.003s) 2023-01-11T21:23:09.3665300Z test_step (ao.sparsity.test_scheduler.TestCubicScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/scheduler/base_scheduler.py:125: UserWarning: Detected call of `scheduler.step()` before `sparsifier.step()`. You have to make sure you run the sparsifier.step() BEFORE any calls to the scheduer.step(). 2023-01-11T21:23:09.3666181Z warnings.warn("Detected call of `scheduler.step()` before `sparsifier.step()`. " 2023-01-11T21:23:09.3666540Z ok (0.002s) 2023-01-11T21:23:09.3666934Z test_jit_trace (ao.sparsity.test_parametrization.TestFakeSparsity) ... ok (0.094s) 2023-01-11T21:23:09.3667472Z test_masking_logic (ao.sparsity.test_parametrization.TestFakeSparsity) ... ok (0.002s) 2023-01-11T21:23:09.3668051Z test_state_dict_preserved (ao.sparsity.test_parametrization.TestFakeSparsity) ... ok (0.006s) 2023-01-11T21:23:09.3668636Z test_weights_parametrized (ao.sparsity.test_parametrization.TestFakeSparsity) ... ok (0.002s) 2023-01-11T21:23:09.3669209Z test_q_prep_fx_before_s_prep (ao.sparsity.test_composability.TestFxComposability) 2023-01-11T21:23:09.3669866Z This test checks that the ordering of prepare_fx -> sparse prepare -> convert_fx ... ok (0.314s) 2023-01-11T21:23:09.3670407Z test_q_prep_fx_s_prep_ref_conv (ao.sparsity.test_composability.TestFxComposability) 2023-01-11T21:23:09.3671093Z This checks that the ordering: prepare_fx -> sparse prepare -> convert_to_reference_fx ... ok (0.289s) 2023-01-11T21:23:09.3671619Z test_s_prep_before_q_prep_fx (ao.sparsity.test_composability.TestFxComposability) 2023-01-11T21:23:09.3672293Z This test checks that the ordering of sparse prepare -> prepare_fx -> convert_fx ... ok (0.302s) 2023-01-11T21:23:09.3672854Z test_s_prep_before_qat_prep_fx (ao.sparsity.test_composability.TestFxComposability) 2023-01-11T21:23:09.3673572Z This test checks that the ordering of sparse prepare -> prepare_qat_fx -> convert_fx ... ok (0.030s) 2023-01-11T21:23:09.3674145Z test_s_prep_q_prep_fx_ref (ao.sparsity.test_composability.TestFxComposability) 2023-01-11T21:23:09.3674898Z This checks that the ordering: sparse prepare -> prepare_fx -> convert_to_reference_fx ... ok (0.296s) 2023-01-11T21:23:09.3675533Z test_constructor (ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3676143Z test_mask_squash (ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier) ... ok (0.003s) 2023-01-11T21:23:09.3676717Z test_prepare (ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier) ... ok (0.001s) 2023-01-11T21:23:09.3677286Z test_sparsity_levels (ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier) ... ok (0.459s) 2023-01-11T21:23:09.3678138Z test_step (ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier) ... ok (0.278s) 2023-01-11T21:23:09.3678725Z test_nn_embeddings (ao.sparsity.test_data_sparsifier.TestNormDataSparsifiers) ... ok (0.309s) 2023-01-11T21:23:09.3679314Z test_nn_parameters (ao.sparsity.test_data_sparsifier.TestNormDataSparsifiers) ... ok (0.216s) 2023-01-11T21:23:09.3679916Z test_tensors (ao.sparsity.test_data_sparsifier.TestNormDataSparsifiers) ... ok (0.199s) 2023-01-11T21:23:09.3680474Z test_ptq_quantize_first (ao.sparsity.test_data_sparsifier.TestQuantizationUtils) 2023-01-11T21:23:09.3681023Z The expectation is post_training_sparse_quantize function ... ok (0.019s) 2023-01-11T21:23:09.3681575Z test_ptq_sparsify_first (ao.sparsity.test_data_sparsifier.TestQuantizationUtils) 2023-01-11T21:23:09.3682160Z The expectation is post_training_sparse_quantize function ... ok (0.008s) 2023-01-11T21:23:09.3683003Z test_sparse_qlinear (ao.sparsity.test_kernels.TestQuantizedSparseKernels) ... 2023-01-11 21:23:08,351 - root - INFO - static sparse qlinear is only available in fbgemm 2023-01-11T21:23:09.3683774Z 2023-01-11 21:23:08,393 - root - INFO - static sparse qlinear is only available in fbgemm 2023-01-11T21:23:09.3684379Z 2023-01-11 21:23:08,393 - root - INFO - dynamic sparse qlinear is only available in qnnpack 2023-01-11T21:23:09.3684950Z 2023-01-11 21:23:08,397 - root - INFO - dynamic sparse qlinear is only available in qnnpack 2023-01-11T21:23:09.3685287Z ok (0.103s) 2023-01-11T21:23:09.3686292Z test_sparse_qlinear (ao.sparsity.test_kernels.TestQuantizedSparseLayers) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py:310: UserWarning: must run observer before calling calculate_qparams. Returning default values. 2023-01-11T21:23:09.3687036Z warnings.warn( 2023-01-11T21:23:09.3687587Z [W qlinear_dynamic.cpp:247] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function operator()) 2023-01-11T21:23:09.3688553Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py:302: UserWarning: must run observer before calling calculate_qparams. Returning default values. 2023-01-11T21:23:09.3689217Z warnings.warn( 2023-01-11T21:23:09.3689475Z ok (0.095s) 2023-01-11T21:23:09.3689870Z test_sparse_qlinear_serdes (ao.sparsity.test_kernels.TestQuantizedSparseLayers) ... ok (0.121s) 2023-01-11T21:23:09.3690403Z test_constructor (ao.sparsity.test_scheduler.TestScheduler) ... ok (0.001s) 2023-01-11T21:23:09.3690892Z test_lambda_scheduler (ao.sparsity.test_scheduler.TestScheduler) ... ok (0.001s) 2023-01-11T21:23:09.3691361Z test_order_of_steps (ao.sparsity.test_scheduler.TestScheduler) 2023-01-11T21:23:09.3691792Z Checks if the warning is thrown if the scheduler step is called ... ok (0.005s) 2023-01-11T21:23:09.3692277Z test_step (ao.sparsity.test_scheduler.TestScheduler) ... ok (0.001s) 2023-01-11T21:23:09.3692772Z test_fqn_to_module (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3693198Z Tests that fqn_to_module operates as inverse ... ok (0.005s) 2023-01-11T21:23:09.3693657Z test_fqn_to_module_fail (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3694186Z Tests that fqn_to_module returns None when it tries to ... ok (0.002s) 2023-01-11T21:23:09.3694673Z test_fqn_to_module_for_tensors (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3695189Z Tests that fqn_to_module works for tensors, actually all parameters ... ok (0.005s) 2023-01-11T21:23:09.3695779Z test_get_arg_info_from_tensor_fqn (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3696352Z Tests that get_arg_info_from_tensor_fqn works for all parameters of the model. ... ok (0.005s) 2023-01-11T21:23:09.3696865Z test_get_arg_info_from_tensor_fqn_fail (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3697377Z Tests that get_arg_info_from_tensor_fqn works as expected for invalid tensor_fqn ... ok (0.003s) 2023-01-11T21:23:09.3697989Z test_module_to_fqn (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3698471Z Tests that module_to_fqn works as expected when compared to known good ... ok (0.003s) 2023-01-11T21:23:09.3698953Z test_module_to_fqn_fail (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3699559Z Tests that module_to_fqn returns None when an fqn that doesn't ... ok (0.002s) 2023-01-11T21:23:09.3700061Z test_module_to_fqn_root (ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions) 2023-01-11T21:23:09.3700684Z Tests that module_to_fqn returns '' when model and target module are the same ... ok (0.002s) 2023-01-11T21:23:09.3701299Z test_constructor (ao.sparsity.test_sparsifier.TestWeightNormSparsifier) ... ok (0.001s) 2023-01-11T21:23:09.3701883Z test_mask_squash (ao.sparsity.test_sparsifier.TestWeightNormSparsifier) ... ok (0.002s) 2023-01-11T21:23:09.3702452Z test_prepare (ao.sparsity.test_sparsifier.TestWeightNormSparsifier) ... ok (0.001s) 2023-01-11T21:23:09.3703080Z test_sparsity_levels (ao.sparsity.test_sparsifier.TestWeightNormSparsifier) ... ok (0.030s) 2023-01-11T21:23:09.3703744Z test_step (ao.sparsity.test_sparsifier.TestWeightNormSparsifier) ... ok (0.268s) 2023-01-11T21:23:09.3704307Z test_step_2_of_4 (ao.sparsity.test_sparsifier.TestWeightNormSparsifier) ... ok (0.014s) 2023-01-11T21:23:09.3704611Z 2023-01-11T21:23:09.3704915Z ---------------------------------------------------------------------- 2023-01-11T21:23:09.3705240Z Ran 79 tests in 6.267s 2023-01-11T21:23:09.3705401Z 2023-01-11T21:23:09.3705487Z OK 2023-01-11T21:23:09.3705613Z 2023-01-11T21:23:09.3705726Z Generating XML reports... 2023-01-11T21:23:09.3706466Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_activation_sparsifier.TestActivationSparsifier-20230111212302.xml 2023-01-11T21:23:09.3707460Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_scheduler.TestBaseDataScheduler-20230111212302.xml 2023-01-11T21:23:09.3708450Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_sparsifier.TestBaseDataSparsifier-20230111212302.xml 2023-01-11T21:23:09.3709457Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsifier.TestBaseSparsifier-20230111212302.xml 2023-01-11T21:23:09.3710540Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier-20230111212302.xml 2023-01-11T21:23:09.3711660Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_composability.TestComposability-20230111212302.xml 2023-01-11T21:23:09.3712656Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_scheduler.TestCubicScheduler-20230111212302.xml 2023-01-11T21:23:09.3713592Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_parametrization.TestFakeSparsity-20230111212302.xml 2023-01-11T21:23:09.3714521Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_composability.TestFxComposability-20230111212302.xml 2023-01-11T21:23:09.3715498Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier-20230111212302.xml 2023-01-11T21:23:09.3716502Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_sparsifier.TestNormDataSparsifiers-20230111212302.xml 2023-01-11T21:23:09.3717570Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_sparsifier.TestQuantizationUtils-20230111212302.xml 2023-01-11T21:23:09.3718644Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_kernels.TestQuantizedSparseKernels-20230111212302.xml 2023-01-11T21:23:09.3719737Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_kernels.TestQuantizedSparseLayers-20230111212302.xml 2023-01-11T21:23:09.3720656Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_scheduler.TestScheduler-20230111212302.xml 2023-01-11T21:23:09.3721649Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions-20230111212302.xml 2023-01-11T21:23:09.3722616Z Generated XML report: test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsifier.TestWeightNormSparsifier-20230111212302.xml 2023-01-11T21:23:09.3723018Z 2023-01-11T21:23:09.3723422Z ##[endgroup] 2023-01-11T21:23:09.3724041Z FINISHED PRINTING LOG FILE of test_ao_sparsity (/var/lib/jenkins/workspace/test/test-reports/test_ao_sparsity_kknsuqq4) 2023-01-11T21:23:09.3724351Z 2023-01-11T21:23:11.2319201Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:23:11.2961417Z Ignoring disabled issues: [] 2023-01-11T21:23:11.3094490Z Running test_foreach ... [2023-01-11 21:23:11.309179] 2023-01-11T21:23:11.3096303Z Executing ['/opt/conda/bin/python', '-bb', 'test_foreach.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:23:11.309425] 2023-01-11T21:23:13.7584904Z 2023-01-11T21:23:13.7585642Z Expand the folded group to see the log file of test_foreach 2023-01-11T21:23:13.7586903Z ##[group]PRINTING LOG FILE of test_foreach (/var/lib/jenkins/workspace/test/test-reports/test_foreach_tdwt3cj8) 2023-01-11T21:23:13.7587323Z 2023-01-11T21:23:13.7587450Z Running tests... 2023-01-11T21:23:13.7588099Z ---------------------------------------------------------------------- 2023-01-11T21:23:13.7588387Z 2023-01-11T21:23:13.7588743Z ---------------------------------------------------------------------- 2023-01-11T21:23:13.7589181Z Ran 0 tests in 0.000s 2023-01-11T21:23:13.7589384Z 2023-01-11T21:23:13.7589485Z OK 2023-01-11T21:23:13.7589654Z 2023-01-11T21:23:13.7589788Z Generating XML reports... 2023-01-11T21:23:13.7590375Z Test results will be stored in test-reports/python-unittest/test_foreach 2023-01-11T21:23:13.7590691Z 2023-01-11T21:23:13.7592310Z ##[endgroup] 2023-01-11T21:23:13.7593001Z FINISHED PRINTING LOG FILE of test_foreach (/var/lib/jenkins/workspace/test/test-reports/test_foreach_tdwt3cj8) 2023-01-11T21:23:13.7593387Z 2023-01-11T21:23:15.5520473Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:23:15.6166576Z Ignoring disabled issues: [] 2023-01-11T21:23:15.6298728Z Running test_function_schema ... [2023-01-11 21:23:15.629667] 2023-01-11T21:23:15.6301340Z Executing ['/opt/conda/bin/python', '-bb', 'test_function_schema.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:23:15.629933] 2023-01-11T21:23:17.6781891Z 2023-01-11T21:23:17.6782403Z Expand the folded group to see the log file of test_function_schema 2023-01-11T21:23:17.6783451Z ##[group]PRINTING LOG FILE of test_function_schema (/var/lib/jenkins/workspace/test/test-reports/test_function_schema_kh66fvrw) 2023-01-11T21:23:17.6783719Z 2023-01-11T21:23:17.6783795Z Running tests... 2023-01-11T21:23:17.6784204Z ---------------------------------------------------------------------- 2023-01-11T21:23:17.6784581Z Test results will be stored in test-reports/python-unittest/test_function_schema 2023-01-11T21:23:17.6784915Z test_backward_compatible_arguments (__main__.TestFunctionSchema) ... ok (0.218s) 2023-01-11T21:23:17.6785240Z test_backward_compatible_outputs (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6785546Z test_backward_compatible_structure (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6785886Z test_backward_compatible_with_smart_serialization (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6786238Z test_forward_compatible_arguments_real_use_case (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6786575Z test_forward_compatible_arguments_with_out (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6787056Z test_forward_compatible_arguments_without_out (__main__.TestFunctionSchema) ... ok (0.002s) 2023-01-11T21:23:17.6787359Z test_out_schema (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6787629Z test_schema_error (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6787909Z test_serialize_and_deserialize (__main__.TestFunctionSchema) ... ok (0.213s) 2023-01-11T21:23:17.6788234Z test_string_optional_parameter_default_value (__main__.TestFunctionSchema) ... ok (0.002s) 2023-01-11T21:23:17.6788572Z test_tensor_list_alias_annotation_properly_parsed (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6788912Z test_tensor_option_arguments_properly_parsed (__main__.TestFunctionSchema) ... ok (0.001s) 2023-01-11T21:23:17.6789086Z 2023-01-11T21:23:17.6789349Z ---------------------------------------------------------------------- 2023-01-11T21:23:17.6789596Z Ran 13 tests in 0.442s 2023-01-11T21:23:17.6789712Z 2023-01-11T21:23:17.6789772Z OK 2023-01-11T21:23:17.6789861Z 2023-01-11T21:23:17.6789933Z Generating XML reports... 2023-01-11T21:23:17.6790371Z Generated XML report: test-reports/python-unittest/test_function_schema/TEST-TestFunctionSchema-20230111212316.xml 2023-01-11T21:23:17.6790613Z 2023-01-11T21:23:17.6790840Z ##[endgroup] 2023-01-11T21:23:17.6791220Z FINISHED PRINTING LOG FILE of test_function_schema (/var/lib/jenkins/workspace/test/test-reports/test_function_schema_kh66fvrw) 2023-01-11T21:23:17.6791441Z 2023-01-11T21:23:19.4850345Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:23:19.5488754Z Ignoring disabled issues: [] 2023-01-11T21:23:19.5620775Z Running test_jit ... [2023-01-11 21:23:19.561813] 2023-01-11T21:23:19.5622698Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:23:19.562070] 2023-01-11T21:25:29.6895124Z 2023-01-11T21:25:29.6895618Z Expand the folded group to see the log file of test_jit 2023-01-11T21:25:29.6896622Z ##[group]PRINTING LOG FILE of test_jit (/var/lib/jenkins/workspace/test/test-reports/test_jit_lpu6xhd1) 2023-01-11T21:25:29.6899185Z CUDA not available, skipping tests 2023-01-11T21:25:29.6899610Z 2023-01-11T21:25:29.6899905Z Running tests... 2023-01-11T21:25:29.6900578Z ---------------------------------------------------------------------- 2023-01-11T21:25:29.6901235Z Test results will be stored in test-reports/python-unittest/test_jit 2023-01-11T21:25:29.6901845Z test_becomes_wildcard_annotations (jit.test_alias_analysis.TestAliasAnalysis) ... ok (0.002s) 2023-01-11T21:25:29.6902500Z test_nested_list_construct_not_wildcard (jit.test_alias_analysis.TestAliasAnalysis) ... ok (0.010s) 2023-01-11T21:25:29.6903130Z test_recursive_calls (jit.test_alias_analysis.TestAliasAnalysis) ... ok (0.014s) 2023-01-11T21:25:29.6905037Z test_async_future_type_python (jit.test_async.TestAsync) ... ok (0.001s) 2023-01-11T21:25:29.6905587Z test_async_grad_guard_no_grad (jit.test_async.TestAsync) ... ok (0.043s) 2023-01-11T21:25:29.6906181Z test_async_grad_guard_with_grad (jit.test_async.TestAsync) ... ok (0.006s) 2023-01-11T21:25:29.6906680Z test_async_kwargs (jit.test_async.TestAsync) ... ok (0.195s) 2023-01-11T21:25:29.6907161Z test_async_parsing (jit.test_async.TestAsync) ... ok (0.008s) 2023-01-11T21:25:29.6907621Z test_async_python (jit.test_async.TestAsync) ... ok (0.003s) 2023-01-11T21:25:29.6908040Z test_async_script (jit.test_async.TestAsync) ... ok (0.006s) 2023-01-11T21:25:29.6908464Z test_async_script_capture (jit.test_async.TestAsync) ... ok (0.008s) 2023-01-11T21:25:29.6908916Z test_async_script_error (jit.test_async.TestAsync) ... ok (0.032s) 2023-01-11T21:25:29.6909418Z test_async_script_multi_forks (jit.test_async.TestAsync) ... ok (0.014s) 2023-01-11T21:25:29.6909933Z test_async_script_multi_waits (jit.test_async.TestAsync) ... ok (0.006s) 2023-01-11T21:25:29.6910456Z test_async_script_nested (jit.test_async.TestAsync) ... ok (0.009s) 2023-01-11T21:25:29.6911240Z test_async_script_no_script_mod (jit.test_async.TestAsync) ... ok (0.001s) 2023-01-11T21:25:29.6912028Z test_async_script_trace (jit.test_async.TestAsync) ... ok (0.032s) 2023-01-11T21:25:29.6912495Z test_future_subtyping (jit.test_async.TestAsync) 2023-01-11T21:25:29.6912939Z Test that futures subtype each other properly. ... ok (0.009s) 2023-01-11T21:25:29.6913424Z test_no_future_subtype_message (jit.test_async.TestAsync) ... ok (0.001s) 2023-01-11T21:25:29.6913915Z test_trace_fork_wait (jit.test_async.TestAsync) ... ok (0.010s) 2023-01-11T21:25:29.6914380Z test_trace_fork_wait_inline (jit.test_async.TestAsync) ... ok (0.007s) 2023-01-11T21:25:29.6914901Z test_trace_fork_wait_leaking (jit.test_async.TestAsync) ... ok (0.002s) 2023-01-11T21:25:29.6915609Z test_trace_fork_wait_list_modulecalls (jit.test_async.TestAsync) ... ok (0.024s) 2023-01-11T21:25:29.6916195Z test_trace_modulecalls_with_different_output_types (jit.test_async.TestAsync) ... ok (0.015s) 2023-01-11T21:25:29.6916742Z test_aten_pow_zero_negative_exponent (jit.test_aten_pow.TestAtenPow) 2023-01-11T21:25:29.6917191Z 1. Testing a = int, b = int ... ok (0.021s) 2023-01-11T21:25:29.6917687Z test_autodiff_requires_grad_nograd (jit.test_autodiff.TestAutodiffJit) ... ok (0.083s) 2023-01-11T21:25:29.6918267Z test_requires_grad_outputs (jit.test_autodiff.TestAutodiffJit) ... ok (0.050s) 2023-01-11T21:25:29.6918864Z test_requires_grad_outputs_profiled_twice (jit.test_autodiff.TestAutodiffJit) ... ok (0.115s) 2023-01-11T21:25:29.6919501Z test_requires_grad_outputs_side_effects (jit.test_autodiff.TestAutodiffJit) ... ok (0.115s) 2023-01-11T21:25:29.6920137Z test_undefined_tensor_lists (jit.test_autodiff.TestAutodiffJit) ... ok (0.115s) 2023-01-11T21:25:29.6920811Z test_aliased_outputs (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.003s) 2023-01-11T21:25:29.6921527Z test_bias_as_arg (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.363s) 2023-01-11T21:25:29.6922246Z test_bias_as_module_attr (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.304s) 2023-01-11T21:25:29.6922970Z test_chunk_constant_script_ad (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.004s) 2023-01-11T21:25:29.6923698Z test_constructed_bias (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.022s) 2023-01-11T21:25:29.6924444Z test_diff_graph_inline_threshold (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.006s) 2023-01-11T21:25:29.6925378Z test_differentiable_graph_ops_requires_grad (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... skip: disable until we property handle tensor lists with undefined gradients (0.001s) 2023-01-11T21:25:29.6926170Z test_does_not_create_cycles (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.006s) 2023-01-11T21:25:29.6926880Z test_does_not_merge_unrelated (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.005s) 2023-01-11T21:25:29.6927552Z test_has_profiled_info_aliasing_outputs (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.001s) 2023-01-11T21:25:29.6928207Z test_merge_respects_aliasing (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.009s) 2023-01-11T21:25:29.6928914Z test_merges_dense (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.006s) 2023-01-11T21:25:29.6929786Z test_merges_down (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.006s) 2023-01-11T21:25:29.6930377Z test_merges_up (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.006s) 2023-01-11T21:25:29.6931034Z test_merges_without_cycles (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.005s) 2023-01-11T21:25:29.6932044Z test_prune_grad (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... skip: Simple Executor doesn't support gradients (0.001s) 2023-01-11T21:25:29.6932962Z test_requires_grad_for_tensor_list (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.005s) 2023-01-11T21:25:29.6933713Z test_respects_lexical_scoping (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.006s) 2023-01-11T21:25:29.6934453Z test_simple_merge (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.004s) 2023-01-11T21:25:29.6935113Z test_simple_no_merge (jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing) ... ok (0.005s) 2023-01-11T21:25:29.6936254Z test_errors (jit.test_backends.TestBackends) ... [W backend_detail.cpp:393] Warning: Backend [test_backend_unavailable] is not available. Execution of this Module is still possible by saving and loading on a device where the backend is available. (function codegen_backend_module) 2023-01-11T21:25:29.6937070Z ok (0.136s) 2023-01-11T21:25:29.6937842Z test_execution (jit.test_backends.TestBackends) ... [W backend_detail.cpp:393] Warning: Backend [test_backend_unavailable] is not available. Execution of this Module is still possible by saving and loading on a device where the backend is available. (function codegen_backend_module) 2023-01-11T21:25:29.6938613Z ok (0.127s) 2023-01-11T21:25:29.6939397Z test_save_load (jit.test_backends.TestBackends) ... [W backend_detail.cpp:393] Warning: Backend [test_backend_unavailable] is not available. Execution of this Module is still possible by saving and loading on a device where the backend is available. (function codegen_backend_module) 2023-01-11T21:25:29.6940103Z ok (0.230s) 2023-01-11T21:25:29.6940527Z test_errors (jit.test_backends.TestBackendsWithCompiler) ... ok (0.044s) 2023-01-11T21:25:29.6941101Z test_execution (jit.test_backends.TestBackendsWithCompiler) ... ok (0.065s) 2023-01-11T21:25:29.6941607Z test_batch_mm_no_mutation (jit.test_batch_mm.TestBatchMM) ... ok (0.005s) 2023-01-11T21:25:29.6942120Z test_batch_mm_permitted_mutation (jit.test_batch_mm.TestBatchMM) ... ok (0.006s) 2023-01-11T21:25:29.6942693Z test_batch_mm_prohibited_mutation (jit.test_batch_mm.TestBatchMM) ... ok (0.006s) 2023-01-11T21:25:29.6943285Z test_batch_mm_prohibited_mutation_if_node (jit.test_batch_mm.TestBatchMM) ... ok (0.007s) 2023-01-11T21:25:29.6943922Z test_batch_mm_prohibited_mutation_multiple_adds (jit.test_batch_mm.TestBatchMM) ... ok (0.008s) 2023-01-11T21:25:29.6944525Z test_batch_mm_side_permitted_mutation (jit.test_batch_mm.TestBatchMM) ... ok (0.007s) 2023-01-11T21:25:29.6946682Z test_batch_mm_side_prohibited_mutation_common_side (jit.test_batch_mm.TestBatchMM) ... ok (0.009s) 2023-01-11T21:25:29.6947332Z test_batch_mm_side_prohibited_mutation_uncommon_side (jit.test_batch_mm.TestBatchMM) ... ok (0.009s) 2023-01-11T21:25:29.6947863Z test_del (jit.test_builtins.TestBuiltins) ... ok (0.005s) 2023-01-11T21:25:29.6948374Z test_del_multiple_operands (jit.test_builtins.TestBuiltins) ... ok (0.008s) 2023-01-11T21:25:29.6948862Z test_has_attr (jit.test_builtins.TestBuiltins) ... ok (0.017s) 2023-01-11T21:25:29.6949374Z test_has_attr_invalid_args (jit.test_builtins.TestBuiltins) ... ok (0.008s) 2023-01-11T21:25:29.6949897Z test_cast_overloads (jit.test_class_type.TestClassType) ... ok (0.036s) 2023-01-11T21:25:29.6950374Z test_class_attribute_wrong_type (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6950886Z Test that the error message displayed when convering a class type ... ok (0.019s) 2023-01-11T21:25:29.6951420Z test_class_constant (jit.test_class_type.TestClassType) ... ok (0.031s) 2023-01-11T21:25:29.6951993Z test_class_constructs_itself (jit.test_class_type.TestClassType) ... ok (0.016s) 2023-01-11T21:25:29.6952526Z test_class_inheritance (jit.test_class_type.TestClassType) ... ok (0.112s) 2023-01-11T21:25:29.6953052Z test_class_inheritance_implicit (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6953543Z Test that inheritance is detected in ... ok (0.030s) 2023-01-11T21:25:29.6953984Z test_class_sorting (jit.test_class_type.TestClassType) ... ok (0.080s) 2023-01-11T21:25:29.6954622Z test_class_specialization (jit.test_class_type.TestClassType) ... ok (0.074s) 2023-01-11T21:25:29.6955158Z test_class_type_as_param (jit.test_class_type.TestClassType) ... ok (0.016s) 2023-01-11T21:25:29.6955658Z test_classmethod (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6956118Z Test classmethods on class types. ... ok (0.021s) 2023-01-11T21:25:29.6956586Z test_conditional_set_attr (jit.test_class_type.TestClassType) ... ok (0.107s) 2023-01-11T21:25:29.6957094Z test_custom_delete (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6957537Z Test that del can be called on an instance of a class that ... ok (0.041s) 2023-01-11T21:25:29.6958015Z test_default_args (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6958634Z Test that methods on class types can have default arguments. ... ok (0.089s) 2023-01-11T21:25:29.6959111Z test_get_attr (jit.test_class_type.TestClassType) ... ok (0.012s) 2023-01-11T21:25:29.6959628Z test_get_attr_not_initialized (jit.test_class_type.TestClassType) ... ok (0.010s) 2023-01-11T21:25:29.6960153Z test_get_with_method (jit.test_class_type.TestClassType) ... ok (0.001s) 2023-01-11T21:25:29.6960696Z test_imported_classes (jit.test_class_type.TestClassType) ... ok (0.014s) 2023-01-11T21:25:29.6961188Z test_in (jit.test_class_type.TestClassType) ... ok (0.013s) 2023-01-11T21:25:29.6961672Z test_init_compiled_first (jit.test_class_type.TestClassType) ... ok (0.014s) 2023-01-11T21:25:29.6962209Z test_interface (jit.test_class_type.TestClassType) ... ok (0.237s) 2023-01-11T21:25:29.6962724Z test_optional_type_promotion (jit.test_class_type.TestClassType) ... ok (0.028s) 2023-01-11T21:25:29.6963254Z test_out_of_order_methods (jit.test_class_type.TestClassType) ... ok (0.117s) 2023-01-11T21:25:29.6963770Z test_overloaded_fn (jit.test_class_type.TestClassType) ... ok (0.137s) 2023-01-11T21:25:29.6964232Z test_properties (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6964775Z Test that a scripted class can make use of the @property decorator. ... ok (0.065s) 2023-01-11T21:25:29.6965356Z test_py_class_to_ivalue_missing_attribute (jit.test_class_type.TestClassType) ... ok (0.018s) 2023-01-11T21:25:29.6965896Z test_python_interop (jit.test_class_type.TestClassType) ... ok (0.013s) 2023-01-11T21:25:29.6966375Z test_recursive_class (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6966894Z Recursive class types not yet supported. We should give a good error message. ... ok (0.118s) 2023-01-11T21:25:29.6967470Z test_recursive_script_builtin_type_resolution (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6968299Z Test resolution of built-in torch types(e.g. torch.Tensor, torch.device) when a class is recursively compiled. ... ok (0.050s) 2023-01-11T21:25:29.6968951Z test_recursive_script_module_builtin_type_resolution (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6969955Z Test resolution of built-in torch types(e.g. torch.Tensor, torch.device) when a class is recursively compiled ... ok (0.026s) 2023-01-11T21:25:29.6970557Z test_recursive_scripting (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6971075Z Test that class types are recursively scripted when an Python instance of one ... ok (0.023s) 2023-01-11T21:25:29.6971613Z test_recursive_scripting_failed (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6972128Z Test that class types module attributes that fail to script ... ok (0.041s) 2023-01-11T21:25:29.6972626Z test_reference_semantics (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6973153Z Test that modifications made to a class instance in TorchScript ... ok (0.014s) 2023-01-11T21:25:29.6973717Z test_save_load_with_classes (jit.test_class_type.TestClassType) ... ok (0.016s) 2023-01-11T21:25:29.6974277Z test_save_load_with_classes_nested (jit.test_class_type.TestClassType) ... ok (0.142s) 2023-01-11T21:25:29.6974833Z test_save_load_with_classes_returned (jit.test_class_type.TestClassType) ... ok (0.016s) 2023-01-11T21:25:29.6975510Z test_schema_human_readable (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6976154Z Make sure that the schema is human readable, ie the mode parameter should read "nearest" instead of being displayed in octal ... ok (0.205s) 2023-01-11T21:25:29.6976811Z test_self_referential_method (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6977330Z Test that a scripted class can have a method that refers to the class itself ... ok (0.024s) 2023-01-11T21:25:29.6977862Z test_set_attr_in_method (jit.test_class_type.TestClassType) ... ok (0.013s) 2023-01-11T21:25:29.6978376Z test_set_attr_non_initialized (jit.test_class_type.TestClassType) ... ok (0.010s) 2023-01-11T21:25:29.6978915Z test_set_attr_type_mismatch (jit.test_class_type.TestClassType) ... ok (0.010s) 2023-01-11T21:25:29.6979539Z test_staticmethod (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6979975Z Test static methods on class types. ... ok (0.029s) 2023-01-11T21:25:29.6980403Z test_type_annotation (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6980935Z Test that annotating container attributes with types works correctly ... ok (0.120s) 2023-01-11T21:25:29.6981503Z test_type_annotations (jit.test_class_type.TestClassType) ... ok (0.011s) 2023-01-11T21:25:29.6982060Z test_unresolved_class_attributes (jit.test_class_type.TestClassType) ... ok (0.020s) 2023-01-11T21:25:29.6982538Z test_unused_method (jit.test_class_type.TestClassType) 2023-01-11T21:25:29.6982955Z Test unused methods on scripted classes. ... ok (0.023s) 2023-01-11T21:25:29.6983507Z test_binary_op_complex_tensor (jit.test_complex.TestComplex) ... ok (0.016s) 2023-01-11T21:25:29.6984006Z test_comparison_ops (jit.test_complex.TestComplex) ... ok (0.012s) 2023-01-11T21:25:29.6984469Z test_complex_constants_and_ops (jit.test_complex.TestComplex) ... ok (0.430s) 2023-01-11T21:25:29.6984957Z test_complex_constructor (jit.test_complex.TestComplex) ... ok (0.045s) 2023-01-11T21:25:29.6985477Z test_complex_list_sum (jit.test_complex.TestComplex) ... ok (0.003s) 2023-01-11T21:25:29.6985993Z test_complex_parse (jit.test_complex.TestComplex) ... ok (0.006s) 2023-01-11T21:25:29.6986521Z test_complexdict (jit.test_complex.TestComplex) ... ok (0.004s) 2023-01-11T21:25:29.6987023Z test_complexlist (jit.test_complex.TestComplex) ... ok (0.003s) 2023-01-11T21:25:29.6987503Z test_div (jit.test_complex.TestComplex) ... ok (0.003s) 2023-01-11T21:25:29.6987963Z test_infj_nanj_pickle (jit.test_complex.TestComplex) ... ok (0.007s) 2023-01-11T21:25:29.6988404Z test_pickle (jit.test_complex.TestComplex) ... ok (0.006s) 2023-01-11T21:25:29.6988828Z test_script (jit.test_complex.TestComplex) ... ok (0.002s) 2023-01-11T21:25:29.6989319Z test_tensor_attributes (jit.test_complex.TestComplex) ... ok (0.006s) 2023-01-11T21:25:29.6989886Z test_torch_complex_constructor_with_tensor (jit.test_complex.TestComplex) ... ok (0.036s) 2023-01-11T21:25:29.6990509Z test_calling_scripted_custom_op (jit.test_custom_operators.TestCustomOperators) ... ok (0.003s) 2023-01-11T21:25:29.6991145Z test_calling_traced_custom_op (jit.test_custom_operators.TestCustomOperators) ... ok (0.005s) 2023-01-11T21:25:29.6991742Z test_default_arguments_are_used (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6992328Z test_dynamic_op_registry (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6992902Z test_generic_list (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6993457Z test_passing_and_returning_lists (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6994110Z test_passing_one_positional_but_not_the_second (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6994804Z test_passing_too_few_args (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6995429Z test_passing_too_many_args (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6996194Z test_passing_unknown_kwargs (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6996873Z test_script_graph_contains_custom_op (jit.test_custom_operators.TestCustomOperators) ... ok (0.002s) 2023-01-11T21:25:29.6997743Z test_script_graph_for_custom_ops_matches_traced_graph (jit.test_custom_operators.TestCustomOperators) ... skip: Need to figure out default dtype differences between fbcode and oss (0.000s) 2023-01-11T21:25:29.6998564Z test_simply_calling_an_operator (jit.test_custom_operators.TestCustomOperators) ... ok (0.001s) 2023-01-11T21:25:29.6999208Z test_where_no_scalar (jit.test_custom_operators.TestCustomOperators) ... ok (0.003s) 2023-01-11T21:25:29.6999767Z test_setattr_no_aliasdb (jit.test_dce.TestDCE) ... ok (0.004s) 2023-01-11T21:25:29.7000289Z test_setattr_removed (jit.test_dce.TestDCE) ... ok (0.007s) 2023-01-11T21:25:29.7001105Z test_python_submodule_script (jit.test_data_parallel.TestDataParallel) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:25:29.7001984Z test_shared_module (jit.test_data_parallel.TestDataParallel) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:25:29.7002834Z test_tensor_sharing (jit.test_data_parallel.TestDataParallel) ... skip: multi-GPU not supported (0.001s) 2023-01-11T21:25:29.7003725Z test_tensor_sharing_with_forward (jit.test_data_parallel.TestDataParallel) ... skip: multi-GPU not supported (0.001s) 2023-01-11T21:25:29.7004604Z test_traced_module (jit.test_data_parallel.TestDataParallel) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:25:29.7005236Z test__post_init__ (jit.test_dataclasses.TestDataclasses) ... ok (3.241s) 2023-01-11T21:25:29.7005807Z test_comparators (jit.test_dataclasses.TestDataclasses) ... ok (4.747s) 2023-01-11T21:25:29.7006357Z test_custom__eq__ (jit.test_dataclasses.TestDataclasses) ... ok (0.011s) 2023-01-11T21:25:29.7006942Z test_default_factories (jit.test_dataclasses.TestDataclasses) ... ok (0.003s) 2023-01-11T21:25:29.7007520Z test_init_vars (jit.test_dataclasses.TestDataclasses) ... ok (0.079s) 2023-01-11T21:25:29.7008070Z test_no_source (jit.test_dataclasses.TestDataclasses) ... ok (0.017s) 2023-01-11T21:25:29.7008679Z test_use_unregistered_dataclass_raises (jit.test_dataclasses.TestDataclasses) ... ok (0.001s) 2023-01-11T21:25:29.7009443Z test_custom_device_op (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.008s) 2023-01-11T21:25:29.7010063Z test_device_apply (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.002s) 2023-01-11T21:25:29.7010642Z test_device_arg (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.003s) 2023-01-11T21:25:29.7011263Z test_device_if_propagation (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.003s) 2023-01-11T21:25:29.7011884Z test_if_loop_mix (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.004s) 2023-01-11T21:25:29.7012642Z test_loop_device_change (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.003s) 2023-01-11T21:25:29.7013257Z test_loop_simple (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.003s) 2023-01-11T21:25:29.7013860Z test_mobilenet (jit.test_device_analysis.TestDeviceAnalysis) ... ok (3.552s) 2023-01-11T21:25:29.7014460Z test_nested_loops (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.005s) 2023-01-11T21:25:29.7015038Z test_set_dtype (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.003s) 2023-01-11T21:25:29.7015624Z test_simple (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.005s) 2023-01-11T21:25:29.7016209Z test_tensor_as_fns (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.010s) 2023-01-11T21:25:29.7016795Z test_while_change (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.003s) 2023-01-11T21:25:29.7017389Z test_zerodim_cpu (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.012s) 2023-01-11T21:25:29.7018013Z test_zerodim_gpu (jit.test_device_analysis.TestDeviceAnalysis) ... skip: No CUDA (0.000s) 2023-01-11T21:25:29.7018652Z test_zerodim_no_device (jit.test_device_analysis.TestDeviceAnalysis) ... ok (0.024s) 2023-01-11T21:25:29.7019308Z test_aug_assign (jit.test_list_dict.TestDict) ... ok (0.019s) 2023-01-11T21:25:29.7019780Z test_basic (jit.test_list_dict.TestDict) ... ok (0.021s) 2023-01-11T21:25:29.7020237Z test_clear (jit.test_list_dict.TestDict) ... ok (0.004s) 2023-01-11T21:25:29.7020683Z test_copy (jit.test_list_dict.TestDict) ... ok (0.005s) 2023-01-11T21:25:29.7021138Z test_del (jit.test_list_dict.TestDict) ... ok (0.008s) 2023-01-11T21:25:29.7021628Z test_dict_bool_conversion (jit.test_list_dict.TestDict) ... ok (0.024s) 2023-01-11T21:25:29.7022163Z test_dict_preserves_order (jit.test_list_dict.TestDict) ... ok (0.074s) 2023-01-11T21:25:29.7022662Z test_dict_to_python (jit.test_list_dict.TestDict) ... ok (0.023s) 2023-01-11T21:25:29.7023132Z test_dict_variance (jit.test_list_dict.TestDict) 2023-01-11T21:25:29.7023793Z `Dict[T1, _]` is not a subtype of `Dict[T2, _]`, even if `T1` is ... ok (0.012s) 2023-01-11T21:25:29.7024253Z test_get (jit.test_list_dict.TestDict) ... ok (0.009s) 2023-01-11T21:25:29.7024725Z test_get_boolkey (jit.test_list_dict.TestDict) ... ok (0.009s) 2023-01-11T21:25:29.7025200Z test_items (jit.test_list_dict.TestDict) ... ok (0.003s) 2023-01-11T21:25:29.7025649Z test_key_type (jit.test_list_dict.TestDict) ... ok (0.001s) 2023-01-11T21:25:29.7026111Z test_keys (jit.test_list_dict.TestDict) ... ok (0.005s) 2023-01-11T21:25:29.7026567Z test_len (jit.test_list_dict.TestDict) ... ok (0.004s) 2023-01-11T21:25:29.7027016Z test_loop (jit.test_list_dict.TestDict) ... ok (0.003s) 2023-01-11T21:25:29.7027474Z test_membership (jit.test_list_dict.TestDict) ... ok (0.008s) 2023-01-11T21:25:29.7027968Z test_mutability (jit.test_list_dict.TestDict) ... ok (0.003s) 2023-01-11T21:25:29.7028484Z test_optional_dict_construct (jit.test_list_dict.TestDict) ... ok (0.012s) 2023-01-11T21:25:29.7028994Z test_ordered_dict (jit.test_list_dict.TestDict) ... ok (0.013s) 2023-01-11T21:25:29.7029464Z test_pop (jit.test_list_dict.TestDict) ... ok (0.011s) 2023-01-11T21:25:29.7029935Z test_popitem (jit.test_list_dict.TestDict) ... ok (0.003s) 2023-01-11T21:25:29.7030399Z test_setdefault (jit.test_list_dict.TestDict) ... ok (0.008s) 2023-01-11T21:25:29.7030923Z test_type_annotation_missing_contained_type (jit.test_list_dict.TestDict) 2023-01-11T21:25:29.7031480Z Test that the use of a Dict type annotation without contained ... ok (0.002s) 2023-01-11T21:25:29.7031987Z test_update (jit.test_list_dict.TestDict) ... ok (0.011s) 2023-01-11T21:25:29.7032470Z test_update_existing_key (jit.test_list_dict.TestDict) ... ok (0.005s) 2023-01-11T21:25:29.7032964Z test_values (jit.test_list_dict.TestDict) ... ok (0.003s) 2023-01-11T21:25:29.7033425Z test_view (jit.test_list_dict.TestDict) ... ok (0.065s) 2023-01-11T21:25:29.7033943Z test_binary_scalar (jit.test_dtype_analysis.TestDtypeAnalysis) ... ok (0.009s) 2023-01-11T21:25:29.7035431Z test_binary_tensors (jit.test_dtype_analysis.TestDtypeAnalysis) ... /var/lib/jenkins/workspace/test/jit/test_dtype_analysis.py:165: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T21:25:29.7036387Z rand_tensor = torch.rand(shape, dtype=dtype) 2023-01-11T21:25:29.7036741Z ok (0.081s) 2023-01-11T21:25:29.7037169Z test_combined (jit.test_dtype_analysis.TestDtypeAnalysis) ... ok (0.009s) 2023-01-11T21:25:29.7037770Z test_conv_no_mixed_args (jit.test_dtype_analysis.TestDtypeAnalysis) ... ok (0.016s) 2023-01-11T21:25:29.7038373Z test_custom_rules (jit.test_dtype_analysis.TestDtypeAnalysis) ... ok (0.017s) 2023-01-11T21:25:29.7038932Z test_unary (jit.test_dtype_analysis.TestDtypeAnalysis) ... ok (0.035s) 2023-01-11T21:25:29.7039480Z test_closed_over_enum_constant (jit.test_enum.TestEnum) ... ok (0.010s) 2023-01-11T21:25:29.7039984Z test_enum_as_const (jit.test_enum.TestEnum) ... ok (0.007s) 2023-01-11T21:25:29.7040479Z test_enum_as_module_attribute (jit.test_enum.TestEnum) ... ok (0.009s) 2023-01-11T21:25:29.7041039Z test_enum_comp (jit.test_enum.TestEnum) ... ok (0.007s) 2023-01-11T21:25:29.7041524Z test_enum_comp_diff_classes (jit.test_enum.TestEnum) ... ok (0.010s) 2023-01-11T21:25:29.7042035Z test_enum_explicit_script (jit.test_enum.TestEnum) ... ok (0.001s) 2023-01-11T21:25:29.7042506Z test_enum_iterate (jit.test_enum.TestEnum) ... ok (0.010s) 2023-01-11T21:25:29.7042983Z test_enum_ivalue_type (jit.test_enum.TestEnum) ... ok (0.007s) 2023-01-11T21:25:29.7043469Z test_enum_module_return (jit.test_enum.TestEnum) ... ok (0.009s) 2023-01-11T21:25:29.7043936Z test_enum_name (jit.test_enum.TestEnum) ... ok (0.007s) 2023-01-11T21:25:29.7044383Z test_enum_return (jit.test_enum.TestEnum) ... ok (0.008s) 2023-01-11T21:25:29.7044841Z test_enum_value (jit.test_enum.TestEnum) ... ok (0.007s) 2023-01-11T21:25:29.7045390Z test_enum_value_types (jit.test_enum.TestEnum) ... ok (0.023s) 2023-01-11T21:25:29.7045910Z test_heterogenous_value_type_enum_error (jit.test_enum.TestEnum) ... ok (0.005s) 2023-01-11T21:25:29.7046451Z test_non_existent_enum_value (jit.test_enum.TestEnum) ... ok (0.006s) 2023-01-11T21:25:29.7046984Z test_string_enum_as_module_attribute (jit.test_enum.TestEnum) ... ok (0.009s) 2023-01-11T21:25:29.7047566Z test_freeze_interface_swapping_two_methods (jit.test_freezing.TestFreezing) ... ok (0.199s) 2023-01-11T21:25:29.7048218Z test_freeze_interface_within_object (jit.test_freezing.TestFreezing) ... expected failure (0.039s) 2023-01-11T21:25:29.7048819Z test_freeze_module (jit.test_freezing.TestFreezing) ... ok (0.014s) 2023-01-11T21:25:29.7049494Z test_freeze_module_detach_gradient (jit.test_freezing.TestFreezing) ... ok (0.012s) 2023-01-11T21:25:29.7050076Z test_freeze_module_in_training_mode (jit.test_freezing.TestFreezing) ... ok (0.241s) 2023-01-11T21:25:29.7050669Z test_freeze_module_inlining (jit.test_freezing.TestFreezing) ... ok (0.038s) 2023-01-11T21:25:29.7051240Z test_freeze_module_no_forward (jit.test_freezing.TestFreezing) ... ok (0.010s) 2023-01-11T21:25:29.7051800Z test_freeze_module_return_self (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7052383Z test_freeze_module_return_sub_module (jit.test_freezing.TestFreezing) ... ok (0.013s) 2023-01-11T21:25:29.7052976Z test_freeze_module_with_aliased_attr (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7053576Z test_freeze_module_with_aliased_attr2 (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7054160Z test_freeze_module_with_aliased_attr3 (jit.test_freezing.TestFreezing) ... ok (0.005s) 2023-01-11T21:25:29.7054773Z test_freeze_module_with_aliased_tensor_attr (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7055398Z test_freeze_module_with_aliased_tensor_attr2 (jit.test_freezing.TestFreezing) ... ok (0.009s) 2023-01-11T21:25:29.7056028Z test_freeze_module_with_aliased_tensor_attr3 (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7056634Z test_freeze_module_with_aliased_tensor_attr4 (jit.test_freezing.TestFreezing) ... ok (0.008s) 2023-01-11T21:25:29.7057249Z test_freeze_module_with_call_method (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7057828Z test_freeze_module_with_fork (jit.test_freezing.TestFreezing) ... ok (0.012s) 2023-01-11T21:25:29.7058377Z test_freeze_module_with_fork2 (jit.test_freezing.TestFreezing) ... ok (0.009s) 2023-01-11T21:25:29.7058994Z test_freeze_module_with_fork_calling_module_method (jit.test_freezing.TestFreezing) ... ok (0.011s) 2023-01-11T21:25:29.7059631Z test_freeze_module_with_helperfunction (jit.test_freezing.TestFreezing) ... ok (0.011s) 2023-01-11T21:25:29.7060254Z test_freeze_module_with_inplace_mutable (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7060831Z test_freeze_module_with_list (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7061416Z test_freeze_module_with_mutable_dict (jit.test_freezing.TestFreezing) ... ok (0.007s) 2023-01-11T21:25:29.7062123Z test_freeze_module_with_mutable_list (jit.test_freezing.TestFreezing) ... ok (0.004s) 2023-01-11T21:25:29.7062715Z test_freeze_module_with_mutable_tensor (jit.test_freezing.TestFreezing) ... ok (0.005s) 2023-01-11T21:25:29.7063319Z test_freeze_module_with_nested_fork (jit.test_freezing.TestFreezing) ... ok (0.021s) 2023-01-11T21:25:29.7064013Z test_freeze_module_with_nestedaliasing (jit.test_freezing.TestFreezing) ... ok (0.022s) 2023-01-11T21:25:29.7064656Z test_freeze_module_with_nestedaliasingscalar (jit.test_freezing.TestFreezing) ... ok (0.019s) 2023-01-11T21:25:29.7065290Z test_freeze_module_with_non_static_module_container_index (jit.test_freezing.TestFreezing) 2023-01-11T21:25:29.7066054Z Test that Modules containing non-static ModuleDict or ModuleList ... ok (0.174s) 2023-01-11T21:25:29.7066751Z test_freeze_module_with_overlapping_attrs (jit.test_freezing.TestFreezing) ... ok (0.009s) 2023-01-11T21:25:29.7067380Z test_freeze_module_with_preserve_sub_module (jit.test_freezing.TestFreezing) ... ok (0.011s) 2023-01-11T21:25:29.7068046Z test_freeze_module_with_preserve_sub_module_and_mutation (jit.test_freezing.TestFreezing) ... ok (0.013s) 2023-01-11T21:25:29.7068699Z test_freeze_module_with_sharedclasstype (jit.test_freezing.TestFreezing) ... ok (0.023s) 2023-01-11T21:25:29.7069306Z test_freeze_module_with_submodule (jit.test_freezing.TestFreezing) ... ok (0.014s) 2023-01-11T21:25:29.7069872Z test_freeze_module_with_tensor (jit.test_freezing.TestFreezing) ... ok (0.007s) 2023-01-11T21:25:29.7070443Z test_freeze_module_with_tuple (jit.test_freezing.TestFreezing) ... ok (0.007s) 2023-01-11T21:25:29.7071064Z test_freeze_module_with_tupleoutput_submodule (jit.test_freezing.TestFreezing) ... ok (0.009s) 2023-01-11T21:25:29.7071706Z test_freeze_module_with_user_preserved_attr (jit.test_freezing.TestFreezing) ... ok (0.005s) 2023-01-11T21:25:29.7072375Z test_freeze_module_with_user_preserved_attribute_on_submodule (jit.test_freezing.TestFreezing) ... ok (0.011s) 2023-01-11T21:25:29.7073101Z test_freeze_module_with_user_preserved_attribute_on_unused_submodule (jit.test_freezing.TestFreezing) ... ok (0.008s) 2023-01-11T21:25:29.7073790Z test_freeze_module_with_user_preserved_method (jit.test_freezing.TestFreezing) ... ok (0.008s) 2023-01-11T21:25:29.7074420Z test_freeze_module_with_user_preserved_method2 (jit.test_freezing.TestFreezing) ... ok (0.006s) 2023-01-11T21:25:29.7075092Z test_freeze_module_with_user_preserved_method_on_submodule (jit.test_freezing.TestFreezing) ... ok (0.010s) 2023-01-11T21:25:29.7075702Z test_freeze_no_forward (jit.test_freezing.TestFreezing) ... ok (0.010s) 2023-01-11T21:25:29.7076284Z test_freeze_non_interface_module_swap (jit.test_freezing.TestFreezing) ... ok (0.014s) 2023-01-11T21:25:29.7076876Z test_freeze_non_module_class_getattr (jit.test_freezing.TestFreezing) ... ok (0.043s) 2023-01-11T21:25:29.7077478Z test_freeze_recursive_interfaces (jit.test_freezing.TestFreezing) ... ok (0.189s) 2023-01-11T21:25:29.7078087Z test_freeze_recursive_interfaces_same_name (jit.test_freezing.TestFreezing) ... ok (0.084s) 2023-01-11T21:25:29.7078727Z test_freeze_recursive_interfaces_with_reassignment (jit.test_freezing.TestFreezing) ... ok (0.195s) 2023-01-11T21:25:29.7079358Z test_freeze_with_interface_mutable (jit.test_freezing.TestFreezing) ... ok (0.155s) 2023-01-11T21:25:29.7079962Z test_freeze_with_swapping_interfaces (jit.test_freezing.TestFreezing) ... ok (0.051s) 2023-01-11T21:25:29.7080559Z test_module_getattr_indirection (jit.test_freezing.TestFreezing) ... ok (0.039s) 2023-01-11T21:25:29.7081148Z test_module_with_shared_type_instances (jit.test_freezing.TestFreezing) ... ok (0.084s) 2023-01-11T21:25:29.7081753Z test_dictionary_as_example_inputs_for_jit_trace (__main__.TestFrontend) ... ok (0.072s) 2023-01-11T21:25:29.7082289Z test_instancing_error (__main__.TestFrontend) ... ok (0.372s) 2023-01-11T21:25:29.7082892Z test_collapse_adjacent_conversions (jit.test_freezing.TestFrozenOptimizations) ... ok (0.015s) 2023-01-11T21:25:29.7083636Z test_conv_add_folding (jit.test_freezing.TestFrozenOptimizations) ... ok (1.365s) 2023-01-11T21:25:29.7084267Z test_conv_bn_folding (jit.test_freezing.TestFrozenOptimizations) ... ok (0.383s) 2023-01-11T21:25:29.7085037Z test_conv_bn_folding_autocast_scenario_cuda (jit.test_freezing.TestFrozenOptimizations) ... skip: Optimization currently only run for GPU (0.002s) 2023-01-11T21:25:29.7085794Z test_conv_bn_folding_not_forward (jit.test_freezing.TestFrozenOptimizations) ... ok (0.017s) 2023-01-11T21:25:29.7086441Z test_conv_hardswish (jit.test_freezing.TestFrozenOptimizations) ... ok (2.777s) 2023-01-11T21:25:29.7087066Z test_conv_mul_add_bn (jit.test_freezing.TestFrozenOptimizations) ... ok (0.055s) 2023-01-11T21:25:29.7087691Z test_conv_to_mkldnn (jit.test_freezing.TestFrozenOptimizations) ... ok (0.041s) 2023-01-11T21:25:29.7088428Z test_conv_to_mkldnn_no_mkldnn (jit.test_freezing.TestFrozenOptimizations) ... skip: Testing no mkldnn (0.000s) 2023-01-11T21:25:29.7089265Z test_freeze_conv_relu_fusion (jit.test_freezing.TestFrozenOptimizations) ... skip: requires CUDNN (0.001s) 2023-01-11T21:25:29.7090021Z test_freeze_conv_relu_fusion_not_forward (jit.test_freezing.TestFrozenOptimizations) ... skip: requires CUDNN (0.001s) 2023-01-11T21:25:29.7090706Z test_freeze_mkdlnn (jit.test_freezing.TestFrozenOptimizations) ... ok (0.006s) 2023-01-11T21:25:29.7091326Z test_freeze_remove_dropout (jit.test_freezing.TestFrozenOptimizations) ... ok (0.005s) 2023-01-11T21:25:29.7091997Z test_freeze_remove_feature_dropout (jit.test_freezing.TestFrozenOptimizations) ... ok (0.006s) 2023-01-11T21:25:29.7092666Z test_hardswish_hardsigmoid (jit.test_freezing.TestFrozenOptimizations) ... ok (0.011s) 2023-01-11T21:25:29.7093324Z test_incompatible_perf_formats (jit.test_freezing.TestFrozenOptimizations) ... ok (0.184s) 2023-01-11T21:25:29.7093985Z test_linear_bn_folding (jit.test_freezing.TestFrozenOptimizations) ... ok (0.999s) 2023-01-11T21:25:29.7094762Z test_linear_bn_folding_autocast_scenario_cuda (jit.test_freezing.TestFrozenOptimizations) ... skip: Optimization currently only run for GPU (0.002s) 2023-01-11T21:25:29.7095610Z test_linear_concat (jit.test_freezing.TestFrozenOptimizations) ... skip: Optimization currently only run for GPU (0.001s) 2023-01-11T21:25:29.7096290Z test_linear_concat_complex (jit.test_freezing.TestFrozenOptimizations) 2023-01-11T21:25:29.7096984Z Testing that the interleaving of multiple optimizations does not ... skip: Optimization currently only run for GPU (0.001s) 2023-01-11T21:25:29.7097680Z test_linear_concat_different_input (jit.test_freezing.TestFrozenOptimizations) 2023-01-11T21:25:29.7098384Z There should be no change to the graph due to the optimization pass ... skip: Optimization currently only run for GPU (0.001s) 2023-01-11T21:25:29.7099167Z test_linear_multiple_blocks (jit.test_freezing.TestFrozenOptimizations) ... skip: Optimization currently only run for GPU (0.001s) 2023-01-11T21:25:29.7099923Z test_linear_non_constant_weight (jit.test_freezing.TestFrozenOptimizations) ... ok (0.004s) 2023-01-11T21:25:29.7100586Z test_linear_transpose (jit.test_freezing.TestFrozenOptimizations) ... ok (0.006s) 2023-01-11T21:25:29.7101205Z test_maxpool_mkldnn (jit.test_freezing.TestFrozenOptimizations) ... ok (0.207s) 2023-01-11T21:25:29.7101864Z test_mkldnn_fuser_broadcasting (jit.test_freezing.TestFrozenOptimizations) ... ok (0.023s) 2023-01-11T21:25:29.7102531Z test_mkldnn_inplace_removal (jit.test_freezing.TestFrozenOptimizations) ... ok (0.012s) 2023-01-11T21:25:29.7103219Z test_numel_less_than_size_with_padding (jit.test_freezing.TestFrozenOptimizations) ... ok (0.016s) 2023-01-11T21:25:29.7103955Z test_optimize_freeze_module (jit.test_freezing.TestFrozenOptimizations) ... ok (0.018s) 2023-01-11T21:25:29.7104613Z test_pool2d_batchnorm (jit.test_freezing.TestFrozenOptimizations) ... ok (0.337s) 2023-01-11T21:25:29.7105256Z test_pool3d_batchnorm (jit.test_freezing.TestFrozenOptimizations) ... ok (1.033s) 2023-01-11T21:25:29.7105985Z test_remove_detach (jit.test_freezing.TestFrozenOptimizations) ... ok (0.004s) 2023-01-11T21:25:29.7106626Z test_remove_detach_not_applied (jit.test_freezing.TestFrozenOptimizations) ... ok (0.003s) 2023-01-11T21:25:29.7107269Z test_scalar_mul (jit.test_freezing.TestFrozenOptimizations) ... ok (0.050s) 2023-01-11T21:25:29.7107893Z test_subgraph_creation (jit.test_functional_blocks.TestFunctionalBlocks) ... ok (0.054s) 2023-01-11T21:25:29.7108612Z test_check_no_type_promotion (jit.test_convert_activation.TestFunctionalToInplaceActivation) ... ok (0.238s) 2023-01-11T21:25:29.7109449Z test_functional_to_inplace_activation (jit.test_convert_activation.TestFunctionalToInplaceActivation) ... ok (0.059s) 2023-01-11T21:25:29.7110294Z test_no_functional_to_inplace (jit.test_convert_activation.TestFunctionalToInplaceActivation) ... ok (0.009s) 2023-01-11T21:25:29.7111185Z test_resnet18_correctness (jit.test_convert_activation.TestFunctionalToInplaceActivation) ... ok (3.242s) 2023-01-11T21:25:29.7111876Z test_getattr_with_default (jit.test_attr.TestGetDefaultAttr) ... ok (0.007s) 2023-01-11T21:25:29.7112492Z test_fuse_linear (jit.test_graph_rewrite_passes.TestGraphRewritePasses) ... ok (0.029s) 2023-01-11T21:25:29.7113038Z test_hash_bool (jit.test_hash.TestHash) ... ok (0.007s) 2023-01-11T21:25:29.7113490Z test_hash_device (jit.test_hash.TestHash) ... ok (0.006s) 2023-01-11T21:25:29.7113956Z test_hash_float (jit.test_hash.TestHash) ... ok (0.008s) 2023-01-11T21:25:29.7114414Z test_hash_int (jit.test_hash.TestHash) ... ok (0.007s) 2023-01-11T21:25:29.7114869Z test_hash_none (jit.test_hash.TestHash) ... ok (0.003s) 2023-01-11T21:25:29.7115310Z test_hash_string (jit.test_hash.TestHash) ... ok (0.005s) 2023-01-11T21:25:29.7115744Z test_hash_tensor (jit.test_hash.TestHash) 2023-01-11T21:25:29.7116163Z Tensors should hash by identity ... ok (0.005s) 2023-01-11T21:25:29.7116601Z test_hash_tuple (jit.test_hash.TestHash) ... ok (0.006s) 2023-01-11T21:25:29.7117116Z test_hash_tuple_nested_unhashable_type (jit.test_hash.TestHash) ... ok (0.003s) 2023-01-11T21:25:29.7117661Z test_forward_tuple_input (jit.test_hooks.TestHooks) ... ok (0.020s) 2023-01-11T21:25:29.7118179Z test_hook_compilation_hint (jit.test_hooks.TestHooks) ... skip: (0.000s) 2023-01-11T21:25:29.7118718Z test_hook_hook_name_collision (jit.test_hooks.TestHooks) ... ok (0.007s) 2023-01-11T21:25:29.7119254Z test_hook_method_name_collision (jit.test_hooks.TestHooks) ... ok (0.007s) 2023-01-11T21:25:29.7119814Z test_module_direct_forward_invocation (jit.test_hooks.TestHooks) ... ok (0.012s) 2023-01-11T21:25:29.7120365Z test_module_forward_multiple_inputs (jit.test_hooks.TestHooks) ... ok (0.022s) 2023-01-11T21:25:29.7120923Z test_module_forward_single_input (jit.test_hooks.TestHooks) ... ok (0.019s) 2023-01-11T21:25:29.7121474Z test_module_hook_return_nothing (jit.test_hooks.TestHooks) ... ok (0.019s) 2023-01-11T21:25:29.7122027Z test_module_multiple_hooks_multiple_inputs (jit.test_hooks.TestHooks) ... ok (0.031s) 2023-01-11T21:25:29.7122615Z test_module_multiple_hooks_single_input (jit.test_hooks.TestHooks) ... ok (0.028s) 2023-01-11T21:25:29.7123161Z test_module_no_forward_input (jit.test_hooks.TestHooks) ... ok (0.015s) 2023-01-11T21:25:29.7123698Z test_module_same_hook_repeated (jit.test_hooks.TestHooks) ... ok (0.021s) 2023-01-11T21:25:29.7124242Z test_submodule_called_directly_with_hooks (jit.test_hooks.TestHooks) ... ok (0.014s) 2023-01-11T21:25:29.7124819Z test_submodule_direct_forward_invocation (jit.test_hooks.TestHooks) ... ok (0.020s) 2023-01-11T21:25:29.7125403Z test_submodule_forward_multiple_inputs (jit.test_hooks.TestHooks) ... ok (0.024s) 2023-01-11T21:25:29.7125956Z test_submodule_forward_single_input (jit.test_hooks.TestHooks) ... ok (0.021s) 2023-01-11T21:25:29.7126561Z test_submodule_forward_single_input_return_not_tupled (jit.test_hooks.TestHooks) ... ok (0.021s) 2023-01-11T21:25:29.7127155Z test_submodule_hook_return_nothing (jit.test_hooks.TestHooks) ... ok (0.021s) 2023-01-11T21:25:29.7127806Z test_submodule_multiple_hooks_multiple_inputs (jit.test_hooks.TestHooks) ... ok (0.035s) 2023-01-11T21:25:29.7128381Z test_submodule_multiple_hooks_single_input (jit.test_hooks.TestHooks) ... ok (0.030s) 2023-01-11T21:25:29.7128947Z test_submodule_no_forward_input (jit.test_hooks.TestHooks) ... ok (0.017s) 2023-01-11T21:25:29.7129587Z test_submodule_same_hook_repeated (jit.test_hooks.TestHooks) ... ok (0.024s) 2023-01-11T21:25:29.7130110Z test_wrong_hook_signatures (jit.test_hooks.TestHooks) ... ok (0.036s) 2023-01-11T21:25:29.7130637Z test_wrong_pre_hook_signatures (jit.test_hooks.TestHooks) ... ok (0.042s) 2023-01-11T21:25:29.7131210Z test_add_out_ignorable_args (jit.test_ignorable_args.TestIgnorableArgs) ... ok (0.003s) 2023-01-11T21:25:29.7131882Z test_slice_ignorable_args_for_slice (jit.test_ignorable_args.TestIgnorableArgs) ... ok (0.004s) 2023-01-11T21:25:29.7132543Z test_with_ignore_context_manager_with_inp_out (jit.test_ignore_context_manager.TestIgnoreContextManager) ... ok (0.013s) 2023-01-11T21:25:29.7133273Z test_with_ignore_context_manager_with_just_inp (jit.test_ignore_context_manager.TestIgnoreContextManager) ... ok (0.004s) 2023-01-11T21:25:29.7133857Z test_with_ignore_context_manager_with_just_out (jit.test_ignore_context_manager.TestIgnoreContextManager) ... ok (0.005s) 2023-01-11T21:25:29.7134517Z test_inplace_to_functional_activation (jit.test_convert_activation.TestInplaceToFunctionalActivation) ... ok (0.040s) 2023-01-11T21:25:29.7135218Z test_resnet18_correctness (jit.test_convert_activation.TestInplaceToFunctionalActivation) ... ok (3.369s) 2023-01-11T21:25:29.7135840Z test_bool (jit.test_isinstance.TestIsinstance) ... ok (0.007s) 2023-01-11T21:25:29.7136351Z test_dict (jit.test_isinstance.TestIsinstance) ... ok (0.006s) 2023-01-11T21:25:29.7136807Z test_dict_nested (jit.test_isinstance.TestIsinstance) ... ok (0.006s) 2023-01-11T21:25:29.7137351Z test_dict_no_contained_type (jit.test_isinstance.TestIsinstance) ... ok (0.002s) 2023-01-11T21:25:29.7137873Z test_dict_tensor (jit.test_isinstance.TestIsinstance) ... ok (0.005s) 2023-01-11T21:25:29.7138425Z test_empty_container_special_cases (jit.test_isinstance.TestIsinstance) ... ok (0.008s) 2023-01-11T21:25:29.7138994Z test_empty_container_throws_warning_in_eager (jit.test_isinstance.TestIsinstance) ... ok (0.001s) 2023-01-11T21:25:29.7139533Z test_float (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7139996Z test_if_else (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7140446Z test_in_if (jit.test_isinstance.TestIsinstance) ... ok (0.005s) 2023-01-11T21:25:29.7140909Z test_in_while_loop (jit.test_isinstance.TestIsinstance) ... ok (0.007s) 2023-01-11T21:25:29.7141413Z test_int (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7141843Z test_list (jit.test_isinstance.TestIsinstance) ... ok (0.005s) 2023-01-11T21:25:29.7142307Z test_list_nested (jit.test_isinstance.TestIsinstance) ... ok (0.005s) 2023-01-11T21:25:29.7142815Z test_list_no_contained_type (jit.test_isinstance.TestIsinstance) ... ok (0.001s) 2023-01-11T21:25:29.7143452Z test_list_tensor (jit.test_isinstance.TestIsinstance) ... ok (0.005s) 2023-01-11T21:25:29.7143932Z test_list_tensor_type_true (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7144534Z test_nontuple_container_rhs_throws_in_eager (jit.test_isinstance.TestIsinstance) ... ok (0.001s) 2023-01-11T21:25:29.7145133Z test_optional (jit.test_isinstance.TestIsinstance) ... ok (0.006s) 2023-01-11T21:25:29.7145680Z test_optional_nested (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7146270Z test_optional_no_contained_type (jit.test_isinstance.TestIsinstance) ... ok (0.002s) 2023-01-11T21:25:29.7146860Z test_optional_none (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7147428Z test_tensor_type_false (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7147904Z test_tuple (jit.test_isinstance.TestIsinstance) ... ok (0.005s) 2023-01-11T21:25:29.7148443Z test_tuple_nested (jit.test_isinstance.TestIsinstance) ... ok (0.007s) 2023-01-11T21:25:29.7148914Z test_tuple_no_contained_type (jit.test_isinstance.TestIsinstance) ... ok (0.001s) 2023-01-11T21:25:29.7149380Z test_tuple_rhs (jit.test_isinstance.TestIsinstance) ... ok (0.007s) 2023-01-11T21:25:29.7149816Z test_tuple_tensor (jit.test_isinstance.TestIsinstance) ... ok (0.004s) 2023-01-11T21:25:29.7150268Z test_type_refinement (jit.test_isinstance.TestIsinstance) ... ok (0.016s) 2023-01-11T21:25:29.7150673Z test_ModuleList (__main__.TestJit) ... ok (0.053s) 2023-01-11T21:25:29.7150997Z test_Sequential (__main__.TestJit) ... ok (0.023s) 2023-01-11T21:25:29.7151327Z test_T_mT_H_mH (__main__.TestJit) ... ok (0.020s) 2023-01-11T21:25:29.7151726Z test_add_relu_fusion (__main__.TestJit) ... ok (0.025s) 2023-01-11T21:25:29.7152061Z test_arg_configurations (__main__.TestJit) 2023-01-11T21:25:29.7152527Z Different arg configurations should trigger different traces ... skip: Need to be adjusted to Graph Executor (0.001s) 2023-01-11T21:25:29.7152953Z test_attrs (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7153261Z test_batchnorm (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7153625Z test_big (__main__.TestJit) ... skip: Requires a lot of RAM (0.001s) 2023-01-11T21:25:29.7153990Z test_conj_transpose (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7154356Z test_constant_insertion (__main__.TestJit) ... ok (2.533s) 2023-01-11T21:25:29.7154760Z test_constant_prop_aliasing_type (__main__.TestJit) ... ok (0.006s) 2023-01-11T21:25:29.7155179Z test_constant_prop_exception (__main__.TestJit) ... ok (0.005s) 2023-01-11T21:25:29.7155595Z test_constant_prop_if_constant (__main__.TestJit) ... ok (0.005s) 2023-01-11T21:25:29.7156010Z test_constant_prop_if_inline (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7156451Z test_constant_prop_loop_constant (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7156889Z test_constant_prop_nested (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7157289Z test_constant_prop_none (__main__.TestJit) ... ok (0.005s) 2023-01-11T21:25:29.7157693Z test_constant_prop_print (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7158116Z test_constant_prop_rand (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7158562Z test_constant_prop_remove_output (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7158997Z test_constant_prop_simple (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7159417Z test_constants_pkl (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7159809Z test_cpp (__main__.TestJit) ... ok (0.036s) 2023-01-11T21:25:29.7160156Z test_cse (__main__.TestJit) ... ok (0.006s) 2023-01-11T21:25:29.7160575Z test_cse_not_introduce_aliasing (__main__.TestJit) ... ok (0.005s) 2023-01-11T21:25:29.7161023Z test_cu_escaped_number (__main__.TestJit) ... ok (0.005s) 2023-01-11T21:25:29.7161453Z test_cuda_export_restore (__main__.TestJit) ... skip: requires CUDA (0.001s) 2023-01-11T21:25:29.7161905Z test_debug_flush_compilation_cache (__main__.TestJit) ... ok (0.013s) 2023-01-11T21:25:29.7162307Z test_decompose_addmm (__main__.TestJit) ... ok (0.036s) 2023-01-11T21:25:29.7162799Z test_device_not_equal (__main__.TestJit) ... skip: requires CUDA (0.001s) 2023-01-11T21:25:29.7163238Z test_diff_subgraph_clones_constants (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7163708Z test_disabled (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7164079Z test_dropout (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7164535Z test_dropout_cuda (__main__.TestJit) ... skip: test_dropout_cuda require CUDA (0.001s) 2023-01-11T21:25:29.7165400Z test_dropout_func_requires_grad (__main__.TestJit) ... STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:25:29.7166163Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:25:29.7166979Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:25:29.7167738Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:25:29.7168465Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:25:29.7169388Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:25:29.7170110Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:25:29.7170823Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:25:29.7171738Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:25:29.7172470Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:25:29.7173195Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:25:29.7174017Z STAGE:2023-01-11 21:24:00 1919:1919 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:25:29.7174447Z ok (0.100s) 2023-01-11T21:25:29.7174906Z test_dropout_module_requires_grad (__main__.TestJit) ... skip: Testing differentiable graph (0.001s) 2023-01-11T21:25:29.7175366Z test_einsum (__main__.TestJit) ... ok (0.024s) 2023-01-11T21:25:29.7175774Z test_element_size (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7176211Z test_expand_fold_quant_inputs (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7176662Z test_expand_quantlint (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7177226Z test_export_batchnorm (__main__.TestJit) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:25:29.7177746Z test_export_dropout (__main__.TestJit) ... ok (0.006s) 2023-01-11T21:25:29.7178155Z test_export_lstm (__main__.TestJit) ... ok (0.037s) 2023-01-11T21:25:29.7178553Z test_export_opnames (__main__.TestJit) ... ok (0.011s) 2023-01-11T21:25:29.7178984Z test_export_rnn (__main__.TestJit) ... ok (0.065s) 2023-01-11T21:25:29.7179486Z test_flags (__main__.TestJit) ... skip: Need to instrument GraphExecutors a bit more (0.001s) 2023-01-11T21:25:29.7179987Z test_function_default_values (__main__.TestJit) ... ok (0.036s) 2023-01-11T21:25:29.7180452Z test_hide_source_ranges_context_manager (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7180893Z test_import_method (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7181305Z test_inferred_as_tensor (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7181728Z test_layout (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7182167Z test_matrix_conj_transpose (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7182604Z test_matrix_transpose (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7183021Z test_module_default_values (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7183536Z test_mutable_default_values (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7184041Z test_native_dropout_corner_case (__main__.TestJit) ... skip: test requires CUDA (0.001s) 2023-01-11T21:25:29.7184506Z test_nn_conv (__main__.TestJit) ... ok (0.226s) 2023-01-11T21:25:29.7184914Z test_nn_lp_pool1d (__main__.TestJit) ... ok (0.099s) 2023-01-11T21:25:29.7185317Z test_nn_lp_pool2d (__main__.TestJit) ... ok (0.135s) 2023-01-11T21:25:29.7185699Z test_nn_padding (__main__.TestJit) ... ok (0.257s) 2023-01-11T21:25:29.7186111Z test_nn_padding_functional (__main__.TestJit) ... ok (0.022s) 2023-01-11T21:25:29.7186556Z test_no_erroneous_warnings (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7187124Z test_non_ascii_string (__main__.TestJit) ... skip: temporarily disable the test for fwd compatibility (0.001s) 2023-01-11T21:25:29.7187631Z test_numel (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7188182Z test_pattern_based_module_rewrite (__main__.TestJit) ... ok (0.026s) 2023-01-11T21:25:29.7188642Z test_pattern_based_rewrite (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7189112Z test_pattern_based_rewrite_with_source_range_preserved (__main__.TestJit) ... ok (0.016s) 2023-01-11T21:25:29.7189960Z test_peephole_optimize_shape_ops (__main__.TestJit) ... skip: Simple executor doesn't have shape information (0.002s) 2023-01-11T21:25:29.7190515Z test_permute_inputs_binding (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7190960Z test_pretty_printer (__main__.TestJit) ... ok (0.024s) 2023-01-11T21:25:29.7191364Z test_print_classes_module (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7191786Z test_print_op_module (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7192348Z test_print_torch_ops_modules (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7193744Z test_profiler (__main__.TestJit) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/65521 for allplatform(s) . If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:25:29.7194676Z test_python_bindings (__main__.TestJit) ... ok (0.219s) 2023-01-11T21:25:29.7195105Z test_python_ir (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7195525Z test_python_ir_utils (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7195928Z test_python_ir_utils_graph (__main__.TestJit) ... ok (0.006s) 2023-01-11T21:25:29.7196412Z test_python_ivalue (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7196820Z test_pytorch_jit_env_off (__main__.TestJit) ... ok (1.417s) 2023-01-11T21:25:29.7197232Z test_recursive_cse (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7197684Z test_repeat_interleave_script (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7198150Z test_restore_device (__main__.TestJit) ... ok (0.005s) 2023-01-11T21:25:29.7198632Z test_restore_device_cuda (__main__.TestJit) ... skip: restore device requires CUDA (0.001s) 2023-01-11T21:25:29.7199205Z test_restore_shared_storage_on_cuda (__main__.TestJit) ... skip: restore device requires CUDA (0.001s) 2023-01-11T21:25:29.7199722Z test_script_autograd_grad (__main__.TestJit) ... ok (0.357s) 2023-01-11T21:25:29.7200182Z test_script_backward (__main__.TestJit) ... ok (0.012s) 2023-01-11T21:25:29.7201223Z test_script_backward_twice (__main__.TestJit) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_script.py:1243: UserWarning: `optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead 2023-01-11T21:25:29.7201875Z warnings.warn( 2023-01-11T21:25:29.7202157Z ok (0.014s) 2023-01-11T21:25:29.7202504Z test_script_fn_pkl (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7202931Z test_script_tensor_type (__main__.TestJit) ... ok (0.004s) 2023-01-11T21:25:29.7203403Z test_shape_analysis_broadcast (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7203857Z test_shape_analysis_masked_select (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7204326Z test_shape_analysis_unsqueeze_in_loop (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7204776Z test_sparse_csr_tensors (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7205223Z test_sparse_tensors (__main__.TestJit) ... ok (0.032s) 2023-01-11T21:25:29.7207229Z test_torch_complex (__main__.TestJit) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:471: UserWarning: An output with one or more elements was resized since it had shape [3, 4], which does not match the required output shape [2]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:25:29.7208556Z return callable(*args, **kwargs) 2023-01-11T21:25:29.7210353Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:471: UserWarning: An output with one or more elements was resized since it had shape [5, 2], which does not match the required output shape [2]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:25:29.7211047Z return callable(*args, **kwargs) 2023-01-11T21:25:29.7211236Z ok (0.028s) 2023-01-11T21:25:29.7211764Z test_torch_load_error (__main__.TestJit) ... skip: TODO: re-enable with https://github.com/pytorch/pytorch/pull/29339 (0.001s) 2023-01-11T21:25:29.7212105Z test_torch_load_zipfile_check (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7212359Z test_torch_ops_kwonly (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7212620Z test_torch_ops_overloaded (__main__.TestJit) ... ok (0.002s) 2023-01-11T21:25:29.7212870Z test_torch_sum (__main__.TestJit) ... ok (0.010s) 2023-01-11T21:25:29.7213105Z test_trace_retains_train (__main__.TestJit) ... ok (0.006s) 2023-01-11T21:25:29.7213349Z test_train_eval (__main__.TestJit) ... ok (0.044s) 2023-01-11T21:25:29.7213586Z test_transpose (__main__.TestJit) ... ok (0.003s) 2023-01-11T21:25:29.7213819Z test_unchecked_cast (__main__.TestJit) ... ok (0.011s) 2023-01-11T21:25:29.7214067Z test_unique_state_dict (__main__.TestJit) ... ok (0.001s) 2023-01-11T21:25:29.7214373Z test_verify (__main__.TestJit) ... skip: verify needs to be updated to work with GraphExecutors (0.001s) 2023-01-11T21:25:29.7214667Z test_warnings (__main__.TestJit) ... ok (0.009s) 2023-01-11T21:25:29.7214935Z test_nn_AdaptiveAvgPool1d (__main__.TestJitGeneratedModule) ... ok (0.035s) 2023-01-11T21:25:29.7215272Z test_nn_AdaptiveAvgPool1d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7215617Z test_nn_AdaptiveAvgPool1d_one_output (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7215948Z test_nn_AdaptiveAvgPool2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7216285Z test_nn_AdaptiveAvgPool2d_single (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7216630Z test_nn_AdaptiveAvgPool2d_single_1x1output (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7216970Z test_nn_AdaptiveAvgPool2d_tuple (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7217295Z test_nn_AdaptiveAvgPool2d_tuple_none (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7217633Z test_nn_AdaptiveAvgPool3d_last_dim (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7217974Z test_nn_AdaptiveAvgPool3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7218303Z test_nn_AdaptiveAvgPool3d_single (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7218631Z test_nn_AdaptiveAvgPool3d_tuple (__main__.TestJitGeneratedModule) ... ok (0.043s) 2023-01-11T21:25:29.7218967Z test_nn_AdaptiveAvgPool3d_tuple_none (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7219295Z test_nn_AdaptiveMaxPool1d (__main__.TestJitGeneratedModule) ... ok (0.048s) 2023-01-11T21:25:29.7219615Z test_nn_AdaptiveMaxPool1d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7219959Z test_nn_AdaptiveMaxPool2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7220293Z test_nn_AdaptiveMaxPool2d_single (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7220625Z test_nn_AdaptiveMaxPool2d_tuple (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7220948Z test_nn_AdaptiveMaxPool2d_tuple_none (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7221391Z test_nn_AdaptiveMaxPool3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.059s) 2023-01-11T21:25:29.7221727Z test_nn_AdaptiveMaxPool3d_single (__main__.TestJitGeneratedModule) ... ok (0.048s) 2023-01-11T21:25:29.7222059Z test_nn_AdaptiveMaxPool3d_single_nonatomic (__main__.TestJitGeneratedModule) ... ok (0.048s) 2023-01-11T21:25:29.7222400Z test_nn_AdaptiveMaxPool3d_tuple (__main__.TestJitGeneratedModule) ... ok (0.049s) 2023-01-11T21:25:29.7222745Z test_nn_AdaptiveMaxPool3d_tuple_nonatomic (__main__.TestJitGeneratedModule) ... ok (0.050s) 2023-01-11T21:25:29.7223091Z test_nn_AdaptiveMaxPool3d_tuple_none (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7223462Z test_nn_AvgPool1d (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7223808Z test_nn_AvgPool1d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7224124Z test_nn_AvgPool1d_stride (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7224427Z test_nn_AvgPool1d_stride_pad (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7224727Z test_nn_AvgPool2d (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7225029Z test_nn_AvgPool2d_divisor (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7225346Z test_nn_AvgPool2d_divisor_stride (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7225662Z test_nn_AvgPool2d_divisor_stride_pad (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7226091Z test_nn_AvgPool2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7226405Z test_nn_AvgPool2d_stride (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7226707Z test_nn_AvgPool2d_stride_pad (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7227010Z test_nn_AvgPool3d (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7227314Z test_nn_AvgPool3d_divisor (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7227631Z test_nn_AvgPool3d_divisor_stride (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7227961Z test_nn_AvgPool3d_divisor_stride1_pad0_gpu_input (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7228307Z test_nn_AvgPool3d_divisor_stride_pad (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7228659Z test_nn_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7229025Z test_nn_AvgPool3d_divisor_stride_pad_gpu_general_output (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7229399Z test_nn_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7229742Z test_nn_AvgPool3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7230055Z test_nn_AvgPool3d_stride (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7230365Z test_nn_AvgPool3d_stride1_pad0_gpu_input (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7230690Z test_nn_AvgPool3d_stride_pad (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7231026Z test_nn_AvgPool3d_stride_pad_gpu_fixedkw_output (__main__.TestJitGeneratedModule) ... ok (0.044s) 2023-01-11T21:25:29.7231372Z test_nn_AvgPool3d_stride_pad_gpu_general_output (__main__.TestJitGeneratedModule) ... ok (0.046s) 2023-01-11T21:25:29.7231726Z test_nn_AvgPool3d_stride_pad_gpu_input_nooverlap (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7232046Z test_nn_BCELoss (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7232354Z test_nn_BCELoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7232662Z test_nn_BCELoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7233014Z test_nn_BCELoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7233325Z test_nn_BCELoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7233624Z test_nn_BCELoss_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7233943Z test_nn_BCELoss_scalar_weights (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7234252Z test_nn_BCELoss_weights (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7234568Z test_nn_BCELoss_weights_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7234885Z test_nn_BCELoss_weights_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7235238Z test_nn_BCEWithLogitsLoss (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7235565Z test_nn_BCEWithLogitsLoss_legacy_enum (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7235912Z test_nn_BCEWithLogitsLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7236244Z test_nn_BCEWithLogitsLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7236584Z test_nn_BCEWithLogitsLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7236921Z test_nn_BCEWithLogitsLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7237252Z test_nn_BCEWithLogitsLoss_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7237597Z test_nn_BCEWithLogitsLoss_scalar_weights (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7237936Z test_nn_BCEWithLogitsLoss_weights (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7238259Z test_nn_BatchNorm1d_3d_input (__main__.TestJitGeneratedModule) ... ok (0.095s) 2023-01-11T21:25:29.7238573Z test_nn_BatchNorm1d_3d_input_not_affine (__main__.TestJitGeneratedModule) ... ok (0.094s) 2023-01-11T21:25:29.7238893Z test_nn_BatchNorm1d_affine (__main__.TestJitGeneratedModule) ... ok (0.096s) 2023-01-11T21:25:29.7239220Z test_nn_BatchNorm1d_affine_simple_average (__main__.TestJitGeneratedModule) ... ok (0.099s) 2023-01-11T21:25:29.7239538Z test_nn_BatchNorm1d_not_affine (__main__.TestJitGeneratedModule) ... ok (0.095s) 2023-01-11T21:25:29.7239863Z test_nn_BatchNorm1d_not_tracking_stats (__main__.TestJitGeneratedModule) ... ok (0.092s) 2023-01-11T21:25:29.7240187Z test_nn_BatchNorm1d_zero_batch (__main__.TestJitGeneratedModule) ... ok (0.085s) 2023-01-11T21:25:29.7240491Z test_nn_BatchNorm2d (__main__.TestJitGeneratedModule) ... ok (0.095s) 2023-01-11T21:25:29.7240792Z test_nn_BatchNorm2d_2d_simple_average (__main__.TestJitGeneratedModule) ... ok (0.099s) 2023-01-11T21:25:29.7241113Z test_nn_BatchNorm2d_momentum (__main__.TestJitGeneratedModule) ... ok (0.095s) 2023-01-11T21:25:29.7241432Z test_nn_BatchNorm2d_not_affine (__main__.TestJitGeneratedModule) ... ok (0.093s) 2023-01-11T21:25:29.7241748Z test_nn_BatchNorm2d_not_tracking_stats (__main__.TestJitGeneratedModule) ... ok (0.092s) 2023-01-11T21:25:29.7242070Z test_nn_BatchNorm2d_zero_batch (__main__.TestJitGeneratedModule) ... ok (0.085s) 2023-01-11T21:25:29.7242377Z test_nn_BatchNorm3d (__main__.TestJitGeneratedModule) ... ok (0.098s) 2023-01-11T21:25:29.7242689Z test_nn_BatchNorm3d_3d_simple_average (__main__.TestJitGeneratedModule) ... ok (0.100s) 2023-01-11T21:25:29.7242998Z test_nn_BatchNorm3d_momentum (__main__.TestJitGeneratedModule) ... ok (0.095s) 2023-01-11T21:25:29.7243308Z test_nn_BatchNorm3d_not_affine (__main__.TestJitGeneratedModule) ... ok (0.094s) 2023-01-11T21:25:29.7243633Z test_nn_BatchNorm3d_not_tracking_stats (__main__.TestJitGeneratedModule) ... ok (0.090s) 2023-01-11T21:25:29.7243950Z test_nn_BatchNorm3d_zero_batch (__main__.TestJitGeneratedModule) ... ok (0.084s) 2023-01-11T21:25:29.7244253Z test_nn_Bilinear (__main__.TestJitGeneratedModule) ... ok (0.051s) 2023-01-11T21:25:29.7244566Z test_nn_CELU (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7244858Z test_nn_CELU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7245147Z test_nn_CELU_scalar (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7245501Z test_nn_CTCLoss_2d_int_target_lengths_intlists (__main__.TestJitGeneratedModule) ... skip: module test skipped on JIT (0.002s) 2023-01-11T21:25:29.7245877Z test_nn_CTCLoss_2d_int_target_lengths_tensors (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7246201Z test_nn_CTCLoss_2d_lengths_tensors (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7246558Z test_nn_CTCLoss_lengths_intlists (__main__.TestJitGeneratedModule) ... skip: module test skipped on JIT (0.003s) 2023-01-11T21:25:29.7246929Z test_nn_CTCLoss_lengths_tensors (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7247247Z test_nn_ConstantPad1d (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7247548Z test_nn_ConstantPad1d_batch (__main__.TestJitGeneratedModule) ... ok (0.035s) 2023-01-11T21:25:29.7247868Z test_nn_ConstantPad1d_complex (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7248183Z test_nn_ConstantPad2d (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7248503Z test_nn_ConstantPad2d_complex (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7248817Z test_nn_ConstantPad2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7249397Z test_nn_ConstantPad3d (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7249718Z test_nn_ConstantPad3d_complex (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7250037Z test_nn_ConstantPad3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7250344Z test_nn_Conv1d (__main__.TestJitGeneratedModule) ... ok (0.057s) 2023-01-11T21:25:29.7250659Z test_nn_Conv1d_circular_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.061s) 2023-01-11T21:25:29.7250968Z test_nn_Conv1d_dilated (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7251270Z test_nn_Conv1d_groups (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7251565Z test_nn_Conv1d_pad1 (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7251869Z test_nn_Conv1d_pad1size1 (__main__.TestJitGeneratedModule) ... ok (0.057s) 2023-01-11T21:25:29.7252158Z test_nn_Conv1d_pad2 (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7252463Z test_nn_Conv1d_pad2size1 (__main__.TestJitGeneratedModule) ... ok (0.060s) 2023-01-11T21:25:29.7252771Z test_nn_Conv1d_pad_same (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7253070Z test_nn_Conv1d_pad_same2 (__main__.TestJitGeneratedModule) ... ok (0.057s) 2023-01-11T21:25:29.7253383Z test_nn_Conv1d_pad_same_dilated (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7253699Z test_nn_Conv1d_pad_valid (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7254019Z test_nn_Conv1d_reflect_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.060s) 2023-01-11T21:25:29.7254338Z test_nn_Conv1d_replicate_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.060s) 2023-01-11T21:25:29.7254652Z test_nn_Conv1d_stride (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7254957Z test_nn_Conv1d_zero_batch (__main__.TestJitGeneratedModule) ... ok (0.050s) 2023-01-11T21:25:29.7255257Z test_nn_Conv1d_zeros_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7255559Z test_nn_Conv2d (__main__.TestJitGeneratedModule) ... ok (0.060s) 2023-01-11T21:25:29.7255876Z test_nn_Conv2d_circular_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.064s) 2023-01-11T21:25:29.7256196Z test_nn_Conv2d_depthwise (__main__.TestJitGeneratedModule) ... ok (0.060s) 2023-01-11T21:25:29.7256558Z test_nn_Conv2d_depthwise_dilated (__main__.TestJitGeneratedModule) ... ok (0.061s) 2023-01-11T21:25:29.7256882Z test_nn_Conv2d_depthwise_padded (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7257211Z test_nn_Conv2d_depthwise_strided (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7257531Z test_nn_Conv2d_depthwise_with_multiplier (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7257849Z test_nn_Conv2d_dilated (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7258149Z test_nn_Conv2d_groups (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7258452Z test_nn_Conv2d_groups_thnn (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7258777Z test_nn_Conv2d_no_bias (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7259081Z test_nn_Conv2d_pad_same (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7259398Z test_nn_Conv2d_pad_same_dilated (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7259698Z test_nn_Conv2d_pad_valid (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7259997Z test_nn_Conv2d_padding (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7260310Z test_nn_Conv2d_reflect_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7260639Z test_nn_Conv2d_replicate_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.057s) 2023-01-11T21:25:29.7260938Z test_nn_Conv2d_strided (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7261238Z test_nn_Conv2d_zero_batch (__main__.TestJitGeneratedModule) ... ok (0.052s) 2023-01-11T21:25:29.7261551Z test_nn_Conv2d_zeros_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.071s) 2023-01-11T21:25:29.7261843Z test_nn_Conv3d (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7262139Z test_nn_Conv3d_1x1x1_no_bias (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7262458Z test_nn_Conv3d_circular_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.061s) 2023-01-11T21:25:29.7262771Z test_nn_Conv3d_dilated (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7263066Z test_nn_Conv3d_dilated_strided (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7263439Z test_nn_Conv3d_groups (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7263742Z test_nn_Conv3d_no_bias (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7264031Z test_nn_Conv3d_pad_same (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7264341Z test_nn_Conv3d_pad_same_dilated (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7264655Z test_nn_Conv3d_pad_valid (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7264974Z test_nn_Conv3d_replicate_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.057s) 2023-01-11T21:25:29.7265281Z test_nn_Conv3d_stride (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7265587Z test_nn_Conv3d_stride_padding (__main__.TestJitGeneratedModule) ... ok (0.053s) 2023-01-11T21:25:29.7265897Z test_nn_Conv3d_zero_batch (__main__.TestJitGeneratedModule) ... ok (0.051s) 2023-01-11T21:25:29.7266197Z test_nn_Conv3d_zeros_stride2_pad2 (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7266512Z test_nn_ConvTranspose1d (__main__.TestJitGeneratedModule) ... ok (0.102s) 2023-01-11T21:25:29.7266830Z test_nn_ConvTranspose1d_dilated (__main__.TestJitGeneratedModule) ... ok (0.101s) 2023-01-11T21:25:29.7267153Z test_nn_ConvTranspose1d_groups (__main__.TestJitGeneratedModule) ... ok (0.104s) 2023-01-11T21:25:29.7267464Z test_nn_ConvTranspose1d_no_bias (__main__.TestJitGeneratedModule) ... ok (0.102s) 2023-01-11T21:25:29.7267774Z test_nn_ConvTranspose2d (__main__.TestJitGeneratedModule) ... ok (0.105s) 2023-01-11T21:25:29.7268129Z test_nn_ConvTranspose2d_dilated (__main__.TestJitGeneratedModule) ... ok (0.107s) 2023-01-11T21:25:29.7268442Z test_nn_ConvTranspose2d_groups (__main__.TestJitGeneratedModule) ... ok (0.106s) 2023-01-11T21:25:29.7268762Z test_nn_ConvTranspose2d_no_bias (__main__.TestJitGeneratedModule) ... ok (0.108s) 2023-01-11T21:25:29.7269072Z test_nn_ConvTranspose3d (__main__.TestJitGeneratedModule) ... ok (0.108s) 2023-01-11T21:25:29.7269389Z test_nn_ConvTranspose3d_dilated (__main__.TestJitGeneratedModule) ... ok (0.108s) 2023-01-11T21:25:29.7269698Z test_nn_CosineEmbeddingLoss (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7270031Z test_nn_CosineEmbeddingLoss_margin (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7270379Z test_nn_CosineEmbeddingLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.028s) 2023-01-11T21:25:29.7270757Z test_nn_CosineEmbeddingLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7271116Z test_nn_CosineEmbeddingLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7271448Z test_nn_CrossEntropyLoss (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7271766Z test_nn_CrossEntropyLoss_2d (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7272084Z test_nn_CrossEntropyLoss_2d_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7272440Z test_nn_CrossEntropyLoss_2d_indices_target_smoothing (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7272826Z test_nn_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7273229Z test_nn_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7273609Z test_nn_CrossEntropyLoss_2d_indices_target_smoothing_weight (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7273975Z test_nn_CrossEntropyLoss_2d_prob_target (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7274327Z test_nn_CrossEntropyLoss_2d_prob_target_smoothing (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7274695Z test_nn_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7275081Z test_nn_CrossEntropyLoss_2d_prob_target_smoothing_weight (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7275448Z test_nn_CrossEntropyLoss_2d_prob_target_weights (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7275793Z test_nn_CrossEntropyLoss_2d_weights (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7276137Z test_nn_CrossEntropyLoss_3d_indices_target_smoothing (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7276520Z test_nn_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7276919Z test_nn_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7277332Z test_nn_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7277700Z test_nn_CrossEntropyLoss_3d_prob_target (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7278057Z test_nn_CrossEntropyLoss_3d_prob_target_smoothing (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7278433Z test_nn_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7278809Z test_nn_CrossEntropyLoss_3d_prob_target_weights (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7279147Z test_nn_CrossEntropyLoss_4d_prob_target (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7279497Z test_nn_CrossEntropyLoss_4d_prob_target_weights (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7279870Z test_nn_CrossEntropyLoss_dim_is_3 (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7280189Z test_nn_CrossEntropyLoss_higher_dim (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7280524Z test_nn_CrossEntropyLoss_weights (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7280841Z test_nn_CrossMapLRN2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7281133Z test_nn_ELU (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7281410Z test_nn_ELU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7281709Z test_nn_ELU_scalar (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7282029Z test_nn_Embedding (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7282336Z test_nn_EmbeddingBag_discontiguous (__main__.TestJitGeneratedModule) ... ok (0.072s) 2023-01-11T21:25:29.7304996Z test_nn_EmbeddingBag_max (__main__.TestJitGeneratedModule) ... ok (0.062s) 2023-01-11T21:25:29.7305394Z test_nn_EmbeddingBag_max_padding_idx (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7305731Z test_nn_EmbeddingBag_mean (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7306050Z test_nn_EmbeddingBag_mean_padding_idx (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7306384Z test_nn_EmbeddingBag_sparse (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7306703Z test_nn_EmbeddingBag_sum (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7307032Z test_nn_EmbeddingBag_sum_padding_idx (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7307366Z test_nn_Embedding_discontiguous (__main__.TestJitGeneratedModule) ... ok (0.024s) 2023-01-11T21:25:29.7307688Z test_nn_Embedding_sparse (__main__.TestJitGeneratedModule) ... ok (0.023s) 2023-01-11T21:25:29.7307994Z test_nn_Flatten (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7308285Z test_nn_Flatten_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7308584Z test_nn_Fold (__main__.TestJitGeneratedModule) ... ok (0.046s) 2023-01-11T21:25:29.7308879Z test_nn_Fold_int_input (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7309194Z test_nn_Fold_no_batch_dim_input (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7309507Z test_nn_Fold_no_batch_dim_int_input (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7309843Z test_nn_FractionalMaxPool2d_ratio (__main__.TestJitGeneratedModule) ... ok (0.083s) 2023-01-11T21:25:29.7310200Z test_nn_FractionalMaxPool2d_ratio_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.069s) 2023-01-11T21:25:29.7310600Z test_nn_FractionalMaxPool2d_ratio_no_batch_dim_no_random_samples (__main__.TestJitGeneratedModule) ... ok (0.071s) 2023-01-11T21:25:29.7310991Z test_nn_FractionalMaxPool2d_ratio_return_indices (__main__.TestJitGeneratedModule) ... ok (0.064s) 2023-01-11T21:25:29.7311343Z test_nn_FractionalMaxPool2d_size (__main__.TestJitGeneratedModule) ... ok (0.067s) 2023-01-11T21:25:29.7311692Z test_nn_FractionalMaxPool2d_size_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.067s) 2023-01-11T21:25:29.7312062Z test_nn_FractionalMaxPool2d_size_no_batch_dim_no_random_samples (__main__.TestJitGeneratedModule) ... ok (0.070s) 2023-01-11T21:25:29.7312432Z test_nn_FractionalMaxPool3d_asymsize (__main__.TestJitGeneratedModule) ... ok (0.085s) 2023-01-11T21:25:29.7312778Z test_nn_FractionalMaxPool3d_ratio (__main__.TestJitGeneratedModule) ... ok (0.073s) 2023-01-11T21:25:29.7313121Z test_nn_FractionalMaxPool3d_ratio_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.073s) 2023-01-11T21:25:29.7313504Z test_nn_FractionalMaxPool3d_ratio_no_batch_dim_no_random_samples (__main__.TestJitGeneratedModule) ... ok (0.075s) 2023-01-11T21:25:29.7314007Z test_nn_FractionalMaxPool3d_ratio_return_indices (__main__.TestJitGeneratedModule) ... ok (0.069s) 2023-01-11T21:25:29.7314362Z test_nn_FractionalMaxPool3d_size (__main__.TestJitGeneratedModule) ... ok (0.071s) 2023-01-11T21:25:29.7314699Z test_nn_FractionalMaxPool3d_size_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.070s) 2023-01-11T21:25:29.7315082Z test_nn_FractionalMaxPool3d_size_no_batch_dim_no_random_samples (__main__.TestJitGeneratedModule) ... ok (0.074s) 2023-01-11T21:25:29.7315420Z test_nn_GELU (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7315718Z test_nn_GELU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7316006Z test_nn_GELU_scalar (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7316335Z test_nn_GLU (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7316623Z test_nn_GLU_dim (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7316908Z test_nn_GLU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7317206Z test_nn_GRUCell (__main__.TestJitGeneratedModule) ... ok (0.066s) 2023-01-11T21:25:29.7317509Z test_nn_GroupNorm_1d_affine (__main__.TestJitGeneratedModule) ... ok (0.078s) 2023-01-11T21:25:29.7317828Z test_nn_GroupNorm_1d_affine_GN (__main__.TestJitGeneratedModule) ... ok (0.064s) 2023-01-11T21:25:29.7318143Z test_nn_GroupNorm_1d_affine_large_batch (__main__.TestJitGeneratedModule) ... ok (0.065s) 2023-01-11T21:25:29.7318473Z test_nn_GroupNorm_1d_no_affine_IN (__main__.TestJitGeneratedModule) ... ok (0.062s) 2023-01-11T21:25:29.7318796Z test_nn_GroupNorm_1d_no_affine_LN (__main__.TestJitGeneratedModule) ... ok (0.061s) 2023-01-11T21:25:29.7319098Z test_nn_GroupNorm_2d_affine (__main__.TestJitGeneratedModule) ... ok (0.065s) 2023-01-11T21:25:29.7319430Z test_nn_GroupNorm_2d_affine_large_feature (__main__.TestJitGeneratedModule) ... ok (0.070s) 2023-01-11T21:25:29.7319764Z test_nn_GroupNorm_2d_no_affine_IN (__main__.TestJitGeneratedModule) ... ok (0.062s) 2023-01-11T21:25:29.7320083Z test_nn_GroupNorm_2d_no_affine_LN (__main__.TestJitGeneratedModule) ... ok (0.062s) 2023-01-11T21:25:29.7320402Z test_nn_GroupNorm_2d_no_affine_large_feature (__main__.TestJitGeneratedModule) ... ok (0.077s) 2023-01-11T21:25:29.7320725Z test_nn_Hardshrink (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7321035Z test_nn_Hardshrink_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7321340Z test_nn_Hardshrink_scalar (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7321695Z test_nn_Hardsigmoid_no_batch_dim (__main__.TestJitGeneratedModule) ... skip: module test skipped on JIT (0.002s) 2023-01-11T21:25:29.7322082Z test_nn_Hardswish_no_batch_dim (__main__.TestJitGeneratedModule) ... skip: module test skipped on JIT (0.002s) 2023-01-11T21:25:29.7322416Z test_nn_Hardtanh (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7322712Z test_nn_Hardtanh_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7323026Z test_nn_Hardtanh_scalar (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7323340Z test_nn_HingeEmbeddingLoss (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7323656Z test_nn_HingeEmbeddingLoss_margin (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7324005Z test_nn_HingeEmbeddingLoss_margin_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7324363Z test_nn_HingeEmbeddingLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7324723Z test_nn_HingeEmbeddingLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7325068Z test_nn_HingeEmbeddingLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7325417Z test_nn_HingeEmbeddingLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7325811Z test_nn_HingeEmbeddingLoss_scalar_margin (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7326135Z test_nn_HuberLoss (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7326423Z test_nn_HuberLoss_delta (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7326741Z test_nn_HuberLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.022s) 2023-01-11T21:25:29.7327068Z test_nn_HuberLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.022s) 2023-01-11T21:25:29.7327381Z test_nn_HuberLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.021s) 2023-01-11T21:25:29.7327697Z test_nn_InstanceNorm1d (__main__.TestJitGeneratedModule) ... ok (0.090s) 2023-01-11T21:25:29.7328047Z test_nn_InstanceNorm1d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.087s) 2023-01-11T21:25:29.7328387Z test_nn_InstanceNorm1d_tracking_stats (__main__.TestJitGeneratedModule) ... ok (0.094s) 2023-01-11T21:25:29.7328726Z test_nn_InstanceNorm1d_tracking_stats_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.096s) 2023-01-11T21:25:29.7329178Z test_nn_InstanceNorm2d (__main__.TestJitGeneratedModule) ... ok (0.090s) 2023-01-11T21:25:29.7329501Z test_nn_InstanceNorm2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.088s) 2023-01-11T21:25:29.7329822Z test_nn_InstanceNorm2d_tracking_stats (__main__.TestJitGeneratedModule) ... ok (0.094s) 2023-01-11T21:25:29.7330177Z test_nn_InstanceNorm2d_tracking_stats_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.095s) 2023-01-11T21:25:29.7330510Z test_nn_InstanceNorm3d (__main__.TestJitGeneratedModule) ... ok (0.089s) 2023-01-11T21:25:29.7330828Z test_nn_InstanceNorm3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.088s) 2023-01-11T21:25:29.7331150Z test_nn_InstanceNorm3d_tracking_stats (__main__.TestJitGeneratedModule) ... ok (0.094s) 2023-01-11T21:25:29.7331502Z test_nn_InstanceNorm3d_tracking_stats_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.099s) 2023-01-11T21:25:29.7331829Z test_nn_KLDivLoss (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7332123Z test_nn_KLDivLoss_log_target (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7332451Z test_nn_KLDivLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7332781Z test_nn_KLDivLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7333108Z test_nn_KLDivLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7333415Z test_nn_KLDivLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7333740Z test_nn_KLDivLoss_no_reduce_log_target (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7334075Z test_nn_KLDivLoss_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7334406Z test_nn_KLDivLoss_no_reduce_scalar_log_target (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7334740Z test_nn_KLDivLoss_scalar (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7335061Z test_nn_KLDivLoss_scalar_log_target (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7335400Z test_nn_KLDivLoss_with_log_target_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7335732Z test_nn_KLDivLoss_with_target_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7336041Z test_nn_L1Loss (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7336342Z test_nn_L1Loss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7336650Z test_nn_L1Loss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7336968Z test_nn_L1Loss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7337329Z test_nn_L1Loss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7337641Z test_nn_L1Loss_no_reduce_complex (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7337949Z test_nn_L1Loss_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7338255Z test_nn_L1Loss_scalar (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7338553Z test_nn_LPPool1d (__main__.TestJitGeneratedModule) ... ok (0.110s) 2023-01-11T21:25:29.7338847Z test_nn_LPPool1d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.109s) 2023-01-11T21:25:29.7339156Z test_nn_LPPool1d_norm (__main__.TestJitGeneratedModule) ... ok (0.117s) 2023-01-11T21:25:29.7339452Z test_nn_LPPool2d (__main__.TestJitGeneratedModule) ... ok (0.133s) 2023-01-11T21:25:29.7339781Z test_nn_LPPool2d_norm (__main__.TestJitGeneratedModule) ... ok (0.149s) 2023-01-11T21:25:29.7340066Z test_nn_LSTMCell (__main__.TestJitGeneratedModule) ... ok (0.075s) 2023-01-11T21:25:29.7340387Z test_nn_LayerNorm_1d_elementwise_affine (__main__.TestJitGeneratedModule) ... ok (0.048s) 2023-01-11T21:25:29.7340734Z test_nn_LayerNorm_1d_empty_elementwise_affine (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7341069Z test_nn_LayerNorm_1d_no_elementwise_affine (__main__.TestJitGeneratedModule) ... ok (0.043s) 2023-01-11T21:25:29.7341411Z test_nn_LayerNorm_3d_elementwise_affine (__main__.TestJitGeneratedModule) ... ok (0.046s) 2023-01-11T21:25:29.7341759Z test_nn_LayerNorm_3d_no_affine_large_feature (__main__.TestJitGeneratedModule) ... ok (0.162s) 2023-01-11T21:25:29.7342108Z test_nn_LayerNorm_3d_no_elementwise_affine (__main__.TestJitGeneratedModule) ... ok (0.046s) 2023-01-11T21:25:29.7342415Z test_nn_LeakyReLU (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7342723Z test_nn_LeakyReLU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7343045Z test_nn_LeakyReLU_with_negval (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7343437Z test_nn_LeakyReLU_with_negval_scalar (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7343777Z test_nn_LeakyReLU_with_zero_negval (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7344081Z test_nn_Linear (__main__.TestJitGeneratedModule) ... ok (0.035s) 2023-01-11T21:25:29.7344382Z test_nn_Linear_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.035s) 2023-01-11T21:25:29.7344678Z test_nn_Linear_no_bias (__main__.TestJitGeneratedModule) ... ok (0.035s) 2023-01-11T21:25:29.7344994Z test_nn_LocalResponseNorm_1d (__main__.TestJitGeneratedModule) ... ok (0.168s) 2023-01-11T21:25:29.7345329Z test_nn_LocalResponseNorm_2d_uneven_pad (__main__.TestJitGeneratedModule) ... ok (0.176s) 2023-01-11T21:25:29.7345670Z test_nn_LocalResponseNorm_3d_custom_params (__main__.TestJitGeneratedModule) ... ok (0.181s) 2023-01-11T21:25:29.7345997Z test_nn_LogSigmoid (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7346313Z test_nn_LogSigmoid_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7346629Z test_nn_LogSigmoid_scalar (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7346920Z test_nn_LogSoftmax (__main__.TestJitGeneratedModule) ... ok (0.047s) 2023-01-11T21:25:29.7347230Z test_nn_LogSoftmax_multiparam (__main__.TestJitGeneratedModule) ... ok (0.047s) 2023-01-11T21:25:29.7347559Z test_nn_LogSoftmax_multiparam_scalar (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7347874Z test_nn_LogSoftmax_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.046s) 2023-01-11T21:25:29.7348180Z test_nn_MSELoss (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7348487Z test_nn_MSELoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7348806Z test_nn_MSELoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7349143Z test_nn_MSELoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7349455Z test_nn_MSELoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7349768Z test_nn_MSELoss_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7350061Z test_nn_MSELoss_prec (__main__.TestJitGeneratedModule) ... ok (0.045s) 2023-01-11T21:25:29.7350359Z test_nn_MSELoss_scalar (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7350667Z test_nn_MarginRankingLoss (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7350994Z test_nn_MarginRankingLoss_margin (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7351326Z test_nn_MarginRankingLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7351718Z test_nn_MarginRankingLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7352074Z test_nn_MarginRankingLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7352393Z test_nn_MaxPool1d (__main__.TestJitGeneratedModule) ... ok (0.051s) 2023-01-11T21:25:29.7352691Z test_nn_MaxPool1d_return_indices (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7353007Z test_nn_MaxPool1d_stride (__main__.TestJitGeneratedModule) ... ok (0.048s) 2023-01-11T21:25:29.7353315Z test_nn_MaxPool2d_3d_input (__main__.TestJitGeneratedModule) ... ok (0.049s) 2023-01-11T21:25:29.7353611Z test_nn_MaxPool2d_4d_input (__main__.TestJitGeneratedModule) ... ok (0.049s) 2023-01-11T21:25:29.7353932Z test_nn_MaxPool2d_return_indices (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7354242Z test_nn_MaxPool3d (__main__.TestJitGeneratedModule) ... ok (0.049s) 2023-01-11T21:25:29.7354541Z test_nn_MaxPool3d_return_indices (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7354860Z test_nn_MaxPool3d_stride (__main__.TestJitGeneratedModule) ... ok (0.049s) 2023-01-11T21:25:29.7355179Z test_nn_MaxPool3d_stride_padding (__main__.TestJitGeneratedModule) ... ok (0.050s) 2023-01-11T21:25:29.7355482Z test_nn_Mish (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7355763Z test_nn_Mish_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7356063Z test_nn_Mish_scalar (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7356377Z test_nn_MultiLabelMarginLoss (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7356707Z test_nn_MultiLabelMarginLoss_0d_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7357053Z test_nn_MultiLabelMarginLoss_1d (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7357400Z test_nn_MultiLabelMarginLoss_1d_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7357750Z test_nn_MultiLabelMarginLoss_index_neg (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7358096Z test_nn_MultiLabelMarginLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7358458Z test_nn_MultiLabelMarginLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7358824Z test_nn_MultiLabelMarginLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7359177Z test_nn_MultiLabelMarginLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7359514Z test_nn_MultiLabelSoftMarginLoss (__main__.TestJitGeneratedModule) ... ok (0.077s) 2023-01-11T21:25:29.7359884Z test_nn_MultiLabelSoftMarginLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7360267Z test_nn_MultiLabelSoftMarginLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7360635Z test_nn_MultiLabelSoftMarginLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.058s) 2023-01-11T21:25:29.7361034Z test_nn_MultiLabelSoftMarginLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.003s) 2023-01-11T21:25:29.7361400Z test_nn_MultiLabelSoftMarginLoss_weights (__main__.TestJitGeneratedModule) ... ok (0.073s) 2023-01-11T21:25:29.7361775Z test_nn_MultiLabelSoftMarginLoss_weights_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.003s) 2023-01-11T21:25:29.7362108Z test_nn_MultiMarginLoss (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7362421Z test_nn_MultiMarginLoss_1d (__main__.TestJitGeneratedModule) ... ok (0.028s) 2023-01-11T21:25:29.7362747Z test_nn_MultiMarginLoss_1d_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7363066Z test_nn_MultiMarginLoss_margin (__main__.TestJitGeneratedModule) ... ok (0.028s) 2023-01-11T21:25:29.7363428Z test_nn_MultiMarginLoss_margin_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7363765Z test_nn_MultiMarginLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7364091Z test_nn_MultiMarginLoss_p (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7364403Z test_nn_MultiMarginLoss_p_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7364735Z test_nn_MultiMarginLoss_weights (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7365076Z test_nn_MultiMarginLoss_weights_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7365486Z test_nn_MultiheadAttention (__main__.TestJitGeneratedModule) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:25:29.7365844Z test_nn_NLLLoss (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7366147Z test_nn_NLLLoss2d_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7366477Z test_nn_NLLLoss2d_no_reduce_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7366804Z test_nn_NLLLoss2d_no_reduce_weights (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7367121Z test_nn_NLLLossNd_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7367444Z test_nn_NLLLossNd_no_reduce_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7367766Z test_nn_NLLLossNd_no_reduce_weights (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7368073Z test_nn_NLLLoss_2d (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7368372Z test_nn_NLLLoss_2d_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7368682Z test_nn_NLLLoss_2d_weights (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7368973Z test_nn_NLLLoss_dim_is_3 (__main__.TestJitGeneratedModule) ... ok (0.028s) 2023-01-11T21:25:29.7369384Z test_nn_NLLLoss_higher_dim (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7369690Z test_nn_NLLLoss_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7369998Z test_nn_NLLLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7370312Z test_nn_NLLLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7370627Z test_nn_NLLLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.025s) 2023-01-11T21:25:29.7370939Z test_nn_NLLLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7371245Z test_nn_NLLLoss_no_reduce_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7371574Z test_nn_NLLLoss_no_reduce_weights (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7371909Z test_nn_NLLLoss_no_reduce_weights_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7372254Z test_nn_NLLLoss_no_reduce_weights_ignore_index_neg (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7372629Z test_nn_NLLLoss_weights (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7372942Z test_nn_NLLLoss_weights_ignore_index (__main__.TestJitGeneratedModule) ... ok (0.026s) 2023-01-11T21:25:29.7373275Z test_nn_NLLLoss_weights_ignore_index_neg (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7373572Z test_nn_PReLU_1d (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7373873Z test_nn_PReLU_1d_multiparam (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7374170Z test_nn_PReLU_2d (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7374456Z test_nn_PReLU_2d_multiparam (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7374753Z test_nn_PReLU_3d (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7375087Z test_nn_PReLU_3d_multiparam (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7375395Z test_nn_PReLU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7375685Z test_nn_PReLU_scalar (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7375994Z test_nn_Padding122112_3dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7376319Z test_nn_Padding1221_2dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7376622Z test_nn_Padding12_1dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7376934Z test_nn_Padding2322_2dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7377249Z test_nn_Padding31_1dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7377565Z test_nn_Padding322112_3dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7377870Z test_nn_Padding332122_3dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7378186Z test_nn_Padding3331_2dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7378502Z test_nn_Padding33_1dcircular (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7378802Z test_nn_PairwiseDistance (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7379133Z test_nn_PairwiseDistance_broadcast_lhs (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7379476Z test_nn_PairwiseDistance_broadcast_rhs (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7379812Z test_nn_PairwiseDistance_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7380146Z test_nn_PairwiseDistance_with_non_default_args (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7380471Z test_nn_PixelShuffle (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7380772Z test_nn_PixelUnshuffle (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7381076Z test_nn_PoissonNLLLoss_full_loss (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7381416Z test_nn_PoissonNLLLoss_full_loss_no_log_input (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7381758Z test_nn_PoissonNLLLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7382095Z test_nn_PoissonNLLLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7382418Z test_nn_PoissonNLLLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7382751Z test_nn_PoissonNLLLoss_no_full_loss (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7383092Z test_nn_PoissonNLLLoss_no_full_loss_no_log_input (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7383510Z test_nn_PoissonNLLLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7383823Z test_nn_RNNCell (__main__.TestJitGeneratedModule) ... ok (0.070s) 2023-01-11T21:25:29.7384105Z test_nn_RReLU (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7384435Z test_nn_RReLU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7384727Z test_nn_RReLU_with_up_down (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7385041Z test_nn_RReLU_with_up_down_scalar (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7385340Z test_nn_ReLU (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7385606Z test_nn_ReLU6 (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7385896Z test_nn_ReLU6_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7386191Z test_nn_ReLU6_scalar (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7386490Z test_nn_ReLU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7386810Z test_nn_ReLU_scalar (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7387113Z test_nn_ReflectionPad1d (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7387432Z test_nn_ReflectionPad1d_batch (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7387746Z test_nn_ReflectionPad1d_complex (__main__.TestJitGeneratedModule) ... ok (0.046s) 2023-01-11T21:25:29.7388063Z test_nn_ReflectionPad2d (__main__.TestJitGeneratedModule) ... ok (0.043s) 2023-01-11T21:25:29.7388382Z test_nn_ReflectionPad2d_complex (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7388717Z test_nn_ReflectionPad2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7389024Z test_nn_ReflectionPad3d (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7389339Z test_nn_ReflectionPad3d_complex (__main__.TestJitGeneratedModule) ... ok (0.042s) 2023-01-11T21:25:29.7389671Z test_nn_ReflectionPad3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7389980Z test_nn_ReplicationPad1d (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7390304Z test_nn_ReplicationPad1d_batch (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7390631Z test_nn_ReplicationPad1d_complex (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7390952Z test_nn_ReplicationPad2d (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7391261Z test_nn_ReplicationPad2d_complex (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7391598Z test_nn_ReplicationPad2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7391923Z test_nn_ReplicationPad3d (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7392229Z test_nn_ReplicationPad3d_complex (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7392561Z test_nn_ReplicationPad3d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.039s) 2023-01-11T21:25:29.7392868Z test_nn_SELU (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7393009Z test_nn_SELU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7393145Z test_nn_SELU_scalar (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7393258Z test_nn_SiLU (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7393398Z test_nn_SiLU_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7393532Z test_nn_SiLU_scalar (__main__.TestJitGeneratedModule) ... ok (0.037s) 2023-01-11T21:25:29.7393663Z test_nn_Sigmoid (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7393807Z test_nn_Sigmoid_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7393944Z test_nn_Sigmoid_scalar (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7394083Z test_nn_SmoothL1Loss (__main__.TestJitGeneratedModule) ... ok (0.036s) 2023-01-11T21:25:29.7394225Z test_nn_SmoothL1Loss_beta (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7394405Z test_nn_SmoothL1Loss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7394562Z test_nn_SmoothL1Loss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.028s) 2023-01-11T21:25:29.7394714Z test_nn_SmoothL1Loss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7394861Z test_nn_SmoothL1Loss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7395014Z test_nn_SmoothL1Loss_no_reduce_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7395158Z test_nn_SmoothL1Loss_scalar (__main__.TestJitGeneratedModule) ... ok (0.030s) 2023-01-11T21:25:29.7395303Z test_nn_SmoothL1Loss_zero_beta (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7395472Z test_nn_SoftMarginLoss (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7395635Z test_nn_SoftMarginLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7395784Z test_nn_SoftMarginLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7395941Z test_nn_SoftMarginLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.027s) 2023-01-11T21:25:29.7396092Z test_nn_SoftMarginLoss_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7396221Z test_nn_Softmax (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7396352Z test_nn_Softmax2d (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7396499Z test_nn_Softmax2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.055s) 2023-01-11T21:25:29.7396645Z test_nn_Softmax_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.049s) 2023-01-11T21:25:29.7396785Z test_nn_Softmax_scalar (__main__.TestJitGeneratedModule) ... ok (0.048s) 2023-01-11T21:25:29.7396903Z test_nn_Softmin (__main__.TestJitGeneratedModule) ... ok (0.062s) 2023-01-11T21:25:29.7397045Z test_nn_Softmin_multidim (__main__.TestJitGeneratedModule) ... ok (0.060s) 2023-01-11T21:25:29.7397188Z test_nn_Softmin_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.056s) 2023-01-11T21:25:29.7397324Z test_nn_Softmin_scalar (__main__.TestJitGeneratedModule) ... ok (0.054s) 2023-01-11T21:25:29.7397457Z test_nn_Softplus (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7397594Z test_nn_Softplus_beta (__main__.TestJitGeneratedModule) ... ok (0.035s) 2023-01-11T21:25:29.7397746Z test_nn_Softplus_beta_threshold (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7397900Z test_nn_Softplus_beta_threshold_scalar (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7398033Z test_nn_Softplus_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7398170Z test_nn_Softshrink (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7398311Z test_nn_Softshrink_lambda (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7398463Z test_nn_Softshrink_lambda_scalar (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7398610Z test_nn_Softshrink_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7398743Z test_nn_Softsign (__main__.TestJitGeneratedModule) ... ok (0.087s) 2023-01-11T21:25:29.7398888Z test_nn_Softsign_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.072s) 2023-01-11T21:25:29.7399027Z test_nn_Softsign_scalar (__main__.TestJitGeneratedModule) ... ok (0.070s) 2023-01-11T21:25:29.7399141Z test_nn_Tanh (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7399282Z test_nn_Tanh_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.032s) 2023-01-11T21:25:29.7399417Z test_nn_Tanh_scalar (__main__.TestJitGeneratedModule) ... ok (0.031s) 2023-01-11T21:25:29.7399552Z test_nn_Tanhshrink (__main__.TestJitGeneratedModule) ... ok (0.126s) 2023-01-11T21:25:29.7399702Z test_nn_Tanhshrink_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.070s) 2023-01-11T21:25:29.7399888Z test_nn_Tanhshrink_scalar (__main__.TestJitGeneratedModule) ... ok (0.066s) 2023-01-11T21:25:29.7400034Z test_nn_Threshold_large_value (__main__.TestJitGeneratedModule) ... ok (0.044s) 2023-01-11T21:25:29.7400181Z test_nn_Threshold_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7400318Z test_nn_Threshold_threshold_value (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7400475Z test_nn_Threshold_threshold_value_scalar (__main__.TestJitGeneratedModule) ... ok (0.040s) 2023-01-11T21:25:29.7400682Z test_nn_Transformer (__main__.TestJitGeneratedModule) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:25:29.7400890Z test_nn_TransformerDecoderLayer_gelu_activation (__main__.TestJitGeneratedModule) ... ok (1.956s) 2023-01-11T21:25:29.7401068Z test_nn_TransformerDecoderLayer_relu_activation (__main__.TestJitGeneratedModule) ... ok (1.868s) 2023-01-11T21:25:29.7401240Z test_nn_TransformerEncoderLayer_gelu_activation (__main__.TestJitGeneratedModule) ... ok (1.711s) 2023-01-11T21:25:29.7401407Z test_nn_TransformerEncoderLayer_relu_activation (__main__.TestJitGeneratedModule) ... ok (1.720s) 2023-01-11T21:25:29.7401562Z test_nn_Transformer_multilayer_coder (__main__.TestJitGeneratedModule) ... ok (5.513s) 2023-01-11T21:25:29.7401727Z test_nn_TripletMarginLoss_no_batch_dim_mean (__main__.TestJitGeneratedModule) ... ok (0.038s) 2023-01-11T21:25:29.7401881Z test_nn_TripletMarginLoss_no_batch_dim_none (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7402045Z test_nn_TripletMarginLoss_no_batch_dim_sum (__main__.TestJitGeneratedModule) ... ok (0.029s) 2023-01-11T21:25:29.7402193Z test_nn_Unflatten_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7402324Z test_nn_Unfold (__main__.TestJitGeneratedModule) ... ok (0.047s) 2023-01-11T21:25:29.7402464Z test_nn_Unfold_int_input (__main__.TestJitGeneratedModule) ... ok (0.041s) 2023-01-11T21:25:29.7402603Z test_nn_ZeroPad2d (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7402745Z test_nn_ZeroPad2d_complex (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7402897Z test_nn_ZeroPad2d_negative_dims (__main__.TestJitGeneratedModule) ... ok (0.033s) 2023-01-11T21:25:29.7403033Z test_nn_ZeroPad2d_no_batch_dim (__main__.TestJitGeneratedModule) ... ok (0.034s) 2023-01-11T21:25:29.7403179Z test_nn_interpolate_bicubic_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7403336Z test_nn_interpolate_bicubic_2d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7403490Z test_nn_interpolate_bicubic_scale_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7403662Z test_nn_interpolate_bicubic_scale_tuple_shared_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7403828Z test_nn_interpolate_bicubic_scale_tuple_skewed_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404015Z test_nn_interpolate_bicubic_scale_tuple_skewed_2d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404167Z test_nn_interpolate_bicubic_tuple_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404338Z test_nn_interpolate_bicubic_tuple_2d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404476Z test_nn_interpolate_bilinear_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404631Z test_nn_interpolate_bilinear_2d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404785Z test_nn_interpolate_bilinear_scale_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7404959Z test_nn_interpolate_bilinear_scale_tuple_shared_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7405128Z test_nn_interpolate_bilinear_scale_tuple_skewed_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7405347Z test_nn_interpolate_bilinear_scale_tuple_skewed_2d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7405503Z test_nn_interpolate_bilinear_tuple_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7405677Z test_nn_interpolate_bilinear_tuple_2d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7405813Z test_nn_interpolate_linear_1d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7405974Z test_nn_interpolate_linear_1d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7406129Z test_nn_interpolate_linear_1d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7406308Z test_nn_interpolate_linear_scale_1d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7406480Z test_nn_interpolate_linear_scale_1d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7406633Z test_nn_interpolate_linear_tuple_1d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7406782Z test_nn_interpolate_nearest_1d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7406938Z test_nn_interpolate_nearest_1d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7407084Z test_nn_interpolate_nearest_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7407237Z test_nn_interpolate_nearest_2d_launch_configs (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7407391Z test_nn_interpolate_nearest_2d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7407536Z test_nn_interpolate_nearest_3d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7407692Z test_nn_interpolate_nearest_3d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7407844Z test_nn_interpolate_nearest_scale_1d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408001Z test_nn_interpolate_nearest_scale_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408151Z test_nn_interpolate_nearest_scale_3d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408306Z test_nn_interpolate_nearest_tuple_1d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408447Z test_nn_interpolate_nearest_tuple_2d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408598Z test_nn_interpolate_nearest_tuple_3d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408748Z test_nn_interpolate_trilinear_3d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7408911Z test_nn_interpolate_trilinear_3d_zero_dim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7409165Z test_nn_interpolate_trilinear_scale_3d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7409342Z test_nn_interpolate_trilinear_scale_3d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7409498Z test_nn_interpolate_trilinear_tuple_3d (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7409671Z test_nn_interpolate_trilinear_tuple_3d_align_corners (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7409810Z test_nn_log_softmax_dim0 (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7409937Z test_nn_log_softmax_dim3 (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7410080Z test_nn_log_softmax_lastdim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7410220Z test_nn_log_softmax_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7410365Z test_nn_log_softmax_spatial (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7410518Z test_nn_log_softmax_spatial_special (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7410736Z test_nn_multimarginloss_1d_input_0d_target_no_reduce (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7410885Z test_nn_softmax_functional_dim0 (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411029Z test_nn_softmax_functional_dim3 (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411169Z test_nn_softmax_functional_scalar (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411307Z test_nn_softmax_lastdim (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411453Z test_nn_softmax_lastdim_dtype (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411591Z test_nn_softmax_spatial (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411775Z test_nn_softmax_spatial_dtype (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7411926Z test_nn_softmax_spatial_special (__main__.TestJitGeneratedModule) ... ok (0.002s) 2023-01-11T21:25:29.7412093Z test_checkscriptassertraisesregex (jit.test_jit_utils.TestJitUtils) ... ok (0.003s) 2023-01-11T21:25:29.7412250Z test_get_callable_argument_names_hybrid (jit.test_jit_utils.TestJitUtils) ... ok (0.006s) 2023-01-11T21:25:29.7412402Z test_get_callable_argument_names_keyword_only (jit.test_jit_utils.TestJitUtils) ... ok (0.001s) 2023-01-11T21:25:29.7412572Z test_get_callable_argument_names_positional_only (jit.test_jit_utils.TestJitUtils) ... ok (0.005s) 2023-01-11T21:25:29.7412747Z test_get_callable_argument_names_positional_or_keyword (jit.test_jit_utils.TestJitUtils) ... ok (0.001s) 2023-01-11T21:25:29.7412909Z test_get_callable_argument_names_var_keyword (jit.test_jit_utils.TestJitUtils) ... ok (0.001s) 2023-01-11T21:25:29.7413079Z test_get_callable_argument_names_var_positional (jit.test_jit_utils.TestJitUtils) ... ok (0.001s) 2023-01-11T21:25:29.7413230Z test_no_tracer_warn_context_manager (jit.test_jit_utils.TestJitUtils) ... ok (0.001s) 2023-01-11T21:25:29.7413370Z test_comprehension_iterable (jit.test_list_dict.TestList) ... ok (0.017s) 2023-01-11T21:25:29.7413519Z test_comprehension_out_type_not_in_type (jit.test_list_dict.TestList) ... ok (0.007s) 2023-01-11T21:25:29.7413654Z test_comprehensions_basic (jit.test_list_dict.TestList) ... ok (0.007s) 2023-01-11T21:25:29.7413784Z test_comprehensions_basic_float (jit.test_list_dict.TestList) ... ok (0.007s) 2023-01-11T21:25:29.7413923Z test_comprehensions_two_comps (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7414054Z test_copy_list_immutable (jit.test_list_dict.TestList) ... ok (0.002s) 2023-01-11T21:25:29.7414182Z test_copy_list_mutable (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7414296Z test_del (jit.test_list_dict.TestList) ... ok (0.010s) 2023-01-11T21:25:29.7414444Z test_dict_keyword_is_correctly_typed (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7414596Z test_dict_keyword_with_dict_comprehension (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7414765Z test_dict_keyword_with_dict_comprehension_and_kwargs (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7414913Z test_dict_keyword_with_empty_dict_comprehension (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7415060Z test_dict_keyword_with_empty_iterable (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7415222Z test_dict_keyword_with_internal_aggregate_function (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7415361Z test_dict_keyword_with_iterable (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7415498Z test_dict_keyword_with_kwargs (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7415660Z test_dict_keyword_with_kwargs_using_container_values (jit.test_list_dict.TestList) ... ok (0.007s) 2023-01-11T21:25:29.7415802Z test_dict_keyword_with_mapping (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7415954Z test_dict_keyword_with_mapping_and_kwargs (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7416142Z test_dict_keyword_with_mismatched_annotations (jit.test_list_dict.TestList) ... ok (0.002s) 2023-01-11T21:25:29.7416284Z test_dict_keyword_with_nested_call (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7416449Z test_dict_keyword_with_previously_declared_variable (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7416625Z test_dict_keyword_with_previously_declared_variable_and_kwargs (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7416756Z test_extend_list_immutable (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7416886Z test_extend_list_mutable (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7417005Z test_in_check (jit.test_list_dict.TestList) ... ok (0.012s) 2023-01-11T21:25:29.7417165Z test_list_bool_conversion (jit.test_list_dict.TestList) ... ok (0.018s) 2023-01-11T21:25:29.7417275Z test_list_count (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7417413Z test_list_count_not_existing (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7417534Z test_list_gather (jit.test_list_dict.TestList) ... ok (0.010s) 2023-01-11T21:25:29.7417657Z test_list_index (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7417788Z test_list_index_not_existing (jit.test_list_dict.TestList) ... ok (0.017s) 2023-01-11T21:25:29.7417912Z test_list_keyword (jit.test_list_dict.TestList) ... ok (0.014s) 2023-01-11T21:25:29.7418029Z test_list_len (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7418148Z test_list_literal (jit.test_list_dict.TestList) ... ok (0.012s) 2023-01-11T21:25:29.7418255Z test_list_none (jit.test_list_dict.TestList) ... ok (0.001s) 2023-01-11T21:25:29.7418375Z test_list_ops (jit.test_list_dict.TestList) ... ok (0.054s) 2023-01-11T21:25:29.7418493Z test_list_slice (jit.test_list_dict.TestList) ... ok (0.020s) 2023-01-11T21:25:29.7418613Z test_list_sort (jit.test_list_dict.TestList) ... ok (0.034s) 2023-01-11T21:25:29.7418745Z test_list_unification_hint (jit.test_list_dict.TestList) ... ok (0.001s) 2023-01-11T21:25:29.7418854Z test_list_variance (jit.test_list_dict.TestList) 2023-01-11T21:25:29.7418983Z `List[T1]` is not a subtype of `List[T2]`, even if `T1` is a ... ok (0.009s) 2023-01-11T21:25:29.7419107Z test_min_bool_list (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7419216Z test_min_max_list (jit.test_list_dict.TestList) ... ok (0.057s) 2023-01-11T21:25:29.7419346Z test_min_max_single_list (jit.test_list_dict.TestList) ... ok (0.040s) 2023-01-11T21:25:29.7419478Z test_mutable_list_append (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7419610Z test_mutable_list_append_2 (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7419746Z test_mutable_list_append_if (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7419887Z test_mutable_list_append_if_else (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7420025Z test_mutable_list_append_loop (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7420166Z test_mutable_list_append_loop_if (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7420283Z test_mutable_list_clear (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7420420Z test_mutable_list_clear_empty (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7420560Z test_mutable_list_function_inline (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7420689Z test_mutable_list_insert (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7420837Z test_mutable_list_insert_neg_out_of_bounds (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7420981Z test_mutable_list_insert_negative (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7421125Z test_mutable_list_insert_out_of_bounds (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7421295Z test_mutable_list_nested_loop (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7421413Z test_mutable_list_pop (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7421543Z test_mutable_list_pop2 (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7421674Z test_mutable_list_pop_at (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7421803Z test_mutable_list_pop_at2 (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7421944Z test_mutable_list_pop_at_negative (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7422086Z test_mutable_list_pop_at_negative2 (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7422222Z test_mutable_list_pop_empty (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7422385Z test_mutable_list_pop_slice (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7422504Z test_mutable_list_remove (jit.test_list_dict.TestList) ... ok (0.007s) 2023-01-11T21:25:29.7422635Z test_mutable_list_remove2 (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7422779Z test_mutable_list_remove_not_existing (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7422917Z test_mutable_list_remove_tensor (jit.test_list_dict.TestList) ... ok (0.006s) 2023-01-11T21:25:29.7423047Z test_mutable_list_reverse (jit.test_list_dict.TestList) ... ok (0.004s) 2023-01-11T21:25:29.7423187Z test_mutable_list_reverse_empty (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7423326Z test_mutable_tensor_list_reverse (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7423539Z test_no_element_type_annotation (jit.test_list_dict.TestList) ... ok (0.003s) 2023-01-11T21:25:29.7423653Z test_slice_index (jit.test_list_dict.TestList) ... ok (0.027s) 2023-01-11T21:25:29.7423781Z test_tensor_list_count (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7423925Z test_tensor_list_count_not_existing (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7424049Z test_tensor_list_index (jit.test_list_dict.TestList) ... ok (0.005s) 2023-01-11T21:25:29.7424190Z test_tensor_list_index_not_existing (jit.test_list_dict.TestList) ... ok (0.018s) 2023-01-11T21:25:29.7424294Z test_to_list (jit.test_list_dict.TestList) 2023-01-11T21:25:29.7424409Z Unit tests for Tensor.tolist() function. ... ok (0.219s) 2023-01-11T21:25:29.7424518Z test_to_list_gpu (jit.test_list_dict.TestList) 2023-01-11T21:25:29.7424651Z GPU tests for Tensor.tolist() function. ... skip: CUDA is not available (0.001s) 2023-01-11T21:25:29.7424789Z test_bump_numeric_counter (jit.test_logging.TestLogging) ... ok (0.008s) 2023-01-11T21:25:29.7424927Z test_counter_aggregation (jit.test_logging.TestLogging) ... ok (0.007s) 2023-01-11T21:25:29.7425065Z test_logging_levels_set (jit.test_logging.TestLogging) ... ok (0.001s) 2023-01-11T21:25:29.7425207Z test_time_measurement_counter (jit.test_logging.TestLogging) ... ok (0.002s) 2023-01-11T21:25:29.7425361Z test_time_measurement_counter_script (jit.test_logging.TestLogging) ... ok (0.007s) 2023-01-11T21:25:29.7425498Z test_trace_numeric_counter (jit.test_logging.TestLogging) ... ok (0.006s) 2023-01-11T21:25:29.7425660Z test_always_alive_values (jit.test_freezing.TestMKLDNNReinplacing) ... ok (0.019s) 2023-01-11T21:25:29.7425801Z test_merge_liveness (jit.test_freezing.TestMKLDNNReinplacing) ... ok (0.010s) 2023-01-11T21:25:29.7425951Z test_successful (jit.test_freezing.TestMKLDNNReinplacing) ... ok (0.012s) 2023-01-11T21:25:29.7426115Z test_switch_inputs_to_inplace (jit.test_freezing.TestMKLDNNReinplacing) ... ok (0.010s) 2023-01-11T21:25:29.7426231Z test_broadcasting_list (jit.test_misc.TestMisc) 2023-01-11T21:25:29.7426361Z Test BroadcastingList and torch.nn._size_N_t alias ... ok (0.007s) 2023-01-11T21:25:29.7426497Z test_export_opnames_interface (jit.test_misc.TestMisc) ... ok (0.023s) 2023-01-11T21:25:29.7426620Z test_future_isinstance (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7426772Z test_hacked_twin (jit.test_misc.TestMisc) ... ok (0.002s) 2023-01-11T21:25:29.7426871Z test_if_returning_any (jit.test_misc.TestMisc) 2023-01-11T21:25:29.7426994Z Check that an if statement can return different ... ok (0.005s) 2023-01-11T21:25:29.7427110Z test_joined_str (jit.test_misc.TestMisc) ... ok (0.004s) 2023-01-11T21:25:29.7427231Z test_kwarg_support (jit.test_misc.TestMisc) ... ok (0.008s) 2023-01-11T21:25:29.7427365Z test_legacy_tensor_constructor (jit.test_misc.TestMisc) ... ok (0.017s) 2023-01-11T21:25:29.7427487Z test_list_literal_infer (jit.test_misc.TestMisc) ... ok (0.008s) 2023-01-11T21:25:29.7427600Z test_math_inf (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7427711Z test_parse_ir_annotate (jit.test_misc.TestMisc) ... ok (0.001s) 2023-01-11T21:25:29.7427885Z test_parse_ir_single_element_tensor_negative (jit.test_misc.TestMisc) ... ok (0.001s) 2023-01-11T21:25:29.7428036Z test_parse_ir_single_element_tensor_positive (jit.test_misc.TestMisc) ... ok (0.001s) 2023-01-11T21:25:29.7428171Z test_script_many_decorators (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7428291Z test_str_refine_any (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7428429Z test_subexpression_Dict_int_Future (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7428567Z test_subexpression_Future_annotate (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7428700Z test_subexpression_List_Future (jit.test_misc.TestMisc) ... ok (0.002s) 2023-01-11T21:25:29.7428821Z test_subexpression_Optional (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7428965Z test_subexpression_Tuple_int_int_Future (jit.test_misc.TestMisc) ... ok (0.003s) 2023-01-11T21:25:29.7429099Z test_tuple_subscripted_assign (jit.test_misc.TestMisc) ... ok (0.002s) 2023-01-11T21:25:29.7429277Z test_call_script_fn_from_traced_module (jit.test_tracer.TestMixTracingScripting) ... ok (0.011s) 2023-01-11T21:25:29.7429463Z test_call_script_module_from_traced_module (jit.test_tracer.TestMixTracingScripting) ... ok (0.016s) 2023-01-11T21:25:29.7429635Z test_call_traced_fn_from_script_fn (jit.test_tracer.TestMixTracingScripting) ... ok (0.006s) 2023-01-11T21:25:29.7429810Z test_call_traced_mod_from_script_fn (jit.test_tracer.TestMixTracingScripting) ... ok (0.010s) 2023-01-11T21:25:29.7429986Z test_call_tracing_fn_from_script_module (jit.test_tracer.TestMixTracingScripting) ... ok (0.008s) 2023-01-11T21:25:29.7430166Z test_call_tracing_mod_from_script_module (jit.test_tracer.TestMixTracingScripting) ... ok (0.012s) 2023-01-11T21:25:29.7430330Z test_script_inline_trace_multiple_args (jit.test_tracer.TestMixTracingScripting) ... ok (0.011s) 2023-01-11T21:25:29.7430493Z test_trace_dict_mix_script (jit.test_tracer.TestMixTracingScripting) ... ok (0.045s) 2023-01-11T21:25:29.7430648Z test_trace_hierarchy (jit.test_tracer.TestMixTracingScripting) ... ok (0.026s) 2023-01-11T21:25:29.7430802Z test_trace_linear (jit.test_tracer.TestMixTracingScripting) ... ok (0.022s) 2023-01-11T21:25:29.7430983Z test_trace_mixed_by_script_with_dict_output (jit.test_tracer.TestMixTracingScripting) ... ok (0.012s) 2023-01-11T21:25:29.7431139Z test_trace_of_script (jit.test_tracer.TestMixTracingScripting) ... ok (0.016s) 2023-01-11T21:25:29.7431295Z test_trace_parameter (jit.test_tracer.TestMixTracingScripting) ... ok (0.033s) 2023-01-11T21:25:29.7431466Z test_trace_returning_dict_with_tensor_tuples (jit.test_tracer.TestMixTracingScripting) 2023-01-11T21:25:29.7431614Z Tracing over a module returning a dictionary whose values are tuples of tensors ... ok (0.012s) 2023-01-11T21:25:29.7431766Z test_trace_script (jit.test_tracer.TestMixTracingScripting) ... ok (0.153s) 2023-01-11T21:25:29.7431937Z test_trace_script_returning_complex_dict (jit.test_tracer.TestMixTracingScripting) 2023-01-11T21:25:29.7432083Z Tracing over a script function returning a dictionary should work. ... ok (0.025s) 2023-01-11T21:25:29.7432267Z test_trace_with_size (jit.test_tracer.TestMixTracingScripting) ... ok (0.008s) 2023-01-11T21:25:29.7432462Z test_traced_module_contains_scripted_interface_types (jit.test_tracer.TestMixTracingScripting) ... ok (0.066s) 2023-01-11T21:25:29.7432641Z test_traced_module_implements_interface (jit.test_tracer.TestMixTracingScripting) ... ok (0.174s) 2023-01-11T21:25:29.7432802Z test_tracing_indexing (jit.test_tracer.TestMixTracingScripting) ... ok (0.008s) 2023-01-11T21:25:29.7432944Z test_tracing_slicing (jit.test_tracer.TestMixTracingScripting) ... ok (0.008s) 2023-01-11T21:25:29.7433070Z test_alexnet (jit.test_models.TestModels) ... ok (0.614s) 2023-01-11T21:25:29.7433197Z test_dcgan_models (jit.test_models.TestModels) ... ok (0.298s) 2023-01-11T21:25:29.7433369Z test_dcgan_models_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7433490Z test_mnist (jit.test_models.TestModels) ... ok (0.350s) 2023-01-11T21:25:29.7433625Z test_mnist_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7433791Z test_mnist_training_leaks_no_memory_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7433986Z test_neural_style (jit.test_models.TestModels) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:25:29.7434128Z test_neural_style_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.000s) 2023-01-11T21:25:29.7434255Z test_reinforcement_learning (jit.test_models.TestModels) ... ok (0.041s) 2023-01-11T21:25:29.7434412Z test_reinforcement_learning_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.000s) 2023-01-11T21:25:29.7434623Z test_script_module_script_resnet (jit.test_models.TestModels) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.003s) 2023-01-11T21:25:29.7434836Z test_script_module_trace_resnet18 (jit.test_models.TestModels) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:25:29.7435020Z test_snli (jit.test_models.TestModels) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:25:29.7435153Z test_snli_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.000s) 2023-01-11T21:25:29.7435283Z test_snli_quantized (jit.test_models.TestModels) ... ok (0.553s) 2023-01-11T21:25:29.7435481Z test_super_resolution (jit.test_models.TestModels) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:25:29.7435629Z test_super_resolution_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.000s) 2023-01-11T21:25:29.7435760Z test_time_sequence_prediction (jit.test_models.TestModels) ... ok (0.131s) 2023-01-11T21:25:29.7435875Z test_vae (jit.test_models.TestModels) ... ok (0.158s) 2023-01-11T21:25:29.7436010Z test_vae_cuda (jit.test_models.TestModels) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7436137Z test_vae_quantized (jit.test_models.TestModels) ... ok (0.085s) 2023-01-11T21:25:29.7436287Z test_customized_state_dict_methods (jit.test_module_apis.TestModuleAPIs) 2023-01-11T21:25:29.7436419Z Tests that customized state dict methods are in effect ... ok (0.033s) 2023-01-11T21:25:29.7436562Z test_default_state_dict_methods (jit.test_module_apis.TestModuleAPIs) 2023-01-11T21:25:29.7436698Z Tests that default state dict methods are automatically available ... ok (0.025s) 2023-01-11T21:25:29.7436854Z test_submodule_customized_state_dict_methods (jit.test_module_apis.TestModuleAPIs) 2023-01-11T21:25:29.7436999Z Tests that customized state dict methods on submodules are in effect ... ok (0.040s) 2023-01-11T21:25:29.7437180Z test_custom_container_forward (jit.test_module_containers.TestModuleContainers) ... ok (0.075s) 2023-01-11T21:25:29.7437364Z test_empty_dict_override_contains (jit.test_module_containers.TestModuleContainers) ... ok (0.021s) 2023-01-11T21:25:29.7437545Z test_module_inplace_construct (jit.test_module_containers.TestModuleContainers) ... ok (0.018s) 2023-01-11T21:25:29.7437776Z test_module_interface_special_methods (jit.test_module_containers.TestModuleContainers) ... ok (0.054s) 2023-01-11T21:25:29.7437943Z test_module_properties (jit.test_module_containers.TestModuleContainers) ... ok (0.031s) 2023-01-11T21:25:29.7438104Z test_moduledict (jit.test_module_containers.TestModuleContainers) ... ok (0.191s) 2023-01-11T21:25:29.7438260Z test_moduledict_getitem (jit.test_module_containers.TestModuleContainers) ... ok (0.034s) 2023-01-11T21:25:29.7438432Z test_moduledict_keyerror (jit.test_module_containers.TestModuleContainers) ... ok (0.011s) 2023-01-11T21:25:29.7438611Z test_normal_list_attribute_with_modules_error (jit.test_module_containers.TestModuleContainers) 2023-01-11T21:25:29.7438760Z Test that an attempt to script a module with a regular list attribute ... ok (0.003s) 2023-01-11T21:25:29.7438973Z test_parameterdict_script_getitem (jit.test_module_containers.TestModuleContainers) ... ok (0.014s) 2023-01-11T21:25:29.7439154Z test_parameterlist_script_getitem (jit.test_module_containers.TestModuleContainers) ... ok (0.044s) 2023-01-11T21:25:29.7439337Z test_parameterlist_script_iter (jit.test_module_containers.TestModuleContainers) ... ok (0.063s) 2023-01-11T21:25:29.7439519Z test_script_module_list_sequential (jit.test_module_containers.TestModuleContainers) ... ok (0.025s) 2023-01-11T21:25:29.7439695Z test_script_modulelist_index (jit.test_module_containers.TestModuleContainers) ... ok (0.108s) 2023-01-11T21:25:29.7439869Z test_sequential_intermediary_types (jit.test_module_containers.TestModuleContainers) ... ok (0.026s) 2023-01-11T21:25:29.7440048Z test_special_method_with_override (jit.test_module_containers.TestModuleContainers) ... ok (0.024s) 2023-01-11T21:25:29.7440209Z test_typed_module_dict (jit.test_module_containers.TestModuleContainers) 2023-01-11T21:25:29.7440369Z Test that a type annotation can be provided for a ModuleDict that allows ... ok (0.061s) 2023-01-11T21:25:29.7440525Z test_typed_module_list (jit.test_module_containers.TestModuleContainers) 2023-01-11T21:25:29.7440679Z Test that a type annotation can be provided for a ModuleList that allows ... ok (0.051s) 2023-01-11T21:25:29.7440881Z test_freeze_module_with_inplace_mutation_in_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.023s) 2023-01-11T21:25:29.7441059Z test_freeze_module_with_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.019s) 2023-01-11T21:25:29.7441235Z test_freeze_module_with_interface_and_fork (jit.test_module_interface.TestModuleInterface) ... ok (0.027s) 2023-01-11T21:25:29.7441422Z test_freeze_module_with_mutated_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.024s) 2023-01-11T21:25:29.7441609Z test_freeze_module_with_setattr_in_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.020s) 2023-01-11T21:25:29.7441778Z test_module_apis_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.014s) 2023-01-11T21:25:29.7441940Z test_module_doc_string (jit.test_module_interface.TestModuleInterface) ... ok (0.020s) 2023-01-11T21:25:29.7442107Z test_module_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.090s) 2023-01-11T21:25:29.7442287Z test_module_interface_inheritance (jit.test_module_interface.TestModuleInterface) ... ok (0.001s) 2023-01-11T21:25:29.7442458Z test_module_interface_subtype (jit.test_module_interface.TestModuleInterface) ... ok (0.050s) 2023-01-11T21:25:29.7442616Z test_module_swap (jit.test_module_interface.TestModuleInterface) ... ok (0.021s) 2023-01-11T21:25:29.7442780Z test_module_swap_no_lazy_compile (jit.test_module_interface.TestModuleInterface) ... ok (0.024s) 2023-01-11T21:25:29.7442959Z test_module_swap_no_module_interface (jit.test_module_interface.TestModuleInterface) ... ok (0.016s) 2023-01-11T21:25:29.7443130Z test_module_swap_wrong_module (jit.test_module_interface.TestModuleInterface) ... ok (0.019s) 2023-01-11T21:25:29.7443305Z test_not_submodule_interface_call (jit.test_module_interface.TestModuleInterface) ... ok (0.010s) 2023-01-11T21:25:29.7443514Z test_script_module_as_interface_swap (jit.test_module_interface.TestModuleInterface) ... ok (0.022s) 2023-01-11T21:25:29.7443653Z test_script_module_with_constants_list (jit.test_modules.TestModules) 2023-01-11T21:25:29.7443785Z Test that a module that has __constants__ set to something ... ok (0.009s) 2023-01-11T21:25:29.7443921Z test_namedtuple (jit.test_list_dict.TestNamedTuple) ... ok (0.004s) 2023-01-11T21:25:29.7444052Z test_namedtuple_as_attr (jit.test_list_dict.TestNamedTuple) ... ok (0.005s) 2023-01-11T21:25:29.7444196Z test_namedtuple_constant (jit.test_list_dict.TestNamedTuple) ... ok (0.003s) 2023-01-11T21:25:29.7444347Z test_namedtuple_kwarg_construct (jit.test_list_dict.TestNamedTuple) ... ok (0.003s) 2023-01-11T21:25:29.7444516Z test_namedtuple_lower (jit.test_list_dict.TestNamedTuple) ... ok (0.003s) 2023-01-11T21:25:29.7444664Z test_namedtuple_resolution (jit.test_list_dict.TestNamedTuple) ... ok (0.004s) 2023-01-11T21:25:29.7444863Z test_namedtuple_serialization (jit.test_list_dict.TestNamedTuple) ... skip: broken while these tests were not in CI (0.001s) 2023-01-11T21:25:29.7445012Z test_namedtuple_slice_unpack (jit.test_list_dict.TestNamedTuple) ... ok (0.003s) 2023-01-11T21:25:29.7445165Z test_namedtuple_type_annotation (jit.test_list_dict.TestNamedTuple) ... ok (0.003s) 2023-01-11T21:25:29.7445313Z test_namedtuple_wrong_types (jit.test_list_dict.TestNamedTuple) ... ok (0.002s) 2023-01-11T21:25:29.7445442Z test_return_named_tuple (jit.test_list_dict.TestNamedTuple) ... ok (0.003s) 2023-01-11T21:25:29.7445849Z test_adaptive_avg_pool2d (jit.test_backend_nnapi.TestNnapiBackend) ... /var/lib/jenkins/workspace/test/test_nnapi.py:14: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:25:29.7445927Z t = torch.tensor(t) 2023-01-11T21:25:29.7445992Z ok (0.308s) 2023-01-11T21:25:29.7446140Z test_avg_pool2d (jit.test_backend_nnapi.TestNnapiBackend) ... ok (1.032s) 2023-01-11T21:25:29.7446275Z test_cat (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.048s) 2023-01-11T21:25:29.7446428Z test_compile_spec_santiy (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.009s) 2023-01-11T21:25:29.7446565Z test_conv2d (jit.test_backend_nnapi.TestNnapiBackend) ... ok (3.345s) 2023-01-11T21:25:29.7446702Z test_conv2d_transpose (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.637s) 2023-01-11T21:25:29.7446843Z test_dequantize (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.017s) 2023-01-11T21:25:29.7446979Z test_detach (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.026s) 2023-01-11T21:25:29.7447117Z test_flatten (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.095s) 2023-01-11T21:25:29.7447259Z test_hardtanh (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.024s) 2023-01-11T21:25:29.7447397Z test_linear (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.023s) 2023-01-11T21:25:29.7448008Z test_log_softmax (jit.test_backend_nnapi.TestNnapiBackend) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1482: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include dim=X as an argument. 2023-01-11T21:25:29.7448102Z return forward_call(*args, **kwargs) 2023-01-11T21:25:29.7448487Z /opt/conda/lib/python3.10/site-packages/torch/jit/_trace.py:460: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include dim=X as an argument. 2023-01-11T21:25:29.7448584Z outs = wrap_retval(mod(*_clone_inputs(inputs))) 2023-01-11T21:25:29.7448649Z ok (0.020s) 2023-01-11T21:25:29.7448791Z test_max_pool2d (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.494s) 2023-01-11T21:25:29.7448932Z test_mean (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.063s) 2023-01-11T21:25:29.7449267Z test_multi_output (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.012s) 2023-01-11T21:25:29.7449475Z test_pointwise_binary (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.094s) 2023-01-11T21:25:29.7449632Z test_pointwise_binary_const (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.042s) 2023-01-11T21:25:29.7449781Z test_pointwise_unary (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.042s) 2023-01-11T21:25:29.7449907Z test_prelu (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.031s) 2023-01-11T21:25:29.7450042Z test_qadd (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.142s) 2023-01-11T21:25:29.7450181Z test_qlinear (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.114s) 2023-01-11T21:25:29.7450319Z test_quantize (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.012s) 2023-01-11T21:25:29.7450457Z test_reshape (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.027s) 2023-01-11T21:25:29.7450634Z test_seblock_mul (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.011s) 2023-01-11T21:25:29.7450772Z test_slice (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.042s) 2023-01-11T21:25:29.7451266Z test_softmax (jit.test_backend_nnapi.TestNnapiBackend) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1482: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument. 2023-01-11T21:25:29.7451358Z return forward_call(*args, **kwargs) 2023-01-11T21:25:29.7451723Z /opt/conda/lib/python3.10/site-packages/torch/jit/_trace.py:460: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument. 2023-01-11T21:25:29.7451832Z outs = wrap_retval(mod(*_clone_inputs(inputs))) 2023-01-11T21:25:29.7451897Z ok (0.033s) 2023-01-11T21:25:29.7452041Z test_tensor_input (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.018s) 2023-01-11T21:25:29.7452176Z test_to (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.031s) 2023-01-11T21:25:29.7452320Z test_unsqueeze (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.054s) 2023-01-11T21:25:29.7452477Z test_upsample_nearest2d (jit.test_backend_nnapi.TestNnapiBackend) ... ok (0.373s) 2023-01-11T21:25:29.7452656Z test_op_decomposition (jit.test_op_decompositions.TestOpDecompositions) ... ok (0.072s) 2023-01-11T21:25:29.7452833Z test_registered_decomposition (jit.test_op_decompositions.TestOpDecompositions) ... ok (0.006s) 2023-01-11T21:25:29.7453092Z test_fuse_activation_with_pack_ops_linear_conv2d_1 (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.028s) 2023-01-11T21:25:29.7453348Z test_fuse_activation_with_pack_ops_linear_conv2d_2 (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.026s) 2023-01-11T21:25:29.7453605Z test_fuse_activation_with_pack_ops_linear_conv2d_3 (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.025s) 2023-01-11T21:25:29.7453858Z test_fuse_activation_with_pack_ops_linear_conv2d_4 (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.025s) 2023-01-11T21:25:29.7454124Z test_insert_pre_packed_linear_before_inline_and_conv_2d_op (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.009s) 2023-01-11T21:25:29.7454366Z test_insert_pre_packed_linear_op (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.010s) 2023-01-11T21:25:29.7454604Z test_replace_conv1d_with_conv2d (jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo) ... ok (0.006s) 2023-01-11T21:25:29.7454710Z test_any (jit.test_pdt.TestPDT) ... ok (0.012s) 2023-01-11T21:25:29.7454843Z test_class_as_profiled_types (jit.test_pdt.TestPDT) ... ok (0.017s) 2023-01-11T21:25:29.7454952Z test_class_methods (jit.test_pdt.TestPDT) ... ok (0.007s) 2023-01-11T21:25:29.7455093Z test_class_with_args_as_profiled_types (jit.test_pdt.TestPDT) ... ok (0.014s) 2023-01-11T21:25:29.7455263Z test_class_with_multiple_methods (jit.test_pdt.TestPDT) ... ok (0.009s) 2023-01-11T21:25:29.7455391Z test_fx_tracing_with_typing (jit.test_pdt.TestPDT) ... ok (0.007s) 2023-01-11T21:25:29.7455527Z test_multiple_class_with_same_method (jit.test_pdt.TestPDT) ... ok (0.014s) 2023-01-11T21:25:29.7455660Z test_nested_function_in_forward (jit.test_pdt.TestPDT) ... ok (0.008s) 2023-01-11T21:25:29.7455785Z test_nested_list_and_tuple (jit.test_pdt.TestPDT) ... ok (0.015s) 2023-01-11T21:25:29.7455910Z test_nested_nn_module_class (jit.test_pdt.TestPDT) ... ok (0.010s) 2023-01-11T21:25:29.7456035Z test_nested_nn_module_class_with_args (jit.test_pdt.TestPDT) ... ok (0.011s) 2023-01-11T21:25:29.7456147Z test_nn_module (jit.test_pdt.TestPDT) ... ok (0.007s) 2023-01-11T21:25:29.7456286Z test_nn_module_with_export_function (jit.test_pdt.TestPDT) ... ok (0.009s) 2023-01-11T21:25:29.7456436Z test_nn_parameter_as_arg (jit.test_pdt.TestPDT) ... ok (0.007s) 2023-01-11T21:25:29.7456570Z test_nonetype_as_optional_of_type (jit.test_pdt.TestPDT) ... ok (0.007s) 2023-01-11T21:25:29.7456675Z test_pdt (jit.test_pdt.TestPDT) ... ok (0.017s) 2023-01-11T21:25:29.7456783Z test_pdt_dict (jit.test_pdt.TestPDT) ... ok (0.006s) 2023-01-11T21:25:29.7456893Z test_pdt_list_and_tuple (jit.test_pdt.TestPDT) ... ok (0.011s) 2023-01-11T21:25:29.7457057Z test_scriptable (jit.test_parametrization.TestParametrization) ... ok (0.045s) 2023-01-11T21:25:29.7457208Z test_traceable (jit.test_parametrization.TestParametrization) 2023-01-11T21:25:29.7457348Z Test the jit scripting and tracing of a parametrized model. ... ok (0.033s) 2023-01-11T21:25:29.7457488Z test_conv_dim_folding (jit.test_peephole.TestPeephole) ... ok (0.060s) 2023-01-11T21:25:29.7457632Z test_integer_refinement (jit.test_peephole.TestPeephole) ... ok (0.016s) 2023-01-11T21:25:29.7457772Z test_noop_peephole (jit.test_peephole.TestPeephole) ... ok (0.015s) 2023-01-11T21:25:29.7457909Z test_normalized_is_op (jit.test_peephole.TestPeephole) ... ok (0.004s) 2023-01-11T21:25:29.7458041Z test_normalized_isnot_op (jit.test_peephole.TestPeephole) ... ok (0.004s) 2023-01-11T21:25:29.7458180Z test_normalized_rsub (jit.test_peephole.TestPeephole) ... ok (0.005s) 2023-01-11T21:25:29.7458339Z test_optimize_out_comparison_same_value (jit.test_peephole.TestPeephole) ... ok (0.005s) 2023-01-11T21:25:29.7458474Z test_peephole (jit.test_peephole.TestPeephole) ... ok (0.008s) 2023-01-11T21:25:29.7458613Z test_peephole_add_zero (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7458749Z test_peephole_arith (jit.test_peephole.TestPeephole) ... ok (0.004s) 2023-01-11T21:25:29.7458917Z test_peephole_cuda (jit.test_peephole.TestPeephole) ... skip: cpp tests require CUDA (0.001s) 2023-01-11T21:25:29.7459104Z test_peephole_dict_getitem_no_optimization_dict_modified (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7459275Z test_peephole_dict_getitem_no_optimization_get_input_arg (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7459463Z test_peephole_dict_getitem_no_optimization_keys_might_overlap (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7459642Z test_peephole_dict_getitem_no_optimization_missing_key (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7459826Z test_peephole_dict_getitem_no_optimization_overlapping_keys (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7460007Z test_peephole_dict_getitem_no_optimization_unsupported_type (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7460161Z test_peephole_dict_getitem_simple (jit.test_peephole.TestPeephole) ... ok (0.008s) 2023-01-11T21:25:29.7460297Z test_peephole_dict_len (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7460480Z test_peephole_dict_len_no_optimization_keys_might_overlap (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7460662Z test_peephole_dict_len_no_optimization_overlapping_keys (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7460864Z test_peephole_dict_len_no_optimization_unsupported_type (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7461004Z test_peephole_dynamic (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7461138Z test_peephole_int (jit.test_peephole.TestPeephole) ... ok (0.002s) 2023-01-11T21:25:29.7461272Z test_peephole_len_list (jit.test_peephole.TestPeephole) ... ok (0.005s) 2023-01-11T21:25:29.7461408Z test_peephole_list_len (jit.test_peephole.TestPeephole) ... ok (0.038s) 2023-01-11T21:25:29.7461546Z test_peephole_list_ops (jit.test_peephole.TestPeephole) ... ok (0.012s) 2023-01-11T21:25:29.7461696Z test_peephole_no_output_aliasing (jit.test_peephole.TestPeephole) ... ok (0.005s) 2023-01-11T21:25:29.7461873Z test_peephole_optional_refine (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7462016Z test_peephole_slice_all_three_args (jit.test_peephole.TestPeephole) ... ok (0.004s) 2023-01-11T21:25:29.7462165Z test_peephole_slice_one_empty_arg (jit.test_peephole.TestPeephole) ... ok (0.010s) 2023-01-11T21:25:29.7462350Z test_peephole_slice_optimization_not_applied_list_modified (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7462532Z test_peephole_slice_optimization_not_applied_non_const_args (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7462682Z test_peephole_slice_two_empty_args (jit.test_peephole.TestPeephole) ... ok (0.011s) 2023-01-11T21:25:29.7462833Z test_peephole_type_refinements (jit.test_peephole.TestPeephole) ... ok (0.010s) 2023-01-11T21:25:29.7462988Z test_peephole_with_non_output_writes (jit.test_peephole.TestPeephole) ... ok (0.006s) 2023-01-11T21:25:29.7463128Z test_peephole_with_writes (jit.test_peephole.TestPeephole) ... ok (0.004s) 2023-01-11T21:25:29.7463271Z test_refine_integer_values (jit.test_peephole.TestPeephole) ... ok (0.003s) 2023-01-11T21:25:29.7463485Z test_short_circuit_optimization (jit.test_peephole.TestPeephole) ... ok (0.005s) 2023-01-11T21:25:29.7463615Z test_version (__main__.TestProducerVersion) ... ok (0.000s) 2023-01-11T21:25:29.7463752Z test_aliasing_merge (jit.test_profiler.TestProfiler) ... ok (0.044s) 2023-01-11T21:25:29.7463898Z test_autograd_fallback_graph (jit.test_profiler.TestProfiler) ... ok (0.038s) 2023-01-11T21:25:29.7464054Z test_fallback_graph_not_specialized (jit.test_profiler.TestProfiler) ... ok (0.023s) 2023-01-11T21:25:29.7464188Z test_iterative_fusion (jit.test_profiler.TestProfiler) ... ok (0.043s) 2023-01-11T21:25:29.7464327Z test_local_fusion_strategy (jit.test_profiler.TestProfiler) ... ok (0.025s) 2023-01-11T21:25:29.7464469Z test_not_fusing_scalar_ops (jit.test_profiler.TestProfiler) ... ok (0.001s) 2023-01-11T21:25:29.7464603Z test_not_optimizing_property (jit.test_profiler.TestProfiler) ... ok (0.024s) 2023-01-11T21:25:29.7464751Z test_specialize_backward (jit.test_profiler.TestProfiler) ... ok (0.092s) 2023-01-11T21:25:29.7464891Z test_specialized_types (jit.test_profiler.TestProfiler) ... ok (0.022s) 2023-01-11T21:25:29.7465027Z test_tensor_constant (jit.test_profiler.TestProfiler) ... ok (0.023s) 2023-01-11T21:25:29.7465181Z test_tensor_type_not_determined_by_inputs (jit.test_profiler.TestProfiler) ... ok (0.051s) 2023-01-11T21:25:29.7465318Z test_use_not_profiled (jit.test_profiler.TestProfiler) ... ok (0.025s) 2023-01-11T21:25:29.7465469Z test_add_input (jit.test_python_bindings.TestPythonBindings) ... ok (0.002s) 2023-01-11T21:25:29.7465612Z test_aliasdb (jit.test_python_bindings.TestPythonBindings) ... ok (0.003s) 2023-01-11T21:25:29.7465757Z test_canonicalize (jit.test_python_bindings.TestPythonBindings) ... ok (0.001s) 2023-01-11T21:25:29.7465916Z test_cu_create_function (jit.test_python_bindings.TestPythonBindings) ... ok (0.004s) 2023-01-11T21:25:29.7466073Z test_cu_get_functions (jit.test_python_bindings.TestPythonBindings) ... ok (0.004s) 2023-01-11T21:25:29.7466227Z test_graph_create (jit.test_python_bindings.TestPythonBindings) ... ok (0.002s) 2023-01-11T21:25:29.7466424Z test_graph_iterator_keepalive (jit.test_python_bindings.TestPythonBindings) ... ok (0.003s) 2023-01-11T21:25:29.7466576Z test_invalidation (jit.test_python_bindings.TestPythonBindings) ... ok (0.003s) 2023-01-11T21:25:29.7466717Z test_add (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.009s) 2023-01-11T21:25:29.7466874Z test_adv_indexing_list (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.021s) 2023-01-11T21:25:29.7467023Z test_advancedindex (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.022s) 2023-01-11T21:25:29.7467174Z test_gather (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.004s) 2023-01-11T21:25:29.7467316Z test_index (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.026s) 2023-01-11T21:25:29.7467506Z test_index_ellipses (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.090s) 2023-01-11T21:25:29.7467648Z test_inf (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.005s) 2023-01-11T21:25:29.7467802Z test_matmul_py3 (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.008s) 2023-01-11T21:25:29.7467942Z test_mul (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.006s) 2023-01-11T21:25:29.7468081Z test_pow (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.033s) 2023-01-11T21:25:29.7468218Z test_random (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.003s) 2023-01-11T21:25:29.7468363Z test_slice (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.014s) 2023-01-11T21:25:29.7468528Z test_stepped_tuple_slicing (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.005s) 2023-01-11T21:25:29.7468682Z test_str_to_float (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.006s) 2023-01-11T21:25:29.7468826Z test_triple (jit.test_python_builtins.TestPythonBuiltinOP) ... ok (0.005s) 2023-01-11T21:25:29.7468961Z test_param_strides (jit.test_python_ir.TestPythonIr) ... ok (0.004s) 2023-01-11T21:25:29.7469112Z test_attributes (jit.test_recursive_script.TestRecursiveScript) ... ok (0.044s) 2023-01-11T21:25:29.7469268Z test_class_compile (jit.test_recursive_script.TestRecursiveScript) ... ok (0.018s) 2023-01-11T21:25:29.7469419Z test_constants_with_final (jit.test_recursive_script.TestRecursiveScript) ... ok (0.018s) 2023-01-11T21:25:29.7469558Z test_dir (jit.test_recursive_script.TestRecursiveScript) ... ok (0.043s) 2023-01-11T21:25:29.7469708Z test_error_stack (jit.test_recursive_script.TestRecursiveScript) ... ok (0.004s) 2023-01-11T21:25:29.7469872Z test_error_stack_annotation (jit.test_recursive_script.TestRecursiveScript) ... ok (0.008s) 2023-01-11T21:25:29.7470031Z test_error_stack_class (jit.test_recursive_script.TestRecursiveScript) ... ok (0.008s) 2023-01-11T21:25:29.7470191Z test_error_stack_module (jit.test_recursive_script.TestRecursiveScript) ... ok (0.006s) 2023-01-11T21:25:29.7470363Z test_failed_function_compilation (jit.test_recursive_script.TestRecursiveScript) ... ok (0.003s) 2023-01-11T21:25:29.7470539Z test_function_attribute_in_submodule (jit.test_recursive_script.TestRecursiveScript) ... ok (0.018s) 2023-01-11T21:25:29.7470696Z test_ignore_class (jit.test_recursive_script.TestRecursiveScript) ... ok (0.008s) 2023-01-11T21:25:29.7470846Z test_inferred_nonetype (jit.test_recursive_script.TestRecursiveScript) ... ok (0.007s) 2023-01-11T21:25:29.7470996Z test_init_error (jit.test_recursive_script.TestRecursiveScript) ... ok (0.001s) 2023-01-11T21:25:29.7471155Z test_inner_traced_module (jit.test_recursive_script.TestRecursiveScript) ... ok (0.017s) 2023-01-11T21:25:29.7471315Z test_iterable_modules (jit.test_recursive_script.TestRecursiveScript) ... ok (0.046s) 2023-01-11T21:25:29.7471468Z test_method_call (jit.test_recursive_script.TestRecursiveScript) ... ok (0.009s) 2023-01-11T21:25:29.7471623Z test_module_basic (jit.test_recursive_script.TestRecursiveScript) ... ok (0.013s) 2023-01-11T21:25:29.7471789Z test_module_function_export (jit.test_recursive_script.TestRecursiveScript) ... ok (0.015s) 2023-01-11T21:25:29.7471977Z test_module_name (jit.test_recursive_script.TestRecursiveScript) ... ok (0.004s) 2023-01-11T21:25:29.7472116Z test_module_repr (jit.test_recursive_script.TestRecursiveScript) ... ok (0.019s) 2023-01-11T21:25:29.7472274Z test_optional_module (jit.test_recursive_script.TestRecursiveScript) ... ok (0.018s) 2023-01-11T21:25:29.7472449Z test_override_instance_method_ignore (jit.test_recursive_script.TestRecursiveScript) ... ok (0.003s) 2023-01-11T21:25:29.7472616Z test_prepare_scriptable_basic (jit.test_recursive_script.TestRecursiveScript) ... ok (0.005s) 2023-01-11T21:25:29.7472783Z test_prepare_scriptable_cycle (jit.test_recursive_script.TestRecursiveScript) ... ok (0.003s) 2023-01-11T21:25:29.7472965Z test_prepare_scriptable_iterable_modules (jit.test_recursive_script.TestRecursiveScript) ... ok (0.048s) 2023-01-11T21:25:29.7473163Z test_python_function_attribute (jit.test_recursive_script.TestRecursiveScript) ... ok (0.006s) 2023-01-11T21:25:29.7473327Z test_repeated_error_stack (jit.test_recursive_script.TestRecursiveScript) ... ok (0.004s) 2023-01-11T21:25:29.7473489Z test_script_after_eval (jit.test_recursive_script.TestRecursiveScript) ... ok (0.008s) 2023-01-11T21:25:29.7473633Z test_script_basic (jit.test_recursive_script.TestRecursiveScript) ... ok (0.005s) 2023-01-11T21:25:29.7473798Z test_script_function_attribute (jit.test_recursive_script.TestRecursiveScript) ... ok (0.015s) 2023-01-11T21:25:29.7473950Z test_script_loaded_module (jit.test_recursive_script.TestRecursiveScript) 2023-01-11T21:25:29.7474084Z Test that we can hold a loaded ScriptModule as a submodule. ... ok (0.012s) 2023-01-11T21:25:29.7474232Z test_aten_inplace (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.016s) 2023-01-11T21:25:29.7474396Z test_common_pytorch_list_ops (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.027s) 2023-01-11T21:25:29.7474543Z test_if_output (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.003s) 2023-01-11T21:25:29.7474695Z test_if_output_fail (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.006s) 2023-01-11T21:25:29.7474848Z test_list_indexing_removal (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.014s) 2023-01-11T21:25:29.7474998Z test_lists_append (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.005s) 2023-01-11T21:25:29.7475144Z test_lists_insert (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.003s) 2023-01-11T21:25:29.7475305Z test_special_mapped_op (jit.test_remove_mutation.TestRemoveMutation) ... ok (0.009s) 2023-01-11T21:25:29.7475433Z test_different_functions (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7475567Z Exercise the situation where we have the same qualified name ... ok (0.024s) 2023-01-11T21:25:29.7475694Z test_different_interfaces (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7475831Z Exercise the situation where we have the same qualified name ... ok (0.046s) 2023-01-11T21:25:29.7475945Z test_different_modules (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7476083Z Exercise the situation where we have the same qualified name ... ok (0.033s) 2023-01-11T21:25:29.7476216Z test_many_collisions (jit.test_save_load.TestSaveLoad) ... ok (0.181s) 2023-01-11T21:25:29.7476338Z test_save_load_meta_tensors (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7476492Z Check that parameters, buffers, and submodules are the same after loading ... ok (0.019s) 2023-01-11T21:25:29.7476633Z test_save_load_params_buffers_submodules (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7476787Z Check that parameters, buffers, and submodules are the same after loading. ... ok (0.007s) 2023-01-11T21:25:29.7476930Z test_save_load_using_pathlib (jit.test_save_load.TestSaveLoad) ... ok (0.005s) 2023-01-11T21:25:29.7477062Z test_save_load_with_extra_files (jit.test_save_load.TestSaveLoad) ... ok (0.012s) 2023-01-11T21:25:29.7477193Z test_save_namedtuple_input_only (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7477336Z Even if a NamedTuple is only used as an input argument, saving and ... ok (0.007s) 2023-01-11T21:25:29.7477515Z test_save_namedtuple_output_only (jit.test_save_load.TestSaveLoad) 2023-01-11T21:25:29.7477660Z Even if a NamedTuple is only used as an output argument, saving and ... ok (0.006s) 2023-01-11T21:25:29.7477790Z test_save_nonexit_file (jit.test_save_load.TestSaveLoad) ... ok (0.007s) 2023-01-11T21:25:29.7477938Z test_different_functions (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7478133Z Exercise the situation where we have the same qualified name ... skip: Need to enable flatbuffer to run the below tests (0.001s) 2023-01-11T21:25:29.7478270Z test_different_interfaces (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7478466Z Exercise the situation where we have the same qualified name ... skip: Need to enable flatbuffer to run the below tests (0.001s) 2023-01-11T21:25:29.7478638Z test_different_modules (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7478833Z Exercise the situation where we have the same qualified name ... skip: Need to enable flatbuffer to run the below tests (0.001s) 2023-01-11T21:25:29.7479043Z test_many_collisions (jit.test_save_load.TestSaveLoadFlatbuffer) ... skip: Need to enable flatbuffer to run the below tests (0.002s) 2023-01-11T21:25:29.7479259Z test_module_info_flatbuffer (jit.test_save_load.TestSaveLoadFlatbuffer) ... skip: Need to enable flatbuffer to run the below tests (0.001s) 2023-01-11T21:25:29.7479423Z test_save_load_params_buffers_submodules (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7479633Z Check that parameters, buffers, and submodules are the same after loading. ... skip: Need to enable flatbuffer to run the below tests (0.001s) 2023-01-11T21:25:29.7479854Z test_save_load_using_pathlib (jit.test_save_load.TestSaveLoadFlatbuffer) ... skip: Need to enable flatbuffer to run the below tests (0.000s) 2023-01-11T21:25:29.7480005Z test_save_load_with_extra_files (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7480203Z Check that parameters, buffers, and submodules are the same after loading. ... skip: Need to enable flatbuffer to run the below tests (0.000s) 2023-01-11T21:25:29.7480357Z test_save_namedtuple_input_only (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7480554Z Even if a NamedTuple is only used as an input argument, saving and ... skip: Need to enable flatbuffer to run the below tests (0.000s) 2023-01-11T21:25:29.7480706Z test_save_namedtuple_output_only (jit.test_save_load.TestSaveLoadFlatbuffer) 2023-01-11T21:25:29.7480899Z Even if a NamedTuple is only used as an output argument, saving and ... skip: Need to enable flatbuffer to run the below tests (0.000s) 2023-01-11T21:25:29.7481138Z test_versioned_div_scalar (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... Falsifying explicit example: test_versioned_div_scalar( 2023-01-11T21:25:29.7481331Z self=, 2023-01-11T21:25:29.7481418Z sample_input=(2, 3, 2.0, 3.0), 2023-01-11T21:25:29.7481477Z ) 2023-01-11T21:25:29.7481560Z skip: Failed to load fixture! (0.123s) 2023-01-11T21:25:29.7481752Z test_versioned_div_scalar_inplace (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.417s) 2023-01-11T21:25:29.7481946Z test_versioned_div_scalar_reciprocal (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.101s) 2023-01-11T21:25:29.7482132Z test_versioned_div_scalar_scalar (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.006s) 2023-01-11T21:25:29.7482312Z test_versioned_div_tensor (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.084s) 2023-01-11T21:25:29.7482503Z test_versioned_div_tensor_inplace (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.530s) 2023-01-11T21:25:29.7482692Z test_versioned_div_tensor_out (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (1.154s) 2023-01-11T21:25:29.7482905Z test_versioned_linspace (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.015s) 2023-01-11T21:25:29.7483083Z test_versioned_linspace_out (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.012s) 2023-01-11T21:25:29.7483268Z test_versioned_logspace (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.014s) 2023-01-11T21:25:29.7483453Z test_versioned_logspace_out (jit.test_save_load_for_op_version.TestSaveLoadForOpVersion) ... ok (0.010s) 2023-01-11T21:25:29.7483561Z test_add_out (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7483687Z test_add_tuple_different_types (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7483809Z test_add_tuple_non_optional (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7483932Z test_add_tuple_optional (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7484079Z test_add_tuple_same_types (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7484163Z test_addmm_grad (__main__.TestScript) 2023-01-11T21:25:29.7484268Z This test checks several things: ... ok (0.005s) 2023-01-11T21:25:29.7484403Z test_alias_covariant_type_containers (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7484500Z test_all (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7484614Z test_annot_ast_mypy_fn (__main__.TestScript) ... ok (0.021s) 2023-01-11T21:25:29.7484730Z test_annot_ast_mypy_method (__main__.TestScript) ... ok (0.034s) 2023-01-11T21:25:29.7484845Z test_annot_ast_py3_fn (__main__.TestScript) ... ok (0.022s) 2023-01-11T21:25:29.7484960Z test_annot_ast_py3_method (__main__.TestScript) ... ok (0.035s) 2023-01-11T21:25:29.7485067Z test_annot_string_mypy_fn (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7485187Z test_annot_string_mypy_method (__main__.TestScript) ... ok (0.024s) 2023-01-11T21:25:29.7485304Z test_annot_string_py3_fn (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7485428Z test_annot_string_py3_method (__main__.TestScript) ... ok (0.024s) 2023-01-11T21:25:29.7485550Z test_annotated_script_fn (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7485686Z test_annotated_script_fn_arg_mismatch (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7485826Z test_annotated_script_fn_return_mismatch (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7485952Z test_annotated_script_method (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7486058Z test_annoying_doubles (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7486159Z test_any (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7486295Z test_assert_is_scripting_metacompile (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7486424Z test_assertion_optional_refinement (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7486545Z test_attr_module_constants (__main__.TestScript) ... ok (0.021s) 2023-01-11T21:25:29.7486662Z test_attr_qscheme_script (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7486779Z test_attribute_in_init (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7486896Z test_attribute_serialization (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7487016Z test_attribute_unpickling (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7487129Z test_augmented_assign (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7487259Z test_autodiff_complex (__main__.TestScript) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7487382Z test_backend_cudnn_enabled (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7487510Z test_bad_multiline_annotations (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7487652Z test_bailout_loop_carried_deps_name_clash (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7487787Z test_bailout_loop_counter_transition (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7487963Z test_batch_norm_inference_backward_cuda (__main__.TestScript) ... skip: running tests on cuda to verify cudnn fix (0.001s) 2023-01-11T21:25:29.7488116Z test_batchnorm_fuser_cpu (__main__.TestScript) ... ok (0.320s) 2023-01-11T21:25:29.7488235Z test_big_float_literals (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7488351Z test_big_int_literals (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7488467Z test_binary_op_shape (__main__.TestScript) ... ok (0.214s) 2023-01-11T21:25:29.7488579Z test_bitwise_ops (__main__.TestScript) ... ok (0.020s) 2023-01-11T21:25:29.7488705Z test_block_input_grad_in_loop (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7488830Z test_bool_augassign_bitwise_and (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7488945Z test_bool_augassign_bitwise_or (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7489191Z test_bool_augassign_bitwise_xor (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7489352Z test_bool_dispatch (__main__.TestScript) ... ok (0.028s) 2023-01-11T21:25:29.7489492Z test_boolean_literal_constant_metacompile (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7489613Z test_break_continue_error (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7489728Z test_breaks_continues (__main__.TestScript) ... ok (0.112s) 2023-01-11T21:25:29.7489836Z test_builtin_args (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7489992Z test_builtin_args_fails (__main__.TestScript) ... You have not run this instance of FileCheck! 2023-01-11T21:25:29.7490054Z FileCheck checks: 2023-01-11T21:25:29.7490397Z [W ir_emitter.cpp:4385] Warning: List consists of heterogeneous types, which means that it has been typed as containing Union[List[int], int]. To use any of the values in this List, it will be necessary to add an `assert isinstance` statement before first use to trigger type refinement. 2023-01-11T21:25:29.7490520Z File "/var/lib/jenkins/workspace/test/test_jit.py", line 10812 2023-01-11T21:25:29.7490602Z @torch.jit.script 2023-01-11T21:25:29.7490672Z def f6(a): 2023-01-11T21:25:29.7490754Z a.expand(size=[3, [4]]) 2023-01-11T21:25:29.7490912Z ~~~~~~ <--- HERE 2023-01-11T21:25:29.7491000Z (function emitListLiteral) 2023-01-11T21:25:29.7491055Z ok (0.006s) 2023-01-11T21:25:29.7491182Z test_builtin_function_attributes (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7491297Z test_builtin_use_as_value (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7491402Z test_call_ge (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7491529Z test_call_python_fn_from_script_fn (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7491661Z test_call_python_fn_from_script_module (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7491793Z test_call_python_fn_from_traced_module (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7491915Z test_call_python_fn_from_tracing_fn (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7492042Z test_call_python_mod_from_script_fn (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7492180Z test_call_python_mod_from_script_module (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7492311Z test_call_python_mod_from_traced_module (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7492444Z test_call_python_mod_from_tracing_fn (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7492573Z test_call_script_fn_from_script_fn (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7492708Z test_call_script_fn_from_script_module (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7492836Z test_call_script_fn_from_tracing_fn (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7492954Z test_call_script_mod_from_script_fn (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7493085Z test_call_script_mod_from_script_module (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7493249Z test_call_script_mod_from_tracing_fn (__main__.TestScript) ... skip: error in first class mode (0.001s) 2023-01-11T21:25:29.7493376Z test_call_traced_fn_from_tracing_fn (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7493575Z test_call_traced_mod_from_tracing_fn (__main__.TestScript) ... skip: error in first class mode (0.001s) 2023-01-11T21:25:29.7493851Z test_calls_in_type_annotations (__main__.TestScript) ... /opt/conda/lib/python3.10/site-packages/torch/__init__.py 2023-01-11T21:25:29.7493915Z ok (0.001s) 2023-01-11T21:25:29.7494047Z test_canonicalize_control_outputs (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7494234Z test_cast (__main__.TestScript) ... skip: RuntimeError: VariableType::ID() not implemented (0.000s) 2023-01-11T21:25:29.7494325Z test_cat (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7494431Z test_cat_lifts (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7494526Z test_chr (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7494663Z test_circular_dependency (__main__.TestScript) 2023-01-11T21:25:29.7494805Z https://github.com/pytorch/pytorch/issues/25871 ... ok (0.028s) 2023-01-11T21:25:29.7494925Z test_class_as_attribute (__main__.TestScript) ... ok (0.307s) 2023-01-11T21:25:29.7495037Z test_class_attribute (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7495153Z test_class_attribute_in_script (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7495295Z test_class_with_comment_at_lower_indentation (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7495401Z test_code_with_constants (__main__.TestScript) 2023-01-11T21:25:29.7495568Z Check that the `code_with_constants` property correctly returns graph CONSTANTS in the ... ok (0.006s) 2023-01-11T21:25:29.7495686Z test_code_with_constants_restore (__main__.TestScript) 2023-01-11T21:25:29.7495861Z Check that the `code_with_constants` property correctly works on restoration after save() + load() ... ok (0.008s) 2023-01-11T21:25:29.7495986Z test_comment_ignore_indent (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7496108Z test_compare_two_bool_inputs (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7496297Z test_compile_module_with_constant (__main__.TestScript) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:25:29.7496418Z test_conditional_casting (__main__.TestScript) ... ok (0.042s) 2023-01-11T21:25:29.7496533Z test_constant_as_attr (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7496671Z test_constant_pooling_introduce_aliasing (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7496794Z test_constant_pooling_none (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7496927Z test_constant_pooling_same_identity (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7497044Z test_context_manager (__main__.TestScript) ... ok (0.015s) 2023-01-11T21:25:29.7497153Z test_conv_error (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7497256Z test_convert_base (__main__.TestScript) ... ok (0.020s) 2023-01-11T21:25:29.7497382Z test_cpp_function_tensor_str (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7497504Z test_cpp_module_iterator (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7497618Z test_desugar_module (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7497730Z test_device_kwarg (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7497844Z test_device_type (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7497983Z test_device_type_cuda (__main__.TestScript) ... skip: Requires CUDA (0.000s) 2023-01-11T21:25:29.7498084Z test_dir (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7498177Z test_divmod (__main__.TestScript) ... ok (0.028s) 2023-01-11T21:25:29.7498338Z test_dominated_bailout (__main__.TestScript) ... skip: bailouts are being deprecated (0.001s) 2023-01-11T21:25:29.7498451Z test_dropout_eval (__main__.TestScript) ... ok (0.225s) 2023-01-11T21:25:29.7498563Z test_dtype_attr (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7498679Z test_dtype_op_shape (__main__.TestScript) ... ok (0.042s) 2023-01-11T21:25:29.7498829Z test_dtype_op_shape2 (__main__.TestScript) ... ok (0.048s) 2023-01-11T21:25:29.7498949Z test_early_return_closure (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7499059Z test_early_return_fork_join (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7499179Z test_early_return_rewrite (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7499311Z test_early_return_type_refinement (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7499431Z test_early_returns_loops (__main__.TestScript) ... ok (0.034s) 2023-01-11T21:25:29.7499549Z test_ellipsis_const_end (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7499668Z test_ellipsis_const_mid (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7499797Z test_ellipsis_const_mid_select (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7499944Z test_ellipsis_const_start (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7500046Z test_ellipsis_end (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7500158Z test_ellipsis_mid (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7500279Z test_ellipsis_mid_select (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7500394Z test_ellipsis_start (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7500525Z test_embedding_renorm_grad_error (__main__.TestScript) ... ok (0.016s) 2023-01-11T21:25:29.7500652Z test_empty_like_memory_format_bc (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7500768Z test_empty_tuple_str (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7500894Z test_enumerate_modlist_range (__main__.TestScript) ... ok (0.031s) 2023-01-11T21:25:29.7501000Z test_erase_number_types (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7501102Z test_error (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7501222Z test_error_stacktrace (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7501351Z test_error_stacktrace_interface (__main__.TestScript) ... ok (0.729s) 2023-01-11T21:25:29.7501464Z test_eval_python (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7501588Z test_exception_exits_closure (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7501721Z test_exceptions_with_control_flow (__main__.TestScript) ... ok (0.033s) 2023-01-11T21:25:29.7501815Z test_expand (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7501915Z test_fibb (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7502033Z test_fibb_totally_better (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7502162Z test_file_format_serialization (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7502276Z test_file_line_error (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7502402Z test_file_line_error_class_defn (__main__.TestScript) ... ok (0.682s) 2023-01-11T21:25:29.7502520Z test_file_line_graph (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7502636Z test_file_line_save_load (__main__.TestScript) ... ok (0.265s) 2023-01-11T21:25:29.7502741Z test_file_line_string (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7502853Z test_file_line_trace (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7502962Z test_filecheck (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7503078Z test_filecheck_parse (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7503198Z test_first_class_calls (__main__.TestScript) ... ok (0.394s) 2023-01-11T21:25:29.7503315Z test_first_class_module (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7503518Z test_floor_div (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7503616Z test_floordiv (__main__.TestScript) ... ok (0.021s) 2023-01-11T21:25:29.7503720Z test_for_else (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7503827Z test_for_in_dict (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7503946Z test_for_in_enumerate (__main__.TestScript) ... ok (0.030s) 2023-01-11T21:25:29.7504056Z test_for_in_range (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7504204Z test_for_in_range_ast (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7504322Z test_for_in_range_dynamic (__main__.TestScript) ... ok (0.018s) 2023-01-11T21:25:29.7504443Z test_for_in_range_if_ast (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7504552Z test_for_in_range_start_end (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7504681Z test_for_in_range_start_end_step (__main__.TestScript) ... ok (0.015s) 2023-01-11T21:25:29.7504804Z test_for_in_range_zero_step (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7504917Z test_for_in_string (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7505032Z test_for_in_tensors (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7505191Z test_for_in_tensors_fail_scalar (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7505316Z test_for_in_tensors_nested (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7505434Z test_for_in_tensors_rank0 (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7505533Z test_for_in_zip (__main__.TestScript) ... ok (0.021s) 2023-01-11T21:25:29.7505653Z test_for_in_zip_enumerate (__main__.TestScript) ... ok (0.017s) 2023-01-11T21:25:29.7505770Z test_for_tuple_assign (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7505885Z test_for_tuple_unpack (__main__.TestScript) ... ok (0.015s) 2023-01-11T21:25:29.7505988Z test_format (__main__.TestScript) ... ok (0.033s) 2023-01-11T21:25:29.7506094Z test_func_call (__main__.TestScript) ... ok (0.015s) 2023-01-11T21:25:29.7506227Z test_function_compilation_caching (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7506342Z test_function_overload_misuse (__main__.TestScript) ... ok (0.762s) 2023-01-11T21:25:29.7506481Z test_function_overloading_isinstance (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7506603Z test_function_overloads (__main__.TestScript) ... ok (0.048s) 2023-01-11T21:25:29.7506800Z test_fuser_double_float_codegen (__main__.TestScript) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:25:29.7506938Z test_fuser_double_literal_precision (__main__.TestScript) ... ok (0.237s) 2023-01-11T21:25:29.7507061Z test_fuser_multiple_blocks (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7507181Z test_gather_dynamic_index (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7507301Z test_generic_list_errors (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7507402Z test_get_set_state (__main__.TestScript) ... ok (0.028s) 2023-01-11T21:25:29.7507529Z test_get_set_state_with_tensors (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7507647Z test_grad_from_script (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7507749Z test_hash (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7507862Z test_hex_literals (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7507962Z test_id (__main__.TestScript) ... ok (0.359s) 2023-01-11T21:25:29.7508064Z test_if (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7508173Z test_if_define (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7508280Z test_if_different_type (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7508395Z test_if_for_in_range (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7508516Z test_if_is_none_dispatch (__main__.TestScript) ... ok (0.016s) 2023-01-11T21:25:29.7508626Z test_if_list_cat (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7508738Z test_if_nest_while (__main__.TestScript) ... ok (0.054s) 2023-01-11T21:25:29.7508844Z test_if_noelse (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7508962Z test_if_not_defined_error (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7509066Z test_if_supertype (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7509184Z test_ignore_decorator (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7509301Z test_ignored_as_value (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7509458Z test_ignored_method_binding (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7509572Z test_ignored_props (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7509709Z test_import_constants_not_specialized (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7509828Z test_in_for_and_comp_expr (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7509956Z test_in_operator_with_two_strings (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7510048Z test_index (__main__.TestScript) ... ok (0.079s) 2023-01-11T21:25:29.7510175Z test_index_select_shape_prop (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7510291Z test_index_with_tuple (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7510435Z test_indexing_error (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7510545Z test_infer_size (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7510650Z test_inferred_error_msg (__main__.TestScript) 2023-01-11T21:25:29.7510798Z Test that when we get a type mismatch on a function where we inferred ... ok (0.002s) 2023-01-11T21:25:29.7510902Z test_inherit_method (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7511105Z test_inline_and_run_annotated_script_fn (__main__.TestScript) ... skip: https://github.com/pytorch/pytorch/issues/9595 (0.000s) 2023-01-11T21:25:29.7511205Z test_inlined_graph (__main__.TestScript) 2023-01-11T21:25:29.7511357Z Check that the `inlined_graph` property correctly returns an inlined ... ok (0.010s) 2023-01-11T21:25:29.7511475Z test_inlining_cleanup (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7511585Z test_inplace_add (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7511707Z test_inplace_copy_script (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7511837Z test_input_keyword_in_schema (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7511931Z test_int_cast (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7512060Z test_integral_shape_inference (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7512176Z test_interpret_graph (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7512294Z test_interpreter_fuzz (__main__.TestScript) ... ok (0.284s) 2023-01-11T21:25:29.7512406Z test_intlist_args (__main__.TestScript) ... ok (0.121s) 2023-01-11T21:25:29.7512532Z test_invalid_call_arguments (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7512653Z test_invalid_lhs_assignment (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7512782Z test_invalid_prefix_annotation (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7512879Z test_irparser (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7512988Z test_is_after_use (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7513159Z test_is_isnot (__main__.TestScript) ... :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513287Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513413Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513534Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513653Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513772Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513878Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7513996Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514122Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514243Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514364Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514482Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514643Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514750Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514869Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7514995Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515116Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515238Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515357Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515475Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515593Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515728Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515854Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7515979Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516099Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516222Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516342Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516461Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516579Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516688Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516808Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7516930Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517049Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517167Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517290Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517411Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517531Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517638Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517757Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517875Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7517995Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518114Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518235Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518357Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518467Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518586Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518705Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518828Z :4: SyntaxWarning: "is" with a literal. Did you mean "=="? 2023-01-11T21:25:29.7518956Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519079Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519208Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519337Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519454Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519580Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519707Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519863Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7519990Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520117Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520241Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520366Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520481Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520605Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520730Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7520879Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521005Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521136Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521261Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521385Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521499Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521624Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521749Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521873Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7521998Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522122Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522247Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522372Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522486Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522609Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522734Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522857Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7522981Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523106Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523231Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523358Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523470Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523596Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523721Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523844Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7523967Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524089Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524213Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524325Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524450Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524574Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524699Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524824Z :4: SyntaxWarning: "is not" with a literal. Did you mean "!="? 2023-01-11T21:25:29.7524918Z ok (0.044s) 2023-01-11T21:25:29.7525032Z test_is_optional (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7525145Z test_is_scripting (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7525263Z test_is_scripting_metacompile (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7525372Z test_isinstance (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7525495Z test_isinstance_dynamic (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7525621Z test_isinstance_metacompile (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7525743Z test_isinstance_refinement (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7525851Z test_jitter_bug (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7525985Z test_keyword (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7526112Z test_kwarg_expansion_error (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7526219Z test_kwargs_error_msg (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7526330Z test_lazy_script (__main__.TestScript) ... ok (0.017s) 2023-01-11T21:25:29.7526467Z test_lhs_advanced_indexing_assignment (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7526619Z test_lhs_advanced_indexing_augmented_assignment (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7526731Z test_lhs_indexing (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7526856Z test_lhs_indexing_increment (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7526984Z test_lhs_indexing_increment_list (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7527108Z test_lhs_indexing_increment_list_prim (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7527227Z test_lhs_indexing_list (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7527348Z test_lhs_indexing_multi (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7527460Z test_linear_grad (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7527598Z test_list_comprehension_modulelist (__main__.TestScript) ... ok (0.044s) 2023-01-11T21:25:29.7527738Z test_list_comprehension_variable_write (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7527853Z test_list_iterables (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7527968Z test_list_python_op (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7528065Z test_list_unify (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7528170Z test_literal (__main__.TestScript) ... ok (0.017s) 2023-01-11T21:25:29.7528278Z test_literals (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7528400Z test_logical_short_circuit (__main__.TestScript) ... ok (0.021s) 2023-01-11T21:25:29.7528514Z test_loop_liveness (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7528637Z test_loop_unroll_negative (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7528766Z test_loop_unroll_unused_counter (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7528883Z test_loop_unrolling (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7528992Z test_loop_unrolling_const (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7529231Z test_loop_unrolling_nested (__main__.TestScript) ... ok (0.052s) 2023-01-11T21:25:29.7529353Z test_lower_nested_tuples (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7529460Z test_math_ops (__main__.TestScript) ... ok (0.204s) 2023-01-11T21:25:29.7529631Z test_maxpool_guard_elimination (__main__.TestScript) ... skip: bailouts are being deprecated (0.001s) 2023-01-11T21:25:29.7529833Z test_meshgrid (__main__.TestScript) ... skip: Profiling executor fails to recognize that tensors in a list require gradients (0.001s) 2023-01-11T21:25:29.7529954Z test_method_casts_script (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7530070Z test_method_no_self (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7530179Z test_method_overloading (__main__.TestScript) ... ok (7.486s) 2023-01-11T21:25:29.7530350Z test_missing_getstate (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7530462Z test_mm_batching (__main__.TestScript) ... ok (0.512s) 2023-01-11T21:25:29.7530573Z test_module_apis (__main__.TestScript) ... ok (0.048s) 2023-01-11T21:25:29.7530685Z test_module_attrs (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7530817Z test_module_copy_with_attributes (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7530933Z test_module_copying (__main__.TestScript) ... ok (0.015s) 2023-01-11T21:25:29.7531031Z test_module_error (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7531161Z test_module_method_reassignment (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7531282Z test_module_none_attrs (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7531448Z test_module_parameters_and_buffers (__main__.TestScript) ... ok (0.024s) 2023-01-11T21:25:29.7531558Z test_module_str (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7531696Z test_module_with_params_called_fails (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7531813Z test_multi_reduction (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7531936Z test_multi_starred_expr_lhs (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7532051Z test_multiline_annot_ast_py3_fn (__main__.TestScript) ... ok (0.022s) 2023-01-11T21:25:29.7532193Z test_multiline_optional_future_refinement (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7532320Z test_multiline_string_dedents (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7532435Z test_multiple_assign (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7532557Z test_multiple_assignment (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7532669Z test_mutable_dce (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7532789Z test_mutable_dce_block (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7532916Z test_mutable_dce_graph_input (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7533046Z test_mutable_dce_indirect_wildcard_write (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7533182Z test_mutable_dce_indirect_wildcards (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7533300Z test_mutable_dce_list (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7533416Z test_mutable_dce_loop (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7533540Z test_mutable_dce_wildcards (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7533655Z test_mutate_constant (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7533772Z test_mypy_type_ignore (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7533891Z test_named_buffers_are_iterable (__main__.TestScript) ... ok (0.043s) 2023-01-11T21:25:29.7534009Z test_namedtuple_attr (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7534155Z test_namedtuple_default_values_Tensor_type (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7534306Z test_namedtuple_default_values_container_type (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7534447Z test_namedtuple_default_values_missing (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7534591Z test_namedtuple_default_values_simple_type (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7534751Z test_namedtuple_default_values_using_factory_constructor (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7534873Z test_namedtuple_python (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7534991Z test_namedtuple_type_inference (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7535103Z test_narrow_copy (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7535222Z test_nested_aug_assign (__main__.TestScript) ... ok (1.048s) 2023-01-11T21:25:29.7535343Z test_nested_bailouts (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7535457Z test_nested_breaks (__main__.TestScript) ... ok (0.026s) 2023-01-11T21:25:29.7535610Z test_nested_list_construct (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7535731Z test_nested_select_assign (__main__.TestScript) ... ok (0.016s) 2023-01-11T21:25:29.7535835Z test_nn_GRU (__main__.TestScript) ... ok (0.163s) 2023-01-11T21:25:29.7535929Z test_nn_LSTM (__main__.TestScript) ... ok (0.104s) 2023-01-11T21:25:29.7536046Z test_nn_LSTM_with_layers (__main__.TestScript) ... ok (0.107s) 2023-01-11T21:25:29.7536153Z test_nn_init (__main__.TestScript) ... ok (0.031s) 2023-01-11T21:25:29.7536268Z test_no_dtype_shape (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7536396Z test_no_self_arg_ignore_function (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7536511Z test_non_final_return (__main__.TestScript) ... ok (0.079s) 2023-01-11T21:25:29.7536649Z test_none_type_str (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7536738Z test_not (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7536858Z test_not_initialized_err (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7536976Z test_ntuple_builtins (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7537087Z test_number_abs (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7537203Z test_number_augassign (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7537336Z test_number_augassign_bitwise_lshift (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7537467Z test_number_augassign_bitwise_pow (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7537601Z test_number_augassign_bitwise_rshift (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7537697Z test_number_div (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7537806Z test_number_math (__main__.TestScript) ... ok (1.878s) 2023-01-11T21:25:29.7537914Z test_number_neg (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7538082Z test_old_models_bc (__main__.TestScript) ... skip: PyTorch is build without Caffe2 support (0.001s) 2023-01-11T21:25:29.7538197Z test_oneline_func (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7538308Z test_op_dtype (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7538430Z test_operator_precedence (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7538754Z test_optional_list (__main__.TestScript) ... skip: the current version of Profiler doesn't profile/specialize Optionals (0.001s) 2023-01-11T21:25:29.7539041Z test_optional_tensor (__main__.TestScript) ... skip: the current version of Profiler doesn't profile/specialize Optionals (0.001s) 2023-01-11T21:25:29.7539145Z test_ord (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7539261Z test_override_magic (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7539387Z test_pack_tuple_into_non_var (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7539510Z test_pack_unpack_nested (__main__.TestScript) ... ok (0.026s) 2023-01-11T21:25:29.7539631Z test_pack_unpack_state (__main__.TestScript) ... ok (0.013s) 2023-01-11T21:25:29.7539786Z test_parameter_order (__main__.TestScript) ... tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 2023-01-11T21:25:29.7539884Z 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 2023-01-11T21:25:29.7539970Z 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 2023-01-11T21:25:29.7540058Z 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.], 2023-01-11T21:25:29.7540146Z grad_fn=) 2023-01-11T21:25:29.7540249Z tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 2023-01-11T21:25:29.7540342Z 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 2023-01-11T21:25:29.7540435Z 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 2023-01-11T21:25:29.7540525Z 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.], 2023-01-11T21:25:29.7540607Z grad_fn=) 2023-01-11T21:25:29.7540660Z ok (0.009s) 2023-01-11T21:25:29.7540842Z test_parse_empty_tuple_annotation (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7540991Z test_parse_empty_tuple_annotation_element_error (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7541111Z test_parse_nested_names (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7541242Z test_parse_none_type_annotation (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7541366Z test_parse_tensor_constants (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7541483Z test_parser_kwargonly (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7541599Z test_parser_type_annotations (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7541736Z test_parser_type_annotations_comment (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7541922Z test_parser_type_annotations_incompatible_expression (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7542074Z test_parser_type_annotations_subscript_non_ident (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7542224Z test_parser_type_annotations_subscript_tensor (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7542366Z test_parser_type_annotations_unknown_type (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7542484Z test_partial_returns (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7542587Z test_pass (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7542700Z test_pickle_checkpoint (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7542840Z test_pickle_checkpoint_cuda (__main__.TestScript) ... skip: no CUDA (0.000s) 2023-01-11T21:25:29.7542963Z test_pickle_checkpoint_tup (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7543124Z test_pow_scalar_backward_cuda (__main__.TestScript) ... skip: device tests require CUDA (0.001s) 2023-01-11T21:25:29.7543249Z test_pretty_print_function (__main__.TestScript) ... ok (0.030s) 2023-01-11T21:25:29.7543492Z test_prim_grad_undefined (__main__.TestScript) ... skip: shape analysis is only enabled in Legacy (0.000s) 2023-01-11T21:25:29.7543600Z test_print (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7543713Z test_print_kwargs (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7543872Z test_profiling_graph_executor (__main__.TestScript) ... skip: bailouts are being deprecated (0.001s) 2023-01-11T21:25:29.7543990Z test_profiling_merge (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7544118Z test_pybind_type_comparisons (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7544231Z test_python_call (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7544355Z test_python_call_annotation (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7544491Z test_python_call_annoytation_failure (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7544613Z test_python_call_failure (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7544736Z test_python_call_non_tensor (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7544857Z test_python_call_non_tensor_wrong (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7544973Z test_python_frontend (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7545094Z test_python_frontend_py3 (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7545224Z test_python_frontend_source_range (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7545347Z test_python_op_builtins (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7545462Z test_python_op_name (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7545591Z test_python_val_doesnt_have_attr (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7545737Z test_rand (__main__.TestScript) ... skip: the original version of test_rand (0.001s) 2023-01-11T21:25:29.7545842Z test_rand_profiling (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7545954Z test_range_args (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7546074Z test_reassign_module_lhs (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7546229Z test_reassign_module_rhs (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7546349Z test_refine_tuple_types (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7546464Z test_remove_dropout (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7546598Z test_repeated_script_on_function (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7546702Z test_request_bailout (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7546853Z test_requires_grad_loop (__main__.TestScript) ... skip: Peeling is now disabled (0.001s) 2023-01-11T21:25:29.7546984Z test_rescripting_loaded_modules (__main__.TestScript) ... ok (0.027s) 2023-01-11T21:25:29.7547101Z test_resize_input_ops (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7547205Z test_return (__main__.TestScript) ... ok (0.015s) 2023-01-11T21:25:29.7547357Z test_return_stmt_not_at_end (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7547470Z test_return_tuple (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7547594Z test_robust_op_resolution (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7547685Z test_round (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7547805Z test_save_load_attr_error (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7547924Z test_script_annotation (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7548046Z test_script_bool_constant (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7548157Z test_script_chunk (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7548275Z test_script_clamp_none (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7548388Z test_script_copy (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7548496Z test_script_cu (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7548607Z test_script_define_order (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7548745Z test_script_define_order_recursive_fail (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7548869Z test_script_docstring (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7549009Z test_script_forward_method_replacement (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7549155Z test_script_get_device_cuda (__main__.TestScript) ... skip: requires CUDA (0.000s) 2023-01-11T21:25:29.7549286Z test_script_get_tracing_state (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7549405Z test_script_is_tracing (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7549526Z test_script_kwargs_fn_call (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7549640Z test_script_method_docstring (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7549782Z test_script_method_torch_function_overload (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7549897Z test_script_module (__main__.TestScript) ... ok (0.017s) 2023-01-11T21:25:29.7550028Z test_script_module_call_noscript (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7550151Z test_script_module_const (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7550292Z test_script_module_const_submodule_fail (__main__.TestScript) ... ok (0.020s) 2023-01-11T21:25:29.7550423Z test_script_module_export_blocks (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7550898Z test_script_module_export_shared_storage (__main__.TestScript) ... /var/lib/jenkins/workspace/test/test_jit.py:10624: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:25:29.7551079Z self.assertTrue(m_import.param1.storage().data_ptr() == m_import.param2.storage().data_ptr()) 2023-01-11T21:25:29.7551480Z /var/lib/jenkins/workspace/test/test_jit.py:10625: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:25:29.7551720Z self.assertTrue(m_import.param1.storage().data_ptr() != m_import.param3.storage().data_ptr()) 2023-01-11T21:25:29.7551813Z ok (0.008s) 2023-01-11T21:25:29.7552031Z test_script_module_export_submodule (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7552265Z test_script_module_export_tensor_cuda (__main__.TestScript) ... skip: testing cuda tensors require CUDA (0.001s) 2023-01-11T21:25:29.7553096Z test_script_module_export_tensor_type (__main__.TestScript) ... /var/lib/jenkins/workspace/test/test_jit.py:10560: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:25:29.7553283Z self.assertTrue(m_orig.param.storage().size() == 25) 2023-01-11T21:25:29.7553379Z ok (0.010s) 2023-01-11T21:25:29.7553571Z test_script_module_fail_exist (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7553749Z test_script_module_for (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7553917Z test_script_module_for2 (__main__.TestScript) ... ok (0.033s) 2023-01-11T21:25:29.7554118Z test_script_module_invalid_consts (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7554324Z test_script_module_nochange_submodule (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7554893Z test_script_module_none_exist_fail (__main__.TestScript) ... skip: [module dedupe] currently NoneType refinement on optional attributes doesn't work. (0.001s) 2023-01-11T21:25:29.7555087Z test_script_module_not_tuple (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7555297Z test_script_module_param_buffer_mutation (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7555494Z test_script_module_star_assign2 (__main__.TestScript) ... ok (0.013s) 2023-01-11T21:25:29.7555698Z test_script_module_star_assign2_inplace (__main__.TestScript) ... ok (0.013s) 2023-01-11T21:25:29.7555899Z test_script_module_star_assign_fail_builtin (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7556116Z test_script_module_star_assign_fail_pythonop (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7556330Z test_script_module_tensor_subclass_argument (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7556520Z test_script_nested_mod_list (__main__.TestScript) ... ok (0.037s) 2023-01-11T21:25:29.7556721Z test_script_non_tensor_args_outputs (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7556903Z test_script_optional_none (__main__.TestScript) ... ok (0.013s) 2023-01-11T21:25:29.7557079Z test_script_outputs (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7557281Z test_script_pack_padded_sequence (__main__.TestScript) ... ok (0.037s) 2023-01-11T21:25:29.7557481Z test_script_pad_sequence_pack_sequence (__main__.TestScript) ... ok (0.041s) 2023-01-11T21:25:29.7557648Z test_script_scope (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7557836Z test_script_sequential_for (__main__.TestScript) ... ok (0.025s) 2023-01-11T21:25:29.7558040Z test_script_sequential_in_mod_list (__main__.TestScript) ... ok (0.041s) 2023-01-11T21:25:29.7558251Z test_script_sequential_multi_output_fail (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7558450Z test_script_sequential_orderdict (__main__.TestScript) ... ok (0.030s) 2023-01-11T21:25:29.7558657Z test_script_sequential_sliced_iteration (__main__.TestScript) ... ok (0.031s) 2023-01-11T21:25:29.7558836Z test_script_star_assign (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7559004Z test_script_star_expr (__main__.TestScript) ... ok (0.020s) 2023-01-11T21:25:29.7559272Z test_script_star_expr_string (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7559474Z test_scriptable_fn_as_attr (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7559671Z test_scriptmodule_multi_head_attn_cuda (__main__.TestScript) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7559869Z test_scriptmodule_releases_tensors_cuda (__main__.TestScript) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7560065Z test_scriptmodule_transformer_cuda (__main__.TestScript) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7560222Z test_select_after_chunk (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7560378Z test_sequence_parsing (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7560544Z test_sequential_intermediary_types (__main__.TestScript) ... ok (0.025s) 2023-01-11T21:25:29.7560709Z test_serialization_big_ints (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7560908Z test_serialization_sharing (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7561068Z test_serialize_long_lines (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7561240Z test_serialized_source_ranges (__main__.TestScript) ... ok (0.279s) 2023-01-11T21:25:29.7561410Z test_serialized_source_ranges2 (__main__.TestScript) ... ok (0.385s) 2023-01-11T21:25:29.7561595Z test_serialized_source_ranges_dont_jitter (__main__.TestScript) ... ok (0.068s) 2023-01-11T21:25:29.7561759Z test_serialized_source_ranges_graph (__main__.TestScript) ... ok (0.275s) 2023-01-11T21:25:29.7561938Z test_serialized_source_ranges_no_dups (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7562110Z test_set_attribute_through_optional (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7562283Z test_shape_analysis_grad_property (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7562441Z test_shape_analysis_loop (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7562618Z test_shape_prop_promote_scalar_arg (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7562778Z test_shape_prop_promotion (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7562932Z test_signed_float_zero (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7563093Z test_single_starred_expr_for_loop (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7563249Z test_single_starred_lhs (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7563410Z test_singleton_tuple_unpack (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7563630Z test_slice_guard_elimination (__main__.TestScript) ... skip: bailouts are being deprecated (0.000s) 2023-01-11T21:25:29.7563763Z test_split (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7563897Z test_stack (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7564046Z test_static_if_prop (__main__.TestScript) ... ok (1.957s) 2023-01-11T21:25:29.7564193Z test_static_method_on_module (__main__.TestScript) 2023-01-11T21:25:29.7564387Z Check that the `@staticmethod` annotation on a function on a module works. ... ok (0.008s) 2023-01-11T21:25:29.7564539Z test_static_methods (__main__.TestScript) ... ok (0.019s) 2023-01-11T21:25:29.7564680Z test_str_cast (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7564821Z test_string_cu (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7565002Z test_string_device_implicit_conversion (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7565158Z test_string_frontend_elif (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7565303Z test_string_index (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7565443Z test_string_len (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7565574Z test_string_list (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7565725Z test_string_new_line (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7565865Z test_string_ops (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7566013Z test_string_print (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7566168Z test_string_single_escape (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7566366Z test_string_slicing (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7566506Z test_string_sort (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7566644Z test_string_sorted (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7566825Z test_submodule_attribute_serialization (__main__.TestScript) ... ok (0.016s) 2023-01-11T21:25:29.7566975Z test_submodule_twice (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7567105Z test_sum (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7567260Z test_sum_list_diff_elms (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7567405Z test_sum_list_empty (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7567555Z test_sum_list_literal (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7567726Z test_sum_list_one (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7567869Z test_sum_list_wrong_type (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7568028Z test_sys_stdout_override (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7568433Z test_tensor_as_tensor_shape_prop (__main__.TestScript) ... skip: Simple Executor doesn't have any shapes to propagate (0.001s) 2023-01-11T21:25:29.7568576Z test_tensor_data (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7568768Z test_tensor_device (__main__.TestScript) ... skip: device tests require CUDA (0.000s) 2023-01-11T21:25:29.7568913Z test_tensor_dtype (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7569289Z test_tensor_grad (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7569450Z test_tensor_import_export (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7569582Z test_tensor_len (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7569734Z test_tensor_number_math (__main__.TestScript) ... ok (0.458s) 2023-01-11T21:25:29.7569918Z test_tensor_number_math_cuda (__main__.TestScript) ... skip: No CUDA (0.000s) 2023-01-11T21:25:29.7570118Z test_tensor_requires_grad (__main__.TestScript) ... skip: testing legacy behavior (0.001s) 2023-01-11T21:25:29.7570270Z test_tensor_shape (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7571043Z test_tensor_subclasses (__main__.TestScript) ... /opt/conda/lib/python3.10/site-packages/torch/jit/annotations.py:309: UserWarning: TorchScript will treat type annotations of Tensor dtype-specific subtypes as if they are normal Tensors. dtype constraints are not enforced in compilation either. 2023-01-11T21:25:29.7571223Z warnings.warn("TorchScript will treat type annotations of Tensor " 2023-01-11T21:25:29.7571308Z ok (0.008s) 2023-01-11T21:25:29.7571434Z test_tensor_to (__main__.TestScript) ... ok (0.022s) 2023-01-11T21:25:29.7571584Z test_tensor_to_cpu (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7571779Z test_tensor_to_cuda (__main__.TestScript) ... skip: device tests require CUDA (0.000s) 2023-01-11T21:25:29.7571974Z test_tensor_to_device (__main__.TestScript) ... skip: device tests require CUDA (0.000s) 2023-01-11T21:25:29.7572113Z test_ternary (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7572281Z test_ternary_module_type_hint (__main__.TestScript) ... ok (0.035s) 2023-01-11T21:25:29.7572451Z test_ternary_right_associative (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7572604Z test_ternary_static_if (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7572734Z test_torch_any (__main__.TestScript) ... ok (0.016s) 2023-01-11T21:25:29.7572943Z test_torch_functional (__main__.TestScript) ... skip: Skipping while landing PR stack (0.002s) 2023-01-11T21:25:29.7573119Z test_torch_functional_tensordot_int (__main__.TestScript) ... ok (0.042s) 2023-01-11T21:25:29.7573295Z test_torch_functional_tensordot_list (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7573477Z test_torch_functional_tensordot_tensor (__main__.TestScript) ... ok (0.022s) 2023-01-11T21:25:29.7573655Z test_torch_functional_tensordot_tuple (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7573900Z test_torch_ignore_conversion_to_none (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7574055Z test_torch_manual_seed (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7574186Z test_torch_pow (__main__.TestScript) ... ok (0.032s) 2023-01-11T21:25:29.7574963Z test_torch_tensor_as_tensor (__main__.TestScript) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:471: UserWarning: Casting complex values to real discards the imaginary part (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Copy.cpp:276.) 2023-01-11T21:25:29.7575077Z return callable(*args, **kwargs) 2023-01-11T21:25:29.7575160Z ok (0.559s) 2023-01-11T21:25:29.7575336Z test_torch_tensor_as_tensor_empty_list (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7575533Z test_torch_tensor_bad_input (__main__.TestScript) ... ok (0.027s) 2023-01-11T21:25:29.7575691Z test_torch_tensor_dtype (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7575865Z test_torchscript_memoryformat (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7576022Z test_torchscript_multi_head_attn (__main__.TestScript) ... ok (0.076s) 2023-01-11T21:25:29.7576209Z test_torchscript_multi_head_attn_fast_path (__main__.TestScript) ... ok (0.156s) 2023-01-11T21:25:29.7576361Z test_training_param (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7576518Z test_tuple_assignments (__main__.TestScript) ... ok (0.349s) 2023-01-11T21:25:29.7576668Z test_tuple_error_msg (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7576823Z test_tuple_index_to_list (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7576975Z test_tuple_indexing (__main__.TestScript) ... ok (0.020s) 2023-01-11T21:25:29.7577118Z test_tuple_len (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7577261Z test_tuple_nested_sort (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7577402Z test_tuple_sort (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7577558Z test_tuple_sort_reverse (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7577704Z test_tuple_sorted (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7577856Z test_tuple_to_opt_list (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7578024Z test_tuple_unsortable_diff_type (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7578197Z test_tuple_unsortable_element_type (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7578366Z test_tuple_unsortable_nested_diff_type (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7578514Z test_type_annotate (__main__.TestScript) ... ok (0.014s) 2023-01-11T21:25:29.7578673Z test_type_annotation_module (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7578829Z test_type_annotation_py3 (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7578987Z test_type_annotations (__main__.TestScript) ... ok (0.016s) 2023-01-11T21:25:29.7579161Z test_type_annotations_repeated_list (__main__.TestScript) ... ok (0.012s) 2023-01-11T21:25:29.7579332Z test_type_annotations_varargs (__main__.TestScript) ... ok (0.011s) 2023-01-11T21:25:29.7579488Z test_type_call_in_script (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7579614Z test_type_cast (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7579774Z test_type_comments_in_body (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7579939Z test_type_inferred_from_empty_annotation (__main__.TestScript) 2023-01-11T21:25:29.7580181Z Test that the type inferred from an empty or missing annotation is Torch.Tensor wtih `inferred=true` ... ok (0.002s) 2023-01-11T21:25:29.7580467Z test_unbind (__main__.TestScript) ... skip: Profiling executor will be using different heuristics for constructing differentiable graphs (0.001s) 2023-01-11T21:25:29.7580623Z test_unfold_zero_dim (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7580774Z test_unicode_comments (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7580963Z test_uninitialized (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7581101Z test_union_to_number (__main__.TestScript) ... ok (0.002s) 2023-01-11T21:25:29.7581250Z test_unknown_builtin (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7581418Z test_unmatched_type_annotation (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7581588Z test_unspecialized_any_binding (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7581812Z test_unsqueeze_guard_elimination (__main__.TestScript) ... skip: bailouts are being deprecated (0.000s) 2023-01-11T21:25:29.7581978Z test_unsupported_builtin_error (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7582131Z test_unused_decorator (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7582295Z test_unwrap_optional_builtin (__main__.TestScript) ... ok (0.010s) 2023-01-11T21:25:29.7582465Z test_var_aug_assign (__main__.TestScript) ... ok (0.961s) 2023-01-11T21:25:29.7582614Z test_vararg_zeros (__main__.TestScript) ... ok (0.004s) 2023-01-11T21:25:29.7582791Z test_view_listconstruct_shape_prop (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7582945Z test_view_shape_prop (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7583085Z test_view_write (__main__.TestScript) ... ok (0.006s) 2023-01-11T21:25:29.7583240Z test_weak_cuda (__main__.TestScript) ... skip: no CUDA (0.001s) 2023-01-11T21:25:29.7583430Z test_where (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7583574Z test_where_method (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7583694Z test_while (__main__.TestScript) ... ok (0.008s) 2023-01-11T21:25:29.7583838Z test_while_nest_if (__main__.TestScript) ... ok (0.067s) 2023-01-11T21:25:29.7584010Z test_while_nonexistent_cond_value (__main__.TestScript) ... ok (0.027s) 2023-01-11T21:25:29.7584176Z test_while_nonexistent_value (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7584341Z test_while_write_outer_then_read (__main__.TestScript) ... ok (0.007s) 2023-01-11T21:25:29.7584499Z test_wrong_attr_lookup (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7584658Z test_wrong_implicit_expand (__main__.TestScript) ... ok (0.005s) 2023-01-11T21:25:29.7584810Z test_wrong_method_call_inputs (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7584975Z test_wrong_module_attr_lookup (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7585129Z test_wrong_return_type (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7585286Z test_wrong_use_as_callable (__main__.TestScript) ... ok (0.001s) 2023-01-11T21:25:29.7585441Z test_wrong_use_as_tuple (__main__.TestScript) ... ok (0.003s) 2023-01-11T21:25:29.7585572Z test_zeros (__main__.TestScript) ... ok (0.009s) 2023-01-11T21:25:29.7585739Z test_zip_enumerate_modulelist (__main__.TestScript) ... ok (0.436s) 2023-01-11T21:25:29.7585885Z test_bool (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7586033Z Test the __bool__ method. This should return True ... ok (0.002s) 2023-01-11T21:25:29.7586185Z test_contains (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7586337Z Test membership checks (x in y, x not in y). ... ok (0.001s) 2023-01-11T21:25:29.7586484Z test_delitem (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7586592Z Test deletion. ... ok (0.001s) 2023-01-11T21:25:29.7586740Z test_getitem (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7586914Z Test accessing dictionary values using the [] operator. ... ok (0.001s) 2023-01-11T21:25:29.7587046Z test_items (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7587145Z Test .items(). ... ok (0.001s) 2023-01-11T21:25:29.7587284Z test_iter (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7587507Z Test iteration over a dictionary's keys. ... ok (0.001s) 2023-01-11T21:25:29.7587648Z test_len (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7587778Z Test len() builtin function. ... ok (0.001s) 2023-01-11T21:25:29.7587925Z test_nested (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7588274Z Test that reference semantics are honoured when the ScriptDict that is ... skip: Cannot pass until all dicts returned from TorchScript are ScriptDicts (0.001s) 2023-01-11T21:25:29.7588430Z test_reference_semantics (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7588626Z Test that reference semantics are honoured; that modifications made ... ok (0.003s) 2023-01-11T21:25:29.7588768Z test_repr (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7588887Z Test the __repr__ method. ... ok (0.001s) 2023-01-11T21:25:29.7589030Z test_setitem (jit.test_list_dict.TestScriptDict) 2023-01-11T21:25:29.7589199Z Test setting dictionary values using the [] operator. ... ok (0.001s) 2023-01-11T21:25:29.7589344Z test_append (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7589448Z Test append method. ... ok (0.001s) 2023-01-11T21:25:29.7589618Z test_bool (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7589776Z Test the __bool__ method. This should return True ... ok (0.001s) 2023-01-11T21:25:29.7589923Z test_clear (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7590025Z Test clear. ... ok (0.001s) 2023-01-11T21:25:29.7590173Z test_contains (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7590325Z Test membership checks (x in y, x not in y). ... ok (0.001s) 2023-01-11T21:25:29.7590467Z test_count (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7590564Z Test count method. ... ok (0.001s) 2023-01-11T21:25:29.7590707Z test_delitem (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7590812Z Test deletion. ... ok (0.001s) 2023-01-11T21:25:29.7590954Z test_extend (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7591056Z Test extend. ... ok (0.002s) 2023-01-11T21:25:29.7591203Z test_getitem (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7591371Z Test accessing list elements using the [] operator. ... ok (0.003s) 2023-01-11T21:25:29.7591505Z test_insert (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7591607Z Test insert. ... ok (0.001s) 2023-01-11T21:25:29.7591747Z test_iter (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7591965Z Test iteration over a list's elements. ... ok (0.001s) 2023-01-11T21:25:29.7592104Z test_len (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7592230Z Test len() builtin function. ... ok (0.001s) 2023-01-11T21:25:29.7592373Z test_nested (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7592667Z Test that reference semantics are honoured when the ScriptList that is ... skip: Cannot pass until all list returned from TorchScript are ScriptLists (0.001s) 2023-01-11T21:25:29.7592809Z test_pop (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7592906Z Test pop. ... ok (0.001s) 2023-01-11T21:25:29.7593074Z test_reference_semantics (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7593272Z Test that reference semantics are honoured; that modifications made ... ok (0.003s) 2023-01-11T21:25:29.7593415Z test_remove (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7593531Z Test remove method. ... ok (0.001s) 2023-01-11T21:25:29.7593660Z test_repr (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7593778Z Test the __repr__ method. ... ok (0.001s) 2023-01-11T21:25:29.7593923Z test_setitem (jit.test_list_dict.TestScriptList) 2023-01-11T21:25:29.7594082Z Test setting list elements using the [] operator. ... ok (0.002s) 2023-01-11T21:25:29.7594424Z test_annotated_class_level_annotation_and_init_annotation (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.012s) 2023-01-11T21:25:29.7594748Z test_annotated_class_level_annotation_only (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.007s) 2023-01-11T21:25:29.7595067Z test_annotated_class_level_jit_annotation (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.008s) 2023-01-11T21:25:29.7595366Z test_annotated_empty_dict (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.009s) 2023-01-11T21:25:29.7595692Z test_annotated_empty_list (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.008s) 2023-01-11T21:25:29.7595982Z test_annotated_empty_optional (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.006s) 2023-01-11T21:25:29.7596281Z test_annotated_empty_tensor (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.006s) 2023-01-11T21:25:29.7596585Z test_annotated_falsy_base_type (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.006s) 2023-01-11T21:25:29.7596895Z test_annotated_nonempty_container (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.006s) 2023-01-11T21:25:29.7597232Z test_annotated_with_jit_attribute (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.006s) 2023-01-11T21:25:29.7597539Z test_annotated_with_jit_empty_dict (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.006s) 2023-01-11T21:25:29.7597850Z test_annotated_with_jit_empty_list (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.005s) 2023-01-11T21:25:29.7598163Z test_annotated_with_jit_empty_optional (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.005s) 2023-01-11T21:25:29.7598473Z test_annotated_with_torch_jit_import (jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation) ... ok (0.005s) 2023-01-11T21:25:29.7598656Z test_basic (jit.test_script_profile.TestScriptProfile) ... ok (0.067s) 2023-01-11T21:25:29.7598829Z test_empty (jit.test_script_profile.TestScriptProfile) ... ok (0.001s) 2023-01-11T21:25:29.7599010Z test_multi (jit.test_script_profile.TestScriptProfile) ... ok (0.067s) 2023-01-11T21:25:29.7599201Z test_script (jit.test_script_profile.TestScriptProfile) ... ok (0.190s) 2023-01-11T21:25:29.7599393Z test_section (jit.test_script_profile.TestScriptProfile) ... ok (0.253s) 2023-01-11T21:25:29.7599564Z test_module_list_slicing (jit.test_slice.TestSlice) ... ok (0.021s) 2023-01-11T21:25:29.7599728Z test_slice_as_variable (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7599894Z test_slice_dynamic_index (jit.test_slice.TestSlice) ... ok (0.005s) 2023-01-11T21:25:29.7600050Z test_slice_kwarg (jit.test_slice.TestSlice) ... ok (0.001s) 2023-01-11T21:25:29.7600195Z test_slice_one_none (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7600357Z test_slice_start_stop (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7600529Z test_slice_start_stop_step (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7600706Z test_slice_start_stop_with_none (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7600879Z test_slice_stop_clipped (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7601040Z test_slice_stop_only (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7601215Z test_slice_stop_only_with_nones (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7601376Z test_slice_string (jit.test_slice.TestSlice) ... ok (0.003s) 2023-01-11T21:25:29.7601522Z test_slice_tensor (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7601690Z test_slice_tensor_multidim (jit.test_slice.TestSlice) ... ok (0.005s) 2023-01-11T21:25:29.7601876Z test_slice_tensor_multidim_with_dots (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7602037Z test_slice_three_nones (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7602193Z test_slice_two_nones (jit.test_slice.TestSlice) ... ok (0.004s) 2023-01-11T21:25:29.7602352Z test_tuple_slicing (jit.test_slice.TestSlice) ... ok (0.005s) 2023-01-11T21:25:29.7602526Z test_freeze_sparse_coo (jit.test_sparse.TestSparse) ... ok (0.008s) 2023-01-11T21:25:29.7602691Z test_freeze_sparse_csr (jit.test_sparse.TestSparse) ... ok (0.009s) 2023-01-11T21:25:29.7602869Z test_serialize_sparse_coo (jit.test_sparse.TestSparse) ... ok (0.007s) 2023-01-11T21:25:29.7603111Z test_serialize_sparse_csr (jit.test_sparse.TestSparse) ... ok (0.007s) 2023-01-11T21:25:29.7603328Z test_modulo_operator (jit.test_string_formatting.TestStringFormatting) ... ok (0.004s) 2023-01-11T21:25:29.7603609Z test_string_interpolation_with_alternate_digit_placeholder (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7603909Z test_string_interpolation_with_capital_exponent_placeholder_and_digit_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7604192Z test_string_interpolation_with_char_placeholder_and_char_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7604510Z test_string_interpolation_with_char_placeholder_and_digit_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7604808Z test_string_interpolation_with_char_placeholder_and_true_string_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7605097Z test_string_interpolation_with_digit_placeholder_and_digit_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7605372Z test_string_interpolation_with_digit_placeholder_and_string_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7605635Z test_string_interpolation_with_double_percent_in_string (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7605926Z test_string_interpolation_with_exponent_placeholder_and_string_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7606210Z test_string_interpolation_with_float_placeholder_and_digit_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7606494Z test_string_interpolation_with_float_placeholder_and_float_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7606803Z test_string_interpolation_with_lowercase_exponent_placeholder_and_digit_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7607068Z test_string_interpolation_with_multiple_placeholders (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7607325Z test_string_interpolation_with_percent_in_string (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7607608Z test_string_interpolation_with_string_placeholder_and_digit_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7607905Z test_string_interpolation_with_string_placeholder_and_format_string_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7608181Z test_string_interpolation_with_string_placeholder_and_string_variable (jit.test_string_formatting.TestStringFormatting) ... ok (0.003s) 2023-01-11T21:25:29.7608431Z test_string_interpolation_with_subscript (jit.test_string_formatting.TestStringFormatting) ... ok (0.004s) 2023-01-11T21:25:29.7608684Z test_string_interpolation_with_too_few_arguments (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7608941Z test_string_interpolation_with_too_many_arguments (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7609330Z test_string_interpolation_with_unknown_format_specifier (jit.test_string_formatting.TestStringFormatting) ... ok (0.006s) 2023-01-11T21:25:29.7609580Z test_adaptive_avg_pool2d (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.028s) 2023-01-11T21:25:29.7609816Z test_arange_shape (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.017s) 2023-01-11T21:25:29.7610067Z test_binary_shape_fns_inplace (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.005s) 2023-01-11T21:25:29.7610315Z test_binary_shape_functions (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.004s) 2023-01-11T21:25:29.7610606Z test_convolution_backward (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.014s) 2023-01-11T21:25:29.7610840Z test_if_propagation (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.004s) 2023-01-11T21:25:29.7611090Z test_partial_eval_graph_conv (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.011s) 2023-01-11T21:25:29.7611335Z test_partial_eval_stitching (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.035s) 2023-01-11T21:25:29.7611600Z test_refinement_through_graph_stitching (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.020s) 2023-01-11T21:25:29.7611906Z test_register_function_error_checking (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.011s) 2023-01-11T21:25:29.7612167Z test_returning_input_symbolic_shapes (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.008s) 2023-01-11T21:25:29.7612407Z test_shape_analysis (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.007s) 2023-01-11T21:25:29.7612638Z test_shape_concat (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.083s) 2023-01-11T21:25:29.7612872Z test_shape_embedding_bag (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.015s) 2023-01-11T21:25:29.7613178Z test_shape_function_includes (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... skip: shape functions not loaded in python (0.001s) 2023-01-11T21:25:29.7613422Z test_shared_shape_graph (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.001s) 2023-01-11T21:25:29.7613655Z test_size_and_sizes (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.004s) 2023-01-11T21:25:29.7613897Z test_stitching_concat (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.021s) 2023-01-11T21:25:29.7614142Z test_stitching_multi_output (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.018s) 2023-01-11T21:25:29.7614381Z test_sym_ir_parsing (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.001s) 2023-01-11T21:25:29.7614631Z test_unary_shape_fns_inplace (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.001s) 2023-01-11T21:25:29.7614877Z test_unary_shape_functions (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.002s) 2023-01-11T21:25:29.7615096Z test_write (jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis) ... ok (0.002s) 2023-01-11T21:25:29.7615280Z test_method_on_number (jit.test_builtins.TestTensorBuiltins) ... ok (0.002s) 2023-01-11T21:25:29.7615487Z test_scalar_to_num_conversions (jit.test_builtins.TestTensorBuiltins) ... ok (0.015s) 2023-01-11T21:25:29.7615672Z test_tensor_item (jit.test_builtins.TestTensorBuiltins) ... ok (0.005s) 2023-01-11T21:25:29.7615870Z test_tensor_properties (jit.test_builtins.TestTensorBuiltins) ... ok (0.012s) 2023-01-11T21:25:29.7616081Z test_tensor_subscript_assign (jit.test_builtins.TestTensorBuiltins) ... ok (0.026s) 2023-01-11T21:25:29.7616298Z test_tensor_subscript_assign_device (jit.test_builtins.TestTensorBuiltins) ... skip: requires CUDA (0.000s) 2023-01-11T21:25:29.7616472Z test_randperm_default_dtype (jit.test_tensor_creation_ops.TestTensorCreationOps) ... ok (0.005s) 2023-01-11T21:25:29.7616650Z test_randperm_specifed_dtype (jit.test_tensor_creation_ops.TestTensorCreationOps) ... ok (0.004s) 2023-01-11T21:25:29.7616815Z test_tril_indices_default_dtype (jit.test_tensor_creation_ops.TestTensorCreationOps) ... ok (0.005s) 2023-01-11T21:25:29.7616994Z test_tril_indices_specified_dtype (jit.test_tensor_creation_ops.TestTensorCreationOps) ... ok (0.005s) 2023-01-11T21:25:29.7617169Z test_triu_indices_default_dtype (jit.test_tensor_creation_ops.TestTensorCreationOps) ... ok (0.004s) 2023-01-11T21:25:29.7617348Z test_triu_indices_specified_dtype (jit.test_tensor_creation_ops.TestTensorCreationOps) ... ok (0.005s) 2023-01-11T21:25:29.7617526Z test_getitem (jit.test_tensor_methods.TestTensorMethods) ... ok (0.005s) 2023-01-11T21:25:29.7617678Z test_getitem_invalid (jit.test_tensor_methods.TestTensorMethods) ... ok (0.001s) 2023-01-11T21:25:29.7617814Z test_default_args (jit.test_torchbind.TestTorchbind) ... ok (0.010s) 2023-01-11T21:25:29.7617961Z test_lambda_as_constructor (jit.test_torchbind.TestTorchbind) ... ok (0.001s) 2023-01-11T21:25:29.7618336Z test_profiler_custom_op (jit.test_torchbind.TestTorchbind) ... STAGE:2023-01-11 21:25:25 1919:1919 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:25:29.7618575Z STAGE:2023-01-11 21:25:25 1919:1919 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:25:29.7618882Z STAGE:2023-01-11 21:25:25 1919:1919 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:25:29.7618951Z ok (0.003s) 2023-01-11T21:25:29.7619093Z test_staticmethod (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7619229Z test_torchbind (jit.test_torchbind.TestTorchbind) ... ok (0.007s) 2023-01-11T21:25:29.7619382Z test_torchbind_attr_exception (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7619541Z test_torchbind_class_attr_recursive (jit.test_torchbind.TestTorchbind) ... ok (0.003s) 2023-01-11T21:25:29.7619691Z test_torchbind_class_attribute (jit.test_torchbind.TestTorchbind) ... ok (0.004s) 2023-01-11T21:25:29.7619826Z test_torchbind_deepcopy (jit.test_torchbind.TestTorchbind) ... ok (0.003s) 2023-01-11T21:25:29.7619992Z test_torchbind_def_property_getter_setter (jit.test_torchbind.TestTorchbind) ... ok (0.006s) 2023-01-11T21:25:29.7620154Z test_torchbind_def_property_just_getter (jit.test_torchbind.TestTorchbind) ... ok (0.004s) 2023-01-11T21:25:29.7620319Z test_torchbind_def_property_readwrite (jit.test_torchbind.TestTorchbind) ... ok (0.004s) 2023-01-11T21:25:29.7620461Z test_torchbind_getattr (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7620608Z test_torchbind_getstate (jit.test_torchbind.TestTorchbind) ... ok (0.004s) 2023-01-11T21:25:29.7620772Z test_torchbind_instantiate_missing_class (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7620922Z test_torchbind_lambda_method (jit.test_torchbind.TestTorchbind) ... ok (0.001s) 2023-01-11T21:25:29.7621052Z test_torchbind_no_init (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7621211Z test_torchbind_optional_explicit_attr (jit.test_torchbind.TestTorchbind) ... ok (0.005s) 2023-01-11T21:25:29.7621363Z test_torchbind_pass_wrong_type (jit.test_torchbind.TestTorchbind) ... ok (0.001s) 2023-01-11T21:25:29.7621521Z test_torchbind_pickle_serialization (jit.test_torchbind.TestTorchbind) ... ok (0.001s) 2023-01-11T21:25:29.7621679Z test_torchbind_python_deepcopy (jit.test_torchbind.TestTorchbind) ... ok (0.001s) 2023-01-11T21:25:29.7621828Z test_torchbind_return_instance (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7621997Z test_torchbind_return_instance_from_method (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7622146Z test_torchbind_return_tuple (jit.test_torchbind.TestTorchbind) ... ok (0.001s) 2023-01-11T21:25:29.7622281Z test_torchbind_save_load (jit.test_torchbind.TestTorchbind) ... ok (0.003s) 2023-01-11T21:25:29.7622426Z test_torchbind_take_as_arg (jit.test_torchbind.TestTorchbind) ... ok (0.012s) 2023-01-11T21:25:29.7622593Z test_torchbind_take_instance_as_method_arg (jit.test_torchbind.TestTorchbind) ... ok (0.002s) 2023-01-11T21:25:29.7622737Z test_torchbind_tracing (jit.test_torchbind.TestTorchbind) ... ok (0.010s) 2023-01-11T21:25:29.7622888Z test_torchbind_tracing_nested (jit.test_torchbind.TestTorchbind) ... ok (0.012s) 2023-01-11T21:25:29.7623039Z test_call_traced_fn_from_traced_module (jit.test_tracer.TestTracer) ... ok (0.012s) 2023-01-11T21:25:29.7623193Z test_call_traced_module_from_traced_module (jit.test_tracer.TestTracer) ... ok (0.018s) 2023-01-11T21:25:29.7623432Z test_canonicalize_tensor_iterator (jit.test_tracer.TestTracer) ... ok (0.010s) 2023-01-11T21:25:29.7623559Z test_constant (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7623661Z test_conv (jit.test_tracer.TestTracer) ... ok (0.026s) 2023-01-11T21:25:29.7623793Z test_export_no_reorder (jit.test_tracer.TestTracer) ... ok (0.016s) 2023-01-11T21:25:29.7623934Z test_force_outplace_check_fill (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7624072Z test_force_outplace_check_zero (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7624184Z test_ge (jit.test_tracer.TestTracer) ... ok (0.013s) 2023-01-11T21:25:29.7624324Z test_ge_cuda (jit.test_tracer.TestTracer) ... skip: requires CUDA (0.000s) 2023-01-11T21:25:29.7624486Z test_ge_optimized (jit.test_tracer.TestTracer) ... ok (0.177s) 2023-01-11T21:25:29.7624606Z test_ge_unoptimized (jit.test_tracer.TestTracer) ... ok (0.035s) 2023-01-11T21:25:29.7624730Z test_index_put (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7624867Z test_index_put_trace_with_view (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7625009Z test_index_put_trace_without_view (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7625135Z test_inplace_check (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7625260Z test_inplace_copy (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7625405Z test_inplace_copy_force_outplace (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7625529Z test_inplace_flags (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7625652Z test_inplace_transplant (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7625777Z test_inplace_warn (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7625920Z test_input_dict_checkTrace_mut (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7626048Z test_input_dict_empty (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7626182Z test_input_dict_empty_list (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7626311Z test_input_dict_insertion_order (jit.test_tracer.TestTracer) 2023-01-11T21:25:29.7626520Z Check that dictionary access doesn't care about insertion order ... ok (0.010s) 2023-01-11T21:25:29.7626651Z test_input_dict_of_dicts (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7626771Z test_input_dict_of_lists (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7626906Z test_input_dict_recursive (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7627034Z test_input_dict_remembers_keys (jit.test_tracer.TestTracer) 2023-01-11T21:25:29.7627173Z Check that the trace remembers which keys were in a dict input ... ok (0.011s) 2023-01-11T21:25:29.7627305Z test_input_dict_unify (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7627417Z test_input_flatten (jit.test_tracer.TestTracer) 2023-01-11T21:25:29.7627549Z Check that inputs to traced functions are flattened ... ok (0.011s) 2023-01-11T21:25:29.7627681Z test_input_list_mixed_type (jit.test_tracer.TestTracer) ... ok (0.003s) 2023-01-11T21:25:29.7627804Z test_input_list_of_tuples (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7627944Z test_input_list_toplevel_flatten (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7628093Z test_input_list_toplevel_flatten_direct (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7628225Z test_input_tuple_of_dicts (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7628354Z test_interpolate_trace (jit.test_tracer.TestTracer) ... ok (0.027s) 2023-01-11T21:25:29.7628507Z test_large_nbr_kernel_args (jit.test_tracer.TestTracer) ... skip: requires CUDA (0.001s) 2023-01-11T21:25:29.7628637Z test_lhs_index_fails (jit.test_tracer.TestTracer) ... ok (0.012s) 2023-01-11T21:25:29.7628764Z test_lhs_index_trivial (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7628906Z test_max_pool (jit.test_tracer.TestTracer) ... ok (0.013s) 2023-01-11T21:25:29.7629032Z test_nested_inplace (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7629162Z test_non_tensor_tracing (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7629279Z test_output_unflatten (jit.test_tracer.TestTracer) 2023-01-11T21:25:29.7629455Z Check that outputs of traced functions retain the original structure and nesting ... expected failure (0.007s) 2023-01-11T21:25:29.7629585Z test_python_function (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7629716Z test_python_function_tup (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7629841Z test_repeated_input (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7629985Z test_repeated_output (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7630111Z test_shared_param (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7630232Z test_simple (jit.test_tracer.TestTracer) ... ok (0.015s) 2023-01-11T21:25:29.7630374Z test_tensor_with_grad_as_constant (jit.test_tracer.TestTracer) ... ok (0.001s) 2023-01-11T21:25:29.7630512Z test_trace_aliased_parameter (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7630640Z test_trace_annotation (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7630763Z test_trace_arange (jit.test_tracer.TestTracer) ... ok (0.017s) 2023-01-11T21:25:29.7630886Z test_trace_arange_with_grad (jit.test_tracer.TestTracer) ... ok (0.018s) 2023-01-11T21:25:29.7631025Z test_trace_autograd_function (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7631206Z test_trace_c10_ops (jit.test_tracer.TestTracer) ... skip: Skip the test since c2 ops are not registered. (0.002s) 2023-01-11T21:25:29.7631329Z test_trace_casts (jit.test_tracer.TestTracer) ... ok (0.036s) 2023-01-11T21:25:29.7631467Z test_trace_checker_control_flow (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7631608Z test_trace_checker_dot_data (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7631755Z test_trace_checker_dropout_notrain (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7631897Z test_trace_checker_dropout_train (jit.test_tracer.TestTracer) ... ok (0.017s) 2023-01-11T21:25:29.7632039Z test_trace_checker_inplace_on_view (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7632169Z test_trace_checker_memoization (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7632304Z test_trace_checker_slice_lhs (jit.test_tracer.TestTracer) ... ok (0.011s) 2023-01-11T21:25:29.7632453Z test_trace_checking_with_global_name (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7632925Z test_trace_contiguous (jit.test_tracer.TestTracer) ... /var/lib/jenkins/workspace/test/jit/test_tracer.py:1673: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:25:29.7633066Z self.assertNotEqual(x.storage().data_ptr(), y.storage().data_ptr()) 2023-01-11T21:25:29.7633134Z ok (0.008s) 2023-01-11T21:25:29.7633282Z test_trace_contiguous_short_circuit (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7633405Z test_trace_detach (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7633539Z test_trace_detach_inplace (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7633679Z test_trace_detach_inplace_redispatch (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7633817Z test_trace_detach_redispatch (jit.test_tracer.TestTracer) ... ok (0.002s) 2023-01-11T21:25:29.7633951Z test_trace_dict_input (jit.test_tracer.TestTracer) ... ok (0.010s) 2023-01-11T21:25:29.7634084Z test_trace_dict_output (jit.test_tracer.TestTracer) ... ok (0.016s) 2023-01-11T21:25:29.7634246Z test_trace_export_fns (jit.test_tracer.TestTracer) ... ok (0.018s) 2023-01-11T21:25:29.7634387Z test_trace_export_fns_recursive (jit.test_tracer.TestTracer) ... ok (0.040s) 2023-01-11T21:25:29.7634524Z test_trace_fork_join_and_module (jit.test_tracer.TestTracer) ... ok (0.030s) 2023-01-11T21:25:29.7634651Z test_trace_full_dynamic_shape (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7634802Z test_trace_func_argument_names_captured (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7634928Z test_trace_index (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7635063Z test_trace_index_constant (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7635202Z test_trace_indexed_assignment (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7635362Z test_trace_inline_shape (jit.test_tracer.TestTracer) ... ok (0.014s) 2023-01-11T21:25:29.7635487Z test_trace_inverse (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7635635Z test_trace_invert_module_hierarchy (jit.test_tracer.TestTracer) ... ok (0.018s) 2023-01-11T21:25:29.7635751Z test_trace_legacy_ctor (jit.test_tracer.TestTracer) ... ok (0.009s) 2023-01-11T21:25:29.7635909Z test_trace_module_argument_names_captured (jit.test_tracer.TestTracer) ... ok (0.035s) 2023-01-11T21:25:29.7636038Z test_trace_modulelist (jit.test_tracer.TestTracer) ... ok (0.024s) 2023-01-11T21:25:29.7636214Z test_trace_multi_output_function (jit.test_tracer.TestTracer) ... graph(%self : __torch__.jit.test_tracer.Bar, 2023-01-11T21:25:29.7636334Z %x : Double(3, 2, strides=[2, 1], requires_grad=0, device=cpu), 2023-01-11T21:25:29.7636454Z %y : Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu)): 2023-01-11T21:25:29.7636683Z %5 : Double(3, 2, strides=[2, 1], requires_grad=0, device=cpu) = aten::relu(%x) # /var/lib/jenkins/workspace/test/jit/test_tracer.py:1429:0 2023-01-11T21:25:29.7636883Z %6 : Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu) = aten::relu(%y) # /var/lib/jenkins/workspace/test/jit/test_tracer.py:1430:0 2023-01-11T21:25:29.7637391Z %9 : (Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu), Double(3, 2, strides=[2, 1], requires_grad=0, device=cpu)) = ^Foo[inplace=0, module="jit.test_tracer", Subgraph=]()(%5, %6) # /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py:429:0 2023-01-11T21:25:29.7637595Z %10 : Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu), %11 : Double(3, 2, strides=[2, 1], requires_grad=0, device=cpu) = prim::TupleUnpack(%9) 2023-01-11T21:25:29.7637804Z %12 : (Double(1, 2, strides=[2, 1], requires_grad=0, device=cpu), Double(3, 2, strides=[2, 1], requires_grad=0, device=cpu)) = prim::TupleConstruct(%10, %11) 2023-01-11T21:25:29.7637874Z return (%12) 2023-01-11T21:25:29.7637884Z 2023-01-11T21:25:29.7637939Z ok (0.007s) 2023-01-11T21:25:29.7638075Z test_trace_namedtuple (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7638216Z test_trace_nested_datatypes (jit.test_tracer.TestTracer) ... ok (0.009s) 2023-01-11T21:25:29.7638344Z test_trace_nested_fn (jit.test_tracer.TestTracer) ... ok (0.014s) 2023-01-11T21:25:29.7638466Z test_trace_numel (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7638602Z test_trace_optioanl_dtype (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7638965Z test_trace_optional (jit.test_tracer.TestTracer) ... ok (0.013s) 2023-01-11T21:25:29.7639125Z test_trace_partial_func_argument_names_captured (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7639240Z test_trace_random (jit.test_tracer.TestTracer) ... ok (0.003s) 2023-01-11T21:25:29.7639371Z test_trace_records_names (jit.test_tracer.TestTracer) ... ok (0.009s) 2023-01-11T21:25:29.7639494Z test_trace_save (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7639627Z test_trace_save_load_copy (jit.test_tracer.TestTracer) ... ok (0.032s) 2023-01-11T21:25:29.7639758Z test_trace_single_tuple (jit.test_tracer.TestTracer) ... ok (0.004s) 2023-01-11T21:25:29.7639915Z test_trace_size (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7640047Z test_trace_size_with_grad (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7640185Z test_trace_skip_none_submodule (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7640296Z test_trace_slice (jit.test_tracer.TestTracer) ... ok (0.042s) 2023-01-11T21:25:29.7640443Z test_trace_slice_expr_complete_type (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7640573Z test_trace_slice_full_dim (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7640722Z test_trace_slice_setitem_dynamic_shape (jit.test_tracer.TestTracer) ... ok (0.007s) 2023-01-11T21:25:29.7640884Z test_trace_slice_with_grad (jit.test_tracer.TestTracer) ... ok (0.044s) 2023-01-11T21:25:29.7641017Z test_trace_tensor_factory (jit.test_tracer.TestTracer) ... ok (0.034s) 2023-01-11T21:25:29.7641142Z test_trace_topk (jit.test_tracer.TestTracer) ... ok (0.009s) 2023-01-11T21:25:29.7641264Z test_trace_tuple (jit.test_tracer.TestTracer) ... ok (0.009s) 2023-01-11T21:25:29.7641399Z test_trace_variable_instantiation (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7641520Z test_trace_warn (jit.test_tracer.TestTracer) ... ok (0.008s) 2023-01-11T21:25:29.7641669Z test_trace_with_conditional_property (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7641818Z test_trace_with_nested_tensor_list_output (jit.test_tracer.TestTracer) ... ok (0.003s) 2023-01-11T21:25:29.7641961Z test_trace_with_number_list_output (jit.test_tracer.TestTracer) ... ok (0.003s) 2023-01-11T21:25:29.7642101Z test_trace_with_tensor_list_output (jit.test_tracer.TestTracer) ... ok (0.015s) 2023-01-11T21:25:29.7642255Z test_traced_module_cuda (jit.test_tracer.TestTracer) ... skip: calls .cuda() (0.001s) 2023-01-11T21:25:29.7642398Z test_tracing_backward_hook_error (jit.test_tracer.TestTracer) ... ok (0.001s) 2023-01-11T21:25:29.7642514Z test_tracing_hooks (jit.test_tracer.TestTracer) ... ok (0.040s) 2023-01-11T21:25:29.7642653Z test_tracing_multiple_methods (jit.test_tracer.TestTracer) ... ok (0.126s) 2023-01-11T21:25:29.7642785Z test_typeas_trace_check (jit.test_tracer.TestTracer) ... ok (0.005s) 2023-01-11T21:25:29.7642913Z test_wrapped_number (jit.test_tracer.TestTracer) ... ok (0.006s) 2023-01-11T21:25:29.7643052Z test_assign_python_attr (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7643279Z Assigning a new (python-only) attribute should not change type sharing ... ok (0.034s) 2023-01-11T21:25:29.7643415Z test_basic (jit.test_type_sharing.TestTypeSharing) ... ok (0.006s) 2023-01-11T21:25:29.7643575Z test_builtin_function_different (jit.test_type_sharing.TestTypeSharing) ... ok (0.007s) 2023-01-11T21:25:29.7643718Z test_builtin_function_same (jit.test_type_sharing.TestTypeSharing) ... ok (0.005s) 2023-01-11T21:25:29.7643847Z test_constants (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7644032Z Types should be shared for identical constant values, and different for different constant values ... ok (0.010s) 2023-01-11T21:25:29.7644167Z test_diff_attr_values (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7644299Z Types should be shared even if attribute values differ ... ok (0.006s) 2023-01-11T21:25:29.7644453Z test_failed_attribute_compilation (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7644610Z Attributes whose type cannot be inferred should fail cleanly with nice hints ... ok (0.002s) 2023-01-11T21:25:29.7644754Z test_ignored_fns (jit.test_type_sharing.TestTypeSharing) ... ok (0.005s) 2023-01-11T21:25:29.7644863Z test_linear (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7644975Z Simple example with a real nn Module ... ok (0.011s) 2023-01-11T21:25:29.7645127Z test_loaded_modules_work (jit.test_type_sharing.TestTypeSharing) ... ok (0.016s) 2023-01-11T21:25:29.7645282Z test_module_dict_same_type_different_name (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7645477Z We should be able to differentiate between two ModuleDict instances ... ok (0.031s) 2023-01-11T21:25:29.7645612Z test_mutate_attr_value (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7645758Z Mutating the value of an attribute should not change type sharing ... ok (0.018s) 2023-01-11T21:25:29.7645893Z test_param_vs_attribute (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7646097Z The same module with an `foo` as a parameter vs. attribute shouldn't ... ok (0.007s) 2023-01-11T21:25:29.7646254Z test_python_function_attribute_different (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7646394Z Different functions passed in should lead to different types ... ok (0.010s) 2023-01-11T21:25:29.7646572Z test_python_function_attribute_same (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7646700Z Same functions passed in should lead to same types ... ok (0.007s) 2023-01-11T21:25:29.7646846Z test_same_but_different_classes (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7646996Z Even if everything about the module is the same, different originating ... ok (0.022s) 2023-01-11T21:25:29.7647153Z test_script_function_attribute_different (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7647284Z Different functions passed in should lead to different types ... ok (0.010s) 2023-01-11T21:25:29.7647433Z test_script_function_attribute_same (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7647559Z Same functions passed in should lead to same types ... ok (0.007s) 2023-01-11T21:25:29.7647735Z test_script_module_containing_traced_module (jit.test_type_sharing.TestTypeSharing) ... ok (0.021s) 2023-01-11T21:25:29.7647862Z test_submodules (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7647989Z If submodules differ, the types should differ. ... ok (0.043s) 2023-01-11T21:25:29.7648138Z test_tracing_gives_different_types (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7648354Z Since we can't guarantee that methods are the same between different ... ok (0.012s) 2023-01-11T21:25:29.7648497Z test_type_not_shared_ignored_attributes (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7648630Z Test that types are not shared if the exclusion of their ... ok (0.007s) 2023-01-11T21:25:29.7648780Z test_type_shared_ignored_attributes (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7648908Z Test that types are shared if the exclusion of their ... ok (0.005s) 2023-01-11T21:25:29.7649173Z test_type_sharing_define_in_init (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7649306Z Tests that types between instances of a ScriptModule ... ok (0.006s) 2023-01-11T21:25:29.7649444Z test_type_sharing_disabled (jit.test_type_sharing.TestTypeSharing) 2023-01-11T21:25:29.7649559Z Test that type sharing can be disabled. ... ok (0.019s) 2023-01-11T21:25:29.7649708Z test_annotate_outside_init (jit.test_types.TestTypesAndAnnotation) ... ok (0.016s) 2023-01-11T21:25:29.7649856Z test_bad_types (jit.test_types.TestTypesAndAnnotation) ... ok (0.002s) 2023-01-11T21:25:29.7650014Z test_ignore_with_types (jit.test_types.TestTypesAndAnnotation) ... ok (0.004s) 2023-01-11T21:25:29.7650167Z test_ignoring_module_attributes (jit.test_types.TestTypesAndAnnotation) 2023-01-11T21:25:29.7650285Z Test that module attributes can be ignored. ... ok (0.007s) 2023-01-11T21:25:29.7650451Z test_inferred_type_error_message (jit.test_types.TestTypesAndAnnotation) ... ok (0.003s) 2023-01-11T21:25:29.7650611Z test_mismatched_annotation (jit.test_types.TestTypesAndAnnotation) ... ok (0.001s) 2023-01-11T21:25:29.7650773Z test_optional_no_element_type_annotation (jit.test_types.TestTypesAndAnnotation) 2023-01-11T21:25:29.7650910Z Test that using an optional with no contained types produces an error. ... ok (0.002s) 2023-01-11T21:25:29.7651058Z test_parser_bug (jit.test_types.TestTypesAndAnnotation) ... ok (0.000s) 2023-01-11T21:25:29.7651204Z test_pep585_type (jit.test_types.TestTypesAndAnnotation) ... ok (0.008s) 2023-01-11T21:25:29.7651407Z test_python_callable (jit.test_types.TestTypesAndAnnotation) ... ok (0.002s) 2023-01-11T21:25:29.7651552Z test_reannotate (jit.test_types.TestTypesAndAnnotation) ... ok (0.001s) 2023-01-11T21:25:29.7651710Z test_tuple_no_element_type_annotation (jit.test_types.TestTypesAndAnnotation) 2023-01-11T21:25:29.7651855Z Test that using a tuple with no contained types produces an error. ... ok (0.002s) 2023-01-11T21:25:29.7652008Z test_type_annotate_py3 (jit.test_types.TestTypesAndAnnotation) ... ok (0.011s) 2023-01-11T21:25:29.7652147Z test_types_as_values (jit.test_types.TestTypesAndAnnotation) ... ok (0.011s) 2023-01-11T21:25:29.7652311Z test_unimported_type_resolution (jit.test_types.TestTypesAndAnnotation) ... ok (0.002s) 2023-01-11T21:25:29.7652472Z test_bool_list_io (jit.test_typing.TestTyping) ... ok (0.004s) 2023-01-11T21:25:29.7652610Z test_dict_comprehension (jit.test_typing.TestTyping) ... ok (0.005s) 2023-01-11T21:25:29.7652755Z test_dict_comprehension_scope (jit.test_typing.TestTyping) ... ok (0.006s) 2023-01-11T21:25:29.7652913Z test_dict_comprehension_with_type_annotation (jit.test_typing.TestTyping) ... ok (0.007s) 2023-01-11T21:25:29.7653041Z test_dict_in_not_in (jit.test_typing.TestTyping) ... ok (0.022s) 2023-01-11T21:25:29.7653180Z test_dict_invalid_annotations (jit.test_typing.TestTyping) ... ok (0.003s) 2023-01-11T21:25:29.7653590Z test_dict_type_refinement_annotation_key_mismatch (jit.test_typing.TestTyping) ... [W ir_emitter.cpp:4385] Warning: List consists of heterogeneous types, which means that it has been typed as containing Union[int, str]. To use any of the values in this List, it will be necessary to add an `assert isinstance` statement before first use to trigger type refinement. 2023-01-11T21:25:29.7653726Z File "/var/lib/jenkins/workspace/test/jit/test_typing.py", line 90 2023-01-11T21:25:29.7653793Z def fn(): 2023-01-11T21:25:29.7653867Z l1 = [1, 2, "foo", 3] 2023-01-11T21:25:29.7653997Z ~~~~~~~~~~~~~~~ <--- HERE 2023-01-11T21:25:29.7654087Z l2 = ["foo", "bar", "baz", "qux"] 2023-01-11T21:25:29.7654200Z d: Dict[int, str] = {k : v for k, v in zip(l1, l2)} 2023-01-11T21:25:29.7654290Z (function emitListLiteral) 2023-01-11T21:25:29.7654344Z ok (0.002s) 2023-01-11T21:25:29.7654775Z test_dict_type_refinement_annotation_value_mismatch (jit.test_typing.TestTyping) ... [W ir_emitter.cpp:4385] Warning: List consists of heterogeneous types, which means that it has been typed as containing Union[int, str]. To use any of the values in this List, it will be necessary to add an `assert isinstance` statement before first use to trigger type refinement. 2023-01-11T21:25:29.7654915Z File "/var/lib/jenkins/workspace/test/jit/test_typing.py", line 104 2023-01-11T21:25:29.7654985Z def fn(): 2023-01-11T21:25:29.7655076Z l1 = ["foo", "bar", "baz", "qux"] 2023-01-11T21:25:29.7655150Z l2 = [1, 2, "foo", 3] 2023-01-11T21:25:29.7655274Z ~~~~~~~~~~~~~~~ <--- HERE 2023-01-11T21:25:29.7655389Z d: Dict[str, int] = {k : v for k, v in zip(l1, l2)} 2023-01-11T21:25:29.7655446Z return d 2023-01-11T21:25:29.7655532Z (function emitListLiteral) 2023-01-11T21:25:29.7655599Z ok (0.002s) 2023-01-11T21:25:29.7655724Z test_for_in_dict (jit.test_typing.TestTyping) ... ok (0.010s) 2023-01-11T21:25:29.7655853Z test_for_in_string (jit.test_typing.TestTyping) ... ok (0.017s) 2023-01-11T21:25:29.7655988Z test_for_tuple_assign (jit.test_typing.TestTyping) ... ok (0.009s) 2023-01-11T21:25:29.7656115Z test_for_tuple_unpack (jit.test_typing.TestTyping) ... ok (0.016s) 2023-01-11T21:25:29.7656224Z test_list_io (jit.test_typing.TestTyping) ... ok (0.005s) 2023-01-11T21:25:29.7656352Z test_list_iterables (jit.test_typing.TestTyping) ... ok (0.001s) 2023-01-11T21:25:29.7656473Z test_list_sum (jit.test_typing.TestTyping) ... ok (0.011s) 2023-01-11T21:25:29.7656641Z test_list_type_refinement_annotation_element_mismatch (jit.test_typing.TestTyping) ... ok (0.001s) 2023-01-11T21:25:29.7656805Z test_list_unification (jit.test_typing.TestTyping) ... ok (0.007s) 2023-01-11T21:25:29.7656936Z test_multiple_assign (jit.test_typing.TestTyping) ... ok (0.007s) 2023-01-11T21:25:29.7657073Z test_namedtuple_good_error (jit.test_typing.TestTyping) ... ok (0.003s) 2023-01-11T21:25:29.7657201Z test_namedtuple_py2 (jit.test_typing.TestTyping) ... ok (0.003s) 2023-01-11T21:25:29.7657325Z test_namedtuple_redefine (jit.test_typing.TestTyping) ... ok (0.007s) 2023-01-11T21:25:29.7657449Z test_nested_list (jit.test_typing.TestTyping) ... ok (0.004s) 2023-01-11T21:25:29.7657581Z test_opt_opt_refinement (jit.test_typing.TestTyping) ... ok (0.003s) 2023-01-11T21:25:29.7657713Z test_optional_conversion (jit.test_typing.TestTyping) ... ok (0.013s) 2023-01-11T21:25:29.7657874Z test_optional_refinement (jit.test_typing.TestTyping) ... ok (0.004s) 2023-01-11T21:25:29.7658004Z test_optional_tuple (jit.test_typing.TestTyping) ... ok (0.008s) 2023-01-11T21:25:29.7658145Z test_singleton_tuple_unpack (jit.test_typing.TestTyping) ... ok (0.004s) 2023-01-11T21:25:29.7658275Z test_sum_list_diff_elms (jit.test_typing.TestTyping) ... ok (0.006s) 2023-01-11T21:25:29.7658391Z test_sum_list_empty (jit.test_typing.TestTyping) ... ok (0.006s) 2023-01-11T21:25:29.7658520Z test_sum_list_literal (jit.test_typing.TestTyping) ... ok (0.005s) 2023-01-11T21:25:29.7658644Z test_sum_list_one (jit.test_typing.TestTyping) ... ok (0.006s) 2023-01-11T21:25:29.7658777Z test_sum_list_wrong_type (jit.test_typing.TestTyping) ... ok (0.001s) 2023-01-11T21:25:29.7658912Z test_tuple_assignments (jit.test_typing.TestTyping) ... ok (0.021s) 2023-01-11T21:25:29.7659043Z test_tuple_create_return (jit.test_typing.TestTyping) ... ok (0.005s) 2023-01-11T21:25:29.7659166Z test_tuple_io (jit.test_typing.TestTyping) ... ok (0.004s) 2023-01-11T21:25:29.7659295Z test_tuple_keyword (jit.test_typing.TestTyping) ... ok (0.004s) 2023-01-11T21:25:29.7659424Z test_tuple_specialization (jit.test_typing.TestTyping) ... ok (0.006s) 2023-01-11T21:25:29.7659556Z test_check_union_annotation (jit.test_union.TestUnion) ... ok (0.006s) 2023-01-11T21:25:29.7659710Z test_union_T_None_is_equivalent_to_optional_T (jit.test_union.TestUnion) ... ok (0.011s) 2023-01-11T21:25:29.7659854Z test_union_argument_order_is_ignored (jit.test_union.TestUnion) ... ok (0.004s) 2023-01-11T21:25:29.7660009Z test_union_argument_order_is_ignored_container (jit.test_union.TestUnion) ... ok (0.004s) 2023-01-11T21:25:29.7660137Z test_union_as_annotation (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7660290Z test_union_as_annotation_in_typed_container (jit.test_union.TestUnion) ... ok (0.004s) 2023-01-11T21:25:29.7660422Z test_union_as_annotation_py2 (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7660538Z test_union_as_dict_key (jit.test_union.TestUnion) ... ok (0.008s) 2023-01-11T21:25:29.7660667Z test_union_as_dict_value (jit.test_union.TestUnion) ... ok (0.005s) 2023-01-11T21:25:29.7660807Z test_union_as_internal_tuple_type (jit.test_union.TestUnion) ... ok (0.004s) 2023-01-11T21:25:29.7660974Z test_union_branching_does_not_autoinfer_undeclared_union (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7661143Z test_union_branching_does_not_widen_existing_inferred_type (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7661311Z test_union_branching_with_union_return_and_homogenous_types (jit.test_union.TestUnion) ... ok (0.005s) 2023-01-11T21:25:29.7661474Z test_union_does_not_replace_existing_annotated_type (jit.test_union.TestUnion) ... ok (0.001s) 2023-01-11T21:25:29.7661653Z test_union_does_not_replace_existing_annotated_type_empty_container (jit.test_union.TestUnion) ... ok (0.001s) 2023-01-11T21:25:29.7661812Z test_union_does_not_replace_existing_annotated_type_union (jit.test_union.TestUnion) ... ok (0.001s) 2023-01-11T21:25:29.7661949Z test_union_in_class_constructor (jit.test_union.TestUnion) ... ok (0.010s) 2023-01-11T21:25:29.7662587Z test_union_memory_aliasing (jit.test_union.TestUnion) ... /opt/conda/lib/python3.10/site-packages/torch/_jit_internal.py:1282: UserWarning: The inner type of a container is lost when calling torch.jit.isinstance in eager mode. For example, List[int] would become list and therefore falsely return True for List[float] or List[str]. 2023-01-11T21:25:29.7662663Z warnings.warn( 2023-01-11T21:25:29.7662730Z ok (0.010s) 2023-01-11T21:25:29.7662882Z test_union_module_with_union_class_variable (jit.test_union.TestUnion) ... ok (0.005s) 2023-01-11T21:25:29.7663036Z test_union_module_with_union_instance_variable (jit.test_union.TestUnion) ... ok (0.010s) 2023-01-11T21:25:29.7663184Z test_union_optional_of_union_is_flattened (jit.test_union.TestUnion) ... ok (0.005s) 2023-01-11T21:25:29.7663439Z test_union_redundant_arguments_are_skipped (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7663596Z test_union_redundant_arguments_are_skipped_container (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7663763Z test_union_redundant_arguments_are_skipped_optional (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7663927Z test_union_redundant_arguments_are_skipped_subtyping (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7664058Z test_union_return_type (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7664209Z test_union_schema_matching_on_internal_type (jit.test_union.TestUnion) ... ok (0.009s) 2023-01-11T21:25:29.7664371Z test_union_serialization_preserves_type_annotations (jit.test_union.TestUnion) ... ok (0.007s) 2023-01-11T21:25:29.7664510Z test_union_subclasses_larger_union (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7664652Z test_union_subtractive_refinement (jit.test_union.TestUnion) ... ok (0.007s) 2023-01-11T21:25:29.7664814Z test_union_subtractive_refinement_with_container (jit.test_union.TestUnion) ... ok (0.007s) 2023-01-11T21:25:29.7664937Z test_union_type_refinement (jit.test_union.TestUnion) ... ok (0.005s) 2023-01-11T21:25:29.7665093Z test_union_type_refinement_internal_declaration (jit.test_union.TestUnion) ... ok (0.005s) 2023-01-11T21:25:29.7665267Z test_union_type_refinement_partial_static_refinement_tuple_rhs (jit.test_union.TestUnion) ... ok (0.007s) 2023-01-11T21:25:29.7665439Z test_union_type_refinement_partial_static_refinement_union_rhs (jit.test_union.TestUnion) ... ok (0.007s) 2023-01-11T21:25:29.7665593Z test_union_type_refinement_statically_false (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7665741Z test_union_type_refinement_statically_true (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7665884Z test_union_type_refinement_tuple_rhs (jit.test_union.TestUnion) ... ok (0.011s) 2023-01-11T21:25:29.7666050Z test_union_type_refinement_tuple_rhs_noncontained_type (jit.test_union.TestUnion) ... ok (0.008s) 2023-01-11T21:25:29.7666187Z test_union_type_refinement_tuple_rhs_union (jit.test_union.TestUnion) ... ok (0.003s) 2023-01-11T21:25:29.7666329Z test_union_type_refinement_union_rhs (jit.test_union.TestUnion) ... ok (0.004s) 2023-01-11T21:25:29.7666474Z test_union_variable_can_be_reassigned (jit.test_union.TestUnion) ... ok (0.008s) 2023-01-11T21:25:29.7666605Z test_union_with_collections (jit.test_union.TestUnion) ... ok (0.007s) 2023-01-11T21:25:29.7666742Z test_union_with_dict_assignment (jit.test_union.TestUnion) ... ok (0.029s) 2023-01-11T21:25:29.7666863Z test_union_with_enum (jit.test_union.TestUnion) ... ok (0.012s) 2023-01-11T21:25:29.7667269Z test_union_with_list_assignment (jit.test_union.TestUnion) ... [W ir_emitter.cpp:4385] Warning: List consists of heterogeneous types, which means that it has been typed as containing Union[Tensor, int]. To use any of the values in this List, it will be necessary to add an `assert isinstance` statement before first use to trigger type refinement. 2023-01-11T21:25:29.7667348Z File "", line 3 2023-01-11T21:25:29.7667393Z 2023-01-11T21:25:29.7667459Z def fn(): 2023-01-11T21:25:29.7667596Z x: Union[List[str], List[torch.Tensor]] = [torch.add(1, x) for x in [torch.arange(5), 1]] 2023-01-11T21:25:29.7667787Z ~~~~~~~~~~~~~~~~~~~ <--- HERE 2023-01-11T21:25:29.7667902Z if torch.jit.isinstance(x, List[torch.Tensor]): 2023-01-11T21:25:29.7667993Z x.append(torch.tensor(3)) 2023-01-11T21:25:29.7668079Z (function emitListLiteral) 2023-01-11T21:25:29.7668419Z [W ir_emitter.cpp:4385] Warning: List consists of heterogeneous types, which means that it has been typed as containing Union[Tensor, int]. To use any of the values in this List, it will be necessary to add an `assert isinstance` statement before first use to trigger type refinement. 2023-01-11T21:25:29.7668496Z File "", line 3 2023-01-11T21:25:29.7668533Z 2023-01-11T21:25:29.7668598Z def fn(): 2023-01-11T21:25:29.7668742Z x: Union[List[torch.Tensor], int] = [torch.add(1, x) for x in [torch.arange(5), 1]] 2023-01-11T21:25:29.7668910Z ~~~~~~~~~~~~~~~~~~~ <--- HERE 2023-01-11T21:25:29.7669025Z if torch.jit.isinstance(x, List[torch.Tensor]): 2023-01-11T21:25:29.7669111Z x.append(torch.tensor(3)) 2023-01-11T21:25:29.7669195Z (function emitListLiteral) 2023-01-11T21:25:29.7669260Z ok (0.023s) 2023-01-11T21:25:29.7669394Z test_union_with_scalar_values (jit.test_union.TestUnion) ... ok (0.004s) 2023-01-11T21:25:29.7669540Z test_unions_of_a_single_argument_vanish (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7669670Z test_unions_of_unions_are_flattened (jit.test_union.TestUnion) ... ok (0.002s) 2023-01-11T21:25:29.7669844Z test_factory_ops_requires_grad_fail (jit.test_unsupported_ops.TestUnsupportedOps) ... ok (0.003s) 2023-01-11T21:25:29.7669993Z test_init_ops (jit.test_unsupported_ops.TestUnsupportedOps) ... ok (0.017s) 2023-01-11T21:25:29.7670144Z test_add_value_to_version_map (jit.test_upgraders.TestUpgraders) ... ok (0.002s) 2023-01-11T21:25:29.7670293Z test_aten_div_scalar_at_3 (jit.test_upgraders.TestUpgraders) ... ok (0.004s) 2023-01-11T21:25:29.7670437Z test_aten_div_tensor_at_3 (jit.test_upgraders.TestUpgraders) ... ok (0.004s) 2023-01-11T21:25:29.7670585Z test_aten_div_tensor_out_at_3 (jit.test_upgraders.TestUpgraders) ... ok (0.003s) 2023-01-11T21:25:29.7670722Z test_aten_full_at_4 (jit.test_upgraders.TestUpgraders) ... ok (0.004s) 2023-01-11T21:25:29.7670861Z test_aten_full_other_variants (jit.test_upgraders.TestUpgraders) ... ok (0.005s) 2023-01-11T21:25:29.7671002Z test_aten_full_out_at_4 (jit.test_upgraders.TestUpgraders) ... ok (0.003s) 2023-01-11T21:25:29.7671140Z test_aten_linspace (jit.test_upgraders.TestUpgraders) ... ok (0.002s) 2023-01-11T21:25:29.7671284Z test_aten_linspace_out (jit.test_upgraders.TestUpgraders) ... ok (0.002s) 2023-01-11T21:25:29.7671423Z test_aten_logspace (jit.test_upgraders.TestUpgraders) ... ok (0.002s) 2023-01-11T21:25:29.7671569Z test_aten_logspace_out (jit.test_upgraders.TestUpgraders) ... ok (0.003s) 2023-01-11T21:25:29.7671720Z test_aten_test_serialization (jit.test_upgraders.TestUpgraders) ... ok (0.005s) 2023-01-11T21:25:29.7671882Z test_populated_test_upgrader_graph (jit.test_upgraders.TestUpgraders) ... ok (0.003s) 2023-01-11T21:25:29.7672027Z test_populated_upgrader_graph (jit.test_upgraders.TestUpgraders) ... ok (0.003s) 2023-01-11T21:25:29.7672141Z test_warn (jit.test_warn.TestWarn) ... ok (0.004s) 2023-01-11T21:25:29.7672289Z test_warn_multiple_calls_multiple_warnings (jit.test_warn.TestWarn) ... ok (0.003s) 2023-01-11T21:25:29.7672438Z test_warn_multiple_calls_same_func_diff_stack (jit.test_warn.TestWarn) ... ok (0.007s) 2023-01-11T21:25:29.7672562Z test_warn_once_per_func (jit.test_warn.TestWarn) ... ok (0.006s) 2023-01-11T21:25:29.7672694Z test_warn_once_per_func_in_loop (jit.test_warn.TestWarn) ... ok (0.007s) 2023-01-11T21:25:29.7672813Z test_warn_only_once (jit.test_warn.TestWarn) ... ok (0.003s) 2023-01-11T21:25:29.7672978Z test_warn_only_once_in_loop_func (jit.test_warn.TestWarn) ... ok (0.005s) 2023-01-11T21:25:29.7673062Z test_with_as (jit.test_with.TestWith) 2023-01-11T21:25:29.7673285Z Check that with statements that use the 'as' keyword to bind expressions ... ok (0.070s) 2023-01-11T21:25:29.7673387Z test_with_errors (jit.test_with.TestWith) 2023-01-11T21:25:29.7673628Z Check that errors related to with-statements are detected and reported correctly. ... ok (0.027s) 2023-01-11T21:25:29.7673738Z test_with_exceptions (jit.test_with.TestWith) 2023-01-11T21:25:29.7673948Z Check that exceptions thrown in the bodies of with-statements are ... ok (0.027s) 2023-01-11T21:25:29.7674046Z test_with_no_as (jit.test_with.TestWith) 2023-01-11T21:25:29.7674274Z Check that with statements that do not use the 'as' keyword to bind expressions ... ok (0.070s) 2023-01-11T21:25:29.7674397Z test_with_no_grad (jit.test_with.TestWith) 2023-01-11T21:25:29.7674541Z Check that torch.no_grad() works. Most of these are adapted from ... ok (0.017s) 2023-01-11T21:25:29.7674656Z test_with_record_function (jit.test_with.TestWith) 2023-01-11T21:25:29.7675038Z Check that torch.autograd.profiler.record_function context manager is ... STAGE:2023-01-11 21:25:28 1919:1919 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:25:29.7675290Z STAGE:2023-01-11 21:25:28 1919:1919 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:25:29.7675544Z STAGE:2023-01-11 21:25:28 1919:1919 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:25:29.7675611Z ok (0.026s) 2023-01-11T21:25:29.7675616Z 2023-01-11T21:25:29.7675811Z ---------------------------------------------------------------------- 2023-01-11T21:25:29.7675877Z Ran 2544 tests in 126.514s 2023-01-11T21:25:29.7675894Z 2023-01-11T21:25:29.7675982Z OK (skipped=114, expected failures=2) 2023-01-11T21:25:29.7675987Z 2023-01-11T21:25:29.7676069Z Generating XML reports... 2023-01-11T21:25:29.7676394Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_alias_analysis.TestAliasAnalysis-20230111212322.xml 2023-01-11T21:25:29.7676675Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_async.TestAsync-20230111212322.xml 2023-01-11T21:25:29.7676960Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_aten_pow.TestAtenPow-20230111212322.xml 2023-01-11T21:25:29.7677264Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_autodiff.TestAutodiffJit-20230111212322.xml 2023-01-11T21:25:29.7677632Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing-20230111212322.xml 2023-01-11T21:25:29.7677925Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_backends.TestBackends-20230111212322.xml 2023-01-11T21:25:29.7678258Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_backends.TestBackendsWithCompiler-20230111212322.xml 2023-01-11T21:25:29.7678531Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_batch_mm.TestBatchMM-20230111212322.xml 2023-01-11T21:25:29.7678823Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_builtins.TestBuiltins-20230111212322.xml 2023-01-11T21:25:29.7679113Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_class_type.TestClassType-20230111212322.xml 2023-01-11T21:25:29.7679399Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_complex.TestComplex-20230111212322.xml 2023-01-11T21:25:29.7679729Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_custom_operators.TestCustomOperators-20230111212322.xml 2023-01-11T21:25:29.7679991Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_dce.TestDCE-20230111212322.xml 2023-01-11T21:25:29.7680301Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_dataclasses.TestDataclasses-20230111212322.xml 2023-01-11T21:25:29.7680655Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_device_analysis.TestDeviceAnalysis-20230111212322.xml 2023-01-11T21:25:29.7680927Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestDict-20230111212322.xml 2023-01-11T21:25:29.7681232Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_dtype_analysis.TestDtypeAnalysis-20230111212322.xml 2023-01-11T21:25:29.7681496Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_enum.TestEnum-20230111212322.xml 2023-01-11T21:25:29.7681784Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_freezing.TestFreezing-20230111212322.xml 2023-01-11T21:25:29.7682038Z Generated XML report: test-reports/python-unittest/test_jit/TEST-TestFrontend-20230111212322.xml 2023-01-11T21:25:29.7682392Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_freezing.TestFrozenOptimizations-20230111212322.xml 2023-01-11T21:25:29.7682727Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_functional_blocks.TestFunctionalBlocks-20230111212322.xml 2023-01-11T21:25:29.7683107Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_convert_activation.TestFunctionalToInplaceActivation-20230111212322.xml 2023-01-11T21:25:29.7683403Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_attr.TestGetDefaultAttr-20230111212322.xml 2023-01-11T21:25:29.7683741Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_graph_rewrite_passes.TestGraphRewritePasses-20230111212322.xml 2023-01-11T21:25:29.7684007Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_hash.TestHash-20230111212322.xml 2023-01-11T21:25:29.7684271Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_hooks.TestHooks-20230111212322.xml 2023-01-11T21:25:29.7684577Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_ignorable_args.TestIgnorableArgs-20230111212322.xml 2023-01-11T21:25:29.7684930Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_ignore_context_manager.TestIgnoreContextManager-20230111212322.xml 2023-01-11T21:25:29.7685312Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_convert_activation.TestInplaceToFunctionalActivation-20230111212322.xml 2023-01-11T21:25:29.7685614Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_isinstance.TestIsinstance-20230111212322.xml 2023-01-11T21:25:29.7685854Z Generated XML report: test-reports/python-unittest/test_jit/TEST-TestJit-20230111212322.xml 2023-01-11T21:25:29.7686141Z Generated XML report: test-reports/python-unittest/test_jit/TEST-TestJitGeneratedModule-20230111212322.xml 2023-01-11T21:25:29.7686429Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_jit_utils.TestJitUtils-20230111212322.xml 2023-01-11T21:25:29.7686700Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestList-20230111212322.xml 2023-01-11T21:25:29.7686974Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_logging.TestLogging-20230111212322.xml 2023-01-11T21:25:29.7687292Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_freezing.TestMKLDNNReinplacing-20230111212322.xml 2023-01-11T21:25:29.7687558Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_misc.TestMisc-20230111212322.xml 2023-01-11T21:25:29.7687879Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_tracer.TestMixTracingScripting-20230111212322.xml 2023-01-11T21:25:29.7688161Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_models.TestModels-20230111212322.xml 2023-01-11T21:25:29.7688455Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_module_apis.TestModuleAPIs-20230111212322.xml 2023-01-11T21:25:29.7688787Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_module_containers.TestModuleContainers-20230111212322.xml 2023-01-11T21:25:29.7689270Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_module_interface.TestModuleInterface-20230111212322.xml 2023-01-11T21:25:29.7689559Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_modules.TestModules-20230111212322.xml 2023-01-11T21:25:29.7689851Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestNamedTuple-20230111212322.xml 2023-01-11T21:25:29.7690149Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_backend_nnapi.TestNnapiBackend-20230111212322.xml 2023-01-11T21:25:29.7690494Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_op_decompositions.TestOpDecompositions-20230111212322.xml 2023-01-11T21:25:29.7690959Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo-20230111212322.xml 2023-01-11T21:25:29.7691229Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_pdt.TestPDT-20230111212322.xml 2023-01-11T21:25:29.7691566Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_parametrization.TestParametrization-20230111212322.xml 2023-01-11T21:25:29.7691858Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_peephole.TestPeephole-20230111212322.xml 2023-01-11T21:25:29.7692134Z Generated XML report: test-reports/python-unittest/test_jit/TEST-TestProducerVersion-20230111212322.xml 2023-01-11T21:25:29.7692423Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_profiler.TestProfiler-20230111212322.xml 2023-01-11T21:25:29.7692742Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_python_bindings.TestPythonBindings-20230111212322.xml 2023-01-11T21:25:29.7693071Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_python_builtins.TestPythonBuiltinOP-20230111212322.xml 2023-01-11T21:25:29.7693348Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_python_ir.TestPythonIr-20230111212322.xml 2023-01-11T21:25:29.7693669Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_recursive_script.TestRecursiveScript-20230111212322.xml 2023-01-11T21:25:29.7693986Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_remove_mutation.TestRemoveMutation-20230111212322.xml 2023-01-11T21:25:29.7694271Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_save_load.TestSaveLoad-20230111212322.xml 2023-01-11T21:25:29.7694625Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_save_load_for_op_version.TestSaveLoadForOpVersion-20230111212322.xml 2023-01-11T21:25:29.7694876Z Generated XML report: test-reports/python-unittest/test_jit/TEST-TestScript-20230111212322.xml 2023-01-11T21:25:29.7695166Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestScriptDict-20230111212322.xml 2023-01-11T21:25:29.7695453Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestScriptList-20230111212322.xml 2023-01-11T21:25:29.7695868Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation-20230111212322.xml 2023-01-11T21:25:29.7696183Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_script_profile.TestScriptProfile-20230111212322.xml 2023-01-11T21:25:29.7696446Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_slice.TestSlice-20230111212322.xml 2023-01-11T21:25:29.7696727Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_sparse.TestSparse-20230111212322.xml 2023-01-11T21:25:29.7697066Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_string_formatting.TestStringFormatting-20230111212322.xml 2023-01-11T21:25:29.7697423Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis-20230111212322.xml 2023-01-11T21:25:29.7697771Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_builtins.TestTensorBuiltins-20230111212322.xml 2023-01-11T21:25:29.7698103Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_tensor_creation_ops.TestTensorCreationOps-20230111212322.xml 2023-01-11T21:25:29.7698415Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_tensor_methods.TestTensorMethods-20230111212322.xml 2023-01-11T21:25:29.7698711Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_torchbind.TestTorchbind-20230111212322.xml 2023-01-11T21:25:29.7698990Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_tracer.TestTracer-20230111212322.xml 2023-01-11T21:25:29.7699322Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_type_sharing.TestTypeSharing-20230111212322.xml 2023-01-11T21:25:29.7699625Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_types.TestTypesAndAnnotation-20230111212322.xml 2023-01-11T21:25:29.7699906Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_typing.TestTyping-20230111212322.xml 2023-01-11T21:25:29.7700177Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_union.TestUnion-20230111212322.xml 2023-01-11T21:25:29.7700494Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_unsupported_ops.TestUnsupportedOps-20230111212322.xml 2023-01-11T21:25:29.7700791Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_upgraders.TestUpgraders-20230111212322.xml 2023-01-11T21:25:29.7701056Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_warn.TestWarn-20230111212322.xml 2023-01-11T21:25:29.7701327Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_with.TestWith-20230111212322.xml 2023-01-11T21:25:29.7701637Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_data_parallel.TestDataParallel-20230111212322.xml 2023-01-11T21:25:29.7701955Z Generated XML report: test-reports/python-unittest/test_jit/TEST-jit.test_save_load.TestSaveLoadFlatbuffer-20230111212322.xml 2023-01-11T21:25:29.7701961Z 2023-01-11T21:25:29.7702328Z ##[endgroup] 2023-01-11T21:25:29.7702586Z FINISHED PRINTING LOG FILE of test_jit (/var/lib/jenkins/workspace/test/test-reports/test_jit_lpu6xhd1) 2023-01-11T21:25:29.7702591Z 2023-01-11T21:25:31.5528707Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:25:31.6282600Z Ignoring disabled issues: [] 2023-01-11T21:25:31.7535402Z Running test_masked ... [2023-01-11 21:25:31.753177] 2023-01-11T21:25:31.7537333Z Executing ['/opt/conda/bin/python', '-bb', 'test_masked.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:25:31.753466] 2023-01-11T21:25:34.3561648Z 2023-01-11T21:25:34.3562224Z Expand the folded group to see the log file of test_masked 2023-01-11T21:25:34.3563214Z ##[group]PRINTING LOG FILE of test_masked (/var/lib/jenkins/workspace/test/test-reports/test_masked_mzzp1glv) 2023-01-11T21:25:34.3563486Z 2023-01-11T21:25:34.3563583Z Running tests... 2023-01-11T21:25:34.3564222Z ---------------------------------------------------------------------- 2023-01-11T21:25:34.3564553Z 2023-01-11T21:25:34.3564814Z ---------------------------------------------------------------------- 2023-01-11T21:25:34.3565057Z Ran 0 tests in 0.000s 2023-01-11T21:25:34.3565160Z 2023-01-11T21:25:34.3569749Z OK 2023-01-11T21:25:34.3570009Z 2023-01-11T21:25:34.3570168Z Generating XML reports... 2023-01-11T21:25:34.3570889Z Test results will be stored in test-reports/python-unittest/test_masked 2023-01-11T21:25:34.3571154Z 2023-01-11T21:25:34.3571488Z ##[endgroup] 2023-01-11T21:25:34.3571889Z FINISHED PRINTING LOG FILE of test_masked (/var/lib/jenkins/workspace/test/test-reports/test_masked_mzzp1glv) 2023-01-11T21:25:34.3572099Z 2023-01-11T21:25:36.1968953Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:25:36.2615336Z Ignoring disabled issues: [] 2023-01-11T21:25:36.2754635Z Running test_meta ... [2023-01-11 21:25:36.275179] 2023-01-11T21:25:36.2756138Z Executing ['/opt/conda/bin/python', '-bb', 'test_meta.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:25:36.275414] 2023-01-11T21:25:39.0419106Z 2023-01-11T21:25:39.0419613Z Expand the folded group to see the log file of test_meta 2023-01-11T21:25:39.0420623Z ##[group]PRINTING LOG FILE of test_meta (/var/lib/jenkins/workspace/test/test-reports/test_meta_dkjnyeqj) 2023-01-11T21:25:39.0421003Z 2023-01-11T21:25:39.0421144Z Running tests... 2023-01-11T21:25:39.0421823Z ---------------------------------------------------------------------- 2023-01-11T21:25:39.0422667Z Test results will be stored in test-reports/python-unittest/test_meta 2023-01-11T21:25:39.0423194Z test_channels_last (__main__.TestMetaConverter) ... ok (0.114s) 2023-01-11T21:25:39.0423638Z test_channels_last_leaf (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0424078Z test_channels_last_non_leaf (__main__.TestMetaConverter) ... ok (0.002s) 2023-01-11T21:25:39.0425601Z test_complex_noncontiguous_bug (__main__.TestMetaConverter) ... /var/lib/jenkins/workspace/test/test_meta.py:233: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T21:25:39.0426689Z x = torch.randn((2, 2, 4, 9), dtype=torch.complex32)[:, 0, :, :] 2023-01-11T21:25:39.0427109Z ok (0.002s) 2023-01-11T21:25:39.0427610Z test_empty_strided_non_dense_leaf (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0428197Z test_imag (__main__.TestMetaConverter) ... ok (0.002s) 2023-01-11T21:25:39.0428726Z test_leaf (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0429270Z test_non_leaf (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0430626Z test_non_leaf_torture (__main__.TestMetaConverter) ... /var/lib/jenkins/workspace/test/test_meta.py:212: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:25:39.0431799Z x.set_(x.storage(), 10, (2,), (2,)) 2023-01-11T21:25:39.0432157Z ok (0.001s) 2023-01-11T21:25:39.0432636Z test_requires_grad_false (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0433271Z test_tensor_outlives_converter (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0433892Z test_view_as_complex (__main__.TestMetaConverter) ... ok (0.002s) 2023-01-11T21:25:39.0434462Z test_view_as_real (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0435033Z test_view_dtype (__main__.TestMetaConverter) ... ok (0.001s) 2023-01-11T21:25:39.0435605Z test_view_of_leaf (__main__.TestMetaConverter) ... ok (0.003s) 2023-01-11T21:25:39.0436161Z test_view_of_non_leaf (__main__.TestMetaConverter) ... ok (0.003s) 2023-01-11T21:25:39.0436754Z test_view_of_view_of_leaf (__main__.TestMetaConverter) ... ok (0.002s) 2023-01-11T21:25:39.0437325Z test_weakref (__main__.TestMetaConverter) ... ok (0.002s) 2023-01-11T21:25:39.0437639Z 2023-01-11T21:25:39.0438047Z ---------------------------------------------------------------------- 2023-01-11T21:25:39.0438544Z Ran 18 tests in 0.143s 2023-01-11T21:25:39.0438780Z 2023-01-11T21:25:39.0438899Z OK 2023-01-11T21:25:39.0439090Z 2023-01-11T21:25:39.0439263Z Generating XML reports... 2023-01-11T21:25:39.0440105Z Generated XML report: test-reports/python-unittest/test_meta/TEST-TestMetaConverter-20230111212538.xml 2023-01-11T21:25:39.0440593Z 2023-01-11T21:25:39.0441101Z ##[endgroup] 2023-01-11T21:25:39.0441864Z FINISHED PRINTING LOG FILE of test_meta (/var/lib/jenkins/workspace/test/test-reports/test_meta_dkjnyeqj) 2023-01-11T21:25:39.0442453Z 2023-01-11T21:25:40.9191096Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:25:41.0003729Z Ignoring disabled issues: [] 2023-01-11T21:25:41.0140974Z Running test_proxy_tensor ... [2023-01-11 21:25:41.013822] 2023-01-11T21:25:41.0142731Z Executing ['/opt/conda/bin/python', '-bb', 'test_proxy_tensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:25:41.014058] 2023-01-11T21:26:19.7390806Z 2023-01-11T21:26:19.7391335Z Expand the folded group to see the log file of test_proxy_tensor 2023-01-11T21:26:19.7392251Z ##[group]PRINTING LOG FILE of test_proxy_tensor (/var/lib/jenkins/workspace/test/test-reports/test_proxy_tensor_2tiaehkk) 2023-01-11T21:26:19.7392606Z 2023-01-11T21:26:19.7392720Z Running tests... 2023-01-11T21:26:19.7393516Z ---------------------------------------------------------------------- 2023-01-11T21:26:19.7394419Z Test results will be stored in test-reports/python-unittest/test_proxy_tensor 2023-01-11T21:26:19.7410025Z test_alias (__main__.TestFakeProxyTensor) ... ok (0.106s) 2023-01-11T21:26:19.7410484Z test_issue82547 (__main__.TestFakeProxyTensor) ... ok (0.006s) 2023-01-11T21:26:19.7410955Z test_meta (__main__.TestFakeProxyTensor) ... ok (0.009s) 2023-01-11T21:26:19.7411400Z test_use_fake_and_tensor (__main__.TestFakeProxyTensor) ... ok (0.011s) 2023-01-11T21:26:19.7411869Z test_allclose (__main__.TestGenericProxyTensorFake) ... ok (0.006s) 2023-01-11T21:26:19.7412654Z test_amp_cache (__main__.TestGenericProxyTensorFake) ... skip: CUDA-only test (0.001s) 2023-01-11T21:26:19.7413236Z test_constant_blowup (__main__.TestGenericProxyTensorFake) ... ok (0.006s) 2023-01-11T21:26:19.7413806Z test_constant_proxy_tensor_mut (__main__.TestGenericProxyTensorFake) ... ok (0.011s) 2023-01-11T21:26:19.7414351Z test_constant_random (__main__.TestGenericProxyTensorFake) ... ok (0.004s) 2023-01-11T21:26:19.7433845Z test_constant_unbind (__main__.TestGenericProxyTensorFake) ... ok (0.004s) 2023-01-11T21:26:19.7434494Z test_decomp_of_capture (__main__.TestGenericProxyTensorFake) ... ok (0.031s) 2023-01-11T21:26:19.7434891Z test_decomposition_interpreter (__main__.TestGenericProxyTensorFake) ... ok (0.024s) 2023-01-11T21:26:19.7435230Z test_inplace_metadata (__main__.TestGenericProxyTensorFake) ... ok (0.005s) 2023-01-11T21:26:19.7435661Z test_isolated_graphmodule (__main__.TestGenericProxyTensorFake) ... ok (0.246s) 2023-01-11T21:26:19.7436054Z test_make_fx_model_double_param (__main__.TestGenericProxyTensorFake) ... ok (0.058s) 2023-01-11T21:26:19.7436494Z test_make_fx_model_fwd_bwd (__main__.TestGenericProxyTensorFake) ... ok (0.042s) 2023-01-11T21:26:19.7436836Z test_make_fx_model_fwd_bwd_wgtupdate (__main__.TestGenericProxyTensorFake) ... ok (0.042s) 2023-01-11T21:26:19.7437165Z test_make_fx_overloads (__main__.TestGenericProxyTensorFake) ... ok (0.009s) 2023-01-11T21:26:19.7437497Z test_make_fx_reentrant_dispatch (__main__.TestGenericProxyTensorFake) ... ok (0.005s) 2023-01-11T21:26:19.7437828Z test_make_fx_simple (__main__.TestGenericProxyTensorFake) ... ok (0.003s) 2023-01-11T21:26:19.7440437Z test_mode_tracing_factory_function (__main__.TestGenericProxyTensorFake) ... ok (0.009s) 2023-01-11T21:26:19.7441007Z test_partial_decomp (__main__.TestGenericProxyTensorFake) ... ok (0.099s) 2023-01-11T21:26:19.7441442Z test_pickle_issue89626 (__main__.TestGenericProxyTensorFake) ... ok (0.006s) 2023-01-11T21:26:19.7442068Z test_pr_86917 (__main__.TestGenericProxyTensorFake) ... ok (0.026s) 2023-01-11T21:26:19.7442529Z test_proxy_tensor (__main__.TestGenericProxyTensorFake) ... ok (0.031s) 2023-01-11T21:26:19.7442936Z test_proxy_tensor_mode_with_decomp_table_preserves_proxy (__main__.TestGenericProxyTensorFake) ... ok (0.020s) 2023-01-11T21:26:19.7443302Z test_resnet18_backward_trace (__main__.TestGenericProxyTensorFake) ... ok (2.107s) 2023-01-11T21:26:19.7443629Z test_scalar_device (__main__.TestGenericProxyTensorFake) ... ok (0.005s) 2023-01-11T21:26:19.7443921Z test_strides (__main__.TestGenericProxyTensorFake) ... ok (0.062s) 2023-01-11T21:26:19.7444381Z test_tensor_constants (__main__.TestGenericProxyTensorFake) ... ok (0.009s) 2023-01-11T21:26:19.7444700Z test_trace_subclasses (__main__.TestGenericProxyTensorFake) ... ok (0.008s) 2023-01-11T21:26:19.7445014Z test_val_metadata_mutation (__main__.TestGenericProxyTensorFake) ... ok (0.004s) 2023-01-11T21:26:19.7445332Z test_varargs (__main__.TestGenericProxyTensorFake) ... ok (0.005s) 2023-01-11T21:26:19.7445633Z test_allclose (__main__.TestGenericProxyTensorReal) ... ok (0.008s) 2023-01-11T21:26:19.7446102Z test_amp_cache (__main__.TestGenericProxyTensorReal) ... skip: CUDA-only test (0.001s) 2023-01-11T21:26:19.7446423Z test_constant_blowup (__main__.TestGenericProxyTensorReal) ... ok (0.020s) 2023-01-11T21:26:19.7446816Z test_constant_proxy_tensor_mut (__main__.TestGenericProxyTensorReal) ... ok (0.020s) 2023-01-11T21:26:19.7447149Z test_constant_random (__main__.TestGenericProxyTensorReal) ... ok (0.014s) 2023-01-11T21:26:19.7447456Z test_constant_unbind (__main__.TestGenericProxyTensorReal) ... ok (0.015s) 2023-01-11T21:26:19.7447782Z test_decomp_of_capture (__main__.TestGenericProxyTensorReal) ... ok (0.031s) 2023-01-11T21:26:19.7448118Z test_decomposition_interpreter (__main__.TestGenericProxyTensorReal) ... ok (0.031s) 2023-01-11T21:26:19.7448453Z test_inplace_metadata (__main__.TestGenericProxyTensorReal) ... ok (0.019s) 2023-01-11T21:26:19.7448765Z test_isolated_graphmodule (__main__.TestGenericProxyTensorReal) ... ok (0.230s) 2023-01-11T21:26:19.7449311Z test_make_fx_model_double_param (__main__.TestGenericProxyTensorReal) ... ok (0.057s) 2023-01-11T21:26:19.7452740Z test_make_fx_model_fwd_bwd (__main__.TestGenericProxyTensorReal) ... ok (0.255s) 2023-01-11T21:26:19.7453383Z test_make_fx_model_fwd_bwd_wgtupdate (__main__.TestGenericProxyTensorReal) ... ok (0.288s) 2023-01-11T21:26:19.7454922Z test_make_fx_overloads (__main__.TestGenericProxyTensorReal) ... ok (0.025s) 2023-01-11T21:26:19.7455545Z test_make_fx_reentrant_dispatch (__main__.TestGenericProxyTensorReal) ... ok (0.029s) 2023-01-11T21:26:19.7456033Z test_make_fx_simple (__main__.TestGenericProxyTensorReal) ... ok (0.013s) 2023-01-11T21:26:19.7456375Z test_mode_tracing_factory_function (__main__.TestGenericProxyTensorReal) ... ok (0.018s) 2023-01-11T21:26:19.7456706Z test_partial_decomp (__main__.TestGenericProxyTensorReal) ... ok (0.087s) 2023-01-11T21:26:19.7457024Z test_pickle_issue89626 (__main__.TestGenericProxyTensorReal) ... ok (0.013s) 2023-01-11T21:26:19.7457317Z test_pr_86917 (__main__.TestGenericProxyTensorReal) ... ok (0.023s) 2023-01-11T21:26:19.7457619Z test_proxy_tensor (__main__.TestGenericProxyTensorReal) ... ok (0.232s) 2023-01-11T21:26:19.7457976Z test_proxy_tensor_mode_with_decomp_table_preserves_proxy (__main__.TestGenericProxyTensorReal) ... ok (0.021s) 2023-01-11T21:26:19.7458330Z test_resnet18_backward_trace (__main__.TestGenericProxyTensorReal) ... ok (6.888s) 2023-01-11T21:26:19.7458656Z test_scalar_device (__main__.TestGenericProxyTensorReal) ... ok (0.017s) 2023-01-11T21:26:19.7458963Z test_strides (__main__.TestGenericProxyTensorReal) ... ok (0.067s) 2023-01-11T21:26:19.7459273Z test_tensor_constants (__main__.TestGenericProxyTensorReal) ... ok (0.023s) 2023-01-11T21:26:19.7459576Z test_trace_subclasses (__main__.TestGenericProxyTensorReal) ... ok (0.069s) 2023-01-11T21:26:19.7459901Z test_val_metadata_mutation (__main__.TestGenericProxyTensorReal) ... ok (0.029s) 2023-01-11T21:26:19.7460216Z test_varargs (__main__.TestGenericProxyTensorReal) ... ok (0.031s) 2023-01-11T21:26:19.7460514Z test_allclose (__main__.TestGenericProxyTensorSymbolic) ... ok (0.074s) 2023-01-11T21:26:19.7460989Z test_amp_cache (__main__.TestGenericProxyTensorSymbolic) ... skip: CUDA-only test (0.001s) 2023-01-11T21:26:19.7461344Z test_constant_blowup (__main__.TestGenericProxyTensorSymbolic) ... ok (0.014s) 2023-01-11T21:26:19.7461692Z test_constant_proxy_tensor_mut (__main__.TestGenericProxyTensorSymbolic) ... ok (0.024s) 2023-01-11T21:26:19.7462150Z test_constant_random (__main__.TestGenericProxyTensorSymbolic) ... ok (0.015s) 2023-01-11T21:26:19.7462483Z test_constant_unbind (__main__.TestGenericProxyTensorSymbolic) ... ok (0.008s) 2023-01-11T21:26:19.7462822Z test_decomp_of_capture (__main__.TestGenericProxyTensorSymbolic) ... ok (0.043s) 2023-01-11T21:26:19.7463162Z test_decomposition_interpreter (__main__.TestGenericProxyTensorSymbolic) ... ok (0.092s) 2023-01-11T21:26:19.7463609Z test_inplace_metadata (__main__.TestGenericProxyTensorSymbolic) ... ok (0.038s) 2023-01-11T21:26:19.7463953Z test_isolated_graphmodule (__main__.TestGenericProxyTensorSymbolic) ... ok (0.291s) 2023-01-11T21:26:19.7464312Z test_make_fx_model_double_param (__main__.TestGenericProxyTensorSymbolic) ... ok (0.086s) 2023-01-11T21:26:19.7464704Z test_make_fx_model_fwd_bwd (__main__.TestGenericProxyTensorSymbolic) ... ok (0.244s) 2023-01-11T21:26:19.7465064Z test_make_fx_model_fwd_bwd_wgtupdate (__main__.TestGenericProxyTensorSymbolic) ... ok (0.240s) 2023-01-11T21:26:19.7465435Z test_make_fx_overloads (__main__.TestGenericProxyTensorSymbolic) ... expected failure (0.030s) 2023-01-11T21:26:19.7465799Z test_make_fx_reentrant_dispatch (__main__.TestGenericProxyTensorSymbolic) ... ok (0.023s) 2023-01-11T21:26:19.7466131Z test_make_fx_simple (__main__.TestGenericProxyTensorSymbolic) ... ok (0.015s) 2023-01-11T21:26:19.7468013Z test_mode_tracing_factory_function (__main__.TestGenericProxyTensorSymbolic) ... ok (0.040s) 2023-01-11T21:26:19.7468567Z test_partial_decomp (__main__.TestGenericProxyTensorSymbolic) ... ok (0.129s) 2023-01-11T21:26:19.7469119Z test_pickle_issue89626 (__main__.TestGenericProxyTensorSymbolic) ... ok (0.016s) 2023-01-11T21:26:19.7470663Z test_pr_86917 (__main__.TestGenericProxyTensorSymbolic) ... ok (0.066s) 2023-01-11T21:26:19.7471238Z test_proxy_tensor (__main__.TestGenericProxyTensorSymbolic) ... ok (0.238s) 2023-01-11T21:26:19.7471921Z test_proxy_tensor_mode_with_decomp_table_preserves_proxy (__main__.TestGenericProxyTensorSymbolic) ... ok (0.034s) 2023-01-11T21:26:19.7472627Z test_resnet18_backward_trace (__main__.TestGenericProxyTensorSymbolic) ... ok (20.972s) 2023-01-11T21:26:19.7473248Z test_scalar_device (__main__.TestGenericProxyTensorSymbolic) ... ok (0.024s) 2023-01-11T21:26:19.7473652Z test_strides (__main__.TestGenericProxyTensorSymbolic) ... ok (0.065s) 2023-01-11T21:26:19.7475163Z test_tensor_constants (__main__.TestGenericProxyTensorSymbolic) ... ok (0.011s) 2023-01-11T21:26:19.7475823Z test_trace_subclasses (__main__.TestGenericProxyTensorSymbolic) ... expected failure (0.009s) 2023-01-11T21:26:19.7476476Z test_val_metadata_mutation (__main__.TestGenericProxyTensorSymbolic) ... ok (0.022s) 2023-01-11T21:26:19.7477012Z test_varargs (__main__.TestGenericProxyTensorSymbolic) ... ok (0.025s) 2023-01-11T21:26:19.7477321Z test_binary_broadcast (__main__.TestSymbolicTracing) ... ok (0.034s) 2023-01-11T21:26:19.7477596Z test_cat (__main__.TestSymbolicTracing) ... ok (0.068s) 2023-01-11T21:26:19.7477862Z test_debug_interpreter (__main__.TestSymbolicTracing) ... ok (0.023s) 2023-01-11T21:26:19.7478171Z test_elementwise_meta_with_sym_numbers (__main__.TestSymbolicTracing) ... ok (0.050s) 2023-01-11T21:26:19.7478465Z test_expand (__main__.TestSymbolicTracing) ... ok (0.039s) 2023-01-11T21:26:19.7478724Z test_guards_equal (__main__.TestSymbolicTracing) ... ok (0.509s) 2023-01-11T21:26:19.7478994Z test_item (__main__.TestSymbolicTracing) ... ok (0.012s) 2023-01-11T21:26:19.7479259Z test_mega_guard (__main__.TestSymbolicTracing) ... ok (0.028s) 2023-01-11T21:26:19.7479532Z test_metadata (__main__.TestSymbolicTracing) ... ok (0.024s) 2023-01-11T21:26:19.7479797Z test_metadata_fresh (__main__.TestSymbolicTracing) ... ok (0.019s) 2023-01-11T21:26:19.7480088Z test_multiply_shape (__main__.TestSymbolicTracing) ... ok (0.017s) 2023-01-11T21:26:19.7480381Z test_neg_shape (__main__.TestSymbolicTracing) ... ok (0.028s) 2023-01-11T21:26:19.7480716Z test_new_empty (__main__.TestSymbolicTracing) ... ok (0.034s) 2023-01-11T21:26:19.7481013Z test_nonidentity_transitive_guards (__main__.TestSymbolicTracing) ... ok (0.149s) 2023-01-11T21:26:19.7481317Z test_resize_from_zero (__main__.TestSymbolicTracing) ... ok (0.012s) 2023-01-11T21:26:19.7481602Z test_return_symint (__main__.TestSymbolicTracing) ... ok (0.028s) 2023-01-11T21:26:19.7481864Z test_rmethod (__main__.TestSymbolicTracing) ... ok (0.015s) 2023-01-11T21:26:19.7482144Z test_size_with_tensor (__main__.TestSymbolicTracing) ... ok (0.040s) 2023-01-11T21:26:19.7482423Z test_sqrt_size (__main__.TestSymbolicTracing) ... ok (0.015s) 2023-01-11T21:26:19.7482691Z test_sym_storage_offset (__main__.TestSymbolicTracing) ... ok (0.021s) 2023-01-11T21:26:19.7482977Z test_symint_to_tensor (__main__.TestSymbolicTracing) ... ok (0.030s) 2023-01-11T21:26:19.7483307Z test_unary (__main__.TestSymbolicTracing) ... ok (0.027s) 2023-01-11T21:26:19.7483459Z 2023-01-11T21:26:19.7483698Z ---------------------------------------------------------------------- 2023-01-11T21:26:19.7483929Z Ran 113 tests in 35.708s 2023-01-11T21:26:19.7484043Z 2023-01-11T21:26:19.7484138Z OK (skipped=3, expected failures=2) 2023-01-11T21:26:19.7484268Z 2023-01-11T21:26:19.7484354Z Generating XML reports... 2023-01-11T21:26:19.7484772Z Generated XML report: test-reports/python-unittest/test_proxy_tensor/TEST-TestFakeProxyTensor-20230111212543.xml 2023-01-11T21:26:19.7485336Z Generated XML report: test-reports/python-unittest/test_proxy_tensor/TEST-TestGenericProxyTensorFake-20230111212543.xml 2023-01-11T21:26:19.7485903Z Generated XML report: test-reports/python-unittest/test_proxy_tensor/TEST-TestGenericProxyTensorReal-20230111212543.xml 2023-01-11T21:26:19.7486485Z Generated XML report: test-reports/python-unittest/test_proxy_tensor/TEST-TestGenericProxyTensorSymbolic-20230111212543.xml 2023-01-11T21:26:19.7487026Z Generated XML report: test-reports/python-unittest/test_proxy_tensor/TEST-TestSymbolicTracing-20230111212543.xml 2023-01-11T21:26:19.7487267Z 2023-01-11T21:26:19.7487628Z ##[endgroup] 2023-01-11T21:26:19.7488012Z FINISHED PRINTING LOG FILE of test_proxy_tensor (/var/lib/jenkins/workspace/test/test-reports/test_proxy_tensor_2tiaehkk) 2023-01-11T21:26:19.7488229Z 2023-01-11T21:26:21.5744318Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:21.6385793Z Ignoring disabled issues: [] 2023-01-11T21:26:21.6523291Z Running test_public_bindings ... [2023-01-11 21:26:21.652070] 2023-01-11T21:26:21.6525490Z Executing ['/opt/conda/bin/python', '-bb', 'test_public_bindings.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:21.652327] 2023-01-11T21:26:25.3979987Z 2023-01-11T21:26:25.3980522Z Expand the folded group to see the log file of test_public_bindings 2023-01-11T21:26:25.3981530Z ##[group]PRINTING LOG FILE of test_public_bindings (/var/lib/jenkins/workspace/test/test-reports/test_public_bindings_l6qk6ffc) 2023-01-11T21:26:25.3981977Z 2023-01-11T21:26:25.3982125Z Running tests... 2023-01-11T21:26:25.3982801Z ---------------------------------------------------------------------- 2023-01-11T21:26:25.3983558Z Test results will be stored in test-reports/python-unittest/test_public_bindings 2023-01-11T21:26:25.3984109Z test_correct_module_names (__main__.TestPublicBindings) 2023-01-11T21:26:25.3984920Z An API is considered public, if its `__module__` starts with `torch.` ... No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:25.3985423Z ok (1.929s) 2023-01-11T21:26:25.3985791Z test_no_new_bindings (__main__.TestPublicBindings) 2023-01-11T21:26:25.3986326Z This test aims to stop the introduction of new JIT bindings into torch._C ... ok (0.002s) 2023-01-11T21:26:25.3986665Z 2023-01-11T21:26:25.3987029Z ---------------------------------------------------------------------- 2023-01-11T21:26:25.3987354Z Ran 2 tests in 1.931s 2023-01-11T21:26:25.3987519Z 2023-01-11T21:26:25.3987604Z OK 2023-01-11T21:26:25.3987736Z 2023-01-11T21:26:25.3988067Z Generating XML reports... 2023-01-11T21:26:25.3988693Z Generated XML report: test-reports/python-unittest/test_public_bindings/TEST-TestPublicBindings-20230111212622.xml 2023-01-11T21:26:25.3988946Z 2023-01-11T21:26:25.3989205Z ##[endgroup] 2023-01-11T21:26:25.3989726Z FINISHED PRINTING LOG FILE of test_public_bindings (/var/lib/jenkins/workspace/test/test-reports/test_public_bindings_l6qk6ffc) 2023-01-11T21:26:25.3989953Z 2023-01-11T21:26:27.2659218Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:27.3482304Z Ignoring disabled issues: [] 2023-01-11T21:26:27.3631249Z Running test_python_dispatch ... [2023-01-11 21:26:27.362841] 2023-01-11T21:26:27.3633669Z Executing ['/opt/conda/bin/python', '-bb', 'test_python_dispatch.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:27.363102] 2023-01-11T21:26:29.4154563Z 2023-01-11T21:26:29.4155096Z Expand the folded group to see the log file of test_python_dispatch 2023-01-11T21:26:29.4156260Z ##[group]PRINTING LOG FILE of test_python_dispatch (/var/lib/jenkins/workspace/test/test-reports/test_python_dispatch_fcx9wh2a) 2023-01-11T21:26:29.4156701Z 2023-01-11T21:26:29.4156830Z Running tests... 2023-01-11T21:26:29.4157484Z ---------------------------------------------------------------------- 2023-01-11T21:26:29.4158233Z Test results will be stored in test-reports/python-unittest/test_python_dispatch 2023-01-11T21:26:29.4158794Z test_all_same_mode (__main__.TestPythonDispatch) ... ok (0.223s) 2023-01-11T21:26:29.4159244Z test_autograd_in_attr (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4168620Z test_basic (__main__.TestPythonDispatch) ... ok (0.006s) 2023-01-11T21:26:29.4169345Z test_capture_logs_with_torch_dispatch_mode (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4169958Z test_construct_int_tensor (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4170498Z test_custom_autograd (__main__.TestPythonDispatch) ... ok (0.004s) 2023-01-11T21:26:29.4171076Z test_deepcopy_non_wrapper_subclass (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4171649Z test_deepcopy_wrapper_subclass (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4172315Z test_deepcopy_wrapper_subclass_with_clone_returning_different_type (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4172987Z test_detach_appears_twice_when_called_once (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4173566Z test_device_slowpath (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4174075Z test_dim_slowpath (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4174605Z test_dispatch_super_call (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4175164Z test_dispatch_super_call_list_arg (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4175743Z test_dispatch_super_dont_autograd (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4176337Z test_error_using_class_method_on_mode (__main__.TestPythonDispatch) ... ok (0.005s) 2023-01-11T21:26:29.4176905Z test_exception_handling (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4177418Z test_fancy_strides (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4177918Z test_format (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4178410Z test_get_cur_mode (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4178922Z test_get_mode_stack (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4179473Z test_index_put_where_only_index_is_subclass (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4180280Z test_invalid_ret (__main__.TestPythonDispatch) ... /var/lib/jenkins/workspace/test/test_python_dispatch.py:447: DeprecationWarning: Please use assertRaisesRegex instead. 2023-01-11T21:26:29.4180948Z self.assertRaisesRegexp( 2023-01-11T21:26:29.4181359Z ok (0.001s) 2023-01-11T21:26:29.4181774Z test_is_contiguous_slow_path (__main__.TestPythonDispatch) ... ok (0.003s) 2023-01-11T21:26:29.4182486Z test_kwarg_only (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4183038Z test_kwarg_only_and_positional_default (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4183672Z test_layout_slow_path (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4184154Z test_like (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4184638Z test_list_ret (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4185157Z test_make_subclass_with_modes (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4185718Z test_make_wrapper_subclass_noalloc (__main__.TestPythonDispatch) ... ok (0.000s) 2023-01-11T21:26:29.4186340Z test_make_wrapper_subclass_propagates_metadata (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4187044Z test_maybe_tuple_bug (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4187591Z test_mode_with_make_subclass (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4188137Z test_multiple_ops_subclass (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4188717Z test_nested_push_logging_tensor_mode (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4189278Z test_nesting_same_mode (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4189776Z test_new_ones (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4190284Z test_none_wrapping (__main__.TestPythonDispatch) ... ok (0.008s) 2023-01-11T21:26:29.4190822Z test_notimplemented_mode (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4191347Z test_optional_tensor_list (__main__.TestPythonDispatch) ... woof 2023-01-11T21:26:29.4191751Z ok (0.001s) 2023-01-11T21:26:29.4192140Z test_out (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4192641Z test_produce_real_type (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4193148Z test_set_data (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4193675Z test_shallow_copy_and_detach (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4194214Z test_sizes_slow_path (__main__.TestPythonDispatch) ... ok (0.003s) 2023-01-11T21:26:29.4194745Z test_standard_is_not_subclass (__main__.TestPythonDispatch) ... ok (0.000s) 2023-01-11T21:26:29.4195954Z test_storage (__main__.TestPythonDispatch) ... /var/lib/jenkins/workspace/test/test_python_dispatch.py:469: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:26:29.4197074Z self.assertRaises(RuntimeError, lambda: x.storage()) 2023-01-11T21:26:29.4197465Z ok (0.002s) 2023-01-11T21:26:29.4198597Z test_storage_can_be_converted_to_python_object (__main__.TestPythonDispatch) ... /var/lib/jenkins/workspace/test/test_python_dispatch.py:1197: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:26:29.4199656Z s = torch.Storage() 2023-01-11T21:26:29.4199961Z ok (0.001s) 2023-01-11T21:26:29.4200376Z test_strides_slow_path (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4200949Z test_subclass_autograd_device_check (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4201505Z test_subclass_creation (__main__.TestPythonDispatch) ... ok (0.005s) 2023-01-11T21:26:29.4202042Z test_subclass_priority (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4202634Z test_tolist_numpy_with_torch_dispatch_mode (__main__.TestPythonDispatch) ... ok (0.003s) 2023-01-11T21:26:29.4203212Z test_torch_dispatch_mode_basic (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4203901Z test_torch_dispatch_mode_respects_no_dispatch (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4204536Z test_torch_dispatch_mode_subclass_priority (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4205154Z test_torch_dispatch_mode_unrelated_tensors (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4205687Z test_version (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4206231Z test_with_mode_created_separately (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4206786Z test_with_nested_modes (__main__.TestPythonDispatch) ... ok (0.001s) 2023-01-11T21:26:29.4207324Z test_wrapper_subclass_serializes (__main__.TestPythonDispatch) ... ok (0.002s) 2023-01-11T21:26:29.4207913Z test_basic (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T21:26:29.4208415Z test_lstsq (__main__.TestPythonDispatcher) ... ok (0.009s) 2023-01-11T21:26:29.4208926Z test_alias_analysis (__main__.TestPythonRegistration) ... ok (0.006s) 2023-01-11T21:26:29.4209560Z test_create_new_library (__main__.TestPythonRegistration) ... ok (0.002s) 2023-01-11T21:26:29.4210091Z test_error_for_unsupported_ns_or_kind (__main__.TestPythonRegistration) ... ok (0.001s) 2023-01-11T21:26:29.4210477Z test_error_if_fn_not_callable (__main__.TestPythonRegistration) ... ok (0.001s) 2023-01-11T21:26:29.4210926Z test_extend_library_with_dispatch_key_arg (__main__.TestPythonRegistration) ... ok (0.002s) 2023-01-11T21:26:29.4211681Z test_override_aten_ops_with_multiple_libraries (__main__.TestPythonRegistration) ... /opt/conda/lib/python3.10/site-packages/torch/library.py:126: UserWarning: Overriding a previously registered kernel for the same operator and the same dispatch key 2023-01-11T21:26:29.4212234Z operator: aten::mul.Tensor(Tensor self, Tensor other) -> Tensor 2023-01-11T21:26:29.4212548Z registered at /var/lib/jenkins/workspace/build/aten/src/ATen/RegisterSchema.cpp:6 2023-01-11T21:26:29.4212803Z dispatch key: ZeroTensor 2023-01-11T21:26:29.4213120Z previous kernel: registered at /var/lib/jenkins/workspace/aten/src/ATen/LegacyBatchingRegistrations.cpp:1070 2023-01-11T21:26:29.4213562Z new kernel: registered at /dev/null:549 (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/core/dispatch/OperatorEntry.cpp:159.) 2023-01-11T21:26:29.4213966Z self.m.impl(name, dispatch_key if dispatch_key != "" else "CompositeImplicitAutograd", fn) 2023-01-11T21:26:29.4214211Z ok (0.004s) 2023-01-11T21:26:29.4214448Z test_override_cpu_sum (__main__.TestPythonRegistration) ... ok (0.001s) 2023-01-11T21:26:29.4214763Z test_override_cuda_with_jiterator (__main__.TestPythonRegistration) ... ok (0.002s) 2023-01-11T21:26:29.4214947Z 2023-01-11T21:26:29.4215140Z ---------------------------------------------------------------------- 2023-01-11T21:26:29.4215381Z Ran 72 tests in 0.356s 2023-01-11T21:26:29.4215492Z 2023-01-11T21:26:29.4215554Z OK 2023-01-11T21:26:29.4215644Z 2023-01-11T21:26:29.4215713Z Generating XML reports... 2023-01-11T21:26:29.4216138Z Generated XML report: test-reports/python-unittest/test_python_dispatch/TEST-TestPythonDispatch-20230111212628.xml 2023-01-11T21:26:29.4216684Z Generated XML report: test-reports/python-unittest/test_python_dispatch/TEST-TestPythonDispatcher-20230111212628.xml 2023-01-11T21:26:29.4217236Z Generated XML report: test-reports/python-unittest/test_python_dispatch/TEST-TestPythonRegistration-20230111212628.xml 2023-01-11T21:26:29.4217480Z 2023-01-11T21:26:29.4217742Z ##[endgroup] 2023-01-11T21:26:29.4218140Z FINISHED PRINTING LOG FILE of test_python_dispatch (/var/lib/jenkins/workspace/test/test-reports/test_python_dispatch_fcx9wh2a) 2023-01-11T21:26:29.4218367Z 2023-01-11T21:26:31.2323912Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:31.2971505Z Ignoring disabled issues: [] 2023-01-11T21:26:31.3111786Z Running test_scatter_gather_ops ... [2023-01-11 21:26:31.310866] 2023-01-11T21:26:31.3113408Z Executing ['/opt/conda/bin/python', '-bb', 'test_scatter_gather_ops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:31.311135] 2023-01-11T21:26:33.1449835Z 2023-01-11T21:26:33.1450480Z Expand the folded group to see the log file of test_scatter_gather_ops 2023-01-11T21:26:33.1451653Z ##[group]PRINTING LOG FILE of test_scatter_gather_ops (/var/lib/jenkins/workspace/test/test-reports/test_scatter_gather_ops_ka9qp4dv) 2023-01-11T21:26:33.1451947Z 2023-01-11T21:26:33.1452009Z Running tests... 2023-01-11T21:26:33.1452408Z ---------------------------------------------------------------------- 2023-01-11T21:26:33.1452586Z 2023-01-11T21:26:33.1452781Z ---------------------------------------------------------------------- 2023-01-11T21:26:33.1453015Z Ran 0 tests in 0.000s 2023-01-11T21:26:33.1453115Z 2023-01-11T21:26:33.1453383Z OK 2023-01-11T21:26:33.1453479Z 2023-01-11T21:26:33.1453564Z Generating XML reports... 2023-01-11T21:26:33.1453906Z Test results will be stored in test-reports/python-unittest/test_scatter_gather_ops 2023-01-11T21:26:33.1454106Z 2023-01-11T21:26:33.1454319Z ##[endgroup] 2023-01-11T21:26:33.1454730Z FINISHED PRINTING LOG FILE of test_scatter_gather_ops (/var/lib/jenkins/workspace/test/test-reports/test_scatter_gather_ops_ka9qp4dv) 2023-01-11T21:26:33.1454960Z 2023-01-11T21:26:34.9801524Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:35.0482395Z Ignoring disabled issues: [] 2023-01-11T21:26:35.0622072Z Running test_sort_and_select ... [2023-01-11 21:26:35.061957] 2023-01-11T21:26:35.0624759Z Executing ['/opt/conda/bin/python', '-bb', 'test_sort_and_select.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:35.062205] 2023-01-11T21:26:36.8939321Z 2023-01-11T21:26:36.8939894Z Expand the folded group to see the log file of test_sort_and_select 2023-01-11T21:26:36.8940917Z ##[group]PRINTING LOG FILE of test_sort_and_select (/var/lib/jenkins/workspace/test/test-reports/test_sort_and_select_17vi88c_) 2023-01-11T21:26:36.8941318Z 2023-01-11T21:26:36.8941449Z Running tests... 2023-01-11T21:26:36.8942074Z ---------------------------------------------------------------------- 2023-01-11T21:26:36.8942341Z 2023-01-11T21:26:36.8942661Z ---------------------------------------------------------------------- 2023-01-11T21:26:36.8943016Z Ran 0 tests in 0.000s 2023-01-11T21:26:36.8943192Z 2023-01-11T21:26:36.8943294Z OK 2023-01-11T21:26:36.8943525Z 2023-01-11T21:26:36.8943660Z Generating XML reports... 2023-01-11T21:26:36.8944238Z Test results will be stored in test-reports/python-unittest/test_sort_and_select 2023-01-11T21:26:36.8944534Z 2023-01-11T21:26:36.8944966Z ##[endgroup] 2023-01-11T21:26:36.8945640Z FINISHED PRINTING LOG FILE of test_sort_and_select (/var/lib/jenkins/workspace/test/test-reports/test_sort_and_select_17vi88c_) 2023-01-11T21:26:36.8946024Z 2023-01-11T21:26:38.7235368Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:38.7876651Z Ignoring disabled issues: [] 2023-01-11T21:26:38.8019474Z Running test_sparse ... [2023-01-11 21:26:38.801711] 2023-01-11T21:26:38.8021328Z Executing ['/opt/conda/bin/python', '-bb', 'test_sparse.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:38.801938] 2023-01-11T21:26:41.3513080Z 2023-01-11T21:26:41.3513632Z Expand the folded group to see the log file of test_sparse 2023-01-11T21:26:41.3514670Z ##[group]PRINTING LOG FILE of test_sparse (/var/lib/jenkins/workspace/test/test-reports/test_sparse_l8sq0pxx) 2023-01-11T21:26:41.3515026Z 2023-01-11T21:26:41.3515103Z Running tests... 2023-01-11T21:26:41.3515509Z ---------------------------------------------------------------------- 2023-01-11T21:26:41.3515880Z Test results will be stored in test-reports/python-unittest/test_sparse 2023-01-11T21:26:41.3516179Z test_basic (__main__.TestSparseMeta) ... ok (0.003s) 2023-01-11T21:26:41.3516457Z test_cuda_from_cpu (__main__.TestSparseOneOff) ... skip: CUDA not available (0.001s) 2023-01-11T21:26:41.3517058Z test_cuda_sparse_cpu_dense_add (__main__.TestSparseOneOff) ... skip: CUDA not available (0.001s) 2023-01-11T21:26:41.3517250Z 2023-01-11T21:26:41.3517450Z ---------------------------------------------------------------------- 2023-01-11T21:26:41.3517678Z Ran 3 tests in 0.005s 2023-01-11T21:26:41.3517789Z 2023-01-11T21:26:41.3517861Z OK (skipped=2) 2023-01-11T21:26:41.3517967Z 2023-01-11T21:26:41.3518051Z Generating XML reports... 2023-01-11T21:26:41.3518455Z Generated XML report: test-reports/python-unittest/test_sparse/TEST-TestSparseMeta-20230111212640.xml 2023-01-11T21:26:41.3518939Z Generated XML report: test-reports/python-unittest/test_sparse/TEST-TestSparseOneOff-20230111212640.xml 2023-01-11T21:26:41.3519163Z 2023-01-11T21:26:41.3519389Z ##[endgroup] 2023-01-11T21:26:41.3519825Z FINISHED PRINTING LOG FILE of test_sparse (/var/lib/jenkins/workspace/test/test-reports/test_sparse_l8sq0pxx) 2023-01-11T21:26:41.3520021Z 2023-01-11T21:26:43.2254263Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:43.3130411Z Ignoring disabled issues: [] 2023-01-11T21:26:43.3274658Z Running test_stateless ... [2023-01-11 21:26:43.327242] 2023-01-11T21:26:43.3277833Z Executing ['/opt/conda/bin/python', '-bb', 'test_stateless.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:43.327498] 2023-01-11T21:26:50.7306838Z 2023-01-11T21:26:50.7308614Z Expand the folded group to see the log file of test_stateless 2023-01-11T21:26:50.7309637Z ##[group]PRINTING LOG FILE of test_stateless (/var/lib/jenkins/workspace/test/test-reports/test_stateless_g9ija168) 2023-01-11T21:26:50.7310010Z 2023-01-11T21:26:50.7310183Z Running tests... 2023-01-11T21:26:50.7310820Z ---------------------------------------------------------------------- 2023-01-11T21:26:50.7311526Z Test results will be stored in test-reports/python-unittest/test_stateless 2023-01-11T21:26:50.7312070Z test_runs_with_optimize_flag (__main__.TestPythonOptimizeMode) ... ok (4.003s) 2023-01-11T21:26:50.7312653Z test_private_stateless_warns (__main__.TestStatelessDeprecation) ... ok (1.435s) 2023-01-11T21:26:50.7313228Z test_circular_references (__main__.TestStatelessFunctionalAPI) ... ok (0.003s) 2023-01-11T21:26:50.7313797Z test_functional_batch_norm (__main__.TestStatelessFunctionalAPI) ... ok (0.002s) 2023-01-11T21:26:50.7314374Z test_functional_call (__main__.TestStatelessFunctionalAPI) ... ok (0.001s) 2023-01-11T21:26:50.7315262Z test_functional_call_with_data_parallel (__main__.TestStatelessFunctionalAPI) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:26:50.7315921Z test_functional_call_with_gradient (__main__.TestStatelessFunctionalAPI) ... ok (0.002s) 2023-01-11T21:26:50.7316499Z test_functional_call_with_jit (__main__.TestStatelessFunctionalAPI) ... ok (0.055s) 2023-01-11T21:26:50.7317148Z test_reparamertize_module_fail_reset_to_original (__main__.TestStatelessFunctionalAPI) ... ok (0.027s) 2023-01-11T21:26:50.7317869Z test_reparametrized_module_change_parametrization_original (__main__.TestStatelessFunctionalAPI) ... ok (0.004s) 2023-01-11T21:26:50.7318482Z test_setattr (__main__.TestStatelessFunctionalAPI) ... ok (0.001s) 2023-01-11T21:26:50.7319015Z test_tied_weights_warns (__main__.TestStatelessFunctionalAPI) ... ok (0.002s) 2023-01-11T21:26:50.7319335Z 2023-01-11T21:26:50.7319723Z ---------------------------------------------------------------------- 2023-01-11T21:26:50.7320142Z Ran 12 tests in 5.537s 2023-01-11T21:26:50.7320329Z 2023-01-11T21:26:50.7320434Z OK (skipped=1) 2023-01-11T21:26:50.7320611Z 2023-01-11T21:26:50.7320754Z Generating XML reports... 2023-01-11T21:26:50.7321523Z Generated XML report: test-reports/python-unittest/test_stateless/TEST-TestPythonOptimizeMode-20230111212644.xml 2023-01-11T21:26:50.7322527Z Generated XML report: test-reports/python-unittest/test_stateless/TEST-TestStatelessDeprecation-20230111212644.xml 2023-01-11T21:26:50.7323542Z Generated XML report: test-reports/python-unittest/test_stateless/TEST-TestStatelessFunctionalAPI-20230111212644.xml 2023-01-11T21:26:50.7324319Z 2023-01-11T21:26:50.7324725Z ##[endgroup] 2023-01-11T21:26:50.7325403Z FINISHED PRINTING LOG FILE of test_stateless (/var/lib/jenkins/workspace/test/test-reports/test_stateless_g9ija168) 2023-01-11T21:26:50.7325788Z 2023-01-11T21:26:52.5409392Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:26:52.6052738Z Ignoring disabled issues: [] 2023-01-11T21:26:52.6192564Z Running test_testing ... [2023-01-11 21:26:52.618985] 2023-01-11T21:26:52.6194799Z Executing ['/opt/conda/bin/python', '-bb', 'test_testing.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:26:52.619243] 2023-01-11T21:27:15.4602495Z 2023-01-11T21:27:15.4602973Z Expand the folded group to see the log file of test_testing 2023-01-11T21:27:15.4607016Z ##[group]PRINTING LOG FILE of test_testing (/var/lib/jenkins/workspace/test/test-reports/test_testing_pj0p5dx5) 2023-01-11T21:27:15.4607451Z 2023-01-11T21:27:15.4608336Z Running tests... 2023-01-11T21:27:15.4609484Z ---------------------------------------------------------------------- 2023-01-11T21:27:15.4610401Z Test results will be stored in test-reports/python-unittest/test_testing 2023-01-11T21:27:15.4611200Z test_bool (__main__.TestAssertClose) ... ok (0.003s) 2023-01-11T21:27:15.4611915Z test_default_tolerance_selection_mismatching_dtypes (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4612694Z test_docstring_examples (__main__.TestAssertClose) ... ok (0.031s) 2023-01-11T21:27:15.4613353Z test_matching (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4613943Z test_matching_atol (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4614601Z test_matching_conjugate_bit (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4615251Z test_matching_nan (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4615936Z test_matching_nan_with_equal_nan (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4616612Z test_matching_rtol (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4617236Z test_meta (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4617855Z test_mismatching_dtype (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4618520Z test_mismatching_dtype_no_check (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4620161Z test_mismatching_layout (__main__.TestAssertClose) ... /var/lib/jenkins/workspace/test/test_testing.py:619: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T21:27:15.4621685Z sparse_csr = strided.to_sparse_csr() 2023-01-11T21:27:15.4622115Z ok (0.002s) 2023-01-11T21:27:15.4622643Z test_mismatching_layout_no_check (__main__.TestAssertClose) ... ok (0.004s) 2023-01-11T21:27:15.4623429Z test_mismatching_shape (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4624127Z test_mismatching_stride (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4624849Z test_mismatching_stride_no_check (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4625548Z test_mismatching_types (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4626259Z test_mismatching_types_subclasses (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4627027Z test_mismatching_types_type_equality (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4627741Z test_mismatching_values (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4628440Z test_mismatching_values_atol (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4629159Z test_mismatching_values_rtol (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4629743Z test_none (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4630314Z test_none_mismatch (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4631170Z test_numpy (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4631775Z test_only_atol (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4632365Z test_only_rtol (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4632974Z test_scalar (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4633639Z test_unexpected_error_compare (__main__.TestAssertClose) ... ok (0.002s) 2023-01-11T21:27:15.4634370Z test_unexpected_error_originate (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4635221Z test_unknown_layout (__main__.TestAssertClose) ... ok (0.001s) 2023-01-11T21:27:15.4635872Z test_unknown_type (__main__.TestAssertClose) ... ok (0.011s) 2023-01-11T21:27:15.4636735Z test_mapping_mismatching_keys (__main__.TestAssertCloseContainer) ... ok (0.001s) 2023-01-11T21:27:15.4637550Z test_mapping_mismatching_values_msg (__main__.TestAssertCloseContainer) ... ok (0.001s) 2023-01-11T21:27:15.4638375Z test_sequence_mismatching_len (__main__.TestAssertCloseContainer) ... ok (0.001s) 2023-01-11T21:27:15.4639209Z test_sequence_mismatching_values_msg (__main__.TestAssertCloseContainer) ... ok (0.001s) 2023-01-11T21:27:15.4639994Z test_abs_diff (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4640718Z test_abs_diff_scalar (__main__.TestAssertCloseErrorMessage) ... ok (0.001s) 2023-01-11T21:27:15.4641438Z test_atol (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4642190Z test_identifier_scalars (__main__.TestAssertCloseErrorMessage) ... ok (0.001s) 2023-01-11T21:27:15.4643012Z test_identifier_tensor_likes (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4643820Z test_mismatched_elements (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4644608Z test_msg_callable (__main__.TestAssertCloseErrorMessage) ... ok (0.001s) 2023-01-11T21:27:15.4645360Z test_msg_str (__main__.TestAssertCloseErrorMessage) ... ok (0.001s) 2023-01-11T21:27:15.4646107Z test_not_close (__main__.TestAssertCloseErrorMessage) ... ok (0.007s) 2023-01-11T21:27:15.4646837Z test_not_equal (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4647568Z test_rel_diff (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4648314Z test_rel_diff_scalar (__main__.TestAssertCloseErrorMessage) ... ok (0.001s) 2023-01-11T21:27:15.4649169Z test_rtol (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4649855Z test_zero_div_zero (__main__.TestAssertCloseErrorMessage) ... ok (0.003s) 2023-01-11T21:27:15.4650609Z test_matching_per_channel (__main__.TestAssertCloseQuantized) ... ok (0.002s) 2023-01-11T21:27:15.4651390Z test_matching_per_tensor (__main__.TestAssertCloseQuantized) ... ok (0.002s) 2023-01-11T21:27:15.4652187Z test_mismatching_is_quantized (__main__.TestAssertCloseQuantized) ... ok (0.001s) 2023-01-11T21:27:15.4652964Z test_mismatching_qscheme (__main__.TestAssertCloseQuantized) ... ok (0.001s) 2023-01-11T21:27:15.4653726Z test_matching (__main__.TestAssertCloseSparseBSC) ... ok (0.002s) 2023-01-11T21:27:15.4654528Z test_mismatching_ccol_indices_msg (__main__.TestAssertCloseSparseBSC) ... ok (0.003s) 2023-01-11T21:27:15.4655377Z test_mismatching_row_indices_msg (__main__.TestAssertCloseSparseBSC) ... ok (0.003s) 2023-01-11T21:27:15.4656161Z test_mismatching_values_msg (__main__.TestAssertCloseSparseBSC) ... ok (0.003s) 2023-01-11T21:27:15.4656914Z test_matching (__main__.TestAssertCloseSparseBSR) ... ok (0.002s) 2023-01-11T21:27:15.4657684Z test_mismatching_col_indices_msg (__main__.TestAssertCloseSparseBSR) ... ok (0.003s) 2023-01-11T21:27:15.4658524Z test_mismatching_crow_indices_msg (__main__.TestAssertCloseSparseBSR) ... ok (0.003s) 2023-01-11T21:27:15.4659340Z test_mismatching_values_msg (__main__.TestAssertCloseSparseBSR) ... ok (0.003s) 2023-01-11T21:27:15.4660117Z test_matching_coalesced (__main__.TestAssertCloseSparseCOO) ... ok (0.002s) 2023-01-11T21:27:15.4661046Z test_matching_uncoalesced (__main__.TestAssertCloseSparseCOO) ... ok (0.001s) 2023-01-11T21:27:15.4661827Z test_mismatching_indices_msg (__main__.TestAssertCloseSparseCOO) ... ok (0.003s) 2023-01-11T21:27:15.4662621Z test_mismatching_nnz (__main__.TestAssertCloseSparseCOO) ... ok (0.001s) 2023-01-11T21:27:15.4663488Z test_mismatching_sparse_dims (__main__.TestAssertCloseSparseCOO) ... ok (0.001s) 2023-01-11T21:27:15.4664291Z test_mismatching_values_msg (__main__.TestAssertCloseSparseCOO) ... ok (0.003s) 2023-01-11T21:27:15.4665038Z test_matching (__main__.TestAssertCloseSparseCSC) ... ok (0.002s) 2023-01-11T21:27:15.4665817Z test_mismatching_ccol_indices_msg (__main__.TestAssertCloseSparseCSC) ... ok (0.003s) 2023-01-11T21:27:15.4666755Z test_mismatching_row_indices_msg (__main__.TestAssertCloseSparseCSC) ... ok (0.003s) 2023-01-11T21:27:15.4667552Z test_mismatching_values_msg (__main__.TestAssertCloseSparseCSC) ... ok (0.003s) 2023-01-11T21:27:15.4668386Z test_hybrid_support (__main__.TestAssertCloseSparseCSR) ... expected failure (0.007s) 2023-01-11T21:27:15.4669180Z test_matching (__main__.TestAssertCloseSparseCSR) ... ok (0.002s) 2023-01-11T21:27:15.4669934Z test_mismatching_col_indices_msg (__main__.TestAssertCloseSparseCSR) ... ok (0.003s) 2023-01-11T21:27:15.4670766Z test_mismatching_crow_indices_msg (__main__.TestAssertCloseSparseCSR) ... ok (0.003s) 2023-01-11T21:27:15.4671577Z test_mismatching_values_msg (__main__.TestAssertCloseSparseCSR) ... ok (0.003s) 2023-01-11T21:27:15.4672306Z test_filtering_env_var (__main__.TestFrameworkUtils) ... ok (7.443s) 2023-01-11T21:27:15.4672920Z test_circular_dependencies (__main__.TestImports) 2023-01-11T21:27:15.4673958Z Checks that all modules inside torch can be imported ... No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:15.4675160Z 2023-01-11 21:27:09,457 - torch.distributed.nn.jit.instantiator - INFO - Created a temporary directory at /tmp/tmpstg7rxxl 2023-01-11T21:27:15.4676439Z 2023-01-11 21:27:09,457 - torch.distributed.nn.jit.instantiator - INFO - Writing /tmp/tmpstg7rxxl/_remote_module_non_scriptable.py 2023-01-11T21:27:15.4677122Z ok (8.167s) 2023-01-11T21:27:15.4677705Z test_no_mutate_global_logging_on_import_path_functorch (__main__.TestImports) ... ok (1.397s) 2023-01-11T21:27:15.4678493Z test_no_mutate_global_logging_on_import_path_torch (__main__.TestImports) ... ok (1.368s) 2023-01-11T21:27:15.4679424Z test_no_warning_on_import (__main__.TestImports) ... /var/lib/jenkins/workspace/test/test_testing.py:1836: DeprecationWarning: Please use assertEqual instead. 2023-01-11T21:27:15.4680174Z self.assertEquals(out, "") 2023-01-11T21:27:15.4680577Z ok (1.449s) 2023-01-11T21:27:15.4681011Z test_sample_input (__main__.TestOpInfos) ... ok (0.002s) 2023-01-11T21:27:15.4681601Z test_sample_input_metadata (__main__.TestOpInfos) ... ok (0.001s) 2023-01-11T21:27:15.4682269Z test_default_names (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4683064Z test_modules_decorator_misuse_error (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4683904Z test_multiple_handling_of_same_param_error (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4684674Z test_name_fn (__main__.TestTestParametrization) ... ok (0.002s) 2023-01-11T21:27:15.4685418Z test_ops_decorator_misuse_error (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4686202Z test_subtest_expected_failure_x_1 (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4687059Z test_subtest_expected_failure_x_2 (__main__.TestTestParametrization) ... expected failure (0.001s) 2023-01-11T21:27:15.4687923Z test_subtest_expected_failure_x_3 (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4688697Z test_subtest_names (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4689672Z test_two_things_subtest_expected_failure_x_1_y_4 (__main__.TestTestParametrization) ... expected failure (0.001s) 2023-01-11T21:27:15.4690407Z test_two_things_subtest_expected_failure_x_1_y_5 (__main__.TestTestParametrization) ... expected failure (0.001s) 2023-01-11T21:27:15.4690963Z test_two_things_subtest_expected_failure_x_1_y_6 (__main__.TestTestParametrization) ... expected failure (0.001s) 2023-01-11T21:27:15.4691499Z test_two_things_subtest_expected_failure_x_2_y_4 (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4691998Z test_two_things_subtest_expected_failure_x_2_y_5 (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4692562Z test_two_things_subtest_expected_failure_x_2_y_6 (__main__.TestTestParametrization) ... expected failure (0.001s) 2023-01-11T21:27:15.4693107Z test_two_things_subtest_expected_failure_x_3_y_4 (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4693742Z test_two_things_subtest_expected_failure_x_3_y_5 (__main__.TestTestParametrization) ... ok (0.001s) 2023-01-11T21:27:15.4694290Z test_two_things_subtest_expected_failure_x_3_y_6 (__main__.TestTestParametrization) ... expected failure (0.001s) 2023-01-11T21:27:15.4694603Z 2023-01-11T21:27:15.4694931Z ---------------------------------------------------------------------- 2023-01-11T21:27:15.4695277Z Ran 103 tests in 20.040s 2023-01-11T21:27:15.4695450Z 2023-01-11T21:27:15.4695557Z OK (expected failures=7) 2023-01-11T21:27:15.4695727Z 2023-01-11T21:27:15.4695853Z Generating XML reports... 2023-01-11T21:27:15.4696448Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertClose-20230111212654.xml 2023-01-11T21:27:15.4697260Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseContainer-20230111212654.xml 2023-01-11T21:27:15.4698068Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseErrorMessage-20230111212654.xml 2023-01-11T21:27:15.4698904Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseQuantized-20230111212654.xml 2023-01-11T21:27:15.4699704Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseBSC-20230111212654.xml 2023-01-11T21:27:15.4700454Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseBSR-20230111212654.xml 2023-01-11T21:27:15.4701217Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseCOO-20230111212654.xml 2023-01-11T21:27:15.4702031Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseCSC-20230111212654.xml 2023-01-11T21:27:15.4702815Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseCSR-20230111212654.xml 2023-01-11T21:27:15.4703655Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestFrameworkUtils-20230111212654.xml 2023-01-11T21:27:15.4704381Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestImports-20230111212654.xml 2023-01-11T21:27:15.4705086Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestOpInfos-20230111212654.xml 2023-01-11T21:27:15.4705815Z Generated XML report: test-reports/python-unittest/test_testing/TEST-TestTestParametrization-20230111212654.xml 2023-01-11T21:27:15.4706165Z 2023-01-11T21:27:15.4706561Z ##[endgroup] 2023-01-11T21:27:15.4707120Z FINISHED PRINTING LOG FILE of test_testing (/var/lib/jenkins/workspace/test/test-reports/test_testing_pj0p5dx5) 2023-01-11T21:27:15.4707411Z 2023-01-11T21:27:17.2942554Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:17.3582354Z Ignoring disabled issues: [] 2023-01-11T21:27:17.3720593Z Running test_transformers ... [2023-01-11 21:27:17.371803] 2023-01-11T21:27:17.3722836Z Executing ['/opt/conda/bin/python', '-bb', 'test_transformers.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:17.372038] 2023-01-11T21:27:24.9411662Z 2023-01-11T21:27:24.9412412Z Expand the folded group to see the log file of test_transformers 2023-01-11T21:27:24.9413947Z ##[group]PRINTING LOG FILE of test_transformers (/var/lib/jenkins/workspace/test/test-reports/test_transformers_wxam3gc1) 2023-01-11T21:27:24.9414346Z 2023-01-11T21:27:24.9414491Z Running tests... 2023-01-11T21:27:24.9415172Z ---------------------------------------------------------------------- 2023-01-11T21:27:24.9415876Z Test results will be stored in test-reports/python-unittest/test_transformers 2023-01-11T21:27:24.9416431Z test_bias_is_none (__main__.TestTransformers) ... ok (0.003s) 2023-01-11T21:27:24.9416992Z test_decoder_only_layer (__main__.TestTransformers) ... skip: Fairseq not found (0.005s) 2023-01-11T21:27:24.9417630Z test_flash_autocast_fp32_bfloat16 (__main__.TestTransformers) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:27:24.9418439Z test_flash_autocast_fp32_float16 (__main__.TestTransformers) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:27:24.9419047Z test_flash_fail_fp32t (__main__.TestTransformers) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:27:24.9419631Z test_fused_sdp_choice_type_dense (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9420187Z test_fused_sdp_choice_type_nested (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9420724Z test_mask_check_fastpath (__main__.TestTransformers) 2023-01-11T21:27:24.9421724Z Test that fastpath is executed independently of the masks that are passed. ... /var/lib/jenkins/workspace/test/test_transformers.py:916: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:27:24.9422847Z nested_tensor_return_value = torch.nested.nested_tensor([torch.ones((2, 2), dtype=torch.float)]) 2023-01-11T21:27:24.9423372Z ok (0.011s) 2023-01-11T21:27:24.9423911Z test_scaled_dot_product_attention_3D_input_dim_2D_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9424669Z test_scaled_dot_product_attention_3D_input_dim_2D_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9425418Z test_scaled_dot_product_attention_3D_input_dim_2D_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9426149Z test_scaled_dot_product_attention_3D_input_dim_2D_causal_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.010s) 2023-01-11T21:27:24.9426916Z test_scaled_dot_product_attention_3D_input_dim_2D_causal_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9427690Z test_scaled_dot_product_attention_3D_input_dim_2D_causal_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9428463Z test_scaled_dot_product_attention_3D_input_dim_3D_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9429206Z test_scaled_dot_product_attention_3D_input_dim_3D_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9429953Z test_scaled_dot_product_attention_3D_input_dim_3D_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9430690Z test_scaled_dot_product_attention_3D_input_dim_3D_causal_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9431451Z test_scaled_dot_product_attention_3D_input_dim_3D_causal_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9432216Z test_scaled_dot_product_attention_3D_input_dim_3D_causal_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9432973Z test_scaled_dot_product_attention_3D_input_dim_no_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.019s) 2023-01-11T21:27:24.9433706Z test_scaled_dot_product_attention_3D_input_dim_no_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.015s) 2023-01-11T21:27:24.9434565Z test_scaled_dot_product_attention_3D_input_dim_no_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.016s) 2023-01-11T21:27:24.9435304Z test_scaled_dot_product_attention_4D_input_dim_2D_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9436035Z test_scaled_dot_product_attention_4D_input_dim_2D_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9436769Z test_scaled_dot_product_attention_4D_input_dim_2D_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9437516Z test_scaled_dot_product_attention_4D_input_dim_2D_causal_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9438339Z test_scaled_dot_product_attention_4D_input_dim_2D_causal_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.010s) 2023-01-11T21:27:24.9439098Z test_scaled_dot_product_attention_4D_input_dim_2D_causal_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.010s) 2023-01-11T21:27:24.9439840Z test_scaled_dot_product_attention_4D_input_dim_4D_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9440574Z test_scaled_dot_product_attention_4D_input_dim_4D_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9441315Z test_scaled_dot_product_attention_4D_input_dim_4D_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9442038Z test_scaled_dot_product_attention_4D_input_dim_4D_causal_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9442800Z test_scaled_dot_product_attention_4D_input_dim_4D_causal_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9443562Z test_scaled_dot_product_attention_4D_input_dim_4D_causal_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.009s) 2023-01-11T21:27:24.9444306Z test_scaled_dot_product_attention_4D_input_dim_no_attn_mask_dropout_p_0_0_device_cpu (__main__.TestTransformers) ... ok (0.014s) 2023-01-11T21:27:24.9445066Z test_scaled_dot_product_attention_4D_input_dim_no_attn_mask_dropout_p_0_2_device_cpu (__main__.TestTransformers) ... ok (0.015s) 2023-01-11T21:27:24.9445790Z test_scaled_dot_product_attention_4D_input_dim_no_attn_mask_dropout_p_0_5_device_cpu (__main__.TestTransformers) ... ok (0.016s) 2023-01-11T21:27:24.9446647Z test_scaled_dot_product_attention_fused_kernels_packed_accuracy_type_dense_fused_kernel_flash (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.002s) 2023-01-11T21:27:24.9447655Z test_scaled_dot_product_attention_fused_kernels_packed_accuracy_type_dense_fused_kernel_mem_efficient (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.002s) 2023-01-11T21:27:24.9448632Z test_scaled_dot_product_attention_fused_kernels_packed_accuracy_type_nested_fused_kernel_flash (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.002s) 2023-01-11T21:27:24.9449817Z test_scaled_dot_product_attention_fused_kernels_packed_accuracy_type_nested_fused_kernel_mem_efficient (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.002s) 2023-01-11T21:27:24.9450752Z test_scaled_dot_product_attention_fused_kernels_packed_type_dense_is_contiguous_False (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9451686Z test_scaled_dot_product_attention_fused_kernels_packed_type_dense_is_contiguous_True (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9452661Z test_scaled_dot_product_attention_fused_kernels_packed_type_nested_is_contiguous_False (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9453739Z test_scaled_dot_product_attention_fused_kernels_packed_type_nested_is_contiguous_True (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9454667Z test_scaled_dot_product_attention_fused_kernels_type_dense_is_contiguous_False (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9455548Z test_scaled_dot_product_attention_fused_kernels_type_dense_is_contiguous_True (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9456517Z test_scaled_dot_product_attention_fused_kernels_type_nested_is_contiguous_False (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9457390Z test_scaled_dot_product_attention_fused_kernels_type_nested_is_contiguous_True (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9458229Z test_sdp_fused_grad_against_math_contiguous_inputs_False (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9459006Z test_sdp_fused_grad_against_math_contiguous_inputs_True (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9459670Z test_sdp_math_gradcheck_contiguous_inputs_False (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9460289Z test_sdp_math_gradcheck_contiguous_inputs_True (__main__.TestTransformers) ... skip: Flash Attention was not built for this system (0.001s) 2023-01-11T21:27:24.9460903Z test_sdp_runtime_dispatch (__main__.TestTransformers) ... skip: CUDA unavailable (0.002s) 2023-01-11T21:27:24.9461845Z test_self_attn_TxT_attn_mask (__main__.TestTransformers) ... skip: 4D mask not supported yet - activate when 4D mask supported (0.001s) 2023-01-11T21:27:24.9462627Z test_train_with_is_causal_device_cpu (__main__.TestTransformers) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:27:24.9463403Z test_train_with_pad_and_catch_error_device_cpu (__main__.TestTransformers) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:27:24.9464214Z test_transformerencoder_batch_first_False_training_False_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) ... ok (0.030s) 2023-01-11T21:27:24.9464979Z test_transformerencoder_batch_first_False_training_False_enable_nested_tensor_True_device_cpu (__main__.TestTransformers) ... ok (0.029s) 2023-01-11T21:27:24.9465780Z test_transformerencoder_batch_first_False_training_True_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) ... ok (0.031s) 2023-01-11T21:27:24.9466588Z test_transformerencoder_batch_first_False_training_True_enable_nested_tensor_True_device_cpu (__main__.TestTransformers) ... ok (0.031s) 2023-01-11T21:27:24.9467342Z test_transformerencoder_batch_first_True_training_False_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) ... ok (0.026s) 2023-01-11T21:27:24.9468167Z test_transformerencoder_batch_first_True_training_False_enable_nested_tensor_True_device_cpu (__main__.TestTransformers) ... ok (0.026s) 2023-01-11T21:27:24.9468948Z test_transformerencoder_batch_first_True_training_True_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) ... ok (0.031s) 2023-01-11T21:27:24.9469747Z test_transformerencoder_batch_first_True_training_True_enable_nested_tensor_True_device_cpu (__main__.TestTransformers) ... ok (0.031s) 2023-01-11T21:27:24.9470576Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_False_use_autocast_False_d_model_12 (__main__.TestTransformers) 2023-01-11T21:27:24.9471779Z Test TransformerEncoder fastpath output matches slowpath output ... /var/lib/jenkins/workspace/test/test_transformers.py:215: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:27:24.9472906Z torch.tensor(pair[0], device=device, dtype=torch.get_default_dtype()), # float input 2023-01-11T21:27:24.9473334Z ok (0.479s) 2023-01-11T21:27:24.9473924Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_False_use_autocast_False_d_model_256 (__main__.TestTransformers) 2023-01-11T21:27:24.9474633Z Test TransformerEncoder fastpath output matches slowpath output ... ok (0.742s) 2023-01-11T21:27:24.9475375Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_False_use_autocast_True_d_model_12 (__main__.TestTransformers) 2023-01-11T21:27:24.9476796Z Test TransformerEncoder fastpath output matches slowpath output ... /opt/conda/lib/python3.10/site-packages/torch/amp/autocast_mode.py:204: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling 2023-01-11T21:27:24.9477811Z warnings.warn('User provided device_type of \'cuda\', but CUDA is not available. Disabling') 2023-01-11T21:27:24.9478277Z ok (0.442s) 2023-01-11T21:27:24.9478857Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_False_use_autocast_True_d_model_256 (__main__.TestTransformers) 2023-01-11T21:27:24.9479591Z Test TransformerEncoder fastpath output matches slowpath output ... ok (0.754s) 2023-01-11T21:27:24.9480279Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_True_use_autocast_False_d_model_12 (__main__.TestTransformers) 2023-01-11T21:27:24.9480997Z Test TransformerEncoder fastpath output matches slowpath output ... ok (0.335s) 2023-01-11T21:27:24.9481746Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_True_use_autocast_False_d_model_256 (__main__.TestTransformers) 2023-01-11T21:27:24.9482484Z Test TransformerEncoder fastpath output matches slowpath output ... ok (0.609s) 2023-01-11T21:27:24.9483196Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_True_use_autocast_True_d_model_12 (__main__.TestTransformers) 2023-01-11T21:27:24.9483902Z Test TransformerEncoder fastpath output matches slowpath output ... ok (0.386s) 2023-01-11T21:27:24.9484667Z test_transformerencoder_fastpath_device_cpu_use_torchscript_False_enable_nested_tensor_True_use_autocast_True_d_model_256 (__main__.TestTransformers) 2023-01-11T21:27:24.9485378Z Test TransformerEncoder fastpath output matches slowpath output ... ok (0.686s) 2023-01-11T21:27:24.9486089Z test_transformerencoder_square_input_with_no_grad_False_training_False_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) 2023-01-11T21:27:24.9486831Z Test for edge cases when input of shape (batch size, sequence length, embedding dimension) has ... ok (0.007s) 2023-01-11T21:27:24.9487565Z test_transformerencoder_square_input_with_no_grad_False_training_True_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) 2023-01-11T21:27:24.9488277Z Test for edge cases when input of shape (batch size, sequence length, embedding dimension) has ... ok (0.006s) 2023-01-11T21:27:24.9489168Z test_transformerencoder_square_input_with_no_grad_True_training_False_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) 2023-01-11T21:27:24.9489991Z Test for edge cases when input of shape (batch size, sequence length, embedding dimension) has ... ok (0.005s) 2023-01-11T21:27:24.9490734Z test_transformerencoder_square_input_with_no_grad_True_training_True_enable_nested_tensor_False_device_cpu (__main__.TestTransformers) 2023-01-11T21:27:24.9491454Z Test for edge cases when input of shape (batch size, sequence length, embedding dimension) has ... ok (0.005s) 2023-01-11T21:27:24.9492124Z test_transformerencoderlayer_src_mask_device_cpu_nhead_1 (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9492970Z test_transformerencoderlayer_src_mask_device_cpu_nhead_4 (__main__.TestTransformers) ... ok (0.010s) 2023-01-11T21:27:24.9493665Z test_transformerencoderlayer_src_mask_device_cpu_nhead_8 (__main__.TestTransformers) ... ok (0.002s) 2023-01-11T21:27:24.9494284Z test_unaligned_tensors (__main__.TestTransformers) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:27:24.9494608Z 2023-01-11T21:27:24.9494932Z ---------------------------------------------------------------------- 2023-01-11T21:27:24.9495340Z Ran 82 tests in 4.994s 2023-01-11T21:27:24.9495537Z 2023-01-11T21:27:24.9495655Z OK (skipped=25) 2023-01-11T21:27:24.9495822Z 2023-01-11T21:27:24.9495973Z Generating XML reports... 2023-01-11T21:27:24.9496755Z Generated XML report: test-reports/python-unittest/test_transformers/TEST-TestTransformers-20230111212719.xml 2023-01-11T21:27:24.9497307Z 2023-01-11T21:27:24.9497783Z ##[endgroup] 2023-01-11T21:27:24.9498501Z FINISHED PRINTING LOG FILE of test_transformers (/var/lib/jenkins/workspace/test/test-reports/test_transformers_wxam3gc1) 2023-01-11T21:27:24.9498912Z 2023-01-11T21:27:26.7904294Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:26.8558109Z Ignoring disabled issues: [] 2023-01-11T21:27:26.8714098Z Running test_utils ... [2023-01-11 21:27:26.871076] 2023-01-11T21:27:26.8715791Z Executing ['/opt/conda/bin/python', '-bb', 'test_utils.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:26.871344] 2023-01-11T21:27:31.3309104Z 2023-01-11T21:27:31.3309583Z Expand the folded group to see the log file of test_utils 2023-01-11T21:27:31.3310373Z ##[group]PRINTING LOG FILE of test_utils (/var/lib/jenkins/workspace/test/test-reports/test_utils_ihl22tdk) 2023-01-11T21:27:31.3313051Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:31.3313327Z 2023-01-11T21:27:31.3313460Z Running tests... 2023-01-11T21:27:31.3313978Z ---------------------------------------------------------------------- 2023-01-11T21:27:31.3314567Z Test results will be stored in test-reports/python-unittest/test_utils 2023-01-11T21:27:31.3314852Z test_assert_scriptable (__main__.TestAssert) ... ok (0.230s) 2023-01-11T21:27:31.3315112Z test_assert_true (__main__.TestAssert) ... ok (0.001s) 2023-01-11T21:27:31.3315942Z test_bottleneck_cpu_only (__main__.TestBottleneck) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/68433 for allplatform(s) . If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.000s) 2023-01-11T21:27:31.3316516Z test_bottleneck_cuda (__main__.TestBottleneck) ... skip: No CUDA (0.000s) 2023-01-11T21:27:31.3316788Z test_checkpoint (__main__.TestCheckpoint) ... ok (0.011s) 2023-01-11T21:27:31.3317072Z test_checkpoint_module_list (__main__.TestCheckpoint) ... ok (0.010s) 2023-01-11T21:27:31.3317651Z test_checkpoint_no_tensors (__main__.TestCheckpoint) ... /opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None 2023-01-11T21:27:31.3318094Z warnings.warn("None of the inputs have requires_grad=True. Gradients will be None") 2023-01-11T21:27:31.3318326Z ok (0.003s) 2023-01-11T21:27:31.3370646Z test_checkpoint_non_tensor (__main__.TestCheckpoint) ... ok (0.001s) 2023-01-11T21:27:31.3370959Z test_checkpoint_non_tensor_inputs_outputs (__main__.TestCheckpoint) ... ok (0.004s) 2023-01-11T21:27:31.3371541Z test_checkpoint_not_preserve_rng_state_and_without_reentrant (__main__.TestCheckpoint) ... skip: No CUDA (0.000s) 2023-01-11T21:27:31.3372092Z test_checkpoint_partial_grad (__main__.TestCheckpoint) ... ok (0.001s) 2023-01-11T21:27:31.3372611Z test_checkpoint_rng_cpu (__main__.TestCheckpoint) ... ok (0.009s) 2023-01-11T21:27:31.3373085Z test_checkpoint_rng_cuda (__main__.TestCheckpoint) ... skip: No CUDA (0.001s) 2023-01-11T21:27:31.3373683Z test_checkpoint_sequential_deprecated_multiple_args (__main__.TestCheckpoint) ... ok (0.001s) 2023-01-11T21:27:31.3374025Z test_checkpoint_sequential_deprecated_no_args (__main__.TestCheckpoint) ... ok (0.001s) 2023-01-11T21:27:31.3374322Z test_checkpoint_trigger (__main__.TestCheckpoint) ... ok (0.004s) 2023-01-11T21:27:31.3374612Z test_checkpoint_valid (__main__.TestCheckpoint) ... ok (0.003s) 2023-01-11T21:27:31.3374946Z test_checkpointing_without_reentrant_early_free (__main__.TestCheckpoint) ... skip: Test requires CUDA (0.001s) 2023-01-11T21:27:31.3375911Z test_smoke (__main__.TestCollectEnv) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/77345 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.000s) 2023-01-11T21:27:31.3376513Z test_cc_compiler_is_ok (__main__.TestCppExtensionUtils) ... ok (0.010s) 2023-01-11T21:27:31.3376811Z test_cpp_compiler_is_ok (__main__.TestCppExtensionUtils) ... ok (0.009s) 2023-01-11T21:27:31.3377636Z test_multi_drop (__main__.TestDataLoaderUtils) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/82865 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.000s) 2023-01-11T21:27:31.3378392Z test_multi_keep (__main__.TestDataLoaderUtils) ... skip: FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN (0.000s) 2023-01-11T21:27:31.3378761Z test_random_seed (__main__.TestDataLoaderUtils) ... ok (0.110s) 2023-01-11T21:27:31.3379029Z test_single_drop (__main__.TestDataLoaderUtils) ... ok (0.002s) 2023-01-11T21:27:31.3379305Z test_single_keep (__main__.TestDataLoaderUtils) ... ok (0.001s) 2023-01-11T21:27:31.3379598Z test_external_module_register (__main__.TestExtensionUtils) ... ok (0.002s) 2023-01-11T21:27:31.3379884Z test_import_hipify (__main__.TestHipify) ... ok (0.000s) 2023-01-11T21:27:31.3380139Z test_check_onnx_broadcast (__main__.TestONNXUtils) ... ok (0.001s) 2023-01-11T21:27:31.3385250Z test_prepare_onnx_paddings (__main__.TestONNXUtils) ... ok (0.001s) 2023-01-11T21:27:31.3385789Z test_load_standalone (__main__.TestStandaloneCPPJIT) ... ok (2.013s) 2023-01-11T21:27:31.3386104Z 2023-01-11T21:27:31.3386391Z ---------------------------------------------------------------------- 2023-01-11T21:27:31.3386633Z Ran 31 tests in 2.433s 2023-01-11T21:27:31.3386748Z 2023-01-11T21:27:31.3386807Z OK (skipped=8) 2023-01-11T21:27:31.3386914Z 2023-01-11T21:27:31.3386998Z Generating XML reports... 2023-01-11T21:27:31.3387391Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestAssert-20230111212728.xml 2023-01-11T21:27:31.3387871Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestCheckpoint-20230111212728.xml 2023-01-11T21:27:31.3388369Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestCppExtensionUtils-20230111212728.xml 2023-01-11T21:27:31.3388888Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestDataLoaderUtils-20230111212728.xml 2023-01-11T21:27:31.3389392Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestExtensionUtils-20230111212728.xml 2023-01-11T21:27:31.3389863Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestHipify-20230111212728.xml 2023-01-11T21:27:31.3390316Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestONNXUtils-20230111212728.xml 2023-01-11T21:27:31.3390813Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestStandaloneCPPJIT-20230111212728.xml 2023-01-11T21:27:31.3391309Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestBottleneck-20230111212728.xml 2023-01-11T21:27:31.3391772Z Generated XML report: test-reports/python-unittest/test_utils/TEST-TestCollectEnv-20230111212728.xml 2023-01-11T21:27:31.3392069Z 2023-01-11T21:27:31.3392415Z ##[endgroup] 2023-01-11T21:27:31.3392784Z FINISHED PRINTING LOG FILE of test_utils (/var/lib/jenkins/workspace/test/test-reports/test_utils_ihl22tdk) 2023-01-11T21:27:31.3392988Z 2023-01-11T21:27:33.1641837Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:33.2288127Z Ignoring disabled issues: [] 2023-01-11T21:27:33.2427641Z Running backends/xeon/test_launch ... [2023-01-11 21:27:33.242513] 2023-01-11T21:27:33.2430186Z Executing ['/opt/conda/bin/python', '-bb', 'backends/xeon/test_launch.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:33.242753] 2023-01-11T21:27:36.6026943Z 2023-01-11T21:27:36.6027453Z Expand the folded group to see the log file of backends/xeon/test_launch 2023-01-11T21:27:36.6028943Z ##[group]PRINTING LOG FILE of backends/xeon/test_launch (/var/lib/jenkins/workspace/test/test-reports/backends-xeon-test_launch_22ixxi0n) 2023-01-11T21:27:36.6029444Z 2023-01-11T21:27:36.6029577Z Running tests... 2023-01-11T21:27:36.6030254Z ---------------------------------------------------------------------- 2023-01-11T21:27:36.6031001Z Test results will be stored in test-reports/python-unittest/backends.xeon.test_launch 2023-01-11T21:27:36.6032562Z test_cpu_info (__main__.TestTorchrun) ... 2023-01-11 21:27:34,713 - torch.backends.xeon.run_cpu - WARNING - Numa Aware: cores:[2, 3, 4, 5] on different NUMA nodes:[0, 1]. To avoid this behavior, please use --ncores_per_instance knob to make sure number of cores is divisible by --ncores_per_instance. Alternatively, please use --skip_cross_node_cores knob. 2023-01-11T21:27:36.6033447Z ok (0.137s) 2023-01-11T21:27:36.6034016Z test_multi_threads (__main__.TestTorchrun) ... ok (1.630s) 2023-01-11T21:27:36.6034303Z 2023-01-11T21:27:36.6034680Z ---------------------------------------------------------------------- 2023-01-11T21:27:36.6035116Z Ran 2 tests in 1.767s 2023-01-11T21:27:36.6035296Z 2023-01-11T21:27:36.6035387Z OK 2023-01-11T21:27:36.6035523Z 2023-01-11T21:27:36.6035651Z Generating XML reports... 2023-01-11T21:27:36.6036375Z Generated XML report: test-reports/python-unittest/backends.xeon.test_launch/TEST-TestTorchrun-20230111212734.xml 2023-01-11T21:27:36.6036826Z 2023-01-11T21:27:36.6037229Z ##[endgroup] 2023-01-11T21:27:36.6038013Z FINISHED PRINTING LOG FILE of backends/xeon/test_launch (/var/lib/jenkins/workspace/test/test-reports/backends-xeon-test_launch_22ixxi0n) 2023-01-11T21:27:36.6038460Z 2023-01-11T21:27:38.4221936Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:38.4872064Z Ignoring disabled issues: [] 2023-01-11T21:27:38.5014103Z Running benchmark_utils/test_benchmark_utils ... [2023-01-11 21:27:38.501091] 2023-01-11T21:27:38.5015734Z Executing ['/opt/conda/bin/python', '-bb', 'benchmark_utils/test_benchmark_utils.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:38.501346] 2023-01-11T21:27:40.9403581Z 2023-01-11T21:27:40.9404193Z Expand the folded group to see the log file of benchmark_utils/test_benchmark_utils 2023-01-11T21:27:40.9405505Z ##[group]PRINTING LOG FILE of benchmark_utils/test_benchmark_utils (/var/lib/jenkins/workspace/test/test-reports/benchmark_utils-test_benchmark_utils_qchm89_j) 2023-01-11T21:27:40.9406421Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:40.9406624Z 2023-01-11T21:27:40.9406701Z Running tests... 2023-01-11T21:27:40.9406995Z ---------------------------------------------------------------------- 2023-01-11T21:27:40.9407415Z Test results will be stored in test-reports/python-unittest/benchmark_utils.test_benchmark_utils 2023-01-11T21:27:40.9407748Z test_adaptive_timer (__main__.TestBenchmarkUtils) ... ok (0.310s) 2023-01-11T21:27:40.9408103Z test_collect_callgrind (__main__.TestBenchmarkUtils) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:27:40.9408487Z test_collect_cpp_callgrind (__main__.TestBenchmarkUtils) ... skip: Failing on clang, see 74398 (0.001s) 2023-01-11T21:27:40.9408982Z test_compare (__main__.TestBenchmarkUtils) ... ok (0.128s) 2023-01-11T21:27:40.9409445Z test_cpp_timer (__main__.TestBenchmarkUtils) ... skip: Failing on clang, see 74398 (0.000s) 2023-01-11T21:27:40.9409729Z test_fuzzer (__main__.TestBenchmarkUtils) ... ok (0.002s) 2023-01-11T21:27:40.9410022Z test_manipulate_callgrind_stats (__main__.TestBenchmarkUtils) ... ok (0.036s) 2023-01-11T21:27:40.9410309Z test_timer (__main__.TestBenchmarkUtils) ... ok (0.031s) 2023-01-11T21:27:40.9410609Z test_timer_tiny_fast_snippet (__main__.TestBenchmarkUtils) ... skip: Failing on clang, see 74398 (0.000s) 2023-01-11T21:27:40.9410803Z 2023-01-11T21:27:40.9411007Z ---------------------------------------------------------------------- 2023-01-11T21:27:40.9411248Z Ran 9 tests in 0.510s 2023-01-11T21:27:40.9411432Z 2023-01-11T21:27:40.9411504Z OK (skipped=4) 2023-01-11T21:27:40.9411598Z 2023-01-11T21:27:40.9411682Z Generating XML reports... 2023-01-11T21:27:40.9412154Z Generated XML report: test-reports/python-unittest/benchmark_utils.test_benchmark_utils/TEST-TestBenchmarkUtils-20230111212740.xml 2023-01-11T21:27:40.9412411Z 2023-01-11T21:27:40.9412644Z ##[endgroup] 2023-01-11T21:27:40.9413083Z FINISHED PRINTING LOG FILE of benchmark_utils/test_benchmark_utils (/var/lib/jenkins/workspace/test/test-reports/benchmark_utils-test_benchmark_utils_qchm89_j) 2023-01-11T21:27:40.9413335Z 2023-01-11T21:27:42.7938663Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:42.8584732Z Ignoring disabled issues: [] 2023-01-11T21:27:42.8726273Z Running dynamo/test_aot_autograd ... [2023-01-11 21:27:42.872345] 2023-01-11T21:27:42.8728034Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_aot_autograd.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:42.872600] 2023-01-11T21:27:48.5556237Z 2023-01-11T21:27:48.5556774Z Expand the folded group to see the log file of dynamo/test_aot_autograd 2023-01-11T21:27:48.5557988Z ##[group]PRINTING LOG FILE of dynamo/test_aot_autograd (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_aot_autograd_tgu05r7x) 2023-01-11T21:27:48.5558503Z 2023-01-11T21:27:48.5558619Z Running tests... 2023-01-11T21:27:48.5559273Z ---------------------------------------------------------------------- 2023-01-11T21:27:48.5560111Z Test results will be stored in test-reports/python-unittest/dynamo.test_aot_autograd 2023-01-11T21:27:48.5561123Z test_LSTM (__main__.AotAutogradFallbackTests) ... [2023-01-11 21:27:47,425] torch._dynamo.optimizations.training: [WARNING] Unable to use Aot Autograd because of presence of LSTM 2023-01-11T21:27:48.5561672Z ok (3.221s) 2023-01-11T21:27:48.5562292Z test_arg_dupe_via_dynamo_recompiles (__main__.AotAutogradFallbackTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:48.5563006Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:27:48.5563532Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:27:48.5564159Z stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:27:48.5564645Z aot_autograd [('total', 3), ('ok', 3)] 2023-01-11T21:27:48.5564979Z ok (0.092s) 2023-01-11T21:27:48.5565761Z test_arg_dupe_via_dynamo_recompiles_many_args (__main__.AotAutogradFallbackTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:27:48.5566458Z stats [('calls_captured', 28), ('fusions_possible', 24), ('unique_graphs', 4)] 2023-01-11T21:27:48.5566977Z aot_autograd [('total', 4), ('ok', 4)] 2023-01-11T21:27:48.5567282Z ok (0.168s) 2023-01-11T21:27:48.5568153Z test_call_fn_with_non_const_inputs_aot_safe (__main__.AotAutogradFallbackTests) ... inline_call [('inline in skipfiles: tree_flatten_spec /opt/conda/lib/python3.10/site-packages/torch/fx/_pytree.py', 1)] 2023-01-11T21:27:48.5569038Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:27:48.5569710Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:27:48.5570034Z unimplemented [] 2023-01-11T21:27:48.5571368Z graph_break [('inline in skipfiles: tree_flatten_spec /opt/conda/lib/python3.10/site-packages/torch/fx/_pytree.py', 1), ('call_function args: ListVariable() UserDefinedObjectVariable(LeafSpec) ', 1)] 2023-01-11T21:27:48.5572048Z ok (0.045s) 2023-01-11T21:27:48.5573021Z test_call_fn_with_non_const_inputs_aot_unsafe (__main__.AotAutogradFallbackTests) ... inline_call [('inline in skipfiles: tree_flatten_spec /opt/conda/lib/python3.10/site-packages/torch/fx/_pytree.py', 1)] 2023-01-11T21:27:48.5573869Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:27:48.5574343Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:27:48.5574659Z unimplemented [] 2023-01-11T21:27:48.5575775Z graph_break [('inline in skipfiles: tree_flatten_spec /opt/conda/lib/python3.10/site-packages/torch/fx/_pytree.py', 1), ('call_function args: ListVariable() UserDefinedObjectVariable(LeafSpec) ', 1)] 2023-01-11T21:27:48.5576554Z ok (0.020s) 2023-01-11T21:27:48.5577285Z test_call_fn_with_non_const_inputs_aot_unsafe_control_flow (__main__.AotAutogradFallbackTests) ... frames [('total', 8), ('ok', 8)] 2023-01-11T21:27:48.5578075Z inline_call [('generic_jump TensorVariable()', 2)] 2023-01-11T21:27:48.5578450Z unimplemented [] 2023-01-11T21:27:48.5578900Z graph_break [('generic_jump TensorVariable()', 2)] 2023-01-11T21:27:48.5579488Z stats [('calls_captured', 14), ('unique_graphs', 8), ('fusions_possible', 6)] 2023-01-11T21:27:48.5579841Z ok (0.044s) 2023-01-11T21:27:48.5580403Z test_mutation (__main__.AotAutogradFallbackTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:48.5581061Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:27:48.5581455Z ok (0.006s) 2023-01-11T21:27:48.5582012Z test_mutation1 (__main__.AotAutogradFallbackTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:48.5582786Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:27:48.5583189Z ok (0.126s) 2023-01-11T21:27:48.5583858Z test_negative_testing (__main__.AotAutogradFallbackTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:48.5584656Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:27:48.5585020Z ok (0.006s) 2023-01-11T21:27:48.5585617Z test_negative_testing_mutation (__main__.AotAutogradFallbackTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:48.5586292Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:27:48.5586668Z ok (0.131s) 2023-01-11T21:27:48.5587322Z test_requires_grad_fake_via_dynamo_recompiles (__main__.AotAutogradFallbackTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:27:48.5588022Z stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:27:48.5588536Z aot_autograd [('total', 3), ('ok', 3)] 2023-01-11T21:27:48.5588880Z ok (0.042s) 2023-01-11T21:27:48.5589093Z 2023-01-11T21:27:48.5589477Z ---------------------------------------------------------------------- 2023-01-11T21:27:48.5589943Z Ran 11 tests in 3.902s 2023-01-11T21:27:48.5590128Z 2023-01-11T21:27:48.5590225Z OK 2023-01-11T21:27:48.5590397Z 2023-01-11T21:27:48.5590584Z Generating XML reports... 2023-01-11T21:27:48.5591482Z Generated XML report: test-reports/python-unittest/dynamo.test_aot_autograd/TEST-AotAutogradFallbackTests-20230111212744.xml 2023-01-11T21:27:48.5591938Z 2023-01-11T21:27:48.5592379Z ##[endgroup] 2023-01-11T21:27:48.5593089Z FINISHED PRINTING LOG FILE of dynamo/test_aot_autograd (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_aot_autograd_tgu05r7x) 2023-01-11T21:27:48.5596883Z 2023-01-11T21:27:50.3632170Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:50.4280121Z Ignoring disabled issues: [] 2023-01-11T21:27:50.4420294Z Running dynamo/test_aot_cudagraphs ... [2023-01-11 21:27:50.441806] 2023-01-11T21:27:50.4422428Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_aot_cudagraphs.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:50.442058] 2023-01-11T21:27:52.1295562Z 2023-01-11T21:27:52.1296201Z Expand the folded group to see the log file of dynamo/test_aot_cudagraphs 2023-01-11T21:27:52.1297826Z ##[group]PRINTING LOG FILE of dynamo/test_aot_cudagraphs (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_aot_cudagraphs_pa7ugkv0) 2023-01-11T21:27:52.1298462Z 2023-01-11T21:27:52.1298624Z Running tests... 2023-01-11T21:27:52.1299449Z ---------------------------------------------------------------------- 2023-01-11T21:27:52.1300556Z test_basic (__main__.TestAotCudagraphs) ... Test results will be stored in test-reports/python-unittest/dynamo.test_aot_cudagraphs 2023-01-11T21:27:52.1301341Z skip: these tests require cuda (0.000s) 2023-01-11T21:27:52.1302014Z test_dead_fill (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T21:27:52.1303045Z test_dtoh (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.000s) 2023-01-11T21:27:52.1303897Z test_factory (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.000s) 2023-01-11T21:27:52.1304679Z test_htod (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.000s) 2023-01-11T21:27:52.1305476Z test_mutate_constant (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.000s) 2023-01-11T21:27:52.1306291Z test_mutate_input (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.000s) 2023-01-11T21:27:52.1307100Z test_mutated_metadata (__main__.TestAotCudagraphs) ... skip: these tests require cuda (0.001s) 2023-01-11T21:27:52.1307563Z 2023-01-11T21:27:52.1308063Z ---------------------------------------------------------------------- 2023-01-11T21:27:52.1308620Z Ran 8 tests in 0.004s 2023-01-11T21:27:52.1308877Z 2023-01-11T21:27:52.1309027Z OK (skipped=8) 2023-01-11T21:27:52.1309278Z 2023-01-11T21:27:52.1309488Z Generating XML reports... 2023-01-11T21:27:52.1310560Z Generated XML report: test-reports/python-unittest/dynamo.test_aot_cudagraphs/TEST-TestAotCudagraphs-20230111212751.xml 2023-01-11T21:27:52.1311182Z 2023-01-11T21:27:52.1311732Z ##[endgroup] 2023-01-11T21:27:52.1312747Z FINISHED PRINTING LOG FILE of dynamo/test_aot_cudagraphs (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_aot_cudagraphs_pa7ugkv0) 2023-01-11T21:27:52.1313328Z 2023-01-11T21:27:53.9512746Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:54.0163720Z Ignoring disabled issues: [] 2023-01-11T21:27:54.0305000Z Running dynamo/test_comptime ... [2023-01-11 21:27:54.030227] 2023-01-11T21:27:54.0306949Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_comptime.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:54.030472] 2023-01-11T21:27:56.1575705Z 2023-01-11T21:27:56.1576158Z Expand the folded group to see the log file of dynamo/test_comptime 2023-01-11T21:27:56.1577320Z ##[group]PRINTING LOG FILE of dynamo/test_comptime (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_comptime_xcqmr_ts) 2023-01-11T21:27:56.1577833Z 2023-01-11T21:27:56.1577922Z Running tests... 2023-01-11T21:27:56.1578334Z ---------------------------------------------------------------------- 2023-01-11T21:27:56.1578723Z Test results will be stored in test-reports/python-unittest/dynamo.test_comptime 2023-01-11T21:27:56.1579008Z test_get_local (__main__.ComptimeTests) ... ok (0.241s) 2023-01-11T21:27:56.1579358Z test_graph_break (__main__.ComptimeTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1579715Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:27:56.1579981Z frames [('total', 6), ('ok', 6)] 2023-01-11T21:27:56.1580290Z stats [('calls_captured', 5), ('unique_graphs', 4), ('fusions_possible', 1)] 2023-01-11T21:27:56.1580521Z unimplemented [] 2023-01-11T21:27:56.1580774Z graph_break [('ComptimeContext.graph_break', 2)] 2023-01-11T21:27:56.1581078Z inline_call [('ComptimeContext.graph_break', 1)] 2023-01-11T21:27:56.1581286Z ok (0.018s) 2023-01-11T21:27:56.1581559Z test_print_bt (__main__.ComptimeTests) ... File "/var/lib/jenkins/workspace/test/dynamo/test_comptime.py", line 152, in f 2023-01-11T21:27:56.1582028Z y = g(y) 2023-01-11T21:27:56.1582267Z File "/var/lib/jenkins/workspace/test/dynamo/test_comptime.py", line 145, in g 2023-01-11T21:27:56.1582511Z comptime.print_bt() 2023-01-11T21:27:56.1582618Z 2023-01-11T21:27:56.1582738Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1582920Z inline_call [] 2023-01-11T21:27:56.1583212Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:27:56.1583500Z ok (0.088s) 2023-01-11T21:27:56.1583735Z test_print_disas (__main__.ComptimeTests) ... 54 0 LOAD_FAST 0 (x) 2023-01-11T21:27:56.1583987Z 2 LOAD_CONST 1 (2) 2023-01-11T21:27:56.1584170Z 4 BINARY_MULTIPLY 2023-01-11T21:27:56.1584435Z 6 STORE_FAST 1 (y) 2023-01-11T21:27:56.1584559Z 2023-01-11T21:27:56.1584657Z 56 8 LOAD_GLOBAL 0 (comptime) 2023-01-11T21:27:56.1584788Z 2023-01-11T21:27:56.1584979Z 57 10 LOAD_CONST 2 () 2023-01-11T21:27:56.1585400Z 12 LOAD_CONST 3 ('ComptimeTests.test_print_disas..f.._') 2023-01-11T21:27:56.1585660Z 14 MAKE_FUNCTION 0 2023-01-11T21:27:56.1585861Z 16 CALL_FUNCTION 1 2023-01-11T21:27:56.1586050Z 18 STORE_FAST 2 (_) 2023-01-11T21:27:56.1586170Z 2023-01-11T21:27:56.1586267Z 60 20 LOAD_GLOBAL 0 (comptime) 2023-01-11T21:27:56.1586494Z 22 LOAD_METHOD 1 (print_disas) 2023-01-11T21:27:56.1586705Z 24 CALL_METHOD 0 2023-01-11T21:27:56.1586910Z --> 26 POP_TOP 2023-01-11T21:27:56.1587019Z 2023-01-11T21:27:56.1587105Z 62 28 LOAD_FAST 1 (y) 2023-01-11T21:27:56.1587308Z 30 LOAD_CONST 4 (3) 2023-01-11T21:27:56.1587480Z 32 BINARY_ADD 2023-01-11T21:27:56.1587658Z 34 RETURN_VALUE 2023-01-11T21:27:56.1587768Z 2023-01-11T21:27:56.1587884Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1588055Z inline_call [] 2023-01-11T21:27:56.1588348Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:27:56.1588572Z ok (0.007s) 2023-01-11T21:27:56.1588765Z test_print_graph (__main__.ComptimeTests) ... 2023-01-11T21:27:56.1588905Z 2023-01-11T21:27:56.1588910Z 2023-01-11T21:27:56.1589004Z def forward(self, x : torch.Tensor): 2023-01-11T21:27:56.1589279Z # File: /var/lib/jenkins/workspace/test/dynamo/test_comptime.py:26, code: y = x * 2 2023-01-11T21:27:56.1589522Z mul = x * 2; x = None 2023-01-11T21:27:56.1589675Z 2023-01-11T21:27:56.1589883Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1590063Z inline_call [] 2023-01-11T21:27:56.1590344Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:27:56.1590571Z ok (0.006s) 2023-01-11T21:27:56.1590778Z test_print_guards (__main__.ComptimeTests) ... - 2023-01-11T21:27:56.1591022Z local 'x' TENSOR_MATCH 2023-01-11T21:27:56.1591199Z { 2023-01-11T21:27:56.1591410Z 'guard_types': None, 2023-01-11T21:27:56.1591615Z 'code': None, 2023-01-11T21:27:56.1591836Z 'obj_weakref': None 2023-01-11T21:27:56.1592067Z 'guarded_class': None 2023-01-11T21:27:56.1592232Z } 2023-01-11T21:27:56.1592386Z 2023-01-11T21:27:56.1592592Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1592757Z inline_call [] 2023-01-11T21:27:56.1593046Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:27:56.1593269Z ok (0.006s) 2023-01-11T21:27:56.1593497Z test_print_locals (__main__.ComptimeTests) ... x = TensorVariable() 2023-01-11T21:27:56.1593717Z y = TensorVariable() 2023-01-11T21:27:56.1606591Z _ = ConstantVariable(NoneType) 2023-01-11T21:27:56.1606913Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1607087Z inline_call [] 2023-01-11T21:27:56.1607392Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:27:56.1607622Z ok (0.006s) 2023-01-11T21:27:56.1607921Z test_print_value_stack (__main__.ComptimeTests) ... - TensorVariable() 2023-01-11T21:27:56.1608189Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:27:56.1608370Z inline_call [] 2023-01-11T21:27:56.1608661Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:27:56.1608874Z ok (0.007s) 2023-01-11T21:27:56.1608975Z 2023-01-11T21:27:56.1609363Z ---------------------------------------------------------------------- 2023-01-11T21:27:56.1609608Z Ran 8 tests in 0.379s 2023-01-11T21:27:56.1609864Z 2023-01-11T21:27:56.1609913Z OK 2023-01-11T21:27:56.1610003Z 2023-01-11T21:27:56.1610089Z Generating XML reports... 2023-01-11T21:27:56.1610515Z Generated XML report: test-reports/python-unittest/dynamo.test_comptime/TEST-ComptimeTests-20230111212755.xml 2023-01-11T21:27:56.1610748Z 2023-01-11T21:27:56.1611017Z ##[endgroup] 2023-01-11T21:27:56.1611414Z FINISHED PRINTING LOG FILE of dynamo/test_comptime (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_comptime_xcqmr_ts) 2023-01-11T21:27:56.1611643Z 2023-01-11T21:27:58.0078649Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:27:58.0726565Z Ignoring disabled issues: [] 2023-01-11T21:27:58.0868499Z Running dynamo/test_dynamic_shapes ... [2023-01-11 21:27:58.086579] 2023-01-11T21:27:58.0870563Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_dynamic_shapes.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:27:58.086834] 2023-01-11T21:28:38.0959170Z 2023-01-11T21:28:38.0961380Z Expand the folded group to see the log file of dynamo/test_dynamic_shapes 2023-01-11T21:28:38.0962386Z ##[group]PRINTING LOG FILE of dynamo/test_dynamic_shapes (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_dynamic_shapes_xm_m_su8) 2023-01-11T21:28:38.0962819Z 2023-01-11T21:28:38.0962954Z Running tests... 2023-01-11T21:28:38.0963566Z ---------------------------------------------------------------------- 2023-01-11T21:28:38.0966236Z Test results will be stored in test-reports/python-unittest/dynamo.test_dynamic_shapes 2023-01-11T21:28:38.0966723Z test_dict_return_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.383s) 2023-01-11T21:28:38.0967648Z test_dict_return_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.0968401Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.0968761Z ok (0.073s) 2023-01-11T21:28:38.0969763Z test_dupes_2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.0970135Z ok (0.027s) 2023-01-11T21:28:38.1010462Z test_dupes_2_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1011111Z ok (0.039s) 2023-01-11T21:28:38.1012052Z test_dupes_and_bypass_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1012646Z ok (0.031s) 2023-01-11T21:28:38.1013620Z test_dupes_and_bypass_reorder_with_non_tensor_arg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1014277Z ok (0.030s) 2023-01-11T21:28:38.1015563Z test_dupes_and_bypass_reorder_with_non_tensor_arg_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1016149Z ok (0.041s) 2023-01-11T21:28:38.1016660Z test_dupes_and_bypass_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1016995Z ok (0.040s) 2023-01-11T21:28:38.1017824Z test_dupes_and_bypass_with_non_tensor_arg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1018470Z ok (0.029s) 2023-01-11T21:28:38.1019268Z test_dupes_and_bypass_with_non_tensor_arg_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1019794Z ok (0.040s) 2023-01-11T21:28:38.1020985Z test_dupes_and_bypass_with_non_tensor_output_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1021765Z ok (0.033s) 2023-01-11T21:28:38.1022985Z test_dupes_and_bypass_with_non_tensor_output_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1023858Z ok (0.033s) 2023-01-11T21:28:38.1024868Z test_dupes_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1025568Z ok (0.026s) 2023-01-11T21:28:38.1026660Z test_dupes_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1027379Z ok (0.038s) 2023-01-11T21:28:38.1028527Z test_export_compare_optimize_with_make_fx_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1029305Z ok (0.322s) 2023-01-11T21:28:38.1029983Z test_export_decomp_asserts_bad_args_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.001s) 2023-01-11T21:28:38.1030951Z test_export_decomp_asserts_bad_args_mode_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.001s) 2023-01-11T21:28:38.1032327Z test_export_decomp_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1033055Z ok (0.091s) 2023-01-11T21:28:38.1033693Z test_export_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1034575Z stats [('calls_captured', 80), ('fusions_possible', 78), ('unique_graphs', 2)] 2023-01-11T21:28:38.1035053Z ok (0.113s) 2023-01-11T21:28:38.1036133Z test_export_graph_bypass_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1036852Z ok (0.034s) 2023-01-11T21:28:38.1037989Z test_export_graph_bypass_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1038756Z ok (0.045s) 2023-01-11T21:28:38.1039887Z test_export_graph_with_complex_reorder_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1089617Z ok (0.050s) 2023-01-11T21:28:38.1090603Z test_export_graph_with_complex_reorder_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1091284Z ok (0.075s) 2023-01-11T21:28:38.1092085Z test_export_graph_with_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1092638Z ok (0.036s) 2023-01-11T21:28:38.1093629Z test_export_graph_with_list_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1094242Z ok (0.047s) 2023-01-11T21:28:38.1095067Z test_export_meta_val_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1095695Z ok (0.069s) 2023-01-11T21:28:38.1096519Z test_export_mismatched_out_2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1097143Z ok (0.032s) 2023-01-11T21:28:38.1098118Z test_export_mismatched_out_2_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1098765Z ok (0.045s) 2023-01-11T21:28:38.1099645Z test_export_mismatched_out_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1100221Z ok (0.041s) 2023-01-11T21:28:38.1101154Z test_export_mismatched_out_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1101733Z ok (0.044s) 2023-01-11T21:28:38.1102472Z test_export_shape_control_flow_1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1103205Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1103643Z ok (0.048s) 2023-01-11T21:28:38.1104200Z test_export_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1104944Z stats [('calls_captured', 80), ('fusions_possible', 78), ('unique_graphs', 2)] 2023-01-11T21:28:38.1105293Z ok (0.359s) 2023-01-11T21:28:38.1106213Z test_export_with_constant_dict_values_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1106848Z ok (0.031s) 2023-01-11T21:28:38.1107728Z test_export_with_constant_free_function_and_class_method_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1108387Z ok (0.047s) 2023-01-11T21:28:38.1109404Z test_export_with_constant_free_function_and_class_method_multiarg_diff_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1110065Z ok (0.023s) 2023-01-11T21:28:38.1111052Z test_export_with_constant_free_function_and_class_method_multiarg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1111834Z ok (0.060s) 2023-01-11T21:28:38.1164287Z test_export_with_constant_free_function_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1164931Z ok (0.059s) 2023-01-11T21:28:38.1165840Z test_export_with_constant_list_nonzero_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... unimplemented [('call_function BuiltinVariable(iter) [TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1166516Z expected failure (0.013s) 2023-01-11T21:28:38.1167302Z test_export_with_constant_list_nonzero_free_function_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... unimplemented [('call_function BuiltinVariable(iter) [TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1167707Z expected failure (0.011s) 2023-01-11T21:28:38.1168240Z test_export_with_constant_method_on_module_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1168590Z ok (0.046s) 2023-01-11T21:28:38.1169245Z test_export_with_constant_method_on_module_invoke_twice_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1169789Z ok (0.058s) 2023-01-11T21:28:38.1170593Z test_export_with_constant_none_control_flow_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1171110Z ok (0.007s) 2023-01-11T21:28:38.1171839Z test_export_with_constant_none_control_flow_free_func_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1172215Z ok (0.007s) 2023-01-11T21:28:38.1172739Z test_export_with_constant_not_none_control_flow_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1173095Z ok (0.021s) 2023-01-11T21:28:38.1173612Z test_export_with_constant_not_none_control_flow_free_func_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1173975Z ok (0.020s) 2023-01-11T21:28:38.1174499Z test_export_with_constant_not_none_control_flow_pos_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1174858Z ok (0.020s) 2023-01-11T21:28:38.1175354Z test_export_with_constant_not_return_const_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1175701Z ok (0.008s) 2023-01-11T21:28:38.1176223Z test_export_with_constant_tuple_nonzero_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... unimplemented [('call_function BuiltinVariable(iter) [TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1176601Z expected failure (0.011s) 2023-01-11T21:28:38.1176913Z test_export_with_module_layer_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1177335Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1177562Z ok (0.076s) 2023-01-11T21:28:38.1178039Z test_export_with_stack_trace_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1178459Z ok (0.170s) 2023-01-11T21:28:38.1178751Z test_func_return_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1179159Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1179369Z ok (0.060s) 2023-01-11T21:28:38.1179676Z test_func_return_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1180096Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1180305Z ok (0.097s) 2023-01-11T21:28:38.1180839Z test_input_container_type_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1181181Z ok (0.169s) 2023-01-11T21:28:38.1181654Z test_list_unpack_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1181969Z ok (0.035s) 2023-01-11T21:28:38.1182461Z test_list_unpack_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1182800Z ok (0.048s) 2023-01-11T21:28:38.1183390Z test_zeroes_in_and_out_different_shape_on_test_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1183732Z ok (0.047s) 2023-01-11T21:28:38.1184274Z test_zeroes_in_and_out_different_shape_on_test_with_aten_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1184643Z ok (0.076s) 2023-01-11T21:28:38.1185134Z test_zeroes_in_new_shape_scalar_out_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 16), ('fusions_possible', 14), ('unique_graphs', 2)] 2023-01-11T21:28:38.1185476Z ok (0.053s) 2023-01-11T21:28:38.1186019Z test_zeroes_in_new_shape_scalar_out_permute_dupe_and_bypass_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 22), ('fusions_possible', 20), ('unique_graphs', 2)] 2023-01-11T21:28:38.1186382Z ok (0.069s) 2023-01-11T21:28:38.1186882Z test_zeroes_in_new_shape_scalar_out_permute_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 22), ('fusions_possible', 20), ('unique_graphs', 2)] 2023-01-11T21:28:38.1187231Z ok (0.070s) 2023-01-11T21:28:38.1187684Z test_T_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1187998Z ok (0.033s) 2023-01-11T21:28:38.1188516Z test_add__dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /var/lib/jenkins/workspace/test/dynamo/test_functions.py:73: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:38.1189033Z a_copy = torch.tensor(a) 2023-01-11T21:28:38.1189655Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:38.1190128Z return node.target(*args, **kwargs) 2023-01-11T21:28:38.1190539Z .331:5: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:38.1190909Z tensor = torch.tensor(a); a = None 2023-01-11T21:28:38.1191229Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1191454Z ok (0.038s) 2023-01-11T21:28:38.1191902Z test_add_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1192223Z ok (0.019s) 2023-01-11T21:28:38.1192788Z test_addcdiv__dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /var/lib/jenkins/workspace/test/dynamo/test_functions.py:84: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:38.1193311Z a_copy = torch.tensor(a) 2023-01-11T21:28:38.1193915Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:38.1194354Z return node.target(*args, **kwargs) 2023-01-11T21:28:38.1194761Z .336:5: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:38.1195146Z tensor = torch.tensor(a); a = None 2023-01-11T21:28:38.1195455Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1195680Z ok (0.045s) 2023-01-11T21:28:38.1196146Z test_addcdiv_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1196469Z ok (0.037s) 2023-01-11T21:28:38.1196755Z test_build_list_unpack_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1197163Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1197383Z ok (0.063s) 2023-01-11T21:28:38.1197680Z test_chunks1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1198295Z test_const_tuple_add1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1198627Z ok (0.040s) 2023-01-11T21:28:38.1199098Z test_const_tuple_add2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1199417Z ok (0.040s) 2023-01-11T21:28:38.1199884Z test_constant1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1200207Z ok (0.038s) 2023-01-11T21:28:38.1200669Z test_constant2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1200974Z ok (0.037s) 2023-01-11T21:28:38.1201438Z test_constant3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1201799Z ok (0.018s) 2023-01-11T21:28:38.1202252Z test_constant4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1202569Z ok (0.020s) 2023-01-11T21:28:38.1203042Z test_default_dict_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1203368Z ok (0.031s) 2023-01-11T21:28:38.1203811Z test_del_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1204127Z ok (0.034s) 2023-01-11T21:28:38.1205200Z test_device_constant_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1205532Z ok (0.026s) 2023-01-11T21:28:38.1205989Z test_device_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1206310Z ok (0.018s) 2023-01-11T21:28:38.1206778Z test_dict_copy_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1207101Z ok (0.018s) 2023-01-11T21:28:38.1207551Z test_dict_ops_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:38.1207877Z ok (0.071s) 2023-01-11T21:28:38.1208348Z test_dict_param_keys_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1208661Z ok (0.019s) 2023-01-11T21:28:38.1209289Z test_distributed_is_available_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1209634Z ok (0.019s) 2023-01-11T21:28:38.1210126Z test_distributed_is_initialized_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1210456Z ok (0.017s) 2023-01-11T21:28:38.1210931Z test_dtype_compare_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1211258Z ok (0.027s) 2023-01-11T21:28:38.1211718Z test_dtype_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1212027Z ok (0.018s) 2023-01-11T21:28:38.1212484Z test_finfo_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1212802Z ok (0.023s) 2023-01-11T21:28:38.1213248Z test_float_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1213566Z ok (0.018s) 2023-01-11T21:28:38.1214036Z test_fn_with_self_set_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1214364Z ok (0.101s) 2023-01-11T21:28:38.1214819Z test_fstrings1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1215204Z ok (0.021s) 2023-01-11T21:28:38.1215518Z test_fstrings2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1216121Z test_fstrings3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1216430Z ok (0.019s) 2023-01-11T21:28:38.1216728Z test_funcdef_closure_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1217145Z stats [('calls_captured', 10), ('fusions_possible', 9), ('unique_graphs', 1)] 2023-01-11T21:28:38.1217357Z ok (0.085s) 2023-01-11T21:28:38.1217873Z test_get_default_dtype_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1218207Z ok (0.019s) 2023-01-11T21:28:38.1218670Z test_globalfn_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1218984Z ok (0.020s) 2023-01-11T21:28:38.1219455Z test_globalmodule_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1219780Z ok (0.033s) 2023-01-11T21:28:38.1220240Z test_globalvar_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1220551Z ok (0.029s) 2023-01-11T21:28:38.1221012Z test_import1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1221338Z ok (0.028s) 2023-01-11T21:28:38.1221793Z test_indirect1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1222114Z ok (0.020s) 2023-01-11T21:28:38.1222572Z test_indirect2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1222891Z ok (0.020s) 2023-01-11T21:28:38.1223396Z test_indirect3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1223723Z ok (0.020s) 2023-01-11T21:28:38.1224026Z test_inline_jit_annotations_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1224452Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1224662Z ok (0.033s) 2023-01-11T21:28:38.1225140Z test_inline_softmax_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1225467Z ok (0.072s) 2023-01-11T21:28:38.1225755Z test_inline_with_default_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1226170Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1226391Z ok (0.030s) 2023-01-11T21:28:38.1226686Z test_inner_function_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1227085Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1227344Z ok (0.020s) 2023-01-11T21:28:38.1227675Z test_is_contiguous_memory_format_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1228295Z test_is_fx_tracing_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1228617Z ok (0.020s) 2023-01-11T21:28:38.1229091Z test_is_in_onnx_export_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1229419Z ok (0.019s) 2023-01-11T21:28:38.1229903Z test_is_not_null_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1230231Z ok (0.020s) 2023-01-11T21:28:38.1230705Z test_is_quantized_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1231030Z ok (0.019s) 2023-01-11T21:28:38.1231482Z test_is_sparse_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1231807Z ok (0.018s) 2023-01-11T21:28:38.1232280Z test_islice_chain_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1232592Z ok (0.057s) 2023-01-11T21:28:38.1233064Z test_jit_annotate_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1233385Z ok (0.026s) 2023-01-11T21:28:38.1233860Z test_len_constant_dict_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1234177Z ok (0.018s) 2023-01-11T21:28:38.1234650Z test_len_constant_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1234980Z ok (0.018s) 2023-01-11T21:28:38.1235471Z test_len_constant_misc_iterables_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1235796Z ok (0.018s) 2023-01-11T21:28:38.1236101Z test_len_tensor_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... expected failure (0.007s) 2023-01-11T21:28:38.1236696Z test_list_add_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1237018Z ok (0.021s) 2023-01-11T21:28:38.1237477Z test_list_clear_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1237803Z ok (0.034s) 2023-01-11T21:28:38.1238275Z test_list_convert_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1238590Z ok (0.042s) 2023-01-11T21:28:38.1239061Z test_list_reversed_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1239383Z ok (0.049s) 2023-01-11T21:28:38.1239868Z test_list_slice_assignment_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1240221Z ok (0.019s) 2023-01-11T21:28:38.1240688Z test_list_truth_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1241010Z ok (0.020s) 2023-01-11T21:28:38.1241470Z test_listarg1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1241782Z ok (0.029s) 2023-01-11T21:28:38.1242272Z test_listarg2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1242592Z ok (0.032s) 2023-01-11T21:28:38.1243040Z test_listarg3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1243356Z ok (0.029s) 2023-01-11T21:28:38.1243813Z test_listarg4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1244136Z ok (0.029s) 2023-01-11T21:28:38.1244578Z test_listarg5_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1244895Z ok (0.032s) 2023-01-11T21:28:38.1245366Z test_load_global_bool_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1245693Z ok (0.019s) 2023-01-11T21:28:38.1245967Z test_map_sum_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1246373Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:38.1246596Z ok (0.076s) 2023-01-11T21:28:38.1246876Z test_methodcall1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1247286Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1247508Z ok (0.037s) 2023-01-11T21:28:38.1247799Z test_methodcall2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1248193Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1248413Z ok (0.034s) 2023-01-11T21:28:38.1248705Z test_methodcall3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1249214Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1249439Z ok (0.034s) 2023-01-11T21:28:38.1249909Z test_min_max_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 11), ('fusions_possible', 10), ('unique_graphs', 1)] 2023-01-11T21:28:38.1250234Z ok (0.049s) 2023-01-11T21:28:38.1250697Z test_module_constant_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1251028Z ok (0.044s) 2023-01-11T21:28:38.1251490Z test_ndim_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1251796Z ok (0.018s) 2023-01-11T21:28:38.1252253Z test_pop_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1252657Z ok (0.042s) 2023-01-11T21:28:38.1253117Z test_range1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1253427Z ok (0.014s) 2023-01-11T21:28:38.1253889Z test_range2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 15), ('fusions_possible', 14), ('unique_graphs', 1)] 2023-01-11T21:28:38.1254208Z ok (0.112s) 2023-01-11T21:28:38.1254696Z test_reduce_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1255019Z ok (0.039s) 2023-01-11T21:28:38.1255488Z test_return_dict2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1255816Z ok (0.023s) 2023-01-11T21:28:38.1256276Z test_return_dict_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1256605Z ok (0.021s) 2023-01-11T21:28:38.1257077Z test_return_tuple1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1257403Z ok (0.028s) 2023-01-11T21:28:38.1257864Z test_return_tuple2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1258185Z ok (0.018s) 2023-01-11T21:28:38.1258494Z test_shape1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1258939Z test_shape2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1259528Z test_slice1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1259846Z ok (0.014s) 2023-01-11T21:28:38.1260303Z test_slice2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1260615Z ok (0.013s) 2023-01-11T21:28:38.1261076Z test_slice3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1261395Z ok (0.041s) 2023-01-11T21:28:38.1261853Z test_slice4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1262154Z ok (0.016s) 2023-01-11T21:28:38.1262605Z test_slice5_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1262927Z ok (0.032s) 2023-01-11T21:28:38.1263453Z test_slice6_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1263759Z ok (0.040s) 2023-01-11T21:28:38.1264229Z test_startswith_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1264589Z ok (0.028s) 2023-01-11T21:28:38.1264878Z test_tensor_len_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... expected failure (0.018s) 2023-01-11T21:28:38.1265332Z test_tensor_new_with_shape_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1265806Z test_tensor_new_with_size_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.000s) 2023-01-11T21:28:38.1266264Z test_tensor_type2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.000s) 2023-01-11T21:28:38.1266901Z test_tensor_type_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1267219Z ok (0.050s) 2023-01-11T21:28:38.1267703Z test_transpose_for_scores_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1268041Z ok (0.035s) 2023-01-11T21:28:38.1268487Z test_tuple1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1268810Z ok (0.021s) 2023-01-11T21:28:38.1269269Z test_tuple2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1269589Z ok (0.020s) 2023-01-11T21:28:38.1270049Z test_tuple_contains_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1270378Z ok (0.021s) 2023-01-11T21:28:38.1270841Z test_tuple_iadd_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1271161Z ok (0.029s) 2023-01-11T21:28:38.1271608Z test_unpack1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1271926Z ok (0.034s) 2023-01-11T21:28:38.1272390Z test_unpack2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1272696Z ok (0.033s) 2023-01-11T21:28:38.1273158Z test_unpack3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1273474Z ok (0.032s) 2023-01-11T21:28:38.1273932Z test_unpack_ex1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1274243Z ok (0.048s) 2023-01-11T21:28:38.1274704Z test_unpack_ex2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1275020Z ok (0.048s) 2023-01-11T21:28:38.1275486Z test_unpack_ex3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1275790Z ok (0.048s) 2023-01-11T21:28:38.1276260Z test_viamethod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1276624Z ok (0.020s) 2023-01-11T21:28:38.1277076Z test_viatorch_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1277397Z ok (0.020s) 2023-01-11T21:28:38.1277812Z test_allow_in_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1278234Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1278444Z ok (0.041s) 2023-01-11T21:28:38.1278917Z test_autocast_cpu_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1279245Z ok (0.032s) 2023-01-11T21:28:38.1279575Z test_autocast_device_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1280020Z test_autocast_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1280457Z test_autocast_float64_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1280903Z test_autograd_function_equivalence_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1281329Z stats [('calls_captured', 4), ('unique_graphs', 4), ('fusions_possible', 0)] 2023-01-11T21:28:38.1281541Z ok (0.078s) 2023-01-11T21:28:38.1282081Z test_autograd_profiler_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... STAGE:2023-01-11 21:28:06 3567:3567 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:28:38.1282628Z STAGE:2023-01-11 21:28:06 3567:3567 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:28:38.1283064Z STAGE:2023-01-11 21:28:06 3567:3567 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:28:38.1283479Z [2023-01-11 21:28:06,721] torch._dynamo.variables.torch: [WARNING] Profiler will be ignored 2023-01-11T21:28:38.1283767Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1283954Z unimplemented [] 2023-01-11T21:28:38.1284172Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:28:38.1284486Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1284707Z ok (0.063s) 2023-01-11T21:28:38.1285239Z test_autograd_profiler_enabled_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... STAGE:2023-01-11 21:28:06 3567:3567 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:28:38.1285791Z STAGE:2023-01-11 21:28:06 3567:3567 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:28:38.1286232Z STAGE:2023-01-11 21:28:06 3567:3567 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:28:38.1286544Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1286720Z unimplemented [] 2023-01-11T21:28:38.1287021Z graph_break [('torch.autograd._profiler_enabled not supported yet', 1)] 2023-01-11T21:28:38.1287381Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1287592Z ok (0.042s) 2023-01-11T21:28:38.1288059Z test_boolarg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:28:38.1288382Z ok (0.054s) 2023-01-11T21:28:38.1288671Z test_build_tuple_unpack_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1289209Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1289436Z ok (0.060s) 2023-01-11T21:28:38.1289945Z test_builder_for_class_with_metaclass_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1290371Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1290594Z ok (0.019s) 2023-01-11T21:28:38.1291076Z test_builtin_isinstance_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1291411Z ok (0.017s) 2023-01-11T21:28:38.1291719Z test_builtin_subclasses_as_method_on_class_type_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.003s) 2023-01-11T21:28:38.1292215Z test_builtin_subclasses_as_method_on_var_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.004s) 2023-01-11T21:28:38.1292671Z test_call_parent_non_class_methods_from_child_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1293095Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1293318Z ok (0.029s) 2023-01-11T21:28:38.1293790Z test_callpacked_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1294114Z ok (0.056s) 2023-01-11T21:28:38.1294511Z test_cell_output1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1294925Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1295143Z ok (0.017s) 2023-01-11T21:28:38.1295539Z test_cell_output2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1295838Z unimplemented [] 2023-01-11T21:28:38.1296225Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1296634Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1296846Z ok (0.027s) 2023-01-11T21:28:38.1297669Z test_change_backends_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. 2023-01-11T21:28:38.1298336Z warnings.warn("The TorchScript type system doesn't support " 2023-01-11T21:28:38.1298682Z stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:28:38.1298945Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1299126Z ok (0.064s) 2023-01-11T21:28:38.1299521Z test_cond_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1299800Z inline_call [] 2023-01-11T21:28:38.1300092Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1300315Z ok (0.025s) 2023-01-11T21:28:38.1300608Z test_cond_export_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1301003Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1301228Z ok (0.044s) 2023-01-11T21:28:38.1302094Z test_cond_export_single_arg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/91143 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:28:38.1302931Z test_cond_nested_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1303213Z inline_call [] 2023-01-11T21:28:38.1303572Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1303794Z ok (0.043s) 2023-01-11T21:28:38.1304097Z test_cond_side_effects_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... expected failure (0.001s) 2023-01-11T21:28:38.1304694Z test_config_getattr_default_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1305129Z stats [('calls_captured', 21), ('fusions_possible', 18), ('unique_graphs', 3)] 2023-01-11T21:28:38.1305355Z ok (0.155s) 2023-01-11T21:28:38.1305757Z test_config_log_level_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1306180Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1306400Z ok (0.016s) 2023-01-11T21:28:38.1306790Z test_config_obj_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1307205Z stats [('calls_captured', 8), ('fusions_possible', 4), ('unique_graphs', 4)] 2023-01-11T21:28:38.1307424Z ok (0.070s) 2023-01-11T21:28:38.1307732Z test_const_dict_variable_python_type_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.001s) 2023-01-11T21:28:38.1308503Z test_cross_entropy_loss_fancy_ctor_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /opt/conda/lib/python3.10/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. 2023-01-11T21:28:38.1308971Z warnings.warn(warning.format(ret)) 2023-01-11T21:28:38.1309163Z ok (0.002s) 2023-01-11T21:28:38.1309469Z test_cross_entropy_loss_simple_ctor_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.002s) 2023-01-11T21:28:38.1310007Z test_dataclass_fields_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1310306Z inline_call [] 2023-01-11T21:28:38.1310601Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1310811Z ok (0.045s) 2023-01-11T21:28:38.1311245Z test_dict_mutation_side_effect_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1311677Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1311899Z ok (0.016s) 2023-01-11T21:28:38.1312338Z test_dict_reconstruct_keeps_original_order_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 13), ('ok', 12)] 2023-01-11T21:28:38.1312869Z unimplemented [("Guard setup for uninitialized class ", 1)] 2023-01-11T21:28:38.1313809Z graph_break [('UnspecializedNNModuleVariable missing add_module', 3), ('construct nn.Module: ReLU', 1), ('call_function in skip_files /opt/conda/lib/python3.10/collections/__init__.py', 1), ('construct nn.Module: ModuleDict', 1), ('Patched init cannot be inlined.', 1), ('construct nn.Module: Linear', 1), ('construct nn.Module: Sigmoid', 1), ('call_method ConstDictVariable() update [TupleVariable()] {}', 1)] 2023-01-11T21:28:38.1314471Z inline_call [('inline __setitem__', 2), ('Patched init cannot be inlined.', 1)] 2023-01-11T21:28:38.1314723Z ok (0.037s) 2023-01-11T21:28:38.1315122Z test_dictcomp_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1315419Z inline_call [] 2023-01-11T21:28:38.1315712Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1315922Z ok (0.020s) 2023-01-11T21:28:38.1316211Z test_disable_flag_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.002s) 2023-01-11T21:28:38.1316624Z test_disable_optimize_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.002s) 2023-01-11T21:28:38.1317147Z test_disallow_in_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1317485Z unimplemented [] 2023-01-11T21:28:38.1317862Z graph_break [('call_function UserDefinedObjectVariable(sub) [TensorVariable(), ConstantVariable(int)] {}', 1)] 2023-01-11T21:28:38.1318268Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1318476Z ok (0.041s) 2023-01-11T21:28:38.1318774Z test_dunder_methods_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1319185Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1319394Z ok (0.057s) 2023-01-11T21:28:38.1319698Z test_duplicate_graph_break_warning_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... break 2023-01-11T21:28:38.1319983Z break 2023-01-11T21:28:38.1320174Z frames [('total', 9), ('ok', 9)] 2023-01-11T21:28:38.1320506Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2)] 2023-01-11T21:28:38.1320762Z unimplemented [] 2023-01-11T21:28:38.1321082Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 4)] 2023-01-11T21:28:38.1321444Z stats [('calls_captured', 6), ('unique_graphs', 4), ('fusions_possible', 2)] 2023-01-11T21:28:38.1321668Z ok (0.110s) 2023-01-11T21:28:38.1322168Z test_dynamo_min_operator_with_shape_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1322499Z ok (0.011s) 2023-01-11T21:28:38.1322902Z test_empty_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1323315Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1323537Z ok (0.037s) 2023-01-11T21:28:38.1324009Z test_enum_no_graphbreaks_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1324349Z ok (0.029s) 2023-01-11T21:28:38.1324773Z test_error_on_nested_fx_trace_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1325191Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1325412Z ok (0.019s) 2023-01-11T21:28:38.1325869Z test_fold_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1326189Z ok (0.017s) 2023-01-11T21:28:38.1326676Z test_frozenset_torch_func_contains_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1327018Z ok (0.027s) 2023-01-11T21:28:38.1327500Z test_function_annotation_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1327869Z ok (0.027s) 2023-01-11T21:28:38.1328323Z test_generate_tensor_from_list_of_numpy_primitive_type_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1328656Z unimplemented [] 2023-01-11T21:28:38.1328871Z graph_break [('numpy', 1)] 2023-01-11T21:28:38.1329306Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1329530Z ok (0.008s) 2023-01-11T21:28:38.1329838Z test_get_device_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.000s) 2023-01-11T21:28:38.1330423Z test_grad_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1330719Z unimplemented [] 2023-01-11T21:28:38.1330956Z graph_break [('Tensor.backward', 1)] 2023-01-11T21:28:38.1331282Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1331494Z ok (0.064s) 2023-01-11T21:28:38.1331909Z test_grad_mode_guard_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1332212Z unimplemented [] 2023-01-11T21:28:38.1332431Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:28:38.1332745Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1332968Z ok (0.044s) 2023-01-11T21:28:38.1333363Z test_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1333659Z unimplemented [] 2023-01-11T21:28:38.1334034Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 2)] 2023-01-11T21:28:38.1334431Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:28:38.1334643Z ok (0.079s) 2023-01-11T21:28:38.1335124Z test_guard_failure_fn2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1335457Z ok (0.028s) 2023-01-11T21:28:38.1335924Z test_guard_failure_fn_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1336255Z ok (0.068s) 2023-01-11T21:28:38.1336731Z test_id_of_nn_module_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1337057Z ok (0.029s) 2023-01-11T21:28:38.1337520Z test_if_cond_nn_mod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1337847Z ok (0.041s) 2023-01-11T21:28:38.1338266Z test_inference_mode_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1338686Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1338896Z ok (0.022s) 2023-01-11T21:28:38.1339314Z test_inline_dict_mutation_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1339612Z inline_call [] 2023-01-11T21:28:38.1339893Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1340113Z ok (0.016s) 2023-01-11T21:28:38.1340556Z test_inline_func_jump_on_tensor_condition_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1341026Z inline_call [('generic_jump TensorVariable()', 1)] 2023-01-11T21:28:38.1341229Z unimplemented [] 2023-01-11T21:28:38.1341489Z graph_break [('generic_jump TensorVariable()', 1)] 2023-01-11T21:28:38.1341822Z stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:28:38.1342030Z ok (0.038s) 2023-01-11T21:28:38.1342446Z test_inline_list_mutation_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1342746Z inline_call [] 2023-01-11T21:28:38.1343025Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1343245Z ok (0.015s) 2023-01-11T21:28:38.1343839Z test_inplace_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1344169Z ok (0.018s) 2023-01-11T21:28:38.1344641Z test_inplace_param_update_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1344983Z ok (0.010s) 2023-01-11T21:28:38.1345391Z test_is_compiling_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1345794Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1346016Z ok (0.009s) 2023-01-11T21:28:38.1346492Z test_is_floating_point2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1346824Z ok (0.034s) 2023-01-11T21:28:38.1347291Z test_is_floating_point_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1347617Z ok (0.034s) 2023-01-11T21:28:38.1348017Z test_is_tensor2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1348428Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1348638Z ok (0.035s) 2023-01-11T21:28:38.1349100Z test_is_tensor_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1349419Z ok (0.034s) 2023-01-11T21:28:38.1349815Z test_is_tensor_like2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1350114Z unimplemented [] 2023-01-11T21:28:38.1350440Z graph_break [('call_function args: UserDefinedObjectVariable(MyTensor) ', 1)] 2023-01-11T21:28:38.1350798Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1351018Z ok (0.016s) 2023-01-11T21:28:38.1351492Z test_is_tensor_like_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1351818Z ok (0.022s) 2023-01-11T21:28:38.1352280Z test_item_changes_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1352611Z ok (0.041s) 2023-01-11T21:28:38.1353098Z test_item_changes_new_shape_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1353435Z ok (0.043s) 2023-01-11T21:28:38.1353886Z test_item_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1354253Z ok (0.021s) 2023-01-11T21:28:38.1354550Z test_large_reduction_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.012s) 2023-01-11T21:28:38.1354957Z test_linetable_writer_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.001s) 2023-01-11T21:28:38.1355503Z test_list_append_return_none_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1355933Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1356157Z ok (0.012s) 2023-01-11T21:28:38.1356584Z test_list_mul_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1356870Z ok (0.002s) 2023-01-11T21:28:38.1357269Z test_listcomp_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1357563Z inline_call [] 2023-01-11T21:28:38.1357842Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1358064Z ok (0.042s) 2023-01-11T21:28:38.1358384Z test_lnotab_writer_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: use lnotab when python < 3.10 (0.000s) 2023-01-11T21:28:38.1358984Z test_manual_seed_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1359306Z ok (0.029s) 2023-01-11T21:28:38.1359771Z test_matmul1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1360092Z ok (0.013s) 2023-01-11T21:28:38.1360378Z test_module_complex_iter_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.011s) 2023-01-11T21:28:38.1360913Z test_module_deepcopy_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 6), ('ok', 6)] 2023-01-11T21:28:38.1361215Z unimplemented [] 2023-01-11T21:28:38.1361520Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/copy.py', 2)] 2023-01-11T21:28:38.1361761Z inline_call [] 2023-01-11T21:28:38.1362053Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1362281Z ok (0.063s) 2023-01-11T21:28:38.1362564Z test_named_parameters_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.024s) 2023-01-11T21:28:38.1363095Z test_namedtuple1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1363519Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1363729Z ok (0.022s) 2023-01-11T21:28:38.1364133Z test_namedtuple2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1364551Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1364773Z ok (0.027s) 2023-01-11T21:28:38.1365161Z test_namedtuple3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1365578Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1365800Z ok (0.020s) 2023-01-11T21:28:38.1366179Z test_nan_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1366582Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1366845Z ok (0.019s) 2023-01-11T21:28:38.1367130Z test_nested_closure_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1367540Z stats [('calls_captured', 9), ('fusions_possible', 7), ('unique_graphs', 2)] 2023-01-11T21:28:38.1367762Z ok (0.067s) 2023-01-11T21:28:38.1368065Z test_nested_closure_mutation_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1368477Z stats [('calls_captured', 11), ('fusions_possible', 9), ('unique_graphs', 2)] 2023-01-11T21:28:38.1368697Z ok (0.036s) 2023-01-11T21:28:38.1369468Z test_nested_disable_decorator_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... [2023-01-11 21:28:09,255] torch._dynamo.convert_frame: [ERROR] WON'T CONVERT fn3 /var/lib/jenkins/workspace/test/dynamo/test_misc.py line 1197 2023-01-11T21:28:38.1369878Z due to: 2023-01-11T21:28:38.1370053Z Traceback (most recent call last): 2023-01-11T21:28:38.1370429Z File "/opt/conda/lib/python3.10/site-packages/torch/_dynamo/exc.py", line 67, in unimplemented 2023-01-11T21:28:38.1370699Z raise Unsupported(msg) 2023-01-11T21:28:38.1371040Z torch._dynamo.exc.Unsupported: call torch._dynamo.disable() wrapped function .fn1 at 0x7f705437fb50> 2023-01-11T21:28:38.1371297Z 2023-01-11T21:28:38.1371367Z from user code: 2023-01-11T21:28:38.1371608Z File "/var/lib/jenkins/workspace/test/dynamo/test_misc.py", line 1199, in fn3 2023-01-11T21:28:38.1371841Z return fn2(x) 2023-01-11T21:28:38.1372067Z File "/var/lib/jenkins/workspace/test/dynamo/test_misc.py", line 1192, in fn2 2023-01-11T21:28:38.1372304Z x = fn1(x) # graph break 2023-01-11T21:28:38.1372420Z 2023-01-11T21:28:38.1372550Z Set torch._dynamo.config.verbose=True for more information 2023-01-11T21:28:38.1372696Z 2023-01-11T21:28:38.1372712Z 2023-01-11T21:28:38.1372820Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1373009Z unimplemented [] 2023-01-11T21:28:38.1373437Z graph_break [('call torch._dynamo.disable() wrapped function .fn1 at 0x7f705437fb50>', 1)] 2023-01-11T21:28:38.1373863Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1374323Z inline_call [('call torch._dynamo.disable() wrapped function .fn1 at 0x7f705437fb50>', 1)] 2023-01-11T21:28:38.1374614Z ok (0.076s) 2023-01-11T21:28:38.1374924Z test_nested_optimize_decorator_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1375335Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1375560Z ok (0.049s) 2023-01-11T21:28:38.1376039Z test_nested_optimize_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1376374Z ok (0.080s) 2023-01-11T21:28:38.1376846Z test_nested_optimize_run_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1377181Z ok (0.173s) 2023-01-11T21:28:38.1377669Z test_nn_functional_reduction_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1377993Z ok (0.024s) 2023-01-11T21:28:38.1378298Z test_nn_sequential_invocation_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1378719Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1378940Z ok (0.071s) 2023-01-11T21:28:38.1379301Z test_nn_sequential_invocation_reposition_indices_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1379740Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1379959Z ok (0.051s) 2023-01-11T21:28:38.1380376Z test_no_error_on_nested_fx_trace_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1380803Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1381025Z ok (0.020s) 2023-01-11T21:28:38.1381492Z test_no_grad_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 40), ('fusions_possible', 32), ('unique_graphs', 8)] 2023-01-11T21:28:38.1381840Z ok (0.270s) 2023-01-11T21:28:38.1382258Z test_not_dynamic_scope_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1382561Z inline_call [] 2023-01-11T21:28:38.1382842Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1383065Z ok (0.012s) 2023-01-11T21:28:38.1383615Z test_numel_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1383935Z ok (0.033s) 2023-01-11T21:28:38.1384343Z test_numpy_int_constant_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1384770Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1384990Z ok (0.021s) 2023-01-11T21:28:38.1385409Z test_numpy_variable_isinstance_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1385841Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1386063Z ok (0.011s) 2023-01-11T21:28:38.1386372Z test_object_classmethod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1386769Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1386989Z ok (0.011s) 2023-01-11T21:28:38.1387292Z test_object_staticmethod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1387694Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1387916Z ok (0.010s) 2023-01-11T21:28:38.1388406Z test_onnx_shape_as_tensor_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 15), ('fusions_possible', 10), ('unique_graphs', 5)] 2023-01-11T21:28:38.1388743Z ok (0.044s) 2023-01-11T21:28:38.1389207Z test_optimize_on_module_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1389537Z ok (0.021s) 2023-01-11T21:28:38.1389991Z test_pair_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:38.1390308Z ok (0.040s) 2023-01-11T21:28:38.1390703Z test_python_slice_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1391116Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1391336Z ok (0.041s) 2023-01-11T21:28:38.1391735Z test_raise_on_backend_error_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1)] 2023-01-11T21:28:38.1392171Z stats [('calls_captured', 3), ('fusions_possible', 2)] 2023-01-11T21:28:38.1392373Z ok (0.027s) 2023-01-11T21:28:38.1392760Z test_raises_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1393056Z unimplemented [] 2023-01-11T21:28:38.1393363Z graph_break [('call_function BuiltinVariable(str) [TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1393722Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1393929Z ok (0.038s) 2023-01-11T21:28:38.1394226Z test_rand_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1394682Z test_range_input_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1395082Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1395304Z ok (0.034s) 2023-01-11T21:28:38.1395743Z test_recursive_inline_list_mutation_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1396056Z inline_call [] 2023-01-11T21:28:38.1396336Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1396556Z ok (0.015s) 2023-01-11T21:28:38.1396975Z test_release_input_memory_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1397390Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1397608Z ok (0.013s) 2023-01-11T21:28:38.1398145Z test_release_module_memory_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1398571Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1398781Z ok (0.031s) 2023-01-11T21:28:38.1399292Z test_repro_graph_breaks_in__get_item_by_idx_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1399640Z ok (0.032s) 2023-01-11T21:28:38.1400047Z test_restore_graphstate_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1400436Z inline_call [('generic_jump TensorVariable()', 1)] 2023-01-11T21:28:38.1400652Z unimplemented [] 2023-01-11T21:28:38.1400918Z graph_break [('generic_jump TensorVariable()', 1)] 2023-01-11T21:28:38.1401241Z stats [('calls_captured', 6), ('unique_graphs', 4), ('fusions_possible', 2)] 2023-01-11T21:28:38.1401463Z ok (0.071s) 2023-01-11T21:28:38.1401966Z test_restore_graphstate_internals_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1402303Z ok (0.031s) 2023-01-11T21:28:38.1402722Z test_return_nested_function_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1403143Z stats [('calls_captured', 7), ('fusions_possible', 5), ('unique_graphs', 2)] 2023-01-11T21:28:38.1403364Z ok (0.058s) 2023-01-11T21:28:38.1403641Z test_sample_input_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.574s) 2023-01-11T21:28:38.1404171Z test_setattr_mutation1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1404683Z unimplemented [('call_method UserDefinedObjectVariable(member_descriptor) __mul__ [ConstantVariable(int)] {}', 1)] 2023-01-11T21:28:38.1405192Z graph_break [("isinstance called on UserDefinedClass UserDefinedObjectVariable(member_descriptor) ", 1)] 2023-01-11T21:28:38.1405586Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1405897Z stats [('calls_captured', 12), ('fusions_possible', 11), ('unique_graphs', 1)] 2023-01-11T21:28:38.1406122Z ok (0.093s) 2023-01-11T21:28:38.1406527Z test_setattr_mutation2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1406824Z inline_call [] 2023-01-11T21:28:38.1407113Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:28:38.1407325Z ok (0.070s) 2023-01-11T21:28:38.1407739Z test_setattr_mutation3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1408070Z inline_call [] 2023-01-11T21:28:38.1408362Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:28:38.1408575Z ok (0.070s) 2023-01-11T21:28:38.1408981Z test_shape_unpack_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1409521Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1409733Z ok (0.020s) 2023-01-11T21:28:38.1410179Z test_side_effects_codegen_update_mutated_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 6), ('ok', 6)] 2023-01-11T21:28:38.1410502Z unimplemented [] 2023-01-11T21:28:38.1410716Z graph_break [('Tensor.item', 4)] 2023-01-11T21:28:38.1411029Z stats [('calls_captured', 8), ('fusions_possible', 4), ('unique_graphs', 4)] 2023-01-11T21:28:38.1411248Z ok (0.128s) 2023-01-11T21:28:38.1411649Z test_size_input_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1412051Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1412272Z ok (0.038s) 2023-01-11T21:28:38.1412744Z test_slice_input_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('unique_graphs', 3), ('fusions_possible', 0)] 2023-01-11T21:28:38.1413057Z ok (0.031s) 2023-01-11T21:28:38.1413384Z test_tensor_build_list_unpack_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1414006Z test_tensor_data_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1414332Z ok (0.019s) 2023-01-11T21:28:38.1414724Z test_tensor_dict1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1415144Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1415365Z ok (0.018s) 2023-01-11T21:28:38.1415768Z test_tensor_dict2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1416171Z stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:28:38.1416393Z ok (0.036s) 2023-01-11T21:28:38.1416831Z test_tensor_dot_grad_no_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1417134Z unimplemented [] 2023-01-11T21:28:38.1417370Z graph_break [('Tensor.backward', 1)] 2023-01-11T21:28:38.1417686Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1417897Z ok (0.049s) 2023-01-11T21:28:38.1418315Z test_tensor_is_contiguous_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1418803Z stats [('calls_captured', 10), ('fusions_possible', 8), ('unique_graphs', 2)] 2023-01-11T21:28:38.1419025Z ok (0.071s) 2023-01-11T21:28:38.1419432Z test_tensor_item_capture_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1419857Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1420076Z ok (0.032s) 2023-01-11T21:28:38.1420480Z test_tensor_item_no_capture_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1420787Z unimplemented [] 2023-01-11T21:28:38.1421017Z graph_break [('Tensor.item', 1)] 2023-01-11T21:28:38.1421367Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1421578Z ok (0.026s) 2023-01-11T21:28:38.1422050Z test_tensor_layout_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1422379Z ok (0.019s) 2023-01-11T21:28:38.1422778Z test_tensor_types_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 10), ('ok', 10)] 2023-01-11T21:28:38.1423202Z stats [('calls_captured', 10), ('unique_graphs', 10), ('fusions_possible', 0)] 2023-01-11T21:28:38.1423493Z ok (0.078s) 2023-01-11T21:28:38.1423985Z test_top_package_import_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1424305Z ok (0.020s) 2023-01-11T21:28:38.1424792Z test_torch_cuda_is_available_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1425131Z ok (0.014s) 2023-01-11T21:28:38.1425449Z test_torch_cudnn_is_acceptable_bad_inputs_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1425927Z test_torch_cudnn_is_acceptable_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.000s) 2023-01-11T21:28:38.1426511Z test_torch_nn_parameter_isinstance_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1426945Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1427158Z ok (0.019s) 2023-01-11T21:28:38.1427687Z test_torch_profiler_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... STAGE:2023-01-11 21:28:12 3567:3567 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:28:38.1428227Z STAGE:2023-01-11 21:28:12 3567:3567 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:28:38.1428670Z STAGE:2023-01-11 21:28:12 3567:3567 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:28:38.1429073Z [2023-01-11 21:28:12,038] torch._dynamo.variables.torch: [WARNING] Profiler will be ignored 2023-01-11T21:28:38.1429464Z [2023-01-11 21:28:12,046] torch._dynamo.variables.torch: [WARNING] Profiler will be ignored 2023-01-11T21:28:38.1429747Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1429921Z unimplemented [] 2023-01-11T21:28:38.1430151Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:28:38.1430468Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1430690Z ok (0.063s) 2023-01-11T21:28:38.1431148Z test_torch_seed_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1431531Z ok (0.010s) 2023-01-11T21:28:38.1431993Z test_torch_size_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1432301Z ok (0.020s) 2023-01-11T21:28:38.1432701Z test_type_copy_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1433121Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1433341Z ok (0.057s) 2023-01-11T21:28:38.1433755Z test_typing_variable_isinstance_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1434218Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1434438Z ok (0.022s) 2023-01-11T21:28:38.1434890Z test_unpack4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:38.1435216Z ok (0.049s) 2023-01-11T21:28:38.1435676Z test_unpack5_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:38.1435990Z ok (0.043s) 2023-01-11T21:28:38.1436430Z test_update_locals_and_stack_uses_shared_cache_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1436754Z inline_call [] 2023-01-11T21:28:38.1436928Z unimplemented [] 2023-01-11T21:28:38.1437237Z graph_break [('call_method ListVariable() extend [ListIteratorVariable()] {}', 1)] 2023-01-11T21:28:38.1437479Z ok (0.020s) 2023-01-11T21:28:38.1437967Z test_user_defined_class_name_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1438300Z ok (0.031s) 2023-01-11T21:28:38.1438616Z test_user_function_variable_supports_enum_argument_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1438923Z ok (0.018s) 2023-01-11T21:28:38.1439254Z test_user_function_variable_supports_function_argument_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1439685Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1439908Z ok (0.020s) 2023-01-11T21:28:38.1440242Z test_user_function_variable_supports_type_abcmeta_argument_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1440685Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1440896Z ok (0.020s) 2023-01-11T21:28:38.1441307Z test_user_getattr1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1441603Z inline_call [] 2023-01-11T21:28:38.1441882Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1442104Z ok (0.021s) 2023-01-11T21:28:38.1442515Z test_user_getattr2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1442807Z inline_call [] 2023-01-11T21:28:38.1443086Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1443307Z ok (0.028s) 2023-01-11T21:28:38.1443714Z test_user_property_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1443996Z inline_call [] 2023-01-11T21:28:38.1444333Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1444553Z ok (0.021s) 2023-01-11T21:28:38.1444840Z test_usr_cls_classmethod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1445251Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1445470Z ok (0.028s) 2023-01-11T21:28:38.1445770Z test_usr_cls_staticmethod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1446172Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1446394Z ok (0.028s) 2023-01-11T21:28:38.1446724Z test_version_ci_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.001s) 2023-01-11T21:28:38.1447136Z test_write_to_closures_in_inlining_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1447557Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1447776Z ok (0.039s) 2023-01-11T21:28:38.1448069Z test_access_by_keys_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1448463Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1448684Z ok (0.110s) 2023-01-11T21:28:38.1449317Z test_basicmodule1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1449638Z ok (0.058s) 2023-01-11T21:28:38.1450116Z test_basicmodule2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1450443Z ok (0.055s) 2023-01-11T21:28:38.1450754Z test_call_fn_with_non_const_inputs_safe_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1451165Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1451385Z ok (0.209s) 2023-01-11T21:28:38.1451847Z test_cfgmod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1452170Z ok (0.095s) 2023-01-11T21:28:38.1452622Z test_children_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1452950Z ok (0.077s) 2023-01-11T21:28:38.1453419Z test_constloop_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1453731Z ok (0.144s) 2023-01-11T21:28:38.1454023Z test_densenet_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1454429Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1454651Z ok (0.112s) 2023-01-11T21:28:38.1454931Z test_enumvalues_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1455340Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1455559Z ok (0.108s) 2023-01-11T21:28:38.1456015Z test_fnmember_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1456333Z ok (0.046s) 2023-01-11T21:28:38.1456804Z test_fnmembercmp1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1457192Z ok (0.047s) 2023-01-11T21:28:38.1457653Z test_fnmembercmp2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1457975Z ok (0.058s) 2023-01-11T21:28:38.1458272Z test_forward_directly_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1458677Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1458898Z ok (0.076s) 2023-01-11T21:28:38.1459229Z test_generation_tag_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.002s) 2023-01-11T21:28:38.1459824Z test_hasattr_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1460139Z ok (0.036s) 2023-01-11T21:28:38.1460603Z test_intarg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1460925Z ok (0.054s) 2023-01-11T21:28:38.1461386Z test_iseval1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1461695Z ok (0.046s) 2023-01-11T21:28:38.1462153Z test_iseval2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1462470Z ok (0.045s) 2023-01-11T21:28:38.1462932Z test_isnonelayer_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1463261Z ok (0.032s) 2023-01-11T21:28:38.1463803Z test_istraining1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1464129Z ok (0.045s) 2023-01-11T21:28:38.1464582Z test_istraining2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1464906Z ok (0.045s) 2023-01-11T21:28:38.1465376Z test_layerlist_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1465702Z ok (0.063s) 2023-01-11T21:28:38.1466365Z test_lazy_module_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:28:38.1466962Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:28:38.1467626Z [2023-01-11 21:28:14,227] torch._dynamo.symbolic_convert: [WARNING] /opt/conda/lib/python3.10/site-packages/torch/nn/parameter.py [SizeVariable()] {} missing a required argument: 'shape' 2023-01-11T21:28:38.1468367Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:28:38.1468843Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:28:38.1469410Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:28:38.1469934Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:28:38.1470582Z [2023-01-11 21:28:14,353] torch._dynamo.symbolic_convert: [WARNING] /opt/conda/lib/python3.10/site-packages/torch/nn/parameter.py [SizeVariable()] {} missing a required argument: 'shape' 2023-01-11T21:28:38.1471316Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:28:38.1471813Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:28:38.1472098Z frames [('total', 16), ('ok', 14)] 2023-01-11T21:28:38.1472847Z inline_call [('Patched init cannot be inlined.', 3), ('arg mismatch inlining', 2), ('call_function UserDefinedObjectVariable(_infer_parameters) [NNModuleVariable(), TupleVariable()] {}', 1), ('call_function UserDefinedObjectVariable(_infer_parameters) [UnspecializedNNModuleVariable(LazyModule), TupleVariable()] {}', 1)] 2023-01-11T21:28:38.1473515Z unimplemented [("Guard setup for uninitialized class ", 2)] 2023-01-11T21:28:38.1473900Z graph_break [('Patched init cannot be inlined.', 3), ('arg mismatch inlining', 2)] 2023-01-11T21:28:38.1474264Z stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:28:38.1474487Z ok (0.302s) 2023-01-11T21:28:38.1474788Z test_module_attribute_precedence_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1475213Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1475434Z ok (0.044s) 2023-01-11T21:28:38.1475732Z test_module_class_method_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1476136Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:28:38.1476355Z ok (0.123s) 2023-01-11T21:28:38.1476788Z test_module_forward_has_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 2)] 2023-01-11T21:28:38.1477085Z inline_call [] 2023-01-11T21:28:38.1477363Z unimplemented [('reconstruct: ConstantVariable(dict)', 2)] 2023-01-11T21:28:38.1477823Z graph_break [('call_function BuiltinVariable(dict) [ListIteratorVariable()] {}', 1), ('call_method NNModuleVariable() buffers [] {}', 1)] 2023-01-11T21:28:38.1478235Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1478448Z ok (0.180s) 2023-01-11T21:28:38.1478930Z test_module_name_string_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1479263Z ok (0.053s) 2023-01-11T21:28:38.1479551Z test_module_property_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1479959Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1480182Z ok (0.026s) 2023-01-11T21:28:38.1480482Z test_module_static_method_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1480885Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:28:38.1481105Z ok (0.123s) 2023-01-11T21:28:38.1481578Z test_moduledict_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1481971Z ok (0.032s) 2023-01-11T21:28:38.1482445Z test_modulelist_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 40), ('fusions_possible', 39), ('unique_graphs', 1)] 2023-01-11T21:28:38.1482768Z ok (0.512s) 2023-01-11T21:28:38.1483064Z test_modulemethod1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1483462Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:28:38.1483684Z ok (0.123s) 2023-01-11T21:28:38.1483977Z test_modulemethod2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1484376Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:28:38.1484595Z ok (0.124s) 2023-01-11T21:28:38.1485116Z test_nn_moduledict_contains_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:28:38.1485511Z frames [('total', 2), ('ok', 1)] 2023-01-11T21:28:38.1485770Z inline_call [('Patched init cannot be inlined.', 1)] 2023-01-11T21:28:38.1486223Z unimplemented [("Guard setup for uninitialized class .M'>", 1)] 2023-01-11T21:28:38.1486614Z graph_break [('Patched init cannot be inlined.', 1)] 2023-01-11T21:28:38.1486807Z ok (0.043s) 2023-01-11T21:28:38.1487103Z test_parameters1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1487512Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1487734Z ok (0.022s) 2023-01-11T21:28:38.1488018Z test_parameters2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1488421Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1488643Z ok (0.022s) 2023-01-11T21:28:38.1489213Z test_parameters3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1489541Z ok (0.070s) 2023-01-11T21:28:38.1490019Z test_self_mutating1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:28:38.1490351Z ok (0.067s) 2023-01-11T21:28:38.1490795Z test_seq_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1491113Z ok (0.077s) 2023-01-11T21:28:38.1491416Z test_simple_torch_function_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1491819Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1492042Z ok (0.106s) 2023-01-11T21:28:38.1492514Z test_stringmember_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1492841Z ok (0.046s) 2023-01-11T21:28:38.1493122Z test_submodules1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1493528Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1493748Z ok (0.108s) 2023-01-11T21:28:38.1494031Z test_submodules2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1494438Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1494730Z ok (0.108s) 2023-01-11T21:28:38.1495018Z test_super1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1495408Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1495633Z ok (0.063s) 2023-01-11T21:28:38.1495919Z test_super2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1496309Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1496531Z ok (0.056s) 2023-01-11T21:28:38.1496829Z test_super_class_method_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1497242Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1497533Z ok (0.020s) 2023-01-11T21:28:38.1498008Z test_tensorlist_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1498335Z ok (0.058s) 2023-01-11T21:28:38.1498818Z test_torch_function_with_closure_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1499161Z ok (0.102s) 2023-01-11T21:28:38.1499583Z test_unsupportedmethod_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1500096Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1500375Z unimplemented [] 2023-01-11T21:28:38.1500753Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1501157Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:28:38.1501370Z ok (0.093s) 2023-01-11T21:28:38.1501794Z test_unsupportedmodule_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1502301Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1502588Z unimplemented [] 2023-01-11T21:28:38.1502948Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1503426Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:28:38.1503652Z ok (0.095s) 2023-01-11T21:28:38.1503943Z test_viamodulecall_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1504358Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1504584Z ok (0.071s) 2023-01-11T21:28:38.1504983Z test_Size_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1505439Z inline_call [('inline in skipfiles: assertIsInstance /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:28:38.1505706Z unimplemented [] 2023-01-11T21:28:38.1506059Z graph_break [('inline in skipfiles: assertIsInstance /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:28:38.1506432Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1506653Z ok (0.019s) 2023-01-11T21:28:38.1507059Z test_abc_setattr_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1507358Z unimplemented [] 2023-01-11T21:28:38.1507771Z graph_break [('setattr(UserDefinedObjectVariable) .Derived.__setattr__ at 0x7f702611d6c0>', 1)] 2023-01-11T21:28:38.1508119Z inline_call [] 2023-01-11T21:28:38.1508414Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1508626Z ok (0.023s) 2023-01-11T21:28:38.1509056Z test_avoid_dupe_specialization_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1509489Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1509757Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1509940Z ok (0.154s) 2023-01-11T21:28:38.1510237Z test_batch_norm_act_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1510644Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1510884Z ok (0.159s) 2023-01-11T21:28:38.1511342Z test_batchnorm_e2e_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:28:38.1511717Z frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1511886Z inline_call [] 2023-01-11T21:28:38.1512175Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1512454Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1512626Z ok (1.925s) 2023-01-11T21:28:38.1513058Z test_bigbird_unsqueeze_inplace_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1513490Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1513770Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1513939Z ok (0.420s) 2023-01-11T21:28:38.1514233Z test_boxes_len_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1514637Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1514846Z ok (0.026s) 2023-01-11T21:28:38.1515166Z test_chunk_reformer_ff_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1515783Z test_class_member_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1516108Z ok (0.043s) 2023-01-11T21:28:38.1516533Z test_convert_boxes_to_pooler_format_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1516603Z inline_call [] 2023-01-11T21:28:38.1516677Z unimplemented [] 2023-01-11T21:28:38.1516884Z graph_break [('dynamic shape operator: aten.repeat_interleave.Tensor', 2)] 2023-01-11T21:28:38.1517083Z stats [('calls_captured', 18), ('fusions_possible', 14), ('unique_graphs', 4)] 2023-01-11T21:28:38.1517166Z expected failure (0.170s) 2023-01-11T21:28:38.1517408Z test_create_rand_mask_from_inputs_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires static shapes (0.001s) 2023-01-11T21:28:38.1517592Z test_dict_iter_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.005s) 2023-01-11T21:28:38.1517916Z test_dict_list_values_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:28:38.1517989Z unimplemented [] 2023-01-11T21:28:38.1518326Z graph_break [('call_function in skip_files Builtin count', 2), ('call_function BuiltinVariable(zip) [UserDefinedObjectVariable(count), ListVariable()] {}', 2)] 2023-01-11T21:28:38.1518392Z ok (0.056s) 2023-01-11T21:28:38.1518693Z test_do_paste_mask_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1)] 2023-01-11T21:28:38.1518826Z expected failure (0.031s) 2023-01-11T21:28:38.1519229Z test_dynamic_shapes_right_side_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1519295Z ok (0.047s) 2023-01-11T21:28:38.1519655Z test_ellipsis_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1519719Z ok (0.138s) 2023-01-11T21:28:38.1520028Z test_exec_import_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:28:38.1520245Z inline_call [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1520352Z unimplemented [] 2023-01-11T21:28:38.1520570Z graph_break [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1520637Z ok (0.004s) 2023-01-11T21:28:38.1520966Z test_exec_wildcard_import_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:28:38.1521167Z inline_call [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1521241Z unimplemented [] 2023-01-11T21:28:38.1521454Z graph_break [('call_function BuiltinVariable(exec) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1521650Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1521714Z ok (0.016s) 2023-01-11T21:28:38.1522049Z test_for_loop_graph_break_before_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1522126Z unimplemented [] 2023-01-11T21:28:38.1522395Z graph_break [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:28:38.1522454Z inline_call [] 2023-01-11T21:28:38.1522654Z stats [('calls_captured', 100), ('fusions_possible', 99), ('unique_graphs', 1)] 2023-01-11T21:28:38.1522718Z ok (0.700s) 2023-01-11T21:28:38.1523044Z test_for_loop_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1523113Z inline_call [] 2023-01-11T21:28:38.1523385Z unimplemented [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:28:38.1523576Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1523644Z ok (0.029s) 2023-01-11T21:28:38.1523845Z test_get_parameter_dtype_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1524038Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1524105Z ok (0.027s) 2023-01-11T21:28:38.1524340Z test_grad_mode_carrying_correct_state_after_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... Break 2023-01-11T21:28:38.1524457Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1524531Z unimplemented [] 2023-01-11T21:28:38.1524748Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1524928Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1524992Z ok (0.030s) 2023-01-11T21:28:38.1525321Z test_guard_fail_nested_tuple_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1525513Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1525580Z ok (0.034s) 2023-01-11T21:28:38.1525914Z test_guard_fail_tensor_bool_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 12), ('ok', 12)] 2023-01-11T21:28:38.1526152Z unimplemented [('FOR_ITER UserDefinedObjectVariable(product)', 1)] 2023-01-11T21:28:38.1526595Z graph_break [('call torch._dynamo.disable() wrapped function .fn..get_expected at 0x7f70a054d1b0>', 5), ('data dependent operator: aten.allclose.default', 5)] 2023-01-11T21:28:38.1526786Z stats [('calls_captured', 5), ('unique_graphs', 5), ('fusions_possible', 0)] 2023-01-11T21:28:38.1526840Z ok (0.187s) 2023-01-11T21:28:38.1527051Z test_guard_ordering_shape_fail_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.001s) 2023-01-11T21:28:38.1527286Z test_hf_model_output_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1527483Z stats [('calls_captured', 4), ('unique_graphs', 4), ('fusions_possible', 0)] 2023-01-11T21:28:38.1527551Z ok (0.094s) 2023-01-11T21:28:38.1527751Z test_hf_t5_forward_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1527948Z stats [('calls_captured', 14), ('fusions_possible', 13), ('unique_graphs', 1)] 2023-01-11T21:28:38.1528029Z expected failure (0.557s) 2023-01-11T21:28:38.1528339Z test_indexing_with_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1528465Z inline_call [('Tensor.numpy', 1)] 2023-01-11T21:28:38.1528668Z unimplemented [('COMPARE_OP ConstantVariable(tuple) == SizeVariable()', 1)] 2023-01-11T21:28:38.1528793Z graph_break [('Tensor.numpy', 1)] 2023-01-11T21:28:38.1528857Z ok (0.032s) 2023-01-11T21:28:38.1529158Z test_is_symbolic_tracing_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1529355Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1529422Z ok (0.014s) 2023-01-11T21:28:38.1529613Z test_isinstance_dtype_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... ok (0.006s) 2023-01-11T21:28:38.1530150Z test_isinstance_storage_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1484: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:28:38.1530272Z bools = torch.BoolStorage.from_buffer(f, "big") 2023-01-11T21:28:38.1530392Z frames [('total', 9), ('ok', 9)] 2023-01-11T21:28:38.1530470Z unimplemented [] 2023-01-11T21:28:38.1530839Z graph_break [('call_function BuiltinVariable(bytearray) [ListVariable()] {}', 1), ('inline in skipfiles: from_buffer /opt/conda/lib/python3.10/site-packages/torch/storage.py', 1)] 2023-01-11T21:28:38.1531105Z inline_call [('inline in skipfiles: from_buffer /opt/conda/lib/python3.10/site-packages/torch/storage.py', 1)] 2023-01-11T21:28:38.1531300Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1531384Z expected failure (0.021s) 2023-01-11T21:28:38.1531580Z test_issue1466_size_aot_autograd_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... arf 2023-01-11T21:28:38.1531640Z arf 2023-01-11T21:28:38.1531759Z frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1531832Z unimplemented [] 2023-01-11T21:28:38.1532051Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1532245Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1532370Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1532489Z ok (0.158s) 2023-01-11T21:28:38.1532673Z test_issue175_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1532872Z stats [('calls_captured', 12), ('fusions_possible', 11), ('unique_graphs', 1)] 2023-01-11T21:28:38.1532936Z ok (0.436s) 2023-01-11T21:28:38.1533324Z test_longformer_chunk_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 38), ('fusions_possible', 36), ('unique_graphs', 2)] 2023-01-11T21:28:38.1533389Z ok (1.122s) 2023-01-11T21:28:38.1533610Z test_maml_item_capture_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... expected failure (0.002s) 2023-01-11T21:28:38.1533978Z test_maml_no_item_capture_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:28:38.1534178Z inline_call [('inlining disallowed: ', 1)] 2023-01-11T21:28:38.1534245Z unimplemented [] 2023-01-11T21:28:38.1534581Z graph_break [('Tensor.item', 2), ('call_function in skip_files /opt/conda/lib/python3.10/copy.py', 1), ('inlining disallowed: ', 1)] 2023-01-11T21:28:38.1534778Z stats [('calls_captured', 36), ('fusions_possible', 31), ('unique_graphs', 5)] 2023-01-11T21:28:38.1534842Z ok (0.821s) 2023-01-11T21:28:38.1535216Z test_modules_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1535280Z ok (0.062s) 2023-01-11T21:28:38.1535599Z test_multi_dot_import_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1535887Z inline_call [('inline in skipfiles: symbolic_trace /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py', 1)] 2023-01-11T21:28:38.1535964Z unimplemented [] 2023-01-11T21:28:38.1536233Z graph_break [('inline in skipfiles: symbolic_trace /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py', 1)] 2023-01-11T21:28:38.1536427Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1536493Z ok (0.023s) 2023-01-11T21:28:38.1536714Z test_multi_import_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires detectron2 (0.000s) 2023-01-11T21:28:38.1537094Z test_named_buffers_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1537159Z ok (0.045s) 2023-01-11T21:28:38.1537475Z test_nn_parameter_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1537709Z inline_call [('inline in skipfiles: assertTrue /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:28:38.1537773Z unimplemented [] 2023-01-11T21:28:38.1538005Z graph_break [('inline in skipfiles: assertTrue /opt/conda/lib/python3.10/unittest/case.py', 1)] 2023-01-11T21:28:38.1538196Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1538262Z ok (0.014s) 2023-01-11T21:28:38.1538476Z test_norm_dtype_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1538842Z test_not_rewrite_assert_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... unimplemented [('generic_jump TensorVariable()', 1)] 2023-01-11T21:28:38.1538907Z ok (0.019s) 2023-01-11T21:28:38.1539257Z test_not_rewrite_assert_for_other_errors_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1539438Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1539543Z ok (0.022s) 2023-01-11T21:28:38.1539856Z test_numpy_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:28:38.1539932Z unimplemented [] 2023-01-11T21:28:38.1540240Z graph_break [('call torch._dynamo.disable() wrapped function .rand_gen at 0x7f709044aa70>', 1)] 2023-01-11T21:28:38.1540323Z expected failure (0.029s) 2023-01-11T21:28:38.1540650Z test_optimized_deepcopy_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1540843Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1540895Z ok (0.045s) 2023-01-11T21:28:38.1541239Z test_primtorch_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1541517Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:28:38.1541592Z unimplemented [] 2023-01-11T21:28:38.1541865Z graph_break [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:28:38.1541930Z ok (0.013s) 2023-01-11T21:28:38.1542399Z test_primtorch_no_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py', 1)] 2023-01-11T21:28:38.1542481Z expected failure (0.006s) 2023-01-11T21:28:38.1542801Z test_recursive_map_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1542859Z inline_call [] 2023-01-11T21:28:38.1543053Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1543120Z ok (0.041s) 2023-01-11T21:28:38.1543380Z test_reformer_eval_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1543583Z stats [('calls_captured', 10), ('fusions_possible', 9), ('unique_graphs', 1)] 2023-01-11T21:28:38.1543652Z ok (0.415s) 2023-01-11T21:28:38.1543860Z test_reformer_min_chunk_len_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1544053Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1544106Z ok (0.016s) 2023-01-11T21:28:38.1544316Z test_reformer_remove_unused_args_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... foo 2023-01-11T21:28:38.1544379Z foo 2023-01-11T21:28:38.1544496Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1544713Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1544790Z unimplemented [] 2023-01-11T21:28:38.1545006Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2)] 2023-01-11T21:28:38.1545185Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1545312Z aot_autograd [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1545378Z ok (0.153s) 2023-01-11T21:28:38.1545584Z test_reformer_sorting_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... inline_call [] 2023-01-11T21:28:38.1545783Z stats [('calls_captured', 28), ('fusions_possible', 27), ('unique_graphs', 1)] 2023-01-11T21:28:38.1545848Z ok (0.088s) 2023-01-11T21:28:38.1546167Z test_reformer_train_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1546455Z inline_call [('inline in skipfiles: save_for_backward /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py', 1)] 2023-01-11T21:28:38.1546561Z unimplemented [] 2023-01-11T21:28:38.1546921Z graph_break [('autograd.Function with requires_grad', 1), ('inline in skipfiles: save_for_backward /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py', 1)] 2023-01-11T21:28:38.1547117Z stats [('calls_captured', 10), ('fusions_possible', 6), ('unique_graphs', 4)] 2023-01-11T21:28:38.1547182Z ok (0.404s) 2023-01-11T21:28:38.1547500Z test_reinplacing_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1547694Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1547819Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1547883Z ok (0.434s) 2023-01-11T21:28:38.1548288Z test_relative_import_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1548358Z ok (0.031s) 2023-01-11T21:28:38.1548766Z test_relative_import_no_modulename_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1548831Z ok (0.028s) 2023-01-11T21:28:38.1549218Z test_rewrite_assert_noop_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:28:38.1549283Z ok (0.082s) 2023-01-11T21:28:38.1549666Z test_rewrite_assert_with_fstring_msg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... unimplemented [('generic_jump TensorVariable()', 1)] 2023-01-11T21:28:38.1549730Z ok (0.019s) 2023-01-11T21:28:38.1550126Z test_rewrite_assert_with_msg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 18), ('fusions_possible', 15), ('unique_graphs', 3)] 2023-01-11T21:28:38.1550181Z ok (0.100s) 2023-01-11T21:28:38.1550583Z test_rewrite_assert_without_msg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 12), ('fusions_possible', 10), ('unique_graphs', 2)] 2023-01-11T21:28:38.1550647Z ok (0.068s) 2023-01-11T21:28:38.1550956Z test_rng_state_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1551190Z unimplemented [('TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd', 1)] 2023-01-11T21:28:38.1551418Z graph_break [('TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd', 2)] 2023-01-11T21:28:38.1551614Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1551678Z ok (0.035s) 2023-01-11T21:28:38.1552060Z test_seq_append_list_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1552115Z ok (0.105s) 2023-01-11T21:28:38.1552782Z test_sigmoid_out_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1543: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3, 5]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:28:38.1552873Z torch.sigmoid(inp, out=out1) 2023-01-11T21:28:38.1553649Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:28:38.1553768Z warnings.warn(msg) 2023-01-11T21:28:38.1554352Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1543: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3, 5]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:28:38.1554441Z torch.sigmoid(inp, out=out1) 2023-01-11T21:28:38.1554564Z frames [('total', 7), ('ok', 7)] 2023-01-11T21:28:38.1554757Z inline_call [('call_function UserDefinedClassVariable() [] {}', 1)] 2023-01-11T21:28:38.1554822Z ok (0.032s) 2023-01-11T21:28:38.1555223Z test_slice_into_list_mutable_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 30), ('fusions_possible', 29), ('unique_graphs', 1)] 2023-01-11T21:28:38.1555288Z ok (0.086s) 2023-01-11T21:28:38.1555618Z test_slicing_dynamic_shape_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1555771Z unimplemented [('Dynamic slicing not supported', 2)] 2023-01-11T21:28:38.1555965Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1556033Z ok (0.024s) 2023-01-11T21:28:38.1556373Z test_slicing_dynamic_shape_setitem_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:28:38.1556539Z unimplemented [('Dynamic slicing not supported', 1)] 2023-01-11T21:28:38.1556695Z graph_break [('Dynamic slicing not supported', 1)] 2023-01-11T21:28:38.1556889Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1557002Z aot_autograd [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1557066Z ok (0.034s) 2023-01-11T21:28:38.1557728Z test_sort_out_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:28:38.1557838Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:28:38.1558700Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:28:38.1558794Z return node.target(*args, **kwargs) 2023-01-11T21:28:38.1559346Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:28:38.1559488Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:28:38.1560035Z /var/lib/jenkins/workspace/test/dynamo/test_repros.py:1527: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:28:38.1560173Z torch.sort(tensor, out=(values1, indices1)) 2023-01-11T21:28:38.1560293Z frames [('total', 7), ('ok', 7)] 2023-01-11T21:28:38.1560489Z inline_call [('call_function UserDefinedClassVariable() [] {}', 1)] 2023-01-11T21:28:38.1560555Z ok (0.041s) 2023-01-11T21:28:38.1560888Z test_specialized_stride_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1561081Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1561134Z ok (0.010s) 2023-01-11T21:28:38.1561461Z test_swin_base_tensor_attr_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1561653Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1561719Z ok (0.081s) 2023-01-11T21:28:38.1562050Z test_tensor_isinstance_tuple_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1562244Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1562310Z ok (0.009s) 2023-01-11T21:28:38.1562627Z test_tokenization_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1562852Z inline_call [('inline in skipfiles: __init__ /opt/conda/lib/python3.10/collections/__init__.py', 2)] 2023-01-11T21:28:38.1562926Z unimplemented [] 2023-01-11T21:28:38.1563161Z graph_break [('inline in skipfiles: __init__ /opt/conda/lib/python3.10/collections/__init__.py', 2)] 2023-01-11T21:28:38.1563226Z ok (0.015s) 2023-01-11T21:28:38.1563609Z test_torch_ops_aten_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1563673Z ok (0.019s) 2023-01-11T21:28:38.1564065Z test_vdd_duplicate_error_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1564131Z ok (0.062s) 2023-01-11T21:28:38.1564445Z test_while_loop_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1564515Z inline_call [] 2023-01-11T21:28:38.1564783Z unimplemented [('call_function in skip_files /opt/conda/lib/python3.10/site-packages/torch/_dynamo/__init__.py', 1)] 2023-01-11T21:28:38.1564976Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1565040Z ok (0.026s) 2023-01-11T21:28:38.1565249Z test_with_on_graph_break_inst_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... Hello world 2023-01-11T21:28:38.1565317Z Hello world 2023-01-11T21:28:38.1565434Z frames [('total', 6), ('ok', 6)] 2023-01-11T21:28:38.1565639Z inline_call [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 1)] 2023-01-11T21:28:38.1565765Z unimplemented [] 2023-01-11T21:28:38.1566023Z graph_break [('call_function BuiltinVariable(print) [ConstantVariable(str)] {}', 2), ('Tensor.backward', 1)] 2023-01-11T21:28:38.1566216Z stats [('calls_captured', 11), ('fusions_possible', 7), ('unique_graphs', 4)] 2023-01-11T21:28:38.1566281Z ok (0.107s) 2023-01-11T21:28:38.1566592Z test_capi_call1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1566666Z unimplemented [] 2023-01-11T21:28:38.1566927Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1567120Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1567185Z ok (0.022s) 2023-01-11T21:28:38.1567527Z test_capi_call2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1567605Z unimplemented [] 2023-01-11T21:28:38.1567880Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1568074Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1568137Z ok (0.043s) 2023-01-11T21:28:38.1568430Z test_capi_call3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1568504Z unimplemented [] 2023-01-11T21:28:38.1568776Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1568967Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1569031Z ok (0.022s) 2023-01-11T21:28:38.1569435Z test_control_flow1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1569632Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:38.1569697Z ok (0.043s) 2023-01-11T21:28:38.1569997Z test_control_flow2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1570188Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1570252Z ok (0.022s) 2023-01-11T21:28:38.1570559Z test_control_flow3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1570751Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:28:38.1570816Z ok (0.071s) 2023-01-11T21:28:38.1571128Z test_control_flow4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:28:38.1571321Z stats [('calls_captured', 5), ('unique_graphs', 3), ('fusions_possible', 2)] 2023-01-11T21:28:38.1571376Z ok (0.039s) 2023-01-11T21:28:38.1571686Z test_control_flow5_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:28:38.1571881Z stats [('calls_captured', 13), ('fusions_possible', 7), ('unique_graphs', 6)] 2023-01-11T21:28:38.1571947Z ok (0.098s) 2023-01-11T21:28:38.1572267Z test_dynamic_duck_size_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1572459Z stats [('calls_captured', 10), ('fusions_possible', 8), ('unique_graphs', 2)] 2023-01-11T21:28:38.1572524Z ok (0.040s) 2023-01-11T21:28:38.1572839Z test_dynamic_kwarg_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1573032Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1573137Z ok (0.022s) 2023-01-11T21:28:38.1573476Z test_dynamic_order_dependence_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1573669Z stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:28:38.1573735Z ok (0.063s) 2023-01-11T21:28:38.1574062Z test_dynamic_shapes_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 11), ('ok', 11)] 2023-01-11T21:28:38.1574259Z stats [('calls_captured', 22), ('fusions_possible', 11), ('unique_graphs', 11)] 2023-01-11T21:28:38.1574324Z ok (0.059s) 2023-01-11T21:28:38.1574695Z test_dynamic_zero_inference_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1574879Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1574946Z ok (0.024s) 2023-01-11T21:28:38.1575285Z test_enumerate_not_break_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1575476Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1575558Z expected failure (0.024s) 2023-01-11T21:28:38.1575870Z test_extended_args_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1576075Z stats [('calls_captured', 1026), ('fusions_possible', 1023), ('unique_graphs', 3)] 2023-01-11T21:28:38.1576141Z ok (6.796s) 2023-01-11T21:28:38.1576455Z test_graph_break_on_item_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1576529Z unimplemented [] 2023-01-11T21:28:38.1576653Z graph_break [('Tensor.item', 1)] 2023-01-11T21:28:38.1576846Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:28:38.1576910Z ok (0.050s) 2023-01-11T21:28:38.1577237Z test_indirect_unsupported1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1577514Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1577588Z unimplemented [] 2023-01-11T21:28:38.1577850Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1578043Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1578109Z ok (0.042s) 2023-01-11T21:28:38.1578441Z test_indirect_unsupported2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1578718Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1578795Z unimplemented [] 2023-01-11T21:28:38.1579063Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1579257Z stats [('calls_captured', 5), ('unique_graphs', 3), ('fusions_possible', 2)] 2023-01-11T21:28:38.1579310Z ok (0.067s) 2023-01-11T21:28:38.1579639Z test_indirect_unsupported3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1579913Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1579988Z unimplemented [] 2023-01-11T21:28:38.1580260Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1580455Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:28:38.1580555Z ok (0.042s) 2023-01-11T21:28:38.1580870Z test_multigraph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1581050Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:28:38.1581114Z ok (0.041s) 2023-01-11T21:28:38.1581441Z test_no_graph_break_on_item_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1581633Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:38.1581698Z ok (0.046s) 2023-01-11T21:28:38.1582045Z test_pop_after_resume_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1582122Z unimplemented [] 2023-01-11T21:28:38.1582396Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1582576Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1582640Z ok (0.042s) 2023-01-11T21:28:38.1582952Z test_restore_range_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1583028Z unimplemented [] 2023-01-11T21:28:38.1583381Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1583577Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1583642Z ok (0.041s) 2023-01-11T21:28:38.1583967Z test_restore_range_iter_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1584029Z unimplemented [] 2023-01-11T21:28:38.1584303Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1584498Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:38.1584575Z ok (0.024s) 2023-01-11T21:28:38.1585057Z test_restore_state_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 1)] 2023-01-11T21:28:38.1585193Z unimplemented [] 2023-01-11T21:28:38.1585698Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1585910Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1585979Z expected failure (0.036s) 2023-01-11T21:28:38.1586290Z test_resume1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1586364Z unimplemented [] 2023-01-11T21:28:38.1586635Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1586828Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1586894Z ok (0.054s) 2023-01-11T21:28:38.1587196Z test_resume2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1587466Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1587529Z unimplemented [] 2023-01-11T21:28:38.1587798Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1587990Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:28:38.1588055Z ok (0.075s) 2023-01-11T21:28:38.1588359Z test_resume3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1588679Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1588754Z unimplemented [] 2023-01-11T21:28:38.1589025Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1589207Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:28:38.1589274Z ok (0.074s) 2023-01-11T21:28:38.1589578Z test_resume4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1589851Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1589927Z unimplemented [] 2023-01-11T21:28:38.1590232Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1590429Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:28:38.1590493Z ok (0.074s) 2023-01-11T21:28:38.1590701Z test_resume5_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:28:38.1590766Z 1.5000]) 2023-01-11T21:28:38.1590870Z tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:28:38.1590933Z 1.5000]) 2023-01-11T21:28:38.1591033Z tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:28:38.1591095Z 1.5000]) 2023-01-11T21:28:38.1591192Z tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:28:38.1591242Z 1.5000]) 2023-01-11T21:28:38.1591361Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1591435Z unimplemented [] 2023-01-11T21:28:38.1591638Z graph_break [('call_function BuiltinVariable(print) [TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1591833Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1591897Z ok (0.055s) 2023-01-11T21:28:38.1608168Z test_resume_freevars_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1608324Z unimplemented [] 2023-01-11T21:28:38.1608658Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1608865Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:28:38.1608933Z ok (0.053s) 2023-01-11T21:28:38.1609383Z test_resume_paths_join_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:28:38.1609586Z stats [('calls_captured', 10), ('unique_graphs', 7), ('fusions_possible', 3)] 2023-01-11T21:28:38.1609662Z ok (0.115s) 2023-01-11T21:28:38.1609998Z test_resume_tuple_iterator_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1610075Z unimplemented [] 2023-01-11T21:28:38.1610339Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1610538Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:28:38.1610604Z ok (0.071s) 2023-01-11T21:28:38.1610932Z test_resume_with_no_grad1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1611007Z unimplemented [] 2023-01-11T21:28:38.1611136Z graph_break [('Tensor.tolist', 2)] 2023-01-11T21:28:38.1611340Z stats [('calls_captured', 18), ('fusions_possible', 14), ('unique_graphs', 4)] 2023-01-11T21:28:38.1611405Z ok (0.096s) 2023-01-11T21:28:38.1611720Z test_resume_with_no_grad2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1611929Z unimplemented [] 2023-01-11T21:28:38.1612059Z graph_break [('Tensor.tolist', 2)] 2023-01-11T21:28:38.1612259Z stats [('calls_captured', 13), ('fusions_possible', 10), ('unique_graphs', 3)] 2023-01-11T21:28:38.1612324Z ok (0.070s) 2023-01-11T21:28:38.1612653Z test_resume_with_no_grad3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1612729Z unimplemented [] 2023-01-11T21:28:38.1612842Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:28:38.1613041Z stats [('calls_captured', 19), ('fusions_possible', 17), ('unique_graphs', 2)] 2023-01-11T21:28:38.1613107Z ok (0.048s) 2023-01-11T21:28:38.1613496Z test_stack_state1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1613576Z unimplemented [] 2023-01-11T21:28:38.1613860Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1614056Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:28:38.1614119Z ok (0.056s) 2023-01-11T21:28:38.1614419Z test_stack_state2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1614696Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1614773Z unimplemented [] 2023-01-11T21:28:38.1615047Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1615245Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:28:38.1615312Z ok (0.077s) 2023-01-11T21:28:38.1615525Z test_start1_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) 2023-01-11T21:28:38.1615690Z tensor([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2.]) 2023-01-11T21:28:38.1615769Z tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) 2023-01-11T21:28:38.1615922Z tensor([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2.]) 2023-01-11T21:28:38.1616041Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1616117Z unimplemented [] 2023-01-11T21:28:38.1616330Z graph_break [('call_function BuiltinVariable(print) [TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1616527Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1616592Z ok (0.035s) 2023-01-11T21:28:38.1616901Z test_start2_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1617165Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1617244Z unimplemented [] 2023-01-11T21:28:38.1617519Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1617716Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:28:38.1617783Z ok (0.053s) 2023-01-11T21:28:38.1618087Z test_start3_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:38.1618162Z unimplemented [] 2023-01-11T21:28:38.1618439Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:28:38.1618620Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1618688Z ok (0.033s) 2023-01-11T21:28:38.1618989Z test_start4_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1619219Z stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:28:38.1619284Z ok (0.048s) 2023-01-11T21:28:38.1619508Z test_tuple_iterator_mutate_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: not working yet (0.001s) 2023-01-11T21:28:38.1619839Z test_tuple_iterator_return_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1619915Z unimplemented [] 2023-01-11T21:28:38.1620179Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:28:38.1620372Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:28:38.1620468Z ok (0.068s) 2023-01-11T21:28:38.1620696Z test_builtin_functions_on_cuda_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... skip: requires cuda (0.001s) 2023-01-11T21:28:38.1621009Z test_builtin_getitem_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1)] 2023-01-11T21:28:38.1621090Z expected failure (0.014s) 2023-01-11T21:28:38.1621405Z test_builtin_max_min_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1621597Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:38.1621650Z ok (0.022s) 2023-01-11T21:28:38.1622000Z test_feed_random_values_into_graph_only_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1622194Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1622259Z ok (0.018s) 2023-01-11T21:28:38.1622629Z test_multiple_consecutive_random_calls_before_graph_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1622823Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1622887Z ok (0.027s) 2023-01-11T21:28:38.1623207Z test_no_recompilations_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1623471Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:38.1623525Z ok (0.019s) 2023-01-11T21:28:38.1623852Z test_numpy_correctness_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:28:38.1624038Z unimplemented [('reconstruct: ConstantVariable(float64)', 1)] 2023-01-11T21:28:38.1624189Z graph_break [('Tensor.numpy', 2), ('numpy', 2)] 2023-01-11T21:28:38.1624387Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:38.1624453Z ok (0.073s) 2023-01-11T21:28:38.1624786Z test_random_call_with_while_loop_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1624977Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:38.1625028Z ok (0.017s) 2023-01-11T21:28:38.1625370Z test_random_values_with_graph_break_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:28:38.1625445Z unimplemented [] 2023-01-11T21:28:38.1625567Z graph_break [('Tensor.item', 2)] 2023-01-11T21:28:38.1625760Z stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:28:38.1625823Z ok (0.062s) 2023-01-11T21:28:38.1626155Z test_unspec_float_precision_dynamic_shapes (torch._dynamo.testing.make_test_cls_with_patches..DummyTestClass) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:38.1626387Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:28:38.1626452Z ok (0.661s) 2023-01-11T21:28:38.1626460Z 2023-01-11T21:28:38.1626662Z ---------------------------------------------------------------------- 2023-01-11T21:28:38.1626742Z Ran 510 tests in 37.636s 2023-01-11T21:28:38.1626747Z 2023-01-11T21:28:38.1626842Z OK (skipped=24, expected failures=16) 2023-01-11T21:28:38.1626848Z 2023-01-11T21:28:38.1626931Z Generating XML reports... 2023-01-11T21:28:38.1627326Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesExportTests-20230111212759.xml 2023-01-11T21:28:38.1627751Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesFunctionTests-20230111212759.xml 2023-01-11T21:28:38.1628125Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesMiscTests-20230111212759.xml 2023-01-11T21:28:38.1628510Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesNNModuleTests-20230111212759.xml 2023-01-11T21:28:38.1628882Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesReproTests-20230111212759.xml 2023-01-11T21:28:38.1629271Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesSubGraphTests-20230111212759.xml 2023-01-11T21:28:38.1629648Z Generated XML report: test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesUnspecTests-20230111212759.xml 2023-01-11T21:28:38.1629653Z 2023-01-11T21:28:38.1630011Z ##[endgroup] 2023-01-11T21:28:38.1630329Z FINISHED PRINTING LOG FILE of dynamo/test_dynamic_shapes (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_dynamic_shapes_xm_m_su8) 2023-01-11T21:28:38.1630337Z 2023-01-11T21:28:39.9272704Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:28:39.9912185Z Ignoring disabled issues: [] 2023-01-11T21:28:40.0052239Z Running dynamo/test_export_mutations ... [2023-01-11 21:28:40.004966] 2023-01-11T21:28:40.0054156Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_export_mutations.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:28:40.005209] 2023-01-11T21:28:42.0231643Z 2023-01-11T21:28:42.0232211Z Expand the folded group to see the log file of dynamo/test_export_mutations 2023-01-11T21:28:42.0234610Z ##[group]PRINTING LOG FILE of dynamo/test_export_mutations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_export_mutations_qzu9z2jb) 2023-01-11T21:28:42.0235223Z 2023-01-11T21:28:42.0235348Z Running tests... 2023-01-11T21:28:42.0235978Z ---------------------------------------------------------------------- 2023-01-11T21:28:42.0236688Z Test results will be stored in test-reports/python-unittest/dynamo.test_export_mutations 2023-01-11T21:28:42.0239533Z test_module_attribute_mutation_violation_negative_1 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88468 for platform(s) linux, macos, mac. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.225s) 2023-01-11T21:28:42.0241704Z test_module_attribute_mutation_violation_negative_2 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88475 for platform(s) linux, mac, macos. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:28:42.0243898Z test_module_attribute_mutation_violation_negative_3 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88466 for platform(s) linux, mac, macos. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.000s) 2023-01-11T21:28:42.0246331Z test_module_attribute_mutation_violation_negative_4 (__main__.MutationExportTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88467 for platform(s) linux, macos. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:28:42.0247615Z test_module_attribute_mutation_violation_positive_1 (__main__.MutationExportTests) ... ok (0.025s) 2023-01-11T21:28:42.0248241Z test_module_attribute_mutation_violation_positive_2 (__main__.MutationExportTests) ... ok (0.002s) 2023-01-11T21:28:42.0248892Z test_module_attribute_mutation_violation_positive_3 (__main__.MutationExportTests) ... ok (0.002s) 2023-01-11T21:28:42.0249725Z test_module_attribute_mutation_violation_positive_4 (__main__.MutationExportTests) ... inline_call [] 2023-01-11T21:28:42.0250175Z ok (0.004s) 2023-01-11T21:28:42.0250338Z 2023-01-11T21:28:42.0250722Z ---------------------------------------------------------------------- 2023-01-11T21:28:42.0251126Z Ran 8 tests in 0.261s 2023-01-11T21:28:42.0251320Z 2023-01-11T21:28:42.0251437Z OK (skipped=4) 2023-01-11T21:28:42.0251636Z 2023-01-11T21:28:42.0251777Z Generating XML reports... 2023-01-11T21:28:42.0252548Z Generated XML report: test-reports/python-unittest/dynamo.test_export_mutations/TEST-MutationExportTests-20230111212841.xml 2023-01-11T21:28:42.0253002Z 2023-01-11T21:28:42.0253403Z ##[endgroup] 2023-01-11T21:28:42.0254184Z FINISHED PRINTING LOG FILE of dynamo/test_export_mutations (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_export_mutations_qzu9z2jb) 2023-01-11T21:28:42.0254608Z 2023-01-11T21:28:43.9028944Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:28:43.9674839Z Ignoring disabled issues: [] 2023-01-11T21:28:43.9816244Z Running dynamo/test_functions ... [2023-01-11 21:28:43.981386] 2023-01-11T21:28:43.9818294Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_functions.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:28:43.981637] 2023-01-11T21:28:46.9091243Z 2023-01-11T21:28:46.9091798Z Expand the folded group to see the log file of dynamo/test_functions 2023-01-11T21:28:46.9092899Z ##[group]PRINTING LOG FILE of dynamo/test_functions (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_functions_ay3ysm_x) 2023-01-11T21:28:46.9093350Z 2023-01-11T21:28:46.9093460Z Running tests... 2023-01-11T21:28:46.9094121Z ---------------------------------------------------------------------- 2023-01-11T21:28:46.9094814Z Test results will be stored in test-reports/python-unittest/dynamo.test_functions 2023-01-11T21:28:46.9095315Z test_T (__main__.FunctionTests) ... ok (0.338s) 2023-01-11T21:28:46.9096195Z test_add (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9097500Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9097901Z ok (0.006s) 2023-01-11T21:28:46.9098732Z test_add_ (__main__.FunctionTests) ... /var/lib/jenkins/workspace/test/dynamo/test_functions.py:73: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:46.9099571Z a_copy = torch.tensor(a) 2023-01-11T21:28:46.9100730Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:46.9101793Z return node.target(*args, **kwargs) 2023-01-11T21:28:46.9102510Z .7:5: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:46.9103218Z tensor = torch.tensor(a); a = None 2023-01-11T21:28:46.9103892Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9104441Z ok (0.016s) 2023-01-11T21:28:46.9105086Z test_addcdiv (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9105536Z ok (0.008s) 2023-01-11T21:28:46.9106524Z test_addcdiv_ (__main__.FunctionTests) ... /var/lib/jenkins/workspace/test/dynamo/test_functions.py:84: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:46.9107378Z a_copy = torch.tensor(a) 2023-01-11T21:28:46.9108530Z /opt/conda/lib/python3.10/site-packages/torch/_dynamo/utils.py:1052: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:46.9109331Z return node.target(*args, **kwargs) 2023-01-11T21:28:46.9110046Z .12:5: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:28:46.9110743Z tensor = torch.tensor(a); a = None 2023-01-11T21:28:46.9111320Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9111705Z ok (0.015s) 2023-01-11T21:28:46.9112103Z test_build_list_unpack (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9112731Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:46.9113118Z ok (0.012s) 2023-01-11T21:28:46.9113741Z test_chunks1 (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9114194Z ok (0.008s) 2023-01-11T21:28:46.9114855Z test_const_tuple_add1 (__main__.FunctionTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9115312Z ok (0.008s) 2023-01-11T21:28:46.9115971Z test_const_tuple_add2 (__main__.FunctionTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9116440Z ok (0.008s) 2023-01-11T21:28:46.9117074Z test_constant1 (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9117531Z ok (0.007s) 2023-01-11T21:28:46.9118175Z test_constant2 (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9118645Z ok (0.007s) 2023-01-11T21:28:46.9119273Z test_constant3 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9119736Z ok (0.006s) 2023-01-11T21:28:46.9120375Z test_constant4 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9120813Z ok (0.005s) 2023-01-11T21:28:46.9121460Z test_default_dict (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9121925Z ok (0.010s) 2023-01-11T21:28:46.9122555Z test_del (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9122990Z ok (0.007s) 2023-01-11T21:28:46.9123621Z test_device (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9124195Z ok (0.005s) 2023-01-11T21:28:46.9124853Z test_device_constant (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9125333Z ok (0.011s) 2023-01-11T21:28:46.9125971Z test_dict_copy (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9126417Z ok (0.005s) 2023-01-11T21:28:46.9127055Z test_dict_ops (__main__.FunctionTests) ... stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:46.9127519Z ok (0.014s) 2023-01-11T21:28:46.9128172Z test_dict_param_keys (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9128626Z ok (0.006s) 2023-01-11T21:28:46.9129643Z test_distributed_is_available (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9130148Z ok (0.005s) 2023-01-11T21:28:46.9130846Z test_distributed_is_initialized (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9131335Z ok (0.005s) 2023-01-11T21:28:46.9131971Z test_dtype (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9132424Z ok (0.005s) 2023-01-11T21:28:46.9133064Z test_dtype_compare (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9133534Z ok (0.007s) 2023-01-11T21:28:46.9134157Z test_finfo (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9134604Z ok (0.008s) 2023-01-11T21:28:46.9135244Z test_float (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9135693Z ok (0.005s) 2023-01-11T21:28:46.9136344Z test_fn_with_self_set (__main__.FunctionTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9136813Z ok (0.010s) 2023-01-11T21:28:46.9137457Z test_fstrings1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9137906Z ok (0.006s) 2023-01-11T21:28:46.9138526Z test_fstrings2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9138992Z ok (0.006s) 2023-01-11T21:28:46.9139621Z test_fstrings3 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9140058Z ok (0.005s) 2023-01-11T21:28:46.9140447Z test_funcdef_closure (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9141066Z stats [('calls_captured', 10), ('fusions_possible', 9), ('unique_graphs', 1)] 2023-01-11T21:28:46.9141442Z ok (0.014s) 2023-01-11T21:28:46.9142123Z test_get_default_dtype (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9142591Z ok (0.005s) 2023-01-11T21:28:46.9143233Z test_globalfn (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9143764Z ok (0.005s) 2023-01-11T21:28:46.9144419Z test_globalmodule (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9144892Z ok (0.010s) 2023-01-11T21:28:46.9145526Z test_globalvar (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9145981Z ok (0.006s) 2023-01-11T21:28:46.9146614Z test_import1 (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9147068Z ok (0.007s) 2023-01-11T21:28:46.9147693Z test_indirect1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9148289Z ok (0.005s) 2023-01-11T21:28:46.9148937Z test_indirect2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9149373Z ok (0.005s) 2023-01-11T21:28:46.9150023Z test_indirect3 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9150473Z ok (0.006s) 2023-01-11T21:28:46.9150861Z test_inline_jit_annotations (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9151494Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9151881Z ok (0.008s) 2023-01-11T21:28:46.9152615Z test_inline_softmax (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9153071Z ok (0.010s) 2023-01-11T21:28:46.9153462Z test_inline_with_default (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9154091Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9154468Z ok (0.007s) 2023-01-11T21:28:46.9154850Z test_inner_function (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9155457Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9155838Z ok (0.006s) 2023-01-11T21:28:46.9156523Z test_is_contiguous_memory_format (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9157014Z ok (0.006s) 2023-01-11T21:28:46.9157660Z test_is_fx_tracing (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9158103Z ok (0.006s) 2023-01-11T21:28:46.9158763Z test_is_in_onnx_export (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9159229Z ok (0.006s) 2023-01-11T21:28:46.9159859Z test_is_not_null (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9160313Z ok (0.005s) 2023-01-11T21:28:46.9160968Z test_is_quantized (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9161414Z ok (0.005s) 2023-01-11T21:28:46.9162050Z test_is_sparse (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9162518Z ok (0.005s) 2023-01-11T21:28:46.9163168Z test_islice_chain (__main__.FunctionTests) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:28:46.9163615Z ok (0.011s) 2023-01-11T21:28:46.9164261Z test_jit_annotate (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9164721Z ok (0.006s) 2023-01-11T21:28:46.9165364Z test_len_constant_dict (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9165849Z ok (0.005s) 2023-01-11T21:28:46.9166506Z test_len_constant_list (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9166980Z ok (0.006s) 2023-01-11T21:28:46.9167665Z test_len_constant_misc_iterables (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9168161Z ok (0.005s) 2023-01-11T21:28:46.9168813Z test_len_tensor (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9169404Z ok (0.005s) 2023-01-11T21:28:46.9170053Z test_list_add (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9170514Z ok (0.006s) 2023-01-11T21:28:46.9171145Z test_list_clear (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9171722Z ok (0.008s) 2023-01-11T21:28:46.9172377Z test_list_convert (__main__.FunctionTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9172835Z ok (0.008s) 2023-01-11T21:28:46.9173474Z test_list_reversed (__main__.FunctionTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:46.9173951Z ok (0.009s) 2023-01-11T21:28:46.9174641Z test_list_slice_assignment (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9175115Z ok (0.006s) 2023-01-11T21:28:46.9175756Z test_list_truth (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9176315Z ok (0.005s) 2023-01-11T21:28:46.9176980Z test_listarg1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9177429Z ok (0.006s) 2023-01-11T21:28:46.9178062Z test_listarg2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9178509Z ok (0.006s) 2023-01-11T21:28:46.9179125Z test_listarg3 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9179571Z ok (0.006s) 2023-01-11T21:28:46.9180198Z test_listarg4 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9180635Z ok (0.006s) 2023-01-11T21:28:46.9181266Z test_listarg5 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9181717Z ok (0.006s) 2023-01-11T21:28:46.9182375Z test_load_global_bool (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9182827Z ok (0.005s) 2023-01-11T21:28:46.9183197Z test_map_sum (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9183877Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:28:46.9184251Z ok (0.014s) 2023-01-11T21:28:46.9184624Z test_methodcall1 (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9185231Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9185604Z ok (0.007s) 2023-01-11T21:28:46.9185982Z test_methodcall2 (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9186587Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9186957Z ok (0.007s) 2023-01-11T21:28:46.9187333Z test_methodcall3 (__main__.FunctionTests) ... inline_call [] 2023-01-11T21:28:46.9187948Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9188335Z ok (0.007s) 2023-01-11T21:28:46.9188964Z test_min_max (__main__.FunctionTests) ... stats [('calls_captured', 11), ('fusions_possible', 10), ('unique_graphs', 1)] 2023-01-11T21:28:46.9189428Z ok (0.018s) 2023-01-11T21:28:46.9190086Z test_module_constant (__main__.FunctionTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9190546Z ok (0.009s) 2023-01-11T21:28:46.9191172Z test_ndim (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9191614Z ok (0.005s) 2023-01-11T21:28:46.9192230Z test_pop (__main__.FunctionTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:28:46.9192675Z ok (0.010s) 2023-01-11T21:28:46.9193313Z test_range1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9193774Z ok (0.005s) 2023-01-11T21:28:46.9194387Z test_range2 (__main__.FunctionTests) ... stats [('calls_captured', 13), ('fusions_possible', 12), ('unique_graphs', 1)] 2023-01-11T21:28:46.9194947Z ok (0.016s) 2023-01-11T21:28:46.9195581Z test_reduce (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9196010Z ok (0.008s) 2023-01-11T21:28:46.9196665Z test_return_dict (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9197123Z ok (0.007s) 2023-01-11T21:28:46.9197773Z test_return_dict2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9198219Z ok (0.007s) 2023-01-11T21:28:46.9198867Z test_return_tuple1 (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9199337Z ok (0.006s) 2023-01-11T21:28:46.9200060Z test_return_tuple2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9200539Z ok (0.005s) 2023-01-11T21:28:46.9201175Z test_shape1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9201615Z ok (0.005s) 2023-01-11T21:28:46.9202252Z test_shape2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9202710Z ok (0.005s) 2023-01-11T21:28:46.9203342Z test_slice1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9203782Z ok (0.005s) 2023-01-11T21:28:46.9204418Z test_slice2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9204880Z ok (0.005s) 2023-01-11T21:28:46.9205502Z test_slice3 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9205951Z ok (0.005s) 2023-01-11T21:28:46.9206577Z test_slice4 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9207024Z ok (0.005s) 2023-01-11T21:28:46.9207657Z test_slice5 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9208104Z ok (0.005s) 2023-01-11T21:28:46.9208725Z test_slice6 (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9209298Z ok (0.006s) 2023-01-11T21:28:46.9209947Z test_startswith (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9210400Z ok (0.006s) 2023-01-11T21:28:46.9211017Z test_tensor_len (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9211480Z ok (0.007s) 2023-01-11T21:28:46.9212164Z test_tensor_new_with_shape (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9212642Z ok (0.017s) 2023-01-11T21:28:46.9213288Z test_tensor_new_with_size (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9213761Z ok (0.017s) 2023-01-11T21:28:46.9214403Z test_tensor_type (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9214853Z ok (0.018s) 2023-01-11T21:28:46.9215260Z test_tensor_type2 (__main__.FunctionTests) ... skip: requires cuda (0.000s) 2023-01-11T21:28:46.9216067Z test_transpose_for_scores (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9216525Z ok (0.007s) 2023-01-11T21:28:46.9217156Z test_tuple1 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9217610Z ok (0.005s) 2023-01-11T21:28:46.9218374Z test_tuple2 (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9218805Z ok (0.005s) 2023-01-11T21:28:46.9219465Z test_tuple_contains (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9219934Z ok (0.006s) 2023-01-11T21:28:46.9220563Z test_tuple_iadd (__main__.FunctionTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:46.9221024Z ok (0.007s) 2023-01-11T21:28:46.9221658Z test_unpack1 (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9222106Z ok (0.007s) 2023-01-11T21:28:46.9222834Z test_unpack2 (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9223295Z ok (0.007s) 2023-01-11T21:28:46.9224037Z test_unpack3 (__main__.FunctionTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:28:46.9224478Z ok (0.007s) 2023-01-11T21:28:46.9225128Z test_unpack_ex1 (__main__.FunctionTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:46.9225577Z ok (0.008s) 2023-01-11T21:28:46.9226201Z test_unpack_ex2 (__main__.FunctionTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:46.9226655Z ok (0.008s) 2023-01-11T21:28:46.9227296Z test_unpack_ex3 (__main__.FunctionTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:28:46.9227753Z ok (0.008s) 2023-01-11T21:28:46.9228389Z test_viamethod (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9228852Z ok (0.005s) 2023-01-11T21:28:46.9229497Z test_viatorch (__main__.FunctionTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:46.9229944Z ok (0.005s) 2023-01-11T21:28:46.9230113Z 2023-01-11T21:28:46.9230466Z ---------------------------------------------------------------------- 2023-01-11T21:28:46.9230882Z Ran 109 tests in 1.132s 2023-01-11T21:28:46.9231076Z 2023-01-11T21:28:46.9231182Z OK (skipped=1) 2023-01-11T21:28:46.9231369Z 2023-01-11T21:28:46.9231512Z Generating XML reports... 2023-01-11T21:28:46.9232249Z Generated XML report: test-reports/python-unittest/dynamo.test_functions/TEST-FunctionTests-20230111212845.xml 2023-01-11T21:28:46.9232691Z 2023-01-11T21:28:46.9233183Z ##[endgroup] 2023-01-11T21:28:46.9233882Z FINISHED PRINTING LOG FILE of dynamo/test_functions (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_functions_ay3ysm_x) 2023-01-11T21:28:46.9234300Z 2023-01-11T21:28:48.7402121Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:28:48.8048132Z Ignoring disabled issues: [] 2023-01-11T21:28:48.8191158Z Running dynamo/test_global ... [2023-01-11 21:28:48.818852] 2023-01-11T21:28:48.8193666Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_global.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:28:48.819097] 2023-01-11T21:28:50.9699432Z 2023-01-11T21:28:50.9700002Z Expand the folded group to see the log file of dynamo/test_global 2023-01-11T21:28:50.9701248Z ##[group]PRINTING LOG FILE of dynamo/test_global (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_global_rblqkeky) 2023-01-11T21:28:50.9701544Z 2023-01-11T21:28:50.9701619Z Running tests... 2023-01-11T21:28:50.9702024Z ---------------------------------------------------------------------- 2023-01-11T21:28:50.9702397Z Test results will be stored in test-reports/python-unittest/dynamo.test_global 2023-01-11T21:28:50.9702695Z test_store_global_1 (__main__.TestGlobals) ... ok (0.321s) 2023-01-11T21:28:50.9703059Z test_store_global_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9703473Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9703923Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:50.9704230Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:28:50.9704451Z ok (0.009s) 2023-01-11T21:28:50.9704747Z test_store_global_cross_file (__main__.TestGlobals) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:28:50.9704991Z unimplemented [] 2023-01-11T21:28:50.9705402Z graph_break [('call_function BuiltinVariable(setattr) [PythonModuleVariable(), ConstantVariable(str), TensorVariable()] {}', 1)] 2023-01-11T21:28:50.9705811Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:50.9706032Z ok (0.008s) 2023-01-11T21:28:50.9706328Z test_store_global_dict (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9706721Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9706946Z ok (0.005s) 2023-01-11T21:28:50.9707245Z test_store_global_dict_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9707477Z inline_call [] 2023-01-11T21:28:50.9707759Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9707983Z ok (0.007s) 2023-01-11T21:28:50.9708284Z test_store_global_inline_1 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9708501Z inline_call [] 2023-01-11T21:28:50.9708789Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9709009Z ok (0.009s) 2023-01-11T21:28:50.9709296Z test_store_global_inline_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9709524Z inline_call [] 2023-01-11T21:28:50.9709811Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9710018Z ok (0.010s) 2023-01-11T21:28:50.9710313Z test_store_global_list (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9710662Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9710883Z ok (0.005s) 2023-01-11T21:28:50.9711168Z test_store_global_list_2 (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9711394Z inline_call [] 2023-01-11T21:28:50.9711681Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9711886Z ok (0.006s) 2023-01-11T21:28:50.9712181Z test_store_global_new (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9712528Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:28:50.9712734Z ok (0.005s) 2023-01-11T21:28:50.9713032Z test_store_global_object (__main__.TestGlobals) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:28:50.9713385Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:28:50.9713595Z ok (0.005s) 2023-01-11T21:28:50.9713693Z 2023-01-11T21:28:50.9713889Z ---------------------------------------------------------------------- 2023-01-11T21:28:50.9714129Z Ran 11 tests in 0.391s 2023-01-11T21:28:50.9714239Z 2023-01-11T21:28:50.9714299Z OK 2023-01-11T21:28:50.9714375Z 2023-01-11T21:28:50.9714458Z Generating XML reports... 2023-01-11T21:28:50.9714856Z Generated XML report: test-reports/python-unittest/dynamo.test_global/TEST-TestGlobals-20230111212850.xml 2023-01-11T21:28:50.9715080Z 2023-01-11T21:28:50.9715316Z ##[endgroup] 2023-01-11T21:28:50.9715691Z FINISHED PRINTING LOG FILE of dynamo/test_global (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_global_rblqkeky) 2023-01-11T21:28:50.9715913Z 2023-01-11T21:28:52.8066337Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:28:52.8708005Z Ignoring disabled issues: [] 2023-01-11T21:28:52.8852948Z Running dynamo/test_global_declaration ... [2023-01-11 21:28:52.885022] 2023-01-11T21:28:52.8854664Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_global_declaration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:28:52.885258] 2023-01-11T21:28:54.2344210Z 2023-01-11T21:28:54.2344857Z Expand the folded group to see the log file of dynamo/test_global_declaration 2023-01-11T21:28:54.2346166Z ##[group]PRINTING LOG FILE of dynamo/test_global_declaration (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_global_declaration_ap7x6ltq) 2023-01-11T21:28:54.2346447Z 2023-01-11T21:28:54.2346665Z ##[endgroup] 2023-01-11T21:28:54.2347202Z FINISHED PRINTING LOG FILE of dynamo/test_global_declaration (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_global_declaration_ap7x6ltq) 2023-01-11T21:28:54.2347452Z 2023-01-11T21:28:56.0438577Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:28:56.1080815Z Ignoring disabled issues: [] 2023-01-11T21:28:56.1223086Z Running dynamo/test_minifier ... [2023-01-11 21:28:56.122056] 2023-01-11T21:28:56.1225492Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_minifier.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:28:56.122310] 2023-01-11T21:29:36.8235136Z 2023-01-11T21:29:36.8235788Z Expand the folded group to see the log file of dynamo/test_minifier 2023-01-11T21:29:36.8237087Z ##[group]PRINTING LOG FILE of dynamo/test_minifier (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_minifier_3gjkt5xj) 2023-01-11T21:29:36.8249608Z 2023-01-11T21:29:36.8249917Z Running tests... 2023-01-11T21:29:36.8250638Z ---------------------------------------------------------------------- 2023-01-11T21:29:36.8251349Z Test results will be stored in test-reports/python-unittest/dynamo.test_minifier 2023-01-11T21:29:36.8251887Z test_after_dynamo_cpu_accuracy_backend_passes (__main__.MinifierTests) ... ok (1.793s) 2023-01-11T21:29:36.8252398Z test_after_dynamo_cpu_accuracy_error (__main__.MinifierTests) ... ok (5.018s) 2023-01-11T21:29:36.8252949Z test_after_dynamo_cpu_compile_backend_passes (__main__.MinifierTests) ... ok (1.619s) 2023-01-11T21:29:36.8253479Z test_after_dynamo_cpu_compile_error (__main__.MinifierTests) ... ok (4.860s) 2023-01-11T21:29:36.8254001Z test_after_dynamo_cpu_runtime_backend_passes (__main__.MinifierTests) ... ok (1.579s) 2023-01-11T21:29:36.8254496Z test_after_dynamo_cpu_runtime_error (__main__.MinifierTests) ... ok (4.694s) 2023-01-11T21:29:36.8255036Z test_after_dynamo_cuda_accuracy_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:29:36.8255607Z test_after_dynamo_cuda_accuracy_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:29:36.8256151Z test_after_dynamo_cuda_compile_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:29:36.8256746Z test_after_dynamo_cuda_compile_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:29:36.8257342Z test_after_dynamo_cuda_runtime_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:29:36.8257935Z test_after_dynamo_cuda_runtime_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:29:36.8258447Z test_after_dynamo_custom_backend (__main__.MinifierTests) ... ok (3.116s) 2023-01-11T21:29:36.8258977Z test_after_dynamo_with_modified_config_cpu_accuracy_error (__main__.MinifierTests) ... ok (4.950s) 2023-01-11T21:29:36.8259798Z test_after_dynamo_with_modified_config_cpu_compile_error (__main__.MinifierTests) ... ok (4.860s) 2023-01-11T21:29:36.8260374Z test_cpu_cuda_module_after_dynamo (__main__.MinifierTests) ... skip: requires cuda (0.001s) 2023-01-11T21:29:36.8260891Z test_dynamo_config_serialization (__main__.MinifierTests) ... ok (1.508s) 2023-01-11T21:29:36.8261398Z test_if_graph_minified (__main__.MinifierTests) ... ok (4.893s) 2023-01-11T21:29:36.8261670Z 2023-01-11T21:29:36.8262077Z ---------------------------------------------------------------------- 2023-01-11T21:29:36.8262453Z Ran 18 tests in 38.897s 2023-01-11T21:29:36.8262639Z 2023-01-11T21:29:36.8262754Z OK (skipped=7) 2023-01-11T21:29:36.8262922Z 2023-01-11T21:29:36.8263425Z Generating XML reports... 2023-01-11T21:29:36.8264131Z Generated XML report: test-reports/python-unittest/dynamo.test_minifier/TEST-MinifierTests-20230111212857.xml 2023-01-11T21:29:36.8264485Z 2023-01-11T21:29:36.8264932Z ##[endgroup] 2023-01-11T21:29:36.8265611Z FINISHED PRINTING LOG FILE of dynamo/test_minifier (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_minifier_3gjkt5xj) 2023-01-11T21:29:36.8265969Z 2023-01-11T21:29:38.6475778Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:29:38.7120848Z Ignoring disabled issues: [] 2023-01-11T21:29:38.7263860Z Running dynamo/test_model_output ... [2023-01-11 21:29:38.726098] 2023-01-11T21:29:38.7265427Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_model_output.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:29:38.726348] 2023-01-11T21:29:40.3830679Z 2023-01-11T21:29:40.3831322Z Expand the folded group to see the log file of dynamo/test_model_output 2023-01-11T21:29:40.3832111Z ##[group]PRINTING LOG FILE of dynamo/test_model_output (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_model_output_ctxt04f3) 2023-01-11T21:29:40.3832351Z 2023-01-11T21:29:40.3832413Z Running tests... 2023-01-11T21:29:40.3832814Z ---------------------------------------------------------------------- 2023-01-11T21:29:40.3833215Z Test results will be stored in test-reports/python-unittest/dynamo.test_model_output 2023-01-11T21:29:40.3833559Z test_pretrained (__main__.TestHFPretrained) ... skip: requires HuggingFace (0.000s) 2023-01-11T21:29:40.3833873Z test_mo_assign (__main__.TestModelOutput) ... skip: requires HuggingFace (0.001s) 2023-01-11T21:29:40.3834195Z test_mo_create (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T21:29:40.3834514Z test_mo_getattr (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T21:29:40.3834817Z test_mo_getitem (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T21:29:40.3835135Z test_mo_index (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T21:29:40.3835441Z test_mo_init (__main__.TestModelOutput) ... skip: requires HuggingFace (0.001s) 2023-01-11T21:29:40.3835749Z test_mo_tuple (__main__.TestModelOutput) ... skip: requires HuggingFace (0.000s) 2023-01-11T21:29:40.3835909Z 2023-01-11T21:29:40.3836108Z ---------------------------------------------------------------------- 2023-01-11T21:29:40.3836346Z Ran 8 tests in 0.003s 2023-01-11T21:29:40.3836459Z 2023-01-11T21:29:40.3836529Z OK (skipped=8) 2023-01-11T21:29:40.3836634Z 2023-01-11T21:29:40.3836706Z Generating XML reports... 2023-01-11T21:29:40.3837141Z Generated XML report: test-reports/python-unittest/dynamo.test_model_output/TEST-TestHFPretrained-20230111212940.xml 2023-01-11T21:29:40.3837681Z Generated XML report: test-reports/python-unittest/dynamo.test_model_output/TEST-TestModelOutput-20230111212940.xml 2023-01-11T21:29:40.3837922Z 2023-01-11T21:29:40.3838122Z ##[endgroup] 2023-01-11T21:29:40.3838538Z FINISHED PRINTING LOG FILE of dynamo/test_model_output (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_model_output_ctxt04f3) 2023-01-11T21:29:40.3838767Z 2023-01-11T21:29:42.2378163Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:29:42.3117556Z Ignoring disabled issues: [] 2023-01-11T21:29:42.3261090Z Running dynamo/test_modules ... [2023-01-11 21:29:42.325805] 2023-01-11T21:29:42.3262816Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_modules.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:29:42.326049] 2023-01-11T21:29:45.7871952Z 2023-01-11T21:29:45.7872949Z Expand the folded group to see the log file of dynamo/test_modules 2023-01-11T21:29:45.7873906Z ##[group]PRINTING LOG FILE of dynamo/test_modules (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_modules_luscdvt3) 2023-01-11T21:29:45.7874146Z 2023-01-11T21:29:45.7874207Z Running tests... 2023-01-11T21:29:45.7874712Z ---------------------------------------------------------------------- 2023-01-11T21:29:45.7875569Z Test results will be stored in test-reports/python-unittest/dynamo.test_modules 2023-01-11T21:29:45.7892238Z test_access_by_keys (__main__.NNModuleTests) ... ok (0.352s) 2023-01-11T21:29:45.7892708Z test_basicmodule1 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7893221Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:29:45.7893584Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.7893810Z ok (0.017s) 2023-01-11T21:29:45.7894249Z test_basicmodule2 (__main__.NNModuleTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.7894539Z ok (0.013s) 2023-01-11T21:29:45.7894924Z test_call_fn_with_non_const_inputs_safe (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7895351Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.7930533Z ok (0.023s) 2023-01-11T21:29:45.7931208Z test_cfgmod (__main__.NNModuleTests) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:29:45.7931710Z ok (0.029s) 2023-01-11T21:29:45.7932392Z test_children (__main__.NNModuleTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.7932855Z ok (0.019s) 2023-01-11T21:29:45.7933498Z test_constloop (__main__.NNModuleTests) ... stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:29:45.7933765Z ok (0.027s) 2023-01-11T21:29:45.7933965Z test_densenet (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7934468Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:29:45.7934695Z ok (0.017s) 2023-01-11T21:29:45.7937153Z test_enumvalues (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7938380Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:29:45.7939006Z ok (0.016s) 2023-01-11T21:29:45.7939944Z test_fnmember (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7940580Z ok (0.012s) 2023-01-11T21:29:45.7941509Z test_fnmembercmp1 (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7942181Z ok (0.012s) 2023-01-11T21:29:45.7943095Z test_fnmembercmp2 (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7943818Z ok (0.012s) 2023-01-11T21:29:45.7944363Z test_forward_directly (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7945235Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.7945799Z ok (0.020s) 2023-01-11T21:29:45.7946340Z test_generation_tag (__main__.NNModuleTests) ... ok (0.002s) 2023-01-11T21:29:45.7947313Z test_hasattr (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7947963Z ok (0.009s) 2023-01-11T21:29:45.7948839Z test_intarg (__main__.NNModuleTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.7949499Z ok (0.013s) 2023-01-11T21:29:45.7950388Z test_iseval1 (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7951015Z ok (0.012s) 2023-01-11T21:29:45.7951872Z test_iseval2 (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7952460Z ok (0.012s) 2023-01-11T21:29:45.7953307Z test_isnonelayer (__main__.NNModuleTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.7953942Z ok (0.010s) 2023-01-11T21:29:45.7954814Z test_istraining1 (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7955697Z ok (0.012s) 2023-01-11T21:29:45.7956637Z test_istraining2 (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7970373Z ok (0.012s) 2023-01-11T21:29:45.7971037Z test_layerlist (__main__.NNModuleTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.7971387Z ok (0.017s) 2023-01-11T21:29:45.7972051Z test_lazy_module (__main__.NNModuleTests) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:29:45.7972628Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:29:45.7973430Z [2023-01-11 21:29:44,497] torch._dynamo.symbolic_convert: [WARNING] /opt/conda/lib/python3.10/site-packages/torch/nn/parameter.py [ShapeVariable()] {} missing a required argument: 'shape' 2023-01-11T21:29:45.7974177Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:29:45.7974661Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:29:45.7975234Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:29:45.7975741Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:29:45.7976434Z [2023-01-11 21:29:44,569] torch._dynamo.symbolic_convert: [WARNING] /opt/conda/lib/python3.10/site-packages/torch/nn/parameter.py [ShapeVariable()] {} missing a required argument: 'shape' 2023-01-11T21:29:45.7977712Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:29:45.7978401Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:29:45.7978865Z frames [('total', 16), ('ok', 14)] 2023-01-11T21:29:45.7980203Z inline_call [('Patched init cannot be inlined.', 3), ('arg mismatch inlining', 2), ('call_function UserDefinedObjectVariable(_infer_parameters) [NNModuleVariable(), TupleVariable()] {}', 1), ('call_function UserDefinedObjectVariable(_infer_parameters) [UnspecializedNNModuleVariable(LazyModule), TupleVariable()] {}', 1)] 2023-01-11T21:29:45.7981349Z unimplemented [("Guard setup for uninitialized class ", 2)] 2023-01-11T21:29:45.7982041Z graph_break [('Patched init cannot be inlined.', 3), ('arg mismatch inlining', 2)] 2023-01-11T21:29:45.7982846Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.7983404Z ok (0.205s) 2023-01-11T21:29:45.7983898Z test_module_attribute_precedence (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7984679Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.7985148Z ok (0.011s) 2023-01-11T21:29:45.7985617Z test_module_class_method (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7986371Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:29:45.7986849Z ok (0.030s) 2023-01-11T21:29:45.7987550Z test_module_forward_has_graph_break (__main__.NNModuleTests) ... frames [('total', 3), ('ok', 2)] 2023-01-11T21:29:45.7988081Z inline_call [] 2023-01-11T21:29:45.7988691Z unimplemented [('reconstruct: ConstantVariable(dict)', 2)] 2023-01-11T21:29:45.7989666Z graph_break [('call_function BuiltinVariable(dict) [ListIteratorVariable()] {}', 1), ('call_method NNModuleVariable() buffers [] {}', 1)] 2023-01-11T21:29:45.7990778Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:29:45.7991264Z ok (0.077s) 2023-01-11T21:29:45.7992008Z test_module_name_string (__main__.NNModuleTests) ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.7992443Z ok (0.014s) 2023-01-11T21:29:45.7992667Z test_module_property (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7993014Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.7993222Z ok (0.006s) 2023-01-11T21:29:45.7993468Z test_module_static_method (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7993815Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:29:45.7994087Z ok (0.029s) 2023-01-11T21:29:45.7994445Z test_moduledict (__main__.NNModuleTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.7994714Z ok (0.010s) 2023-01-11T21:29:45.7995082Z test_modulelist (__main__.NNModuleTests) ... stats [('calls_captured', 40), ('fusions_possible', 39), ('unique_graphs', 1)] 2023-01-11T21:29:45.7995334Z ok (0.112s) 2023-01-11T21:29:45.7995555Z test_modulemethod1 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7995903Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:29:45.7996116Z ok (0.029s) 2023-01-11T21:29:45.7996339Z test_modulemethod2 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.7996678Z stats [('calls_captured', 9), ('fusions_possible', 8), ('unique_graphs', 1)] 2023-01-11T21:29:45.7996896Z ok (0.029s) 2023-01-11T21:29:45.7997274Z test_nn_moduledict_contains (__main__.NNModuleTests) ... stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:29:45.7997601Z frames [('total', 2), ('ok', 1)] 2023-01-11T21:29:45.7997875Z inline_call [('Patched init cannot be inlined.', 1)] 2023-01-11T21:29:45.7998303Z unimplemented [("Guard setup for uninitialized class .M'>", 1)] 2023-01-11T21:29:45.7998687Z graph_break [('Patched init cannot be inlined.', 1)] 2023-01-11T21:29:45.8052522Z ok (0.018s) 2023-01-11T21:29:45.8054271Z test_parameters1 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8058365Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.8058627Z ok (0.009s) 2023-01-11T21:29:45.8058856Z test_parameters2 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8059192Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.8059419Z ok (0.009s) 2023-01-11T21:29:45.8059799Z test_parameters3 (__main__.NNModuleTests) ... stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:29:45.8060052Z ok (0.024s) 2023-01-11T21:29:45.8060423Z test_self_mutating1 (__main__.NNModuleTests) ... stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:29:45.8060695Z ok (0.039s) 2023-01-11T21:29:45.8061042Z test_seq (__main__.NNModuleTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.8061295Z ok (0.019s) 2023-01-11T21:29:45.8061525Z test_simple_torch_function (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8061877Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.8062089Z ok (0.013s) 2023-01-11T21:29:45.8062456Z test_stringmember (__main__.NNModuleTests) ... stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:29:45.8062722Z ok (0.012s) 2023-01-11T21:29:45.8062928Z test_submodules1 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8063267Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:29:45.8063573Z ok (0.025s) 2023-01-11T21:29:45.8063902Z test_submodules2 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8064247Z stats [('calls_captured', 7), ('fusions_possible', 6), ('unique_graphs', 1)] 2023-01-11T21:29:45.8064472Z ok (0.025s) 2023-01-11T21:29:45.8064684Z test_super1 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8065007Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.8065228Z ok (0.016s) 2023-01-11T21:29:45.8065438Z test_super2 (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8065761Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.8065983Z ok (0.014s) 2023-01-11T21:29:45.8066212Z test_super_class_method (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8066625Z stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:29:45.8066856Z ok (0.007s) 2023-01-11T21:29:45.8067223Z test_tensorlist (__main__.NNModuleTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.8067476Z ok (0.011s) 2023-01-11T21:29:45.8067865Z test_torch_function_with_closure (__main__.NNModuleTests) ... stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.8068142Z ok (0.008s) 2023-01-11T21:29:45.8068458Z test_unsupportedmethod (__main__.NNModuleTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:45.8068899Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:29:45.8069194Z unimplemented [] 2023-01-11T21:29:45.8069578Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:29:45.8069978Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:29:45.8070206Z ok (0.029s) 2023-01-11T21:29:45.8070518Z test_unsupportedmodule (__main__.NNModuleTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:45.8070969Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:29:45.8071249Z unimplemented [] 2023-01-11T21:29:45.8071627Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:29:45.8072035Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:29:45.8072250Z ok (0.030s) 2023-01-11T21:29:45.8072473Z test_viamodulecall (__main__.NNModuleTests) ... inline_call [] 2023-01-11T21:29:45.8072821Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:29:45.8073032Z ok (0.015s) 2023-01-11T21:29:45.8073250Z test_attr (__main__.OptimizedModuleTest) ... ok (0.002s) 2023-01-11T21:29:45.8073618Z test_composition (__main__.OptimizedModuleTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:29:45.8073863Z inline_call [] 2023-01-11T21:29:45.8074147Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.8074377Z ok (0.008s) 2023-01-11T21:29:45.8074712Z test_composition_with_opt_mod (__main__.OptimizedModuleTest) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:29:45.8075075Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:29:45.8075514Z inline_call [('inline in skipfiles: forward /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 1)] 2023-01-11T21:29:45.8075799Z unimplemented [] 2023-01-11T21:29:45.8076168Z graph_break [('inline in skipfiles: forward /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 1)] 2023-01-11T21:29:45.8076437Z ok (0.010s) 2023-01-11T21:29:45.8076743Z test_nn_module (__main__.OptimizedModuleTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:29:45.8077103Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.8077316Z ok (0.012s) 2023-01-11T21:29:45.8077621Z test_recursion (__main__.OptimizedModuleTest) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:29:45.8078017Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:45.8078225Z ok (0.013s) 2023-01-11T21:29:45.8078519Z test_to (__main__.OptimizedModuleTest) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:45.8078868Z stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:29:45.8079076Z ok (0.034s) 2023-01-11T21:29:45.8079177Z 2023-01-11T21:29:45.8079378Z ---------------------------------------------------------------------- 2023-01-11T21:29:45.8079619Z Ran 57 tests in 1.627s 2023-01-11T21:29:45.8079731Z 2023-01-11T21:29:45.8079791Z OK 2023-01-11T21:29:45.8079871Z 2023-01-11T21:29:45.8079955Z Generating XML reports... 2023-01-11T21:29:45.8080392Z Generated XML report: test-reports/python-unittest/dynamo.test_modules/TEST-NNModuleTests-20230111212943.xml 2023-01-11T21:29:45.8080925Z Generated XML report: test-reports/python-unittest/dynamo.test_modules/TEST-OptimizedModuleTest-20230111212943.xml 2023-01-11T21:29:45.8081167Z 2023-01-11T21:29:45.8081519Z ##[endgroup] 2023-01-11T21:29:45.8081919Z FINISHED PRINTING LOG FILE of dynamo/test_modules (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_modules_luscdvt3) 2023-01-11T21:29:45.8082142Z 2023-01-11T21:29:47.6254449Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:29:47.6900327Z Ignoring disabled issues: [] 2023-01-11T21:29:47.7042931Z Running dynamo/test_nops ... [2023-01-11 21:29:47.704026] 2023-01-11T21:29:47.7045025Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_nops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:29:47.704274] 2023-01-11T21:29:49.7293591Z 2023-01-11T21:29:49.7294129Z Expand the folded group to see the log file of dynamo/test_nops 2023-01-11T21:29:49.7295273Z ##[group]PRINTING LOG FILE of dynamo/test_nops (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_nops_ffc6wtso) 2023-01-11T21:29:49.7295710Z 2023-01-11T21:29:49.7295850Z Running tests... 2023-01-11T21:29:49.7296558Z ---------------------------------------------------------------------- 2023-01-11T21:29:49.7297046Z Test results will be stored in test-reports/python-unittest/dynamo.test_nops 2023-01-11T21:29:49.7297309Z test1 (__main__.NopTests) ... ok (0.223s) 2023-01-11T21:29:49.7297528Z test2 (__main__.NopTests) ... ok (0.002s) 2023-01-11T21:29:49.7297742Z test3 (__main__.NopTests) ... ok (0.002s) 2023-01-11T21:29:49.7297965Z test_extended_args (__main__.NopTests) ... ok (0.031s) 2023-01-11T21:29:49.7298108Z 2023-01-11T21:29:49.7298306Z ---------------------------------------------------------------------- 2023-01-11T21:29:49.7298547Z Ran 4 tests in 0.259s 2023-01-11T21:29:49.7298661Z 2023-01-11T21:29:49.7298721Z OK 2023-01-11T21:29:49.7298799Z 2023-01-11T21:29:49.7298895Z Generating XML reports... 2023-01-11T21:29:49.7299297Z Generated XML report: test-reports/python-unittest/dynamo.test_nops/TEST-NopTests-20230111212949.xml 2023-01-11T21:29:49.7299517Z 2023-01-11T21:29:49.7299740Z ##[endgroup] 2023-01-11T21:29:49.7300116Z FINISHED PRINTING LOG FILE of dynamo/test_nops (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_nops_ffc6wtso) 2023-01-11T21:29:49.7300332Z 2023-01-11T21:29:51.5598052Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:29:51.6243018Z Ignoring disabled issues: [] 2023-01-11T21:29:51.6391447Z Running dynamo/test_optimizers ... [2023-01-11 21:29:51.638858] 2023-01-11T21:29:51.6393416Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_optimizers.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:29:51.639098] 2023-01-11T21:29:54.9970267Z 2023-01-11T21:29:54.9970789Z Expand the folded group to see the log file of dynamo/test_optimizers 2023-01-11T21:29:54.9973949Z ##[group]PRINTING LOG FILE of dynamo/test_optimizers (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_optimizers_fy1juneh) 2023-01-11T21:29:54.9975253Z 2023-01-11T21:29:54.9975571Z Running tests... 2023-01-11T21:29:54.9976272Z ---------------------------------------------------------------------- 2023-01-11T21:29:54.9976951Z Test results will be stored in test-reports/python-unittest/dynamo.test_optimizers 2023-01-11T21:29:54.9977562Z test_optimizing_over_tensor_with_requires_grad (__main__.End2EndTests) ... ok (0.416s) 2023-01-11T21:29:54.9978106Z frames [('total', 8), ('ok', 8)] 2023-01-11T21:29:54.9978898Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 4), ('inline with __closure__', 1)] 2023-01-11T21:29:54.9979429Z unimplemented [] 2023-01-11T21:29:54.9980272Z graph_break [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2), ('Tensor.backward', 1), ('inline with __closure__', 1)] 2023-01-11T21:29:54.9981175Z stats [('calls_captured', 24), ('fusions_possible', 22), ('unique_graphs', 2)] 2023-01-11T21:29:54.9981812Z test_adadelta (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9982604Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:54.9983419Z stats [('calls_captured', 48), ('fusions_possible', 47), ('unique_graphs', 1)] 2023-01-11T21:29:54.9983836Z ok (0.083s) 2023-01-11T21:29:54.9984339Z test_adagrad (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9985121Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:54.9985849Z stats [('calls_captured', 48), ('fusions_possible', 47), ('unique_graphs', 1)] 2023-01-11T21:29:54.9986247Z ok (0.085s) 2023-01-11T21:29:54.9986773Z test_adam (__main__.OptimizerTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:29:54.9987570Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 3)] 2023-01-11T21:29:54.9988075Z unimplemented [] 2023-01-11T21:29:54.9988751Z graph_break [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 1)] 2023-01-11T21:29:54.9989492Z stats [('calls_captured', 80), ('fusions_possible', 79), ('unique_graphs', 1)] 2023-01-11T21:29:54.9989890Z ok (0.133s) 2023-01-11T21:29:54.9990191Z test_adamax (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9990611Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:54.9991009Z stats [('calls_captured', 72), ('fusions_possible', 71), ('unique_graphs', 1)] 2023-01-11T21:29:54.9991220Z ok (0.112s) 2023-01-11T21:29:54.9991509Z test_adamw (__main__.OptimizerTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:29:54.9991927Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 3)] 2023-01-11T21:29:54.9992201Z unimplemented [] 2023-01-11T21:29:54.9992551Z graph_break [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 1)] 2023-01-11T21:29:54.9992954Z stats [('calls_captured', 80), ('fusions_possible', 79), ('unique_graphs', 1)] 2023-01-11T21:29:54.9993180Z ok (0.123s) 2023-01-11T21:29:54.9993452Z test_asgd (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9993868Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:54.9994266Z stats [('calls_captured', 76), ('fusions_possible', 75), ('unique_graphs', 1)] 2023-01-11T21:29:54.9994488Z ok (0.123s) 2023-01-11T21:29:54.9994762Z test_nadam (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9995177Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:54.9995578Z stats [('calls_captured', 152), ('fusions_possible', 151), ('unique_graphs', 1)] 2023-01-11T21:29:54.9995862Z ok (0.188s) 2023-01-11T21:29:54.9996256Z test_radam (__main__.OptimizerTests) ... [2023-01-11 21:29:54,356] torch._dynamo.variables.torch: [WARNING] Profiler will be ignored 2023-01-11T21:29:54.9996591Z frames [('total', 8), ('ok', 8)] 2023-01-11T21:29:54.9997015Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 3), ('generic_jump TensorVariable()', 1)] 2023-01-11T21:29:54.9997327Z unimplemented [] 2023-01-11T21:29:54.9997593Z graph_break [('generic_jump TensorVariable()', 1)] 2023-01-11T21:29:54.9997802Z ok (0.101s) 2023-01-11T21:29:54.9998079Z test_rmsprop (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9998497Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:54.9998929Z stats [('calls_captured', 28), ('fusions_possible', 27), ('unique_graphs', 1)] 2023-01-11T21:29:54.9999146Z ok (0.060s) 2023-01-11T21:29:54.9999436Z test_rprop (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:54.9999852Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:55.0000250Z stats [('calls_captured', 64), ('fusions_possible', 63), ('unique_graphs', 1)] 2023-01-11T21:29:55.0000462Z ok (0.090s) 2023-01-11T21:29:55.0000747Z test_sgd (__main__.OptimizerTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:29:55.0001164Z inline_call [('inline in skipfiles: _fn /opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py', 2)] 2023-01-11T21:29:55.0001548Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:29:55.0001777Z ok (0.037s) 2023-01-11T21:29:55.0001878Z 2023-01-11T21:29:55.0002092Z ---------------------------------------------------------------------- 2023-01-11T21:29:55.0002337Z Ran 12 tests in 1.552s 2023-01-11T21:29:55.0002437Z 2023-01-11T21:29:55.0002498Z OK 2023-01-11T21:29:55.0002592Z 2023-01-11T21:29:55.0002676Z Generating XML reports... 2023-01-11T21:29:55.0003090Z Generated XML report: test-reports/python-unittest/dynamo.test_optimizers/TEST-End2EndTests-20230111212953.xml 2023-01-11T21:29:55.0003601Z Generated XML report: test-reports/python-unittest/dynamo.test_optimizers/TEST-OptimizerTests-20230111212953.xml 2023-01-11T21:29:55.0003835Z 2023-01-11T21:29:55.0004127Z ##[endgroup] 2023-01-11T21:29:55.0004543Z FINISHED PRINTING LOG FILE of dynamo/test_optimizers (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_optimizers_fy1juneh) 2023-01-11T21:29:55.0004777Z 2023-01-11T21:29:56.8628982Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:29:56.9275476Z Ignoring disabled issues: [] 2023-01-11T21:29:56.9418809Z Running dynamo/test_python_autograd ... [2023-01-11 21:29:56.941598] 2023-01-11T21:29:56.9420397Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_python_autograd.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:29:56.941843] 2023-01-11T21:29:59.3993822Z 2023-01-11T21:29:59.3995632Z Expand the folded group to see the log file of dynamo/test_python_autograd 2023-01-11T21:29:59.3996371Z ##[group]PRINTING LOG FILE of dynamo/test_python_autograd (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_python_autograd_6k8pgcga) 2023-01-11T21:29:59.3996618Z 2023-01-11T21:29:59.3996692Z Running tests... 2023-01-11T21:29:59.3997081Z ---------------------------------------------------------------------- 2023-01-11T21:29:59.3997485Z Test results will be stored in test-reports/python-unittest/dynamo.test_python_autograd 2023-01-11T21:29:59.3997801Z test_backwards1 (__main__.TestPythonAutograd) ... ok (0.421s) 2023-01-11T21:29:59.3998089Z test_backwards2 (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T21:29:59.3998448Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:29:59.3998679Z inline_call [] 2023-01-11T21:29:59.3998974Z stats [('calls_captured', 8), ('fusions_possible', 7), ('unique_graphs', 1)] 2023-01-11T21:29:59.3999400Z ok (0.099s) 2023-01-11T21:29:59.3999627Z test_forwards1 (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T21:29:59.3999977Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:59.4000188Z ok (0.030s) 2023-01-11T21:29:59.4000411Z test_forwards2 (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T21:29:59.4000757Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:29:59.4000965Z ok (0.029s) 2023-01-11T21:29:59.4001185Z test_split (__main__.TestPythonAutograd) ... inline_call [] 2023-01-11T21:29:59.4001529Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:29:59.4001750Z ok (0.096s) 2023-01-11T21:29:59.4001839Z 2023-01-11T21:29:59.4002093Z ---------------------------------------------------------------------- 2023-01-11T21:29:59.4002336Z Ran 5 tests in 0.676s 2023-01-11T21:29:59.4002464Z 2023-01-11T21:29:59.4002522Z OK 2023-01-11T21:29:59.4002599Z 2023-01-11T21:29:59.4002683Z Generating XML reports... 2023-01-11T21:29:59.4003125Z Generated XML report: test-reports/python-unittest/dynamo.test_python_autograd/TEST-TestPythonAutograd-20230111212958.xml 2023-01-11T21:29:59.4003374Z 2023-01-11T21:29:59.4003593Z ##[endgroup] 2023-01-11T21:29:59.4003999Z FINISHED PRINTING LOG FILE of dynamo/test_python_autograd (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_python_autograd_6k8pgcga) 2023-01-11T21:29:59.4004242Z 2023-01-11T21:30:01.2728132Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:01.3375682Z Ignoring disabled issues: [] 2023-01-11T21:30:01.3520381Z Running dynamo/test_recompile_ux ... [2023-01-11 21:30:01.351745] 2023-01-11T21:30:01.3522671Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_recompile_ux.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:01.352005] 2023-01-11T21:30:03.0814473Z 2023-01-11T21:30:03.0815046Z Expand the folded group to see the log file of dynamo/test_recompile_ux 2023-01-11T21:30:03.0816000Z ##[group]PRINTING LOG FILE of dynamo/test_recompile_ux (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_recompile_ux_w3soobbe) 2023-01-11T21:30:03.0816241Z 2023-01-11T21:30:03.0816463Z ##[endgroup] 2023-01-11T21:30:03.0816963Z FINISHED PRINTING LOG FILE of dynamo/test_recompile_ux (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_recompile_ux_w3soobbe) 2023-01-11T21:30:03.0817193Z 2023-01-11T21:30:04.9588397Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:05.0241363Z Ignoring disabled issues: [] 2023-01-11T21:30:05.0416597Z Running dynamo/test_replay_record ... [2023-01-11 21:30:05.041403] 2023-01-11T21:30:05.0418872Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_replay_record.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:05.041671] 2023-01-11T21:30:06.7907489Z 2023-01-11T21:30:06.7908003Z Expand the folded group to see the log file of dynamo/test_replay_record 2023-01-11T21:30:06.7909156Z ##[group]PRINTING LOG FILE of dynamo/test_replay_record (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_replay_record_hauiuzwo) 2023-01-11T21:30:06.7909585Z 2023-01-11T21:30:06.7909661Z Running tests... 2023-01-11T21:30:06.7910048Z ---------------------------------------------------------------------- 2023-01-11T21:30:06.7910446Z Test results will be stored in test-reports/python-unittest/dynamo.test_replay_record 2023-01-11T21:30:06.7910784Z test_fn_call_args (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7911098Z test_local_module (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7911404Z test_nonlocal_fn_call (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7911740Z test_nonlocal_module_class (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7912070Z test_nonlocal_module_fn_call (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7912568Z test_successful_inline (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7912895Z test_unsuccessful_inline (__main__.ReplayRecordTests) ... skip: requires dill (0.000s) 2023-01-11T21:30:06.7913075Z 2023-01-11T21:30:06.7913278Z ---------------------------------------------------------------------- 2023-01-11T21:30:06.7913519Z Ran 7 tests in 0.003s 2023-01-11T21:30:06.7913620Z 2023-01-11T21:30:06.7913692Z OK (skipped=7) 2023-01-11T21:30:06.7913798Z 2023-01-11T21:30:06.7913883Z Generating XML reports... 2023-01-11T21:30:06.7914330Z Generated XML report: test-reports/python-unittest/dynamo.test_replay_record/TEST-ReplayRecordTests-20230111213006.xml 2023-01-11T21:30:06.7914574Z 2023-01-11T21:30:06.7914795Z ##[endgroup] 2023-01-11T21:30:06.7915269Z FINISHED PRINTING LOG FILE of dynamo/test_replay_record (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_replay_record_hauiuzwo) 2023-01-11T21:30:06.7915513Z 2023-01-11T21:30:08.6611497Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:08.7260862Z Ignoring disabled issues: [] 2023-01-11T21:30:08.7405157Z Running dynamo/test_skip_non_tensor ... [2023-01-11 21:30:08.740265] 2023-01-11T21:30:08.7407263Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_skip_non_tensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:08.740525] 2023-01-11T21:30:10.8743891Z 2023-01-11T21:30:10.8744389Z Expand the folded group to see the log file of dynamo/test_skip_non_tensor 2023-01-11T21:30:10.8745422Z ##[group]PRINTING LOG FILE of dynamo/test_skip_non_tensor (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_skip_non_tensor_1ggs2qfy) 2023-01-11T21:30:10.8745666Z 2023-01-11T21:30:10.8745741Z Running tests... 2023-01-11T21:30:10.8746154Z ---------------------------------------------------------------------- 2023-01-11T21:30:10.8746547Z Test results will be stored in test-reports/python-unittest/dynamo.test_skip_non_tensor 2023-01-11T21:30:10.8746914Z test_add_skip (__main__.SkipNonTensorTests) ... ok (0.243s) 2023-01-11T21:30:10.8747669Z test_add_tensor1 (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:30:10.8748099Z ok (0.086s) 2023-01-11T21:30:10.8748541Z test_add_tensor2 (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:30:10.8748813Z ok (0.005s) 2023-01-11T21:30:10.8749251Z test_add_tensor_dict (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:30:10.8749643Z ok (0.005s) 2023-01-11T21:30:10.8750322Z test_add_tensor_list (__main__.SkipNonTensorTests) ... stats [('calls_captured', 1), ('unique_graphs', 1), ('fusions_possible', 0)] 2023-01-11T21:30:10.8750810Z ok (0.004s) 2023-01-11T21:30:10.8751199Z test_custom_list (__main__.SkipNonTensorTests) ... ok (0.001s) 2023-01-11T21:30:10.8751711Z test_recursive_list (__main__.SkipNonTensorTests) ... ok (0.001s) 2023-01-11T21:30:10.8752005Z 2023-01-11T21:30:10.8752341Z ---------------------------------------------------------------------- 2023-01-11T21:30:10.8752586Z Ran 7 tests in 0.345s 2023-01-11T21:30:10.8752685Z 2023-01-11T21:30:10.8752745Z OK 2023-01-11T21:30:10.8752835Z 2023-01-11T21:30:10.8752922Z Generating XML reports... 2023-01-11T21:30:10.8753357Z Generated XML report: test-reports/python-unittest/dynamo.test_skip_non_tensor/TEST-SkipNonTensorTests-20230111213010.xml 2023-01-11T21:30:10.8753605Z 2023-01-11T21:30:10.8753824Z ##[endgroup] 2023-01-11T21:30:10.8754242Z FINISHED PRINTING LOG FILE of dynamo/test_skip_non_tensor (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_skip_non_tensor_1ggs2qfy) 2023-01-11T21:30:10.8754477Z 2023-01-11T21:30:12.7270730Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:12.7919343Z Ignoring disabled issues: [] 2023-01-11T21:30:12.8064481Z Running dynamo/test_subgraphs ... [2023-01-11 21:30:12.806184] 2023-01-11T21:30:12.8066804Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_subgraphs.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:12.806449] 2023-01-11T21:30:16.4809968Z 2023-01-11T21:30:16.4810651Z Expand the folded group to see the log file of dynamo/test_subgraphs 2023-01-11T21:30:16.4811690Z ##[group]PRINTING LOG FILE of dynamo/test_subgraphs (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_subgraphs_55b9_xok) 2023-01-11T21:30:16.4812308Z 2023-01-11T21:30:16.4812450Z Running tests... 2023-01-11T21:30:16.4813108Z ---------------------------------------------------------------------- 2023-01-11T21:30:16.4813654Z Test results will be stored in test-reports/python-unittest/dynamo.test_subgraphs 2023-01-11T21:30:16.4814154Z test_capi_call1 (__main__.SubGraphTests) ... ok (0.323s) 2023-01-11T21:30:16.4814499Z test_capi_call2 (__main__.SubGraphTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:30:16.4814746Z unimplemented [] 2023-01-11T21:30:16.4815140Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4815561Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:30:16.4815828Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4816023Z unimplemented [] 2023-01-11T21:30:16.4816413Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4816816Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:30:16.4817047Z ok (0.012s) 2023-01-11T21:30:16.4817348Z test_capi_call3 (__main__.SubGraphTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:30:16.4817569Z unimplemented [] 2023-01-11T21:30:16.4817960Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4818378Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:30:16.4818608Z ok (0.006s) 2023-01-11T21:30:16.4818895Z test_control_flow1 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4819256Z stats [('calls_captured', 5), ('fusions_possible', 4), ('unique_graphs', 1)] 2023-01-11T21:30:16.4819481Z ok (0.011s) 2023-01-11T21:30:16.4819768Z test_control_flow2 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4820122Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:30:16.4820352Z ok (0.006s) 2023-01-11T21:30:16.4820637Z test_control_flow3 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4820996Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:30:16.4821222Z ok (0.015s) 2023-01-11T21:30:16.4821509Z test_control_flow4 (__main__.SubGraphTests) ... frames [('total', 5), ('ok', 5)] 2023-01-11T21:30:16.4821865Z stats [('calls_captured', 5), ('unique_graphs', 3), ('fusions_possible', 2)] 2023-01-11T21:30:16.4822088Z ok (0.014s) 2023-01-11T21:30:16.4822382Z test_control_flow5 (__main__.SubGraphTests) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:30:16.4822727Z stats [('calls_captured', 13), ('fusions_possible', 7), ('unique_graphs', 6)] 2023-01-11T21:30:16.4822948Z ok (0.037s) 2023-01-11T21:30:16.4823251Z test_dynamic_duck_size (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4823699Z stats [('calls_captured', 10), ('fusions_possible', 8), ('unique_graphs', 2)] 2023-01-11T21:30:16.4823921Z ok (0.069s) 2023-01-11T21:30:16.4824220Z test_dynamic_kwarg (__main__.SubGraphTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:30:16.4824566Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:30:16.4824789Z ok (0.021s) 2023-01-11T21:30:16.4825114Z test_dynamic_order_dependence (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4825583Z stats [('calls_captured', 9), ('fusions_possible', 6), ('unique_graphs', 3)] 2023-01-11T21:30:16.4825795Z ok (0.062s) 2023-01-11T21:30:16.4826110Z test_dynamic_shapes (__main__.SubGraphTests) ... frames [('total', 11), ('ok', 11)] 2023-01-11T21:30:16.4826478Z stats [('calls_captured', 22), ('fusions_possible', 11), ('unique_graphs', 11)] 2023-01-11T21:30:16.4826691Z ok (0.058s) 2023-01-11T21:30:16.4827006Z test_dynamic_zero_inference (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4827371Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:30:16.4827581Z ok (0.023s) 2023-01-11T21:30:16.4827900Z test_enumerate_not_break_graph (__main__.SubGraphTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:30:16.4828308Z stats [('calls_captured', 2), ('fusions_possible', 1), ('unique_graphs', 1)] 2023-01-11T21:30:16.4828534Z ok (0.007s) 2023-01-11T21:30:16.4828826Z test_extended_args (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4829196Z stats [('calls_captured', 1026), ('fusions_possible', 1023), ('unique_graphs', 3)] 2023-01-11T21:30:16.4829423Z ok (0.818s) 2023-01-11T21:30:16.4829722Z test_graph_break_on_item (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4829961Z unimplemented [] 2023-01-11T21:30:16.4830190Z graph_break [('Tensor.item', 1)] 2023-01-11T21:30:16.4830492Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:30:16.4830716Z ok (0.012s) 2023-01-11T21:30:16.4831029Z test_indirect_unsupported1 (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4831466Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4831759Z unimplemented [] 2023-01-11T21:30:16.4832141Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4832555Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:30:16.4832766Z ok (0.010s) 2023-01-11T21:30:16.4833080Z test_indirect_unsupported2 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4833530Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4833810Z unimplemented [] 2023-01-11T21:30:16.4834186Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4834599Z stats [('calls_captured', 5), ('unique_graphs', 3), ('fusions_possible', 2)] 2023-01-11T21:30:16.4834827Z ok (0.015s) 2023-01-11T21:30:16.4835131Z test_indirect_unsupported3 (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4835575Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4835866Z unimplemented [] 2023-01-11T21:30:16.4836237Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4836644Z stats [('calls_captured', 3), ('unique_graphs', 2), ('fusions_possible', 1)] 2023-01-11T21:30:16.4836870Z ok (0.010s) 2023-01-11T21:30:16.4837153Z test_multigraph (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4837509Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:30:16.4837729Z ok (0.010s) 2023-01-11T21:30:16.4838040Z test_no_graph_break_on_item (__main__.SubGraphTests) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:30:16.4838390Z stats [('calls_captured', 6), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:30:16.4838616Z ok (0.008s) 2023-01-11T21:30:16.4838921Z test_pop_after_resume (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4839148Z unimplemented [] 2023-01-11T21:30:16.4839583Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4839993Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:30:16.4840207Z ok (0.014s) 2023-01-11T21:30:16.4840506Z test_restore_range (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4840741Z unimplemented [] 2023-01-11T21:30:16.4841122Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4841521Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:30:16.4841745Z ok (0.011s) 2023-01-11T21:30:16.4842053Z test_restore_range_iter (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4842314Z unimplemented [] 2023-01-11T21:30:16.4842699Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4843111Z stats [('calls_captured', 2), ('unique_graphs', 2), ('fusions_possible', 0)] 2023-01-11T21:30:16.4843325Z ok (0.010s) 2023-01-11T21:30:16.4843625Z test_restore_state (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4843862Z unimplemented [] 2023-01-11T21:30:16.4844244Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4844642Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:30:16.4844865Z ok (0.011s) 2023-01-11T21:30:16.4845152Z test_resume1 (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4845363Z unimplemented [] 2023-01-11T21:30:16.4845749Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4846160Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:30:16.4846374Z ok (0.011s) 2023-01-11T21:30:16.4846658Z test_resume2 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4847089Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4847377Z unimplemented [] 2023-01-11T21:30:16.4847745Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4848155Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:30:16.4848377Z ok (0.015s) 2023-01-11T21:30:16.4848654Z test_resume3 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4849290Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4849599Z unimplemented [] 2023-01-11T21:30:16.4849973Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4850386Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:30:16.4850614Z ok (0.015s) 2023-01-11T21:30:16.4850906Z test_resume4 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4851321Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4851608Z unimplemented [] 2023-01-11T21:30:16.4851987Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4852380Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:30:16.4852607Z ok (0.015s) 2023-01-11T21:30:16.4852853Z test_resume5 (__main__.SubGraphTests) ... tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:30:16.4853085Z 1.5000]) 2023-01-11T21:30:16.4853271Z tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:30:16.4853540Z 1.5000]) 2023-01-11T21:30:16.4853736Z tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:30:16.4853913Z 1.5000]) 2023-01-11T21:30:16.4854107Z tensor([1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 1.5000, 2023-01-11T21:30:16.4854301Z 1.5000]) 2023-01-11T21:30:16.4854502Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:30:16.4854693Z unimplemented [] 2023-01-11T21:30:16.4855014Z graph_break [('call_function BuiltinVariable(print) [TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4855366Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:30:16.4855590Z ok (0.012s) 2023-01-11T21:30:16.4855933Z test_resume_freevars (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4856162Z unimplemented [] 2023-01-11T21:30:16.4856543Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4856955Z stats [('calls_captured', 5), ('fusions_possible', 3), ('unique_graphs', 2)] 2023-01-11T21:30:16.4857181Z ok (0.011s) 2023-01-11T21:30:16.4857473Z test_resume_paths_join (__main__.SubGraphTests) ... frames [('total', 7), ('ok', 7)] 2023-01-11T21:30:16.4857834Z stats [('calls_captured', 10), ('unique_graphs', 7), ('fusions_possible', 3)] 2023-01-11T21:30:16.4858060Z ok (0.032s) 2023-01-11T21:30:16.4858363Z test_resume_tuple_iterator (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4858611Z unimplemented [] 2023-01-11T21:30:16.4858996Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4859400Z stats [('calls_captured', 8), ('fusions_possible', 6), ('unique_graphs', 2)] 2023-01-11T21:30:16.4859630Z ok (0.017s) 2023-01-11T21:30:16.4859946Z test_resume_with_no_grad1 (__main__.SubGraphTests) ... frames [('total', 4), ('ok', 4)] 2023-01-11T21:30:16.4860196Z unimplemented [] 2023-01-11T21:30:16.4860418Z graph_break [('Tensor.tolist', 2)] 2023-01-11T21:30:16.4860744Z stats [('calls_captured', 18), ('fusions_possible', 14), ('unique_graphs', 4)] 2023-01-11T21:30:16.4860972Z ok (0.023s) 2023-01-11T21:30:16.4861269Z test_resume_with_no_grad2 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4861513Z unimplemented [] 2023-01-11T21:30:16.4861752Z graph_break [('Tensor.tolist', 2)] 2023-01-11T21:30:16.4862062Z stats [('calls_captured', 13), ('fusions_possible', 10), ('unique_graphs', 3)] 2023-01-11T21:30:16.4862291Z ok (0.019s) 2023-01-11T21:30:16.4862602Z test_resume_with_no_grad3 (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4862829Z unimplemented [] 2023-01-11T21:30:16.4863063Z graph_break [('Tensor.tolist', 1)] 2023-01-11T21:30:16.4863470Z stats [('calls_captured', 19), ('fusions_possible', 17), ('unique_graphs', 2)] 2023-01-11T21:30:16.4863704Z ok (0.017s) 2023-01-11T21:30:16.4863997Z test_stack_state1 (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4864233Z unimplemented [] 2023-01-11T21:30:16.4864619Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4865022Z stats [('calls_captured', 6), ('fusions_possible', 4), ('unique_graphs', 2)] 2023-01-11T21:30:16.4865247Z ok (0.012s) 2023-01-11T21:30:16.4865547Z test_stack_state2 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4865966Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4866258Z unimplemented [] 2023-01-11T21:30:16.4866639Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4867048Z stats [('calls_captured', 7), ('fusions_possible', 4), ('unique_graphs', 3)] 2023-01-11T21:30:16.4867303Z ok (0.016s) 2023-01-11T21:30:16.4867534Z test_start1 (__main__.SubGraphTests) ... tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) 2023-01-11T21:30:16.4867852Z tensor([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2.]) 2023-01-11T21:30:16.4868058Z tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) 2023-01-11T21:30:16.4868326Z tensor([-2., -2., -2., -2., -2., -2., -2., -2., -2., -2.]) 2023-01-11T21:30:16.4868570Z frames [('total', 4), ('ok', 4)] 2023-01-11T21:30:16.4868751Z unimplemented [] 2023-01-11T21:30:16.4869066Z graph_break [('call_function BuiltinVariable(print) [TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4869431Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:30:16.4869646Z ok (0.009s) 2023-01-11T21:30:16.4869930Z test_start2 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4870394Z inline_call [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4870688Z unimplemented [] 2023-01-11T21:30:16.4871058Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4871472Z stats [('calls_captured', 4), ('fusions_possible', 2), ('unique_graphs', 2)] 2023-01-11T21:30:16.4871699Z ok (0.012s) 2023-01-11T21:30:16.4871975Z test_start3 (__main__.SubGraphTests) ... frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:16.4872206Z unimplemented [] 2023-01-11T21:30:16.4872590Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 1)] 2023-01-11T21:30:16.4872988Z stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:30:16.4887817Z ok (0.008s) 2023-01-11T21:30:16.4888485Z test_start4 (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4889175Z stats [('calls_captured', 4), ('unique_graphs', 3), ('fusions_possible', 1)] 2023-01-11T21:30:16.4889535Z ok (0.012s) 2023-01-11T21:30:16.4889919Z test_tuple_iterator_mutate (__main__.SubGraphTests) ... skip: not working yet (0.001s) 2023-01-11T21:30:16.4890469Z test_tuple_iterator_return (__main__.SubGraphTests) ... frames [('total', 3), ('ok', 3)] 2023-01-11T21:30:16.4890826Z unimplemented [] 2023-01-11T21:30:16.4891431Z graph_break [('call_function UserDefinedObjectVariable(unsupported) [TensorVariable(), TensorVariable()] {}', 2)] 2023-01-11T21:30:16.4892023Z stats [('calls_captured', 6), ('fusions_possible', 3), ('unique_graphs', 3)] 2023-01-11T21:30:16.4892353Z ok (0.023s) 2023-01-11T21:30:16.4892507Z 2023-01-11T21:30:16.4892807Z ---------------------------------------------------------------------- 2023-01-11T21:30:16.4893137Z Ran 44 tests in 1.875s 2023-01-11T21:30:16.4893251Z 2023-01-11T21:30:16.4893321Z OK (skipped=1) 2023-01-11T21:30:16.4893425Z 2023-01-11T21:30:16.4893513Z Generating XML reports... 2023-01-11T21:30:16.4893937Z Generated XML report: test-reports/python-unittest/dynamo.test_subgraphs/TEST-SubGraphTests-20230111213014.xml 2023-01-11T21:30:16.4894165Z 2023-01-11T21:30:16.4894491Z ##[endgroup] 2023-01-11T21:30:16.4894898Z FINISHED PRINTING LOG FILE of dynamo/test_subgraphs (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_subgraphs_55b9_xok) 2023-01-11T21:30:16.4895125Z 2023-01-11T21:30:18.3325270Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:18.3972985Z Ignoring disabled issues: [] 2023-01-11T21:30:18.4117453Z Running dynamo/test_torchxla_num_output ... [2023-01-11 21:30:18.411477] 2023-01-11T21:30:18.4120283Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_torchxla_num_output.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:18.411743] 2023-01-11T21:30:19.9472022Z 2023-01-11T21:30:19.9472563Z Expand the folded group to see the log file of dynamo/test_torchxla_num_output 2023-01-11T21:30:19.9473733Z ##[group]PRINTING LOG FILE of dynamo/test_torchxla_num_output (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_num_output_bpyz7zwh) 2023-01-11T21:30:19.9474448Z 2023-01-11T21:30:19.9474828Z ##[endgroup] 2023-01-11T21:30:19.9475731Z FINISHED PRINTING LOG FILE of dynamo/test_torchxla_num_output (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_num_output_bpyz7zwh) 2023-01-11T21:30:19.9476183Z 2023-01-11T21:30:21.7629963Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:21.8273942Z Ignoring disabled issues: [] 2023-01-11T21:30:21.8417618Z Running dynamo/test_torchxla_util ... [2023-01-11 21:30:21.841551] 2023-01-11T21:30:21.8419812Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_torchxla_util.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:21.841785] 2023-01-11T21:30:21.8761840Z 2023-01-11T21:30:21.8762270Z Expand the folded group to see the log file of dynamo/test_torchxla_util 2023-01-11T21:30:21.8763508Z ##[group]PRINTING LOG FILE of dynamo/test_torchxla_util (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_util_zeh12lhp) 2023-01-11T21:30:21.8763771Z 2023-01-11T21:30:21.8763986Z ##[endgroup] 2023-01-11T21:30:21.8764471Z FINISHED PRINTING LOG FILE of dynamo/test_torchxla_util (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_torchxla_util_zeh12lhp) 2023-01-11T21:30:21.8764703Z 2023-01-11T21:30:23.6619706Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:23.7259351Z Ignoring disabled issues: [] 2023-01-11T21:30:23.7403197Z Running dynamo/test_verify_correctness ... [2023-01-11 21:30:23.740003] 2023-01-11T21:30:23.7405766Z Executing ['/opt/conda/bin/python', '-bb', 'dynamo/test_verify_correctness.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:23.740263] 2023-01-11T21:30:25.9828859Z 2023-01-11T21:30:25.9829394Z Expand the folded group to see the log file of dynamo/test_verify_correctness 2023-01-11T21:30:25.9830596Z ##[group]PRINTING LOG FILE of dynamo/test_verify_correctness (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_verify_correctness_bua5ds4z) 2023-01-11T21:30:25.9831084Z 2023-01-11T21:30:25.9831238Z Running tests... 2023-01-11T21:30:25.9831914Z ---------------------------------------------------------------------- 2023-01-11T21:30:25.9832650Z Test results will be stored in test-reports/python-unittest/dynamo.test_verify_correctness 2023-01-11T21:30:25.9833245Z test_example_inputs (__main__.TestVerifyCorrectness) ... ok (0.315s) 2023-01-11T21:30:25.9833678Z test_incorrect_verify_false (__main__.TestVerifyCorrectness) 2023-01-11T21:30:25.9834434Z The bad optimization return a graph that ... stats [('calls_captured', 3), ('fusions_possible', 2), ('unique_graphs', 1)] 2023-01-11T21:30:25.9834869Z frames [('total', 2), ('ok', 2)] 2023-01-11T21:30:25.9835236Z stats [('calls_captured', 7), ('fusions_possible', 5), ('unique_graphs', 2)] 2023-01-11T21:30:25.9835451Z ok (0.016s) 2023-01-11T21:30:25.9835710Z test_incorrect_verify_true (__main__.TestVerifyCorrectness) 2023-01-11T21:30:25.9836236Z If a bad optimization return a graph that ... [2023-01-11 21:30:25,518] torch._dynamo.output_graph: [ERROR] error in verify_correctness 2023-01-11T21:30:25.9836601Z Traceback (most recent call last): 2023-01-11T21:30:25.9837015Z File "/opt/conda/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 173, in __call__ 2023-01-11T21:30:25.9837387Z raise RuntimeError(f"incorrect results of backend {self}") 2023-01-11T21:30:25.9837737Z RuntimeError: incorrect results of backend 2023-01-11T21:30:25.9838117Z frames [('total', 2), ('ok', 1)] 2023-01-11T21:30:25.9838418Z stats [('calls_captured', 7), ('fusions_possible', 5), ('unique_graphs', 1)] 2023-01-11T21:30:25.9838645Z ok (0.015s) 2023-01-11T21:30:25.9838946Z test_ipex_fp32 (__main__.TestVerifyCorrectness) ... skip: requires ipex (0.001s) 2023-01-11T21:30:25.9839397Z test_nnc (__main__.TestVerifyCorrectness) ... frames [('total', 1), ('ok', 1)] 2023-01-11T21:30:25.9839810Z stats [('calls_captured', 4), ('fusions_possible', 3), ('unique_graphs', 1)] 2023-01-11T21:30:25.9840220Z ok (0.090s) 2023-01-11T21:30:25.9840375Z 2023-01-11T21:30:25.9840563Z ---------------------------------------------------------------------- 2023-01-11T21:30:25.9840808Z Ran 5 tests in 0.437s 2023-01-11T21:30:25.9840924Z 2023-01-11T21:30:25.9840999Z OK (skipped=1) 2023-01-11T21:30:25.9841153Z 2023-01-11T21:30:25.9841239Z Generating XML reports... 2023-01-11T21:30:25.9841676Z Generated XML report: test-reports/python-unittest/dynamo.test_verify_correctness/TEST-TestVerifyCorrectness-20230111213025.xml 2023-01-11T21:30:25.9841990Z 2023-01-11T21:30:25.9842268Z ##[endgroup] 2023-01-11T21:30:25.9842758Z FINISHED PRINTING LOG FILE of dynamo/test_verify_correctness (/var/lib/jenkins/workspace/test/test-reports/dynamo-test_verify_correctness_bua5ds4z) 2023-01-11T21:30:25.9842994Z 2023-01-11T21:30:27.8088517Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:30:27.8735011Z Ignoring disabled issues: [] 2023-01-11T21:30:27.8880603Z Running inductor/test_minifier ... [2023-01-11 21:30:27.887739] 2023-01-11T21:30:27.8881978Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_minifier.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:30:27.887977] 2023-01-11T21:32:01.9406187Z 2023-01-11T21:32:01.9406916Z Expand the folded group to see the log file of inductor/test_minifier 2023-01-11T21:32:01.9409268Z ##[group]PRINTING LOG FILE of inductor/test_minifier (/var/lib/jenkins/workspace/test/test-reports/inductor-test_minifier_04v09_xu) 2023-01-11T21:32:01.9409865Z 2023-01-11T21:32:01.9410039Z Running tests... 2023-01-11T21:32:01.9428744Z ---------------------------------------------------------------------- 2023-01-11T21:32:01.9429261Z Test results will be stored in test-reports/python-unittest/inductor.test_minifier 2023-01-11T21:32:01.9429653Z test_after_aot_cpu_accuracy_backend_passes (__main__.MinifierTests) ... ok (9.669s) 2023-01-11T21:32:01.9430460Z test_after_aot_cpu_accuracy_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9431019Z test_after_aot_cpu_compile_backend_passes (__main__.MinifierTests) ... ok (8.142s) 2023-01-11T21:32:01.9431687Z test_after_aot_cpu_compile_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9432243Z test_after_aot_cpu_runtime_backend_passes (__main__.MinifierTests) ... ok (7.935s) 2023-01-11T21:32:01.9433020Z test_after_aot_cpu_runtime_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9433606Z test_after_aot_cuda_accuracy_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:32:01.9434217Z test_after_aot_cuda_accuracy_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:32:01.9434728Z test_after_aot_cuda_compile_backend_passes (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:32:01.9435189Z test_after_aot_cuda_compile_error (__main__.MinifierTests) ... skip: requires cuda (0.000s) 2023-01-11T21:32:01.9435951Z test_after_aot_cuda_runtime_backend_passes (__main__.MinifierTests) ... skip: (0.000s) 2023-01-11T21:32:01.9436522Z test_after_aot_cuda_runtime_error (__main__.MinifierTests) ... skip: (0.000s) 2023-01-11T21:32:01.9437231Z test_after_aot_with_modified_config_accuracy_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9437714Z test_after_aot_with_modified_config_compile_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9438083Z test_inductor_config_serialization (__main__.MinifierTests) ... ok (1.522s) 2023-01-11T21:32:01.9438459Z test_torch_compile_after_aot_accuracy_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9439155Z test_torch_compile_after_aot_compile_error (__main__.MinifierTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:32:01.9439535Z test_torch_compile_after_dynamo_accuracy_error (__main__.MinifierTests) ... ok (29.012s) 2023-01-11T21:32:01.9439850Z test_torch_compile_after_dynamo_compile_error (__main__.MinifierTests) ... ok (35.949s) 2023-01-11T21:32:01.9440030Z 2023-01-11T21:32:01.9440263Z ---------------------------------------------------------------------- 2023-01-11T21:32:01.9440508Z Ran 19 tests in 92.233s 2023-01-11T21:32:01.9440627Z 2023-01-11T21:32:01.9440702Z OK (skipped=13) 2023-01-11T21:32:01.9440797Z 2023-01-11T21:32:01.9440882Z Generating XML reports... 2023-01-11T21:32:01.9441388Z Generated XML report: test-reports/python-unittest/inductor.test_minifier/TEST-MinifierTests-20230111213029.xml 2023-01-11T21:32:01.9441625Z 2023-01-11T21:32:01.9442008Z ##[endgroup] 2023-01-11T21:32:01.9442413Z FINISHED PRINTING LOG FILE of inductor/test_minifier (/var/lib/jenkins/workspace/test/test-reports/inductor-test_minifier_04v09_xu) 2023-01-11T21:32:01.9442645Z 2023-01-11T21:32:03.7785145Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:03.8431104Z Ignoring disabled issues: [] 2023-01-11T21:32:03.8574877Z Running inductor/test_perf ... [2023-01-11 21:32:03.857189] 2023-01-11T21:32:03.8577504Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_perf.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:03.857430] 2023-01-11T21:32:11.8585511Z 2023-01-11T21:32:11.8586033Z Expand the folded group to see the log file of inductor/test_perf 2023-01-11T21:32:11.8587081Z ##[group]PRINTING LOG FILE of inductor/test_perf (/var/lib/jenkins/workspace/test/test-reports/inductor-test_perf_t2sizwmp) 2023-01-11T21:32:11.8587876Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:11.8588139Z 2023-01-11T21:32:11.8588486Z ##[endgroup] 2023-01-11T21:32:11.8589191Z FINISHED PRINTING LOG FILE of inductor/test_perf (/var/lib/jenkins/workspace/test/test-reports/inductor-test_perf_t2sizwmp) 2023-01-11T21:32:11.8589578Z 2023-01-11T21:32:13.6960566Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:13.7606916Z Ignoring disabled issues: [] 2023-01-11T21:32:13.7753069Z Running inductor/test_smoke ... [2023-01-11 21:32:13.774932] 2023-01-11T21:32:13.7754088Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_smoke.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:13.775167] 2023-01-11T21:32:15.4920144Z 2023-01-11T21:32:15.4920654Z Expand the folded group to see the log file of inductor/test_smoke 2023-01-11T21:32:15.4921906Z ##[group]PRINTING LOG FILE of inductor/test_smoke (/var/lib/jenkins/workspace/test/test-reports/inductor-test_smoke_ezx46jf2) 2023-01-11T21:32:15.4922337Z 2023-01-11T21:32:15.4922687Z ##[endgroup] 2023-01-11T21:32:15.4923182Z FINISHED PRINTING LOG FILE of inductor/test_smoke (/var/lib/jenkins/workspace/test/test-reports/inductor-test_smoke_ezx46jf2) 2023-01-11T21:32:15.4923415Z 2023-01-11T21:32:17.3218329Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:17.3869138Z Ignoring disabled issues: [] 2023-01-11T21:32:17.4013222Z Running lazy/test_bindings ... [2023-01-11 21:32:17.401092] 2023-01-11T21:32:17.4015652Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_bindings.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:17.401335] 2023-01-11T21:32:18.7449499Z 2023-01-11T21:32:18.7450207Z Expand the folded group to see the log file of lazy/test_bindings 2023-01-11T21:32:18.7451437Z ##[group]PRINTING LOG FILE of lazy/test_bindings (/var/lib/jenkins/workspace/test/test-reports/lazy-test_bindings_kf5y4qi9) 2023-01-11T21:32:18.7451850Z 2023-01-11T21:32:18.7452139Z ##[endgroup] 2023-01-11T21:32:18.7452746Z FINISHED PRINTING LOG FILE of lazy/test_bindings (/var/lib/jenkins/workspace/test/test-reports/lazy-test_bindings_kf5y4qi9) 2023-01-11T21:32:18.7453180Z 2023-01-11T21:32:20.5653834Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:20.6297720Z Ignoring disabled issues: [] 2023-01-11T21:32:20.6442426Z Running lazy/test_debug_util ... [2023-01-11 21:32:20.643954] 2023-01-11T21:32:20.6444238Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_debug_util.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:20.644200] 2023-01-11T21:32:22.5680520Z 2023-01-11T21:32:22.5680968Z Expand the folded group to see the log file of lazy/test_debug_util 2023-01-11T21:32:22.5682061Z ##[group]PRINTING LOG FILE of lazy/test_debug_util (/var/lib/jenkins/workspace/test/test-reports/lazy-test_debug_util_rfpyxxs1) 2023-01-11T21:32:22.5682509Z 2023-01-11T21:32:22.5682635Z Running tests... 2023-01-11T21:32:22.5683538Z ---------------------------------------------------------------------- 2023-01-11T21:32:22.5684245Z Test results will be stored in test-reports/python-unittest/lazy.test_debug_util 2023-01-11T21:32:22.5684812Z test_get_python_frames (__main__.DebugUtilTest) ... ok (0.263s) 2023-01-11T21:32:22.5685102Z 2023-01-11T21:32:22.5685466Z ---------------------------------------------------------------------- 2023-01-11T21:32:22.5685881Z Ran 1 test in 0.264s 2023-01-11T21:32:22.5686079Z 2023-01-11T21:32:22.5686185Z OK 2023-01-11T21:32:22.5686349Z 2023-01-11T21:32:22.5686498Z Generating XML reports... 2023-01-11T21:32:22.5687270Z Generated XML report: test-reports/python-unittest/lazy.test_debug_util/TEST-DebugUtilTest-20230111213221.xml 2023-01-11T21:32:22.5687685Z 2023-01-11T21:32:22.5688073Z ##[endgroup] 2023-01-11T21:32:22.5688811Z FINISHED PRINTING LOG FILE of lazy/test_debug_util (/var/lib/jenkins/workspace/test/test-reports/lazy-test_debug_util_rfpyxxs1) 2023-01-11T21:32:22.5689438Z 2023-01-11T21:32:24.4285681Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:24.4933103Z Ignoring disabled issues: [] 2023-01-11T21:32:24.5079725Z Running lazy/test_extract_compiled_graph ... [2023-01-11 21:32:24.507727] 2023-01-11T21:32:24.5082436Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_extract_compiled_graph.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:24.507979] 2023-01-11T21:32:25.8811717Z 2023-01-11T21:32:25.8812238Z Expand the folded group to see the log file of lazy/test_extract_compiled_graph 2023-01-11T21:32:25.8813562Z ##[group]PRINTING LOG FILE of lazy/test_extract_compiled_graph (/var/lib/jenkins/workspace/test/test-reports/lazy-test_extract_compiled_graph_vp_yooe7) 2023-01-11T21:32:25.8814043Z 2023-01-11T21:32:25.8814372Z ##[endgroup] 2023-01-11T21:32:25.8814935Z FINISHED PRINTING LOG FILE of lazy/test_extract_compiled_graph (/var/lib/jenkins/workspace/test/test-reports/lazy-test_extract_compiled_graph_vp_yooe7) 2023-01-11T21:32:25.8815192Z 2023-01-11T21:32:27.6942484Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:27.7629525Z Ignoring disabled issues: [] 2023-01-11T21:32:27.7779977Z Running lazy/test_meta_kernel ... [2023-01-11 21:32:27.777685] 2023-01-11T21:32:27.7781278Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_meta_kernel.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:27.777921] 2023-01-11T21:32:29.3821345Z 2023-01-11T21:32:29.3821899Z Expand the folded group to see the log file of lazy/test_meta_kernel 2023-01-11T21:32:29.3822829Z ##[group]PRINTING LOG FILE of lazy/test_meta_kernel (/var/lib/jenkins/workspace/test/test-reports/lazy-test_meta_kernel_aj6zjv0u) 2023-01-11T21:32:29.3823123Z 2023-01-11T21:32:29.3823325Z ##[endgroup] 2023-01-11T21:32:29.3823947Z FINISHED PRINTING LOG FILE of lazy/test_meta_kernel (/var/lib/jenkins/workspace/test/test-reports/lazy-test_meta_kernel_aj6zjv0u) 2023-01-11T21:32:29.3824170Z 2023-01-11T21:32:31.2653861Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:31.3309858Z Ignoring disabled issues: [] 2023-01-11T21:32:31.3457775Z Running lazy/test_reuse_ir ... [2023-01-11 21:32:31.345462] 2023-01-11T21:32:31.3459518Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_reuse_ir.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:31.345720] 2023-01-11T21:32:33.6062094Z 2023-01-11T21:32:33.6062627Z Expand the folded group to see the log file of lazy/test_reuse_ir 2023-01-11T21:32:33.6063742Z ##[group]PRINTING LOG FILE of lazy/test_reuse_ir (/var/lib/jenkins/workspace/test/test-reports/lazy-test_reuse_ir_dyxkmm7w) 2023-01-11T21:32:33.6064187Z 2023-01-11T21:32:33.6064320Z Running tests... 2023-01-11T21:32:33.6064993Z ---------------------------------------------------------------------- 2023-01-11T21:32:33.6065643Z Test results will be stored in test-reports/python-unittest/lazy.test_reuse_ir 2023-01-11T21:32:33.6066132Z testAdd (__main__.TestLazyReuseIr) ... ok (0.272s) 2023-01-11T21:32:33.6066816Z testAddSub (__main__.TestLazyReuseIr) ... ok (0.064s) 2023-01-11T21:32:33.6067291Z testAddSubFallback (__main__.TestLazyReuseIr) ... ok (0.003s) 2023-01-11T21:32:33.6067755Z testBatchNorm (__main__.TestLazyReuseIr) ... ok (0.273s) 2023-01-11T21:32:33.6068015Z 2023-01-11T21:32:33.6068413Z ---------------------------------------------------------------------- 2023-01-11T21:32:33.6068843Z Ran 4 tests in 0.611s 2023-01-11T21:32:33.6069056Z 2023-01-11T21:32:33.6069143Z OK 2023-01-11T21:32:33.6069293Z 2023-01-11T21:32:33.6069456Z Generating XML reports... 2023-01-11T21:32:33.6070229Z Generated XML report: test-reports/python-unittest/lazy.test_reuse_ir/TEST-TestLazyReuseIr-20230111213232.xml 2023-01-11T21:32:33.6070612Z 2023-01-11T21:32:33.6071027Z ##[endgroup] 2023-01-11T21:32:33.6071754Z FINISHED PRINTING LOG FILE of lazy/test_reuse_ir (/var/lib/jenkins/workspace/test/test-reports/lazy-test_reuse_ir_dyxkmm7w) 2023-01-11T21:32:33.6072118Z 2023-01-11T21:32:35.4231660Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:35.4875153Z Ignoring disabled issues: [] 2023-01-11T21:32:35.5020781Z Running lazy/test_step_closures ... [2023-01-11 21:32:35.501700] 2023-01-11T21:32:35.5021726Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_step_closures.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:35.501937] 2023-01-11T21:32:39.4248915Z 2023-01-11T21:32:39.4249875Z Expand the folded group to see the log file of lazy/test_step_closures 2023-01-11T21:32:39.4250805Z ##[group]PRINTING LOG FILE of lazy/test_step_closures (/var/lib/jenkins/workspace/test/test-reports/lazy-test_step_closures_ie9zqgpk) 2023-01-11T21:32:39.4251050Z 2023-01-11T21:32:39.4251136Z Running tests... 2023-01-11T21:32:39.4251540Z ---------------------------------------------------------------------- 2023-01-11T21:32:39.4251938Z Test results will be stored in test-reports/python-unittest/lazy.test_step_closures 2023-01-11T21:32:39.4252265Z test_asynchronous (__main__.ClosuresTest) ... ok (0.225s) 2023-01-11T21:32:39.4252531Z test_asynchronous_exception (__main__.ClosuresTest) ... ok (1.001s) 2023-01-11T21:32:39.4252819Z test_synchronous (__main__.ClosuresTest) ... ok (1.002s) 2023-01-11T21:32:39.4253091Z test_synchronous_exception (__main__.ClosuresTest) ... ok (0.001s) 2023-01-11T21:32:39.4253253Z 2023-01-11T21:32:39.4253440Z ---------------------------------------------------------------------- 2023-01-11T21:32:39.4253681Z Ran 4 tests in 2.230s 2023-01-11T21:32:39.4253795Z 2023-01-11T21:32:39.4253857Z OK 2023-01-11T21:32:39.4253948Z 2023-01-11T21:32:39.4254035Z Generating XML reports... 2023-01-11T21:32:39.4254450Z Generated XML report: test-reports/python-unittest/lazy.test_step_closures/TEST-ClosuresTest-20230111213236.xml 2023-01-11T21:32:39.4254679Z 2023-01-11T21:32:39.4254906Z ##[endgroup] 2023-01-11T21:32:39.4255320Z FINISHED PRINTING LOG FILE of lazy/test_step_closures (/var/lib/jenkins/workspace/test/test-reports/lazy-test_step_closures_ie9zqgpk) 2023-01-11T21:32:39.4255543Z 2023-01-11T21:32:41.2518938Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:41.3162197Z Ignoring disabled issues: [] 2023-01-11T21:32:41.3308076Z Running lazy/test_ts_opinfo ... [2023-01-11 21:32:41.330476] 2023-01-11T21:32:41.3309429Z Executing ['/opt/conda/bin/python', '-bb', 'lazy/test_ts_opinfo.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:41.330707] 2023-01-11T21:32:44.0325260Z 2023-01-11T21:32:44.0325787Z Expand the folded group to see the log file of lazy/test_ts_opinfo 2023-01-11T21:32:44.0326885Z ##[group]PRINTING LOG FILE of lazy/test_ts_opinfo (/var/lib/jenkins/workspace/test/test-reports/lazy-test_ts_opinfo_7_exk4ml) 2023-01-11T21:32:44.0327328Z 2023-01-11T21:32:44.0327456Z Running tests... 2023-01-11T21:32:44.0328090Z ---------------------------------------------------------------------- 2023-01-11T21:32:44.0328512Z Test results will be stored in test-reports/python-unittest/lazy.test_ts_opinfo 2023-01-11T21:32:44.0329178Z test_nonzero_dynamic (__main__.TestLazyDynamicOps) ... ok (0.163s) 2023-01-11T21:32:44.0329547Z testConvolutionBackward (__main__.TestLazyTensor) ... skip: Disable until autograd supports symints (0.001s) 2023-01-11T21:32:44.0329870Z test_tensor_ctr (__main__.TestLazyTensor) ... ok (0.002s) 2023-01-11T21:32:44.0330148Z test_view_mark_step_preserved (__main__.TestLazyTensor) ... ok (0.002s) 2023-01-11T21:32:44.0330314Z 2023-01-11T21:32:44.0330517Z ---------------------------------------------------------------------- 2023-01-11T21:32:44.0330748Z Ran 4 tests in 0.169s 2023-01-11T21:32:44.0330863Z 2023-01-11T21:32:44.0330936Z OK (skipped=1) 2023-01-11T21:32:44.0331043Z 2023-01-11T21:32:44.0331128Z Generating XML reports... 2023-01-11T21:32:44.0331547Z Generated XML report: test-reports/python-unittest/lazy.test_ts_opinfo/TEST-TestLazyDynamicOps-20230111213243.xml 2023-01-11T21:32:44.0332077Z Generated XML report: test-reports/python-unittest/lazy.test_ts_opinfo/TEST-TestLazyTensor-20230111213243.xml 2023-01-11T21:32:44.0332305Z 2023-01-11T21:32:44.0332545Z ##[endgroup] 2023-01-11T21:32:44.0332941Z FINISHED PRINTING LOG FILE of lazy/test_ts_opinfo (/var/lib/jenkins/workspace/test/test-reports/lazy-test_ts_opinfo_7_exk4ml) 2023-01-11T21:32:44.0333150Z 2023-01-11T21:32:45.9143694Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:45.9805219Z Ignoring disabled issues: [] 2023-01-11T21:32:45.9952405Z Running nn/test_dropout ... [2023-01-11 21:32:45.994918] 2023-01-11T21:32:45.9953744Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_dropout.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:45.995176] 2023-01-11T21:32:48.0137847Z 2023-01-11T21:32:48.0138505Z Expand the folded group to see the log file of nn/test_dropout 2023-01-11T21:32:48.0139475Z ##[group]PRINTING LOG FILE of nn/test_dropout (/var/lib/jenkins/workspace/test/test-reports/nn-test_dropout_q8e6pe57) 2023-01-11T21:32:48.0139753Z 2023-01-11T21:32:48.0139853Z Running tests... 2023-01-11T21:32:48.0140257Z ---------------------------------------------------------------------- 2023-01-11T21:32:48.0140694Z Test results will be stored in test-reports/python-unittest/nn.test_dropout 2023-01-11T21:32:48.0141000Z test_AlphaDropout (__main__.TestDropoutNN) ... ok (0.003s) 2023-01-11T21:32:48.0141335Z test_FeatureAlphaDropout (__main__.TestDropoutNN) ... ok (0.079s) 2023-01-11T21:32:48.0141609Z test_invalid_dropout_p (__main__.TestDropoutNN) ... ok (0.002s) 2023-01-11T21:32:48.0141921Z test_native_dropout_corner_case (__main__.TestDropoutNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:32:48.0142158Z 2023-01-11T21:32:48.0142358Z ---------------------------------------------------------------------- 2023-01-11T21:32:48.0142597Z Ran 4 tests in 0.086s 2023-01-11T21:32:48.0142700Z 2023-01-11T21:32:48.0142811Z OK (skipped=1) 2023-01-11T21:32:48.0142921Z 2023-01-11T21:32:48.0143004Z Generating XML reports... 2023-01-11T21:32:48.0143417Z Generated XML report: test-reports/python-unittest/nn.test_dropout/TEST-TestDropoutNN-20230111213247.xml 2023-01-11T21:32:48.0143756Z 2023-01-11T21:32:48.0144180Z ##[endgroup] 2023-01-11T21:32:48.0144623Z FINISHED PRINTING LOG FILE of nn/test_dropout (/var/lib/jenkins/workspace/test/test-reports/nn-test_dropout_q8e6pe57) 2023-01-11T21:32:48.0144840Z 2023-01-11T21:32:49.8714901Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:49.9361322Z Ignoring disabled issues: [] 2023-01-11T21:32:49.9507907Z Running nn/test_embedding ... [2023-01-11 21:32:49.950425] 2023-01-11T21:32:49.9508522Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_embedding.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:49.950653] 2023-01-11T21:32:51.8669892Z 2023-01-11T21:32:51.8670384Z Expand the folded group to see the log file of nn/test_embedding 2023-01-11T21:32:51.8671680Z ##[group]PRINTING LOG FILE of nn/test_embedding (/var/lib/jenkins/workspace/test/test-reports/nn-test_embedding_xwe0h0hs) 2023-01-11T21:32:51.8671987Z 2023-01-11T21:32:51.8672064Z Running tests... 2023-01-11T21:32:51.8672470Z ---------------------------------------------------------------------- 2023-01-11T21:32:51.8672969Z Test results will be stored in test-reports/python-unittest/nn.test_embedding 2023-01-11T21:32:51.8673291Z test_embedding_bag_from_pretrained (__main__.TestEmbeddingNN) ... ok (0.003s) 2023-01-11T21:32:51.8673619Z test_embedding_bag_from_pretrained_padding_idx (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8673922Z test_embedding_bag_functional (__main__.TestEmbeddingNN) ... ok (0.002s) 2023-01-11T21:32:51.8674226Z test_embedding_bag_padding_idx_error (__main__.TestEmbeddingNN) ... ok (0.011s) 2023-01-11T21:32:51.8674540Z test_embedding_from_pretrained_float32 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8674855Z test_embedding_from_pretrained_float64 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8675155Z test_embedding_from_pretrained_int16 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8675460Z test_embedding_from_pretrained_int32 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8675762Z test_embedding_from_pretrained_int64 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8676056Z test_embedding_from_pretrained_int8 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8676366Z test_embedding_from_pretrained_options (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8676686Z test_embedding_from_pretrained_padding_idx (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8677003Z test_embedding_from_pretrained_uint8 (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8677286Z test_embedding_functional (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8677568Z test_embedding_max_norm (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8677904Z test_embedding_max_norm_unsorted_repeating_indices (__main__.TestEmbeddingNN) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:32:51.8678228Z test_embedding_sparse_basic (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8678525Z test_embedding_sparse_empty_tensor (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8678832Z test_embeddingbag_from_pretrained (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8679146Z test_embeddingbag_from_pretrained_options (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8679451Z test_embeddingbag_include_last_offset (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8679755Z test_move_sparse_half_embedding (__main__.TestEmbeddingNN) ... ok (0.001s) 2023-01-11T21:32:51.8679920Z 2023-01-11T21:32:51.8680123Z ---------------------------------------------------------------------- 2023-01-11T21:32:51.8680351Z Ran 22 tests in 0.038s 2023-01-11T21:32:51.8680462Z 2023-01-11T21:32:51.8680533Z OK (skipped=1) 2023-01-11T21:32:51.8680639Z 2023-01-11T21:32:51.8680726Z Generating XML reports... 2023-01-11T21:32:51.8681146Z Generated XML report: test-reports/python-unittest/nn.test_embedding/TEST-TestEmbeddingNN-20230111213251.xml 2023-01-11T21:32:51.8681467Z 2023-01-11T21:32:51.8681713Z ##[endgroup] 2023-01-11T21:32:51.8682104Z FINISHED PRINTING LOG FILE of nn/test_embedding (/var/lib/jenkins/workspace/test/test-reports/nn-test_embedding_xwe0h0hs) 2023-01-11T21:32:51.8682321Z 2023-01-11T21:32:53.6853216Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:53.7522268Z Ignoring disabled issues: [] 2023-01-11T21:32:53.7667696Z Running nn/test_init ... [2023-01-11 21:32:53.766537] 2023-01-11T21:32:53.7669823Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_init.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:53.766763] 2023-01-11T21:32:55.5805536Z 2023-01-11T21:32:55.5806080Z Expand the folded group to see the log file of nn/test_init 2023-01-11T21:32:55.5807182Z ##[group]PRINTING LOG FILE of nn/test_init (/var/lib/jenkins/workspace/test/test-reports/nn-test_init_vyuzj9zc) 2023-01-11T21:32:55.5807486Z 2023-01-11T21:32:55.5807704Z ##[endgroup] 2023-01-11T21:32:55.5808265Z FINISHED PRINTING LOG FILE of nn/test_init (/var/lib/jenkins/workspace/test/test-reports/nn-test_init_vyuzj9zc) 2023-01-11T21:32:55.5808476Z 2023-01-11T21:32:57.4315057Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:32:57.4964760Z Ignoring disabled issues: [] 2023-01-11T21:32:57.5112201Z Running nn/test_lazy_modules ... [2023-01-11 21:32:57.510931] 2023-01-11T21:32:57.5114560Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_lazy_modules.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:32:57.511201] 2023-01-11T21:32:59.8696484Z 2023-01-11T21:32:59.8697024Z Expand the folded group to see the log file of nn/test_lazy_modules 2023-01-11T21:32:59.8698039Z ##[group]PRINTING LOG FILE of nn/test_lazy_modules (/var/lib/jenkins/workspace/test/test-reports/nn-test_lazy_modules_33fct_xm) 2023-01-11T21:32:59.8698492Z 2023-01-11T21:32:59.8698623Z Running tests... 2023-01-11T21:32:59.8699203Z ---------------------------------------------------------------------- 2023-01-11T21:32:59.8699910Z Test results will be stored in test-reports/python-unittest/nn.test_lazy_modules 2023-01-11T21:32:59.8700462Z test_chained_initialization (__main__.TestLazyModules) ... ok (0.011s) 2023-01-11T21:32:59.8700953Z test_invalid_functions (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8702083Z test_lazy_batchnorm1d (__main__.TestLazyModules) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:32:59.8703034Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:32:59.8703444Z ok (0.010s) 2023-01-11T21:32:59.8703935Z test_lazy_batchnorm1d_pickle (__main__.TestLazyModules) ... ok (0.008s) 2023-01-11T21:32:59.8704407Z test_lazy_batchnorm1d_state (__main__.TestLazyModules) ... ok (0.003s) 2023-01-11T21:32:59.8704888Z test_lazy_batchnorm2d (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8705356Z test_lazy_batchnorm2d_pickle (__main__.TestLazyModules) ... ok (0.004s) 2023-01-11T21:32:59.8705821Z test_lazy_batchnorm2d_state (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8706301Z test_lazy_batchnorm3d (__main__.TestLazyModules) ... ok (0.007s) 2023-01-11T21:32:59.8733094Z test_lazy_batchnorm3d_pickle (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8733666Z test_lazy_batchnorm3d_state (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8734195Z test_lazy_conv1d (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8734672Z test_lazy_conv1d_pickle (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8735003Z test_lazy_conv1d_state (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8735495Z test_lazy_conv2d (__main__.TestLazyModules) ... ok (0.003s) 2023-01-11T21:32:59.8736000Z test_lazy_conv2d_pickle (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8736681Z test_lazy_conv2d_state (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8737102Z test_lazy_conv3d (__main__.TestLazyModules) ... ok (0.015s) 2023-01-11T21:32:59.8738828Z test_lazy_conv3d_pickle (__main__.TestLazyModules) ... ok (0.007s) 2023-01-11T21:32:59.8739351Z test_lazy_conv3d_state (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8739920Z test_lazy_conv_transpose1d_pickle (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8740447Z test_lazy_conv_transpose1d_state (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8740979Z test_lazy_conv_transpose2d (__main__.TestLazyModules) ... ok (0.015s) 2023-01-11T21:32:59.8741398Z test_lazy_conv_transpose2d_pickle (__main__.TestLazyModules) ... ok (0.006s) 2023-01-11T21:32:59.8741968Z test_lazy_conv_transpose2d_state (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8742412Z test_lazy_conv_transpose3d (__main__.TestLazyModules) ... ok (0.173s) 2023-01-11T21:32:59.8742984Z test_lazy_conv_transpose3d_pickle (__main__.TestLazyModules) ... ok (0.060s) 2023-01-11T21:32:59.8743582Z test_lazy_conv_transpose3d_state (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8744091Z test_lazy_conv_transposed1d (__main__.TestLazyModules) ... ok (0.009s) 2023-01-11T21:32:59.8744368Z test_lazy_forward_hook (__main__.TestLazyModules) 2023-01-11T21:32:59.8745131Z This test is to test whether lazymodule can register other forward hook ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:32:59.8745747Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:32:59.8745969Z ok (0.001s) 2023-01-11T21:32:59.8746203Z test_lazy_instancenorm1d (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8746504Z test_lazy_instancenorm1d_pickle (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8746797Z test_lazy_instancenorm1d_state (__main__.TestLazyModules) ... ok (0.004s) 2023-01-11T21:32:59.8747092Z test_lazy_instancenorm2d (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8747388Z test_lazy_instancenorm2d_pickle (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8747689Z test_lazy_instancenorm2d_state (__main__.TestLazyModules) ... ok (0.004s) 2023-01-11T21:32:59.8747966Z test_lazy_instancenorm3d (__main__.TestLazyModules) ... ok (0.007s) 2023-01-11T21:32:59.8748258Z test_lazy_instancenorm3d_pickle (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8748554Z test_lazy_instancenorm3d_state (__main__.TestLazyModules) ... ok (0.004s) 2023-01-11T21:32:59.8748827Z test_lazy_linear_pickle (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8749107Z test_lazy_module_buffer (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8749389Z test_lazy_module_jit_buffer (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8749678Z test_lazy_module_jit_param (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8749951Z test_lazy_module_parameter (__main__.TestLazyModules) ... ok (0.002s) 2023-01-11T21:32:59.8750223Z test_lazy_pre_forward_hook (__main__.TestLazyModules) 2023-01-11T21:32:59.8750898Z This test is to test whether lazymodule can register other pre-forward hook ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:32:59.8751448Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:32:59.8751683Z ok (0.001s) 2023-01-11T21:32:59.8751913Z test_lazy_share_memory_buffer (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8752205Z test_lazy_share_memory_param (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8752460Z test_linear (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8752794Z test_linear_state (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8753099Z test_materialize_device (__main__.TestLazyModules) ... skip: CUDA not available (0.000s) 2023-01-11T21:32:59.8753403Z test_materialize_dtype (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8753681Z test_optimizer_pass (__main__.TestLazyModules) ... ok (0.005s) 2023-01-11T21:32:59.8753956Z test_spectral_norm (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8754244Z test_weight_norm (__main__.TestLazyModules) ... ok (0.001s) 2023-01-11T21:32:59.8754381Z 2023-01-11T21:32:59.8754586Z ---------------------------------------------------------------------- 2023-01-11T21:32:59.8754829Z Ran 54 tests in 0.438s 2023-01-11T21:32:59.8754943Z 2023-01-11T21:32:59.8755016Z OK (skipped=1) 2023-01-11T21:32:59.8755158Z 2023-01-11T21:32:59.8755232Z Generating XML reports... 2023-01-11T21:32:59.8755658Z Generated XML report: test-reports/python-unittest/nn.test_lazy_modules/TEST-TestLazyModules-20230111213259.xml 2023-01-11T21:32:59.8755896Z 2023-01-11T21:32:59.8756204Z ##[endgroup] 2023-01-11T21:32:59.8756589Z FINISHED PRINTING LOG FILE of nn/test_lazy_modules (/var/lib/jenkins/workspace/test/test-reports/nn-test_lazy_modules_33fct_xm) 2023-01-11T21:32:59.8756813Z 2023-01-11T21:33:01.7386409Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:01.8035928Z Ignoring disabled issues: [] 2023-01-11T21:33:01.8182666Z Running nn/test_module_hooks ... [2023-01-11 21:33:01.817997] 2023-01-11T21:33:01.8185252Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_module_hooks.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:01.818242] 2023-01-11T21:33:03.8094982Z 2023-01-11T21:33:03.8095811Z Expand the folded group to see the log file of nn/test_module_hooks 2023-01-11T21:33:03.8096965Z ##[group]PRINTING LOG FILE of nn/test_module_hooks (/var/lib/jenkins/workspace/test/test-reports/nn-test_module_hooks_aq1dmqhu) 2023-01-11T21:33:03.8097385Z 2023-01-11T21:33:03.8097476Z Running tests... 2023-01-11T21:33:03.8098102Z ---------------------------------------------------------------------- 2023-01-11T21:33:03.8098746Z Test results will be stored in test-reports/python-unittest/nn.test_module_hooks 2023-01-11T21:33:03.8099982Z test_global_and_local_hooks_order (__main__.TestModuleGlobalHooks) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1331: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior. 2023-01-11T21:33:03.8100767Z warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes " 2023-01-11T21:33:03.8101036Z ok (0.011s) 2023-01-11T21:33:03.8101337Z test_module_backward_global_hook_writeable (__main__.TestModuleGlobalHooks) ... ok (0.002s) 2023-01-11T21:33:03.8101677Z test_module_forward_forward_hook_removable (__main__.TestModuleGlobalHooks) 2023-01-11T21:33:03.8102139Z This test is to test when multiple forward hook functions can be registered ... ok (0.002s) 2023-01-11T21:33:03.8102605Z test_module_forward_preforward_hook_removable (__main__.TestModuleGlobalHooks) 2023-01-11T21:33:03.8103190Z This test is to test when multiple pre-forward hook functions can be ... ok (0.001s) 2023-01-11T21:33:03.8103908Z test_module_global_forward_preforward_hook_writeable (__main__.TestModuleGlobalHooks) ... ok (0.001s) 2023-01-11T21:33:03.8104375Z test_module_global_hook_invalid_outputs (__main__.TestModuleGlobalHooks) ... ok (0.001s) 2023-01-11T21:33:03.8104699Z test_module_global_hooks (__main__.TestModuleGlobalHooks) ... ok (0.009s) 2023-01-11T21:33:03.8105014Z test_backward_hooks_interaction (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8105364Z test_hook_backward_size (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T21:33:03.8105881Z test_hook_backward_writeable (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8106209Z test_hook_buffer_registration (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8106494Z test_hook_cpp (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T21:33:03.8106816Z test_hook_extra_input (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8107105Z test_hook_forward_preforward_writable (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8107507Z test_hook_inplace (__main__.TestModuleHookNN) ... ok (0.024s) 2023-01-11T21:33:03.8108033Z test_hook_invalid_outputs (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T21:33:03.8108512Z test_hook_last_arg_requires_grad (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8108860Z test_hook_no_requires_grad (__main__.TestModuleHookNN) ... ok (0.002s) 2023-01-11T21:33:03.8109151Z test_hook_non_full_warning (__main__.TestModuleHookNN) ... ok (0.010s) 2023-01-11T21:33:03.8109451Z test_hook_parameter_registration (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8109731Z test_hook_requires_grad (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8110025Z test_hook_submodule_registration (__main__.TestModuleHookNN) ... ok (0.001s) 2023-01-11T21:33:03.8110883Z test_hooks (__main__.TestModuleHookNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1331: UserWarning: Using a non-full backward hook when the forward contains multiple autograd Nodes is deprecated and will be removed in future versions. This hook will be missing some grad_input. Please use register_full_backward_hook to get the documented behavior. 2023-01-11T21:33:03.8111576Z warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes " 2023-01-11T21:33:03.8111835Z ok (0.014s) 2023-01-11T21:33:03.8112044Z test_forward_hooks (__main__.TestModuleHooks) ... ok (0.004s) 2023-01-11T21:33:03.8112319Z test_forward_pre_hooks (__main__.TestModuleHooks) ... ok (0.004s) 2023-01-11T21:33:03.8112607Z test_full_backward_hooks (__main__.TestModuleHooks) ... ok (0.004s) 2023-01-11T21:33:03.8112881Z test_full_backward_pre_hooks (__main__.TestModuleHooks) ... ok (0.004s) 2023-01-11T21:33:03.8113158Z test_kwarg_hooks (__main__.TestModuleHooks) ... ok (0.004s) 2023-01-11T21:33:03.8113419Z test_mixed_hooks (__main__.TestModuleHooks) ... ok (0.004s) 2023-01-11T21:33:03.8113681Z test_remove_kwarg_hooks (__main__.TestModuleHooks) ... ok (0.003s) 2023-01-11T21:33:03.8113980Z test_load_state_dict_module_pre_hook (__main__.TestStateDictHooks) ... ok (0.002s) 2023-01-11T21:33:03.8114291Z test_load_state_dict_post_hook (__main__.TestStateDictHooks) ... ok (0.002s) 2023-01-11T21:33:03.8114627Z test_load_state_dict_post_hook_backward_compatibility (__main__.TestStateDictHooks) ... ok (0.002s) 2023-01-11T21:33:03.8114947Z test_load_state_dict_pre_hook (__main__.TestStateDictHooks) ... ok (0.002s) 2023-01-11T21:33:03.8115241Z test_no_extra_ref_to_module (__main__.TestStateDictHooks) ... ok (0.001s) 2023-01-11T21:33:03.8115530Z test_pickled_hook (__main__.TestStateDictHooks) ... ok (0.001s) 2023-01-11T21:33:03.8115688Z 2023-01-11T21:33:03.8115877Z ---------------------------------------------------------------------- 2023-01-11T21:33:03.8116117Z Ran 36 tests in 0.132s 2023-01-11T21:33:03.8116229Z 2023-01-11T21:33:03.8116290Z OK 2023-01-11T21:33:03.8116380Z 2023-01-11T21:33:03.8116463Z Generating XML reports... 2023-01-11T21:33:03.8116881Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleGlobalHooks-20230111213303.xml 2023-01-11T21:33:03.8117416Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHookNN-20230111213303.xml 2023-01-11T21:33:03.8117931Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHooks-20230111213303.xml 2023-01-11T21:33:03.8118437Z Generated XML report: test-reports/python-unittest/nn.test_module_hooks/TEST-TestStateDictHooks-20230111213303.xml 2023-01-11T21:33:03.8118721Z 2023-01-11T21:33:03.8119007Z ##[endgroup] 2023-01-11T21:33:03.8119405Z FINISHED PRINTING LOG FILE of nn/test_module_hooks (/var/lib/jenkins/workspace/test/test-reports/nn-test_module_hooks_aq1dmqhu) 2023-01-11T21:33:03.8119630Z 2023-01-11T21:33:05.6123361Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:05.6768002Z Ignoring disabled issues: [] 2023-01-11T21:33:05.6913510Z Running nn/test_multihead_attention ... [2023-01-11 21:33:05.691120] 2023-01-11T21:33:05.6915860Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_multihead_attention.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:05.691343] 2023-01-11T21:33:12.2502635Z 2023-01-11T21:33:12.2503175Z Expand the folded group to see the log file of nn/test_multihead_attention 2023-01-11T21:33:12.2504647Z ##[group]PRINTING LOG FILE of nn/test_multihead_attention (/var/lib/jenkins/workspace/test/test-reports/nn-test_multihead_attention_l_tw5w9m) 2023-01-11T21:33:12.2505077Z 2023-01-11T21:33:12.2505143Z Running tests... 2023-01-11T21:33:12.2505546Z ---------------------------------------------------------------------- 2023-01-11T21:33:12.2505949Z Test results will be stored in test-reports/python-unittest/nn.test_multihead_attention 2023-01-11T21:33:12.2506452Z test_multihead_attention_average_attn_weights_False (__main__.TestMultiheadAttentionNN) ... ok (2.357s) 2023-01-11T21:33:12.2507116Z test_multihead_attention_average_attn_weights_True (__main__.TestMultiheadAttentionNN) ... ok (2.288s) 2023-01-11T21:33:12.2507575Z test_multihead_attn_3d_attn_mask (__main__.TestMultiheadAttentionNN) ... ok (0.007s) 2023-01-11T21:33:12.2507925Z test_multihead_attn_fast_path_invalid_shape (__main__.TestMultiheadAttentionNN) ... ok (0.004s) 2023-01-11T21:33:12.2508274Z test_multihead_attn_invalid_shape (__main__.TestMultiheadAttentionNN) ... ok (0.001s) 2023-01-11T21:33:12.2508898Z test_multihead_attn_nested_tensor_outside_fast_path (__main__.TestMultiheadAttentionNN) ... /var/lib/jenkins/workspace/test/nn/test_multihead_attention.py:494: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:33:12.2509471Z nt = torch.nested.nested_tensor([torch.randn(4, 4)]) 2023-01-11T21:33:12.2509683Z ok (0.003s) 2023-01-11T21:33:12.2509931Z test_multihead_attn_no_bias (__main__.TestMultiheadAttentionNN) ... ok (0.001s) 2023-01-11T21:33:12.2510109Z 2023-01-11T21:33:12.2510303Z ---------------------------------------------------------------------- 2023-01-11T21:33:12.2510542Z Ran 7 tests in 4.661s 2023-01-11T21:33:12.2510655Z 2023-01-11T21:33:12.2510716Z OK 2023-01-11T21:33:12.2510805Z 2023-01-11T21:33:12.2510890Z Generating XML reports... 2023-01-11T21:33:12.2511349Z Generated XML report: test-reports/python-unittest/nn.test_multihead_attention/TEST-TestMultiheadAttentionNN-20230111213307.xml 2023-01-11T21:33:12.2511617Z 2023-01-11T21:33:12.2511867Z ##[endgroup] 2023-01-11T21:33:12.2512286Z FINISHED PRINTING LOG FILE of nn/test_multihead_attention (/var/lib/jenkins/workspace/test/test-reports/nn-test_multihead_attention_l_tw5w9m) 2023-01-11T21:33:12.2512512Z 2023-01-11T21:33:14.0837142Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:14.1479380Z Ignoring disabled issues: [] 2023-01-11T21:33:14.1625377Z Running nn/test_packed_sequence ... [2023-01-11 21:33:14.162242] 2023-01-11T21:33:14.1627241Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_packed_sequence.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:14.162495] 2023-01-11T21:33:16.2113660Z 2023-01-11T21:33:16.2117544Z Expand the folded group to see the log file of nn/test_packed_sequence 2023-01-11T21:33:16.2118321Z ##[group]PRINTING LOG FILE of nn/test_packed_sequence (/var/lib/jenkins/workspace/test/test-reports/nn-test_packed_sequence_pjs3ln7k) 2023-01-11T21:33:16.2118799Z 2023-01-11T21:33:16.2118896Z Running tests... 2023-01-11T21:33:16.2119322Z ---------------------------------------------------------------------- 2023-01-11T21:33:16.2119769Z Test results will be stored in test-reports/python-unittest/nn.test_packed_sequence 2023-01-11T21:33:16.2120099Z test_pack_padded_sequence (__main__.PackedSequenceTest) ... ok (0.249s) 2023-01-11T21:33:16.2120396Z test_pack_sequence (__main__.PackedSequenceTest) ... ok (0.077s) 2023-01-11T21:33:16.2120717Z test_pad_sequence (__main__.PackedSequenceTest) ... ok (0.013s) 2023-01-11T21:33:16.2121031Z test_pad_sequence_with_non_iterable_sequences (__main__.PackedSequenceTest) ... ok (0.001s) 2023-01-11T21:33:16.2121403Z test_pad_sequence_with_tensor_sequences (__main__.PackedSequenceTest) ... ok (0.001s) 2023-01-11T21:33:16.2121766Z test_to (__main__.PackedSequenceTest) ... ok (0.002s) 2023-01-11T21:33:16.2122092Z test_to_memory_format (__main__.PackedSequenceTest) ... ok (0.001s) 2023-01-11T21:33:16.2122374Z test_total_length (__main__.PackedSequenceTest) ... ok (0.003s) 2023-01-11T21:33:16.2122630Z test_type_casts (__main__.PackedSequenceTest) 2023-01-11T21:33:16.2122977Z Test type casting of `PackedSequence` against type casting of tensor ... ok (0.024s) 2023-01-11T21:33:16.2123289Z test_unpack_sequence (__main__.PackedSequenceTest) ... ok (0.010s) 2023-01-11T21:33:16.2123609Z test_unpad_sequence (__main__.PackedSequenceTest) ... ok (0.009s) 2023-01-11T21:33:16.2123893Z test_wrong_order (__main__.PackedSequenceTest) ... ok (0.004s) 2023-01-11T21:33:16.2124054Z 2023-01-11T21:33:16.2124300Z ---------------------------------------------------------------------- 2023-01-11T21:33:16.2124543Z Ran 12 tests in 0.396s 2023-01-11T21:33:16.2124644Z 2023-01-11T21:33:16.2124705Z OK 2023-01-11T21:33:16.2124795Z 2023-01-11T21:33:16.2124881Z Generating XML reports... 2023-01-11T21:33:16.2125374Z Generated XML report: test-reports/python-unittest/nn.test_packed_sequence/TEST-PackedSequenceTest-20230111213315.xml 2023-01-11T21:33:16.2125622Z 2023-01-11T21:33:16.2125895Z ##[endgroup] 2023-01-11T21:33:16.2126309Z FINISHED PRINTING LOG FILE of nn/test_packed_sequence (/var/lib/jenkins/workspace/test/test-reports/nn-test_packed_sequence_pjs3ln7k) 2023-01-11T21:33:16.2126590Z 2023-01-11T21:33:18.0262211Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:18.0906174Z Ignoring disabled issues: [] 2023-01-11T21:33:18.1054028Z Running nn/test_parametrization ... [2023-01-11 21:33:18.105128] 2023-01-11T21:33:18.1056284Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_parametrization.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:18.105376] 2023-01-11T21:33:20.3705680Z 2023-01-11T21:33:20.3706195Z Expand the folded group to see the log file of nn/test_parametrization 2023-01-11T21:33:20.3707391Z ##[group]PRINTING LOG FILE of nn/test_parametrization (/var/lib/jenkins/workspace/test/test-reports/nn-test_parametrization_fmmttay5) 2023-01-11T21:33:20.3707839Z 2023-01-11T21:33:20.3707971Z Running tests... 2023-01-11T21:33:20.3708630Z ---------------------------------------------------------------------- 2023-01-11T21:33:20.3709191Z Test results will be stored in test-reports/python-unittest/nn.test_parametrization 2023-01-11T21:33:20.3709662Z test_caching_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3710059Z Test the caching system of a parametrization ... ok (0.011s) 2023-01-11T21:33:20.3710404Z test_caching_parametrization_with_transfer_parametrizations_and_params (__main__.TestNNParametrization) 2023-01-11T21:33:20.3710859Z Test that transferring parametrizations doesn't cause issues with caching ... ok (0.002s) 2023-01-11T21:33:20.3711174Z test_deepcopy_after_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3711591Z Test that we are able to create a deepcopy of the module when it's parametrized. ... ok (0.007s) 2023-01-11T21:33:20.3711952Z test_errors_parametrized_tensor_parametrization (__main__.TestNNParametrization) ... ok (0.003s) 2023-01-11T21:33:20.3712532Z test_errors_unparametrized_tensor_parametrization (__main__.TestNNParametrization) ... ok (0.005s) 2023-01-11T21:33:20.3712861Z test_initialization_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3713176Z Test that it is possible to initialize a parametrization when it ... ok (0.004s) 2023-01-11T21:33:20.3713502Z test_multiple_inputs_parametrization (__main__.TestNNParametrization) ... ok (0.007s) 2023-01-11T21:33:20.3713810Z test_new_spectral_norm (__main__.TestNNParametrization) ... ok (0.040s) 2023-01-11T21:33:20.3714113Z test_new_spectral_norm_dim (__main__.TestNNParametrization) ... ok (0.003s) 2023-01-11T21:33:20.3714423Z test_new_spectral_norm_forward (__main__.TestNNParametrization) ... ok (0.003s) 2023-01-11T21:33:20.3714807Z test_new_spectral_norm_load_state_dict (__main__.TestNNParametrization) ... ok (0.015s) 2023-01-11T21:33:20.3715113Z test_orthogonal_errors (__main__.TestNNParametrization) ... ok (0.005s) 2023-01-11T21:33:20.3715432Z test_orthogonal_parametrization (__main__.TestNNParametrization) ... ok (0.181s) 2023-01-11T21:33:20.3715752Z test_parametrization_same_training_mode (__main__.TestNNParametrization) 2023-01-11T21:33:20.3716053Z Test training mode updated on parametrization registration ... ok (0.001s) 2023-01-11T21:33:20.3716375Z test_register_and_remove_buffer_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3716703Z Test that it is possible to add and remove parametrizations on buffers ... ok (0.002s) 2023-01-11T21:33:20.3717031Z test_register_and_remove_nested_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3717328Z Test that it is possible to nest the parametrizations ... ok (0.002s) 2023-01-11T21:33:20.3717631Z test_register_and_remove_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3717941Z Test that it is possible to add a few parametrizations ... ok (0.018s) 2023-01-11T21:33:20.3718229Z test_serialization_parametrization (__main__.TestNNParametrization) 2023-01-11T21:33:20.3718550Z Test that it is possible to serialize a parametrized model via state_dict ... ok (0.005s) 2023-01-11T21:33:20.3718875Z test_transfer_parametrizations_and_params (__main__.TestNNParametrization) 2023-01-11T21:33:20.3719214Z Test that all parametrizations and their associated parameters are transferred. ... ok (0.004s) 2023-01-11T21:33:20.3719566Z test_transfer_parametrizations_and_params_many_to_one (__main__.TestNNParametrization) ... ok (0.005s) 2023-01-11T21:33:20.3719929Z test_transfer_parametrizations_and_params_right_inverse (__main__.TestNNParametrization) 2023-01-11T21:33:20.3720283Z Test that all parametrizations and their associated parameters are transferred. ... ok (0.002s) 2023-01-11T21:33:20.3720635Z test_transfer_parametrizations_and_params_single_param (__main__.TestNNParametrization) 2023-01-11T21:33:20.3720980Z Test that all parametrizations and their associated parameters are transferred. ... ok (0.003s) 2023-01-11T21:33:20.3721307Z test_type_before_parametrizations (__main__.TestNNParametrization) 2023-01-11T21:33:20.3721622Z Test that type_before_parametrizations always retrieves original type ... ok (0.001s) 2023-01-11T21:33:20.3721803Z 2023-01-11T21:33:20.3722000Z ---------------------------------------------------------------------- 2023-01-11T21:33:20.3722239Z Ran 23 tests in 0.332s 2023-01-11T21:33:20.3722352Z 2023-01-11T21:33:20.3722412Z OK 2023-01-11T21:33:20.3722501Z 2023-01-11T21:33:20.3722584Z Generating XML reports... 2023-01-11T21:33:20.3723020Z Generated XML report: test-reports/python-unittest/nn.test_parametrization/TEST-TestNNParametrization-20230111213319.xml 2023-01-11T21:33:20.3723278Z 2023-01-11T21:33:20.3723547Z ##[endgroup] 2023-01-11T21:33:20.3723947Z FINISHED PRINTING LOG FILE of nn/test_parametrization (/var/lib/jenkins/workspace/test/test-reports/nn-test_parametrization_fmmttay5) 2023-01-11T21:33:20.3724187Z 2023-01-11T21:33:22.1861792Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:22.2506359Z Ignoring disabled issues: [] 2023-01-11T21:33:22.2653351Z Running nn/test_pruning ... [2023-01-11 21:33:22.265067] 2023-01-11T21:33:22.2654994Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_pruning.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:22.265314] 2023-01-11T21:33:24.1838174Z 2023-01-11T21:33:24.1838743Z Expand the folded group to see the log file of nn/test_pruning 2023-01-11T21:33:24.1839979Z ##[group]PRINTING LOG FILE of nn/test_pruning (/var/lib/jenkins/workspace/test/test-reports/nn-test_pruning_nm3kiv_6) 2023-01-11T21:33:24.1840403Z 2023-01-11T21:33:24.1840534Z Running tests... 2023-01-11T21:33:24.1841183Z ---------------------------------------------------------------------- 2023-01-11T21:33:24.1841844Z Test results will be stored in test-reports/python-unittest/nn.test_pruning 2023-01-11T21:33:24.1842617Z test_compute_nparams_to_prune (__main__.TestPruningNN) 2023-01-11T21:33:24.1843128Z Test that requested pruning `amount` gets translated into the ... ok (0.010s) 2023-01-11T21:33:24.1843660Z test_custom_from_mask_pruning (__main__.TestPruningNN) 2023-01-11T21:33:24.1844121Z Test that the CustomFromMask is capable of receiving ... ok (0.001s) 2023-01-11T21:33:24.1844664Z test_global_pruning (__main__.TestPruningNN) 2023-01-11T21:33:24.1845151Z Test that global l1 unstructured pruning over 2 parameters removes ... ok (0.002s) 2023-01-11T21:33:24.1845650Z test_global_pruning_importance_scores (__main__.TestPruningNN) 2023-01-11T21:33:24.1846228Z Test that global l1 unstructured pruning over 2 parameters removes ... ok (0.002s) 2023-01-11T21:33:24.1846723Z test_identity_pruning (__main__.TestPruningNN) 2023-01-11T21:33:24.1847193Z Test that a mask of 1s does not change forward or backward. ... ok (0.003s) 2023-01-11T21:33:24.1847662Z test_l1_unstructured_pruning (__main__.TestPruningNN) 2023-01-11T21:33:24.1848147Z Test that l1 unstructured pruning actually removes the lowest ... ok (0.002s) 2023-01-11T21:33:24.1848740Z test_l1_unstructured_pruning_with_importance_scores (__main__.TestPruningNN) 2023-01-11T21:33:24.1849425Z Test that l1 unstructured pruning actually removes the lowest ... ok (0.002s) 2023-01-11T21:33:24.1849890Z test_ln_structured_pruning (__main__.TestPruningNN) 2023-01-11T21:33:24.1850424Z Check Ln structured pruning by hand. ... ok (0.002s) 2023-01-11T21:33:24.1850914Z test_ln_structured_pruning_importance_scores (__main__.TestPruningNN) 2023-01-11T21:33:24.1851373Z Check Ln structured pruning by hand. ... ok (0.002s) 2023-01-11T21:33:24.1851842Z test_multiple_pruning_calls (__main__.TestPruningNN) ... ok (0.002s) 2023-01-11T21:33:24.1852313Z test_prune (__main__.TestPruningNN) ... ok (0.001s) 2023-01-11T21:33:24.1852743Z test_prune_importance_scores (__main__.TestPruningNN) ... ok (0.001s) 2023-01-11T21:33:24.1853299Z test_prune_importance_scores_mimic_default (__main__.TestPruningNN) ... ok (0.001s) 2023-01-11T21:33:24.1853847Z test_pruning_container (__main__.TestPruningNN) ... ok (0.001s) 2023-01-11T21:33:24.1854341Z test_pruning_container_compute_mask (__main__.TestPruningNN) 2023-01-11T21:33:24.1854868Z Test `compute_mask` of pruning container with a known `t` and ... ok (0.002s) 2023-01-11T21:33:24.1855354Z test_pruning_id_consistency (__main__.TestPruningNN) 2023-01-11T21:33:24.1856050Z Test that pruning doesn't change the id of the parameters, which ... ok (0.001s) 2023-01-11T21:33:24.1856514Z test_pruning_rollback (__main__.TestPruningNN) 2023-01-11T21:33:24.1856982Z Test that if something fails when the we try to compute the mask, ... ok (0.002s) 2023-01-11T21:33:24.1857529Z test_pruning_serialization_model (__main__.TestPruningNN) ... ok (0.003s) 2023-01-11T21:33:24.1858045Z test_pruning_serialization_state_dict (__main__.TestPruningNN) ... ok (0.003s) 2023-01-11T21:33:24.1858527Z test_random_pruning (__main__.TestPruningNN) ... ok (0.002s) 2023-01-11T21:33:24.1858962Z test_random_pruning_0perc (__main__.TestPruningNN) 2023-01-11T21:33:24.1859511Z Test that a mask of 1s does not change forward or backward. ... ok (0.003s) 2023-01-11T21:33:24.1860178Z test_random_pruning_forward (__main__.TestPruningNN) 2023-01-11T21:33:24.1860591Z check forward with mask (by hand). ... ok (0.002s) 2023-01-11T21:33:24.1861025Z test_random_pruning_new_weight (__main__.TestPruningNN) 2023-01-11T21:33:24.1861487Z Test that module.name now contains a pruned version of ... ok (0.002s) 2023-01-11T21:33:24.1861946Z test_random_pruning_orig (__main__.TestPruningNN) 2023-01-11T21:33:24.1862579Z Test that original tensor is correctly stored in 'orig' ... ok (0.002s) 2023-01-11T21:33:24.1863059Z test_random_pruning_pickle (__main__.TestPruningNN) ... ok (0.004s) 2023-01-11T21:33:24.1863604Z test_random_pruning_sizes (__main__.TestPruningNN) 2023-01-11T21:33:24.1864149Z Test that the new parameters and buffers created by the pruning ... ok (0.002s) 2023-01-11T21:33:24.1864848Z test_random_structured_pruning_amount (__main__.TestPruningNN) ... ok (0.001s) 2023-01-11T21:33:24.1865382Z test_remove_pruning (__main__.TestPruningNN) 2023-01-11T21:33:24.1865852Z `prune.remove` removes the hook and the reparametrization ... ok (0.002s) 2023-01-11T21:33:24.1866342Z test_remove_pruning_exception (__main__.TestPruningNN) 2023-01-11T21:33:24.1866857Z Removing from an unpruned tensor throws an assertion error ... ok (0.001s) 2023-01-11T21:33:24.1867338Z test_remove_pruning_forward (__main__.TestPruningNN) 2023-01-11T21:33:24.1867817Z Remove pruning and check forward is unchanged from previous ... ok (0.001s) 2023-01-11T21:33:24.1868302Z test_rnn_pruning (__main__.TestPruningNN) ... ok (0.002s) 2023-01-11T21:33:24.1868749Z test_unstructured_pruning_same_magnitude (__main__.TestPruningNN) 2023-01-11T21:33:24.1869308Z Since it may happen that the tensor to prune has entries with the ... ok (0.001s) 2023-01-11T21:33:24.1869812Z test_validate_pruning_amount (__main__.TestPruningNN) 2023-01-11T21:33:24.1870266Z Tests the second util function that validates the pruning ... ok (0.001s) 2023-01-11T21:33:24.1870804Z test_validate_pruning_amount_init (__main__.TestPruningNN) 2023-01-11T21:33:24.1871313Z Test the first util function that validates the pruning ... ok (0.001s) 2023-01-11T21:33:24.1871604Z 2023-01-11T21:33:24.1871994Z ---------------------------------------------------------------------- 2023-01-11T21:33:24.1872383Z Ran 34 tests in 0.073s 2023-01-11T21:33:24.1872580Z 2023-01-11T21:33:24.1872682Z OK 2023-01-11T21:33:24.1872840Z 2023-01-11T21:33:24.1872979Z Generating XML reports... 2023-01-11T21:33:24.1873696Z Generated XML report: test-reports/python-unittest/nn.test_pruning/TEST-TestPruningNN-20230111213323.xml 2023-01-11T21:33:24.1874075Z 2023-01-11T21:33:24.1874526Z ##[endgroup] 2023-01-11T21:33:24.1875269Z FINISHED PRINTING LOG FILE of nn/test_pruning (/var/lib/jenkins/workspace/test/test-reports/nn-test_pruning_nm3kiv_6) 2023-01-11T21:33:24.1875660Z 2023-01-11T21:33:26.0283341Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:26.0926773Z Ignoring disabled issues: [] 2023-01-11T21:33:26.1073975Z Running profiler/test_memory_profiler ... [2023-01-11 21:33:26.107145] 2023-01-11T21:33:26.1076235Z Executing ['/opt/conda/bin/python', '-bb', 'profiler/test_memory_profiler.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:26.107394] 2023-01-11T21:33:30.8581809Z 2023-01-11T21:33:30.8582322Z Expand the folded group to see the log file of profiler/test_memory_profiler 2023-01-11T21:33:30.8583414Z ##[group]PRINTING LOG FILE of profiler/test_memory_profiler (/var/lib/jenkins/workspace/test/test-reports/profiler-test_memory_profiler_b6udbbia) 2023-01-11T21:33:30.8584039Z 2023-01-11T21:33:30.8584160Z Running tests... 2023-01-11T21:33:30.8584853Z ---------------------------------------------------------------------- 2023-01-11T21:33:30.8585293Z Test results will be stored in test-reports/python-unittest/profiler.test_memory_profiler 2023-01-11T21:33:30.8585848Z test_data_flow_graph_complicated (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8586539Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8586989Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8587621Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:336: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8588251Z lines.append(f"{name + ':':<8} T{storage_to_id[t.storage().data_ptr()]}") 2023-01-11T21:33:30.8588696Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8589135Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8589580Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8589842Z ok (0.287s) 2023-01-11T21:33:30.8590278Z test_data_flow_graph_non_op_allocations (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8590762Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8591203Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8591449Z ok (0.052s) 2023-01-11T21:33:30.8591874Z test_data_flow_graph_simple (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8592350Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8592790Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8593980Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:337: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at /var/lib/jenkins/workspace/build/aten/src/ATen/core/TensorBody.h:485.) 2023-01-11T21:33:30.8594724Z if t.grad is not None: 2023-01-11T21:33:30.8595069Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8595500Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8595942Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8596199Z ok (0.096s) 2023-01-11T21:33:30.8596631Z test_data_flow_graph_simple_backward (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8597121Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8597557Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8598181Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:338: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8598757Z grad_id = storage_to_id[t.grad.storage().data_ptr()] 2023-01-11T21:33:30.8598962Z ok (0.051s) 2023-01-11T21:33:30.8599405Z test_data_flow_graph_simple_inplace (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8599894Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8600319Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8600752Z STAGE:2023-01-11 21:33:27 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8601211Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8601639Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8601897Z ok (0.091s) 2023-01-11T21:33:30.8602325Z test_data_flow_graph_stacked (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8602798Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8603223Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8603654Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8604078Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8604507Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8604938Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8605364Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8605799Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8606042Z ok (0.177s) 2023-01-11T21:33:30.8606481Z test_data_flow_graph_with_annotations (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8606965Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8607403Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8607647Z ok (0.055s) 2023-01-11T21:33:30.8608061Z test_match_schemas (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8608528Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8608954Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8609408Z ok (0.007s) 2023-01-11T21:33:30.8609848Z test_match_schemas_backward (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8610326Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8610753Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8611011Z ok (0.004s) 2023-01-11T21:33:30.8611442Z test_match_schemas_tensorlist (__main__.TestDataFlow) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8611923Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8612422Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8612679Z ok (0.002s) 2023-01-11T21:33:30.8613140Z test_extract_gradients_from_module (__main__.TestIdentifyGradients) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8613626Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8614067Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8614730Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:117: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8615290Z return tensor.storage().data_ptr() == key.storage.ptr 2023-01-11T21:33:30.8615856Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:147: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8616376Z allowed_set = {t.storage().data_ptr() for t in tensors} 2023-01-11T21:33:30.8616758Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8617190Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8617634Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8618051Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8618482Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8618922Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8619340Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8619765Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8620204Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8620462Z ok (0.034s) 2023-01-11T21:33:30.8620939Z test_extract_gradients_from_module_and_optimizer (__main__.TestIdentifyGradients) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8621453Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8621894Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8622155Z ok (0.007s) 2023-01-11T21:33:30.8622608Z test_extract_gradients_from_optimizer (__main__.TestIdentifyGradients) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8623114Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8623637Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8624063Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8624496Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8624934Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8625406Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8625818Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8626256Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8626683Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8627106Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8627530Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8627822Z ok (0.038s) 2023-01-11T21:33:30.8628311Z test_extract_gradients_from_optimizer_set_to_none (__main__.TestIdentifyGradients) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8628810Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8629247Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8629673Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8630098Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8630519Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8630946Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8631373Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8631812Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8632225Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8632645Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8633079Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8633322Z ok (0.044s) 2023-01-11T21:33:30.8633779Z test_extract_gradients_low_level (__main__.TestIdentifyGradients) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8634272Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8634709Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8635128Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8635552Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8635990Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8636246Z ok (0.010s) 2023-01-11T21:33:30.8636660Z test_config_check (__main__.TestMemoryProfiler) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8637135Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8637570Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8637985Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8638411Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8638883Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8639309Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8639722Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8640161Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8640419Z ok (0.004s) 2023-01-11T21:33:30.8640867Z test_categories_e2e_sequential_fwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8641589Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:81: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8642141Z if isinstance(t, torch.Tensor) and t.storage() 2023-01-11T21:33:30.8642699Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:78: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8643196Z return tuple( 2023-01-11T21:33:30.8643700Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:79: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8644208Z (t._cdata, t.storage().data_ptr()) 2023-01-11T21:33:30.8644585Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8645030Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8645275Z ok (0.071s) 2023-01-11T21:33:30.8645744Z test_categories_e2e_sequential_fwd_bwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8646248Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8646692Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8646941Z ok (0.317s) 2023-01-11T21:33:30.8647395Z test_categories_e2e_simple_fwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8647892Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8648333Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8648578Z ok (0.036s) 2023-01-11T21:33:30.8649177Z test_categories_e2e_simple_fwd_bwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8649703Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8650134Z STAGE:2023-01-11 21:33:28 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8650393Z ok (0.185s) 2023-01-11T21:33:30.8650863Z test_categories_e2e_simple_fwd_bwd_step (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8651441Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8651870Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8652129Z ok (0.228s) 2023-01-11T21:33:30.8652595Z test_categories_e2e_simple_module_fwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8653096Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8653526Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8653829Z ok (0.028s) 2023-01-11T21:33:30.8654307Z test_categories_e2e_simple_module_fwd_bwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8654800Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8655243Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8655503Z ok (0.119s) 2023-01-11T21:33:30.8655980Z test_categories_e2e_simple_module_fwd_bwd_step (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8656475Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8656919Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8657176Z ok (0.198s) 2023-01-11T21:33:30.8657591Z test_inputs_fwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8658071Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8658504Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8659125Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:828: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8659639Z storage = t.storage() 2023-01-11T21:33:30.8660157Z /var/lib/jenkins/workspace/test/profiler/test_memory_profiler.py:836: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:30.8660728Z if key.storage.ptr == storage.data_ptr() and key.device == storage.device 2023-01-11T21:33:30.8660963Z ok (0.025s) 2023-01-11T21:33:30.8661401Z test_inputs_fwd_bwd (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8661877Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8662316Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8662577Z ok (0.146s) 2023-01-11T21:33:30.8663002Z test_inputs_fwd_lazy (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8663488Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8664086Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8664343Z ok (0.029s) 2023-01-11T21:33:30.8664774Z test_lazily_initialized (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8665261Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8665701Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8665962Z ok (0.075s) 2023-01-11T21:33:30.8666445Z test_manual_optimizer_step (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8666945Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8667392Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8667637Z ok (0.039s) 2023-01-11T21:33:30.8668073Z test_memory_timeline (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8668555Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8668990Z STAGE:2023-01-11 21:33:29 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8669233Z ok (0.178s) 2023-01-11T21:33:30.8669693Z test_parameters_and_gradients (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8670191Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8670630Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8671048Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8671473Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8671911Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8672328Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8672754Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8673197Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8673624Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8674041Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8674479Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8674736Z ok (0.152s) 2023-01-11T21:33:30.8675211Z test_parameters_and_gradients_set_to_none (__main__.TestMemoryProfilerE2E) ... STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8675694Z [W CPUAllocator.cpp:231] Memory block of unknown size was allocated before the profiling started, profiler results will not include the deallocation event 2023-01-11T21:33:30.8676183Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8676623Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8677050Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:30.8677499Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:30.8677934Z STAGE:2023-01-11 21:33:30 5728:5728 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:30.8678190Z ok (0.230s) 2023-01-11T21:33:30.8678295Z 2023-01-11T21:33:30.8678481Z ---------------------------------------------------------------------- 2023-01-11T21:33:30.8678726Z Ran 32 tests in 3.018s 2023-01-11T21:33:30.8678843Z 2023-01-11T21:33:30.8678903Z OK 2023-01-11T21:33:30.8678993Z 2023-01-11T21:33:30.8679065Z Generating XML reports... 2023-01-11T21:33:30.8679489Z Generated XML report: test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestDataFlow-20230111213327.xml 2023-01-11T21:33:30.8680084Z Generated XML report: test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestIdentifyGradients-20230111213327.xml 2023-01-11T21:33:30.8680653Z Generated XML report: test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestMemoryProfiler-20230111213327.xml 2023-01-11T21:33:30.8681202Z Generated XML report: test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestMemoryProfilerE2E-20230111213327.xml 2023-01-11T21:33:30.8681459Z 2023-01-11T21:33:30.8681786Z ##[endgroup] 2023-01-11T21:33:30.8682222Z FINISHED PRINTING LOG FILE of profiler/test_memory_profiler (/var/lib/jenkins/workspace/test/test-reports/profiler-test_memory_profiler_b6udbbia) 2023-01-11T21:33:30.8682466Z 2023-01-11T21:33:32.7492085Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:32.8143957Z Ignoring disabled issues: [] 2023-01-11T21:33:32.8294016Z Running profiler/test_profiler ... [2023-01-11 21:33:32.829110] 2023-01-11T21:33:32.8295567Z Executing ['/opt/conda/bin/python', '-bb', 'profiler/test_profiler.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:32.829363] 2023-01-11T21:33:40.9202749Z 2023-01-11T21:33:40.9204031Z Expand the folded group to see the log file of profiler/test_profiler 2023-01-11T21:33:40.9205029Z ##[group]PRINTING LOG FILE of profiler/test_profiler (/var/lib/jenkins/workspace/test/test-reports/profiler-test_profiler_58kwhjzf) 2023-01-11T21:33:40.9205740Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:40.9205955Z 2023-01-11T21:33:40.9206057Z Running tests... 2023-01-11T21:33:40.9206546Z ---------------------------------------------------------------------- 2023-01-11T21:33:40.9207482Z Test results will be stored in test-reports/python-unittest/profiler.test_profiler 2023-01-11T21:33:40.9208258Z test_execution_graph_alone (__main__.TestExecutionGraph) ... ok (0.009s) 2023-01-11T21:33:40.9208976Z test_execution_graph_no_capture (__main__.TestExecutionGraph) ... ok (0.001s) 2023-01-11T21:33:40.9209979Z test_execution_graph_repeat_in_loop (__main__.TestExecutionGraph) ... ok (0.008s) 2023-01-11T21:33:40.9210743Z test_execution_graph_start_stop (__main__.TestExecutionGraph) ... ok (0.006s) 2023-01-11T21:33:40.9211712Z test_execution_graph_with_kineto (__main__.TestExecutionGraph) ... [W kineto_shim.cpp:330] Profiler is not initialized: skipping step() invocation 2023-01-11T21:33:40.9212657Z [W kineto_shim.cpp:330] Profiler is not initialized: skipping step() invocation 2023-01-11T21:33:40.9213420Z [W kineto_shim.cpp:330] Profiler is not initialized: skipping step() invocation 2023-01-11T21:33:40.9214470Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9215517Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9216555Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9217621Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9237150Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9238683Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9239322Z ok (0.019s) 2023-01-11T21:33:40.9239854Z test_bfs (__main__.TestExperimentalUtils) ... ok (0.001s) 2023-01-11T21:33:40.9240517Z test_dfs (__main__.TestExperimentalUtils) ... ok (0.001s) 2023-01-11T21:33:40.9241880Z test_profiler_conv2d_bias_followed_by_batchnorm2d_pattern (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9243145Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9244356Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9245542Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9246614Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9247669Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9248686Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9249902Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9250977Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9251591Z ok (0.008s) 2023-01-11T21:33:40.9252235Z test_profiler_extra_cuda_copy_pattern (__main__.TestExperimentalUtils) ... skip: CUDA is required (0.001s) 2023-01-11T21:33:40.9253198Z test_profiler_extra_cuda_copy_pattern_benchmark (__main__.TestExperimentalUtils) ... skip: CUDA is required (0.000s) 2023-01-11T21:33:40.9254644Z test_profiler_for_loop_indexing_pattern (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9255904Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9256985Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9258029Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9259086Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9260156Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9261225Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9262255Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9263359Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9264458Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9265498Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9266580Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9267620Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9268649Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9269729Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9270379Z ok (0.087s) 2023-01-11T21:33:40.9271168Z test_profiler_fp32_matmul_pattern (__main__.TestExperimentalUtils) ... skip: CUDA is required (0.000s) 2023-01-11T21:33:40.9272593Z test_profiler_grad_not_set_to_none_pattern (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9273843Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9274931Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9275963Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9276987Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9278176Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9279197Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9280219Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9281274Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9282293Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9283302Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9284291Z STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9284865Z ok (0.044s) 2023-01-11T21:33:40.9285483Z test_profiler_matmul_dim_fp16_pattern (__main__.TestExperimentalUtils) ... skip: CUDA is required (0.001s) 2023-01-11T21:33:40.9286795Z test_profiler_name_pattern (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:34 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9288003Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9289282Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9289907Z ok (2.129s) 2023-01-11T21:33:40.9291125Z test_profiler_optimizer_single_tensor_pattern (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9292382Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9293453Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9294340Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9294930Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9295598Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9296233Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9296863Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9297513Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9298151Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9298765Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9299405Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9300211Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9300831Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9301461Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9302084Z STAGE:2023-01-11 21:33:36 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9302711Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9303359Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9303803Z ok (0.086s) 2023-01-11T21:33:40.9304595Z test_profiler_pattern_match_helper (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9305307Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9305946Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9306319Z ok (0.004s) 2023-01-11T21:33:40.9307017Z test_profiler_pattern_matcher_json_report (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9307761Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9308389Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9308764Z ok (0.097s) 2023-01-11T21:33:40.9309488Z test_profiler_synchronized_dataloader_pattern (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9310240Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9310851Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9311211Z ok (0.095s) 2023-01-11T21:33:40.9311566Z test_utils_compute_idle_time (__main__.TestExperimentalUtils) ... ok (0.002s) 2023-01-11T21:33:40.9312015Z test_utils_compute_queue_depth (__main__.TestExperimentalUtils) ... ok (0.001s) 2023-01-11T21:33:40.9312840Z test_utils_compute_queue_depth_when_no_cuda_events (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9313603Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9314262Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9314620Z ok (0.044s) 2023-01-11T21:33:40.9315284Z test_utils_compute_self_time (__main__.TestExperimentalUtils) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9315991Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9316602Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9316930Z ok (0.007s) 2023-01-11T21:33:40.9317267Z test_utils_get_optimizable_events (__main__.TestExperimentalUtils) ... ok (0.007s) 2023-01-11T21:33:40.9317740Z test_utils_intervals_overlap (__main__.TestExperimentalUtils) ... 5 2023-01-11T21:33:40.9318079Z ok (0.001s) 2023-01-11T21:33:40.9318718Z test_export_stacks (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9319437Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9320191Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9320539Z ok (0.005s) 2023-01-11T21:33:40.9321118Z test_flops (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9321806Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9322423Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9322802Z ok (0.052s) 2023-01-11T21:33:40.9323097Z test_high_level_trace (__main__.TestProfiler) 2023-01-11T21:33:40.9323884Z Checks that python side high level events are recorded. ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9324611Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9325230Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9325794Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9326398Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9327074Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9327730Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9328390Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9329192Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9329583Z ok (0.114s) 2023-01-11T21:33:40.9330715Z test_kineto (__main__.TestProfiler) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/88377 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:33:40.9331570Z test_kineto_multigpu (__main__.TestProfiler) ... skip: Multiple GPUs needed (0.001s) 2023-01-11T21:33:40.9332308Z test_kineto_profiler_api (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9332989Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9333637Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9334330Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9334984Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9335630Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9336219Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9336827Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9337456Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9338042Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9338662Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9339291Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9339776Z ok (0.009s) 2023-01-11T21:33:40.9340449Z test_kineto_profiler_multiple_steppers (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9341152Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9341780Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9342385Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9342997Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9343827Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9344484Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9345093Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9345740Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9346114Z ok (0.029s) 2023-01-11T21:33:40.9347286Z test_memory_profiler (__main__.TestProfiler) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/72280 for platform(s) linux, mac. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.002s) 2023-01-11T21:33:40.9348582Z test_module_hierarchy (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9349227Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9349889Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9350584Z ERROR:2023-01-11 21:33:37 5775:5775 CudaDeviceProperties.cpp:27] cudaGetDeviceCount failed with code 35 2023-01-11T21:33:40.9350963Z ok (0.019s) 2023-01-11T21:33:40.9351717Z test_nested_tensor_with_shapes (__main__.TestProfiler) ... /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1318: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:33:40.9352484Z inp = torch.nested.nested_tensor([a, b]) 2023-01-11T21:33:40.9353066Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9353879Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9354539Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9354912Z ok (0.003s) 2023-01-11T21:33:40.9355228Z test_oom_tracing (__main__.TestProfiler) ... ok (0.001s) 2023-01-11T21:33:40.9355601Z test_profiler_correlation_id (__main__.TestProfiler) 2023-01-11T21:33:40.9356398Z We expect the correlation_id to be unique across multiple invokation of the profiler, ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9357143Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9357828Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9358457Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9359089Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9359821Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9360465Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9361099Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9361725Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9362375Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9362974Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9363725Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9364341Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9364984Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9365604Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9365957Z ok (0.131s) 2023-01-11T21:33:40.9366513Z test_profiler_fwd_bwd_link (__main__.TestProfiler) ... skip: Disable forward->backward link to workaround profiler crash (0.002s) 2023-01-11T21:33:40.9367329Z test_profiler_metadata (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9368058Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9368705Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9369226Z ok (0.003s) 2023-01-11T21:33:40.9369843Z test_profiler_tracing (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9370501Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9371138Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9371758Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9372405Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9373036Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9373670Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9374305Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9374955Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9375593Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9376203Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9376851Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9377221Z ok (0.007s) 2023-01-11T21:33:40.9377799Z test_profiler_type (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9378506Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9379180Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9379677Z ok (0.001s) 2023-01-11T21:33:40.9379960Z test_source (__main__.TestProfiler) 2023-01-11T21:33:40.9380717Z Checks that source code attribution works for eager, TS and autograd mode ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9381499Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9382144Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9382530Z ok (0.056s) 2023-01-11T21:33:40.9383178Z test_tensorboard_trace_handler (__main__.TestProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9384107Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9384781Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9385442Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9386079Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9386734Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9387369Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9387984Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9388637Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9389265Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9389893Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9390548Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9391148Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9391790Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9392440Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9393081Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9393720Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9394357Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9394970Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9395581Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9396201Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9396572Z ok (0.017s) 2023-01-11T21:33:40.9396963Z test_custom_module_input_op_ids (__main__.TestProfilerCUDA) ... skip: CUDA is required (0.001s) 2023-01-11T21:33:40.9397368Z test_mem_leak (__main__.TestProfilerCUDA) 2023-01-11T21:33:40.9397921Z Checks that there's no memory leak when using profiler with CUDA ... skip: CUDA is required (0.001s) 2023-01-11T21:33:40.9398382Z test_custom_module_input_op_ids (__main__.TestProfilerITT) ... ok (0.001s) 2023-01-11T21:33:40.9398825Z test_datapipe_delegation_with_profiler (__main__.TestRecordFunction) ... ok (0.002s) 2023-01-11T21:33:40.9399607Z test_datapipe_with_record_function (__main__.TestRecordFunction) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9400461Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9401099Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9401456Z ok (0.004s) 2023-01-11T21:33:40.9402141Z test_datapipe_with_record_function_fork (__main__.TestRecordFunction) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9402880Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9403508Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9403955Z ok (0.004s) 2023-01-11T21:33:40.9404593Z test_record_function (__main__.TestRecordFunction) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9405300Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9405951Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9406282Z ok (0.002s) 2023-01-11T21:33:40.9406903Z test_allocation_id_uniqueness (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9407611Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9408207Z STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9408588Z ok (0.249s) 2023-01-11T21:33:40.9409385Z test_allocation_ids (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:37 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9410103Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9410714Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9411048Z ok (0.155s) 2023-01-11T21:33:40.9411716Z test_allocation_ids_with_other_ops (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9412437Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9413075Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9413438Z ok (0.126s) 2023-01-11T21:33:40.9414071Z test_allocations (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9414758Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9415400Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9416029Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9416650Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9417273Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9417610Z ok (0.129s) 2023-01-11T21:33:40.9418241Z test_extra_fields (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9418909Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9419668Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9420038Z ok (0.002s) 2023-01-11T21:33:40.9420638Z test_impl_reuse (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9421322Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9421938Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9422294Z ok (0.205s) 2023-01-11T21:33:40.9422939Z test_mkldnn_tensors (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9423823Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9424485Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9424869Z ok (0.003s) 2023-01-11T21:33:40.9425504Z test_module_and_optimizer_ids (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9426245Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9426870Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9427497Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9428097Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9428738Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9429093Z ok (0.014s) 2023-01-11T21:33:40.9429711Z test_nnmodule_params (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9430425Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9431105Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9431970Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1985: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9432891Z expected = [(name, val.storage().data_ptr(), val.grad.storage().data_ptr()) for name, val in net.fc1._parameters.items()] 2023-01-11T21:33:40.9433813Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1986: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9434762Z expected += [(name, val.storage().data_ptr(), val.grad.storage().data_ptr()) for name, val in net.fc2._parameters.items()] 2023-01-11T21:33:40.9435176Z ok (0.004s) 2023-01-11T21:33:40.9435836Z test_optimizer (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9436520Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9437207Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9437602Z ok (0.011s) 2023-01-11T21:33:40.9438293Z test_optimizer_parameters_adam (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9439141Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9439807Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9440738Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:2009: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9441580Z [(v.storage().data_ptr()) for v in group.get("params", [])], 2023-01-11T21:33:40.9442506Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:2022: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9443410Z {name: value.storage().data_ptr() for name, value in parameter_state.items()}, 2023-01-11T21:33:40.9444314Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:2023: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9445129Z observed_state.get(parameter.storage().data_ptr(), []) 2023-01-11T21:33:40.9445444Z ok (0.036s) 2023-01-11T21:33:40.9446153Z test_optimizer_parameters_sgd (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9446933Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9447557Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9447937Z ok (0.019s) 2023-01-11T21:33:40.9448811Z test_pointers_and_ids (__main__.TestTorchTidyProfiler) ... /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1366: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9449867Z a_initial_storage_data = a.storage().data_ptr() 2023-01-11T21:33:40.9450633Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1371: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9451399Z c_initial_storage_data = c.storage().data_ptr() 2023-01-11T21:33:40.9451971Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9452566Z [W CPUAllocator.cpp:231] Memory block of unknown size was allocated before the profiling started, profiler results will not include the deallocation event 2023-01-11T21:33:40.9453541Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1384: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9454261Z c.set_(d.storage()) 2023-01-11T21:33:40.9454957Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9455585Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9455953Z ok (0.004s) 2023-01-11T21:33:40.9456580Z test_scalar_ins (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9457278Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9457915Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9458280Z ok (0.002s) 2023-01-11T21:33:40.9459030Z test_sparse_tensors (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9459731Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9460377Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9460742Z ok (0.004s) 2023-01-11T21:33:40.9461350Z test_tensor_lists (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9462050Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9462690Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9463657Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1958: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9464522Z self.assertEqual(x.storage().data_ptr(), inputs[0][0].storage_data_ptr) 2023-01-11T21:33:40.9465364Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9466197Z self.assertEqual(y.storage().data_ptr(), inputs[0][1].storage_data_ptr) 2023-01-11T21:33:40.9466508Z ok (0.002s) 2023-01-11T21:33:40.9467194Z test_tensor_properties (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9467893Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9468504Z STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9468889Z ok (0.003s) 2023-01-11T21:33:40.9469544Z test_tensorimpl_invalidation_full (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:38 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9470560Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1546: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9471313Z x_storages = [x.storage()] 2023-01-11T21:33:40.9472112Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1549: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9472985Z x.set_(torch.ones((1,)).storage()) 2023-01-11T21:33:40.9473795Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1550: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9474573Z x_storages.append(x.storage()) 2023-01-11T21:33:40.9475460Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1559: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9476198Z x.set_(torch.ones((1,)).storage()) 2023-01-11T21:33:40.9476984Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1563: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9477725Z x.set_(torch.ones((1,)).storage()) 2023-01-11T21:33:40.9478292Z STAGE:2023-01-11 21:33:39 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9478905Z STAGE:2023-01-11 21:33:39 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9479243Z ok (0.424s) 2023-01-11T21:33:40.9479948Z test_tensorimpl_invalidation_keep_alive (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:39 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9480926Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1478: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9481699Z x_storages = [x.storage()] 2023-01-11T21:33:40.9482484Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1481: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9483244Z x.set_(torch.ones((1,)).storage()) 2023-01-11T21:33:40.9484012Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1485: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9484768Z x_storages.append(x.storage()) 2023-01-11T21:33:40.9485550Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1499: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9486272Z x.set_(torch.ones((1,)).storage()) 2023-01-11T21:33:40.9486831Z STAGE:2023-01-11 21:33:39 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9487490Z STAGE:2023-01-11 21:33:39 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9488117Z STAGE:2023-01-11 21:33:39 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9488828Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9489613Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9489977Z ok (0.948s) 2023-01-11T21:33:40.9490668Z test_tensorimpl_invalidation_scalar_args (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9491349Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9492005Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9492492Z ok (0.136s) 2023-01-11T21:33:40.9493180Z test_tensorimpl_invalidation_set (__main__.TestTorchTidyProfiler) ... STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9494136Z /var/lib/jenkins/workspace/test/profiler/test_profiler.py:1454: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:40.9494874Z x.set_(torch.ones((1,)).storage()) 2023-01-11T21:33:40.9495404Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9496042Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9496647Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:33:40.9497250Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:33:40.9497866Z STAGE:2023-01-11 21:33:40 5775:5775 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:33:40.9498221Z ok (0.261s) 2023-01-11T21:33:40.9498350Z 2023-01-11T21:33:40.9498636Z ---------------------------------------------------------------------- 2023-01-11T21:33:40.9498987Z Ran 71 tests in 5.868s 2023-01-11T21:33:40.9499144Z 2023-01-11T21:33:40.9499241Z OK (skipped=10) 2023-01-11T21:33:40.9499386Z 2023-01-11T21:33:40.9499487Z Generating XML reports... 2023-01-11T21:33:40.9500104Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestExecutionGraph-20230111213334.xml 2023-01-11T21:33:40.9500924Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestExperimentalUtils-20230111213334.xml 2023-01-11T21:33:40.9501711Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestProfiler-20230111213334.xml 2023-01-11T21:33:40.9502436Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestProfilerITT-20230111213334.xml 2023-01-11T21:33:40.9503226Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestRecordFunction-20230111213334.xml 2023-01-11T21:33:40.9504106Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestTorchTidyProfiler-20230111213334.xml 2023-01-11T21:33:40.9504868Z Generated XML report: test-reports/python-unittest/profiler.test_profiler/TEST-TestProfilerCUDA-20230111213334.xml 2023-01-11T21:33:40.9505174Z 2023-01-11T21:33:40.9505577Z ##[endgroup] 2023-01-11T21:33:40.9506233Z FINISHED PRINTING LOG FILE of profiler/test_profiler (/var/lib/jenkins/workspace/test/test-reports/profiler-test_profiler_58kwhjzf) 2023-01-11T21:33:40.9506583Z 2023-01-11T21:33:42.7622222Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:42.8266392Z Ignoring disabled issues: [] 2023-01-11T21:33:42.8413548Z Running test_autocast ... [2023-01-11 21:33:42.841068] 2023-01-11T21:33:42.8415139Z Executing ['/opt/conda/bin/python', '-bb', 'test_autocast.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:42.841304] 2023-01-11T21:33:44.8624274Z 2023-01-11T21:33:44.8624812Z Expand the folded group to see the log file of test_autocast 2023-01-11T21:33:44.8625933Z ##[group]PRINTING LOG FILE of test_autocast (/var/lib/jenkins/workspace/test/test-reports/test_autocast_82qx57ye) 2023-01-11T21:33:44.8626356Z 2023-01-11T21:33:44.8626487Z Running tests... 2023-01-11T21:33:44.8627133Z ---------------------------------------------------------------------- 2023-01-11T21:33:44.8627791Z Test results will be stored in test-reports/python-unittest/test_autocast 2023-01-11T21:33:44.8628347Z test_autocast_methods_expect_builtin_promote (__main__.TestAutocastCPU) ... ok (0.229s) 2023-01-11T21:33:44.8629148Z test_autocast_nn_bf16 (__main__.TestAutocastCPU) ... ok (0.006s) 2023-01-11T21:33:44.8629660Z test_autocast_nn_fp32 (__main__.TestAutocastCPU) ... ok (0.008s) 2023-01-11T21:33:44.8630172Z test_autocast_torch_bf16 (__main__.TestAutocastCPU) ... ok (0.016s) 2023-01-11T21:33:44.8630753Z test_autocast_torch_expect_builtin_promote (__main__.TestAutocastCPU) ... ok (0.006s) 2023-01-11T21:33:44.8631288Z test_autocast_torch_fp32 (__main__.TestAutocastCPU) ... ok (0.079s) 2023-01-11T21:33:44.8631832Z test_autocast_torch_need_autocast_promote (__main__.TestAutocastCPU) ... ok (0.006s) 2023-01-11T21:33:44.8632334Z test_cast_cache_is_global (__main__.TestAutocastGPU) 2023-01-11T21:33:44.8632851Z Verifies that the autocast cache is global. This is done by ... skip: requires cuda (0.001s) 2023-01-11T21:33:44.8633401Z test_autocast_fast_dtype (__main__.TestTorchAutocast) ... ok (0.001s) 2023-01-11T21:33:44.8633691Z 2023-01-11T21:33:44.8634074Z ---------------------------------------------------------------------- 2023-01-11T21:33:44.8634500Z Ran 9 tests in 0.352s 2023-01-11T21:33:44.8634704Z 2023-01-11T21:33:44.8634824Z OK (skipped=1) 2023-01-11T21:33:44.8635013Z 2023-01-11T21:33:44.8635161Z Generating XML reports... 2023-01-11T21:33:44.8635878Z Generated XML report: test-reports/python-unittest/test_autocast/TEST-TestAutocastCPU-20230111213344.xml 2023-01-11T21:33:44.8636818Z Generated XML report: test-reports/python-unittest/test_autocast/TEST-TestTorchAutocast-20230111213344.xml 2023-01-11T21:33:44.8637731Z Generated XML report: test-reports/python-unittest/test_autocast/TEST-TestAutocastGPU-20230111213344.xml 2023-01-11T21:33:44.8638141Z 2023-01-11T21:33:44.8638566Z ##[endgroup] 2023-01-11T21:33:44.8639243Z FINISHED PRINTING LOG FILE of test_autocast (/var/lib/jenkins/workspace/test/test-reports/test_autocast_82qx57ye) 2023-01-11T21:33:44.8639618Z 2023-01-11T21:33:46.7052664Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:46.7698846Z Ignoring disabled issues: [] 2023-01-11T21:33:46.7848280Z Running test_binary_ufuncs ... [2023-01-11 21:33:46.784476] 2023-01-11T21:33:46.7849676Z Executing ['/opt/conda/bin/python', '-bb', 'test_binary_ufuncs.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:46.784726] 2023-01-11T21:33:49.3220334Z 2023-01-11T21:33:49.3220882Z Expand the folded group to see the log file of test_binary_ufuncs 2023-01-11T21:33:49.3221946Z ##[group]PRINTING LOG FILE of test_binary_ufuncs (/var/lib/jenkins/workspace/test/test-reports/test_binary_ufuncs_t8btn9in) 2023-01-11T21:33:49.3224991Z 2023-01-11T21:33:49.3225127Z Running tests... 2023-01-11T21:33:49.3225780Z ---------------------------------------------------------------------- 2023-01-11T21:33:49.3226072Z 2023-01-11T21:33:49.3226450Z ---------------------------------------------------------------------- 2023-01-11T21:33:49.3226792Z Ran 0 tests in 0.000s 2023-01-11T21:33:49.3226906Z 2023-01-11T21:33:49.3226964Z OK 2023-01-11T21:33:49.3227053Z 2023-01-11T21:33:49.3227137Z Generating XML reports... 2023-01-11T21:33:49.3227471Z Test results will be stored in test-reports/python-unittest/test_binary_ufuncs 2023-01-11T21:33:49.3227862Z 2023-01-11T21:33:49.3228108Z ##[endgroup] 2023-01-11T21:33:49.3228508Z FINISHED PRINTING LOG FILE of test_binary_ufuncs (/var/lib/jenkins/workspace/test/test-reports/test_binary_ufuncs_t8btn9in) 2023-01-11T21:33:49.3228727Z 2023-01-11T21:33:51.1896926Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:51.2540358Z Ignoring disabled issues: [] 2023-01-11T21:33:51.2689474Z Running test_bundled_inputs ... [2023-01-11 21:33:51.268601] 2023-01-11T21:33:51.2690404Z Executing ['/opt/conda/bin/python', '-bb', 'test_bundled_inputs.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:51.268837] 2023-01-11T21:33:53.9796454Z 2023-01-11T21:33:53.9796962Z Expand the folded group to see the log file of test_bundled_inputs 2023-01-11T21:33:53.9798187Z ##[group]PRINTING LOG FILE of test_bundled_inputs (/var/lib/jenkins/workspace/test/test-reports/test_bundled_inputs_3m17p5u9) 2023-01-11T21:33:53.9798405Z 2023-01-11T21:33:53.9798515Z Running tests... 2023-01-11T21:33:53.9798926Z ---------------------------------------------------------------------- 2023-01-11T21:33:53.9799317Z Test results will be stored in test-reports/python-unittest/test_bundled_inputs 2023-01-11T21:33:53.9799623Z test_bad_inputs (__main__.TestBundledInputs) ... ok (0.230s) 2023-01-11T21:33:53.9800227Z test_dict_args (__main__.TestBundledInputs) ... /var/lib/jenkins/workspace/test/test_bundled_inputs.py:361: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:53.9800775Z assert ret.storage().size() == 1 2023-01-11T21:33:53.9801563Z /opt/conda/lib/python3.10/site-packages/torch/utils/bundled_inputs.py:394: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:53.9802137Z if arg._typed_storage().size() <= MAX_RAW_TENSOR_SIZE or skip_size_check: 2023-01-11T21:33:53.9802363Z ok (0.613s) 2023-01-11T21:33:53.9802581Z test_double_augment_fail (__main__.TestBundledInputs) ... ok (0.007s) 2023-01-11T21:33:53.9802880Z test_double_augment_non_mutator (__main__.TestBundledInputs) ... ok (0.007s) 2023-01-11T21:33:53.9803174Z test_double_augment_success (__main__.TestBundledInputs) ... ok (0.009s) 2023-01-11T21:33:53.9803464Z test_large_tensor_with_inflation (__main__.TestBundledInputs) ... ok (0.011s) 2023-01-11T21:33:53.9803772Z test_multiple_methods_with_inputs (__main__.TestBundledInputs) ... ok (0.047s) 2023-01-11T21:33:53.9804109Z test_multiple_methods_with_inputs_both_defined_failure (__main__.TestBundledInputs) ... ok (0.005s) 2023-01-11T21:33:53.9804470Z test_multiple_methods_with_inputs_neither_defined_failure (__main__.TestBundledInputs) ... ok (0.004s) 2023-01-11T21:33:53.9804771Z test_non_tensors (__main__.TestBundledInputs) ... ok (0.008s) 2023-01-11T21:33:53.9805665Z test_rejected_tensors (__main__.TestBundledInputs) ... /opt/conda/lib/python3.10/site-packages/torch/utils/bundled_inputs.py:410: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:33:53.9806277Z f"a tensor with storage size {arg._typed_storage().size()}. " 2023-01-11T21:33:53.9806488Z ok (0.008s) 2023-01-11T21:33:53.9806698Z test_single_tensors (__main__.TestBundledInputs) ... ok (0.032s) 2023-01-11T21:33:53.9806854Z 2023-01-11T21:33:53.9807053Z ---------------------------------------------------------------------- 2023-01-11T21:33:53.9807292Z Ran 12 tests in 0.985s 2023-01-11T21:33:53.9807482Z 2023-01-11T21:33:53.9807530Z OK 2023-01-11T21:33:53.9807620Z 2023-01-11T21:33:53.9807707Z Generating XML reports... 2023-01-11T21:33:53.9808127Z Generated XML report: test-reports/python-unittest/test_bundled_inputs/TEST-TestBundledInputs-20230111213352.xml 2023-01-11T21:33:53.9808368Z 2023-01-11T21:33:53.9808595Z ##[endgroup] 2023-01-11T21:33:53.9808988Z FINISHED PRINTING LOG FILE of test_bundled_inputs (/var/lib/jenkins/workspace/test/test-reports/test_bundled_inputs_3m17p5u9) 2023-01-11T21:33:53.9809375Z 2023-01-11T21:33:55.8067427Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:55.8716336Z Ignoring disabled issues: [] 2023-01-11T21:33:55.8865060Z Running test_comparison_utils ... [2023-01-11 21:33:55.886200] 2023-01-11T21:33:55.8867185Z Executing ['/opt/conda/bin/python', '-bb', 'test_comparison_utils.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:55.886469] 2023-01-11T21:33:57.4723775Z 2023-01-11T21:33:57.4724373Z Expand the folded group to see the log file of test_comparison_utils 2023-01-11T21:33:57.4725332Z ##[group]PRINTING LOG FILE of test_comparison_utils (/var/lib/jenkins/workspace/test/test-reports/test_comparison_utils_gcf13j3m) 2023-01-11T21:33:57.4725568Z 2023-01-11T21:33:57.4725784Z ##[endgroup] 2023-01-11T21:33:57.4726288Z FINISHED PRINTING LOG FILE of test_comparison_utils (/var/lib/jenkins/workspace/test/test-reports/test_comparison_utils_gcf13j3m) 2023-01-11T21:33:57.4726509Z 2023-01-11T21:33:59.2966830Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:33:59.3621779Z Ignoring disabled issues: [] 2023-01-11T21:33:59.3772478Z Running test_complex ... [2023-01-11 21:33:59.376946] 2023-01-11T21:33:59.3774558Z Executing ['/opt/conda/bin/python', '-bb', 'test_complex.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:33:59.377192] 2023-01-11T21:34:01.2568495Z 2023-01-11T21:34:01.2569187Z Expand the folded group to see the log file of test_complex 2023-01-11T21:34:01.2570253Z ##[group]PRINTING LOG FILE of test_complex (/var/lib/jenkins/workspace/test/test-reports/test_complex_7p3eol9c) 2023-01-11T21:34:01.2570633Z 2023-01-11T21:34:01.2570755Z Running tests... 2023-01-11T21:34:01.2571368Z ---------------------------------------------------------------------- 2023-01-11T21:34:01.2571663Z 2023-01-11T21:34:01.2572021Z ---------------------------------------------------------------------- 2023-01-11T21:34:01.2572417Z Ran 0 tests in 0.000s 2023-01-11T21:34:01.2572612Z 2023-01-11T21:34:01.2572713Z OK 2023-01-11T21:34:01.2572854Z 2023-01-11T21:34:01.2572998Z Generating XML reports... 2023-01-11T21:34:01.2573565Z Test results will be stored in test-reports/python-unittest/test_complex 2023-01-11T21:34:01.2573859Z 2023-01-11T21:34:01.2574259Z ##[endgroup] 2023-01-11T21:34:01.2574917Z FINISHED PRINTING LOG FILE of test_complex (/var/lib/jenkins/workspace/test/test-reports/test_complex_7p3eol9c) 2023-01-11T21:34:01.2575295Z 2023-01-11T21:34:03.1300239Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:34:03.1945255Z Ignoring disabled issues: [] 2023-01-11T21:34:03.2093953Z Running test_cuda_sanitizer ... [2023-01-11 21:34:03.209156] 2023-01-11T21:34:03.2096692Z Executing ['/opt/conda/bin/python', '-bb', 'test_cuda_sanitizer.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:34:03.209393] 2023-01-11T21:34:04.7756524Z 2023-01-11T21:34:04.7758378Z Expand the folded group to see the log file of test_cuda_sanitizer 2023-01-11T21:34:04.7759507Z ##[group]PRINTING LOG FILE of test_cuda_sanitizer (/var/lib/jenkins/workspace/test/test-reports/test_cuda_sanitizer_y8az38v2) 2023-01-11T21:34:04.7760105Z CUDA not available, skipping tests 2023-01-11T21:34:04.7760320Z 2023-01-11T21:34:04.7760444Z Running tests... 2023-01-11T21:34:04.7760949Z ---------------------------------------------------------------------- 2023-01-11T21:34:04.7761123Z 2023-01-11T21:34:04.7761321Z ---------------------------------------------------------------------- 2023-01-11T21:34:04.7761736Z Ran 0 tests in 0.000s 2023-01-11T21:34:04.7761848Z 2023-01-11T21:34:04.7761908Z OK 2023-01-11T21:34:04.7761997Z 2023-01-11T21:34:04.7762082Z Generating XML reports... 2023-01-11T21:34:04.7762421Z Test results will be stored in test-reports/python-unittest/test_cuda_sanitizer 2023-01-11T21:34:04.7762594Z 2023-01-11T21:34:04.7762823Z ##[endgroup] 2023-01-11T21:34:04.7763224Z FINISHED PRINTING LOG FILE of test_cuda_sanitizer (/var/lib/jenkins/workspace/test/test-reports/test_cuda_sanitizer_y8az38v2) 2023-01-11T21:34:04.7763448Z 2023-01-11T21:34:06.6450556Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:34:06.7094158Z Ignoring disabled issues: [] 2023-01-11T21:34:06.7242671Z Running test_dataloader ... [2023-01-11 21:34:06.724021] 2023-01-11T21:34:06.7244832Z Executing ['/opt/conda/bin/python', '-bb', 'test_dataloader.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:34:06.724268] 2023-01-11T21:35:33.3649655Z 2023-01-11T21:35:33.3650289Z Expand the folded group to see the log file of test_dataloader 2023-01-11T21:35:33.3651435Z ##[group]PRINTING LOG FILE of test_dataloader (/var/lib/jenkins/workspace/test/test-reports/test_dataloader_l3fzk_j0) 2023-01-11T21:35:33.3718938Z 2023-01-11T21:35:33.3719295Z Running tests... 2023-01-11T21:35:33.3720040Z ---------------------------------------------------------------------- 2023-01-11T21:35:33.3721628Z Test results will be stored in test-reports/python-unittest/test_dataloader 2023-01-11T21:35:33.3722292Z test_shuffler_iterdatapipe (__main__.IntegrationTestDataLoaderDataPipe) 2023-01-11T21:35:33.3722699Z Verify ``IterDataPipe.shuffle`` is controlled by ``DataLoader`` ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:35:33.3723061Z test_add_dataset (__main__.TestConcatDataset) ... ok (0.223s) 2023-01-11T21:35:33.3723363Z test_concat_raises_index_error (__main__.TestConcatDataset) ... ok (0.001s) 2023-01-11T21:35:33.3723749Z test_concat_two_non_singletons (__main__.TestConcatDataset) ... ok (0.001s) 2023-01-11T21:35:33.3727219Z test_concat_two_non_singletons_with_empty (__main__.TestConcatDataset) ... ok (0.001s) 2023-01-11T21:35:33.3727827Z test_concat_two_singletons (__main__.TestConcatDataset) ... ok (0.001s) 2023-01-11T21:35:33.3728401Z test_iterable_dataset_err (__main__.TestConcatDataset) ... ok (0.001s) 2023-01-11T21:35:33.3729692Z test_conv_after_fork (__main__.TestConvAfterFork) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/75492 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.000s) 2023-01-11T21:35:33.3730354Z test_custom_batch_pin (__main__.TestCustomPinFn) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3730696Z test_custom_batch_pin_worker (__main__.TestCustomPinFn) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3731242Z test_batch_sampler (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3731621Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3732052Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3732398Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3732823Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3733155Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3733587Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3733919Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3734532Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3734859Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3735288Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3735616Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3736046Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3736375Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3738914Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3739537Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3739941Z ok (2.517s) 2023-01-11T21:35:33.3740195Z test_builtin_collection_conversion (__main__.TestDataLoader) ... ok (0.240s) 2023-01-11T21:35:33.3740650Z test_bulk_loading_nobatch (__main__.TestDataLoader) ... ok (0.070s) 2023-01-11T21:35:33.3741272Z test_chain_iterable_style_dataset (__main__.TestDataLoader) ... ok (0.118s) 2023-01-11T21:35:33.3741933Z test_default_collate_bad_numpy_types (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3742605Z test_default_collate_bad_sequence_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3743270Z test_default_collate_dtype (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3743968Z test_default_collate_mapping_keep_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3745761Z test_default_collate_numpy_memmap (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py:172: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/utils/tensor_numpy.cpp:210.) 2023-01-11T21:35:33.3746864Z return collate([torch.as_tensor(b) for b in batch], collate_fn_map=collate_fn_map) 2023-01-11T21:35:33.3747303Z ok (0.004s) 2023-01-11T21:35:33.3747636Z test_default_collate_sequence_dont_keep_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3747964Z test_default_collate_sequence_keep_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3748265Z test_default_collate_shared_tensor (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3748582Z test_default_convert_mapping_keep_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3748944Z test_default_convert_sequence_dont_keep_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3749420Z test_default_convert_sequence_keep_type (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3749919Z test_distributed_sampler_invalid_rank (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3750463Z test_duplicating_data_with_drop_last (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3750960Z test_error (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3751411Z test_error_in_init (__main__.TestDataLoader) ... ok (0.076s) 2023-01-11T21:35:33.3751881Z test_error_workers (__main__.TestDataLoader) ... ok (0.066s) 2023-01-11T21:35:33.3752330Z test_excessive_thread_creation_warning (__main__.TestDataLoader) ... ok (0.008s) 2023-01-11T21:35:33.3752616Z test_fd_limit_exceeded (__main__.TestDataLoader) ... ok (1.500s) 2023-01-11T21:35:33.3753140Z test_get_worker_info (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3753642Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3754081Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3754424Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3754655Z ok (3.297s) 2023-01-11T21:35:33.3754883Z test_growing_dataset (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3755160Z test_invalid_assign_after_init (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3755465Z test_invalid_ctor_args_combinations (__main__.TestDataLoader) ... ok (0.004s) 2023-01-11T21:35:33.3755763Z test_iterable_style_dataset (__main__.TestDataLoader) ... ok (0.856s) 2023-01-11T21:35:33.3756098Z test_iterabledataset_len (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3756618Z test_large_sampler_indices (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3757009Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3757443Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3757780Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3758009Z ok (3.104s) 2023-01-11T21:35:33.3758220Z test_len (__main__.TestDataLoader) ... ok (0.011s) 2023-01-11T21:35:33.3758490Z test_multi_epochs_reproducibility (__main__.TestDataLoader) ... ok (0.117s) 2023-01-11T21:35:33.3759030Z test_multiple_dataloaders (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3759420Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3759855Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3760196Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3760631Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3760965Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3761395Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3761733Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3762167Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3762499Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3762919Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3763268Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3763720Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3764056Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3764471Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3764815Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3765045Z ok (3.335s) 2023-01-11T21:35:33.3765516Z test_multiprocessing_contexts (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3765897Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3766330Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3766732Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3767170Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3767486Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3767915Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3768259Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3768681Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3769223Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3769734Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3770259Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3770959Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3771551Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3772339Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3772954Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3773556Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3773889Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3774320Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3774656Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3775093Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3775423Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3775852Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3776183Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3776638Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3776967Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3777394Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3777723Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3778158Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3778488Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3778902Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3779244Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3779671Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3779999Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3780417Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3780759Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3781284Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3781615Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3782028Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3782370Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3782799Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3783112Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3783689Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3784042Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3784479Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3784794Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3785222Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3785562Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3785776Z ok (6.670s) 2023-01-11T21:35:33.3786482Z test_multiprocessing_iterdatapipe (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/graph_settings.py:88: UserWarning: `shuffle=True` was set, but the datapipe does not contain a `Shuffler`. Adding one at the end. Be aware that the default buffer size might not be sufficient for your task. 2023-01-11T21:35:33.3786974Z warnings.warn( 2023-01-11T21:35:33.3787360Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3787699Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3788118Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3788471Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3788906Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3789224Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3789655Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3789998Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3790436Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3790754Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3791184Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3791530Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3791960Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3792272Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3792703Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3793046Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3793466Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3811700Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3815227Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3820342Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3821049Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3821534Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3822201Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3822704Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3823606Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3824073Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3824692Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3825199Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3825858Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3826339Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3826966Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3827484Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3827765Z ok (6.393s) 2023-01-11T21:35:33.3828465Z test_no_segfault (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3828999Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3829655Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3830151Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3830471Z ok (1.663s) 2023-01-11T21:35:33.3830768Z test_numpy (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3831119Z test_numpy_gen_state (__main__.TestDataLoader) ... ok (0.003s) 2023-01-11T21:35:33.3831510Z test_numpy_scalars (__main__.TestDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.3831873Z test_partial_workers (__main__.TestDataLoader) 2023-01-11T21:35:33.3832277Z Check that workers exit even if the iterator is not exhausted. ... ok (0.080s) 2023-01-11T21:35:33.3832691Z test_proper_exit (__main__.TestDataLoader) 2023-01-11T21:35:33.3833326Z There might be ConnectionResetError or leaked semaphore warning (due to dirty process exit), but they are all safe to ignore ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.003s) 2023-01-11T21:35:33.3833919Z test_random_sampler (__main__.TestDataLoader) ... ok (0.003s) 2023-01-11T21:35:33.3834326Z test_random_sampler_len_with_replacement (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3834775Z test_random_sampler_len_without_replacement (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3835564Z test_sampler (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3836095Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3836733Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3837255Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3837892Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3838452Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3839096Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3839598Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3840241Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3840696Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3841329Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3841821Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3842537Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3843013Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3843692Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3844212Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3844533Z ok (2.623s) 2023-01-11T21:35:33.3844882Z test_sampler_reproducibility (__main__.TestDataLoader) ... ok (0.016s) 2023-01-11T21:35:33.3845664Z test_segfault (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3846212Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3846871Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3847378Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3847715Z ok (4.906s) 2023-01-11T21:35:33.3848031Z test_seqential_batch_workers (__main__.TestDataLoader) ... ok (0.120s) 2023-01-11T21:35:33.3848477Z test_seqential_batch_workers_prefetch (__main__.TestDataLoader) ... ok (0.103s) 2023-01-11T21:35:33.3848919Z test_sequential_batch (__main__.TestDataLoader) ... ok (0.040s) 2023-01-11T21:35:33.3849509Z test_sequential_nonbatch (__main__.TestDataLoader) ... ok (0.021s) 2023-01-11T21:35:33.3849975Z test_sequential_pin_memory (__main__.TestDataLoader) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3850424Z test_sequential_workers (__main__.TestDataLoader) ... ok (0.177s) 2023-01-11T21:35:33.3850817Z test_shuffle (__main__.TestDataLoader) ... ok (0.062s) 2023-01-11T21:35:33.3851184Z test_shuffle_batch (__main__.TestDataLoader) ... ok (0.054s) 2023-01-11T21:35:33.3851595Z test_shuffle_batch_none (__main__.TestDataLoader) ... ok (0.056s) 2023-01-11T21:35:33.3852011Z test_shuffle_batch_workers (__main__.TestDataLoader) ... ok (0.167s) 2023-01-11T21:35:33.3852445Z test_shuffle_batch_workers_prefetch (__main__.TestDataLoader) ... ok (0.172s) 2023-01-11T21:35:33.3852896Z test_shuffle_pin_memory (__main__.TestDataLoader) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:35:33.3853363Z test_shuffle_reproducibility (__main__.TestDataLoader) ... ok (0.319s) 2023-01-11T21:35:33.3853776Z test_shuffle_workers (__main__.TestDataLoader) ... ok (0.188s) 2023-01-11T21:35:33.3854528Z test_timeout (__main__.TestDataLoader) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3855066Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3855707Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3856206Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3856530Z ok (2.637s) 2023-01-11T21:35:33.3856990Z test_typing (__main__.TestDataLoader) ... ok (0.001s) 2023-01-11T21:35:33.3857385Z test_worker_init_fn (__main__.TestDataLoader) ... ok (0.038s) 2023-01-11T21:35:33.3857765Z test_worker_seed (__main__.TestDataLoader) ... ok (0.086s) 2023-01-11T21:35:33.3858201Z test_worker_seed_reproducibility (__main__.TestDataLoader) ... ok (0.150s) 2023-01-11T21:35:33.3859034Z test_batch_sampler (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3859599Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3860223Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3860822Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3861495Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3861960Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3862588Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3863084Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3863773Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3864241Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3864898Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3865394Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3866027Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3866514Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3867154Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3867657Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3867968Z ok (2.481s) 2023-01-11T21:35:33.3868363Z test_builtin_collection_conversion (__main__.TestDataLoaderPersistentWorkers) ... ok (0.245s) 2023-01-11T21:35:33.3868887Z test_bulk_loading_nobatch (__main__.TestDataLoaderPersistentWorkers) ... ok (0.080s) 2023-01-11T21:35:33.3869394Z test_chain_iterable_style_dataset (__main__.TestDataLoaderPersistentWorkers) ... ok (0.089s) 2023-01-11T21:35:33.3869912Z test_dataset_not_reset (__main__.TestDataLoaderPersistentWorkers) ... ok (0.078s) 2023-01-11T21:35:33.3870449Z test_default_collate_bad_numpy_types (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3870962Z test_default_collate_bad_sequence_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3871471Z test_default_collate_dtype (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3871994Z test_default_collate_mapping_keep_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3872511Z test_default_collate_numpy_memmap (__main__.TestDataLoaderPersistentWorkers) ... ok (0.003s) 2023-01-11T21:35:33.3873039Z test_default_collate_sequence_dont_keep_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3873588Z test_default_collate_sequence_keep_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3874125Z test_default_collate_shared_tensor (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3874684Z test_default_convert_mapping_keep_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3875175Z test_default_convert_sequence_dont_keep_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3875856Z test_default_convert_sequence_keep_type (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3876407Z test_distributed_sampler_invalid_rank (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3876962Z test_duplicating_data_with_drop_last (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3877444Z test_early_exit (__main__.TestDataLoaderPersistentWorkers) ... ok (1.470s) 2023-01-11T21:35:33.3877906Z test_error (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3878380Z test_error_in_init (__main__.TestDataLoaderPersistentWorkers) ... ok (0.078s) 2023-01-11T21:35:33.3878925Z test_error_workers (__main__.TestDataLoaderPersistentWorkers) ... ok (0.061s) 2023-01-11T21:35:33.3879439Z test_excessive_thread_creation_warning (__main__.TestDataLoaderPersistentWorkers) ... ok (0.012s) 2023-01-11T21:35:33.3879975Z test_fd_limit_exceeded (__main__.TestDataLoaderPersistentWorkers) ... ok (1.511s) 2023-01-11T21:35:33.3880859Z test_get_worker_info (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3881420Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3882048Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3882532Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3882833Z ok (3.394s) 2023-01-11T21:35:33.3883189Z test_growing_dataset (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3883709Z test_invalid_assign_after_init (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3884234Z test_invalid_ctor_args_combinations (__main__.TestDataLoaderPersistentWorkers) ... ok (0.004s) 2023-01-11T21:35:33.3884883Z test_iterable_style_dataset (__main__.TestDataLoaderPersistentWorkers) ... Exception ignored in: 2023-01-11T21:35:33.3885416Z Traceback (most recent call last): 2023-01-11T21:35:33.3885970Z File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1480, in __del__ 2023-01-11T21:35:33.3886344Z self._shutdown_workers() 2023-01-11T21:35:33.3886915Z File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1463, in _shutdown_workers 2023-01-11T21:35:33.3887304Z if w.is_alive(): 2023-01-11T21:35:33.3887659Z File "/opt/conda/lib/python3.10/multiprocessing/process.py", line 160, in is_alive 2023-01-11T21:35:33.3888201Z assert self._parent_pid == os.getpid(), 'can only test a child process' 2023-01-11T21:35:33.3888611Z AssertionError: can only test a child process 2023-01-11T21:35:33.3889191Z Exception ignored in: 2023-01-11T21:35:33.3889614Z Traceback (most recent call last): 2023-01-11T21:35:33.3890174Z File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1480, in __del__ 2023-01-11T21:35:33.3890692Z Exception ignored in: 2023-01-11T21:35:33.3891090Z Traceback (most recent call last): 2023-01-11T21:35:33.3891619Z File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1480, in __del__ 2023-01-11T21:35:33.3892003Z self._shutdown_workers() 2023-01-11T21:35:33.3892554Z File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1463, in _shutdown_workers 2023-01-11T21:35:33.3892926Z if w.is_alive(): 2023-01-11T21:35:33.3893290Z File "/opt/conda/lib/python3.10/multiprocessing/process.py", line 160, in is_alive 2023-01-11T21:35:33.3893837Z assert self._parent_pid == os.getpid(), 'can only test a child process' 2023-01-11T21:35:33.3894335Z AssertionError: can only test a child process 2023-01-11T21:35:33.3894673Z self._shutdown_workers() 2023-01-11T21:35:33.3895250Z File "/opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1463, in _shutdown_workers 2023-01-11T21:35:33.3895612Z if w.is_alive(): 2023-01-11T21:35:33.3895966Z File "/opt/conda/lib/python3.10/multiprocessing/process.py", line 160, in is_alive 2023-01-11T21:35:33.3896518Z assert self._parent_pid == os.getpid(), 'can only test a child process' 2023-01-11T21:35:33.3896904Z AssertionError: can only test a child process 2023-01-11T21:35:33.3897186Z ok (0.792s) 2023-01-11T21:35:33.3897569Z test_iterabledataset_len (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3898620Z test_large_sampler_indices (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3899243Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3899858Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3900361Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3900693Z ok (3.061s) 2023-01-11T21:35:33.3901041Z test_len (__main__.TestDataLoaderPersistentWorkers) ... ok (0.007s) 2023-01-11T21:35:33.3901569Z test_multi_epochs_reproducibility (__main__.TestDataLoaderPersistentWorkers) ... ok (0.053s) 2023-01-11T21:35:33.3902509Z test_multiple_dataloaders (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3903140Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3903870Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3904393Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3905057Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3905532Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3906201Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3906746Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3907395Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3907871Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3908534Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3909047Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3909701Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3910182Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3910835Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3911319Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3911636Z ok (3.304s) 2023-01-11T21:35:33.3912429Z test_multiprocessing_contexts (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3913096Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3913693Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3914309Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3914937Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3915405Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3916012Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3916513Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3917155Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3917708Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3918337Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3918829Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3919445Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3919906Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3920519Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3921013Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3921637Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3922078Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3922702Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3923190Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3923800Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3924242Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3924871Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3925359Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3925978Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3926442Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3927078Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3927575Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3928204Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3928700Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3929479Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3929970Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3930723Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3931197Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3931834Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3932275Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3933044Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3933518Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3934171Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3934654Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3935302Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3935788Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3936419Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3937039Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3937718Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3938201Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3938823Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3939323Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3939644Z ok (7.221s) 2023-01-11T21:35:33.3940899Z test_multiprocessing_iterdatapipe (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/graph_settings.py:88: UserWarning: `shuffle=True` was set, but the datapipe does not contain a `Shuffler`. Adding one at the end. Be aware that the default buffer size might not be sufficient for your task. 2023-01-11T21:35:33.3941727Z warnings.warn( 2023-01-11T21:35:33.3942248Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3942705Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3943361Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3943921Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3944585Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3945083Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3945727Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3946221Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3946858Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3947345Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3947958Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3948466Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3949088Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3949573Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3950181Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3950689Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3951337Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3951800Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3952524Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3953006Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3953648Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3954077Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3954727Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3955237Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3955950Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3956398Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3957023Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3957509Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3958125Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3958599Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3959207Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3959693Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3959989Z ok (6.685s) 2023-01-11T21:35:33.3960717Z test_no_segfault (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3961312Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3961938Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3962424Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3962739Z ok (1.651s) 2023-01-11T21:35:33.3963097Z test_numpy (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3963557Z test_numpy_gen_state (__main__.TestDataLoaderPersistentWorkers) ... ok (0.003s) 2023-01-11T21:35:33.3964034Z test_numpy_scalars (__main__.TestDataLoaderPersistentWorkers) ... ok (0.002s) 2023-01-11T21:35:33.3964505Z test_partial_workers (__main__.TestDataLoaderPersistentWorkers) 2023-01-11T21:35:33.3964944Z Check that workers exit even if the iterator is not exhausted. ... ok (0.078s) 2023-01-11T21:35:33.3965393Z test_proper_exit (__main__.TestDataLoaderPersistentWorkers) 2023-01-11T21:35:33.3966009Z There might be ConnectionResetError or leaked semaphore warning (due to dirty process exit), but they are all safe to ignore ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.003s) 2023-01-11T21:35:33.3966644Z test_random_sampler (__main__.TestDataLoaderPersistentWorkers) ... ok (0.003s) 2023-01-11T21:35:33.3967155Z test_random_sampler_len_with_replacement (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3967790Z test_random_sampler_len_without_replacement (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3968716Z test_sampler (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3969474Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3970117Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3970614Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3971386Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3971856Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3972472Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3972966Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3973596Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3974059Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3974795Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3975298Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3975945Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3976375Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3976986Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3977498Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3977816Z ok (2.319s) 2023-01-11T21:35:33.3978226Z test_sampler_reproducibility (__main__.TestDataLoaderPersistentWorkers) ... ok (0.026s) 2023-01-11T21:35:33.3979116Z test_segfault (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3979749Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3980389Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3980903Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3981225Z ok (3.229s) 2023-01-11T21:35:33.3981602Z test_seqential_batch_workers (__main__.TestDataLoaderPersistentWorkers) ... ok (0.112s) 2023-01-11T21:35:33.3982147Z test_seqential_batch_workers_prefetch (__main__.TestDataLoaderPersistentWorkers) ... ok (0.099s) 2023-01-11T21:35:33.3982655Z test_sequential_batch (__main__.TestDataLoaderPersistentWorkers) ... ok (0.040s) 2023-01-11T21:35:33.3983161Z test_sequential_nonbatch (__main__.TestDataLoaderPersistentWorkers) ... ok (0.021s) 2023-01-11T21:35:33.3983785Z test_sequential_pin_memory (__main__.TestDataLoaderPersistentWorkers) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3984336Z test_sequential_workers (__main__.TestDataLoaderPersistentWorkers) ... ok (0.198s) 2023-01-11T21:35:33.3984816Z test_shuffle (__main__.TestDataLoaderPersistentWorkers) ... ok (0.062s) 2023-01-11T21:35:33.3985286Z test_shuffle_batch (__main__.TestDataLoaderPersistentWorkers) ... ok (0.054s) 2023-01-11T21:35:33.3985793Z test_shuffle_batch_none (__main__.TestDataLoaderPersistentWorkers) ... ok (0.055s) 2023-01-11T21:35:33.3986361Z test_shuffle_batch_workers (__main__.TestDataLoaderPersistentWorkers) ... ok (0.147s) 2023-01-11T21:35:33.3986910Z test_shuffle_batch_workers_prefetch (__main__.TestDataLoaderPersistentWorkers) ... ok (0.150s) 2023-01-11T21:35:33.3987477Z test_shuffle_pin_memory (__main__.TestDataLoaderPersistentWorkers) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:35:33.3988025Z test_shuffle_reproducibility (__main__.TestDataLoaderPersistentWorkers) ... ok (0.280s) 2023-01-11T21:35:33.3988522Z test_shuffle_workers (__main__.TestDataLoaderPersistentWorkers) ... ok (0.225s) 2023-01-11T21:35:33.3989399Z test_timeout (__main__.TestDataLoaderPersistentWorkers) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T21:35:33.3990067Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T21:35:33.3990707Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T21:35:33.3991186Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T21:35:33.3991483Z ok (2.662s) 2023-01-11T21:35:33.3991820Z test_typing (__main__.TestDataLoaderPersistentWorkers) ... ok (0.001s) 2023-01-11T21:35:33.3992284Z test_worker_init_fn (__main__.TestDataLoaderPersistentWorkers) ... ok (0.045s) 2023-01-11T21:35:33.3992751Z test_worker_seed (__main__.TestDataLoaderPersistentWorkers) ... ok (0.101s) 2023-01-11T21:35:33.3993246Z test_worker_seed_reproducibility (__main__.TestDataLoaderPersistentWorkers) ... ok (0.193s) 2023-01-11T21:35:33.3993845Z test_incomplete_fractional_splits (__main__.TestDatasetRandomSplit) ... ok (0.001s) 2023-01-11T21:35:33.3994331Z test_lengths_must_equal_dataset_size (__main__.TestDatasetRandomSplit) ... ok (0.001s) 2023-01-11T21:35:33.3994789Z test_slicing_of_subset_of_dataset (__main__.TestDatasetRandomSplit) ... ok (0.002s) 2023-01-11T21:35:33.3995253Z test_slicing_of_subset_of_subset (__main__.TestDatasetRandomSplit) ... ok (0.002s) 2023-01-11T21:35:33.3995702Z test_splits_are_mutually_exclusive (__main__.TestDatasetRandomSplit) ... ok (0.001s) 2023-01-11T21:35:33.3996151Z test_splits_generator (__main__.TestDatasetRandomSplit) ... ok (0.002s) 2023-01-11T21:35:33.3996576Z test_splits_have_correct_size (__main__.TestDatasetRandomSplit) ... ok (0.001s) 2023-01-11T21:35:33.3996994Z test_splits_indexing_type (__main__.TestDatasetRandomSplit) 2023-01-11T21:35:33.3997379Z Indices generated by random_split ... ok (0.002s) 2023-01-11T21:35:33.3997792Z test_splits_reproducibility (__main__.TestDatasetRandomSplit) ... ok (0.007s) 2023-01-11T21:35:33.3998262Z test_pin_memory (__main__.TestDictDataLoader) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3998737Z test_pin_memory_device (__main__.TestDictDataLoader) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3999244Z test_pin_memory_with_only_device (__main__.TestDictDataLoader) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.3999691Z test_sequential_batch (__main__.TestDictDataLoader) ... ok (0.031s) 2023-01-11T21:35:33.4001050Z test_ind_worker_queue (__main__.TestIndividualWorkerQueue) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/68643 for platform(s) macos, linux, win. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:35:33.4002095Z test_dataloader_with_namedtuple (__main__.TestNamedTupleDataLoader) ... ok (0.002s) 2023-01-11T21:35:33.4002642Z test_set_affinity_in_worker_init (__main__.TestSetAffinity) ... ok (0.030s) 2023-01-11T21:35:33.4003107Z test_shuffle_pin_memory (__main__.TestStringDataLoader) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:35:33.4003511Z test_getitem (__main__.TestTensorDataset) ... ok (0.006s) 2023-01-11T21:35:33.4003888Z test_getitem_1d (__main__.TestTensorDataset) ... ok (0.005s) 2023-01-11T21:35:33.4004253Z test_len (__main__.TestTensorDataset) ... ok (0.001s) 2023-01-11T21:35:33.4004641Z test_many_tensors (__main__.TestTensorDataset) ... ok (0.005s) 2023-01-11T21:35:33.4005078Z test_single_tensor (__main__.TestTensorDataset) ... ok (0.002s) 2023-01-11T21:35:33.4005332Z 2023-01-11T21:35:33.4005687Z ---------------------------------------------------------------------- 2023-01-11T21:35:33.4006069Z Ran 164 tests in 84.863s 2023-01-11T21:35:33.4006263Z 2023-01-11T21:35:33.4006381Z OK (skipped=15) 2023-01-11T21:35:33.4006539Z 2023-01-11T21:35:33.4006666Z Generating XML reports... 2023-01-11T21:35:33.4007274Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestConcatDataset-20230111213408.xml 2023-01-11T21:35:33.4008138Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestDataLoader-20230111213408.xml 2023-01-11T21:35:33.4008963Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestDataLoaderPersistentWorkers-20230111213408.xml 2023-01-11T21:35:33.4010180Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestDatasetRandomSplit-20230111213408.xml 2023-01-11T21:35:33.4010943Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestDictDataLoader-20230111213408.xml 2023-01-11T21:35:33.4011732Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestNamedTupleDataLoader-20230111213408.xml 2023-01-11T21:35:33.4012502Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestSetAffinity-20230111213408.xml 2023-01-11T21:35:33.4013379Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestTensorDataset-20230111213408.xml 2023-01-11T21:35:33.4014214Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-IntegrationTestDataLoaderDataPipe-20230111213408.xml 2023-01-11T21:35:33.4015047Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestConvAfterFork-20230111213408.xml 2023-01-11T21:35:33.4015755Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestCustomPinFn-20230111213408.xml 2023-01-11T21:35:33.4016529Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestIndividualWorkerQueue-20230111213408.xml 2023-01-11T21:35:33.4017347Z Generated XML report: test-reports/python-unittest/test_dataloader/TEST-TestStringDataLoader-20230111213408.xml 2023-01-11T21:35:33.4017699Z 2023-01-11T21:35:33.4018160Z ##[endgroup] 2023-01-11T21:35:33.4018736Z FINISHED PRINTING LOG FILE of test_dataloader (/var/lib/jenkins/workspace/test/test-reports/test_dataloader_l3fzk_j0) 2023-01-11T21:35:33.4019030Z 2023-01-11T21:35:35.2322935Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:35:35.2974693Z Ignoring disabled issues: [] 2023-01-11T21:35:35.3125171Z Running test_datapipe ... [2023-01-11 21:35:35.312268] 2023-01-11T21:35:35.3127829Z Executing ['/opt/conda/bin/python', '-bb', 'test_datapipe.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:35:35.312517] 2023-01-11T21:35:37.6322290Z 2023-01-11T21:35:37.6322818Z Expand the folded group to see the log file of test_datapipe 2023-01-11T21:35:37.6323692Z ##[group]PRINTING LOG FILE of test_datapipe (/var/lib/jenkins/workspace/test/test-reports/test_datapipe_ltfsfxze) 2023-01-11T21:35:37.6324046Z 2023-01-11T21:35:37.6324149Z Running tests... 2023-01-11T21:35:37.6324836Z ---------------------------------------------------------------------- 2023-01-11T21:35:37.6325484Z test_basic_capture (__main__.TestCaptureDataFrame) ... Test results will be stored in test-reports/python-unittest/test_datapipe 2023-01-11T21:35:37.6325865Z skip: no dataframes (pandas) (0.000s) 2023-01-11T21:35:37.6326168Z test_circular_serialization_with_dill (__main__.TestCircularSerialization) ... skip: no dill (0.001s) 2023-01-11T21:35:37.6327070Z test_circular_serialization_with_pickle (__main__.TestCircularSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py:297: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T21:35:37.6327722Z warnings.warn("Some child DataPipes are not exhausted when __iter__ is called. We are resetting " 2023-01-11T21:35:37.6327987Z ok (0.227s) 2023-01-11T21:35:37.6328235Z test_as_string (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T21:35:37.6328490Z test_getitem (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T21:35:37.6328746Z test_iter (__main__.TestDataChunk) ... ok (0.000s) 2023-01-11T21:35:37.6329019Z test_len (__main__.TestDataChunk) ... ok (0.000s) 2023-01-11T21:35:37.6329455Z test_random_shuffle (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T21:35:37.6329900Z test_reverse (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T21:35:37.6330195Z test_sort (__main__.TestDataChunk) ... ok (0.001s) 2023-01-11T21:35:37.6330475Z test_batch (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.000s) 2023-01-11T21:35:37.6330861Z test_capture (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.000s) 2023-01-11T21:35:37.6331198Z test_collate (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.001s) 2023-01-11T21:35:37.6331566Z test_filter (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.000s) 2023-01-11T21:35:37.6331897Z test_shuffle (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.000s) 2023-01-11T21:35:37.6332324Z test_unbatch (__main__.TestDataFramesPipes) ... skip: no dataframes (pandas) (0.000s) 2023-01-11T21:35:37.6332664Z test_batch_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.003s) 2023-01-11T21:35:37.6333453Z test_collate_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6333962Z warnings.warn( 2023-01-11T21:35:37.6334137Z ok (0.004s) 2023-01-11T21:35:37.6334378Z test_concat_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.003s) 2023-01-11T21:35:37.6335218Z test_demux_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6335690Z warnings.warn( 2023-01-11T21:35:37.6336263Z /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6336639Z warnings.warn( 2023-01-11T21:35:37.6337194Z /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6337607Z warnings.warn( 2023-01-11T21:35:37.6338125Z /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6338545Z warnings.warn( 2023-01-11T21:35:37.6338702Z ok (0.008s) 2023-01-11T21:35:37.6338943Z test_filter_datapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.005s) 2023-01-11T21:35:37.6352603Z test_fork_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.010s) 2023-01-11T21:35:37.6353116Z test_iterable_wrapper_datapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6353665Z test_map_dict_with_col_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.016s) 2023-01-11T21:35:37.6354769Z test_map_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6355251Z warnings.warn( 2023-01-11T21:35:37.6355425Z ok (0.005s) 2023-01-11T21:35:37.6355685Z test_map_tuple_list_with_col_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.031s) 2023-01-11T21:35:37.6356034Z test_mux_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6356369Z test_sampler_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.001s) 2023-01-11T21:35:37.6357154Z test_serializable (__main__.TestFunctionalIterDataPipe) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py:297: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T21:35:37.6357841Z warnings.warn("Some child DataPipes are not exhausted when __iter__ is called. We are resetting " 2023-01-11T21:35:37.6358498Z /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py:297: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T21:35:37.6359002Z warnings.warn("Some child DataPipes are not exhausted when __iter__ is called. We are resetting " 2023-01-11T21:35:37.6359255Z ok (0.038s) 2023-01-11T21:35:37.6359485Z test_serializable_with_dill (__main__.TestFunctionalIterDataPipe) 2023-01-11T21:35:37.6359870Z Only for DataPipes that take in a function as argument ... ok (0.020s) 2023-01-11T21:35:37.6360191Z test_shuffler_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.005s) 2023-01-11T21:35:37.6360539Z test_stream_reader_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.001s) 2023-01-11T21:35:37.6360873Z test_unbatch_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.004s) 2023-01-11T21:35:37.6361203Z test_zip_iterdatapipe (__main__.TestFunctionalIterDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6361536Z test_batch_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6361851Z test_concat_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6362570Z test_map_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6363012Z warnings.warn( 2023-01-11T21:35:37.6363183Z ok (0.003s) 2023-01-11T21:35:37.6363431Z test_sequence_wrapper_datapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6363758Z test_serializable (__main__.TestFunctionalMapDataPipe) ... ok (0.008s) 2023-01-11T21:35:37.6364068Z test_serializable_with_dill (__main__.TestFunctionalMapDataPipe) 2023-01-11T21:35:37.6364353Z Only for DataPipes that take in a function as argument ... ok (0.005s) 2023-01-11T21:35:37.6364665Z test_shuffler_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.004s) 2023-01-11T21:35:37.6364991Z test_zip_mapdatapipe (__main__.TestFunctionalMapDataPipe) ... ok (0.002s) 2023-01-11T21:35:37.6365661Z test_simple_traverse (__main__.TestGraph) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6366058Z warnings.warn( 2023-01-11T21:35:37.6366228Z ok (0.002s) 2023-01-11T21:35:37.6366456Z test_traverse_circular_datapipe (__main__.TestGraph) ... ok (0.001s) 2023-01-11T21:35:37.6366715Z test_traverse_forked (__main__.TestGraph) ... ok (0.002s) 2023-01-11T21:35:37.6366982Z test_traverse_mapdatapipe (__main__.TestGraph) ... ok (0.001s) 2023-01-11T21:35:37.6367258Z test_traverse_mixdatapipe (__main__.TestGraph) ... ok (0.001s) 2023-01-11T21:35:37.6367540Z test_traverse_unhashable_datapipe (__main__.TestGraph) ... ok (0.001s) 2023-01-11T21:35:37.6367897Z test_iterdatapipe_sample_yielded_generator_function (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T21:35:37.6368345Z test_iterdatapipe_sample_yielded_generator_function_exception (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.002s) 2023-01-11T21:35:37.6368766Z test_iterdatapipe_sample_yielded_next (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T21:35:37.6369333Z test_iterdatapipe_sample_yielded_next_exception (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T21:35:37.6369823Z test_iterdatapipe_sample_yielded_return_self (__main__.TestIterDataPipeCountSampleYielded) ... ok (0.001s) 2023-01-11T21:35:37.6370229Z test_simple_snapshot_custom_non_generator (__main__.TestIterDataPipeGraphFastForward) ... ok (0.001s) 2023-01-11T21:35:37.6370617Z test_simple_snapshot_custom_self_next (__main__.TestIterDataPipeGraphFastForward) ... ok (0.001s) 2023-01-11T21:35:37.6370977Z test_simple_snapshot_graph (__main__.TestIterDataPipeGraphFastForward) ... ok (0.012s) 2023-01-11T21:35:37.6371828Z test_simple_snapshot_graph_repeated (__main__.TestIterDataPipeGraphFastForward) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py:297: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again. 2023-01-11T21:35:37.6372473Z warnings.warn("Some child DataPipes are not exhausted when __iter__ is called. We are resetting " 2023-01-11T21:35:37.6372728Z ok (0.005s) 2023-01-11T21:35:37.6373007Z test_simple_snapshot_graph_with_serialization (__main__.TestIterDataPipeGraphFastForward) ... ok (0.010s) 2023-01-11T21:35:37.6373398Z test_iterdatapipe_singleton_buggy (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T21:35:37.6373847Z Buggy test case case where IterDataPipe's `__iter__` returns a new object, but also has ... ok (0.002s) 2023-01-11T21:35:37.6374235Z test_iterdatapipe_singleton_constraint_multiple_outputs (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T21:35:37.6374609Z Testing for the case where IterDataPipe has multiple child DataPipes as outputs. ... ok (0.006s) 2023-01-11T21:35:37.6374971Z test_iterdatapipe_singleton_generator (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T21:35:37.6375401Z Testing for the case where IterDataPipe's `__iter__` is a generator function. ... ok (0.003s) 2023-01-11T21:35:37.6375762Z test_iterdatapipe_singleton_new_object (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T21:35:37.6376198Z Testing for the case where IterDataPipe's `__iter__` isn't a generator nor returns `self`, ... ok (0.002s) 2023-01-11T21:35:37.6376559Z test_iterdatapipe_singleton_self_next (__main__.TestIterDataPipeSingletonConstraint) 2023-01-11T21:35:37.6377013Z Testing for the case where IterDataPipe's `__iter__` returns `self` and there is a `__next__` method ... ok (0.003s) 2023-01-11T21:35:37.6377749Z test_demux_mux_datapipe (__main__.TestIterableDataPipeBasic) ... /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py:137: UserWarning: Local function is not supported by pickle, please use regular python function or functools.partial instead. 2023-01-11T21:35:37.6378182Z warnings.warn( 2023-01-11T21:35:37.6378356Z ok (0.005s) 2023-01-11T21:35:37.6378614Z test_groupby_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.008s) 2023-01-11T21:35:37.6378951Z test_listdirfiles_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.003s) 2023-01-11T21:35:37.6379334Z test_listdirfilesdeterministic_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.004s) 2023-01-11T21:35:37.6379711Z test_map_with_col_file_handle_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.003s) 2023-01-11T21:35:37.6380074Z test_openfilesfromdisk_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.004s) 2023-01-11T21:35:37.6380426Z test_routeddecoder_iterable_datapipe (__main__.TestIterableDataPipeBasic) ... ok (0.004s) 2023-01-11T21:35:37.6380759Z test_spawn_lambdas_iter (__main__.TestSerialization) ... skip: no dill (0.000s) 2023-01-11T21:35:37.6381070Z test_spawn_lambdas_map (__main__.TestSerialization) ... skip: no dill (0.000s) 2023-01-11T21:35:37.6381343Z test_multi_sharding (__main__.TestSharding) ... ok (0.003s) 2023-01-11T21:35:37.6381605Z test_old_dataloader (__main__.TestSharding) ... ok (0.051s) 2023-01-11T21:35:37.6381872Z test_sharding_groups (__main__.TestSharding) ... ok (0.002s) 2023-01-11T21:35:37.6382136Z test_sharding_length (__main__.TestSharding) ... ok (0.002s) 2023-01-11T21:35:37.6382423Z test_simple_sharding (__main__.TestSharding) ... ok (0.003s) 2023-01-11T21:35:37.6382682Z test_api (__main__.TestStreamWrapper) ... ok (0.001s) 2023-01-11T21:35:37.6382938Z test_dir (__main__.TestStreamWrapper) ... ok (0.001s) 2023-01-11T21:35:37.6383184Z test_pickle (__main__.TestStreamWrapper) ... ok (0.002s) 2023-01-11T21:35:37.6383510Z test_repr (__main__.TestStreamWrapper) ... ok (0.002s) 2023-01-11T21:35:37.6383802Z test_compile_time (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.002s) 2023-01-11T21:35:37.6384099Z test_construct_time (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T21:35:37.6384377Z test_isinstance (__main__.TestTyping) ... ok (0.001s) 2023-01-11T21:35:37.6384695Z test_issubinstance (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T21:35:37.6384977Z test_protocol (__main__.TestTyping) ... ok (0.001s) 2023-01-11T21:35:37.6385235Z test_reinforce (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T21:35:37.6385531Z test_runtime (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T21:35:37.6385823Z test_subtype (__main__.TestTyping) ... skip: TODO: Fix typing bug (0.001s) 2023-01-11T21:35:37.6385986Z 2023-01-11T21:35:37.6386180Z ---------------------------------------------------------------------- 2023-01-11T21:35:37.6386424Z Ran 89 tests in 0.590s 2023-01-11T21:35:37.6386537Z 2023-01-11T21:35:37.6386611Z OK (skipped=16) 2023-01-11T21:35:37.6386719Z 2023-01-11T21:35:37.6386803Z Generating XML reports... 2023-01-11T21:35:37.6387230Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestCircularSerialization-20230111213536.xml 2023-01-11T21:35:37.6387754Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestDataChunk-20230111213536.xml 2023-01-11T21:35:37.6388287Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestFunctionalIterDataPipe-20230111213536.xml 2023-01-11T21:35:37.6388838Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestFunctionalMapDataPipe-20230111213536.xml 2023-01-11T21:35:37.6389347Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestGraph-20230111213536.xml 2023-01-11T21:35:37.6389895Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeCountSampleYielded-20230111213536.xml 2023-01-11T21:35:37.6390506Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeGraphFastForward-20230111213536.xml 2023-01-11T21:35:37.6391106Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeSingletonConstraint-20230111213536.xml 2023-01-11T21:35:37.6391687Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestIterableDataPipeBasic-20230111213536.xml 2023-01-11T21:35:37.6392200Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestSharding-20230111213536.xml 2023-01-11T21:35:37.6392694Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestStreamWrapper-20230111213536.xml 2023-01-11T21:35:37.6393164Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestTyping-20230111213536.xml 2023-01-11T21:35:37.6393665Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestCaptureDataFrame-20230111213536.xml 2023-01-11T21:35:37.6394186Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestDataFramesPipes-20230111213536.xml 2023-01-11T21:35:37.6394693Z Generated XML report: test-reports/python-unittest/test_datapipe/TEST-TestSerialization-20230111213536.xml 2023-01-11T21:35:37.6394905Z 2023-01-11T21:35:37.6395200Z ##[endgroup] 2023-01-11T21:35:37.6395584Z FINISHED PRINTING LOG FILE of test_datapipe (/var/lib/jenkins/workspace/test/test-reports/test_datapipe_ltfsfxze) 2023-01-11T21:35:37.6395801Z 2023-01-11T21:35:39.4729280Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:35:39.5372365Z Ignoring disabled issues: [] 2023-01-11T21:35:39.5522683Z Running test_decomp ... [2023-01-11 21:35:39.552014] 2023-01-11T21:35:39.5525023Z Executing ['/opt/conda/bin/python', '-bb', 'test_decomp.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:35:39.552276] 2023-01-11T21:35:42.0262122Z 2023-01-11T21:35:42.0262649Z Expand the folded group to see the log file of test_decomp 2023-01-11T21:35:42.0263755Z ##[group]PRINTING LOG FILE of test_decomp (/var/lib/jenkins/workspace/test/test-reports/test_decomp_2v8n538b) 2023-01-11T21:35:42.0264129Z 2023-01-11T21:35:42.0264245Z Running tests... 2023-01-11T21:35:42.0264860Z ---------------------------------------------------------------------- 2023-01-11T21:35:42.0265161Z 2023-01-11T21:35:42.0265512Z ---------------------------------------------------------------------- 2023-01-11T21:35:42.0266174Z Ran 0 tests in 0.000s 2023-01-11T21:35:42.0266373Z 2023-01-11T21:35:42.0266468Z OK 2023-01-11T21:35:42.0266618Z 2023-01-11T21:35:42.0266769Z Generating XML reports... 2023-01-11T21:35:42.0267318Z Test results will be stored in test-reports/python-unittest/test_decomp 2023-01-11T21:35:42.0267622Z 2023-01-11T21:35:42.0268037Z ##[endgroup] 2023-01-11T21:35:42.0268726Z FINISHED PRINTING LOG FILE of test_decomp (/var/lib/jenkins/workspace/test/test-reports/test_decomp_2v8n538b) 2023-01-11T21:35:42.0269148Z 2023-01-11T21:35:43.8555216Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:35:43.9196730Z Ignoring disabled issues: [] 2023-01-11T21:35:43.9345876Z Running test_deploy ... [2023-01-11 21:35:43.934318] 2023-01-11T21:35:43.9348305Z Executing ['/opt/conda/bin/python', '-bb', '-m', 'pytest', 'test_deploy.py', '-v'] ... [2023-01-11 21:35:43.934566] 2023-01-11T21:35:46.5866121Z 2023-01-11T21:35:46.5866665Z Expand the folded group to see the log file of test_deploy 2023-01-11T21:35:46.5867847Z ##[group]PRINTING LOG FILE of test_deploy (/var/lib/jenkins/workspace/test/test-reports/test_deploy_99a6qy20) 2023-01-11T21:35:46.5868465Z ============================= test session starts ============================== 2023-01-11T21:35:46.5869066Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:35:46.5869321Z cachedir: .pytest_cache 2023-01-11T21:35:46.5869750Z hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/var/lib/jenkins/workspace/test/.hypothesis/examples') 2023-01-11T21:35:46.5870109Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:35:46.5870529Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:35:46.5870824Z collecting ... collected 1 item 2023-01-11T21:35:46.5871088Z Running 1 items in this shard: test/test_deploy.py::TestFreezer::test_compile_string 2023-01-11T21:35:46.5871270Z 2023-01-11T21:35:46.5871413Z test_deploy.py::TestFreezer::test_compile_string PASSED [100%] 2023-01-11T21:35:46.5871578Z 2023-01-11T21:35:46.5871691Z ============================== 1 passed in 1.44s =============================== 2023-01-11T21:35:46.5871825Z 2023-01-11T21:35:46.5872039Z ##[endgroup] 2023-01-11T21:35:46.5872391Z FINISHED PRINTING LOG FILE of test_deploy (/var/lib/jenkins/workspace/test/test-reports/test_deploy_99a6qy20) 2023-01-11T21:35:46.5872596Z 2023-01-11T21:35:48.4327874Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:35:48.4982716Z Ignoring disabled issues: [] 2023-01-11T21:35:48.5136968Z Running test_dlpack ... [2023-01-11 21:35:48.513376] 2023-01-11T21:35:48.5138503Z Executing ['/opt/conda/bin/python', '-bb', 'test_dlpack.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:35:48.513642] 2023-01-11T21:35:50.3626928Z 2023-01-11T21:35:50.3627448Z Expand the folded group to see the log file of test_dlpack 2023-01-11T21:35:50.3628508Z ##[group]PRINTING LOG FILE of test_dlpack (/var/lib/jenkins/workspace/test/test-reports/test_dlpack_hw3_2afr) 2023-01-11T21:35:50.3628913Z 2023-01-11T21:35:50.3629292Z Running tests... 2023-01-11T21:35:50.3629943Z ---------------------------------------------------------------------- 2023-01-11T21:35:50.3630233Z 2023-01-11T21:35:50.3630559Z ---------------------------------------------------------------------- 2023-01-11T21:35:50.3630885Z Ran 0 tests in 0.000s 2023-01-11T21:35:50.3631113Z 2023-01-11T21:35:50.3631207Z OK 2023-01-11T21:35:50.3631375Z 2023-01-11T21:35:50.3631528Z Generating XML reports... 2023-01-11T21:35:50.3631921Z Test results will be stored in test-reports/python-unittest/test_dlpack 2023-01-11T21:35:50.3632097Z 2023-01-11T21:35:50.3632313Z ##[endgroup] 2023-01-11T21:35:50.3632687Z FINISHED PRINTING LOG FILE of test_dlpack (/var/lib/jenkins/workspace/test/test-reports/test_dlpack_hw3_2afr) 2023-01-11T21:35:50.3632892Z 2023-01-11T21:35:52.2473629Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:35:52.3133810Z Ignoring disabled issues: [] 2023-01-11T21:35:52.3283263Z Running test_dynamic_shapes ... [2023-01-11 21:35:52.328071] 2023-01-11T21:35:52.3285245Z Executing ['/opt/conda/bin/python', '-bb', 'test_dynamic_shapes.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:35:52.328287] 2023-01-11T21:35:55.0780325Z 2023-01-11T21:35:55.0780827Z Expand the folded group to see the log file of test_dynamic_shapes 2023-01-11T21:35:55.0783653Z ##[group]PRINTING LOG FILE of test_dynamic_shapes (/var/lib/jenkins/workspace/test/test-reports/test_dynamic_shapes_7__iorh2) 2023-01-11T21:35:55.0784163Z 2023-01-11T21:35:55.0784291Z Running tests... 2023-01-11T21:35:55.0784968Z ---------------------------------------------------------------------- 2023-01-11T21:35:55.0785673Z Test results will be stored in test-reports/python-unittest/test_dynamic_shapes 2023-01-11T21:35:55.0786103Z test_arith_ops (__main__.TestPySymInt) ... ok (0.518s) 2023-01-11T21:35:55.0786463Z test_aten_ops (__main__.TestPySymInt) ... ok (0.022s) 2023-01-11T21:35:55.0786811Z test_binary (__main__.TestPySymInt) ... ok (0.025s) 2023-01-11T21:35:55.0787195Z test_fx_trace_intlist (__main__.TestPySymInt) ... ok (0.010s) 2023-01-11T21:35:55.0787501Z test_guard_int (__main__.TestPySymInt) ... ok (0.003s) 2023-01-11T21:35:55.0787761Z test_int_conversion (__main__.TestPySymInt) ... ok (0.001s) 2023-01-11T21:35:55.0788018Z test_int_to_float (__main__.TestPySymInt) ... ok (0.002s) 2023-01-11T21:35:55.0788257Z test_meta_symint (__main__.TestPySymInt) ... ok (0.003s) 2023-01-11T21:35:55.0788501Z test_numel (__main__.TestPySymInt) ... ok (0.003s) 2023-01-11T21:35:55.0788769Z test_print_readable_with_symints (__main__.TestPySymInt) ... ok (0.087s) 2023-01-11T21:35:55.0789038Z test_reverse_arith_ops (__main__.TestPySymInt) ... ok (0.063s) 2023-01-11T21:35:55.0789296Z test_roundtrip (__main__.TestPySymInt) ... ok (0.027s) 2023-01-11T21:35:55.0789558Z test_size_expressions (__main__.TestPySymInt) ... ok (0.006s) 2023-01-11T21:35:55.0789802Z test_stride (__main__.TestPySymInt) ... ok (0.003s) 2023-01-11T21:35:55.0790053Z test_sym_floor (__main__.TestPySymInt) ... ok (0.068s) 2023-01-11T21:35:55.0790295Z test_sym_int (__main__.TestPySymInt) ... ok (0.020s) 2023-01-11T21:35:55.0790538Z test_sym_sqrt (__main__.TestPySymInt) ... ok (0.040s) 2023-01-11T21:35:55.0790774Z test_symint_args (__main__.TestPySymInt) ... ok (0.032s) 2023-01-11T21:35:55.0791029Z test_symint_as_scalar (__main__.TestPySymInt) ... ok (0.001s) 2023-01-11T21:35:55.0791284Z test_symint_vargs (__main__.TestPySymInt) ... ok (0.023s) 2023-01-11T21:35:55.0791627Z test_method_fn_add_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: add is not a float magic method (0.001s) 2023-01-11T21:35:55.0792068Z test_method_fn_add_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: add is not a float magic method (0.001s) 2023-01-11T21:35:55.0792475Z test_method_fn_add_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.002s) 2023-01-11T21:35:55.0792845Z test_method_fn_add_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0793423Z test_method_fn_ceil_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: ceil is not a float magic method (0.001s) 2023-01-11T21:35:55.0793864Z test_method_fn_ceil_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: ceil is not a float magic method (0.001s) 2023-01-11T21:35:55.0794295Z test_method_fn_ceil_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: ceil is unary and already tested (0.001s) 2023-01-11T21:35:55.0794695Z test_method_fn_ceil_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0795138Z test_method_fn_eq_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: eq is not a float magic method (0.001s) 2023-01-11T21:35:55.0795573Z test_method_fn_eq_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: eq is not a float magic method (0.001s) 2023-01-11T21:35:55.0795966Z test_method_fn_eq_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.002s) 2023-01-11T21:35:55.0796328Z test_method_fn_eq_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0796722Z test_method_fn_floor_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: floor is not a float magic method (0.001s) 2023-01-11T21:35:55.0797161Z test_method_fn_floor_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: floor is not a float magic method (0.001s) 2023-01-11T21:35:55.0797600Z test_method_fn_floor_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: floor is unary and already tested (0.001s) 2023-01-11T21:35:55.0797999Z test_method_fn_floor_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0798406Z test_method_fn_floordiv_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: floordiv is not a float magic method (0.001s) 2023-01-11T21:35:55.0798859Z test_method_fn_floordiv_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: floordiv is not a float magic method (0.001s) 2023-01-11T21:35:55.0799274Z test_method_fn_floordiv_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.003s) 2023-01-11T21:35:55.0799651Z test_method_fn_floordiv_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0800043Z test_method_fn_ge_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: ge is not a float magic method (0.001s) 2023-01-11T21:35:55.0800473Z test_method_fn_ge_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: ge is not a float magic method (0.001s) 2023-01-11T21:35:55.0800864Z test_method_fn_ge_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0801228Z test_method_fn_ge_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0801615Z test_method_fn_gt_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: gt is not a float magic method (0.001s) 2023-01-11T21:35:55.0802044Z test_method_fn_gt_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: gt is not a float magic method (0.001s) 2023-01-11T21:35:55.0802434Z test_method_fn_gt_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0802796Z test_method_fn_gt_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0803178Z test_method_fn_le_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: le is not a float magic method (0.001s) 2023-01-11T21:35:55.0803603Z test_method_fn_le_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: le is not a float magic method (0.001s) 2023-01-11T21:35:55.0804027Z test_method_fn_le_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0804386Z test_method_fn_le_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0804767Z test_method_fn_lt_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: lt is not a float magic method (0.001s) 2023-01-11T21:35:55.0805191Z test_method_fn_lt_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: lt is not a float magic method (0.001s) 2023-01-11T21:35:55.0805583Z test_method_fn_lt_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0805975Z test_method_fn_lt_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0806368Z test_method_fn_max_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: max is not a float magic method (0.001s) 2023-01-11T21:35:55.0806799Z test_method_fn_max_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: max is not a float magic method (0.001s) 2023-01-11T21:35:55.0807194Z test_method_fn_max_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0807558Z test_method_fn_max_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0807945Z test_method_fn_min_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: min is not a float magic method (0.001s) 2023-01-11T21:35:55.0808369Z test_method_fn_min_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: min is not a float magic method (0.001s) 2023-01-11T21:35:55.0808763Z test_method_fn_min_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0809352Z test_method_fn_min_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0809748Z test_method_fn_mod_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: mod is not a float magic method (0.001s) 2023-01-11T21:35:55.0810177Z test_method_fn_mod_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: mod is not a float magic method (0.001s) 2023-01-11T21:35:55.0810573Z test_method_fn_mod_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0810923Z test_method_fn_mod_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0811321Z test_method_fn_mul_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: mul is not a float magic method (0.001s) 2023-01-11T21:35:55.0811747Z test_method_fn_mul_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: mul is not a float magic method (0.001s) 2023-01-11T21:35:55.0812139Z test_method_fn_mul_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0812489Z test_method_fn_mul_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0812885Z test_method_fn_neg_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: neg is not a float magic method (0.001s) 2023-01-11T21:35:55.0813315Z test_method_fn_neg_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: neg is not a float magic method (0.001s) 2023-01-11T21:35:55.0813744Z test_method_fn_neg_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: neg is unary and already tested (0.001s) 2023-01-11T21:35:55.0814127Z test_method_fn_neg_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0814595Z test_method_fn_pow_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: pow is not a float magic method (0.001s) 2023-01-11T21:35:55.0815022Z test_method_fn_pow_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: pow is not a float magic method (0.001s) 2023-01-11T21:35:55.0815417Z test_method_fn_pow_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0815767Z test_method_fn_pow_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0816165Z test_method_fn_sub_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: sub is not a float magic method (0.001s) 2023-01-11T21:35:55.0816632Z test_method_fn_sub_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: sub is not a float magic method (0.001s) 2023-01-11T21:35:55.0817025Z test_method_fn_sub_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0817374Z test_method_fn_sub_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0817790Z test_method_fn_sym_float_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: sym_float is not a float magic method (0.001s) 2023-01-11T21:35:55.0818242Z test_method_fn_sym_float_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: sym_float is not a float magic method (0.001s) 2023-01-11T21:35:55.0818690Z test_method_fn_sym_float_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: sym_float is unary and already tested (0.001s) 2023-01-11T21:35:55.0819087Z test_method_fn_sym_float_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0819501Z test_method_fn_sym_sqrt_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: sym_sqrt is not a float magic method (0.001s) 2023-01-11T21:35:55.0819954Z test_method_fn_sym_sqrt_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: sym_sqrt is not a float magic method (0.001s) 2023-01-11T21:35:55.0820398Z test_method_fn_sym_sqrt_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: sym_sqrt is unary and already tested (0.001s) 2023-01-11T21:35:55.0820805Z test_method_fn_sym_sqrt_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0821206Z test_method_fn_truediv_first_type_float_second_type_float (__main__.TestSymNumberMagicMethods) ... skip: truediv is not a float magic method (0.001s) 2023-01-11T21:35:55.0821659Z test_method_fn_truediv_first_type_float_second_type_int (__main__.TestSymNumberMagicMethods) ... skip: truediv is not a float magic method (0.001s) 2023-01-11T21:35:55.0822070Z test_method_fn_truediv_first_type_int_second_type_float (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0822446Z test_method_fn_truediv_first_type_int_second_type_int (__main__.TestSymNumberMagicMethods) ... ok (0.001s) 2023-01-11T21:35:55.0822636Z 2023-01-11T21:35:55.0822886Z ---------------------------------------------------------------------- 2023-01-11T21:35:55.0823129Z Ran 96 tests in 1.035s 2023-01-11T21:35:55.0823241Z 2023-01-11T21:35:55.0823312Z OK (skipped=43) 2023-01-11T21:35:55.0823489Z 2023-01-11T21:35:55.0823561Z Generating XML reports... 2023-01-11T21:35:55.0823980Z Generated XML report: test-reports/python-unittest/test_dynamic_shapes/TEST-TestPySymInt-20230111213553.xml 2023-01-11T21:35:55.0824525Z Generated XML report: test-reports/python-unittest/test_dynamic_shapes/TEST-TestSymNumberMagicMethods-20230111213553.xml 2023-01-11T21:35:55.0824781Z 2023-01-11T21:35:55.0825054Z ##[endgroup] 2023-01-11T21:35:55.0825446Z FINISHED PRINTING LOG FILE of test_dynamic_shapes (/var/lib/jenkins/workspace/test/test-reports/test_dynamic_shapes_7__iorh2) 2023-01-11T21:35:55.0825704Z 2023-01-11T21:35:56.9430946Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:35:57.0088046Z Ignoring disabled issues: [] 2023-01-11T21:35:57.0255267Z Running test_expanded_weights ... [2023-01-11 21:35:57.025095] 2023-01-11T21:35:57.0256134Z Executing ['/opt/conda/bin/python', '-bb', 'test_expanded_weights.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:35:57.025333] 2023-01-11T21:35:59.9574976Z 2023-01-11T21:35:59.9575503Z Expand the folded group to see the log file of test_expanded_weights 2023-01-11T21:35:59.9576373Z ##[group]PRINTING LOG FILE of test_expanded_weights (/var/lib/jenkins/workspace/test/test-reports/test_expanded_weights_9i0ulrtk) 2023-01-11T21:35:59.9576813Z 2023-01-11T21:35:59.9576921Z Running tests... 2023-01-11T21:35:59.9577641Z ---------------------------------------------------------------------- 2023-01-11T21:35:59.9578230Z Test results will be stored in test-reports/python-unittest/test_expanded_weights 2023-01-11T21:35:59.9578570Z test_Conv1d (__main__.TestExpandedWeightModule) ... ok (0.005s) 2023-01-11T21:35:59.9578881Z test_Conv1d_circular_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9579249Z test_Conv1d_circular_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.042s) 2023-01-11T21:35:59.9579595Z test_Conv1d_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.004s) 2023-01-11T21:35:59.9579908Z test_Conv1d_pad1 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9580214Z test_Conv1d_pad1_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9580533Z test_Conv1d_pad1size1 (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9580862Z test_Conv1d_pad1size1_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9581168Z test_Conv1d_pad2 (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9581484Z test_Conv1d_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9581802Z test_Conv1d_pad2size1 (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9582127Z test_Conv1d_pad2size1_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9582448Z test_Conv1d_reflect_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9582801Z test_Conv1d_reflect_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9583149Z test_Conv1d_replicate_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9583571Z test_Conv1d_replicate_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9583924Z test_Conv1d_stride (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9584247Z test_Conv1d_stride_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9584773Z test_Conv1d_zero_batch (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9585344Z test_Conv1d_zero_batch_multiple_inputs (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9585749Z test_Conv1d_zeros_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9586097Z test_Conv1d_zeros_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9586414Z test_Conv2d (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9586717Z test_Conv2d_circular_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9587075Z test_Conv2d_circular_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.005s) 2023-01-11T21:35:59.9587412Z test_Conv2d_dilated (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9587835Z test_Conv2d_dilated_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9588169Z test_Conv2d_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9588481Z test_Conv2d_no_bias (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9588805Z test_Conv2d_no_bias_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9589117Z test_Conv2d_padding (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9589445Z test_Conv2d_padding_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9589787Z test_Conv2d_reflect_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9590167Z test_Conv2d_reflect_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9590524Z test_Conv2d_replicate_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9590883Z test_Conv2d_replicate_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9591226Z test_Conv2d_strided (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9591537Z test_Conv2d_strided_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.004s) 2023-01-11T21:35:59.9592049Z test_Conv2d_zero_batch (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9592630Z test_Conv2d_zero_batch_multiple_inputs (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9593030Z test_Conv2d_zeros_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9593364Z test_Conv2d_zeros_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9593688Z test_Conv3d (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9593991Z test_Conv3d_1x1x1_no_bias (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9594308Z test_Conv3d_1x1x1_no_bias_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9594647Z test_Conv3d_circular_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.004s) 2023-01-11T21:35:59.9594998Z test_Conv3d_circular_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.005s) 2023-01-11T21:35:59.9595340Z test_Conv3d_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9595639Z test_Conv3d_no_bias (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9595963Z test_Conv3d_no_bias_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9596298Z test_Conv3d_replicate_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9596644Z test_Conv3d_replicate_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9596981Z test_Conv3d_stride (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9597299Z test_Conv3d_stride_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9597624Z test_Conv3d_stride_padding (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9597953Z test_Conv3d_stride_padding_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9598467Z test_Conv3d_zero_batch (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9599048Z test_Conv3d_zero_batch_multiple_inputs (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9599450Z test_Conv3d_zeros_stride2_pad2 (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9599831Z test_Conv3d_zeros_stride2_pad2_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.004s) 2023-01-11T21:35:59.9600158Z test_Embedding (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9600479Z test_Embedding_discontiguous (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9600818Z test_Embedding_discontiguous_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9601170Z test_Embedding_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.001s) 2023-01-11T21:35:59.9601500Z test_GroupNorm_1d_affine (__main__.TestExpandedWeightModule) ... ok (0.004s) 2023-01-11T21:35:59.9601822Z test_GroupNorm_1d_affine_GN (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9602186Z test_GroupNorm_1d_affine_GN_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9602544Z test_GroupNorm_1d_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9602888Z test_GroupNorm_1d_no_affine_IN (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9603236Z test_GroupNorm_1d_no_affine_IN_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9603565Z test_GroupNorm_1d_no_affine_LN (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9603914Z test_GroupNorm_1d_no_affine_LN_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9604252Z test_GroupNorm_2d_affine (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9604573Z test_GroupNorm_2d_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9604913Z test_GroupNorm_2d_no_affine_IN (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9605258Z test_GroupNorm_2d_no_affine_IN_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9605602Z test_GroupNorm_2d_no_affine_LN (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9605931Z test_GroupNorm_2d_no_affine_LN_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9606284Z test_LayerNorm_1d_elementwise_affine (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9606650Z test_LayerNorm_1d_elementwise_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9607198Z test_LayerNorm_1d_empty_elementwise_affine (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9607836Z test_LayerNorm_1d_empty_elementwise_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients when no batch dim or batch dim is 0 (0.001s) 2023-01-11T21:35:59.9608273Z test_LayerNorm_1d_no_elementwise_affine (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9608642Z test_LayerNorm_1d_no_elementwise_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9608992Z test_LayerNorm_3d_elementwise_affine (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9609690Z test_LayerNorm_3d_elementwise_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9610063Z test_LayerNorm_3d_no_affine_large_feature (__main__.TestExpandedWeightModule) ... ok (0.030s) 2023-01-11T21:35:59.9610438Z test_LayerNorm_3d_no_affine_large_feature_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.013s) 2023-01-11T21:35:59.9610791Z test_LayerNorm_3d_no_elementwise_affine (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9611162Z test_LayerNorm_3d_no_elementwise_affine_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.004s) 2023-01-11T21:35:59.9611498Z test_Linear (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9611891Z test_Linear_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9612371Z test_Linear_no_batch_dim (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients for input of rank 1 (0.001s) 2023-01-11T21:35:59.9612925Z test_Linear_no_batch_dim_multiple_inputs (__main__.TestExpandedWeightModule) ... skip: Can't get per sample gradients for input of rank 1 (0.001s) 2023-01-11T21:35:59.9613304Z test_Linear_no_bias (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9613631Z test_Linear_no_bias_multiple_inputs (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9613965Z test_per_sample_api_compute_batch_size (__main__.TestExpandedWeightModule) ... ok (0.002s) 2023-01-11T21:35:59.9614413Z test_per_sample_api_compute_batch_size_not_pytreeable (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9614769Z test_per_sample_api_failing (__main__.TestExpandedWeightModule) ... ok (0.003s) 2023-01-11T21:35:59.9614951Z 2023-01-11T21:35:59.9615144Z ---------------------------------------------------------------------- 2023-01-11T21:35:59.9615390Z Ran 99 tests in 0.333s 2023-01-11T21:35:59.9615505Z 2023-01-11T21:35:59.9615581Z OK (skipped=10) 2023-01-11T21:35:59.9615689Z 2023-01-11T21:35:59.9615775Z Generating XML reports... 2023-01-11T21:35:59.9616217Z Generated XML report: test-reports/python-unittest/test_expanded_weights/TEST-TestExpandedWeightModule-20230111213559.xml 2023-01-11T21:35:59.9616476Z 2023-01-11T21:35:59.9616772Z ##[endgroup] 2023-01-11T21:35:59.9617181Z FINISHED PRINTING LOG FILE of test_expanded_weights (/var/lib/jenkins/workspace/test/test-reports/test_expanded_weights_9i0ulrtk) 2023-01-11T21:35:59.9617399Z 2023-01-11T21:36:01.8739960Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:36:01.9395403Z Ignoring disabled issues: [] 2023-01-11T21:36:01.9548737Z Running test_functional_autograd_benchmark ... [2023-01-11 21:36:01.954519] 2023-01-11T21:36:01.9550778Z Executing ['/opt/conda/bin/python', '-bb', 'test_functional_autograd_benchmark.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:36:01.954813] 2023-01-11T21:36:27.1253714Z 2023-01-11T21:36:27.1255689Z Expand the folded group to see the log file of test_functional_autograd_benchmark 2023-01-11T21:36:27.1256694Z ##[group]PRINTING LOG FILE of test_functional_autograd_benchmark (/var/lib/jenkins/workspace/test/test-reports/test_functional_autograd_benchmark_kk9h06ut) 2023-01-11T21:36:27.1257165Z 2023-01-11T21:36:27.1257299Z Running tests... 2023-01-11T21:36:27.1258667Z ---------------------------------------------------------------------- 2023-01-11T21:36:27.1259435Z Test results will be stored in test-reports/python-unittest/test_functional_autograd_benchmark 2023-01-11T21:36:27.1259820Z test_fast_tasks (__main__.TestFunctionalAutogradBenchmark) ... Found functorch: 2.0.0a0+git8419ddd 2023-01-11T21:36:27.1260156Z Results for model resnet18 on task vjp: nans (var: nan) 2023-01-11T21:36:27.1260431Z Results for model resnet18 on task vjp using Functorch: nans (var: nan) 2023-01-11T21:36:27.1260681Z Found functorch: 2.0.0a0+git8419ddd 2023-01-11T21:36:27.1260915Z Results for model ppl_simple_reg on task vjp: nans (var: nan) 2023-01-11T21:36:27.1261205Z Results for model ppl_simple_reg on task vjp using Functorch: nans (var: nan) 2023-01-11T21:36:27.1261459Z Found functorch: 2.0.0a0+git8419ddd 2023-01-11T21:36:27.1261689Z Results for model ppl_robust_reg on task vjp: nans (var: nan) 2023-01-11T21:36:27.1261974Z Results for model ppl_robust_reg on task vjp using Functorch: nans (var: nan) 2023-01-11T21:36:27.1262223Z Found functorch: 2.0.0a0+git8419ddd 2023-01-11T21:36:27.1262447Z Results for model wav2letter on task vjp: nans (var: nan) 2023-01-11T21:36:27.1262727Z Results for model wav2letter on task vjp using Functorch: nans (var: nan) 2023-01-11T21:36:27.1262974Z Found functorch: 2.0.0a0+git8419ddd 2023-01-11T21:36:27.1263379Z Results for model transformer on task vjp: nans (var: nan) 2023-01-11T21:36:27.1263751Z Results for model transformer on task vjp using Functorch: nans (var: nan) 2023-01-11T21:36:27.1264006Z Found functorch: 2.0.0a0+git8419ddd 2023-01-11T21:36:27.1264250Z Results for model multiheadattn on task vjp: nans (var: nan) 2023-01-11T21:36:27.1264528Z Results for model multiheadattn on task vjp using Functorch: nans (var: nan) 2023-01-11T21:36:27.1264764Z ok (23.485s) 2023-01-11T21:36:27.1265088Z test_slow_tasks (__main__.TestFunctionalAutogradBenchmark) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:36:27.1265334Z 2023-01-11T21:36:27.1265542Z ---------------------------------------------------------------------- 2023-01-11T21:36:27.1265773Z Ran 2 tests in 23.486s 2023-01-11T21:36:27.1265884Z 2023-01-11T21:36:27.1266046Z OK (skipped=1) 2023-01-11T21:36:27.1266153Z 2023-01-11T21:36:27.1266236Z Generating XML reports... 2023-01-11T21:36:27.1266731Z Generated XML report: test-reports/python-unittest/test_functional_autograd_benchmark/TEST-TestFunctionalAutogradBenchmark-20230111213603.xml 2023-01-11T21:36:27.1267025Z 2023-01-11T21:36:27.1267280Z ##[endgroup] 2023-01-11T21:36:27.1267731Z FINISHED PRINTING LOG FILE of test_functional_autograd_benchmark (/var/lib/jenkins/workspace/test/test-reports/test_functional_autograd_benchmark_kk9h06ut) 2023-01-11T21:36:27.1267990Z 2023-01-11T21:36:28.9681780Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:36:29.0325708Z Ignoring disabled issues: [] 2023-01-11T21:36:29.0478706Z Running test_functional_optim ... [2023-01-11 21:36:29.047580] 2023-01-11T21:36:29.0480744Z Executing ['/opt/conda/bin/python', '-bb', 'test_functional_optim.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:36:29.047861] 2023-01-11T21:36:31.2398657Z 2023-01-11T21:36:31.2399194Z Expand the folded group to see the log file of test_functional_optim 2023-01-11T21:36:31.2400094Z ##[group]PRINTING LOG FILE of test_functional_optim (/var/lib/jenkins/workspace/test/test-reports/test_functional_optim_r34v025h) 2023-01-11T21:36:31.2400537Z 2023-01-11T21:36:31.2402618Z Running tests... 2023-01-11T21:36:31.2403355Z ---------------------------------------------------------------------- 2023-01-11T21:36:31.2403790Z Test results will be stored in test-reports/python-unittest/test_functional_optim 2023-01-11T21:36:31.2404143Z test_functional_optim_parity_adam (__main__.TestFunctionalOptimParity) ... ok (0.253s) 2023-01-11T21:36:31.2404488Z test_functional_optim_parity_adam_w (__main__.TestFunctionalOptimParity) ... ok (0.030s) 2023-01-11T21:36:31.2404839Z test_functional_optim_parity_sgd (__main__.TestFunctionalOptimParity) ... ok (0.026s) 2023-01-11T21:36:31.2410949Z test_functional_optim_registration (__main__.TestFunctionalOptimParity) ... ok (0.001s) 2023-01-11T21:36:31.2411230Z 2023-01-11T21:36:31.2411581Z ---------------------------------------------------------------------- 2023-01-11T21:36:31.2414064Z Ran 4 tests in 0.310s 2023-01-11T21:36:31.2414190Z 2023-01-11T21:36:31.2414263Z OK 2023-01-11T21:36:31.2414357Z 2023-01-11T21:36:31.2414448Z Generating XML reports... 2023-01-11T21:36:31.2415006Z Generated XML report: test-reports/python-unittest/test_functional_optim/TEST-TestFunctionalOptimParity-20230111213630.xml 2023-01-11T21:36:31.2415273Z 2023-01-11T21:36:31.2415635Z ##[endgroup] 2023-01-11T21:36:31.2416049Z FINISHED PRINTING LOG FILE of test_functional_optim (/var/lib/jenkins/workspace/test/test-reports/test_functional_optim_r34v025h) 2023-01-11T21:36:31.2416297Z 2023-01-11T21:36:33.2908483Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:36:33.3555356Z Ignoring disabled issues: [] 2023-01-11T21:36:33.3707736Z Running test_functionalization ... [2023-01-11 21:36:33.370470] 2023-01-11T21:36:33.3709389Z Executing ['/opt/conda/bin/python', '-bb', 'test_functionalization.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:36:33.370702] 2023-01-11T21:36:50.1316033Z 2023-01-11T21:36:50.1316796Z Expand the folded group to see the log file of test_functionalization 2023-01-11T21:36:50.1317912Z ##[group]PRINTING LOG FILE of test_functionalization (/var/lib/jenkins/workspace/test/test-reports/test_functionalization_q4jtp1dh) 2023-01-11T21:36:50.1318397Z 2023-01-11T21:36:50.1318524Z Running tests... 2023-01-11T21:36:50.1319178Z ---------------------------------------------------------------------- 2023-01-11T21:36:50.1319877Z Test results will be stored in test-reports/python-unittest/test_functionalization 2023-01-11T21:36:50.1320479Z test_advanced_indexing (__main__.TestCrossRefFunctionalization) ... ok (0.452s) 2023-01-11T21:36:50.1321143Z test_advanced_indexing_correct_strides (__main__.TestCrossRefFunctionalization) ... ok (0.138s) 2023-01-11T21:36:50.1322748Z test_aliases_maintained_after_pass_when_reapplying_views (__main__.TestCrossRefFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:19: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:36:50.1324022Z x_storage = StorageWeakRef(x.storage()) 2023-01-11T21:36:50.1325071Z /var/lib/jenkins/workspace/test/test_functionalization.py:20: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:36:50.1326086Z y_storage = StorageWeakRef(y.storage()) 2023-01-11T21:36:50.1326445Z ok (0.001s) 2023-01-11T21:36:50.1326966Z test_as_strided (__main__.TestCrossRefFunctionalization) ... expected failure (0.006s) 2023-01-11T21:36:50.1327578Z test_batch_norm (__main__.TestCrossRefFunctionalization) ... ok (0.971s) 2023-01-11T21:36:50.1328180Z test_cat (__main__.TestCrossRefFunctionalization) ... ok (0.116s) 2023-01-11T21:36:50.1328784Z test_copy_ (__main__.TestCrossRefFunctionalization) ... expected failure (0.033s) 2023-01-11T21:36:50.1329578Z test_copy_stride_mismatch (__main__.TestCrossRefFunctionalization) ... ok (0.010s) 2023-01-11T21:36:50.1330221Z test_diagonal (__main__.TestCrossRefFunctionalization) ... expected failure (0.010s) 2023-01-11T21:36:50.1330913Z test_diagonal_mutated_input (__main__.TestCrossRefFunctionalization) ... expected failure (0.009s) 2023-01-11T21:36:50.1331604Z test_everything (__main__.TestCrossRefFunctionalization) ... expected failure (0.014s) 2023-01-11T21:36:50.1332161Z test_expand_symint (__main__.TestCrossRefFunctionalization) ... ok (0.041s) 2023-01-11T21:36:50.1332739Z test_fill_ (__main__.TestCrossRefFunctionalization) ... expected failure (0.005s) 2023-01-11T21:36:50.1333284Z test_freeze (__main__.TestCrossRefFunctionalization) ... ok (0.021s) 2023-01-11T21:36:50.1333851Z test_index_mutation_on_non_input (__main__.TestCrossRefFunctionalization) ... ok (0.201s) 2023-01-11T21:36:50.1334450Z test_inplace_on_non_view (__main__.TestCrossRefFunctionalization) ... ok (0.209s) 2023-01-11T21:36:50.1335029Z test_instance_norm (__main__.TestCrossRefFunctionalization) ... ok (1.325s) 2023-01-11T21:36:50.1335637Z test_metadata_change (__main__.TestCrossRefFunctionalization) ... ok (0.134s) 2023-01-11T21:36:50.1336236Z test_metadata_change_out_op (__main__.TestCrossRefFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1336895Z test_mixed_wrappers_invalid (__main__.TestCrossRefFunctionalization) ... ok (0.004s) 2023-01-11T21:36:50.1337512Z test_mixed_wrappers_valid (__main__.TestCrossRefFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1338986Z test_multi_out (__main__.TestCrossRefFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:304: UserWarning: An output with one or more elements was resized since it had shape [4], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1340417Z torch.aminmax(x, dim=0, out=(out_max, out_min)) 2023-01-11T21:36:50.1341781Z /var/lib/jenkins/workspace/test/test_functionalization.py:304: UserWarning: An output with one or more elements was resized since it had shape [4], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1370354Z torch.aminmax(x, dim=0, out=(out_max, out_min)) 2023-01-11T21:36:50.1371603Z /var/lib/jenkins/workspace/test/test_functionalization.py:304: UserWarning: An output with one or more elements was resized since it had shape [4], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1372833Z torch.aminmax(x, dim=0, out=(out_max, out_min)) 2023-01-11T21:36:50.1374081Z /var/lib/jenkins/workspace/test/test_functionalization.py:304: UserWarning: An output with one or more elements was resized since it had shape [4], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1375221Z torch.aminmax(x, dim=0, out=(out_max, out_min)) 2023-01-11T21:36:50.1376443Z /var/lib/jenkins/workspace/test/test_functionalization.py:304: UserWarning: An output with one or more elements was resized since it had shape [4], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1377646Z torch.aminmax(x, dim=0, out=(out_max, out_min)) 2023-01-11T21:36:50.1378013Z ok (0.196s) 2023-01-11T21:36:50.1378493Z test_multiple_views_of_same_base (__main__.TestCrossRefFunctionalization) ... ok (0.098s) 2023-01-11T21:36:50.1379094Z test_mutable_op_not_inplace_or_other (__main__.TestCrossRefFunctionalization) ... ok (0.077s) 2023-01-11T21:36:50.1379704Z test_nested_functions_propagate_updates (__main__.TestCrossRefFunctionalization) ... ok (0.075s) 2023-01-11T21:36:50.1380289Z test_only_one_view (__main__.TestCrossRefFunctionalization) ... ok (0.019s) 2023-01-11T21:36:50.1380842Z test_optional_tensor_list (__main__.TestCrossRefFunctionalization) ... ok (0.229s) 2023-01-11T21:36:50.1381470Z test_reapply_views_simple (__main__.TestCrossRefFunctionalization) ... ok (0.182s) 2023-01-11T21:36:50.1382068Z test_resize_larger_invalid (__main__.TestCrossRefFunctionalization) ... ok (0.013s) 2023-01-11T21:36:50.1382700Z test_resize_larger_valid (__main__.TestCrossRefFunctionalization) ... ok (0.247s) 2023-01-11T21:36:50.1383254Z test_resize_smaller (__main__.TestCrossRefFunctionalization) ... ok (0.554s) 2023-01-11T21:36:50.1383950Z test_save_for_backwards_segfault (__main__.TestCrossRefFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1384519Z test_scalars (__main__.TestCrossRefFunctionalization) ... ok (0.202s) 2023-01-11T21:36:50.1385182Z test_set_ (__main__.TestCrossRefFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:149: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:36:50.1385744Z y.set_(x.storage()) 2023-01-11T21:36:50.1385902Z ok (0.001s) 2023-01-11T21:36:50.1386143Z test_simple (__main__.TestCrossRefFunctionalization) ... ok (0.272s) 2023-01-11T21:36:50.1387000Z test_simple_out (__main__.TestCrossRefFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:266: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [4, 2]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1387704Z torch.add(y, tmp, out=z) 2023-01-11T21:36:50.1388674Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:36:50.1389262Z warnings.warn(msg) 2023-01-11T21:36:50.1390134Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:36:50.1390722Z warnings.warn(msg) 2023-01-11T21:36:50.1391600Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:36:50.1392168Z warnings.warn(msg) 2023-01-11T21:36:50.1393047Z /opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py:145: UserWarning: An output with one or more elements was resized since it had shape torch.Size([]) which does not match the required output shape {str(shape)}. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). 2023-01-11T21:36:50.1393630Z warnings.warn(msg) 2023-01-11T21:36:50.1393790Z ok (0.240s) 2023-01-11T21:36:50.1394048Z test_split (__main__.TestCrossRefFunctionalization) ... expected failure (0.012s) 2023-01-11T21:36:50.1394377Z test_tensor_ctr (__main__.TestCrossRefFunctionalization) ... ok (0.180s) 2023-01-11T21:36:50.1394696Z test_tensor_list_composite (__main__.TestCrossRefFunctionalization) ... ok (0.041s) 2023-01-11T21:36:50.1395062Z test_tensor_list_mixed_functional_nonfunctional (__main__.TestCrossRefFunctionalization) ... ok (0.017s) 2023-01-11T21:36:50.1395652Z test_view_clone_view_inplace (__main__.TestCrossRefFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:185: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging. 2023-01-11T21:36:50.1396122Z with torch.autograd.detect_anomaly(check_nan=False): 2023-01-11T21:36:50.1396610Z /opt/conda/lib/python3.10/site-packages/torch/autograd/__init__.py:197: UserWarning: Error detected in SumBackward0. Traceback of forward call that caused the error: 2023-01-11T21:36:50.1397017Z File "/var/lib/jenkins/workspace/test/test_functionalization.py", line 1487, in 2023-01-11T21:36:50.1397262Z run_tests() 2023-01-11T21:36:50.1397614Z File "/opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 787, in run_tests 2023-01-11T21:36:50.1397983Z unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner( 2023-01-11T21:36:50.1398279Z File "/opt/conda/lib/python3.10/unittest/main.py", line 101, in __init__ 2023-01-11T21:36:50.1398512Z self.runTests() 2023-01-11T21:36:50.1398733Z File "/opt/conda/lib/python3.10/unittest/main.py", line 271, in runTests 2023-01-11T21:36:50.1398991Z self.result = testRunner.run(self.test) 2023-01-11T21:36:50.1399340Z File "/opt/conda/lib/python3.10/site-packages/xmlrunner/runner.py", line 67, in run 2023-01-11T21:36:50.1399569Z test(result) 2023-01-11T21:36:50.1399799Z File "/opt/conda/lib/python3.10/unittest/suite.py", line 84, in __call__ 2023-01-11T21:36:50.1400039Z return self.run(*args, **kwds) 2023-01-11T21:36:50.1400273Z File "/opt/conda/lib/python3.10/unittest/suite.py", line 122, in run 2023-01-11T21:36:50.1400490Z test(result) 2023-01-11T21:36:50.1400720Z File "/opt/conda/lib/python3.10/unittest/suite.py", line 84, in __call__ 2023-01-11T21:36:50.1400960Z return self.run(*args, **kwds) 2023-01-11T21:36:50.1401191Z File "/opt/conda/lib/python3.10/unittest/suite.py", line 122, in run 2023-01-11T21:36:50.1401411Z test(result) 2023-01-11T21:36:50.1401640Z File "/opt/conda/lib/python3.10/unittest/case.py", line 650, in __call__ 2023-01-11T21:36:50.1401868Z return self.run(*args, **kwds) 2023-01-11T21:36:50.1402240Z File "/opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2225, in run 2023-01-11T21:36:50.1402511Z self._run_with_retry( 2023-01-11T21:36:50.1402876Z File "/opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2154, in _run_with_retry 2023-01-11T21:36:50.1403158Z super().run(result=result) 2023-01-11T21:36:50.1403398Z File "/opt/conda/lib/python3.10/unittest/case.py", line 591, in run 2023-01-11T21:36:50.1403644Z self._callTestMethod(testMethod) 2023-01-11T21:36:50.1403902Z File "/opt/conda/lib/python3.10/unittest/case.py", line 549, in _callTestMethod 2023-01-11T21:36:50.1404129Z method() 2023-01-11T21:36:50.1404403Z File "/var/lib/jenkins/workspace/test/test_functionalization.py", line 186, in test_view_clone_view_inplace 2023-01-11T21:36:50.1404719Z logs = self.get_logs(g, torch.ones(16, 64, 128, 128, requires_grad=True)) 2023-01-11T21:36:50.1405020Z File "/var/lib/jenkins/workspace/test/test_functionalization.py", line 66, in get_logs 2023-01-11T21:36:50.1405408Z traced_f = make_fx(_functionalize(func, reapply_views=reapply_views, crossref=self.crossref))(*inpts) 2023-01-11T21:36:50.1405855Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py", line 692, in wrapped 2023-01-11T21:36:50.1406218Z t = dispatch_trace(wrap_key(func, args, fx_tracer), tracer=fx_tracer, concrete_args=tuple(phs)) 2023-01-11T21:36:50.1406657Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py", line 431, in dispatch_trace 2023-01-11T21:36:50.1406968Z graph = tracer.trace(root, concrete_args) 2023-01-11T21:36:50.1407332Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py", line 739, in trace 2023-01-11T21:36:50.1407630Z (self.create_arg(fn(*args)),), 2023-01-11T21:36:50.1408004Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/experimental/proxy_tensor.py", line 447, in wrapped 2023-01-11T21:36:50.1408269Z out = f(*tensors) 2023-01-11T21:36:50.1408449Z File "", line 1, in 2023-01-11T21:36:50.1408725Z File "/var/lib/jenkins/workspace/test/test_functionalization.py", line 40, in wrapped 2023-01-11T21:36:50.1408984Z out = f(*inputs_functional) 2023-01-11T21:36:50.1409532Z File "/var/lib/jenkins/workspace/test/test_functionalization.py", line 177, in g 2023-01-11T21:36:50.1409783Z loss = f(x).sum() 2023-01-11T21:36:50.1410223Z (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/autograd/python_anomaly_mode.cpp:119.) 2023-01-11T21:36:50.1410972Z Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 2023-01-11T21:36:50.1411231Z expected failure (0.290s) 2023-01-11T21:36:50.1411515Z test_view_inplace (__main__.TestCrossRefFunctionalization) ... expected failure (0.012s) 2023-01-11T21:36:50.1411855Z test_advanced_indexing (__main__.TestFunctionalization) ... ok (0.077s) 2023-01-11T21:36:50.1412177Z test_advanced_indexing_correct_strides (__main__.TestFunctionalization) ... ok (0.109s) 2023-01-11T21:36:50.1412872Z test_aliases_maintained_after_pass_when_reapplying_views (__main__.TestFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:19: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:36:50.1413499Z x_storage = StorageWeakRef(x.storage()) 2023-01-11T21:36:50.1414051Z /var/lib/jenkins/workspace/test/test_functionalization.py:20: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:36:50.1414576Z y_storage = StorageWeakRef(y.storage()) 2023-01-11T21:36:50.1414761Z ok (0.001s) 2023-01-11T21:36:50.1414990Z test_as_strided (__main__.TestFunctionalization) ... ok (0.103s) 2023-01-11T21:36:50.1415278Z test_batch_norm (__main__.TestFunctionalization) ... ok (0.621s) 2023-01-11T21:36:50.1415558Z test_cat (__main__.TestFunctionalization) ... ok (0.067s) 2023-01-11T21:36:50.1415818Z test_copy_ (__main__.TestFunctionalization) ... ok (0.902s) 2023-01-11T21:36:50.1416112Z test_copy_stride_mismatch (__main__.TestFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1416409Z test_diagonal (__main__.TestFunctionalization) ... ok (0.208s) 2023-01-11T21:36:50.1416698Z test_diagonal_mutated_input (__main__.TestFunctionalization) ... ok (0.118s) 2023-01-11T21:36:50.1416999Z test_everything (__main__.TestFunctionalization) ... ok (1.179s) 2023-01-11T21:36:50.1417295Z test_expand_symint (__main__.TestFunctionalization) ... ok (0.032s) 2023-01-11T21:36:50.1417562Z test_fill_ (__main__.TestFunctionalization) ... ok (0.154s) 2023-01-11T21:36:50.1417835Z test_freeze (__main__.TestFunctionalization) ... ok (0.009s) 2023-01-11T21:36:50.1418136Z test_index_mutation_on_non_input (__main__.TestFunctionalization) ... ok (0.152s) 2023-01-11T21:36:50.1418451Z test_inplace_on_non_view (__main__.TestFunctionalization) ... ok (0.147s) 2023-01-11T21:36:50.1418736Z test_instance_norm (__main__.TestFunctionalization) ... ok (1.236s) 2023-01-11T21:36:50.1419030Z test_metadata_change (__main__.TestFunctionalization) ... ok (0.106s) 2023-01-11T21:36:50.1419336Z test_metadata_change_out_op (__main__.TestFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1419635Z test_mixed_wrappers_invalid (__main__.TestFunctionalization) ... ok (0.004s) 2023-01-11T21:36:50.1419948Z test_mixed_wrappers_valid (__main__.TestFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1420786Z test_multi_out (__main__.TestFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:304: UserWarning: An output with one or more elements was resized since it had shape [4], which does not match the required output shape []. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1421486Z torch.aminmax(x, dim=0, out=(out_max, out_min)) 2023-01-11T21:36:50.1421687Z ok (0.121s) 2023-01-11T21:36:50.1421921Z test_multiple_views_of_same_base (__main__.TestFunctionalization) ... ok (0.079s) 2023-01-11T21:36:50.1422281Z test_mutable_op_not_inplace_or_other (__main__.TestFunctionalization) ... ok (0.062s) 2023-01-11T21:36:50.1422618Z test_nested_functions_propagate_updates (__main__.TestFunctionalization) ... ok (0.062s) 2023-01-11T21:36:50.1422921Z test_only_one_view (__main__.TestFunctionalization) ... ok (0.016s) 2023-01-11T21:36:50.1423218Z test_optional_tensor_list (__main__.TestFunctionalization) ... ok (0.138s) 2023-01-11T21:36:50.1423595Z test_reapply_views_simple (__main__.TestFunctionalization) ... ok (0.135s) 2023-01-11T21:36:50.1423909Z test_resize_larger_invalid (__main__.TestFunctionalization) ... ok (0.004s) 2023-01-11T21:36:50.1424200Z test_resize_larger_valid (__main__.TestFunctionalization) ... ok (0.202s) 2023-01-11T21:36:50.1424495Z test_resize_smaller (__main__.TestFunctionalization) ... ok (0.515s) 2023-01-11T21:36:50.1424803Z test_save_for_backwards_segfault (__main__.TestFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1425096Z test_scalars (__main__.TestFunctionalization) ... ok (0.151s) 2023-01-11T21:36:50.1425718Z test_set_ (__main__.TestFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:149: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:36:50.1426265Z y.set_(x.storage()) 2023-01-11T21:36:50.1426441Z ok (0.001s) 2023-01-11T21:36:50.1426650Z test_simple (__main__.TestFunctionalization) ... ok (0.203s) 2023-01-11T21:36:50.1427423Z test_simple_out (__main__.TestFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:266: UserWarning: An output with one or more elements was resized since it had shape [], which does not match the required output shape [4, 2]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:36:50.1428107Z torch.add(y, tmp, out=z) 2023-01-11T21:36:50.1428286Z ok (0.149s) 2023-01-11T21:36:50.1428504Z test_split (__main__.TestFunctionalization) ... ok (0.271s) 2023-01-11T21:36:50.1428767Z test_tensor_ctr (__main__.TestFunctionalization) ... ok (0.157s) 2023-01-11T21:36:50.1429063Z test_tensor_list_composite (__main__.TestFunctionalization) ... ok (0.027s) 2023-01-11T21:36:50.1429394Z test_tensor_list_mixed_functional_nonfunctional (__main__.TestFunctionalization) ... ok (0.001s) 2023-01-11T21:36:50.1429899Z test_view_clone_view_inplace (__main__.TestFunctionalization) ... /var/lib/jenkins/workspace/test/test_functionalization.py:185: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging. 2023-01-11T21:36:50.1430356Z with torch.autograd.detect_anomaly(check_nan=False): 2023-01-11T21:36:50.1430568Z ok (0.661s) 2023-01-11T21:36:50.1430837Z test_view_inplace (__main__.TestFunctionalization) ... ok (0.203s) 2023-01-11T21:36:50.1430988Z 2023-01-11T21:36:50.1431218Z ---------------------------------------------------------------------- 2023-01-11T21:36:50.1431459Z Ran 84 tests in 15.053s 2023-01-11T21:36:50.1431575Z 2023-01-11T21:36:50.1431657Z OK (expected failures=9) 2023-01-11T21:36:50.1431777Z 2023-01-11T21:36:50.1431847Z Generating XML reports... 2023-01-11T21:36:50.1432327Z Generated XML report: test-reports/python-unittest/test_functionalization/TEST-TestCrossRefFunctionalization-20230111213634.xml 2023-01-11T21:36:50.1432915Z Generated XML report: test-reports/python-unittest/test_functionalization/TEST-TestFunctionalization-20230111213634.xml 2023-01-11T21:36:50.1433167Z 2023-01-11T21:36:50.1433485Z ##[endgroup] 2023-01-11T21:36:50.1433926Z FINISHED PRINTING LOG FILE of test_functionalization (/var/lib/jenkins/workspace/test/test-reports/test_functionalization_q4jtp1dh) 2023-01-11T21:36:50.1434166Z 2023-01-11T21:36:51.9908326Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:36:52.0621581Z Ignoring disabled issues: [] 2023-01-11T21:36:52.0776353Z Running test_futures ... [2023-01-11 21:36:52.077317] 2023-01-11T21:36:52.0777492Z Executing ['/opt/conda/bin/python', '-bb', 'test_futures.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:36:52.077555] 2023-01-11T21:36:54.5826230Z 2023-01-11T21:36:54.5828341Z Expand the folded group to see the log file of test_futures 2023-01-11T21:36:54.5829446Z ##[group]PRINTING LOG FILE of test_futures (/var/lib/jenkins/workspace/test/test-reports/test_futures_v_kdf7li) 2023-01-11T21:36:54.5829890Z 2023-01-11T21:36:54.5830021Z Running tests... 2023-01-11T21:36:54.5830680Z ---------------------------------------------------------------------- 2023-01-11T21:36:54.5831350Z Test results will be stored in test-reports/python-unittest/test_futures 2023-01-11T21:36:54.5832072Z test_add_done_callback_error_is_ignored (__main__.TestFuture) ... [E pybind_utils.h:212] Got the following error when running the callback: ValueError: Expected error 2023-01-11T21:36:54.5832521Z 2023-01-11T21:36:54.5832625Z At: 2023-01-11T21:36:54.5833014Z /var/lib/jenkins/workspace/test/test_futures.py(236): raise_value_error 2023-01-11T21:36:54.5833702Z /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py(244): set_result 2023-01-11T21:36:54.5834278Z /var/lib/jenkins/workspace/test/test_futures.py(229): _test_add_done_callback_error_ignored 2023-01-11T21:36:54.5834873Z /var/lib/jenkins/workspace/test/test_futures.py(238): test_add_done_callback_error_is_ignored 2023-01-11T21:36:54.5835416Z /opt/conda/lib/python3.10/unittest/case.py(549): _callTestMethod 2023-01-11T21:36:54.5835873Z /opt/conda/lib/python3.10/unittest/case.py(591): run 2023-01-11T21:36:54.5836610Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py(2154): _run_with_retry 2023-01-11T21:36:54.5837379Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py(2225): run 2023-01-11T21:36:54.5837902Z /opt/conda/lib/python3.10/unittest/case.py(650): __call__ 2023-01-11T21:36:54.5838346Z /opt/conda/lib/python3.10/unittest/suite.py(122): run 2023-01-11T21:36:54.5838796Z /opt/conda/lib/python3.10/unittest/suite.py(84): __call__ 2023-01-11T21:36:54.5839237Z /opt/conda/lib/python3.10/unittest/suite.py(122): run 2023-01-11T21:36:54.5839700Z /opt/conda/lib/python3.10/unittest/suite.py(84): __call__ 2023-01-11T21:36:54.5840323Z /opt/conda/lib/python3.10/site-packages/xmlrunner/runner.py(67): run 2023-01-11T21:36:54.5840820Z /opt/conda/lib/python3.10/unittest/main.py(271): runTests 2023-01-11T21:36:54.5841256Z /opt/conda/lib/python3.10/unittest/main.py(101): __init__ 2023-01-11T21:36:54.5841927Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py(787): run_tests 2023-01-11T21:36:54.5842491Z /var/lib/jenkins/workspace/test/test_futures.py(340): 2023-01-11T21:36:54.5842764Z 2023-01-11T21:36:54.5843117Z ok (0.228s) 2023-01-11T21:36:54.5843536Z test_add_done_callback_maintains_callback_order (__main__.TestFuture) ... ok (0.002s) 2023-01-11T21:36:54.5844439Z test_add_done_callback_no_arg_error_is_ignored (__main__.TestFuture) ... [E pybind_utils.h:212] Got the following error when running the callback: TypeError: TestFuture.test_add_done_callback_no_arg_error_is_ignored..no_arg() takes 0 positional arguments but 1 was given 2023-01-11T21:36:54.5845179Z ok (0.001s) 2023-01-11T21:36:54.5845549Z test_add_done_callback_simple (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5846016Z test_chained_then (__main__.TestFuture) ... ok (0.003s) 2023-01-11T21:36:54.5846434Z test_collect_all (__main__.TestFuture) ... ok (0.101s) 2023-01-11T21:36:54.5846841Z test_done (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5847407Z test_done_exception (__main__.TestFuture) ... ok (0.002s) 2023-01-11T21:36:54.5847975Z test_interleaving_then_and_add_done_callback_maintains_callback_order (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5848719Z test_interleaving_then_and_add_done_callback_propagates_error (__main__.TestFuture) ... [E pybind_utils.h:212] Got the following error when running the callback: ValueError: Expected error 2023-01-11T21:36:54.5849356Z 2023-01-11T21:36:54.5849452Z At: 2023-01-11T21:36:54.5849802Z /var/lib/jenkins/workspace/test/test_futures.py(280): raise_value_error 2023-01-11T21:36:54.5850526Z /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py(244): set_result 2023-01-11T21:36:54.5851124Z /var/lib/jenkins/workspace/test/test_futures.py(285): test_interleaving_then_and_add_done_callback_propagates_error 2023-01-11T21:36:54.5851677Z /opt/conda/lib/python3.10/unittest/case.py(549): _callTestMethod 2023-01-11T21:36:54.5852140Z /opt/conda/lib/python3.10/unittest/case.py(591): run 2023-01-11T21:36:54.5852857Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py(2154): _run_with_retry 2023-01-11T21:36:54.5853591Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py(2225): run 2023-01-11T21:36:54.5854106Z /opt/conda/lib/python3.10/unittest/case.py(650): __call__ 2023-01-11T21:36:54.5854562Z /opt/conda/lib/python3.10/unittest/suite.py(122): run 2023-01-11T21:36:54.5855012Z /opt/conda/lib/python3.10/unittest/suite.py(84): __call__ 2023-01-11T21:36:54.5855450Z /opt/conda/lib/python3.10/unittest/suite.py(122): run 2023-01-11T21:36:54.5855897Z /opt/conda/lib/python3.10/unittest/suite.py(84): __call__ 2023-01-11T21:36:54.5856525Z /opt/conda/lib/python3.10/site-packages/xmlrunner/runner.py(67): run 2023-01-11T21:36:54.5857002Z /opt/conda/lib/python3.10/unittest/main.py(271): runTests 2023-01-11T21:36:54.5857433Z /opt/conda/lib/python3.10/unittest/main.py(101): __init__ 2023-01-11T21:36:54.5858112Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py(787): run_tests 2023-01-11T21:36:54.5858655Z /var/lib/jenkins/workspace/test/test_futures.py(340): 2023-01-11T21:36:54.5858920Z 2023-01-11T21:36:54.5859033Z ok (0.001s) 2023-01-11T21:36:54.5859390Z test_mark_future_twice (__main__.TestFuture) ... ok (0.002s) 2023-01-11T21:36:54.5859819Z test_pickle_future (__main__.TestFuture) ... ok (0.003s) 2023-01-11T21:36:54.5860207Z test_set_exception (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5860659Z test_set_exception_multithreading (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5861091Z test_then (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5861465Z test_then_no_arg (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5861867Z test_then_raise (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5862274Z test_then_wrong_arg (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5862680Z test_wait (__main__.TestFuture) ... ok (0.001s) 2023-01-11T21:36:54.5863055Z test_wait_all (__main__.TestFuture) ... [1, 2] 2023-01-11T21:36:54.5863384Z ok (0.001s) 2023-01-11T21:36:54.5864020Z test_wait_multi_thread (__main__.TestFuture) ... ok (0.502s) 2023-01-11T21:36:54.5864445Z test_wait_none (__main__.TestFuture) ... ok (0.004s) 2023-01-11T21:36:54.5864663Z 2023-01-11T21:36:54.5865049Z ---------------------------------------------------------------------- 2023-01-11T21:36:54.5865431Z Ran 22 tests in 0.860s 2023-01-11T21:36:54.5865610Z 2023-01-11T21:36:54.5865688Z OK 2023-01-11T21:36:54.5865844Z 2023-01-11T21:36:54.5865991Z Generating XML reports... 2023-01-11T21:36:54.5866698Z Generated XML report: test-reports/python-unittest/test_futures/TEST-TestFuture-20230111213653.xml 2023-01-11T21:36:54.5867071Z 2023-01-11T21:36:54.5867472Z ##[endgroup] 2023-01-11T21:36:54.5868107Z FINISHED PRINTING LOG FILE of test_futures (/var/lib/jenkins/workspace/test/test-reports/test_futures_v_kdf7li) 2023-01-11T21:36:54.5868453Z 2023-01-11T21:36:56.4030311Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:36:56.4697765Z Ignoring disabled issues: [] 2023-01-11T21:36:56.4850910Z Running test_fx_experimental ... [2023-01-11 21:36:56.484786] 2023-01-11T21:36:56.4852299Z Executing ['/opt/conda/bin/python', '-bb', 'test_fx_experimental.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:36:56.485036] 2023-01-11T21:37:13.3747667Z 2023-01-11T21:37:13.3748181Z Expand the folded group to see the log file of test_fx_experimental 2023-01-11T21:37:13.3749430Z ##[group]PRINTING LOG FILE of test_fx_experimental (/var/lib/jenkins/workspace/test/test-reports/test_fx_experimental__l0jerl7) 2023-01-11T21:37:13.3749911Z 2023-01-11T21:37:13.3750049Z Running tests... 2023-01-11T21:37:13.3750692Z ---------------------------------------------------------------------- 2023-01-11T21:37:13.3751284Z Test results will be stored in test-reports/python-unittest/test_fx_experimental 2023-01-11T21:37:13.3751754Z test_annotate_getitem_node (__main__.TestFXExperimental) ... ok (0.004s) 2023-01-11T21:37:13.3752687Z test_annotate_returns_with_schema (__main__.TestFXExperimental) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. 2023-01-11T21:37:13.3753331Z warnings.warn("The TorchScript type system doesn't support " 2023-01-11T21:37:13.3753558Z ok (1.767s) 2023-01-11T21:37:13.3753800Z test_aot_based_partition (__main__.TestFXExperimental) ... ok (0.006s) 2023-01-11T21:37:13.3754090Z test_call_to_assert_no_msg (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3754402Z test_call_to_assert_with_empty_msg (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3754712Z test_call_to_assert_with_msg (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3755023Z test_call_to_assert_with_multiline_message (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3755335Z test_conv_bn_fusion (__main__.TestFXExperimental) ... ok (1.014s) 2023-01-11T21:37:13.3755641Z test_conv_bn_fusion_not_running_state (__main__.TestFXExperimental) ... ok (0.009s) 2023-01-11T21:37:13.3755939Z test_cost_aware_partition (__main__.TestFXExperimental) ... ok (0.010s) 2023-01-11T21:37:13.3756221Z test_fetch (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3756506Z test_find_single_partition (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3756803Z test_lack_of_devices (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3757082Z test_large_node_error (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3757365Z test_merge_matmuls (__main__.TestFXExperimental) 2023-01-11T21:37:13.3757668Z A collection of test cases for torch.fx.experimental.merge_matmul, ... ok (0.026s) 2023-01-11T21:37:13.3757967Z test_meta_tracer (__main__.TestFXExperimental) ... ok (0.019s) 2023-01-11T21:37:13.3758249Z test_normalize_args (__main__.TestFXExperimental) ... ok (0.543s) 2023-01-11T21:37:13.3759079Z test_normalize_args_perserve_type (__main__.TestFXExperimental) ... /opt/conda/lib/python3.10/site-packages/torch/fx/operator_schemas.py:207: UserWarning: Does not support nested parametric types, got typing.List[~t]. Please file a bug. 2023-01-11T21:37:13.3759481Z warnings.warn( 2023-01-11T21:37:13.3759645Z ok (0.008s) 2023-01-11T21:37:13.3759892Z test_normalize_args_preserve_meta (__main__.TestFXExperimental) ... ok (0.007s) 2023-01-11T21:37:13.3760209Z test_normalize_binary_operators (__main__.TestFXExperimental) ... ok (0.056s) 2023-01-11T21:37:13.3760503Z test_normalize_modules_exhaustive (__main__.TestFXExperimental) 2023-01-11T21:37:13.3761384Z Exhaustively test `Node.normalized_arguments` on all standard ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py:309: UserWarning: Using padding='same' with even kernel lengths and odd dilation may require a zero-padded copy of the input be created (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Convolution.cpp:997.) 2023-01-11T21:37:13.3761945Z return F.conv1d(input, weight, bias, self.stride, 2023-01-11T21:37:13.3762155Z ok (1.632s) 2023-01-11T21:37:13.3762391Z test_optimize_for_inference_cpu (__main__.TestFXExperimental) ... ok (0.265s) 2023-01-11T21:37:13.3762721Z test_optimize_for_inference_cpu_torchvision (__main__.TestFXExperimental) ... ok (8.284s) 2023-01-11T21:37:13.3763048Z test_partition_device_mapping (__main__.TestFXExperimental) ... ok (0.008s) 2023-01-11T21:37:13.3763355Z test_partition_latency (__main__.TestFXExperimental) ... ok (0.006s) 2023-01-11T21:37:13.3763655Z test_partition_node_manipulation (__main__.TestFXExperimental) ... ok (0.004s) 2023-01-11T21:37:13.3763971Z test_replace_target_nodes_with (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3764265Z test_saturate_host (__main__.TestFXExperimental) ... [0, 4] 2023-01-11T21:37:13.3764470Z [1, 2] 2023-01-11T21:37:13.3764627Z ok (0.006s) 2023-01-11T21:37:13.3764866Z test_size_based_partition (__main__.TestFXExperimental) ... ok (0.005s) 2023-01-11T21:37:13.3765156Z test_sparse_nn_partition (__main__.TestFXExperimental) ... ok (0.120s) 2023-01-11T21:37:13.3765457Z test_split_module_default_arg (__main__.TestFXExperimental) ... ok (0.007s) 2023-01-11T21:37:13.3765774Z test_split_module_kwargs_expansion (__main__.TestFXExperimental) ... ok (0.004s) 2023-01-11T21:37:13.3766086Z test_split_qualname_mapping (__main__.TestFXExperimental) ... ok (0.005s) 2023-01-11T21:37:13.3766376Z test_subgraph_creation (__main__.TestFXExperimental) ... ok (0.007s) 2023-01-11T21:37:13.3766677Z test_subgraph_trivial_resnet (__main__.TestFXExperimental) ... ok (0.159s) 2023-01-11T21:37:13.3766978Z test_subgraph_uniquename (__main__.TestFXExperimental) ... ok (0.006s) 2023-01-11T21:37:13.3767594Z test_to_folder (__main__.TestFXExperimental) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph_module.py:476: UserWarning: Was not able to save the following children modules as reprs -saved as pickled files instead: ['seq'] 2023-01-11T21:37:13.3768098Z warnings.warn("Was not able to save the following children modules as reprs -" 2023-01-11T21:37:13.3768336Z ok (0.010s) 2023-01-11T21:37:13.3768598Z test_traceable_function_with_nonstandard_name (__main__.TestFXExperimental) ... ok (0.003s) 2023-01-11T21:37:13.3768897Z test_type_matches (__main__.TestFXExperimental) ... ok (0.002s) 2023-01-11T21:37:13.3769237Z 2023-01-11T21:37:13.3769442Z ---------------------------------------------------------------------- 2023-01-11T21:37:13.3769691Z Ran 39 tests in 14.033s 2023-01-11T21:37:13.3769808Z 2023-01-11T21:37:13.3769860Z OK 2023-01-11T21:37:13.3769954Z 2023-01-11T21:37:13.3770040Z Generating XML reports... 2023-01-11T21:37:13.3770473Z Generated XML report: test-reports/python-unittest/test_fx_experimental/TEST-TestFXExperimental-20230111213658.xml 2023-01-11T21:37:13.3770716Z 2023-01-11T21:37:13.3770984Z ##[endgroup] 2023-01-11T21:37:13.3771386Z FINISHED PRINTING LOG FILE of test_fx_experimental (/var/lib/jenkins/workspace/test/test-reports/test_fx_experimental__l0jerl7) 2023-01-11T21:37:13.3771678Z 2023-01-11T21:37:15.2358303Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:15.3001318Z Ignoring disabled issues: [] 2023-01-11T21:37:15.3156806Z Running test_fx_passes ... [2023-01-11 21:37:15.315395] 2023-01-11T21:37:15.3158472Z Executing ['/opt/conda/bin/python', '-bb', 'test_fx_passes.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:15.315634] 2023-01-11T21:37:17.5660835Z 2023-01-11T21:37:17.5661634Z Expand the folded group to see the log file of test_fx_passes 2023-01-11T21:37:17.5662654Z ##[group]PRINTING LOG FILE of test_fx_passes (/var/lib/jenkins/workspace/test/test-reports/test_fx_passes__3_2bzfx) 2023-01-11T21:37:17.5663085Z 2023-01-11T21:37:17.5663153Z Running tests... 2023-01-11T21:37:17.5663812Z ---------------------------------------------------------------------- 2023-01-11T21:37:17.5664208Z Test results will be stored in test-reports/python-unittest/test_fx_passes 2023-01-11T21:37:17.5664543Z test_fuser_pass_deep_model (__main__.TestFXGraphPasses) ... ok (0.270s) 2023-01-11T21:37:17.5664947Z test_fuser_util_partition_[['add', 'add_1', 'add_2']] (__main__.TestFXGraphPasses) ... ok (0.006s) 2023-01-11T21:37:17.5665382Z test_fuser_util_partition_[['add', 'add_1'], ['add_5', 'add_6']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5665918Z test_fuser_util_partition_[['add', 'linear', 'add_1', 'param', 'add_2', 'add_3', 'add_4', 'linear2', 'add_5', 'add_6', 'relu']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5666370Z test_fuser_util_partition_[['add_2', 'add_3']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5666759Z test_fuser_util_partition_[['add_3', 'add_4']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5667180Z test_fuser_util_partition_[['add_4', 'add_1', 'add_3', 'add_2']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5667639Z test_fuser_util_partition_[['add_5', 'add_6'], ['add_1', 'add_2', 'add_3', 'add_4']] (__main__.TestFXGraphPasses) ... ok (0.006s) 2023-01-11T21:37:17.5668049Z test_fuser_util_partition_[['add_5', 'linear2']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5668448Z test_fuser_util_partition_[['add_6', 'add_5']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5668840Z test_fuser_util_partition_[['add_6', 'relu']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5669253Z test_fuser_util_partition_[['param', 'add_1', 'linear']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5669648Z test_fuser_util_partition_[['param', 'add_2']] (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5670069Z test_fuser_util_xfail_partition_[['add', 'add_1', 'add_3']] (__main__.TestFXGraphPasses) ... ok (0.003s) 2023-01-11T21:37:17.5670523Z test_fuser_util_xfail_partition_[['add', 'add_1'], ['add_1', 'add_5', 'add_6']] (__main__.TestFXGraphPasses) ... ok (0.003s) 2023-01-11T21:37:17.5670965Z test_fuser_util_xfail_partition_[['add_4', 'add_5']] (__main__.TestFXGraphPasses) ... ok (0.002s) 2023-01-11T21:37:17.5671361Z test_fuser_util_xfail_partition_[['relu', 'add_5']] (__main__.TestFXGraphPasses) ... ok (0.003s) 2023-01-11T21:37:17.5672015Z test_partitioner_fn__expected_partition_[['add_7', 'add_6'], ['add_5', 'add_4', 'add_3'], ['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.006s) 2023-01-11T21:37:17.5672754Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add', 'add_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.012s) 2023-01-11T21:37:17.5673446Z test_partitioner_fn__expected_partition_[['add_1'], ['add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5674287Z test_partitioner_fn__expected_partition_[['add_2'], ['add_3', 'add_4', 'add_1'], ['add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.006s) 2023-01-11T21:37:17.5674980Z test_partitioner_fn__expected_partition_[['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5675702Z test_partitioner_fn__expected_partition_[['add', 'std_mean', 'getitem', 'getitem_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5676517Z test_partitioner_fn__expected_partition_[['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5677258Z test_partitioner_fn__expected_partition_[['permute_1', 'add_1', 'add']]_bookend_non_compute_pass_True (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5678011Z test_partitioner_fn__expected_partition_[['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5678733Z test_partitioner_fn__expected_partition_[['permute_1', 'add_1', 'add']]_bookend_non_compute_pass_True (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5679430Z test_partitioner_fn__expected_partition_[['add_3', 'add_2'], ['add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5680123Z test_partitioner_fn__expected_partition_[['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5680811Z test_partitioner_fn__expected_partition_[['add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5681490Z test_partitioner_fn__expected_partition_[['add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5682136Z test_partitioner_fn__expected_partition_[['add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5682823Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add', 'add_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5683529Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add', 'add_1']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.004s) 2023-01-11T21:37:17.5684225Z test_partitioner_fn__expected_partition_[['add_3', 'add_2', 'add_1', 'add']]_bookend_non_compute_pass_False (__main__.TestFXGraphPasses) ... ok (0.005s) 2023-01-11T21:37:17.5684797Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T21:37:17.5685299Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5685838Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T21:37:17.5686422Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5686961Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5687527Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T21:37:17.5688124Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T21:37:17.5688709Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5689402Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5689894Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5690381Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T21:37:17.5690879Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.005s) 2023-01-11T21:37:17.5691365Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5691847Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5692327Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.004s) 2023-01-11T21:37:17.5692797Z test_subgraph_matcher_test_model_ (__main__.TestFXMatcherUtils) ... ok (0.003s) 2023-01-11T21:37:17.5693011Z 2023-01-11T21:37:17.5693211Z ---------------------------------------------------------------------- 2023-01-11T21:37:17.5693446Z Ran 51 tests in 0.492s 2023-01-11T21:37:17.5693562Z 2023-01-11T21:37:17.5693624Z OK 2023-01-11T21:37:17.5693717Z 2023-01-11T21:37:17.5693805Z Generating XML reports... 2023-01-11T21:37:17.5694224Z Generated XML report: test-reports/python-unittest/test_fx_passes/TEST-TestFXGraphPasses-20230111213716.xml 2023-01-11T21:37:17.5694736Z Generated XML report: test-reports/python-unittest/test_fx_passes/TEST-TestFXMatcherUtils-20230111213716.xml 2023-01-11T21:37:17.5694971Z 2023-01-11T21:37:17.5695234Z ##[endgroup] 2023-01-11T21:37:17.5695615Z FINISHED PRINTING LOG FILE of test_fx_passes (/var/lib/jenkins/workspace/test/test-reports/test_fx_passes__3_2bzfx) 2023-01-11T21:37:17.5695812Z 2023-01-11T21:37:19.5077573Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:19.5881517Z Ignoring disabled issues: [] 2023-01-11T21:37:19.6033464Z Running test_fx_reinplace_pass ... [2023-01-11 21:37:19.603083] 2023-01-11T21:37:19.6034877Z Executing ['/opt/conda/bin/python', '-bb', 'test_fx_reinplace_pass.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:19.603309] 2023-01-11T21:37:22.8129714Z 2023-01-11T21:37:22.8130237Z Expand the folded group to see the log file of test_fx_reinplace_pass 2023-01-11T21:37:22.8131251Z ##[group]PRINTING LOG FILE of test_fx_reinplace_pass (/var/lib/jenkins/workspace/test/test-reports/test_fx_reinplace_pass_saswhh0j) 2023-01-11T21:37:22.8131513Z 2023-01-11T21:37:22.8131592Z Running tests... 2023-01-11T21:37:22.8131994Z ---------------------------------------------------------------------- 2023-01-11T21:37:22.8132402Z Test results will be stored in test-reports/python-unittest/test_fx_reinplace_pass 2023-01-11T21:37:22.8132727Z test_out_node_updated (__main__.TestReinplacePass) ... ok (0.285s) 2023-01-11T21:37:22.8133212Z test_reinplace_basic (__main__.TestReinplacePass) ... ok (0.120s) 2023-01-11T21:37:22.8133517Z test_reinplace_different_metadata (__main__.TestReinplacePass) ... ok (0.029s) 2023-01-11T21:37:22.8133818Z test_reinplace_index_mutation (__main__.TestReinplacePass) ... ok (0.145s) 2023-01-11T21:37:22.8134129Z test_reinplace_overlapping_memory (__main__.TestReinplacePass) ... ok (0.030s) 2023-01-11T21:37:22.8134435Z test_reinplace_scatter_op (__main__.TestReinplacePass) ... ok (0.254s) 2023-01-11T21:37:22.8134724Z test_reinplace_scatter_twice (__main__.TestReinplacePass) ... ok (0.238s) 2023-01-11T21:37:22.8135065Z test_reinplace_scatter_twice_with_different_view_op_invalid (__main__.TestReinplacePass) ... ok (0.065s) 2023-01-11T21:37:22.8135490Z test_reinplace_scatter_twice_with_different_view_op_invalid2 (__main__.TestReinplacePass) ... ok (0.064s) 2023-01-11T21:37:22.8135857Z test_reinplace_scatter_twice_with_different_view_op_valid (__main__.TestReinplacePass) ... ok (0.065s) 2023-01-11T21:37:22.8136175Z test_reinplace_with_view (__main__.TestReinplacePass) ... ok (0.036s) 2023-01-11T21:37:22.8136339Z 2023-01-11T21:37:22.8136542Z ---------------------------------------------------------------------- 2023-01-11T21:37:22.8136782Z Ran 11 tests in 1.332s 2023-01-11T21:37:22.8136894Z 2023-01-11T21:37:22.8136953Z OK 2023-01-11T21:37:22.8137032Z 2023-01-11T21:37:22.8137116Z Generating XML reports... 2023-01-11T21:37:22.8137545Z Generated XML report: test-reports/python-unittest/test_fx_reinplace_pass/TEST-TestReinplacePass-20230111213721.xml 2023-01-11T21:37:22.8137787Z 2023-01-11T21:37:22.8138017Z ##[endgroup] 2023-01-11T21:37:22.8138406Z FINISHED PRINTING LOG FILE of test_fx_reinplace_pass (/var/lib/jenkins/workspace/test/test-reports/test_fx_reinplace_pass_saswhh0j) 2023-01-11T21:37:22.8138634Z 2023-01-11T21:37:24.6893392Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:24.7783135Z Ignoring disabled issues: [] 2023-01-11T21:37:24.9570609Z Running test_hub ... [2023-01-11 21:37:24.956679] 2023-01-11T21:37:24.9571885Z Executing ['/opt/conda/bin/python', '-bb', 'test_hub.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:24.956961] 2023-01-11T21:37:26.5642198Z 2023-01-11T21:37:26.5642679Z Expand the folded group to see the log file of test_hub 2023-01-11T21:37:26.5643807Z ##[group]PRINTING LOG FILE of test_hub (/var/lib/jenkins/workspace/test/test-reports/test_hub_ren2c9sh) 2023-01-11T21:37:26.5644188Z 2023-01-11T21:37:26.5644574Z ##[endgroup] 2023-01-11T21:37:26.5645326Z FINISHED PRINTING LOG FILE of test_hub (/var/lib/jenkins/workspace/test/test-reports/test_hub_ren2c9sh) 2023-01-11T21:37:26.5645671Z 2023-01-11T21:37:28.3853736Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:28.4544219Z Ignoring disabled issues: [] 2023-01-11T21:37:28.4698057Z Running test_import_stats ... [2023-01-11 21:37:28.469517] 2023-01-11T21:37:28.4699926Z Executing ['/opt/conda/bin/python', '-bb', 'test_import_stats.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:28.469785] 2023-01-11T21:37:33.1284285Z 2023-01-11T21:37:33.1284768Z Expand the folded group to see the log file of test_import_stats 2023-01-11T21:37:33.1285737Z ##[group]PRINTING LOG FILE of test_import_stats (/var/lib/jenkins/workspace/test/test-reports/test_import_stats_wey_g2s2) 2023-01-11T21:37:33.1286106Z 2023-01-11T21:37:33.1286197Z Running tests... 2023-01-11T21:37:33.1286617Z ---------------------------------------------------------------------- 2023-01-11T21:37:33.1289532Z Test results will be stored in test-reports/python-unittest/test_import_stats 2023-01-11T21:37:33.1289989Z test_time_cuda_device_count (__main__.TestImportTime) ... ok (1.626s) 2023-01-11T21:37:33.1290283Z test_time_import_torch (__main__.TestImportTime) ... ok (1.389s) 2023-01-11T21:37:33.1290464Z 2023-01-11T21:37:33.1290670Z ---------------------------------------------------------------------- 2023-01-11T21:37:33.1291072Z Ran 2 tests in 3.016s 2023-01-11T21:37:33.1291187Z 2023-01-11T21:37:33.1291247Z OK 2023-01-11T21:37:33.1291336Z 2023-01-11T21:37:33.1291422Z Generating XML reports... 2023-01-11T21:37:33.1291845Z Generated XML report: test-reports/python-unittest/test_import_stats/TEST-TestImportTime-20230111213729.xml 2023-01-11T21:37:33.1292064Z 2023-01-11T21:37:33.1292383Z ##[endgroup] 2023-01-11T21:37:33.1292771Z FINISHED PRINTING LOG FILE of test_import_stats (/var/lib/jenkins/workspace/test/test-reports/test_import_stats_wey_g2s2) 2023-01-11T21:37:33.1292989Z 2023-01-11T21:37:34.9995762Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:35.0650905Z Ignoring disabled issues: [] 2023-01-11T21:37:35.0804958Z Running test_itt ... [2023-01-11 21:37:35.080235] 2023-01-11T21:37:35.0807073Z Executing ['/opt/conda/bin/python', '-bb', 'test_itt.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:35.080486] 2023-01-11T21:37:36.9540698Z 2023-01-11T21:37:36.9541281Z Expand the folded group to see the log file of test_itt 2023-01-11T21:37:36.9542282Z ##[group]PRINTING LOG FILE of test_itt (/var/lib/jenkins/workspace/test/test-reports/test_itt_ty1txm0m) 2023-01-11T21:37:36.9542636Z 2023-01-11T21:37:36.9542746Z Running tests... 2023-01-11T21:37:36.9543307Z ---------------------------------------------------------------------- 2023-01-11T21:37:36.9543801Z Test results will be stored in test-reports/python-unittest/test_itt 2023-01-11T21:37:36.9544109Z test_itt (__main__.TestItt) ... ok (0.221s) 2023-01-11T21:37:36.9544241Z 2023-01-11T21:37:36.9544471Z ---------------------------------------------------------------------- 2023-01-11T21:37:36.9544740Z Ran 1 test in 0.221s 2023-01-11T21:37:36.9544853Z 2023-01-11T21:37:36.9544901Z OK 2023-01-11T21:37:36.9544990Z 2023-01-11T21:37:36.9545080Z Generating XML reports... 2023-01-11T21:37:36.9545519Z Generated XML report: test-reports/python-unittest/test_itt/TEST-TestItt-20230111213736.xml 2023-01-11T21:37:36.9545882Z 2023-01-11T21:37:36.9546224Z ##[endgroup] 2023-01-11T21:37:36.9546889Z FINISHED PRINTING LOG FILE of test_itt (/var/lib/jenkins/workspace/test/test-reports/test_itt_ty1txm0m) 2023-01-11T21:37:36.9547161Z 2023-01-11T21:37:38.7963784Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:38.8615056Z Ignoring disabled issues: [] 2023-01-11T21:37:38.8767297Z Running test_jit_autocast ... [2023-01-11 21:37:38.876461] 2023-01-11T21:37:38.8769595Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_autocast.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:38.876704] 2023-01-11T21:37:55.2925582Z 2023-01-11T21:37:55.2926108Z Expand the folded group to see the log file of test_jit_autocast 2023-01-11T21:37:55.2927047Z ##[group]PRINTING LOG FILE of test_jit_autocast (/var/lib/jenkins/workspace/test/test-reports/test_jit_autocast_guvw60ot) 2023-01-11T21:37:55.2927816Z CUDA not available, skipping tests 2023-01-11T21:37:55.2928126Z 2023-01-11T21:37:55.2928299Z Running tests... 2023-01-11T21:37:55.2929273Z ---------------------------------------------------------------------- 2023-01-11T21:37:55.2930187Z Test results will be stored in test-reports/python-unittest/test_jit_autocast 2023-01-11T21:37:55.2930910Z test_autocast_api (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2931739Z test_autocast_api_not_supported (__main__.TestAutocast) ... skip: we need to provide dtype argument at this moment (0.001s) 2023-01-11T21:37:55.2932593Z test_autocast_autodiff (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2933402Z test_autocast_decorator (__main__.TestAutocast) ... skip: autocast decorators not supported (0.000s) 2023-01-11T21:37:55.2934234Z test_autocast_decorator_outside_jit (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2934997Z test_autocast_mixed_dtypes (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2935682Z test_callees (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2936660Z test_callees_with_autocast_off (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2937371Z test_callees_with_autocast_on (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2938105Z test_conditional_autocast (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2938890Z test_control_flow (__main__.TestAutocast) ... skip: broken due to lack of type propagation (0.001s) 2023-01-11T21:37:55.2939656Z test_divergent_autocast (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2940306Z test_divergent_types (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2941001Z test_duplicate_inputs (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2941671Z test_eager_and_script (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2942528Z test_explicit_casts (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2943215Z test_fp32_policy (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2943964Z test_fp32_policy_with_fp64 (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2944660Z test_fp32_set_opt_dtype_policy (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2945391Z test_fp32_set_opt_dtype_policy_fp64 (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2946061Z test_ignore_amp (__main__.TestAutocast) ... ok (0.013s) 2023-01-11T21:37:55.2946734Z test_implicitly_nested_autocast (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2947414Z test_inplace (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2948083Z test_jit_autocast_softmax_cpu (__main__.TestAutocast) ... ok (0.056s) 2023-01-11T21:37:55.2948816Z test_jit_autocast_softmax_gpu (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2949559Z test_jit_call_method_under_autocast (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2950329Z test_jit_executor_under_autocast (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2951071Z test_jit_freeze_autocast_basic (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2951824Z test_jit_freeze_autocast_constants (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2952503Z test_linear_bf16 (__main__.TestAutocast) ... skip: No cuda bfloat16 support (0.000s) 2023-01-11T21:37:55.2953219Z test_minimal (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2953883Z test_minimal_cpu (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2954552Z test_minimal_off (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2955202Z test_nested_autocast (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2955918Z test_promote_policy (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2956620Z test_promote_policy_fp64 (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2957316Z test_reused_autocast (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2958084Z test_reused_autocast_expr (__main__.TestAutocast) ... skip: unsuported autocast syntax (0.001s) 2023-01-11T21:37:55.2958859Z test_runtime_autocast_state (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2959617Z test_runtime_autocast_state_expr (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2960315Z test_script_and_tracing (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2961192Z test_script_and_tracing_with_autocast (__main__.TestAutocast) ... skip: autocast(False) is ignored inside traced functions (0.000s) 2023-01-11T21:37:55.2962008Z test_script_module (__main__.TestAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2962712Z test_tracing_and_script (__main__.TestAutocast) ... skip: No cuda (0.000s) 2023-01-11T21:37:55.2963579Z test_tracing_with_autocast_and_script (__main__.TestAutocast) ... skip: scripted called from traced TorchScript is not yet working (0.000s) 2023-01-11T21:37:55.2964555Z test_cat_promote (__main__.TestJitTraceAutocast) ... ok (0.167s) 2023-01-11T21:37:55.2965300Z test_generate_autocast_jit_trace_model (__main__.TestJitTraceAutocast) ... ok (3.541s) 2023-01-11T21:37:55.2966079Z test_nchw_autocast_jit_trace_model (__main__.TestJitTraceAutocast) ... ok (4.483s) 2023-01-11T21:37:55.2966848Z test_nhwc_autocast_jit_trace_model (__main__.TestJitTraceAutocast) ... ok (4.823s) 2023-01-11T21:37:55.2967605Z test_script_autocast_cpu (__main__.TestJitTraceAutocast) ... ok (0.059s) 2023-01-11T21:37:55.2968362Z test_script_autocast_cuda (__main__.TestJitTraceAutocast) ... skip: No cuda (0.001s) 2023-01-11T21:37:55.2969454Z test_script_autocast_enable_and_check (__main__.TestJitTraceAutocast) ... ok (0.070s) 2023-01-11T21:37:55.2970243Z test_scripted_aliasing (__main__.TestJitTraceAutocast) ... ok (0.063s) 2023-01-11T21:37:55.2970649Z 2023-01-11T21:37:55.2971167Z ---------------------------------------------------------------------- 2023-01-11T21:37:55.2971717Z Ran 53 tests in 13.313s 2023-01-11T21:37:55.2971973Z 2023-01-11T21:37:55.2972134Z OK (skipped=44) 2023-01-11T21:37:55.2972385Z 2023-01-11T21:37:55.2972582Z Generating XML reports... 2023-01-11T21:37:55.2973557Z Generated XML report: test-reports/python-unittest/test_jit_autocast/TEST-TestAutocast-20230111213741.xml 2023-01-11T21:37:55.2974844Z Generated XML report: test-reports/python-unittest/test_jit_autocast/TEST-TestJitTraceAutocast-20230111213741.xml 2023-01-11T21:37:55.2975466Z 2023-01-11T21:37:55.2976052Z ##[endgroup] 2023-01-11T21:37:55.2977006Z FINISHED PRINTING LOG FILE of test_jit_autocast (/var/lib/jenkins/workspace/test/test-reports/test_jit_autocast_guvw60ot) 2023-01-11T21:37:55.2977547Z 2023-01-11T21:37:57.1021594Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:37:57.1667500Z Ignoring disabled issues: [] 2023-01-11T21:37:57.1820100Z Running test_jit_fuser_te ... [2023-01-11 21:37:57.181725] 2023-01-11T21:37:57.1821915Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_fuser_te.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:37:57.181980] 2023-01-11T21:39:33.8209967Z 2023-01-11T21:39:33.8210388Z Expand the folded group to see the log file of test_jit_fuser_te 2023-01-11T21:39:33.8211101Z ##[group]PRINTING LOG FILE of test_jit_fuser_te (/var/lib/jenkins/workspace/test/test-reports/test_jit_fuser_te_25znr0r4) 2023-01-11T21:39:33.8211846Z CUDA not available, skipping tests 2023-01-11T21:39:33.8250124Z 2023-01-11T21:39:33.8250323Z Running tests... 2023-01-11T21:39:33.8250964Z ---------------------------------------------------------------------- 2023-01-11T21:39:33.8251586Z Test results will be stored in test-reports/python-unittest/test_jit_fuser_te 2023-01-11T21:39:33.8252134Z test_autodiff_fallback (jit.test_fuser_common.TestFuserCommon) ... ok (0.121s) 2023-01-11T21:39:33.8252821Z test_abs (__main__.TestTEFuserDynamic) ... ok (0.294s) 2023-01-11T21:39:33.8253295Z test_adaptive_avg_pool2d (__main__.TestTEFuserDynamic) ... ok (0.066s) 2023-01-11T21:39:33.8253580Z test_add_bool (__main__.TestTEFuserDynamic) ... ok (0.280s) 2023-01-11T21:39:33.8253848Z test_addcmul (__main__.TestTEFuserDynamic) ... ok (0.093s) 2023-01-11T21:39:33.8254156Z test_arg_configurations_smoke (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8254637Z test_autocast_down (__main__.TestTEFuserDynamic) ... skip: half-precision NNC fusion requires CUDA (0.000s) 2023-01-11T21:39:33.8255099Z test_autocast_up (__main__.TestTEFuserDynamic) ... skip: half-precision NNC fusion requires CUDA (0.000s) 2023-01-11T21:39:33.8255406Z test_batch_norm (__main__.TestTEFuserDynamic) ... ok (0.687s) 2023-01-11T21:39:33.8255688Z test_binary_div_ops (__main__.TestTEFuserDynamic) ... ok (2.440s) 2023-01-11T21:39:33.8255966Z test_binary_ops (__main__.TestTEFuserDynamic) ... ok (8.681s) 2023-01-11T21:39:33.8256414Z test_binary_pow (__main__.TestTEFuserDynamic) ... ok (0.792s) 2023-01-11T21:39:33.8256684Z test_binary_scalar_ops (__main__.TestTEFuserDynamic) ... ok (1.031s) 2023-01-11T21:39:33.8267458Z test_binary_tensor_scalar_ops (__main__.TestTEFuserDynamic) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:39:33.8267883Z test_bitwise_ops (__main__.TestTEFuserDynamic) ... ok (1.898s) 2023-01-11T21:39:33.8268153Z test_broadcast (__main__.TestTEFuserDynamic) ... ok (0.230s) 2023-01-11T21:39:33.8268433Z test_cat_2k_args (__main__.TestTEFuserDynamic) ... ok (0.835s) 2023-01-11T21:39:33.8268715Z test_cat_graph_opt (__main__.TestTEFuserDynamic) ... ok (0.784s) 2023-01-11T21:39:33.8269042Z test_channels_last_dims_dynamic (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8269497Z test_checks_cat_inputs (__main__.TestTEFuserDynamic) ... ok (0.467s) 2023-01-11T21:39:33.8269811Z test_chunk (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8270167Z test_chunk_correctness (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8270506Z test_chunk_distributes (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8270880Z test_chunk_motion_deduplicates_inputs (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8271248Z test_chunk_mul_one (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8271592Z test_chunk_multiple (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8271881Z test_clamp (__main__.TestTEFuserDynamic) ... ok (3.627s) 2023-01-11T21:39:33.8272156Z test_clamp_double (__main__.TestTEFuserDynamic) ... ok (0.143s) 2023-01-11T21:39:33.8272431Z test_clamp_int (__main__.TestTEFuserDynamic) ... ok (0.136s) 2023-01-11T21:39:33.8272703Z test_comparison_eq_ne (__main__.TestTEFuserDynamic) ... ok (0.286s) 2023-01-11T21:39:33.8272989Z test_comparison_ge_le (__main__.TestTEFuserDynamic) ... ok (0.284s) 2023-01-11T21:39:33.8273267Z test_comparison_gt_lt (__main__.TestTEFuserDynamic) ... ok (0.286s) 2023-01-11T21:39:33.8273535Z test_concat (__main__.TestTEFuserDynamic) ... ok (0.573s) 2023-01-11T21:39:33.8273797Z test_concat_invariant (__main__.TestTEFuserDynamic) ... ok (0.756s) 2023-01-11T21:39:33.8274125Z test_constant_chunk_shapes (__main__.TestTEFuserDynamic) ... skip: TODO: chunk dynamic shapes (0.001s) 2023-01-11T21:39:33.8274612Z test_conv2d (__main__.TestTEFuserDynamic) ... skip: don't run conv with dynamic shapes (0.001s) 2023-01-11T21:39:33.8275037Z test_conv2d_depthwise (__main__.TestTEFuserDynamic) ... skip: don't run conv with dynamic shapes (0.001s) 2023-01-11T21:39:33.8275383Z test_cuda_half (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8275672Z test_dims (__main__.TestTEFuserDynamic) ... ok (0.126s) 2023-01-11T21:39:33.8275936Z test_disabled (__main__.TestTEFuserDynamic) ... ok (0.005s) 2023-01-11T21:39:33.8276190Z test_div_bool (__main__.TestTEFuserDynamic) ... ok (0.138s) 2023-01-11T21:39:33.8276458Z test_dynamic_cat (__main__.TestTEFuserDynamic) ... ok (0.009s) 2023-01-11T21:39:33.8276739Z test_dynamic_shapes (__main__.TestTEFuserDynamic) ... ok (2.085s) 2023-01-11T21:39:33.8277014Z test_eq_unsqueeze_type_as (__main__.TestTEFuserDynamic) ... ok (0.311s) 2023-01-11T21:39:33.8277289Z test_erf (__main__.TestTEFuserDynamic) ... ok (0.001s) 2023-01-11T21:39:33.8277571Z test_exhaust_specializations (__main__.TestTEFuserDynamic) ... ok (0.029s) 2023-01-11T21:39:33.8277839Z test_exp (__main__.TestTEFuserDynamic) ... ok (0.089s) 2023-01-11T21:39:33.8278146Z test_fusion_reuse_multi_gpu (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8278448Z test_gelu (__main__.TestTEFuserDynamic) ... ok (0.026s) 2023-01-11T21:39:33.8278784Z test_hardsigmoid_fwd_bwd (__main__.TestTEFuserDynamic) ... ok (0.265s) 2023-01-11T21:39:33.8279062Z test_hardswish_fwd_bwd (__main__.TestTEFuserDynamic) ... ok (0.291s) 2023-01-11T21:39:33.8279357Z test_inlined_optimized_graph (__main__.TestTEFuserDynamic) ... ok (0.410s) 2023-01-11T21:39:33.8279638Z test_isnan (__main__.TestTEFuserDynamic) ... ok (0.643s) 2023-01-11T21:39:33.8279931Z test_kernel_cache_multi_gpu (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8280233Z test_lerp (__main__.TestTEFuserDynamic) ... ok (0.332s) 2023-01-11T21:39:33.8280700Z test_list_ops (__main__.TestTEFuserDynamic) ... skip: FIXME: fuser doesn't include ListConstruct nodes to the group causing a failure (0.001s) 2023-01-11T21:39:33.8281040Z test_lstm (__main__.TestTEFuserDynamic) ... ok (0.750s) 2023-01-11T21:39:33.8281323Z test_lstm_concat (__main__.TestTEFuserDynamic) ... ok (0.247s) 2023-01-11T21:39:33.8281616Z test_lstm_gates_permutations (__main__.TestTEFuserDynamic) ... ok (10.760s) 2023-01-11T21:39:33.8281907Z test_lstm_traced (__main__.TestTEFuserDynamic) ... ok (0.430s) 2023-01-11T21:39:33.8282196Z test_masked_fill (__main__.TestTEFuserDynamic) ... skip: Temporarily disabled (0.001s) 2023-01-11T21:39:33.8282612Z test_matmul (__main__.TestTEFuserDynamic) ... skip: don't run conv with dynamic shapes (0.002s) 2023-01-11T21:39:33.8283028Z test_milstm (__main__.TestTEFuserDynamic) ... skip: don't run conv with dynamic shapes (0.001s) 2023-01-11T21:39:33.8283328Z test_minmax (__main__.TestTEFuserDynamic) ... ok (1.138s) 2023-01-11T21:39:33.8283584Z test_minmax_int_ops (__main__.TestTEFuserDynamic) ... ok (0.793s) 2023-01-11T21:39:33.8283856Z test_mul_bool (__main__.TestTEFuserDynamic) ... ok (0.168s) 2023-01-11T21:39:33.8284120Z test_neg_pow (__main__.TestTEFuserDynamic) ... ok (0.137s) 2023-01-11T21:39:33.8284497Z test_nonzero_device_cuda (__main__.TestTEFuserDynamic) ... skip: needs non-zero device (0.001s) 2023-01-11T21:39:33.8284800Z test_nop (__main__.TestTEFuserDynamic) ... ok (0.001s) 2023-01-11T21:39:33.8285273Z test_profiler (__main__.TestTEFuserDynamic) ... STAGE:2023-01-11 21:38:43 12313:12313 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:39:33.8285755Z STAGE:2023-01-11 21:38:43 12313:12313 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:39:33.8286194Z STAGE:2023-01-11 21:38:43 12313:12313 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:39:33.8286454Z ok (0.076s) 2023-01-11T21:39:33.8286713Z test_rand_broadcast_cuda (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8287033Z test_rand_cuda (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8287358Z test_rand_diamond (__main__.TestTEFuserDynamic) ... skip: fuser requires CUDA (0.000s) 2023-01-11T21:39:33.8287645Z test_relu (__main__.TestTEFuserDynamic) ... ok (0.138s) 2023-01-11T21:39:33.8287908Z test_relu_fwd_bwd (__main__.TestTEFuserDynamic) ... ok (0.150s) 2023-01-11T21:39:33.8288192Z test_remove_output_used_only_in_size (__main__.TestTEFuserDynamic) ... ok (0.029s) 2023-01-11T21:39:33.8288480Z test_scalar (__main__.TestTEFuserDynamic) ... ok (0.048s) 2023-01-11T21:39:33.8288747Z test_scalar_arg (__main__.TestTEFuserDynamic) ... ok (0.506s) 2023-01-11T21:39:33.8289014Z test_scalar_only_inputs (__main__.TestTEFuserDynamic) ... ok (0.046s) 2023-01-11T21:39:33.8289541Z test_skip_grad_in_check (__main__.TestTEFuserDynamic) ... ok (0.165s) 2023-01-11T21:39:33.8289832Z test_small_constant (__main__.TestTEFuserDynamic) ... ok (0.293s) 2023-01-11T21:39:33.8290097Z test_sub_gt_and (__main__.TestTEFuserDynamic) ... ok (0.179s) 2023-01-11T21:39:33.8290365Z test_sum_dim (__main__.TestTEFuserDynamic) ... ok (0.268s) 2023-01-11T21:39:33.8290645Z test_sum_keepdim_cast (__main__.TestTEFuserDynamic) ... ok (0.138s) 2023-01-11T21:39:33.8290925Z test_sum_simple (__main__.TestTEFuserDynamic) ... ok (0.093s) 2023-01-11T21:39:33.8291262Z test_superslomo (__main__.TestTEFuserDynamic) ... ok (1.310s) 2023-01-11T21:39:33.8291542Z test_tensor_scalar_ops (__main__.TestTEFuserDynamic) ... ok (0.654s) 2023-01-11T21:39:33.8291832Z test_ternary_norm_ops (__main__.TestTEFuserDynamic) ... ok (0.415s) 2023-01-11T21:39:33.8292100Z test_ternary_ops (__main__.TestTEFuserDynamic) ... ok (0.648s) 2023-01-11T21:39:33.8292376Z test_threshold (__main__.TestTEFuserDynamic) ... ok (0.210s) 2023-01-11T21:39:33.8292647Z test_to_device (__main__.TestTEFuserDynamic) ... ok (0.147s) 2023-01-11T21:39:33.8292903Z test_to_dtype (__main__.TestTEFuserDynamic) ... ok (0.382s) 2023-01-11T21:39:33.8293170Z test_torch_to (__main__.TestTEFuserDynamic) ... ok (3.900s) 2023-01-11T21:39:33.8293439Z test_type_as_cat (__main__.TestTEFuserDynamic) ... ok (2.069s) 2023-01-11T21:39:33.8293751Z test_typecheck (__main__.TestTEFuserDynamic) ... ok (0.049s) 2023-01-11T21:39:33.8294085Z test_unary_ops (__main__.TestTEFuserDynamic) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:39:33.8294427Z test_unrolled_cat (__main__.TestTEFuserDynamic) ... ok (0.012s) 2023-01-11T21:39:33.8294719Z test_unsqueeze_size_calculation (__main__.TestTEFuserDynamic) ... ok (0.347s) 2023-01-11T21:39:33.8295005Z test_unsqueeze_var_dim (__main__.TestTEFuserDynamic) ... ok (0.353s) 2023-01-11T21:39:33.8295733Z test_unsupported_dtypes (__main__.TestTEFuserDynamic) ... /var/lib/jenkins/workspace/test/test_jit_fuser_te.py:1186: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T21:39:33.8296243Z return v.to(dtype) 2023-01-11T21:39:33.8296421Z ok (0.042s) 2023-01-11T21:39:33.8296655Z test_where_and_typing (__main__.TestTEFuserDynamic) ... ok (0.314s) 2023-01-11T21:39:33.8296920Z test_where_ops (__main__.TestTEFuserDynamic) ... ok (2.671s) 2023-01-11T21:39:33.8297413Z test_with_strict_fusion (__main__.TestTEFuserDynamic) ... /opt/conda/lib/python3.10/site-packages/torch/jit/__init__.py:216: UserWarning: Only works in script mode 2023-01-11T21:39:33.8297766Z warnings.warn("Only works in script mode") 2023-01-11T21:39:33.8297953Z ok (0.172s) 2023-01-11T21:39:33.8298185Z test_zero_element_tensors (__main__.TestTEFuserDynamic) ... ok (0.093s) 2023-01-11T21:39:33.8298457Z test_abs (__main__.TestTEFuserStatic) ... ok (0.050s) 2023-01-11T21:39:33.8298732Z test_adaptive_avg_pool2d (__main__.TestTEFuserStatic) ... ok (0.060s) 2023-01-11T21:39:33.8299001Z test_add_bool (__main__.TestTEFuserStatic) ... ok (0.097s) 2023-01-11T21:39:33.8299264Z test_addcmul (__main__.TestTEFuserStatic) ... ok (0.041s) 2023-01-11T21:39:33.8299552Z test_arg_configurations_smoke (__main__.TestTEFuserStatic) ... ok (0.040s) 2023-01-11T21:39:33.8299966Z test_autocast_down (__main__.TestTEFuserStatic) ... skip: half-precision NNC fusion requires CUDA (0.000s) 2023-01-11T21:39:33.8300422Z test_autocast_up (__main__.TestTEFuserStatic) ... skip: half-precision NNC fusion requires CUDA (0.000s) 2023-01-11T21:39:33.8300744Z test_batch_norm (__main__.TestTEFuserStatic) ... ok (0.278s) 2023-01-11T21:39:33.8301003Z test_binary_div_ops (__main__.TestTEFuserStatic) ... ok (1.079s) 2023-01-11T21:39:33.8301275Z test_binary_ops (__main__.TestTEFuserStatic) ... ok (3.149s) 2023-01-11T21:39:33.8301542Z test_binary_pow (__main__.TestTEFuserStatic) ... ok (0.262s) 2023-01-11T21:39:33.8301817Z test_binary_scalar_ops (__main__.TestTEFuserStatic) ... ok (1.015s) 2023-01-11T21:39:33.8302095Z test_binary_tensor_scalar_ops (__main__.TestTEFuserStatic) ... ok (8.337s) 2023-01-11T21:39:33.8302377Z test_bitwise_ops (__main__.TestTEFuserStatic) ... ok (0.701s) 2023-01-11T21:39:33.8302646Z test_broadcast (__main__.TestTEFuserStatic) ... ok (0.055s) 2023-01-11T21:39:33.8302901Z test_cat_2k_args (__main__.TestTEFuserStatic) ... ok (0.821s) 2023-01-11T21:39:33.8303170Z test_cat_graph_opt (__main__.TestTEFuserStatic) ... ok (0.079s) 2023-01-11T21:39:33.8303525Z test_channels_last_dims_dynamic (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8303922Z test_checks_cat_inputs (__main__.TestTEFuserStatic) ... ok (0.069s) 2023-01-11T21:39:33.8304177Z test_chunk (__main__.TestTEFuserStatic) ... ok (0.099s) 2023-01-11T21:39:33.8304451Z test_chunk_correctness (__main__.TestTEFuserStatic) ... ok (1.188s) 2023-01-11T21:39:33.8304736Z test_chunk_distributes (__main__.TestTEFuserStatic) ... ok (0.054s) 2023-01-11T21:39:33.8305025Z test_chunk_motion_deduplicates_inputs (__main__.TestTEFuserStatic) ... ok (0.093s) 2023-01-11T21:39:33.8305324Z test_chunk_mul_one (__main__.TestTEFuserStatic) ... ok (0.111s) 2023-01-11T21:39:33.8305600Z test_chunk_multiple (__main__.TestTEFuserStatic) ... ok (0.176s) 2023-01-11T21:39:33.8305889Z test_clamp (__main__.TestTEFuserStatic) ... ok (0.875s) 2023-01-11T21:39:33.8306154Z test_clamp_double (__main__.TestTEFuserStatic) ... ok (0.057s) 2023-01-11T21:39:33.8306426Z test_clamp_int (__main__.TestTEFuserStatic) ... ok (0.053s) 2023-01-11T21:39:33.8306701Z test_comparison_eq_ne (__main__.TestTEFuserStatic) ... ok (0.081s) 2023-01-11T21:39:33.8306968Z test_comparison_ge_le (__main__.TestTEFuserStatic) ... ok (0.097s) 2023-01-11T21:39:33.8307247Z test_comparison_gt_lt (__main__.TestTEFuserStatic) ... ok (0.082s) 2023-01-11T21:39:33.8307517Z test_concat (__main__.TestTEFuserStatic) ... ok (0.050s) 2023-01-11T21:39:33.8307772Z test_concat_invariant (__main__.TestTEFuserStatic) ... ok (0.077s) 2023-01-11T21:39:33.8308406Z test_constant_chunk_shapes (__main__.TestTEFuserStatic) ... /var/lib/jenkins/workspace/test/test_jit_fuser_te.py:2443: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect. 2023-01-11T21:39:33.8308959Z r = torch.tensor(4) 2023-01-11T21:39:33.8309132Z ok (0.111s) 2023-01-11T21:39:33.8309334Z test_conv2d (__main__.TestTEFuserStatic) ... ok (0.025s) 2023-01-11T21:39:33.8309608Z test_conv2d_depthwise (__main__.TestTEFuserStatic) ... ok (0.907s) 2023-01-11T21:39:33.8309906Z test_cuda_half (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8310184Z test_dims (__main__.TestTEFuserStatic) ... ok (0.069s) 2023-01-11T21:39:33.8310445Z test_disabled (__main__.TestTEFuserStatic) ... ok (0.006s) 2023-01-11T21:39:33.8310695Z test_div_bool (__main__.TestTEFuserStatic) ... ok (0.036s) 2023-01-11T21:39:33.8310960Z test_dynamic_cat (__main__.TestTEFuserStatic) ... ok (0.009s) 2023-01-11T21:39:33.8311232Z test_dynamic_shapes (__main__.TestTEFuserStatic) ... ok (2.071s) 2023-01-11T21:39:33.8311505Z test_eq_unsqueeze_type_as (__main__.TestTEFuserStatic) ... ok (0.108s) 2023-01-11T21:39:33.8311771Z test_erf (__main__.TestTEFuserStatic) ... ok (0.001s) 2023-01-11T21:39:33.8312051Z test_exhaust_specializations (__main__.TestTEFuserStatic) ... ok (0.029s) 2023-01-11T21:39:33.8312316Z test_exp (__main__.TestTEFuserStatic) ... ok (0.045s) 2023-01-11T21:39:33.8312612Z test_fusion_reuse_multi_gpu (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8312908Z test_gelu (__main__.TestTEFuserStatic) ... ok (0.026s) 2023-01-11T21:39:33.8313179Z test_hardsigmoid_fwd_bwd (__main__.TestTEFuserStatic) ... ok (0.100s) 2023-01-11T21:39:33.8313452Z test_hardswish_fwd_bwd (__main__.TestTEFuserStatic) ... ok (0.117s) 2023-01-11T21:39:33.8313742Z test_inlined_optimized_graph (__main__.TestTEFuserStatic) ... ok (0.085s) 2023-01-11T21:39:33.8314018Z test_isnan (__main__.TestTEFuserStatic) ... ok (0.358s) 2023-01-11T21:39:33.8314310Z test_kernel_cache_multi_gpu (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8314604Z test_lerp (__main__.TestTEFuserStatic) ... ok (0.066s) 2023-01-11T21:39:33.8315101Z test_list_ops (__main__.TestTEFuserStatic) ... skip: FIXME: fuser doesn't include ListConstruct nodes to the group causing a failure (0.001s) 2023-01-11T21:39:33.8315439Z test_lstm (__main__.TestTEFuserStatic) ... ok (0.158s) 2023-01-11T21:39:33.8315686Z test_lstm_concat (__main__.TestTEFuserStatic) ... ok (0.161s) 2023-01-11T21:39:33.8315971Z test_lstm_gates_permutations (__main__.TestTEFuserStatic) ... ok (1.702s) 2023-01-11T21:39:33.8316257Z test_lstm_traced (__main__.TestTEFuserStatic) ... ok (0.138s) 2023-01-11T21:39:33.8316541Z test_masked_fill (__main__.TestTEFuserStatic) ... skip: Temporarily disabled (0.001s) 2023-01-11T21:39:33.8316833Z test_matmul (__main__.TestTEFuserStatic) ... ok (0.814s) 2023-01-11T21:39:33.8317088Z test_milstm (__main__.TestTEFuserStatic) ... ok (0.922s) 2023-01-11T21:39:33.8317362Z test_minmax (__main__.TestTEFuserStatic) ... ok (0.277s) 2023-01-11T21:39:33.8317624Z test_minmax_int_ops (__main__.TestTEFuserStatic) ... ok (0.290s) 2023-01-11T21:39:33.8317893Z test_mul_bool (__main__.TestTEFuserStatic) ... ok (0.036s) 2023-01-11T21:39:33.8318152Z test_neg_pow (__main__.TestTEFuserStatic) ... ok (0.133s) 2023-01-11T21:39:33.8318519Z test_nonzero_device_cuda (__main__.TestTEFuserStatic) ... skip: needs non-zero device (0.001s) 2023-01-11T21:39:33.8318816Z test_nop (__main__.TestTEFuserStatic) ... ok (0.001s) 2023-01-11T21:39:33.8319278Z test_profiler (__main__.TestTEFuserStatic) ... STAGE:2023-01-11 21:39:27 12313:12313 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:39:33.8319743Z STAGE:2023-01-11 21:39:27 12313:12313 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:39:33.8320190Z STAGE:2023-01-11 21:39:27 12313:12313 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:39:33.8320452Z ok (0.026s) 2023-01-11T21:39:33.8320708Z test_rand_broadcast_cuda (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8321022Z test_rand_cuda (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.001s) 2023-01-11T21:39:33.8321343Z test_rand_diamond (__main__.TestTEFuserStatic) ... skip: fuser requires CUDA (0.000s) 2023-01-11T21:39:33.8321626Z test_relu (__main__.TestTEFuserStatic) ... ok (0.046s) 2023-01-11T21:39:33.8321874Z test_relu_fwd_bwd (__main__.TestTEFuserStatic) ... ok (0.057s) 2023-01-11T21:39:33.8322162Z test_remove_output_used_only_in_size (__main__.TestTEFuserStatic) ... ok (0.026s) 2023-01-11T21:39:33.8322443Z test_scalar (__main__.TestTEFuserStatic) ... ok (0.047s) 2023-01-11T21:39:33.8322705Z test_scalar_arg (__main__.TestTEFuserStatic) ... ok (0.087s) 2023-01-11T21:39:33.8322968Z test_scalar_only_inputs (__main__.TestTEFuserStatic) ... ok (0.046s) 2023-01-11T21:39:33.8323249Z test_skip_grad_in_check (__main__.TestTEFuserStatic) ... ok (0.028s) 2023-01-11T21:39:33.8323527Z test_small_constant (__main__.TestTEFuserStatic) ... ok (0.070s) 2023-01-11T21:39:33.8323783Z test_sub_gt_and (__main__.TestTEFuserStatic) ... ok (0.090s) 2023-01-11T21:39:33.8324047Z test_sum_dim (__main__.TestTEFuserStatic) ... ok (0.117s) 2023-01-11T21:39:33.8324316Z test_sum_keepdim_cast (__main__.TestTEFuserStatic) ... ok (0.062s) 2023-01-11T21:39:33.8324579Z test_sum_simple (__main__.TestTEFuserStatic) ... ok (0.056s) 2023-01-11T21:39:33.8324844Z test_superslomo (__main__.TestTEFuserStatic) ... ok (0.648s) 2023-01-11T21:39:33.8325116Z test_tensor_scalar_ops (__main__.TestTEFuserStatic) ... ok (0.111s) 2023-01-11T21:39:33.8325396Z test_ternary_norm_ops (__main__.TestTEFuserStatic) ... ok (0.223s) 2023-01-11T21:39:33.8325659Z test_ternary_ops (__main__.TestTEFuserStatic) ... ok (0.253s) 2023-01-11T21:39:33.8325922Z test_threshold (__main__.TestTEFuserStatic) ... ok (0.071s) 2023-01-11T21:39:33.8326184Z test_to_device (__main__.TestTEFuserStatic) ... ok (0.046s) 2023-01-11T21:39:33.8326436Z test_to_dtype (__main__.TestTEFuserStatic) ... ok (0.099s) 2023-01-11T21:39:33.8326696Z test_torch_to (__main__.TestTEFuserStatic) ... ok (0.827s) 2023-01-11T21:39:33.8327007Z test_type_as_cat (__main__.TestTEFuserStatic) ... ok (1.371s) 2023-01-11T21:39:33.8327258Z test_typecheck (__main__.TestTEFuserStatic) ... ok (0.046s) 2023-01-11T21:39:33.8327590Z test_unary_ops (__main__.TestTEFuserStatic) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:39:33.8327922Z test_unrolled_cat (__main__.TestTEFuserStatic) ... ok (0.027s) 2023-01-11T21:39:33.8328210Z test_unsqueeze_size_calculation (__main__.TestTEFuserStatic) ... ok (0.082s) 2023-01-11T21:39:33.8328491Z test_unsqueeze_var_dim (__main__.TestTEFuserStatic) ... ok (0.223s) 2023-01-11T21:39:33.8328775Z test_unsupported_dtypes (__main__.TestTEFuserStatic) ... ok (0.035s) 2023-01-11T21:39:33.8329212Z test_where_and_typing (__main__.TestTEFuserStatic) ... ok (0.080s) 2023-01-11T21:39:33.8329577Z test_where_ops (__main__.TestTEFuserStatic) ... ok (0.608s) 2023-01-11T21:39:33.8330082Z test_with_strict_fusion (__main__.TestTEFuserStatic) ... /opt/conda/lib/python3.10/site-packages/torch/jit/__init__.py:216: UserWarning: Only works in script mode 2023-01-11T21:39:33.8330434Z warnings.warn("Only works in script mode") 2023-01-11T21:39:33.8330632Z ok (0.067s) 2023-01-11T21:39:33.8330848Z test_zero_element_tensors (__main__.TestTEFuserStatic) ... ok (0.043s) 2023-01-11T21:39:33.8331016Z 2023-01-11T21:39:33.8331217Z ---------------------------------------------------------------------- 2023-01-11T21:39:33.8331458Z Ran 207 tests in 93.592s 2023-01-11T21:39:33.8331571Z 2023-01-11T21:39:33.8331630Z OK (skipped=39) 2023-01-11T21:39:33.8331738Z 2023-01-11T21:39:33.8331821Z Generating XML reports... 2023-01-11T21:39:33.8332264Z Generated XML report: test-reports/python-unittest/test_jit_fuser_te/TEST-jit.test_fuser_common.TestFuserCommon-20230111213759.xml 2023-01-11T21:39:33.8332808Z Generated XML report: test-reports/python-unittest/test_jit_fuser_te/TEST-TestTEFuserDynamic-20230111213759.xml 2023-01-11T21:39:33.8333313Z Generated XML report: test-reports/python-unittest/test_jit_fuser_te/TEST-TestTEFuserStatic-20230111213759.xml 2023-01-11T21:39:33.8333538Z 2023-01-11T21:39:33.8333859Z ##[endgroup] 2023-01-11T21:39:33.8334238Z FINISHED PRINTING LOG FILE of test_jit_fuser_te (/var/lib/jenkins/workspace/test/test-reports/test_jit_fuser_te_25znr0r4) 2023-01-11T21:39:33.8334448Z 2023-01-11T21:39:35.6597403Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:39:35.7247099Z Ignoring disabled issues: [] 2023-01-11T21:39:35.7401125Z Running test_jit_llga_fuser ... [2023-01-11 21:39:35.739863] 2023-01-11T21:39:35.7403290Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_llga_fuser.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:39:35.740111] 2023-01-11T21:39:39.4723912Z 2023-01-11T21:39:39.4724476Z Expand the folded group to see the log file of test_jit_llga_fuser 2023-01-11T21:39:39.4725503Z ##[group]PRINTING LOG FILE of test_jit_llga_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_llga_fuser_hah4ekg4) 2023-01-11T21:39:39.4725820Z 2023-01-11T21:39:39.4725923Z Running tests... 2023-01-11T21:39:39.4726574Z ---------------------------------------------------------------------- 2023-01-11T21:39:39.4727164Z test_dynamo_aot_ts_onednn (__main__.TestDynamoAOT) ... Test results will be stored in test-reports/python-unittest/test_jit_llga_fuser 2023-01-11T21:39:39.4728012Z skip: Enable when integration with dynamo aot_autograd is more stable (0.001s) 2023-01-11T21:39:39.4728347Z test_context_manager (__main__.TestEnableDisableLlgaFuser) ... ok (0.081s) 2023-01-11T21:39:39.4728675Z test_vision_alexnet_bfloat16 (__main__.TestModel) ... ok (0.037s) 2023-01-11T21:39:39.4728972Z test_vision_alexnet_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4729580Z test_vision_densenet121_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4733067Z test_vision_densenet121_float32 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4733775Z test_vision_densenet161_bfloat16 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4734290Z test_vision_densenet161_float32 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4734723Z test_vision_densenet169_bfloat16 (__main__.TestModel) ... ok (0.037s) 2023-01-11T21:39:39.4735086Z test_vision_densenet169_float32 (__main__.TestModel) ... ok (0.029s) 2023-01-11T21:39:39.4735538Z test_vision_densenet201_bfloat16 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4736044Z test_vision_densenet201_float32 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4736385Z test_vision_efficientnet_b0_bfloat16 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4736659Z test_vision_efficientnet_b0_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4737042Z test_vision_efficientnet_b1_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4737338Z test_vision_efficientnet_b1_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4737612Z test_vision_efficientnet_b2_bfloat16 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4737893Z test_vision_efficientnet_b2_float32 (__main__.TestModel) ... ok (0.029s) 2023-01-11T21:39:39.4738173Z test_vision_efficientnet_b3_bfloat16 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4738450Z test_vision_efficientnet_b3_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4738713Z test_vision_efficientnet_b4_bfloat16 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4738994Z test_vision_efficientnet_b4_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4739274Z test_vision_efficientnet_b5_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4739540Z test_vision_efficientnet_b5_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4739821Z test_vision_efficientnet_b6_bfloat16 (__main__.TestModel) ... ok (0.029s) 2023-01-11T21:39:39.4740102Z test_vision_efficientnet_b6_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4740380Z test_vision_efficientnet_b7_bfloat16 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4772543Z test_vision_efficientnet_b7_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4773240Z test_vision_googlenet_bfloat16 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4773971Z test_vision_googlenet_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4774639Z test_vision_mnasnet1_0_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4775282Z test_vision_mnasnet1_0_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4776061Z test_vision_mobilenet_v2_bfloat16 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4776726Z test_vision_mobilenet_v2_float32 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4777444Z test_vision_mobilenet_v3_large_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4778120Z test_vision_mobilenet_v3_large_float32 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4778819Z test_vision_regnet_y_400mf_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4779504Z test_vision_regnet_y_400mf_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4780133Z test_vision_resnet50_bfloat16 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4780794Z test_vision_resnet50_float32 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4781462Z test_vision_resnext101_32x8d_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4782142Z test_vision_resnext101_32x8d_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4782793Z test_vision_resnext50_32x4d_bfloat16 (__main__.TestModel) ... ok (0.030s) 2023-01-11T21:39:39.4783465Z test_vision_resnext50_32x4d_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4784240Z test_vision_shufflenet_v2_x1_0_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4784909Z test_vision_shufflenet_v2_x1_0_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4785786Z test_vision_squeezenet1_0_bfloat16 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4786463Z test_vision_squeezenet1_0_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4787130Z test_vision_vgg16_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4787755Z test_vision_vgg16_float32 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4788411Z test_vision_wide_resnet50_2_bfloat16 (__main__.TestModel) ... ok (0.031s) 2023-01-11T21:39:39.4789073Z test_vision_wide_resnet50_2_float32 (__main__.TestModel) ... ok (0.032s) 2023-01-11T21:39:39.4789461Z 2023-01-11T21:39:39.4790011Z ---------------------------------------------------------------------- 2023-01-11T21:39:39.4790597Z Ran 52 tests in 1.645s 2023-01-11T21:39:39.4790864Z 2023-01-11T21:39:39.4791032Z OK (skipped=1) 2023-01-11T21:39:39.4791426Z 2023-01-11T21:39:39.4791643Z Generating XML reports... 2023-01-11T21:39:39.4792782Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestEnableDisableLlgaFuser-20230111213937.xml 2023-01-11T21:39:39.4794126Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestModel-20230111213937.xml 2023-01-11T21:39:39.4795330Z Generated XML report: test-reports/python-unittest/test_jit_llga_fuser/TEST-TestDynamoAOT-20230111213937.xml 2023-01-11T21:39:39.4795876Z 2023-01-11T21:39:39.4796544Z ##[endgroup] 2023-01-11T21:39:39.4797522Z FINISHED PRINTING LOG FILE of test_jit_llga_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_llga_fuser_hah4ekg4) 2023-01-11T21:39:39.4798062Z 2023-01-11T21:39:41.3030073Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:39:41.3676243Z Ignoring disabled issues: [] 2023-01-11T21:39:41.3829751Z Running test_jiterator ... [2023-01-11 21:39:41.382749] 2023-01-11T21:39:41.3832150Z Executing ['/opt/conda/bin/python', '-bb', 'test_jiterator.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:39:41.382991] 2023-01-11T21:39:43.2679794Z 2023-01-11T21:39:43.2680356Z Expand the folded group to see the log file of test_jiterator 2023-01-11T21:39:43.2681359Z ##[group]PRINTING LOG FILE of test_jiterator (/var/lib/jenkins/workspace/test/test-reports/test_jiterator_seg31d00) 2023-01-11T21:39:43.2681944Z CUDA not available, skipping tests 2023-01-11T21:39:43.2682182Z 2023-01-11T21:39:43.2682310Z Running tests... 2023-01-11T21:39:43.2682941Z ---------------------------------------------------------------------- 2023-01-11T21:39:43.2683157Z 2023-01-11T21:39:43.2683356Z ---------------------------------------------------------------------- 2023-01-11T21:39:43.2683602Z Ran 0 tests in 0.000s 2023-01-11T21:39:43.2683716Z 2023-01-11T21:39:43.2683778Z OK 2023-01-11T21:39:43.2683855Z 2023-01-11T21:39:43.2683941Z Generating XML reports... 2023-01-11T21:39:43.2684284Z Test results will be stored in test-reports/python-unittest/test_jiterator 2023-01-11T21:39:43.2684462Z 2023-01-11T21:39:43.2684684Z ##[endgroup] 2023-01-11T21:39:43.2685064Z FINISHED PRINTING LOG FILE of test_jiterator (/var/lib/jenkins/workspace/test/test-reports/test_jiterator_seg31d00) 2023-01-11T21:39:43.2685276Z 2023-01-11T21:39:45.0943289Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:39:45.1589840Z Ignoring disabled issues: [] 2023-01-11T21:39:45.1744418Z Running test_legacy_vmap ... [2023-01-11 21:39:45.174167] 2023-01-11T21:39:45.1746332Z Executing ['/opt/conda/bin/python', '-bb', 'test_legacy_vmap.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:39:45.174410] 2023-01-11T21:39:48.7984400Z 2023-01-11T21:39:48.7985481Z Expand the folded group to see the log file of test_legacy_vmap 2023-01-11T21:39:48.7986576Z ##[group]PRINTING LOG FILE of test_legacy_vmap (/var/lib/jenkins/workspace/test/test-reports/test_legacy_vmap_fmc2e1t3) 2023-01-11T21:39:48.7986952Z 2023-01-11T21:39:48.7987106Z Running tests... 2023-01-11T21:39:48.7987816Z ---------------------------------------------------------------------- 2023-01-11T21:39:48.7988827Z Test results will be stored in test-reports/python-unittest/test_legacy_vmap 2023-01-11T21:39:48.7989542Z test_accepts_nested_inputs (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:377: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7990133Z out = vmap(lambda z: z[0] + z[1])((x, y)) 2023-01-11T21:39:48.7990638Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:379: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7991106Z out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y)) 2023-01-11T21:39:48.7991600Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:381: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7992214Z out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y)) 2023-01-11T21:39:48.7992707Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:384: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7993176Z out = vmap(lambda z: z[0] + z[1])([x, y]) 2023-01-11T21:39:48.7993658Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:386: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7994133Z out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y]) 2023-01-11T21:39:48.7994789Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:388: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7995607Z out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y]) 2023-01-11T21:39:48.7996425Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:391: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7997418Z out = vmap(lambda z: z['x'] + z['y'])({'x': x, 'y': y}) 2023-01-11T21:39:48.7998225Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:393: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.7999235Z out = vmap(lambda z: z['x'] + z['y'], in_dims=(0,))({'x': x, 'y': y}) 2023-01-11T21:39:48.8000093Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:395: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8001136Z out = vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y}) 2023-01-11T21:39:48.8002006Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:399: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8003004Z out_fn = vmap(lambda z: z['x'][0] + z['x'][1][0] + z['y'][0] + z['y'][1]) 2023-01-11T21:39:48.8003488Z ok (0.005s) 2023-01-11T21:39:48.8004373Z test_backward_unsupported_interaction (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:749: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8005360Z vmap(backward_on_vmapped_tensor)(x) 2023-01-11T21:39:48.8006200Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:755: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8007038Z vmap(backward_with_vmapped_grad)(x, grad) 2023-01-11T21:39:48.8007837Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:761: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8008636Z vmap(completely_unrelated_backward)(y) 2023-01-11T21:39:48.8009419Z ok (0.004s) 2023-01-11T21:39:48.8010324Z test_batched_gradient_basic (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:793: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8011269Z jacobian = vmap(vjp_mul)(batched_v) 2023-01-11T21:39:48.8014085Z ok (0.001s) 2023-01-11T21:39:48.8014936Z test_constant_function (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:64: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8015920Z output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3)) 2023-01-11T21:39:48.8016611Z ok (0.001s) 2023-01-11T21:39:48.8017502Z test_different_map_dim_size_raises (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:42: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8018410Z vmap(torch.mul)(x, y) 2023-01-11T21:39:48.8019189Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:44: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8019974Z vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y)) 2023-01-11T21:39:48.8020713Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:46: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8021965Z vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y}) 2023-01-11T21:39:48.8022469Z ok (0.001s) 2023-01-11T21:39:48.8023324Z test_fallback_atan2 (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:555: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8024293Z result = vmap(op, (2, 0))(x, y) 2023-01-11T21:39:48.8025095Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:561: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8025884Z result = vmap(vmap(op), (2, 0))(x, y) 2023-01-11T21:39:48.8026713Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:567: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8027467Z result = vmap(vmap(vmap(op)))(x, y) 2023-01-11T21:39:48.8027912Z ok (0.091s) 2023-01-11T21:39:48.8028500Z test_fallback_does_not_warn_by_default (__main__.TestVmapAPI) ... ok (0.001s) 2023-01-11T21:39:48.8029547Z test_fallback_masked_fill (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:583: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8030536Z result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values) 2023-01-11T21:39:48.8031416Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:583: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8032239Z result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values) 2023-01-11T21:39:48.8032758Z ok (0.062s) 2023-01-11T21:39:48.8033639Z test_fallback_multiple_returns (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:601: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8034577Z result = vmap(torch.var_mean)(tensor) 2023-01-11T21:39:48.8035366Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:607: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8036170Z result = vmap(vmap(torch.var_mean))(tensor) 2023-01-11T21:39:48.8037025Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:613: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8037872Z result = vmap(vmap(vmap(torch.var_mean)))(tensor) 2023-01-11T21:39:48.8038353Z ok (0.069s) 2023-01-11T21:39:48.8038963Z test_fallback_warns_when_warnings_are_enabled (__main__.TestVmapAPI) ... ok (0.001s) 2023-01-11T21:39:48.8039716Z test_fallback_with_undefined_grad (__main__.TestVmapAPI) ... ok (0.003s) 2023-01-11T21:39:48.8040717Z test_fallback_zero_dim (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:526: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8041578Z vmap(op, (0, None))(x, y) 2023-01-11T21:39:48.8042345Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:528: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8043107Z vmap(op, (None, 0))(y, x) 2023-01-11T21:39:48.8043868Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:530: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8044738Z vmap(op)(x, x) 2023-01-11T21:39:48.8045518Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:535: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8046223Z vmap(op, (0, None))(x, y) 2023-01-11T21:39:48.8047020Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:537: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8047783Z vmap(op, (None, 0))(y, x) 2023-01-11T21:39:48.8048547Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:539: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8049419Z vmap(op)(x, x) 2023-01-11T21:39:48.8049821Z ok (0.015s) 2023-01-11T21:39:48.8050856Z test_func_with_no_inputs (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:58: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8051697Z vmap(foo)() 2023-01-11T21:39:48.8052468Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:61: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8053188Z vmap(bar)() 2023-01-11T21:39:48.8053576Z ok (0.001s) 2023-01-11T21:39:48.8054443Z test_functools_partial (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:799: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8055421Z result = vmap(functools.partial(torch.mul, x))(y) 2023-01-11T21:39:48.8055938Z ok (0.001s) 2023-01-11T21:39:48.8056861Z test_grad_unsupported_interaction (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:774: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8057855Z vmap(output_to_grad_is_vmapped)(input_tensor) 2023-01-11T21:39:48.8058697Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:782: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8059517Z vmap(input_to_grad_is_vmapped)(input_tensor) 2023-01-11T21:39:48.8060006Z ok (0.003s) 2023-01-11T21:39:48.8060906Z test_in_dim_not_in_tensor_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:464: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8061791Z vmap(foo)(torch.randn([])) 2023-01-11T21:39:48.8062556Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:466: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8063345Z vmap(foo, in_dims=(0,))(torch.randn([])) 2023-01-11T21:39:48.8064313Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:468: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8065200Z vmap(foo, in_dims=(-1,))(x) 2023-01-11T21:39:48.8065977Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:470: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8066713Z vmap(foo, in_dims=(2,))(y) 2023-01-11T21:39:48.8067483Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:472: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8068234Z vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y]) 2023-01-11T21:39:48.8069025Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:474: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8069807Z vmap(foo, in_dims=(0,))(torch.randn(2, 3)) 2023-01-11T21:39:48.8070613Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:475: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8071348Z vmap(foo, in_dims=(1,))(torch.randn(2, 3)) 2023-01-11T21:39:48.8071826Z ok (0.002s) 2023-01-11T21:39:48.8072655Z test_in_dims_wrong_type_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:408: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8073702Z vmap(torch.mul, [0, 0])(x, y) 2023-01-11T21:39:48.8074465Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:410: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8075258Z vmap(torch.mul, set({0, 0}))(x, y) 2023-01-11T21:39:48.8076052Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:412: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8076932Z vmap(torch.mul, 'lol')(x, y) 2023-01-11T21:39:48.8077740Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:414: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8078541Z vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y]) 2023-01-11T21:39:48.8079438Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:416: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8080201Z vmap(torch.mul, (0, 0))(x, y) 2023-01-11T21:39:48.8080632Z ok (0.001s) 2023-01-11T21:39:48.8081594Z test_inplace_fallback_nary_different_levels (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:708: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8082247Z vmap(op, in_dims=(0, None))(x, y) 2023-01-11T21:39:48.8082691Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:714: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8083172Z vmap(vmap(op, in_dims=(0, None)))(x, y) 2023-01-11T21:39:48.8083657Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:722: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8084111Z vmap(op, in_dims=(None, 0))(x, y) 2023-01-11T21:39:48.8084622Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:727: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8085129Z vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y) 2023-01-11T21:39:48.8085664Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:732: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8086148Z vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y) 2023-01-11T21:39:48.8086659Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:737: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8087132Z vmap(vmap(op, in_dims=(None, 0)))(x, y) 2023-01-11T21:39:48.8087411Z ok (0.013s) 2023-01-11T21:39:48.8087965Z test_inplace_fallback_nary_same_levels (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:673: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8088502Z vmap(op, (2, 0))(x, y) 2023-01-11T21:39:48.8088984Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:681: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8089589Z vmap(vmap(op), (2, 0))(x, y) 2023-01-11T21:39:48.8090068Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:689: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8090542Z result = vmap(vmap(vmap(op)))(x, y) 2023-01-11T21:39:48.8090810Z ok (0.077s) 2023-01-11T21:39:48.8091362Z test_inplace_fallback_unary (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:632: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8091881Z result = vmap(op)(x) 2023-01-11T21:39:48.8092357Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:639: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8092792Z result = vmap(op, out_dims=(1,))(x) 2023-01-11T21:39:48.8093262Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:646: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8093716Z result = vmap(vmap(op))(x) 2023-01-11T21:39:48.8094192Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:653: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8094829Z result = vmap(vmap(vmap(op)))(x) 2023-01-11T21:39:48.8095111Z ok (0.316s) 2023-01-11T21:39:48.8095664Z test_integer_in_dim_but_not_tensor_input_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:447: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8096182Z vmap(torch.sum)(x, 0) 2023-01-11T21:39:48.8096639Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:449: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8097097Z vmap(torch.sum, (0, 0))(x, 0) 2023-01-11T21:39:48.8097766Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:451: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8098239Z vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1]) 2023-01-11T21:39:48.8098719Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:453: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8099185Z vmap(torch.sum, (0, None))(x, 0) 2023-01-11T21:39:48.8099463Z ok (0.002s) 2023-01-11T21:39:48.8099960Z test_multiple_inputs (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:79: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8100473Z output = vmap(torch.mul)(x, y) 2023-01-11T21:39:48.8100756Z ok (0.001s) 2023-01-11T21:39:48.8101250Z test_multiple_out_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:221: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8101785Z result = vmap(foo, out_dims=(0, 1))(x) 2023-01-11T21:39:48.8102273Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:224: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8102896Z result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y) 2023-01-11T21:39:48.8103178Z ok (0.002s) 2023-01-11T21:39:48.8103796Z test_multiple_outputs (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:87: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8104253Z outputs = vmap(foo)(x) 2023-01-11T21:39:48.8104501Z ok (0.001s) 2023-01-11T21:39:48.8104997Z test_multiple_outputs_error_cases (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:107: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8105540Z vmap(returns_tuple_of_tensors)(x) 2023-01-11T21:39:48.8106050Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:112: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8106529Z vmap(returns_list_of_two_tensors)(x) 2023-01-11T21:39:48.8107045Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:114: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8107528Z vmap(returns_list_of_one_tensor)(x) 2023-01-11T21:39:48.8107798Z ok (0.001s) 2023-01-11T21:39:48.8108313Z test_nested_non_default_in_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:338: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8108863Z result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y) 2023-01-11T21:39:48.8109168Z ok (0.001s) 2023-01-11T21:39:48.8109675Z test_nested_out_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:237: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8110235Z result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y) 2023-01-11T21:39:48.8110764Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:242: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8111303Z result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y) 2023-01-11T21:39:48.8111955Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:247: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8112628Z result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y) 2023-01-11T21:39:48.8113138Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:254: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8113719Z result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y) 2023-01-11T21:39:48.8114058Z ok (0.003s) 2023-01-11T21:39:48.8114623Z test_nested_with_different_map_dim (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:128: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8115314Z output = vmap(lambda x: vmap(lambda y: x * y)(y))(x) 2023-01-11T21:39:48.8115844Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:133: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8116567Z output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x) 2023-01-11T21:39:48.8116905Z ok (0.002s) 2023-01-11T21:39:48.8117418Z test_nested_with_same_map_dim (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:119: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8117984Z output = vmap(vmap(torch.mul))(x, y) 2023-01-11T21:39:48.8118488Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:122: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8118987Z output = vmap(vmap(vmap(torch.mul)))(x, y) 2023-01-11T21:39:48.8119275Z ok (0.001s) 2023-01-11T21:39:48.8119780Z test_nn_module (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:805: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8120278Z result = vmap(model)(tensor) 2023-01-11T21:39:48.8120535Z ok (0.001s) 2023-01-11T21:39:48.8121074Z test_non_default_in_dims_out_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:345: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8121632Z result = vmap(lambda x: x, in_dims=1, out_dims=1)(x) 2023-01-11T21:39:48.8122162Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:350: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8122680Z result = vmap(lambda x: x, in_dims=2, out_dims=1)(x) 2023-01-11T21:39:48.8123179Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:359: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8123657Z result = vmap(foo, in_dims=1, out_dims=1)(x) 2023-01-11T21:39:48.8124150Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:363: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8124626Z result = vmap(foo, in_dims=2, out_dims=1)(x) 2023-01-11T21:39:48.8125121Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:368: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8125727Z result = vmap(vmap(foo, 1, 1), 1, 1)(x) 2023-01-11T21:39:48.8125983Z ok (0.002s) 2023-01-11T21:39:48.8126492Z test_non_tensor_output_raises (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:29: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8127040Z output = vmap(lambda x: 3.14)(torch.ones(3)) 2023-01-11T21:39:48.8127514Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:35: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8128005Z vmap(multiple_outputs)(torch.ones(3)) 2023-01-11T21:39:48.8128298Z ok (0.001s) 2023-01-11T21:39:48.8128804Z test_non_zero_in_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:311: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8129599Z output = vmap(lambda x: x, (1,))(tensor) 2023-01-11T21:39:48.8130086Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:317: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8130544Z output = vmap(torch.mul, (0, 1))(x, y) 2023-01-11T21:39:48.8131128Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:319: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8131588Z output = vmap(torch.mul, (1, 0))(x, y) 2023-01-11T21:39:48.8131868Z ok (0.002s) 2023-01-11T21:39:48.8132374Z test_none_in_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:327: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8133036Z output = vmap(torch.mul, (0, None))(x, y) 2023-01-11T21:39:48.8133555Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:332: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8134017Z output = vmap(torch.mul, (0, None))(x, 2) 2023-01-11T21:39:48.8134303Z ok (0.001s) 2023-01-11T21:39:48.8134843Z test_nonzero_out_dims (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:172: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8135477Z result = vmap(lambda x: x, out_dims=1)(tensor) 2023-01-11T21:39:48.8136064Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:178: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8136557Z result = vmap(lambda x: x, out_dims=2)(tensor) 2023-01-11T21:39:48.8137012Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:184: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8137608Z result = vmap(lambda x: x, out_dims=-1)(tensor) 2023-01-11T21:39:48.8138146Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:191: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8138700Z result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other) 2023-01-11T21:39:48.8139263Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:199: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8139745Z result = vmap(lambda x: x, out_dims=2)(tensor) 2023-01-11T21:39:48.8140263Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:207: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8140743Z result = vmap(foo, out_dims=1)(x, y) 2023-01-11T21:39:48.8141013Z ok (0.005s) 2023-01-11T21:39:48.8141545Z test_noop_in_inner_vmap (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:140: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8142103Z output = vmap(lambda x: vmap(lambda y: x)(y))(x) 2023-01-11T21:39:48.8142415Z ok (0.001s) 2023-01-11T21:39:48.8142942Z test_not_enough_in_dims_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:424: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8143464Z vmap(torch.mul, (0,))(x, y) 2023-01-11T21:39:48.8144036Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:426: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8144489Z vmap(torch.mul, (0, 0, 0))(x, y) 2023-01-11T21:39:48.8144968Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:428: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8145474Z vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y]) 2023-01-11T21:39:48.8145978Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:430: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8146460Z vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y]) 2023-01-11T21:39:48.8147080Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:432: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8147503Z vmap(torch.mul, (0, 0))(x, y) 2023-01-11T21:39:48.8147757Z ok (0.001s) 2023-01-11T21:39:48.8148295Z test_out_dim_out_of_bounds_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:303: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8148839Z vmap(lambda x: x, out_dims=3)(x) 2023-01-11T21:39:48.8149337Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:305: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8149879Z vmap(lambda x: x, out_dims=-4)(x) 2023-01-11T21:39:48.8150170Z ok (0.005s) 2023-01-11T21:39:48.8150797Z test_out_dims_and_num_outputs_mismatch_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:286: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8151396Z vmap(lambda x: x, out_dims=(0, 0))(x) 2023-01-11T21:39:48.8151873Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:288: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8152344Z vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x) 2023-01-11T21:39:48.8152864Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:292: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8153314Z vmap(lambda x: (x, x), out_dims=(0,))(x) 2023-01-11T21:39:48.8153793Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:294: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8154263Z vmap(lambda x: (x, x, x), out_dims=(0, 0))(x) 2023-01-11T21:39:48.8154563Z ok (0.001s) 2023-01-11T21:39:48.8155076Z test_out_dims_edge_case (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:264: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8155649Z expected = vmap(foo, out_dims=1)(tensor) 2023-01-11T21:39:48.8156177Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:265: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8156648Z result = vmap(foo, out_dims=(1,))(tensor) 2023-01-11T21:39:48.8156936Z ok (0.001s) 2023-01-11T21:39:48.8157472Z test_out_dims_must_be_int_or_tuple_of_int_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:272: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8158118Z vmap(lambda x: x, out_dims='lol')(tensor) 2023-01-11T21:39:48.8158602Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:274: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8159172Z vmap(lambda x: x, out_dims=('lol',))(tensor) 2023-01-11T21:39:48.8159676Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:276: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8160156Z vmap(lambda x: x, out_dims=None)(tensor) 2023-01-11T21:39:48.8160655Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:278: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8161125Z vmap(lambda x: x, out_dims=(None,))(tensor) 2023-01-11T21:39:48.8161420Z ok (0.001s) 2023-01-11T21:39:48.8161916Z test_single_input (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:73: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8162437Z output = vmap(square)(x) 2023-01-11T21:39:48.8162710Z ok (0.001s) 2023-01-11T21:39:48.8163250Z test_unsupported_op_err_msg (__main__.TestVmapAPI) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:151: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8163773Z vmap(torch.ravel)(tensor) 2023-01-11T21:39:48.8164256Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:157: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8164848Z vmap(out_op)(tensor, tensor) 2023-01-11T21:39:48.8165315Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:162: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8165799Z vmap(lambda t: torch.atleast_1d([t]))(tensor) 2023-01-11T21:39:48.8166309Z /var/lib/jenkins/workspace/test/test_legacy_vmap.py:167: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8166783Z vmap(torch.Tensor.item)(tensor) 2023-01-11T21:39:48.8167083Z ok (0.010s) 2023-01-11T21:39:48.8167421Z test_T_numpy (__main__.TestVmapOperators) ... ok (0.005s) 2023-01-11T21:39:48.8167836Z test_as_strided (__main__.TestVmapOperators) ... ok (0.024s) 2023-01-11T21:39:48.8168367Z test_binary_pointwise_ops (__main__.TestVmapOperators) ... ok (0.121s) 2023-01-11T21:39:48.8168812Z test_bmm (__main__.TestVmapOperators) ... ok (0.032s) 2023-01-11T21:39:48.8169354Z test_cat (__main__.TestVmapOperators) ... ok (0.004s) 2023-01-11T21:39:48.8169731Z test_chunk (__main__.TestVmapOperators) ... ok (0.018s) 2023-01-11T21:39:48.8170127Z test_clamp (__main__.TestVmapOperators) ... ok (0.015s) 2023-01-11T21:39:48.8170530Z test_clone (__main__.TestVmapOperators) ... ok (0.014s) 2023-01-11T21:39:48.8170924Z test_comparison_ops (__main__.TestVmapOperators) ... ok (0.056s) 2023-01-11T21:39:48.8171327Z test_conj (__main__.TestVmapOperators) ... ok (0.007s) 2023-01-11T21:39:48.8171711Z test_contiguous (__main__.TestVmapOperators) ... ok (0.007s) 2023-01-11T21:39:48.8172143Z test_diagonal (__main__.TestVmapOperators) ... ok (0.004s) 2023-01-11T21:39:48.8172531Z test_dot (__main__.TestVmapOperators) ... ok (0.012s) 2023-01-11T21:39:48.8172945Z test_expand_as (__main__.TestVmapOperators) ... ok (0.006s) 2023-01-11T21:39:48.8173389Z test_fill_and_zero_inplace (__main__.TestVmapOperators) ... ok (0.014s) 2023-01-11T21:39:48.8173803Z test_imag (__main__.TestVmapOperators) ... ok (0.008s) 2023-01-11T21:39:48.8174206Z test_is_complex (__main__.TestVmapOperators) ... ok (0.001s) 2023-01-11T21:39:48.8174623Z test_is_contiguous (__main__.TestVmapOperators) ... ok (0.007s) 2023-01-11T21:39:48.8175051Z test_is_floating_point (__main__.TestVmapOperators) ... ok (0.001s) 2023-01-11T21:39:48.8175453Z test_mm (__main__.TestVmapOperators) ... ok (0.013s) 2023-01-11T21:39:48.8175853Z test_movedim (__main__.TestVmapOperators) ... ok (0.007s) 2023-01-11T21:39:48.8176232Z test_mv (__main__.TestVmapOperators) ... ok (0.012s) 2023-01-11T21:39:48.8176605Z test_narrow (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8177007Z test_new_empty (__main__.TestVmapOperators) ... ok (0.001s) 2023-01-11T21:39:48.8177433Z test_new_empty_strided (__main__.TestVmapOperators) ... ok (0.009s) 2023-01-11T21:39:48.8177838Z test_new_zeros (__main__.TestVmapOperators) ... ok (0.002s) 2023-01-11T21:39:48.8178262Z test_no_random_op_support (__main__.TestVmapOperators) ... ok (0.099s) 2023-01-11T21:39:48.8178673Z test_real (__main__.TestVmapOperators) ... ok (0.009s) 2023-01-11T21:39:48.8179047Z test_reshape (__main__.TestVmapOperators) ... ok (0.004s) 2023-01-11T21:39:48.8179441Z test_reshape_as (__main__.TestVmapOperators) ... ok (0.005s) 2023-01-11T21:39:48.8179853Z test_result_type (__main__.TestVmapOperators) ... ok (0.005s) 2023-01-11T21:39:48.8180246Z test_select (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8180623Z test_slice (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8181031Z test_split (__main__.TestVmapOperators) ... ok (0.036s) 2023-01-11T21:39:48.8181444Z test_squeeze (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8181824Z test_stack (__main__.TestVmapOperators) ... ok (0.004s) 2023-01-11T21:39:48.8182207Z test_stride (__main__.TestVmapOperators) ... ok (0.001s) 2023-01-11T21:39:48.8182581Z test_sum_dim (__main__.TestVmapOperators) ... ok (0.006s) 2023-01-11T21:39:48.8183099Z test_t (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8183478Z test_tensor_split (__main__.TestVmapOperators) ... ok (0.088s) 2023-01-11T21:39:48.8183947Z test_to (__main__.TestVmapOperators) ... ok (0.004s) 2023-01-11T21:39:48.8184319Z test_trace (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8184706Z test_transpose (__main__.TestVmapOperators) ... ok (0.004s) 2023-01-11T21:39:48.8185140Z test_unary_pointwise_ops (__main__.TestVmapOperators) ... ok (0.094s) 2023-01-11T21:39:48.8185557Z test_unbind (__main__.TestVmapOperators) ... ok (0.106s) 2023-01-11T21:39:48.8185930Z test_unfold (__main__.TestVmapOperators) ... ok (0.003s) 2023-01-11T21:39:48.8186322Z test_view (__main__.TestVmapOperators) ... ok (0.010s) 2023-01-11T21:39:48.8186824Z test_view_as (__main__.TestVmapOperators) ... ok (0.012s) 2023-01-11T21:39:48.8187217Z test_view_as_complex (__main__.TestVmapOperators) ... ok (0.061s) 2023-01-11T21:39:48.8187630Z test_view_as_real (__main__.TestVmapOperators) ... ok (0.008s) 2023-01-11T21:39:48.8188032Z test_vmap_fallback_check (__main__.TestVmapOperators) ... ok (0.001s) 2023-01-11T21:39:48.8188708Z test_vmap_fallback_check_ok (__main__.TestVmapOperators) ... /var/lib/jenkins/workspace/test/test_legacy_vmap.py:965: UserWarning: Please use torch.vmap instead of torch._vmap_internals.vmap. 2023-01-11T21:39:48.8189247Z vmap(op_using_fallback)(torch.rand(3)) 2023-01-11T21:39:48.8189529Z ok (0.001s) 2023-01-11T21:39:48.8189684Z 2023-01-11T21:39:48.8190022Z ---------------------------------------------------------------------- 2023-01-11T21:39:48.8190365Z Ran 95 tests in 1.702s 2023-01-11T21:39:48.8190528Z 2023-01-11T21:39:48.8190618Z OK 2023-01-11T21:39:48.8190766Z 2023-01-11T21:39:48.8190898Z Generating XML reports... 2023-01-11T21:39:48.8191510Z Generated XML report: test-reports/python-unittest/test_legacy_vmap/TEST-TestVmapAPI-20230111213946.xml 2023-01-11T21:39:48.8192272Z Generated XML report: test-reports/python-unittest/test_legacy_vmap/TEST-TestVmapOperators-20230111213946.xml 2023-01-11T21:39:48.8192627Z 2023-01-11T21:39:48.8193201Z ##[endgroup] 2023-01-11T21:39:48.8193800Z FINISHED PRINTING LOG FILE of test_legacy_vmap (/var/lib/jenkins/workspace/test/test-reports/test_legacy_vmap_fmc2e1t3) 2023-01-11T21:39:48.8194134Z 2023-01-11T21:39:50.6391606Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:39:50.7038755Z Ignoring disabled issues: [] 2023-01-11T21:39:50.7194325Z Running test_license ... [2023-01-11 21:39:50.719139] 2023-01-11T21:39:50.7196552Z Executing ['/opt/conda/bin/python', '-bb', 'test_license.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:39:50.719411] 2023-01-11T21:39:52.5995770Z 2023-01-11T21:39:52.5996723Z Expand the folded group to see the log file of test_license 2023-01-11T21:39:52.5997623Z ##[group]PRINTING LOG FILE of test_license (/var/lib/jenkins/workspace/test/test-reports/test_license_3aoq8056) 2023-01-11T21:39:52.5997853Z 2023-01-11T21:39:52.5997928Z Running tests... 2023-01-11T21:39:52.5998323Z ---------------------------------------------------------------------- 2023-01-11T21:39:52.5998706Z Test results will be stored in test-reports/python-unittest/test_license 2023-01-11T21:39:52.5998985Z test_distinfo_license (__main__.TestLicense) 2023-01-11T21:39:52.5999256Z If run when pytorch is installed via a wheel, the license will be in ... ok (0.223s) 2023-01-11T21:39:52.5999585Z test_license_for_wheel (__main__.TestLicense) ... skip: can only be run in a source tree (0.000s) 2023-01-11T21:39:52.5999769Z 2023-01-11T21:39:52.5999969Z ---------------------------------------------------------------------- 2023-01-11T21:39:52.6000213Z Ran 2 tests in 0.223s 2023-01-11T21:39:52.6000313Z 2023-01-11T21:39:52.6000384Z OK (skipped=1) 2023-01-11T21:39:52.6000490Z 2023-01-11T21:39:52.6000577Z Generating XML reports... 2023-01-11T21:39:52.6000972Z Generated XML report: test-reports/python-unittest/test_license/TEST-TestLicense-20230111213952.xml 2023-01-11T21:39:52.6001388Z 2023-01-11T21:39:52.6001610Z ##[endgroup] 2023-01-11T21:39:52.6001983Z FINISHED PRINTING LOG FILE of test_license (/var/lib/jenkins/workspace/test/test-reports/test_license_3aoq8056) 2023-01-11T21:39:52.6002190Z 2023-01-11T21:39:54.4295663Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:39:54.4948776Z Ignoring disabled issues: [] 2023-01-11T21:39:54.5109812Z Running test_logging ... [2023-01-11 21:39:54.510656] 2023-01-11T21:39:54.5112101Z Executing ['/opt/conda/bin/python', '-bb', 'test_logging.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:39:54.510986] 2023-01-11T21:39:58.2847267Z 2023-01-11T21:39:58.2847806Z Expand the folded group to see the log file of test_logging 2023-01-11T21:39:58.2849510Z ##[group]PRINTING LOG FILE of test_logging (/var/lib/jenkins/workspace/test/test-reports/test_logging_ktxdq3z0) 2023-01-11T21:39:58.2850078Z 2023-01-11T21:39:58.2850230Z Running tests... 2023-01-11T21:39:58.2851039Z ---------------------------------------------------------------------- 2023-01-11T21:39:58.2851858Z Test results will be stored in test-reports/python-unittest/test_logging 2023-01-11T21:39:58.2852500Z testApiUsage (__main__.LoggingTest) 2023-01-11T21:39:58.2853143Z This test verifies that api usage logging is not triggered via static ... ok (2.090s) 2023-01-11T21:39:58.2853582Z 2023-01-11T21:39:58.2854066Z ---------------------------------------------------------------------- 2023-01-11T21:39:58.2854615Z Ran 1 test in 2.090s 2023-01-11T21:39:58.2854872Z 2023-01-11T21:39:58.2854994Z OK 2023-01-11T21:39:58.2855211Z 2023-01-11T21:39:58.2855407Z Generating XML reports... 2023-01-11T21:39:58.2856350Z Generated XML report: test-reports/python-unittest/test_logging/TEST-LoggingTest-20230111213955.xml 2023-01-11T21:39:58.2856876Z 2023-01-11T21:39:58.2857406Z ##[endgroup] 2023-01-11T21:39:58.2858280Z FINISHED PRINTING LOG FILE of test_logging (/var/lib/jenkins/workspace/test/test-reports/test_logging_ktxdq3z0) 2023-01-11T21:39:58.2858806Z 2023-01-11T21:40:00.1461892Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:40:00.2119419Z Ignoring disabled issues: [] 2023-01-11T21:40:00.2274180Z Running test_maskedtensor ... [2023-01-11 21:40:00.227158] 2023-01-11T21:40:00.2276226Z Executing ['/opt/conda/bin/python', '-bb', 'test_maskedtensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:40:00.227406] 2023-01-11T21:40:03.2950442Z 2023-01-11T21:40:03.2951412Z Expand the folded group to see the log file of test_maskedtensor 2023-01-11T21:40:03.2952467Z ##[group]PRINTING LOG FILE of test_maskedtensor (/var/lib/jenkins/workspace/test/test-reports/test_maskedtensor_0qyzhzi2) 2023-01-11T21:40:03.2952820Z 2023-01-11T21:40:03.2952951Z Running tests... 2023-01-11T21:40:03.2953655Z ---------------------------------------------------------------------- 2023-01-11T21:40:03.2954341Z Test results will be stored in test-reports/python-unittest/test_maskedtensor 2023-01-11T21:40:03.2955985Z test_binary_fn_aten_add (__main__.TestBinary) ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:156: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. 2023-01-11T21:40:03.2957012Z warnings.warn(("The PyTorch API of MaskedTensors is in prototype stage " 2023-01-11T21:40:03.2957420Z ok (0.004s) 2023-01-11T21:40:03.2957788Z test_binary_fn_aten_arctan2 (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2958256Z test_binary_fn_aten_atan2 (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2958688Z test_binary_fn_aten_bitwise_and (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2959218Z test_binary_fn_aten_bitwise_left_shift (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2959722Z test_binary_fn_aten_bitwise_or (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2960507Z test_binary_fn_aten_bitwise_right_shift (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2961030Z test_binary_fn_aten_bitwise_xor (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2961535Z test_binary_fn_aten_div (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2961931Z test_binary_fn_aten_divide (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2962348Z test_binary_fn_aten_eq (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2962687Z test_binary_fn_aten_floor_divide (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2963103Z test_binary_fn_aten_fmax (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2963572Z test_binary_fn_aten_fmin (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2964146Z test_binary_fn_aten_fmod (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2964630Z test_binary_fn_aten_ge (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2964961Z test_binary_fn_aten_greater (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2965239Z test_binary_fn_aten_greater_equal (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2965507Z test_binary_fn_aten_gt (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2965749Z test_binary_fn_aten_le (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2966001Z test_binary_fn_aten_less (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2966270Z test_binary_fn_aten_less_equal (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2966545Z test_binary_fn_aten_logaddexp (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2966812Z test_binary_fn_aten_logaddexp2 (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2967080Z test_binary_fn_aten_lt (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2967342Z test_binary_fn_aten_maximum (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2967595Z test_binary_fn_aten_minimum (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2967863Z test_binary_fn_aten_mul (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2968132Z test_binary_fn_aten_multiply (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2968387Z test_binary_fn_aten_ne (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2968655Z test_binary_fn_aten_nextafter (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2968929Z test_binary_fn_aten_not_equal (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2969388Z test_binary_fn_aten_remainder (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2969638Z test_binary_fn_aten_sub (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2969907Z test_binary_fn_aten_subtract (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2970187Z test_binary_fn_aten_true_divide (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2970455Z test_inplace_binary_fn_aten_add_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2970746Z test_inplace_binary_fn_aten_arctan2_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2971037Z test_inplace_binary_fn_aten_atan2_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2971333Z test_inplace_binary_fn_aten_bitwise_and_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2971628Z test_inplace_binary_fn_aten_bitwise_left_shift_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2971933Z test_inplace_binary_fn_aten_bitwise_or_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2972240Z test_inplace_binary_fn_aten_bitwise_right_shift_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2972534Z test_inplace_binary_fn_aten_bitwise_xor_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2972823Z test_inplace_binary_fn_aten_div_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2973111Z test_inplace_binary_fn_aten_divide_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2973396Z test_inplace_binary_fn_aten_eq_ (__main__.TestBinary) ... ok (0.012s) 2023-01-11T21:40:03.2973745Z test_inplace_binary_fn_aten_floor_divide_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2974038Z test_inplace_binary_fn_aten_fmod_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2974320Z test_inplace_binary_fn_aten_ge_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2974593Z test_inplace_binary_fn_aten_greater_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2974891Z test_inplace_binary_fn_aten_greater_equal_ (__main__.TestBinary) ... ok (0.012s) 2023-01-11T21:40:03.2975180Z test_inplace_binary_fn_aten_gt_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2975442Z test_inplace_binary_fn_aten_le_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2975728Z test_inplace_binary_fn_aten_less_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2976059Z test_inplace_binary_fn_aten_less_equal_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2976343Z test_inplace_binary_fn_aten_lt_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2976610Z test_inplace_binary_fn_aten_mul_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2976894Z test_inplace_binary_fn_aten_multiply_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2977174Z test_inplace_binary_fn_aten_ne_ (__main__.TestBinary) ... ok (0.011s) 2023-01-11T21:40:03.2977444Z test_inplace_binary_fn_aten_nextafter_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2977732Z test_inplace_binary_fn_aten_not_equal_ (__main__.TestBinary) ... ok (0.012s) 2023-01-11T21:40:03.2978016Z test_inplace_binary_fn_aten_remainder_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2978303Z test_inplace_binary_fn_aten_sub_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2978575Z test_inplace_binary_fn_aten_subtract_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2978870Z test_inplace_binary_fn_aten_true_divide_ (__main__.TestBinary) ... ok (0.002s) 2023-01-11T21:40:03.2979157Z test_masks_match_fn_name_add (__main__.TestBinary) ... ok (0.001s) 2023-01-11T21:40:03.2979416Z test_masks_match_fn_name_add_ (__main__.TestBinary) ... ok (0.001s) 2023-01-11T21:40:03.2979670Z test_all (__main__.TestReductions) ... ok (0.003s) 2023-01-11T21:40:03.2979910Z test_amax (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2980591Z test_amax_grad (__main__.TestReductions) ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:161: UserWarning: It is not recommended to create a MaskedTensor with a tensor that requires_grad. To avoid this, you can use data.clone().detach() 2023-01-11T21:40:03.2981102Z warnings.warn("It is not recommended to create a MaskedTensor with a tensor that requires_grad. " 2023-01-11T21:40:03.2981362Z ok (0.003s) 2023-01-11T21:40:03.2981569Z test_amin (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2981806Z test_amin_grad (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2982064Z test_grad_dtype (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2982636Z test_max_not_implemented (__main__.TestReductions) ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:299: UserWarning: max is not implemented in __torch_dispatch__ for MaskedTensor. 2023-01-11T21:40:03.2983203Z If you would like this operator to be supported, please file an issue for a feature request at https://github.com/pytorch/maskedtensor/issues with a minimal reproducible code snippet. 2023-01-11T21:40:03.2983752Z In the case that the semantics for the operator are not trivial, it would be appreciated to also include a proposal for the semantics. 2023-01-11T21:40:03.2984051Z warnings.warn(msg) 2023-01-11T21:40:03.2984228Z ok (0.001s) 2023-01-11T21:40:03.2984436Z test_mean (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2984683Z test_mean_dim_grad (__main__.TestReductions) ... ok (0.003s) 2023-01-11T21:40:03.2984937Z test_mean_grad_case_1a (__main__.TestReductions) 2023-01-11T21:40:03.2985785Z values.requires_grad = True ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:156: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. 2023-01-11T21:40:03.2986371Z warnings.warn(("The PyTorch API of MaskedTensors is in prototype stage " 2023-01-11T21:40:03.2986962Z /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:161: UserWarning: It is not recommended to create a MaskedTensor with a tensor that requires_grad. To avoid this, you can use data.clone().detach() 2023-01-11T21:40:03.2987431Z warnings.warn("It is not recommended to create a MaskedTensor with a tensor that requires_grad. " 2023-01-11T21:40:03.2987721Z ok (0.007s) 2023-01-11T21:40:03.2987915Z test_mean_grad_case_1b (__main__.TestReductions) 2023-01-11T21:40:03.2988162Z values.requires_grad = False ... ok (0.003s) 2023-01-11T21:40:03.2988402Z test_mean_grad_case_1c (__main__.TestReductions) 2023-01-11T21:40:03.2989186Z values.requires_grad = True ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:156: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. 2023-01-11T21:40:03.2989756Z warnings.warn(("The PyTorch API of MaskedTensors is in prototype stage " 2023-01-11T21:40:03.2989990Z ok (0.005s) 2023-01-11T21:40:03.2990192Z test_mean_grad_case_1d (__main__.TestReductions) 2023-01-11T21:40:03.2990425Z values.requires_grad = False ... ok (0.001s) 2023-01-11T21:40:03.2990648Z test_mean_grad_case_1e (__main__.TestReductions) 2023-01-11T21:40:03.2991265Z values.requires_grad = True ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:161: UserWarning: It is not recommended to create a MaskedTensor with a tensor that requires_grad. To avoid this, you can use data.clone().detach() 2023-01-11T21:40:03.2991762Z warnings.warn("It is not recommended to create a MaskedTensor with a tensor that requires_grad. " 2023-01-11T21:40:03.2992004Z ok (0.005s) 2023-01-11T21:40:03.2992207Z test_mean_grad_case_1f (__main__.TestReductions) 2023-01-11T21:40:03.2992995Z values.requires_grad = False ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:156: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project. 2023-01-11T21:40:03.2993583Z warnings.warn(("The PyTorch API of MaskedTensors is in prototype stage " 2023-01-11T21:40:03.2993803Z ok (0.002s) 2023-01-11T21:40:03.2994009Z test_prod (__main__.TestReductions) ... ok (0.003s) 2023-01-11T21:40:03.2994644Z test_prod_grad (__main__.TestReductions) ... /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py:161: UserWarning: It is not recommended to create a MaskedTensor with a tensor that requires_grad. To avoid this, you can use data.clone().detach() 2023-01-11T21:40:03.2995206Z warnings.warn("It is not recommended to create a MaskedTensor with a tensor that requires_grad. " 2023-01-11T21:40:03.2995460Z ok (0.003s) 2023-01-11T21:40:03.2995665Z test_sum (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2995901Z test_sum_grad (__main__.TestReductions) ... ok (0.002s) 2023-01-11T21:40:03.2996171Z test_inplace_unary_fn_aten_abs_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2996454Z test_inplace_unary_fn_aten_absolute_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2996727Z test_inplace_unary_fn_aten_acos_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2997004Z test_inplace_unary_fn_aten_acosh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2997320Z test_inplace_unary_fn_aten_arccos_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2997600Z test_inplace_unary_fn_aten_arccosh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2997869Z test_inplace_unary_fn_aten_arcsin_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2998146Z test_inplace_unary_fn_aten_arcsinh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2998427Z test_inplace_unary_fn_aten_arctan_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2998693Z test_inplace_unary_fn_aten_arctanh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2998965Z test_inplace_unary_fn_aten_asin_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2999242Z test_inplace_unary_fn_aten_asinh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2999534Z test_inplace_unary_fn_aten_atan_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.2999810Z test_inplace_unary_fn_aten_atanh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3000097Z test_inplace_unary_fn_aten_bitwise_not_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3000380Z test_inplace_unary_fn_aten_ceil_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3000642Z test_inplace_unary_fn_aten_clamp_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3000922Z test_inplace_unary_fn_aten_clip_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3001207Z test_inplace_unary_fn_aten_conj_physical_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3001479Z test_inplace_unary_fn_aten_cos_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3001750Z test_inplace_unary_fn_aten_cosh_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3002026Z test_inplace_unary_fn_aten_deg2rad_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3002311Z test_inplace_unary_fn_aten_digamma_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3002571Z test_inplace_unary_fn_aten_erf_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3002843Z test_inplace_unary_fn_aten_erfc_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3003117Z test_inplace_unary_fn_aten_erfinv_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3003378Z test_inplace_unary_fn_aten_exp2_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3003650Z test_inplace_unary_fn_aten_exp_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3003926Z test_inplace_unary_fn_aten_expm1_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3004202Z test_inplace_unary_fn_aten_fix_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3004463Z test_inplace_unary_fn_aten_floor_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3004738Z test_inplace_unary_fn_aten_frac_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3005010Z test_inplace_unary_fn_aten_i0_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3005275Z test_inplace_unary_fn_aten_lgamma_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3005553Z test_inplace_unary_fn_aten_log10_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3005826Z test_inplace_unary_fn_aten_log1p_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3006086Z test_inplace_unary_fn_aten_log2_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3006359Z test_inplace_unary_fn_aten_log_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3006632Z test_inplace_unary_fn_aten_logit_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3006911Z test_inplace_unary_fn_aten_nan_to_num_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3007177Z test_inplace_unary_fn_aten_neg_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3007455Z test_inplace_unary_fn_aten_negative_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3007734Z test_inplace_unary_fn_aten_pow_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3007998Z test_inplace_unary_fn_aten_rad2deg_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3008321Z test_inplace_unary_fn_aten_reciprocal_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3008605Z test_inplace_unary_fn_aten_round_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3008881Z test_inplace_unary_fn_aten_rsqrt_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3009368Z test_inplace_unary_fn_aten_sgn_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3009648Z test_inplace_unary_fn_aten_sigmoid_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3009929Z test_inplace_unary_fn_aten_sign_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3010190Z test_inplace_unary_fn_aten_sin_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3010465Z test_inplace_unary_fn_aten_sinc_ (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3010810Z test_inplace_unary_fn_aten_sinh_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3011086Z test_inplace_unary_fn_aten_sqrt_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3011353Z test_inplace_unary_fn_aten_square_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3011630Z test_inplace_unary_fn_aten_tan_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3011902Z test_inplace_unary_fn_aten_tanh_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3012164Z test_inplace_unary_fn_aten_trunc_ (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3012432Z test_unary_fn_aten_abs (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3012694Z test_unary_fn_aten_absolute (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3012944Z test_unary_fn_aten_acos (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3013205Z test_unary_fn_aten_acosh (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3013466Z test_unary_fn_aten_angle (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3013727Z test_unary_fn_aten_arccos (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3013976Z test_unary_fn_aten_arccosh (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3014240Z test_unary_fn_aten_arcsin (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3014503Z test_unary_fn_aten_arcsinh (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3014749Z test_unary_fn_aten_arctan (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3015008Z test_unary_fn_aten_arctanh (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3015268Z test_unary_fn_aten_asin (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3015513Z test_unary_fn_aten_asinh (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3015769Z test_unary_fn_aten_atan (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3016025Z test_unary_fn_aten_atanh (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3016294Z test_unary_fn_aten_bitwise_not (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3016546Z test_unary_fn_aten_ceil (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3016805Z test_unary_fn_aten_clamp (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3017066Z test_unary_fn_aten_clip (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3017321Z test_unary_fn_aten_conj_physical (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3017591Z test_unary_fn_aten_cos (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3017849Z test_unary_fn_aten_cosh (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3018111Z test_unary_fn_aten_deg2rad (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3018362Z test_unary_fn_aten_digamma (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3018623Z test_unary_fn_aten_erf (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3018879Z test_unary_fn_aten_erfc (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3019124Z test_unary_fn_aten_erfinv (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3019382Z test_unary_fn_aten_exp (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3019640Z test_unary_fn_aten_exp2 (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3019933Z test_unary_fn_aten_expm1 (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3020187Z test_unary_fn_aten_fix (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3020443Z test_unary_fn_aten_floor (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3020697Z test_unary_fn_aten_frac (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3020935Z test_unary_fn_aten_i0 (__main__.TestUnary) ... ok (0.002s) 2023-01-11T21:40:03.3021190Z test_unary_fn_aten_isnan (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3021447Z test_unary_fn_aten_lgamma (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3021691Z test_unary_fn_aten_log (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3021947Z test_unary_fn_aten_log10 (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3022231Z test_unary_fn_aten_log1p (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3022470Z test_unary_fn_aten_log2 (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3022722Z test_unary_fn_aten_logit (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3022982Z test_unary_fn_aten_nan_to_num (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3023243Z test_unary_fn_aten_neg (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3023543Z test_unary_fn_aten_negative (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3023816Z test_unary_fn_aten_positive (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3024076Z test_unary_fn_aten_pow (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3024320Z test_unary_fn_aten_rad2deg (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3024590Z test_unary_fn_aten_reciprocal (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3024858Z test_unary_fn_aten_round (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3025098Z test_unary_fn_aten_rsqrt (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3025351Z test_unary_fn_aten_sgn (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3025613Z test_unary_fn_aten_sigmoid (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3025872Z test_unary_fn_aten_sign (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3026116Z test_unary_fn_aten_signbit (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3026370Z test_unary_fn_aten_sin (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3026621Z test_unary_fn_aten_sinc (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3026862Z test_unary_fn_aten_sinh (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3027111Z test_unary_fn_aten_sqrt (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3027365Z test_unary_fn_aten_square (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3027610Z test_unary_fn_aten_tan (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3027860Z test_unary_fn_aten_tanh (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3028112Z test_unary_fn_aten_trunc (__main__.TestUnary) ... ok (0.001s) 2023-01-11T21:40:03.3028261Z 2023-01-11T21:40:03.3028491Z ---------------------------------------------------------------------- 2023-01-11T21:40:03.3028719Z Ran 207 tests in 0.461s 2023-01-11T21:40:03.3028833Z 2023-01-11T21:40:03.3028896Z OK 2023-01-11T21:40:03.3028986Z 2023-01-11T21:40:03.3029070Z Generating XML reports... 2023-01-11T21:40:03.3029460Z Generated XML report: test-reports/python-unittest/test_maskedtensor/TEST-TestBinary-20230111214002.xml 2023-01-11T21:40:03.3029962Z Generated XML report: test-reports/python-unittest/test_maskedtensor/TEST-TestReductions-20230111214002.xml 2023-01-11T21:40:03.3032439Z Generated XML report: test-reports/python-unittest/test_maskedtensor/TEST-TestUnary-20230111214002.xml 2023-01-11T21:40:03.3032763Z 2023-01-11T21:40:03.3033064Z ##[endgroup] 2023-01-11T21:40:03.3033509Z FINISHED PRINTING LOG FILE of test_maskedtensor (/var/lib/jenkins/workspace/test/test-reports/test_maskedtensor_0qyzhzi2) 2023-01-11T21:40:03.3033950Z 2023-01-11T21:40:05.1696220Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:40:05.2568397Z Ignoring disabled issues: [] 2023-01-11T21:40:05.2724914Z Running test_matmul_cuda ... [2023-01-11 21:40:05.272201] 2023-01-11T21:40:05.2727306Z Executing ['/opt/conda/bin/python', '-bb', 'test_matmul_cuda.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:40:05.272470] 2023-01-11T21:40:07.1211610Z 2023-01-11T21:40:07.1212142Z Expand the folded group to see the log file of test_matmul_cuda 2023-01-11T21:40:07.1213053Z ##[group]PRINTING LOG FILE of test_matmul_cuda (/var/lib/jenkins/workspace/test/test-reports/test_matmul_cuda_9t_f89h0) 2023-01-11T21:40:07.1213350Z 2023-01-11T21:40:07.1213454Z Running tests... 2023-01-11T21:40:07.1213979Z ---------------------------------------------------------------------- 2023-01-11T21:40:07.1214389Z 2023-01-11T21:40:07.1214597Z ---------------------------------------------------------------------- 2023-01-11T21:40:07.1214871Z Ran 0 tests in 0.000s 2023-01-11T21:40:07.1215009Z 2023-01-11T21:40:07.1215082Z OK 2023-01-11T21:40:07.1215219Z 2023-01-11T21:40:07.1215376Z Generating XML reports... 2023-01-11T21:40:07.1215962Z Test results will be stored in test-reports/python-unittest/test_matmul_cuda 2023-01-11T21:40:07.1216143Z 2023-01-11T21:40:07.1216377Z ##[endgroup] 2023-01-11T21:40:07.1216774Z FINISHED PRINTING LOG FILE of test_matmul_cuda (/var/lib/jenkins/workspace/test/test-reports/test_matmul_cuda_9t_f89h0) 2023-01-11T21:40:07.1216990Z 2023-01-11T21:40:08.9781921Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:40:09.0431591Z Ignoring disabled issues: [] 2023-01-11T21:40:09.0587826Z Running test_mkl_verbose ... [2023-01-11 21:40:09.058414] 2023-01-11T21:40:09.0588992Z Executing ['/opt/conda/bin/python', '-bb', 'test_mkl_verbose.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:40:09.058671] 2023-01-11T21:40:14.5763268Z 2023-01-11T21:40:14.5763740Z Expand the folded group to see the log file of test_mkl_verbose 2023-01-11T21:40:14.5764832Z ##[group]PRINTING LOG FILE of test_mkl_verbose (/var/lib/jenkins/workspace/test/test-reports/test_mkl_verbose_rikpwh8j) 2023-01-11T21:40:14.5765235Z 2023-01-11T21:40:14.5765368Z Running tests... 2023-01-11T21:40:14.5766000Z ---------------------------------------------------------------------- 2023-01-11T21:40:14.5766640Z Test results will be stored in test-reports/python-unittest/test_mkl_verbose 2023-01-11T21:40:14.5767152Z test_verbose_off (__main__.TestMKLVerbose) ... ok (1.610s) 2023-01-11T21:40:14.5767577Z test_verbose_on (__main__.TestMKLVerbose) ... ok (2.242s) 2023-01-11T21:40:14.5767813Z 2023-01-11T21:40:14.5768125Z ---------------------------------------------------------------------- 2023-01-11T21:40:14.5768537Z Ran 2 tests in 3.852s 2023-01-11T21:40:14.5768722Z 2023-01-11T21:40:14.5768833Z OK 2023-01-11T21:40:14.5768991Z 2023-01-11T21:40:14.5769382Z Generating XML reports... 2023-01-11T21:40:14.5770114Z Generated XML report: test-reports/python-unittest/test_mkl_verbose/TEST-TestMKLVerbose-20230111214010.xml 2023-01-11T21:40:14.5770551Z 2023-01-11T21:40:14.5771088Z ##[endgroup] 2023-01-11T21:40:14.5771772Z FINISHED PRINTING LOG FILE of test_mkl_verbose (/var/lib/jenkins/workspace/test/test-reports/test_mkl_verbose_rikpwh8j) 2023-01-11T21:40:14.5772108Z 2023-01-11T21:40:16.3967072Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:40:16.4628309Z Ignoring disabled issues: [] 2023-01-11T21:40:16.4783747Z Running test_mkldnn ... [2023-01-11 21:40:16.478119] 2023-01-11T21:40:16.4786229Z Executing ['/opt/conda/bin/python', '-bb', 'test_mkldnn.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:40:16.478370] 2023-01-11T21:40:59.9240476Z 2023-01-11T21:40:59.9240983Z Expand the folded group to see the log file of test_mkldnn 2023-01-11T21:40:59.9241840Z ##[group]PRINTING LOG FILE of test_mkldnn (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_q_oe10ug) 2023-01-11T21:40:59.9289985Z 2023-01-11T21:40:59.9290621Z Running tests... 2023-01-11T21:40:59.9291347Z ---------------------------------------------------------------------- 2023-01-11T21:40:59.9291743Z Test results will be stored in test-reports/python-unittest/test_mkldnn 2023-01-11T21:40:59.9292158Z test_0_dimension_tensor (__main__.TestMkldnn) ... ok (0.289s) 2023-01-11T21:40:59.9292635Z test_adaptive_avg_pool2d (__main__.TestMkldnn) ... ok (0.112s) 2023-01-11T21:40:59.9293147Z test_adaptive_avg_pool2d_bf16 (__main__.TestMkldnn) ... ok (0.031s) 2023-01-11T21:40:59.9293534Z test_add (__main__.TestMkldnn) ... ok (0.059s) 2023-01-11T21:40:59.9293983Z test_autograd_from_mkldnn (__main__.TestMkldnn) ... ok (0.006s) 2023-01-11T21:40:59.9294451Z test_autograd_to_mkldnn (__main__.TestMkldnn) ... ok (0.009s) 2023-01-11T21:40:59.9294888Z test_avg_pool2d (__main__.TestMkldnn) ... ok (0.014s) 2023-01-11T21:40:59.9306225Z test_avg_pool2d_bf16 (__main__.TestMkldnn) ... ok (0.006s) 2023-01-11T21:40:59.9306618Z test_avg_pool2d_stride_none (__main__.TestMkldnn) ... ok (0.005s) 2023-01-11T21:40:59.9307042Z test_avg_pool3d (__main__.TestMkldnn) ... ok (1.191s) 2023-01-11T21:40:59.9307503Z test_avg_pool3d_bf16 (__main__.TestMkldnn) ... ok (0.274s) 2023-01-11T21:40:59.9308732Z test_batch_norm_2d (__main__.TestMkldnn) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_trace.py:780: UserWarning: The input to trace is already a ScriptModule, tracing it is a no-op. Returning the object as is. 2023-01-11T21:40:59.9309394Z warnings.warn( 2023-01-11T21:40:59.9309683Z ok (0.098s) 2023-01-11T21:40:59.9309998Z test_batch_norm_2d_bf16 (__main__.TestMkldnn) ... ok (0.018s) 2023-01-11T21:40:59.9310400Z test_batch_norm_3d (__main__.TestMkldnn) ... ok (1.020s) 2023-01-11T21:40:59.9310808Z test_batch_norm_3d_bf16 (__main__.TestMkldnn) ... ok (0.399s) 2023-01-11T21:40:59.9311219Z test_clone (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9311678Z test_conv1d (__main__.TestMkldnn) ... ok (0.142s) 2023-01-11T21:40:59.9312116Z test_conv1d_bf16 (__main__.TestMkldnn) ... ok (0.048s) 2023-01-11T21:40:59.9312607Z test_conv1d_functional (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9312914Z test_conv2d (__main__.TestMkldnn) ... ok (0.759s) 2023-01-11T21:40:59.9313145Z test_conv2d_bf16 (__main__.TestMkldnn) ... ok (0.174s) 2023-01-11T21:40:59.9313391Z test_conv2d_legacy_jit_model (__main__.TestMkldnn) 2023-01-11T21:40:59.9313686Z MKLDNN integration used to serialize models with 5d weight for grouped ... ok (0.010s) 2023-01-11T21:40:59.9313975Z test_conv2d_nhwc (__main__.TestMkldnn) ... ok (0.833s) 2023-01-11T21:40:59.9314216Z test_conv2d_nhwc_bf16 (__main__.TestMkldnn) ... ok (1.715s) 2023-01-11T21:40:59.9314460Z test_conv3d (__main__.TestMkldnn) ... ok (2.053s) 2023-01-11T21:40:59.9314701Z test_conv3d_bf16 (__main__.TestMkldnn) ... ok (0.297s) 2023-01-11T21:40:59.9314944Z test_conversion (__main__.TestMkldnn) ... ok (0.018s) 2023-01-11T21:40:59.9315181Z test_copy (__main__.TestMkldnn) ... ok (0.013s) 2023-01-11T21:40:59.9315421Z test_detach (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9315642Z test_empty (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9315874Z test_gelu (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9316108Z test_gelu_bf16 (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9316344Z test_is_mkldnn (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9316579Z test_is_mkldnn_jit (__main__.TestMkldnn) ... ok (0.004s) 2023-01-11T21:40:59.9317176Z test_legacy_new_failure (__main__.TestMkldnn) ... /var/lib/jenkins/workspace/test/test_mkldnn.py:1222: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:40:59.9318126Z self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x.storage())) 2023-01-11T21:40:59.9318747Z ok (0.006s) 2023-01-11T21:40:59.9319128Z test_linear (__main__.TestMkldnn) ... ok (0.023s) 2023-01-11T21:40:59.9319610Z test_linear_backward (__main__.TestMkldnn) ... ok (0.007s) 2023-01-11T21:40:59.9320098Z test_linear_bf16 (__main__.TestMkldnn) ... ok (0.012s) 2023-01-11T21:40:59.9320587Z test_linear_non_contiguous_weight (__main__.TestMkldnn) ... ok (0.005s) 2023-01-11T21:40:59.9321003Z test_max_pool2d (__main__.TestMkldnn) ... ok (0.094s) 2023-01-11T21:40:59.9321485Z test_max_pool2d_bf16 (__main__.TestMkldnn) ... ok (0.040s) 2023-01-11T21:40:59.9321980Z test_max_pool2d_stride_none (__main__.TestMkldnn) ... ok (0.009s) 2023-01-11T21:40:59.9322450Z test_max_pool3d (__main__.TestMkldnn) ... ok (13.386s) 2023-01-11T21:40:59.9322923Z test_max_pool3d_bf16 (__main__.TestMkldnn) ... ok (7.892s) 2023-01-11T21:40:59.9323369Z test_max_pool_unsupported (__main__.TestMkldnn) ... ok (0.012s) 2023-01-11T21:40:59.9323652Z test_mkldnn_conv_shapecheck (__main__.TestMkldnn) ... ok (0.035s) 2023-01-11T21:40:59.9323894Z test_mul (__main__.TestMkldnn) ... ok (0.052s) 2023-01-11T21:40:59.9324195Z test_prelu (__main__.TestMkldnn) ... ok (6.011s) 2023-01-11T21:40:59.9324590Z test_prelu_bf16 (__main__.TestMkldnn) ... ok (3.265s) 2023-01-11T21:40:59.9325011Z test_relu (__main__.TestMkldnn) ... ok (0.003s) 2023-01-11T21:40:59.9325466Z test_relu_ (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9325904Z test_relu_bf16 (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9326370Z test_relu_inplace_bf16 (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9326719Z test_repr (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9326960Z test_reshape (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9327212Z test_reshape_backward (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9327469Z test_reshape_blocked_format (__main__.TestMkldnn) ... ok (0.007s) 2023-01-11T21:40:59.9328175Z test_resnet18 (__main__.TestMkldnn) ... /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. 2023-01-11T21:40:59.9328598Z warnings.warn( 2023-01-11T21:40:59.9329422Z /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`. 2023-01-11T21:40:59.9329853Z warnings.warn(msg) 2023-01-11T21:40:59.9330032Z ok (0.325s) 2023-01-11T21:40:59.9330249Z test_resnext50_32x4d (__main__.TestMkldnn) ... ok (0.651s) 2023-01-11T21:40:59.9330505Z test_set_data_tensorimpl_type (__main__.TestMkldnn) ... ok (0.003s) 2023-01-11T21:40:59.9330774Z test_sigmoid (__main__.TestMkldnn) ... ok (0.002s) 2023-01-11T21:40:59.9331015Z test_softmax (__main__.TestMkldnn) ... ok (0.003s) 2023-01-11T21:40:59.9331257Z test_tanh (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9331483Z test_transpose (__main__.TestMkldnn) ... ok (0.003s) 2023-01-11T21:40:59.9331744Z test_transpose_invalid_dime (__main__.TestMkldnn) ... ok (0.008s) 2023-01-11T21:40:59.9332012Z test_unsupported (__main__.TestMkldnn) ... ok (0.055s) 2023-01-11T21:40:59.9332237Z test_view (__main__.TestMkldnn) ... ok (0.007s) 2023-01-11T21:40:59.9332466Z test_zero_ (__main__.TestMkldnn) ... ok (0.001s) 2023-01-11T21:40:59.9332602Z 2023-01-11T21:40:59.9332812Z ---------------------------------------------------------------------- 2023-01-11T21:40:59.9333043Z Ran 68 tests in 41.538s 2023-01-11T21:40:59.9333159Z 2023-01-11T21:40:59.9333218Z OK 2023-01-11T21:40:59.9333308Z 2023-01-11T21:40:59.9333391Z Generating XML reports... 2023-01-11T21:40:59.9333782Z Generated XML report: test-reports/python-unittest/test_mkldnn/TEST-TestMkldnn-20230111214017.xml 2023-01-11T21:40:59.9333986Z 2023-01-11T21:40:59.9334323Z ##[endgroup] 2023-01-11T21:40:59.9334794Z FINISHED PRINTING LOG FILE of test_mkldnn (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_q_oe10ug) 2023-01-11T21:40:59.9335007Z 2023-01-11T21:41:01.8266934Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:01.8991206Z Ignoring disabled issues: [] 2023-01-11T21:41:01.9146540Z Running test_mkldnn_fusion ... [2023-01-11 21:41:01.914341] 2023-01-11T21:41:01.9147965Z Executing ['/opt/conda/bin/python', '-bb', 'test_mkldnn_fusion.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:41:01.914572] 2023-01-11T21:41:26.0862589Z 2023-01-11T21:41:26.0863049Z Expand the folded group to see the log file of inductor/test_torchinductor 2023-01-11T21:41:26.0865847Z ##[group]PRINTING LOG FILE of inductor/test_torchinductor (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_9_sfivr0) 2023-01-11T21:41:26.0899984Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:26.0900784Z 2023-01-11T21:41:26.0901545Z Running tests... 2023-01-11T21:41:26.0902586Z ---------------------------------------------------------------------- 2023-01-11T21:41:26.0903542Z Test results will be stored in test-reports/python-unittest/inductor.test_torchinductor 2023-01-11T21:41:26.0906740Z test_auto_simd (__main__.CPUReproTests) ... ok (0.226s) 2023-01-11T21:41:26.0908515Z test_complex_memory_overlap (__main__.CPUReproTests) ... ok (0.002s) 2023-01-11T21:41:26.0910527Z test_conv_stride_constraints (__main__.CPUReproTests) ... [2023-01-11 21:23:34,815] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.0911325Z [2023-01-11 21:23:36,361] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.0912054Z [2023-01-11 21:23:36,382] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.0912715Z [2023-01-11 21:23:36,396] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.0913009Z 2023-01-11T21:41:26.0994999Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.0995269Z import torch 2023-01-11T21:41:26.0996013Z import random 2023-01-11T21:41:26.0996305Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.0996655Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.0996856Z 2023-01-11T21:41:26.0996945Z aten = torch.ops.aten 2023-01-11T21:41:26.0997273Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.0997606Z async_compile = AsyncCompile() 2023-01-11T21:41:26.0997776Z 2023-01-11T21:41:26.0997782Z 2023-01-11T21:41:26.0998005Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.0998447Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.0998915Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.0999247Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.0999488Z { 2023-01-11T21:41:26.0999736Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.0999991Z { 2023-01-11T21:41:26.1000211Z #pragma omp for collapse(2) 2023-01-11T21:41:26.1000482Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1000722Z { 2023-01-11T21:41:26.1000934Z for(long i1=0; i1<5; i1+=1) 2023-01-11T21:41:26.1001173Z { 2023-01-11T21:41:26.1001408Z #pragma GCC ivdep 2023-01-11T21:41:26.1001674Z for(long i2=0; i2<256; i2+=1) 2023-01-11T21:41:26.1001902Z { 2023-01-11T21:41:26.1002124Z { 2023-01-11T21:41:26.1002348Z { 2023-01-11T21:41:26.1002614Z auto tmp0 = in_ptr0[i2 + (256*i1) + (1280*i0)]; 2023-01-11T21:41:26.1002929Z out_ptr0[i1 + (5*i2) + (1280*i0)] = tmp0; 2023-01-11T21:41:26.1003197Z } 2023-01-11T21:41:26.1003568Z } 2023-01-11T21:41:26.1003789Z } 2023-01-11T21:41:26.1004005Z } 2023-01-11T21:41:26.1004201Z } 2023-01-11T21:41:26.1004400Z } 2023-01-11T21:41:26.1004596Z } 2023-01-11T21:41:26.1004803Z ''') 2023-01-11T21:41:26.1004928Z 2023-01-11T21:41:26.1004933Z 2023-01-11T21:41:26.1005057Z async_compile.wait(globals()) 2023-01-11T21:41:26.1005322Z del async_compile 2023-01-11T21:41:26.1005466Z 2023-01-11T21:41:26.1005558Z def call(args): 2023-01-11T21:41:26.1005783Z inp_1, weight_1 = args 2023-01-11T21:41:26.1006029Z args.clear() 2023-01-11T21:41:26.1006467Z buf0 = empty_strided((2, 5, 16, 16), (1280, 1, 80, 5), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1006841Z kernel_cpp_0(c_void_p(inp_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1007143Z del inp_1 2023-01-11T21:41:26.1007530Z buf1 = aten.convolution(buf0, weight_1, None, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.1007877Z assert_size_stride(buf1, (2, 6, 14, 14), (1176, 1, 84, 6)) 2023-01-11T21:41:26.1008144Z del buf0 2023-01-11T21:41:26.1008361Z del weight_1 2023-01-11T21:41:26.1008580Z return (buf1, ) 2023-01-11T21:41:26.1008717Z 2023-01-11T21:41:26.1008723Z 2023-01-11T21:41:26.1008825Z if __name__ == "__main__": 2023-01-11T21:41:26.1009344Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1009700Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1010185Z inp_1 = rand_strided((2, 5, 16, 16), (1280, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1010693Z weight_1 = rand_strided((6, 5, 3, 3), (45, 1, 15, 5), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1011063Z print_performance(lambda: call([inp_1, weight_1])) 2023-01-11T21:41:26.1011267Z 2023-01-11T21:41:26.1011272Z 2023-01-11T21:41:26.1011390Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1011635Z import torch 2023-01-11T21:41:26.1011862Z import random 2023-01-11T21:41:26.1012160Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1012499Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1012699Z 2023-01-11T21:41:26.1012803Z aten = torch.ops.aten 2023-01-11T21:41:26.1013124Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1013441Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1013605Z 2023-01-11T21:41:26.1013611Z 2023-01-11T21:41:26.1013732Z async_compile.wait(globals()) 2023-01-11T21:41:26.1013989Z del async_compile 2023-01-11T21:41:26.1014135Z 2023-01-11T21:41:26.1014227Z def call(args): 2023-01-11T21:41:26.1014450Z inp_1, weight_1 = args 2023-01-11T21:41:26.1014692Z args.clear() 2023-01-11T21:41:26.1015008Z buf0 = aten.convolution(inp_1, weight_1, None, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.1015355Z assert_size_stride(buf0, (2, 6, 14, 14), (1176, 196, 14, 1)) 2023-01-11T21:41:26.1015620Z del inp_1 2023-01-11T21:41:26.1015841Z del weight_1 2023-01-11T21:41:26.1016057Z return (buf0, ) 2023-01-11T21:41:26.1016199Z 2023-01-11T21:41:26.1016205Z 2023-01-11T21:41:26.1016303Z if __name__ == "__main__": 2023-01-11T21:41:26.1016591Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1016943Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1017448Z inp_1 = rand_strided((2, 5, 16, 16), (1280, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1017950Z weight_1 = rand_strided((6, 5, 3, 3), (45, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1018326Z print_performance(lambda: call([inp_1, weight_1])) 2023-01-11T21:41:26.1018529Z 2023-01-11T21:41:26.1018600Z ok (1.605s) 2023-01-11T21:41:26.1019206Z test_cpp_kernel_profile (__main__.CPUReproTests) ... STAGE:2023-01-11 21:23:36 1448:1448 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:41:26.1019904Z [2023-01-11 21:23:36,410] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 0 2023-01-11T21:41:26.1020775Z [2023-01-11 21:23:40,171] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 0 2023-01-11T21:41:26.1021584Z STAGE:2023-01-11 21:23:40 1448:1448 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:41:26.1022431Z STAGE:2023-01-11 21:23:40 1448:1448 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:41:26.1022805Z 2023-01-11T21:41:26.1022978Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1023399Z import torch 2023-01-11T21:41:26.1023689Z import random 2023-01-11T21:41:26.1024079Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1024564Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1024831Z 2023-01-11T21:41:26.1024971Z aten = torch.ops.aten 2023-01-11T21:41:26.1025512Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1025971Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1026208Z 2023-01-11T21:41:26.1026216Z 2023-01-11T21:41:26.1026454Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1026855Z #include 2023-01-11T21:41:26.1027462Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1028098Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1028531Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1028939Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1029272Z { 2023-01-11T21:41:26.1029639Z RECORD_FUNCTION("graph_0_kernel_cpp_0", c10::ArrayRef({})); 2023-01-11T21:41:26.1030018Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1030291Z { 2023-01-11T21:41:26.1030520Z #pragma omp for 2023-01-11T21:41:26.1030800Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.1031059Z { 2023-01-11T21:41:26.1031377Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1031800Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1032146Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1032448Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1032700Z } 2023-01-11T21:41:26.1032970Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1033274Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.1033518Z { 2023-01-11T21:41:26.1033775Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1034069Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.1034346Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1034634Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1034887Z } 2023-01-11T21:41:26.1035101Z } 2023-01-11T21:41:26.1035316Z } 2023-01-11T21:41:26.1035563Z ''') 2023-01-11T21:41:26.1035685Z 2023-01-11T21:41:26.1035707Z 2023-01-11T21:41:26.1035822Z async_compile.wait(globals()) 2023-01-11T21:41:26.1036107Z del async_compile 2023-01-11T21:41:26.1036266Z 2023-01-11T21:41:26.1036369Z def call(args): 2023-01-11T21:41:26.1036612Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.1036873Z args.clear() 2023-01-11T21:41:26.1037315Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1037781Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1038131Z del arg0_1 2023-01-11T21:41:26.1038370Z del arg1_1 2023-01-11T21:41:26.1038615Z return (buf0, ) 2023-01-11T21:41:26.1038760Z 2023-01-11T21:41:26.1038766Z 2023-01-11T21:41:26.1038875Z if __name__ == "__main__": 2023-01-11T21:41:26.1039199Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1039589Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1040144Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1040717Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1041291Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.1041515Z 2023-01-11T21:41:26.1041656Z ok (3.779s) 2023-01-11T21:41:26.1042031Z test_cpu_vec_cosim (__main__.CPUReproTests) ... ok (0.001s) 2023-01-11T21:41:26.1042809Z test_inplace_add_alpha (__main__.CPUReproTests) ... [2023-01-11 21:23:40,194] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.1043600Z [2023-01-11 21:23:41,693] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.1043903Z 2023-01-11T21:41:26.1044049Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1044380Z import torch 2023-01-11T21:41:26.1044665Z import random 2023-01-11T21:41:26.1045114Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1045588Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1045808Z 2023-01-11T21:41:26.1045913Z aten = torch.ops.aten 2023-01-11T21:41:26.1046223Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1046526Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1046690Z 2023-01-11T21:41:26.1046695Z 2023-01-11T21:41:26.1046881Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1047298Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1047715Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1048029Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1048317Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1048540Z { 2023-01-11T21:41:26.1048770Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1049013Z { 2023-01-11T21:41:26.1052122Z #pragma omp for 2023-01-11T21:41:26.1052351Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.1052576Z { 2023-01-11T21:41:26.1052870Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1053223Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1053585Z auto tmp2 = at::vec::Vectorized(static_cast(0.55)); 2023-01-11T21:41:26.1053890Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.1054131Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.1054390Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1054621Z } 2023-01-11T21:41:26.1054843Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1055100Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.1055322Z { 2023-01-11T21:41:26.1055528Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.1055783Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.1056061Z auto tmp2 = static_cast(0.55); 2023-01-11T21:41:26.1056313Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.1056565Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.1056812Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.1057031Z } 2023-01-11T21:41:26.1057210Z } 2023-01-11T21:41:26.1057399Z } 2023-01-11T21:41:26.1057613Z ''') 2023-01-11T21:41:26.1057715Z 2023-01-11T21:41:26.1057720Z 2023-01-11T21:41:26.1057833Z async_compile.wait(globals()) 2023-01-11T21:41:26.1058076Z del async_compile 2023-01-11T21:41:26.1058213Z 2023-01-11T21:41:26.1058303Z def call(args): 2023-01-11T21:41:26.1058502Z x_1, y_1 = args 2023-01-11T21:41:26.1058716Z args.clear() 2023-01-11T21:41:26.1059039Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(y_1.data_ptr()), c_void_p(x_1.data_ptr())) 2023-01-11T21:41:26.1059324Z del y_1 2023-01-11T21:41:26.1059535Z return (x_1, ) 2023-01-11T21:41:26.1059673Z 2023-01-11T21:41:26.1059678Z 2023-01-11T21:41:26.1059776Z if __name__ == "__main__": 2023-01-11T21:41:26.1060043Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1067548Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1093081Z x_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1093525Z y_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1093848Z print_performance(lambda: call([x_1, y_1])) 2023-01-11T21:41:26.1094029Z 2023-01-11T21:41:26.1094114Z ok (1.517s) 2023-01-11T21:41:26.1094789Z test_inplace_squeeze_needed (__main__.CPUReproTests) ... [2023-01-11 21:23:41,842] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 1 2023-01-11T21:41:26.1095535Z [2023-01-11 21:23:43,411] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 1 2023-01-11T21:41:26.1095846Z 2023-01-11T21:41:26.1095992Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1096317Z import torch 2023-01-11T21:41:26.1096744Z import random 2023-01-11T21:41:26.1097076Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1097532Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1097787Z 2023-01-11T21:41:26.1097916Z aten = torch.ops.aten 2023-01-11T21:41:26.1098332Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1098710Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1098868Z 2023-01-11T21:41:26.1098874Z 2023-01-11T21:41:26.1099078Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1099510Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1099993Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.1100399Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.1100633Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1100949Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.1101240Z const float* __restrict__ in_ptr3, 2023-01-11T21:41:26.1101554Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1101840Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.1102136Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.1102448Z bool* __restrict__ out_ptr4) 2023-01-11T21:41:26.1102692Z { 2023-01-11T21:41:26.1102931Z auto in_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.1103267Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:41:26.1103516Z { 2023-01-11T21:41:26.1103931Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.1104385Z float tmp3 = 0; 2023-01-11T21:41:26.1104746Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.1105138Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1105458Z { 2023-01-11T21:41:26.1105792Z #pragma omp for reduction(+:tmp3_vec) 2023-01-11T21:41:26.1106136Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.1106414Z { 2023-01-11T21:41:26.1106777Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1107170Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1107508Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1107781Z tmp3_vec += tmp2; 2023-01-11T21:41:26.1108020Z } 2023-01-11T21:41:26.1108428Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.1108887Z #pragma omp for simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.1109232Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.1109483Z { 2023-01-11T21:41:26.1109751Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1110056Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.1110326Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1110730Z tmp3 += tmp2; 2023-01-11T21:41:26.1110971Z } 2023-01-11T21:41:26.1111194Z } 2023-01-11T21:41:26.1111442Z out_ptr0[0] = tmp3; 2023-01-11T21:41:26.1111680Z } 2023-01-11T21:41:26.1111881Z { 2023-01-11T21:41:26.1112270Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.1112677Z float tmp8 = 0; 2023-01-11T21:41:26.1113009Z auto tmp8_vec = at::vec::Vectorized(tmp8); 2023-01-11T21:41:26.1113277Z float tmp9 = 0; 2023-01-11T21:41:26.1113609Z auto tmp9_vec = at::vec::Vectorized(tmp9); 2023-01-11T21:41:26.1113987Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1114259Z { 2023-01-11T21:41:26.1114614Z #pragma omp for reduction(+:tmp8_vec) reduction(+:tmp9_vec) 2023-01-11T21:41:26.1115092Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.1115329Z { 2023-01-11T21:41:26.1115631Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1116088Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1116541Z auto tmp3 = at::vec::Vectorized(out_ptr0[0]); 2023-01-11T21:41:26.1116923Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1117284Z auto tmp4 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.1117677Z auto tmp5 = tmp3 / tmp4; 2023-01-11T21:41:26.1118036Z auto tmp6 = tmp2 - tmp5; 2023-01-11T21:41:26.1118353Z auto tmp7 = tmp6.pow(2); 2023-01-11T21:41:26.1118647Z tmp8_vec += tmp7; 2023-01-11T21:41:26.1118912Z tmp9_vec += tmp2; 2023-01-11T21:41:26.1119170Z } 2023-01-11T21:41:26.1119627Z tmp8 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp8_vec); 2023-01-11T21:41:26.1120185Z tmp9 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp9_vec); 2023-01-11T21:41:26.1120684Z #pragma omp for simd simdlen(4) reduction(+:tmp8) reduction(+:tmp9) 2023-01-11T21:41:26.1121042Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.1121317Z { 2023-01-11T21:41:26.1121590Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1121917Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.1122891Z auto tmp3 = out_ptr0[0]; 2023-01-11T21:41:26.1123200Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1123553Z auto tmp4 = static_cast(10); 2023-01-11T21:41:26.1123851Z auto tmp5 = tmp3 / tmp4; 2023-01-11T21:41:26.1124256Z auto tmp6 = tmp2 - tmp5; 2023-01-11T21:41:26.1124552Z auto tmp7 = tmp6 * tmp6; 2023-01-11T21:41:26.1124797Z tmp8 += tmp7; 2023-01-11T21:41:26.1125074Z tmp9 += tmp2; 2023-01-11T21:41:26.1125323Z } 2023-01-11T21:41:26.1125541Z } 2023-01-11T21:41:26.1125753Z out_ptr1[0] = tmp8; 2023-01-11T21:41:26.1126010Z out_ptr2[0] = tmp9; 2023-01-11T21:41:26.1126250Z } 2023-01-11T21:41:26.1126510Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1126778Z { 2023-01-11T21:41:26.1127012Z #pragma omp for 2023-01-11T21:41:26.1127281Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.1127523Z { 2023-01-11T21:41:26.1127755Z { 2023-01-11T21:41:26.1127984Z { 2023-01-11T21:41:26.1128290Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.1128638Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.1128972Z auto tmp3 = out_ptr2[0]; 2023-01-11T21:41:26.1129410Z auto tmp7 = out_ptr1[0]; 2023-01-11T21:41:26.1129704Z auto tmp13 = in_ptr2[i0]; 2023-01-11T21:41:26.1130174Z auto tmp15 = in_ptr3[i0]; 2023-01-11T21:41:26.1130503Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1130887Z auto tmp4 = static_cast(10); 2023-01-11T21:41:26.1131259Z auto tmp5 = tmp3 / tmp4; 2023-01-11T21:41:26.1131675Z auto tmp6 = tmp2 - tmp5; 2023-01-11T21:41:26.1132030Z auto tmp8 = tmp7 / tmp4; 2023-01-11T21:41:26.1132505Z auto tmp9 = static_cast(1e-05); 2023-01-11T21:41:26.1133860Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.1134181Z auto tmp11 = 1 / std::sqrt(tmp10); 2023-01-11T21:41:26.1134485Z auto tmp12 = tmp6 * tmp11; 2023-01-11T21:41:26.1134789Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:41:26.1135159Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.1135477Z auto tmp17 = tmp16 * (tmp16>0); 2023-01-11T21:41:26.1135833Z auto tmp18 = static_cast(0); 2023-01-11T21:41:26.1136196Z auto tmp19 = tmp17 <= tmp18; 2023-01-11T21:41:26.1136546Z in_out_ptr0[i0] = tmp12; 2023-01-11T21:41:26.1136870Z out_ptr3[i0] = tmp17; 2023-01-11T21:41:26.1137170Z out_ptr4[i0] = tmp19; 2023-01-11T21:41:26.1137460Z } 2023-01-11T21:41:26.1137728Z } 2023-01-11T21:41:26.1137977Z } 2023-01-11T21:41:26.1138224Z #pragma omp single 2023-01-11T21:41:26.1138458Z { 2023-01-11T21:41:26.1138677Z { 2023-01-11T21:41:26.1138880Z { 2023-01-11T21:41:26.1139137Z auto tmp0 = out_ptr1[0]; 2023-01-11T21:41:26.1139394Z auto tmp1 = static_cast(10); 2023-01-11T21:41:26.1139737Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.1140150Z auto tmp3 = static_cast(1e-05); 2023-01-11T21:41:26.1140469Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.1140847Z auto tmp5 = 1 / std::sqrt(tmp4); 2023-01-11T21:41:26.1141197Z auto tmp6 = tmp5 / tmp1; 2023-01-11T21:41:26.1141530Z in_out_ptr1[0] = tmp6; 2023-01-11T21:41:26.1141804Z } 2023-01-11T21:41:26.1142071Z } 2023-01-11T21:41:26.1142334Z } 2023-01-11T21:41:26.1142565Z } 2023-01-11T21:41:26.1142811Z } 2023-01-11T21:41:26.1143090Z ''') 2023-01-11T21:41:26.1143303Z 2023-01-11T21:41:26.1143310Z 2023-01-11T21:41:26.1143464Z async_compile.wait(globals()) 2023-01-11T21:41:26.1143791Z del async_compile 2023-01-11T21:41:26.1143975Z 2023-01-11T21:41:26.1144092Z def call(args): 2023-01-11T21:41:26.1144468Z primals_1, primals_2, primals_3, primals_4, primals_5 = args 2023-01-11T21:41:26.1144829Z args.clear() 2023-01-11T21:41:26.1145354Z buf0 = empty_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1145862Z aten.mm.out(as_strided(primals_5, (1, 10), (10, 1)), as_strided(primals_1, (10, 10), (1, 10)), out=buf0) 2023-01-11T21:41:26.1146274Z del primals_1 2023-01-11T21:41:26.1146790Z buf1 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1147380Z buf2 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1147942Z buf3 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1148379Z buf4 = as_strided(buf0, (10, ), (1, )); del buf0 # reuse 2023-01-11T21:41:26.1148914Z buf5 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1149455Z buf6 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1149857Z buf7 = buf2; del buf2 # reuse 2023-01-11T21:41:26.1150581Z kernel_cpp_0(c_void_p(buf4.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(primals_4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr())) 2023-01-11T21:41:26.1151350Z del buf1 2023-01-11T21:41:26.1151591Z del buf3 2023-01-11T21:41:26.1151848Z del primals_2 2023-01-11T21:41:26.1152121Z del primals_4 2023-01-11T21:41:26.1152473Z return (buf5, primals_3, as_strided(primals_5, (1, 10), (10, 1)), buf4, buf6, buf7, ) 2023-01-11T21:41:26.1152745Z 2023-01-11T21:41:26.1152752Z 2023-01-11T21:41:26.1152878Z if __name__ == "__main__": 2023-01-11T21:41:26.1153230Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1153614Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1154165Z primals_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1154744Z primals_2 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1155347Z primals_3 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1155883Z primals_4 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1156512Z primals_5 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1156984Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])) 2023-01-11T21:41:26.1157265Z 2023-01-11T21:41:26.1157378Z ok (1.828s) 2023-01-11T21:41:26.1158111Z test_load_same_bool_tensor_twice (__main__.CPUReproTests) ... [2023-01-11 21:23:43,540] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 2 2023-01-11T21:41:26.1158912Z [2023-01-11 21:23:45,252] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 2 2023-01-11T21:41:26.1159231Z 2023-01-11T21:41:26.1159370Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1159638Z import torch 2023-01-11T21:41:26.1159862Z import random 2023-01-11T21:41:26.1160151Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1160507Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1160676Z 2023-01-11T21:41:26.1160783Z aten = torch.ops.aten 2023-01-11T21:41:26.1161108Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1161472Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1161654Z 2023-01-11T21:41:26.1161663Z 2023-01-11T21:41:26.1161826Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1162299Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1162724Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.1163023Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1163341Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1163690Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.1163988Z { 2023-01-11T21:41:26.1164265Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1164565Z { 2023-01-11T21:41:26.1164846Z #pragma omp for 2023-01-11T21:41:26.1165154Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.1165450Z { 2023-01-11T21:41:26.1165758Z float g_tmp_buffer_in_ptr0[8] = {0}; 2023-01-11T21:41:26.1166134Z flag_to_float(in_ptr0 + 8*i0, g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.1166627Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:41:26.1167113Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1167478Z flag_to_float(in_ptr0 + 8*i0, g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.1168038Z auto tmp1 = at::vec::Vectorized(static_cast(-33.0)); 2023-01-11T21:41:26.1168423Z auto tmp3 = decltype(tmp1)::blendv(tmp2, tmp1, tmp0); 2023-01-11T21:41:26.1168763Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1174522Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.1178247Z } 2023-01-11T21:41:26.1178632Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1179770Z for(long i0=32; i0<34; i0+=1) 2023-01-11T21:41:26.1180010Z { 2023-01-11T21:41:26.1180257Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1180506Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.1180909Z auto tmp1 = static_cast(-33.0); 2023-01-11T21:41:26.1181232Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:41:26.1181502Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.1181771Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.1182024Z } 2023-01-11T21:41:26.1182182Z } 2023-01-11T21:41:26.1182390Z } 2023-01-11T21:41:26.1182611Z ''') 2023-01-11T21:41:26.1182746Z 2023-01-11T21:41:26.1182752Z 2023-01-11T21:41:26.1182888Z async_compile.wait(globals()) 2023-01-11T21:41:26.1183236Z del async_compile 2023-01-11T21:41:26.1183514Z 2023-01-11T21:41:26.1183635Z def call(args): 2023-01-11T21:41:26.1183925Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.1184219Z args.clear() 2023-01-11T21:41:26.1184736Z buf0 = empty_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1185318Z buf1 = empty_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1185882Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1186331Z del arg0_1 2023-01-11T21:41:26.1186588Z del arg1_1 2023-01-11T21:41:26.1186837Z return (buf0, buf1, ) 2023-01-11T21:41:26.1186980Z 2023-01-11T21:41:26.1186985Z 2023-01-11T21:41:26.1187092Z if __name__ == "__main__": 2023-01-11T21:41:26.1187410Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1187800Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1188355Z arg0_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1188963Z arg1_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1189422Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.1189656Z 2023-01-11T21:41:26.1189754Z ok (1.731s) 2023-01-11T21:41:26.1190466Z test_masked_fill_softmax (__main__.CPUReproTests) ... [2023-01-11 21:23:45,308] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 3 2023-01-11T21:41:26.1191180Z [2023-01-11 21:23:47,098] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 3 2023-01-11T21:41:26.1191461Z 2023-01-11T21:41:26.1191597Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1191854Z import torch 2023-01-11T21:41:26.1192107Z import random 2023-01-11T21:41:26.1192409Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1192843Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1193080Z 2023-01-11T21:41:26.1193213Z aten = torch.ops.aten 2023-01-11T21:41:26.1193561Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1193935Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1194122Z 2023-01-11T21:41:26.1194129Z 2023-01-11T21:41:26.1194334Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1194828Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1195293Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.1195651Z const unsigned char* __restrict__ in_ptr0, 2023-01-11T21:41:26.1195995Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1196319Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1196640Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.1196883Z { 2023-01-11T21:41:26.1197137Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.1197461Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1197729Z { 2023-01-11T21:41:26.1197982Z #pragma omp for 2023-01-11T21:41:26.1198251Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1198579Z { 2023-01-11T21:41:26.1198801Z { 2023-01-11T21:41:26.1199522Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.1200249Z float tmp5 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.1200626Z auto tmp5_vec = at::vec::Vectorized(tmp5); 2023-01-11T21:41:26.1200979Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.1201263Z { 2023-01-11T21:41:26.1201542Z float g_tmp_buffer_in_ptr0[8] = {0}; 2023-01-11T21:41:26.1201950Z flag_to_float(in_ptr0 + (8*i1) + (17*i0), g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.1202530Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:41:26.1203040Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (17*i0)); 2023-01-11T21:41:26.1203439Z auto tmp1 = (tmp0); 2023-01-11T21:41:26.1203960Z auto tmp2 = at::vec::Vectorized(static_cast(-33.0)); 2023-01-11T21:41:26.1204464Z auto tmp4 = decltype(tmp2)::blendv(tmp3, tmp2, tmp1); 2023-01-11T21:41:26.1204896Z tmp5_vec = at::vec::maximum(tmp5_vec, tmp4); 2023-01-11T21:41:26.1205172Z } 2023-01-11T21:41:26.1205621Z tmp5 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp5_vec); 2023-01-11T21:41:26.1206096Z #pragma omp simd simdlen(4) reduction(max:tmp5) 2023-01-11T21:41:26.1206396Z for(long i1=16; i1<17; i1+=1) 2023-01-11T21:41:26.1206686Z { 2023-01-11T21:41:26.1207009Z auto tmp0 = in_ptr0[i1 + (17*i0)]; 2023-01-11T21:41:26.1207367Z auto tmp3 = in_ptr1[i1 + (17*i0)]; 2023-01-11T21:41:26.1207677Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.1208108Z auto tmp2 = static_cast(-33.0); 2023-01-11T21:41:26.1208472Z auto tmp4 = tmp1 ? tmp2 : tmp3; 2023-01-11T21:41:26.1208793Z tmp5 = std::max(tmp5, tmp4); 2023-01-11T21:41:26.1209184Z } 2023-01-11T21:41:26.1209469Z out_ptr0[i0] = tmp5; 2023-01-11T21:41:26.1209729Z } 2023-01-11T21:41:26.1209974Z } 2023-01-11T21:41:26.1210234Z #pragma omp for 2023-01-11T21:41:26.1210474Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1210702Z { 2023-01-11T21:41:26.1210943Z { 2023-01-11T21:41:26.1211368Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.1211779Z float tmp8 = 0; 2023-01-11T21:41:26.1212106Z auto tmp8_vec = at::vec::Vectorized(tmp8); 2023-01-11T21:41:26.1212447Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.1212675Z { 2023-01-11T21:41:26.1212971Z float g_tmp_buffer_in_ptr0[8] = {0}; 2023-01-11T21:41:26.1213329Z flag_to_float(in_ptr0 + (8*i1) + (17*i0), g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.1213708Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:41:26.1214103Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (17*i0)); 2023-01-11T21:41:26.1214517Z auto tmp5 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.1214805Z auto tmp1 = (tmp0); 2023-01-11T21:41:26.1215287Z auto tmp2 = at::vec::Vectorized(static_cast(-33.0)); 2023-01-11T21:41:26.1215706Z auto tmp4 = decltype(tmp2)::blendv(tmp3, tmp2, tmp1); 2023-01-11T21:41:26.1216289Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:41:26.1216567Z auto tmp7 = tmp6.exp(); 2023-01-11T21:41:26.1216913Z tmp7.store(out_ptr1 + (8*i1) + (17*i0)); 2023-01-11T21:41:26.1217232Z tmp8_vec += tmp7; 2023-01-11T21:41:26.1217468Z } 2023-01-11T21:41:26.1217895Z tmp8 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp8_vec); 2023-01-11T21:41:26.1218374Z #pragma omp simd simdlen(4) reduction(+:tmp8) 2023-01-11T21:41:26.1218715Z for(long i1=16; i1<17; i1+=1) 2023-01-11T21:41:26.1218968Z { 2023-01-11T21:41:26.1219282Z auto tmp0 = in_ptr0[i1 + (17*i0)]; 2023-01-11T21:41:26.1219724Z auto tmp3 = in_ptr1[i1 + (17*i0)]; 2023-01-11T21:41:26.1220075Z auto tmp5 = out_ptr0[i0]; 2023-01-11T21:41:26.1220403Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.1220885Z auto tmp2 = static_cast(-33.0); 2023-01-11T21:41:26.1221184Z auto tmp4 = tmp1 ? tmp2 : tmp3; 2023-01-11T21:41:26.1221552Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:41:26.1221858Z auto tmp7 = std::exp(tmp6); 2023-01-11T21:41:26.1222152Z out_ptr1[i1 + (17*i0)] = tmp7; 2023-01-11T21:41:26.1222354Z tmp8 += tmp7; 2023-01-11T21:41:26.1222615Z } 2023-01-11T21:41:26.1222867Z out_ptr2[i0] = tmp8; 2023-01-11T21:41:26.1223106Z } 2023-01-11T21:41:26.1223416Z } 2023-01-11T21:41:26.1223661Z #pragma omp for 2023-01-11T21:41:26.1223924Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1224176Z { 2023-01-11T21:41:26.1224444Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.1224688Z { 2023-01-11T21:41:26.1225033Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + (8*i1) + (17*i0)); 2023-01-11T21:41:26.1225453Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:41:26.1225783Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.1226096Z tmp2.store(in_out_ptr0 + (8*i1) + (17*i0)); 2023-01-11T21:41:26.1226428Z } 2023-01-11T21:41:26.1226727Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.1227010Z for(long i1=16; i1<17; i1+=1) 2023-01-11T21:41:26.1227292Z { 2023-01-11T21:41:26.1227590Z auto tmp0 = out_ptr1[i1 + (17*i0)]; 2023-01-11T21:41:26.1227908Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:41:26.1228244Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.1228569Z in_out_ptr0[i1 + (17*i0)] = tmp2; 2023-01-11T21:41:26.1228843Z } 2023-01-11T21:41:26.1229096Z } 2023-01-11T21:41:26.1229310Z } 2023-01-11T21:41:26.1229514Z } 2023-01-11T21:41:26.1229786Z ''') 2023-01-11T21:41:26.1229942Z 2023-01-11T21:41:26.1229951Z 2023-01-11T21:41:26.1230101Z async_compile.wait(globals()) 2023-01-11T21:41:26.1230401Z del async_compile 2023-01-11T21:41:26.1230557Z 2023-01-11T21:41:26.1230664Z def call(args): 2023-01-11T21:41:26.1230947Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.1231220Z args.clear() 2023-01-11T21:41:26.1231635Z buf0 = empty_strided((2, 1), (1, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1232166Z buf1 = empty_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1232653Z buf2 = empty_strided((2, 1), (1, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1232975Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.1233438Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.1233852Z del arg0_1 2023-01-11T21:41:26.1234085Z del arg1_1 2023-01-11T21:41:26.1234324Z return (buf3, ) 2023-01-11T21:41:26.1234555Z 2023-01-11T21:41:26.1234561Z 2023-01-11T21:41:26.1234664Z if __name__ == "__main__": 2023-01-11T21:41:26.1234927Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1235286Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1235798Z arg0_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1236271Z arg1_1 = rand_strided((2, 17), (17, 1), device='cpu', dtype=torch.uint8) 2023-01-11T21:41:26.1236688Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.1236928Z 2023-01-11T21:41:26.1237038Z ok (1.847s) 2023-01-11T21:41:26.1237799Z test_new_vec_op_cpu_only (__main__.CPUReproTests) ... [2023-01-11 21:23:47,137] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.1238741Z [2023-01-11 21:23:49,073] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.1239072Z 2023-01-11T21:41:26.1239223Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1239546Z import torch 2023-01-11T21:41:26.1239830Z import random 2023-01-11T21:41:26.1240186Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1240639Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1240907Z 2023-01-11T21:41:26.1241036Z aten = torch.ops.aten 2023-01-11T21:41:26.1241415Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1241826Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1242030Z 2023-01-11T21:41:26.1242037Z 2023-01-11T21:41:26.1242271Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1242824Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1243398Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1243808Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1244125Z { 2023-01-11T21:41:26.1244410Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1244728Z { 2023-01-11T21:41:26.1245006Z #pragma omp for 2023-01-11T21:41:26.1245293Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1245584Z { 2023-01-11T21:41:26.1245953Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1246291Z auto tmp1 = tmp0.erf(); 2023-01-11T21:41:26.1246614Z auto tmp2 = tmp1.expm1(); 2023-01-11T21:41:26.1246916Z auto tmp3 = tmp2.log1p(); 2023-01-11T21:41:26.1247263Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1247556Z } 2023-01-11T21:41:26.1247884Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1248201Z for(long i0=16; i0<18; i0+=1) 2023-01-11T21:41:26.1248511Z { 2023-01-11T21:41:26.1248805Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1249640Z auto tmp1 = std::erf(tmp0); 2023-01-11T21:41:26.1251136Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:41:26.1251514Z auto tmp3 = std::log1p(tmp2); 2023-01-11T21:41:26.1251870Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.1252140Z } 2023-01-11T21:41:26.1252403Z } 2023-01-11T21:41:26.1252658Z } 2023-01-11T21:41:26.1252944Z ''') 2023-01-11T21:41:26.1253107Z 2023-01-11T21:41:26.1253114Z 2023-01-11T21:41:26.1253256Z async_compile.wait(globals()) 2023-01-11T21:41:26.1253587Z del async_compile 2023-01-11T21:41:26.1253770Z 2023-01-11T21:41:26.1253881Z def call(args): 2023-01-11T21:41:26.1254166Z x_1, = args 2023-01-11T21:41:26.1254449Z args.clear() 2023-01-11T21:41:26.1254964Z buf0 = empty_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1255467Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1255852Z del x_1 2023-01-11T21:41:26.1256122Z return (buf0, ) 2023-01-11T21:41:26.1256304Z 2023-01-11T21:41:26.1256309Z 2023-01-11T21:41:26.1256427Z if __name__ == "__main__": 2023-01-11T21:41:26.1256887Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1257226Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1257700Z x_1 = rand_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1258070Z print_performance(lambda: call([x_1])) 2023-01-11T21:41:26.1258278Z 2023-01-11T21:41:26.1258388Z ok (1.973s) 2023-01-11T21:41:26.1259096Z test_no_op_squeeze (__main__.CPUReproTests) ... [2023-01-11 21:23:49,100] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 4 2023-01-11T21:41:26.1259871Z [2023-01-11 21:23:49,103] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 4 2023-01-11T21:41:26.1260186Z 2023-01-11T21:41:26.1260351Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1260721Z import torch 2023-01-11T21:41:26.1260983Z import random 2023-01-11T21:41:26.1261375Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1261847Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1262112Z 2023-01-11T21:41:26.1262254Z aten = torch.ops.aten 2023-01-11T21:41:26.1262685Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1263197Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1263423Z 2023-01-11T21:41:26.1263432Z 2023-01-11T21:41:26.1263571Z async_compile.wait(globals()) 2023-01-11T21:41:26.1263908Z del async_compile 2023-01-11T21:41:26.1264100Z 2023-01-11T21:41:26.1264229Z def call(args): 2023-01-11T21:41:26.1264532Z arg0_1, = args 2023-01-11T21:41:26.1264820Z args.clear() 2023-01-11T21:41:26.1265131Z return (arg0_1, ) 2023-01-11T21:41:26.1265318Z 2023-01-11T21:41:26.1265328Z 2023-01-11T21:41:26.1265449Z if __name__ == "__main__": 2023-01-11T21:41:26.1265800Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1266255Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1266873Z arg0_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1267330Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1267568Z 2023-01-11T21:41:26.1267679Z ok (0.031s) 2023-01-11T21:41:26.1268453Z test_parallel_num_threads (__main__.CPUReproTests) ... [2023-01-11 21:23:49,146] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 5 2023-01-11T21:41:26.1269312Z [2023-01-11 21:23:50,688] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 5 2023-01-11T21:41:26.1269628Z 2023-01-11T21:41:26.1269792Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1270114Z import torch 2023-01-11T21:41:26.1270398Z import random 2023-01-11T21:41:26.1270742Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1271167Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1271444Z 2023-01-11T21:41:26.1271570Z aten = torch.ops.aten 2023-01-11T21:41:26.1271967Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1272394Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1272613Z 2023-01-11T21:41:26.1272620Z 2023-01-11T21:41:26.1272864Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1273454Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1274009Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1274415Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1274803Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1277392Z { 2023-01-11T21:41:26.1277662Z for(long i0=0; i0<25; i0+=1) 2023-01-11T21:41:26.1277947Z { 2023-01-11T21:41:26.1278290Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1278759Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1279148Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1279473Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1279854Z } 2023-01-11T21:41:26.1280134Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.1280437Z for(long i0=200; i0<200; i0+=1) 2023-01-11T21:41:26.1280663Z { 2023-01-11T21:41:26.1280856Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1281110Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.1281371Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1281619Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1281848Z } 2023-01-11T21:41:26.1282025Z } 2023-01-11T21:41:26.1282265Z ''') 2023-01-11T21:41:26.1282369Z 2023-01-11T21:41:26.1282375Z 2023-01-11T21:41:26.1282483Z async_compile.wait(globals()) 2023-01-11T21:41:26.1282718Z del async_compile 2023-01-11T21:41:26.1282874Z 2023-01-11T21:41:26.1282973Z def call(args): 2023-01-11T21:41:26.1283188Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.1283433Z args.clear() 2023-01-11T21:41:26.1283935Z buf0 = empty_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1284398Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1284743Z del arg0_1 2023-01-11T21:41:26.1285011Z del arg1_1 2023-01-11T21:41:26.1285251Z return (buf0, ) 2023-01-11T21:41:26.1285359Z 2023-01-11T21:41:26.1285363Z 2023-01-11T21:41:26.1285483Z if __name__ == "__main__": 2023-01-11T21:41:26.1285826Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1286172Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1286759Z arg0_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1287352Z arg1_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1287808Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.1287995Z 2023-01-11T21:41:26.1288107Z ok (1.586s) 2023-01-11T21:41:26.1288842Z test_sign_cpu_only (__main__.CPUReproTests) ... [2023-01-11 21:23:50,706] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.1289560Z [2023-01-11 21:23:52,256] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.1289787Z 2023-01-11T21:41:26.1289937Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1290219Z import torch 2023-01-11T21:41:26.1290423Z import random 2023-01-11T21:41:26.1290742Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1291041Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1291226Z 2023-01-11T21:41:26.1291302Z aten = torch.ops.aten 2023-01-11T21:41:26.1291711Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1292068Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1292266Z 2023-01-11T21:41:26.1292274Z 2023-01-11T21:41:26.1292485Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1292859Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1293236Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1293547Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1293784Z { 2023-01-11T21:41:26.1294026Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1294263Z { 2023-01-11T21:41:26.1294474Z #pragma omp for 2023-01-11T21:41:26.1294693Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1294950Z { 2023-01-11T21:41:26.1295275Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1295764Z auto tmp1 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), decltype(tmp0)(0) < tmp0); 2023-01-11T21:41:26.1296340Z auto tmp2 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), tmp0 < decltype(tmp0)(0)); 2023-01-11T21:41:26.1296846Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.1297149Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1297573Z } 2023-01-11T21:41:26.1297863Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1298128Z for(long i0=16; i0<18; i0+=1) 2023-01-11T21:41:26.1298391Z { 2023-01-11T21:41:26.1298676Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1298992Z auto tmp1 = tmp0 > 0 ? 1 : 0; 2023-01-11T21:41:26.1299298Z auto tmp2 = tmp0 < 0 ? 1 : 0; 2023-01-11T21:41:26.1299676Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.1299960Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.1300225Z } 2023-01-11T21:41:26.1300455Z } 2023-01-11T21:41:26.1300666Z } 2023-01-11T21:41:26.1300919Z ''') 2023-01-11T21:41:26.1301070Z 2023-01-11T21:41:26.1301076Z 2023-01-11T21:41:26.1301214Z async_compile.wait(globals()) 2023-01-11T21:41:26.1301525Z del async_compile 2023-01-11T21:41:26.1301668Z 2023-01-11T21:41:26.1301861Z def call(args): 2023-01-11T21:41:26.1302054Z x_1, = args 2023-01-11T21:41:26.1302316Z args.clear() 2023-01-11T21:41:26.1302771Z buf0 = empty_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1303246Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1303548Z del x_1 2023-01-11T21:41:26.1303758Z return (buf0, ) 2023-01-11T21:41:26.1303902Z 2023-01-11T21:41:26.1303909Z 2023-01-11T21:41:26.1304019Z if __name__ == "__main__": 2023-01-11T21:41:26.1304329Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1304648Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1305117Z x_1 = rand_strided((2, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1305483Z print_performance(lambda: call([x_1])) 2023-01-11T21:41:26.1305659Z 2023-01-11T21:41:26.1305750Z ok (1.566s) 2023-01-11T21:41:26.1306043Z test_timed_cpu_only (__main__.CPUReproTests) ... ok (0.003s) 2023-01-11T21:41:26.1306730Z test_vec_dynamic_shapes (__main__.CPUReproTests) ... [2023-01-11 21:23:52,423] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 6 2023-01-11T21:41:26.1307488Z [2023-01-11 21:23:54,171] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 6 2023-01-11T21:41:26.1307767Z 2023-01-11T21:41:26.1307896Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1308197Z import torch 2023-01-11T21:41:26.1308443Z import random 2023-01-11T21:41:26.1308658Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1308948Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1309163Z 2023-01-11T21:41:26.1309270Z aten = torch.ops.aten 2023-01-11T21:41:26.1309611Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1309925Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1310080Z 2023-01-11T21:41:26.1310085Z 2023-01-11T21:41:26.1310280Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1310736Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1311198Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.1311538Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1311854Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1312180Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.1312447Z const long ks0, 2023-01-11T21:41:26.1312710Z const long ks1) 2023-01-11T21:41:26.1312949Z { 2023-01-11T21:41:26.1313166Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.1313465Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1313677Z { 2023-01-11T21:41:26.1313829Z #pragma omp for 2023-01-11T21:41:26.1314017Z for(long i0=0; i0::infinity(); 2023-01-11T21:41:26.1315439Z for(long i1=0; i10); 2023-01-11T21:41:26.1399591Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:41:26.1399793Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:41:26.1399998Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:41:26.1400196Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:41:26.1400438Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:41:26.1400638Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:41:26.1400825Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:41:26.1401024Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:41:26.1401320Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:41:26.1401516Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:41:26.1401705Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:41:26.1401904Z auto tmp20 = std::log(tmp19); 2023-01-11T21:41:26.1402109Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:41:26.1402317Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:41:26.1402523Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:41:26.1402738Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:41:26.1402952Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:41:26.1403156Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:41:26.1403402Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:41:26.1403646Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:41:26.1403850Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:41:26.1404037Z out_ptr0[i0] = tmp29; 2023-01-11T21:41:26.1404198Z } 2023-01-11T21:41:26.1404338Z } 2023-01-11T21:41:26.1404484Z } 2023-01-11T21:41:26.1404624Z } 2023-01-11T21:41:26.1404749Z } 2023-01-11T21:41:26.1404901Z ''') 2023-01-11T21:41:26.1404987Z 2023-01-11T21:41:26.1404992Z 2023-01-11T21:41:26.1405071Z async_compile.wait(globals()) 2023-01-11T21:41:26.1405242Z del async_compile 2023-01-11T21:41:26.1405343Z 2023-01-11T21:41:26.1405404Z def call(args): 2023-01-11T21:41:26.1405556Z x1_1, x2_1 = args 2023-01-11T21:41:26.1405706Z args.clear() 2023-01-11T21:41:26.1405986Z buf0 = empty_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1406287Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1406509Z del x1_1 2023-01-11T21:41:26.1406654Z del x2_1 2023-01-11T21:41:26.1406810Z return (buf0, ) 2023-01-11T21:41:26.1406911Z 2023-01-11T21:41:26.1406915Z 2023-01-11T21:41:26.1406984Z if __name__ == "__main__": 2023-01-11T21:41:26.1407185Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1407435Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1407761Z x1_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1408085Z x2_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1408327Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:41:26.1408460Z 2023-01-11T21:41:26.1408464Z 2023-01-11T21:41:26.1408551Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1408724Z import torch 2023-01-11T21:41:26.1408883Z import random 2023-01-11T21:41:26.1409260Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1409650Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1409795Z 2023-01-11T21:41:26.1409870Z aten = torch.ops.aten 2023-01-11T21:41:26.1410178Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1410510Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1410669Z 2023-01-11T21:41:26.1410685Z 2023-01-11T21:41:26.1410875Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1411322Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1411807Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1412141Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1412480Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1412764Z { 2023-01-11T21:41:26.1413035Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1413292Z { 2023-01-11T21:41:26.1413506Z #pragma omp for 2023-01-11T21:41:26.1413792Z for(long i0=0; i0<25; i0+=1) 2023-01-11T21:41:26.1414022Z { 2023-01-11T21:41:26.1414373Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1414947Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1415298Z auto tmp1 = tmp0.abs(); 2023-01-11T21:41:26.1415604Z auto tmp2 = tmp1.sin(); 2023-01-11T21:41:26.1415892Z auto tmp3 = tmp2.neg(); 2023-01-11T21:41:26.1416160Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.1416540Z auto tmp5 = decltype(tmp4)(1)/(decltype(tmp4)(1) + tmp4.neg().exp()); 2023-01-11T21:41:26.1416943Z auto tmp6 = at::vec::clamp_min(tmp5, decltype(tmp5)(0)); 2023-01-11T21:41:26.1417310Z auto tmp7 = tmp6.cos(); 2023-01-11T21:41:26.1417583Z auto tmp8 = tmp7.exp(); 2023-01-11T21:41:26.1417863Z auto tmp9 = tmp8.sqrt(); 2023-01-11T21:41:26.1418248Z auto tmp10 = tmp9 + tmp0; 2023-01-11T21:41:26.1418646Z auto tmp12 = tmp10 - tmp11; 2023-01-11T21:41:26.1418952Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:41:26.1419256Z auto tmp14 = tmp13 / tmp0; 2023-01-11T21:41:26.1419525Z auto tmp15 = tmp14 * tmp14; 2023-01-11T21:41:26.1419812Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:41:26.1420098Z auto tmp17 = tmp16 * tmp14; 2023-01-11T21:41:26.1420384Z auto tmp18 = tmp17 * tmp17; 2023-01-11T21:41:26.1420672Z auto tmp19 = tmp18.log(); 2023-01-11T21:41:26.1420991Z auto tmp20 = tmp19.floor(); 2023-01-11T21:41:26.1421303Z auto tmp21 = tmp20.ceil(); 2023-01-11T21:41:26.1421620Z auto tmp22 = tmp21.trunc(); 2023-01-11T21:41:26.1421940Z auto tmp23 = tmp22.lgamma(); 2023-01-11T21:41:26.1422271Z auto tmp24 = tmp23.fmod(tmp11); 2023-01-11T21:41:26.1422776Z auto tmp25 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), decltype(tmp24)(0) < tmp24); 2023-01-11T21:41:26.1423457Z auto tmp26 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), tmp24 < decltype(tmp24)(0)); 2023-01-11T21:41:26.1423979Z auto tmp27 = tmp25 - tmp26; 2023-01-11T21:41:26.1424271Z auto tmp28 = tmp27 + tmp11; 2023-01-11T21:41:26.1424586Z tmp28.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1424861Z } 2023-01-11T21:41:26.1425148Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1425483Z for(long i0=200; i0<200; i0+=1) 2023-01-11T21:41:26.1425767Z { 2023-01-11T21:41:26.1426045Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1426360Z auto tmp12 = in_ptr1[i0]; 2023-01-11T21:41:26.1426708Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:41:26.1427035Z auto tmp2 = std::sin(tmp1); 2023-01-11T21:41:26.1427443Z auto tmp3 = -tmp2; 2023-01-11T21:41:26.1427765Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.1428204Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:41:26.1428517Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:41:26.1428831Z auto tmp7 = tmp6 * (tmp6>0); 2023-01-11T21:41:26.1429117Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:41:26.1429360Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:41:26.1429557Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:41:26.1429749Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:41:26.1429985Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:41:26.1430174Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:41:26.1430362Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:41:26.1430539Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:41:26.1430722Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:41:26.1430904Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:41:26.1431082Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:41:26.1431275Z auto tmp20 = std::log(tmp19); 2023-01-11T21:41:26.1431477Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:41:26.1431678Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:41:26.1431963Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:41:26.1432164Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:41:26.1432378Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:41:26.1432577Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:41:26.1432765Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:41:26.1433000Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:41:26.1433183Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:41:26.1433561Z out_ptr0[i0] = tmp29; 2023-01-11T21:41:26.1433811Z } 2023-01-11T21:41:26.1434035Z } 2023-01-11T21:41:26.1434257Z } 2023-01-11T21:41:26.1434505Z ''') 2023-01-11T21:41:26.1434644Z 2023-01-11T21:41:26.1434651Z 2023-01-11T21:41:26.1434786Z async_compile.wait(globals()) 2023-01-11T21:41:26.1435089Z del async_compile 2023-01-11T21:41:26.1435347Z 2023-01-11T21:41:26.1435461Z def call(args): 2023-01-11T21:41:26.1435561Z x1_1, x2_1 = args 2023-01-11T21:41:26.1435674Z args.clear() 2023-01-11T21:41:26.1435990Z buf0 = empty_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1436244Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1436350Z del x1_1 2023-01-11T21:41:26.1436445Z del x2_1 2023-01-11T21:41:26.1436558Z return (buf0, ) 2023-01-11T21:41:26.1436567Z 2023-01-11T21:41:26.1436574Z 2023-01-11T21:41:26.1436694Z if __name__ == "__main__": 2023-01-11T21:41:26.1436866Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1437036Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1437359Z x1_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1437685Z x2_1 = rand_strided((10, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1437857Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:41:26.1437866Z 2023-01-11T21:41:26.1438349Z [2023-01-11 21:23:58,790] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.1438791Z [2023-01-11 21:23:58,950] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.1439261Z [2023-01-11 21:24:00,496] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.1439271Z 2023-01-11T21:41:26.1439426Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1439533Z import torch 2023-01-11T21:41:26.1439632Z import random 2023-01-11T21:41:26.1439820Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1440024Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1440033Z 2023-01-11T21:41:26.1440161Z aten = torch.ops.aten 2023-01-11T21:41:26.1440386Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1440532Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1440544Z 2023-01-11T21:41:26.1440551Z 2023-01-11T21:41:26.1440786Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1441099Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1441261Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1441528Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1441672Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1441759Z { 2023-01-11T21:41:26.1441894Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1441976Z { 2023-01-11T21:41:26.1442091Z #pragma omp for 2023-01-11T21:41:26.1442201Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:41:26.1442292Z { 2023-01-11T21:41:26.1442411Z #pragma GCC ivdep 2023-01-11T21:41:26.1442541Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.1442634Z { 2023-01-11T21:41:26.1442724Z { 2023-01-11T21:41:26.1442809Z { 2023-01-11T21:41:26.1443112Z auto tmp0 = in_ptr0[i0 + (20*i1)]; 2023-01-11T21:41:26.1443268Z auto tmp12 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.1443422Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:41:26.1443562Z auto tmp2 = std::sin(tmp1); 2023-01-11T21:41:26.1443794Z auto tmp3 = -tmp2; 2023-01-11T21:41:26.1443934Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.1444180Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:41:26.1444309Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:41:26.1444446Z auto tmp7 = tmp6 * (tmp6>0); 2023-01-11T21:41:26.1444601Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:41:26.1444853Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:41:26.1445009Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:41:26.1445148Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:41:26.1445380Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:41:26.1445497Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:41:26.1445628Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:41:26.1445760Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:41:26.1445897Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:41:26.1446040Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:41:26.1446179Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:41:26.1446338Z auto tmp20 = std::log(tmp19); 2023-01-11T21:41:26.1446494Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:41:26.1446644Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:41:26.1446808Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:41:26.1446961Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:41:26.1447117Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:41:26.1447252Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:41:26.1447389Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:41:26.1447642Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:41:26.1449382Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:41:26.1449522Z out_ptr0[i0 + (20*i1)] = tmp29; 2023-01-11T21:41:26.1449618Z } 2023-01-11T21:41:26.1449717Z } 2023-01-11T21:41:26.1449813Z } 2023-01-11T21:41:26.1449905Z } 2023-01-11T21:41:26.1449997Z } 2023-01-11T21:41:26.1450071Z } 2023-01-11T21:41:26.1450206Z ''') 2023-01-11T21:41:26.1450217Z 2023-01-11T21:41:26.1450224Z 2023-01-11T21:41:26.1450359Z async_compile.wait(globals()) 2023-01-11T21:41:26.1450458Z del async_compile 2023-01-11T21:41:26.1450463Z 2023-01-11T21:41:26.1450530Z def call(args): 2023-01-11T21:41:26.1450596Z x1_1, x2_1 = args 2023-01-11T21:41:26.1450661Z args.clear() 2023-01-11T21:41:26.1450866Z buf0 = empty_strided((20, 10), (1, 20), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1451011Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1451072Z del x1_1 2023-01-11T21:41:26.1451129Z del x2_1 2023-01-11T21:41:26.1451192Z return (buf0, ) 2023-01-11T21:41:26.1451197Z 2023-01-11T21:41:26.1451202Z 2023-01-11T21:41:26.1451272Z if __name__ == "__main__": 2023-01-11T21:41:26.1451382Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1451497Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1451681Z x1_1 = rand_strided((20, 10), (1, 20), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1451896Z x2_1 = rand_strided((20, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1452060Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:41:26.1452197Z 2023-01-11T21:41:26.1452206Z 2023-01-11T21:41:26.1452375Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1452494Z import torch 2023-01-11T21:41:26.1452614Z import random 2023-01-11T21:41:26.1452818Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1452977Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1452982Z 2023-01-11T21:41:26.1453047Z aten = torch.ops.aten 2023-01-11T21:41:26.1453172Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1453258Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1453263Z 2023-01-11T21:41:26.1453268Z 2023-01-11T21:41:26.1453402Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1453649Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1453765Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1453863Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1453969Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1454049Z { 2023-01-11T21:41:26.1454185Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1454275Z { 2023-01-11T21:41:26.1455111Z #pragma omp for 2023-01-11T21:41:26.1455241Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1455341Z { 2023-01-11T21:41:26.1455587Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1455812Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1455955Z auto tmp1 = tmp0.abs(); 2023-01-11T21:41:26.1456043Z auto tmp2 = tmp1.sin(); 2023-01-11T21:41:26.1456116Z auto tmp3 = tmp2.neg(); 2023-01-11T21:41:26.1456196Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.1456324Z auto tmp5 = decltype(tmp4)(1)/(decltype(tmp4)(1) + tmp4.neg().exp()); 2023-01-11T21:41:26.1456448Z auto tmp6 = at::vec::clamp_min(tmp5, decltype(tmp5)(0)); 2023-01-11T21:41:26.1456527Z auto tmp7 = tmp6.cos(); 2023-01-11T21:41:26.1456597Z auto tmp8 = tmp7.exp(); 2023-01-11T21:41:26.1456671Z auto tmp9 = tmp8.sqrt(); 2023-01-11T21:41:26.1456773Z auto tmp10 = tmp9 + tmp0; 2023-01-11T21:41:26.1456964Z auto tmp12 = tmp10 - tmp11; 2023-01-11T21:41:26.1457074Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:41:26.1457150Z auto tmp14 = tmp13 / tmp0; 2023-01-11T21:41:26.1457226Z auto tmp15 = tmp14 * tmp14; 2023-01-11T21:41:26.1457297Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:41:26.1457420Z auto tmp17 = tmp16 * tmp14; 2023-01-11T21:41:26.1457561Z auto tmp18 = tmp17 * tmp17; 2023-01-11T21:41:26.1457724Z auto tmp19 = tmp18.log(); 2023-01-11T21:41:26.1457893Z auto tmp20 = tmp19.floor(); 2023-01-11T21:41:26.1458058Z auto tmp21 = tmp20.ceil(); 2023-01-11T21:41:26.1458230Z auto tmp22 = tmp21.trunc(); 2023-01-11T21:41:26.1458394Z auto tmp23 = tmp22.lgamma(); 2023-01-11T21:41:26.1458579Z auto tmp24 = tmp23.fmod(tmp11); 2023-01-11T21:41:26.1458940Z auto tmp25 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), decltype(tmp24)(0) < tmp24); 2023-01-11T21:41:26.1459300Z auto tmp26 = decltype(tmp24)::blendv(decltype(tmp24)(0), decltype(tmp24)(1), tmp24 < decltype(tmp24)(0)); 2023-01-11T21:41:26.1459569Z auto tmp27 = tmp25 - tmp26; 2023-01-11T21:41:26.1459730Z auto tmp28 = tmp27 + tmp11; 2023-01-11T21:41:26.1459909Z tmp28.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1460029Z } 2023-01-11T21:41:26.1460209Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1460365Z for(long i0=64; i0<70; i0+=1) 2023-01-11T21:41:26.1460485Z { 2023-01-11T21:41:26.1460651Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1460816Z auto tmp12 = in_ptr1[i0]; 2023-01-11T21:41:26.1461073Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:41:26.1461242Z auto tmp2 = std::sin(tmp1); 2023-01-11T21:41:26.1461462Z auto tmp3 = -tmp2; 2023-01-11T21:41:26.1461623Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.1461893Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:41:26.1462056Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:41:26.1462218Z auto tmp7 = tmp6 * (tmp6>0); 2023-01-11T21:41:26.1462388Z auto tmp8 = std::cos(tmp7); 2023-01-11T21:41:26.1462557Z auto tmp9 = std::exp(tmp8); 2023-01-11T21:41:26.1462730Z auto tmp10 = std::sqrt(tmp9); 2023-01-11T21:41:26.1462892Z auto tmp11 = tmp10 + tmp0; 2023-01-11T21:41:26.1463220Z auto tmp13 = tmp11 - tmp12; 2023-01-11T21:41:26.1463449Z auto tmp14 = tmp13 * tmp0; 2023-01-11T21:41:26.1463614Z auto tmp15 = tmp14 / tmp0; 2023-01-11T21:41:26.1463781Z auto tmp16 = tmp15 * tmp15; 2023-01-11T21:41:26.1463945Z auto tmp17 = tmp16 * tmp16; 2023-01-11T21:41:26.1464098Z auto tmp18 = tmp17 * tmp15; 2023-01-11T21:41:26.1464262Z auto tmp19 = tmp18 * tmp18; 2023-01-11T21:41:26.1464446Z auto tmp20 = std::log(tmp19); 2023-01-11T21:41:26.1464636Z auto tmp21 = std::floor(tmp20); 2023-01-11T21:41:26.1464825Z auto tmp22 = std::ceil(tmp21); 2023-01-11T21:41:26.1465019Z auto tmp23 = std::trunc(tmp22); 2023-01-11T21:41:26.1465212Z auto tmp24 = std::lgamma(tmp23); 2023-01-11T21:41:26.1465419Z auto tmp25 = std::fmod(tmp24, tmp12); 2023-01-11T21:41:26.1465584Z auto tmp26 = tmp25 > 0 ? 1 : 0; 2023-01-11T21:41:26.1465757Z auto tmp27 = tmp25 < 0 ? 1 : 0; 2023-01-11T21:41:26.1466028Z auto tmp28 = tmp26 - tmp27; 2023-01-11T21:41:26.1466195Z auto tmp29 = tmp28 + tmp12; 2023-01-11T21:41:26.1466360Z out_ptr0[i0] = tmp29; 2023-01-11T21:41:26.1466493Z } 2023-01-11T21:41:26.1466599Z } 2023-01-11T21:41:26.1466722Z } 2023-01-11T21:41:26.1466878Z ''') 2023-01-11T21:41:26.1466890Z 2023-01-11T21:41:26.1466900Z 2023-01-11T21:41:26.1467087Z async_compile.wait(globals()) 2023-01-11T21:41:26.1467231Z del async_compile 2023-01-11T21:41:26.1467239Z 2023-01-11T21:41:26.1467382Z def call(args): 2023-01-11T21:41:26.1467518Z x1_1, x2_1 = args 2023-01-11T21:41:26.1467658Z args.clear() 2023-01-11T21:41:26.1468060Z buf0 = empty_strided((10, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1468385Z kernel_cpp_0(c_void_p(x1_1.data_ptr()), c_void_p(x2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1468518Z del x1_1 2023-01-11T21:41:26.1468645Z del x2_1 2023-01-11T21:41:26.1468788Z return (buf0, ) 2023-01-11T21:41:26.1468797Z 2023-01-11T21:41:26.1468811Z 2023-01-11T21:41:26.1468965Z if __name__ == "__main__": 2023-01-11T21:41:26.1469204Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1469452Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1469861Z x1_1 = rand_strided((10, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1470263Z x2_1 = rand_strided((10, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1470488Z print_performance(lambda: call([x1_1, x2_1])) 2023-01-11T21:41:26.1470496Z 2023-01-11T21:41:26.1470632Z ok (6.322s) 2023-01-11T21:41:26.1471662Z test_abs_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1471920Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1472478Z [2023-01-11 21:24:00,518] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 7 2023-01-11T21:41:26.1473110Z [2023-01-11 21:24:02,037] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 7 2023-01-11T21:41:26.1473119Z 2023-01-11T21:41:26.1473312Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1473442Z import torch 2023-01-11T21:41:26.1473584Z import random 2023-01-11T21:41:26.1473823Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1474077Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1474087Z 2023-01-11T21:41:26.1474245Z aten = torch.ops.aten 2023-01-11T21:41:26.1474524Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1474714Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1474725Z 2023-01-11T21:41:26.1474733Z 2023-01-11T21:41:26.1475073Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1475501Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1475755Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1475962Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1476082Z { 2023-01-11T21:41:26.1476284Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1476410Z { 2023-01-11T21:41:26.1476568Z #pragma omp for 2023-01-11T21:41:26.1476721Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1476844Z { 2023-01-11T21:41:26.1477123Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1477296Z auto tmp1 = tmp0.abs(); 2023-01-11T21:41:26.1477577Z auto tmp2 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.1477751Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.1477927Z auto tmp4 = tmp0 / tmp3; 2023-01-11T21:41:26.1478098Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1478221Z } 2023-01-11T21:41:26.1478420Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1478586Z for(long i0=16; i0<17; i0+=1) 2023-01-11T21:41:26.1478709Z { 2023-01-11T21:41:26.1478881Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1479065Z auto tmp1 = std::abs(tmp0); 2023-01-11T21:41:26.1479252Z auto tmp2 = static_cast(1); 2023-01-11T21:41:26.1479421Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.1479587Z auto tmp4 = tmp0 / tmp3; 2023-01-11T21:41:26.1479745Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.1479875Z } 2023-01-11T21:41:26.1480000Z } 2023-01-11T21:41:26.1480115Z } 2023-01-11T21:41:26.1480255Z ''') 2023-01-11T21:41:26.1480267Z 2023-01-11T21:41:26.1480277Z 2023-01-11T21:41:26.1480458Z async_compile.wait(globals()) 2023-01-11T21:41:26.1480602Z del async_compile 2023-01-11T21:41:26.1480616Z 2023-01-11T21:41:26.1480753Z def call(args): 2023-01-11T21:41:26.1480887Z arg0_1, = args 2023-01-11T21:41:26.1481031Z args.clear() 2023-01-11T21:41:26.1481439Z buf0 = empty_strided((17, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1481701Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1481832Z del arg0_1 2023-01-11T21:41:26.1481975Z return (buf0, ) 2023-01-11T21:41:26.1481984Z 2023-01-11T21:41:26.1481992Z 2023-01-11T21:41:26.1482144Z if __name__ == "__main__": 2023-01-11T21:41:26.1482383Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1482640Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1483052Z arg0_1 = rand_strided((17, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1483272Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1483281Z 2023-01-11T21:41:26.1483399Z ok (1.542s) 2023-01-11T21:41:26.1484475Z test_adaptive_avg_pool2d1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1484801Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1485354Z [2023-01-11 21:24:02,068] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 8 2023-01-11T21:41:26.1485887Z [2023-01-11 21:24:02,077] torch._inductor.ir: [WARNING] Using FallbackKernel: aten._adaptive_avg_pool2d 2023-01-11T21:41:26.1485897Z 2023-01-11T21:41:26.1486095Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1486239Z import torch 2023-01-11T21:41:26.1486385Z import random 2023-01-11T21:41:26.1486687Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1486922Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1486932Z 2023-01-11T21:41:26.1487096Z aten = torch.ops.aten 2023-01-11T21:41:26.1487375Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1487560Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1487571Z 2023-01-11T21:41:26.1487579Z 2023-01-11T21:41:26.1487864Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1488300Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1488548Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1488752Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1488939Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.1489177Z { 2023-01-11T21:41:26.1489375Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1489497Z { 2023-01-11T21:41:26.1489622Z #pragma omp for 2023-01-11T21:41:26.1489770Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1489884Z { 2023-01-11T21:41:26.1490015Z #pragma GCC ivdep 2023-01-11T21:41:26.1490160Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:41:26.1490275Z { 2023-01-11T21:41:26.1490398Z #pragma GCC ivdep 2023-01-11T21:41:26.1490485Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:41:26.1490549Z { 2023-01-11T21:41:26.1490613Z { 2023-01-11T21:41:26.1490668Z { 2023-01-11T21:41:26.1490781Z auto tmp0 = static_cast(((8*i1) / 3)); 2023-01-11T21:41:26.1490897Z auto tmp1 = static_cast(((21 + (16*i1)) / 6)); 2023-01-11T21:41:26.1490989Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.1491098Z auto tmp3 = static_cast(((8*i2) / 3)); 2023-01-11T21:41:26.1491213Z auto tmp4 = static_cast(((21 + (16*i2)) / 6)); 2023-01-11T21:41:26.1491310Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.1491426Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.1491561Z float tmp7 = 0.0; 2023-01-11T21:41:26.1491680Z if(tmp6) 2023-01-11T21:41:26.1491776Z { 2023-01-11T21:41:26.1491964Z auto tmp8 = in_ptr0[(16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1492103Z tmp7 = tmp8; 2023-01-11T21:41:26.1492203Z } 2023-01-11T21:41:26.1492395Z auto tmp9 = static_cast(1 + (((8*i2) / 3))); 2023-01-11T21:41:26.1492533Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:41:26.1492685Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:41:26.1492830Z float tmp12 = 0.0; 2023-01-11T21:41:26.1492951Z if(tmp11) 2023-01-11T21:41:26.1493062Z { 2023-01-11T21:41:26.1493355Z auto tmp13 = in_ptr0[1 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1493491Z tmp12 = tmp13; 2023-01-11T21:41:26.1493584Z } 2023-01-11T21:41:26.1493735Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:41:26.1493923Z auto tmp15 = static_cast(2 + (((8*i2) / 3))); 2023-01-11T21:41:26.1494080Z auto tmp16 = tmp15 < tmp4; 2023-01-11T21:41:26.1494230Z auto tmp17 = tmp2 & tmp16; 2023-01-11T21:41:26.1494361Z float tmp18 = 0.0; 2023-01-11T21:41:26.1494484Z if(tmp17) 2023-01-11T21:41:26.1494588Z { 2023-01-11T21:41:26.1494818Z auto tmp19 = in_ptr0[2 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1494957Z tmp18 = tmp19; 2023-01-11T21:41:26.1495073Z } 2023-01-11T21:41:26.1495213Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:41:26.1495402Z auto tmp21 = static_cast(3 + (((8*i2) / 3))); 2023-01-11T21:41:26.1495559Z auto tmp22 = tmp21 < tmp4; 2023-01-11T21:41:26.1495698Z auto tmp23 = tmp2 & tmp22; 2023-01-11T21:41:26.1495825Z float tmp24 = 0.0; 2023-01-11T21:41:26.1495946Z if(tmp23) 2023-01-11T21:41:26.1496046Z { 2023-01-11T21:41:26.1496228Z auto tmp25 = in_ptr0[3 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1496353Z tmp24 = tmp25; 2023-01-11T21:41:26.1496454Z } 2023-01-11T21:41:26.1496596Z auto tmp26 = tmp24 + tmp20; 2023-01-11T21:41:26.1496760Z auto tmp27 = static_cast(1 + (((8*i1) / 3))); 2023-01-11T21:41:26.1496894Z auto tmp28 = tmp27 < tmp1; 2023-01-11T21:41:26.1497037Z auto tmp29 = tmp28 & tmp5; 2023-01-11T21:41:26.1497171Z float tmp30 = 0.0; 2023-01-11T21:41:26.1497279Z if(tmp29) 2023-01-11T21:41:26.1497387Z { 2023-01-11T21:41:26.1497580Z auto tmp31 = in_ptr0[16 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1497709Z tmp30 = tmp31; 2023-01-11T21:41:26.1497796Z } 2023-01-11T21:41:26.1497946Z auto tmp32 = tmp30 + tmp26; 2023-01-11T21:41:26.1498095Z auto tmp33 = tmp28 & tmp10; 2023-01-11T21:41:26.1498231Z float tmp34 = 0.0; 2023-01-11T21:41:26.1498347Z if(tmp33) 2023-01-11T21:41:26.1498458Z { 2023-01-11T21:41:26.1498920Z auto tmp35 = in_ptr0[17 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1499160Z tmp34 = tmp35; 2023-01-11T21:41:26.1499294Z } 2023-01-11T21:41:26.1499586Z auto tmp36 = tmp34 + tmp32; 2023-01-11T21:41:26.1499791Z auto tmp37 = tmp28 & tmp16; 2023-01-11T21:41:26.1499975Z float tmp38 = 0.0; 2023-01-11T21:41:26.1500139Z if(tmp37) 2023-01-11T21:41:26.1500280Z { 2023-01-11T21:41:26.1500543Z auto tmp39 = in_ptr0[18 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1500709Z tmp38 = tmp39; 2023-01-11T21:41:26.1500857Z } 2023-01-11T21:41:26.1501056Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:41:26.1501377Z auto tmp41 = tmp28 & tmp22; 2023-01-11T21:41:26.1501556Z float tmp42 = 0.0; 2023-01-11T21:41:26.1501717Z if(tmp41) 2023-01-11T21:41:26.1501859Z { 2023-01-11T21:41:26.1502120Z auto tmp43 = in_ptr0[19 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1502283Z tmp42 = tmp43; 2023-01-11T21:41:26.1502427Z } 2023-01-11T21:41:26.1502623Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:41:26.1502875Z auto tmp45 = static_cast(2 + (((8*i1) / 3))); 2023-01-11T21:41:26.1503074Z auto tmp46 = tmp45 < tmp1; 2023-01-11T21:41:26.1524353Z auto tmp47 = tmp46 & tmp5; 2023-01-11T21:41:26.1524552Z float tmp48 = 0.0; 2023-01-11T21:41:26.1524717Z if(tmp47) 2023-01-11T21:41:26.1524845Z { 2023-01-11T21:41:26.1525109Z auto tmp49 = in_ptr0[32 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1525288Z tmp48 = tmp49; 2023-01-11T21:41:26.1525433Z } 2023-01-11T21:41:26.1525630Z auto tmp50 = tmp48 + tmp44; 2023-01-11T21:41:26.1525829Z auto tmp51 = tmp46 & tmp10; 2023-01-11T21:41:26.1526018Z float tmp52 = 0.0; 2023-01-11T21:41:26.1526159Z if(tmp51) 2023-01-11T21:41:26.1526304Z { 2023-01-11T21:41:26.1526573Z auto tmp53 = in_ptr0[33 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1526747Z tmp52 = tmp53; 2023-01-11T21:41:26.1526902Z } 2023-01-11T21:41:26.1527107Z auto tmp54 = tmp52 + tmp50; 2023-01-11T21:41:26.1527307Z auto tmp55 = tmp46 & tmp16; 2023-01-11T21:41:26.1527492Z float tmp56 = 0.0; 2023-01-11T21:41:26.1527633Z if(tmp55) 2023-01-11T21:41:26.1527776Z { 2023-01-11T21:41:26.1528035Z auto tmp57 = in_ptr0[34 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1528212Z tmp56 = tmp57; 2023-01-11T21:41:26.1528357Z } 2023-01-11T21:41:26.1528562Z auto tmp58 = tmp56 + tmp54; 2023-01-11T21:41:26.1528763Z auto tmp59 = tmp46 & tmp22; 2023-01-11T21:41:26.1528932Z float tmp60 = 0.0; 2023-01-11T21:41:26.1613227Z if(tmp59) 2023-01-11T21:41:26.1613378Z { 2023-01-11T21:41:26.1613566Z auto tmp61 = in_ptr0[35 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1613676Z tmp60 = tmp61; 2023-01-11T21:41:26.1613766Z } 2023-01-11T21:41:26.1613892Z auto tmp62 = tmp60 + tmp58; 2023-01-11T21:41:26.1614045Z auto tmp63 = static_cast(3 + (((8*i1) / 3))); 2023-01-11T21:41:26.1614157Z auto tmp64 = tmp63 < tmp1; 2023-01-11T21:41:26.1614275Z auto tmp65 = tmp64 & tmp5; 2023-01-11T21:41:26.1614383Z float tmp66 = 0.0; 2023-01-11T21:41:26.1614482Z if(tmp65) 2023-01-11T21:41:26.1614568Z { 2023-01-11T21:41:26.1614730Z auto tmp67 = in_ptr0[48 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1614950Z tmp66 = tmp67; 2023-01-11T21:41:26.1615028Z } 2023-01-11T21:41:26.1615149Z auto tmp68 = tmp66 + tmp62; 2023-01-11T21:41:26.1615269Z auto tmp69 = tmp64 & tmp10; 2023-01-11T21:41:26.1615384Z float tmp70 = 0.0; 2023-01-11T21:41:26.1615478Z if(tmp69) 2023-01-11T21:41:26.1615568Z { 2023-01-11T21:41:26.1615724Z auto tmp71 = in_ptr0[49 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1615833Z tmp70 = tmp71; 2023-01-11T21:41:26.1615911Z } 2023-01-11T21:41:26.1616033Z auto tmp72 = tmp70 + tmp68; 2023-01-11T21:41:26.1616201Z auto tmp73 = tmp64 & tmp16; 2023-01-11T21:41:26.1616314Z float tmp74 = 0.0; 2023-01-11T21:41:26.1616414Z if(tmp73) 2023-01-11T21:41:26.1616500Z { 2023-01-11T21:41:26.1616652Z auto tmp75 = in_ptr0[50 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1616746Z tmp74 = tmp75; 2023-01-11T21:41:26.1616838Z } 2023-01-11T21:41:26.1616956Z auto tmp76 = tmp74 + tmp72; 2023-01-11T21:41:26.1617072Z auto tmp77 = tmp64 & tmp22; 2023-01-11T21:41:26.1617184Z float tmp78 = 0.0; 2023-01-11T21:41:26.1617278Z if(tmp77) 2023-01-11T21:41:26.1617367Z { 2023-01-11T21:41:26.1617518Z auto tmp79 = in_ptr0[51 + (16*(((8*i1) / 3))) + (256*i0) + (((8*i2) / 3))]; 2023-01-11T21:41:26.1617618Z tmp78 = tmp79; 2023-01-11T21:41:26.1617706Z } 2023-01-11T21:41:26.1617827Z auto tmp80 = tmp78 + tmp76; 2023-01-11T21:41:26.1617937Z float tmp81 = 0.0; 2023-01-11T21:41:26.1618030Z if(tmp6) 2023-01-11T21:41:26.1618115Z { 2023-01-11T21:41:26.1618254Z auto tmp82 = static_cast(1); 2023-01-11T21:41:26.1618348Z tmp81 = tmp82; 2023-01-11T21:41:26.1618432Z } 2023-01-11T21:41:26.1618541Z float tmp83 = 0.0; 2023-01-11T21:41:26.1618635Z if(tmp11) 2023-01-11T21:41:26.1618719Z { 2023-01-11T21:41:26.1618858Z auto tmp84 = static_cast(1); 2023-01-11T21:41:26.1618964Z tmp83 = tmp84; 2023-01-11T21:41:26.1619037Z } 2023-01-11T21:41:26.1619156Z auto tmp85 = tmp83 + tmp81; 2023-01-11T21:41:26.1619271Z float tmp86 = 0.0; 2023-01-11T21:41:26.1619366Z if(tmp17) 2023-01-11T21:41:26.1619455Z { 2023-01-11T21:41:26.1619592Z auto tmp87 = static_cast(1); 2023-01-11T21:41:26.1619697Z tmp86 = tmp87; 2023-01-11T21:41:26.1619782Z } 2023-01-11T21:41:26.1619891Z auto tmp88 = tmp86 + tmp85; 2023-01-11T21:41:26.1620006Z float tmp89 = 0.0; 2023-01-11T21:41:26.1620104Z if(tmp23) 2023-01-11T21:41:26.1620186Z { 2023-01-11T21:41:26.1620325Z auto tmp90 = static_cast(1); 2023-01-11T21:41:26.1620428Z tmp89 = tmp90; 2023-01-11T21:41:26.1620515Z } 2023-01-11T21:41:26.1620623Z auto tmp91 = tmp89 + tmp88; 2023-01-11T21:41:26.1620769Z float tmp92 = 0.0; 2023-01-11T21:41:26.1620861Z if(tmp29) 2023-01-11T21:41:26.1620951Z { 2023-01-11T21:41:26.1621091Z auto tmp93 = static_cast(1); 2023-01-11T21:41:26.1621195Z tmp92 = tmp93; 2023-01-11T21:41:26.1621283Z } 2023-01-11T21:41:26.1621390Z auto tmp94 = tmp92 + tmp91; 2023-01-11T21:41:26.1621501Z float tmp95 = 0.0; 2023-01-11T21:41:26.1621594Z if(tmp33) 2023-01-11T21:41:26.1621684Z { 2023-01-11T21:41:26.1621821Z auto tmp96 = static_cast(1); 2023-01-11T21:41:26.1621968Z tmp95 = tmp96; 2023-01-11T21:41:26.1622057Z } 2023-01-11T21:41:26.1622176Z auto tmp97 = tmp95 + tmp94; 2023-01-11T21:41:26.1622277Z float tmp98 = 0.0; 2023-01-11T21:41:26.1622374Z if(tmp37) 2023-01-11T21:41:26.1622463Z { 2023-01-11T21:41:26.1622599Z auto tmp99 = static_cast(1); 2023-01-11T21:41:26.1622701Z tmp98 = tmp99; 2023-01-11T21:41:26.1622786Z } 2023-01-11T21:41:26.1622910Z auto tmp100 = tmp98 + tmp97; 2023-01-11T21:41:26.1623011Z float tmp101 = 0.0; 2023-01-11T21:41:26.1623104Z if(tmp41) 2023-01-11T21:41:26.1623249Z { 2023-01-11T21:41:26.1623393Z auto tmp102 = static_cast(1); 2023-01-11T21:41:26.1623506Z tmp101 = tmp102; 2023-01-11T21:41:26.1623592Z } 2023-01-11T21:41:26.1623719Z auto tmp103 = tmp101 + tmp100; 2023-01-11T21:41:26.1623819Z float tmp104 = 0.0; 2023-01-11T21:41:26.1623914Z if(tmp47) 2023-01-11T21:41:26.1623996Z { 2023-01-11T21:41:26.1624133Z auto tmp105 = static_cast(1); 2023-01-11T21:41:26.1624239Z tmp104 = tmp105; 2023-01-11T21:41:26.1624322Z } 2023-01-11T21:41:26.1624442Z auto tmp106 = tmp104 + tmp103; 2023-01-11T21:41:26.1624542Z float tmp107 = 0.0; 2023-01-11T21:41:26.1624635Z if(tmp51) 2023-01-11T21:41:26.1624719Z { 2023-01-11T21:41:26.1624861Z auto tmp108 = static_cast(1); 2023-01-11T21:41:26.1624970Z tmp107 = tmp108; 2023-01-11T21:41:26.1625053Z } 2023-01-11T21:41:26.1625177Z auto tmp109 = tmp107 + tmp106; 2023-01-11T21:41:26.1625275Z float tmp110 = 0.0; 2023-01-11T21:41:26.1625366Z if(tmp55) 2023-01-11T21:41:26.1625450Z { 2023-01-11T21:41:26.1625588Z auto tmp111 = static_cast(1); 2023-01-11T21:41:26.1625694Z tmp110 = tmp111; 2023-01-11T21:41:26.1625778Z } 2023-01-11T21:41:26.1625899Z auto tmp112 = tmp110 + tmp109; 2023-01-11T21:41:26.1626009Z float tmp113 = 0.0; 2023-01-11T21:41:26.1626094Z if(tmp59) 2023-01-11T21:41:26.1626179Z { 2023-01-11T21:41:26.1626316Z auto tmp114 = static_cast(1); 2023-01-11T21:41:26.1626424Z tmp113 = tmp114; 2023-01-11T21:41:26.1626549Z } 2023-01-11T21:41:26.1626669Z auto tmp115 = tmp113 + tmp112; 2023-01-11T21:41:26.1626781Z float tmp116 = 0.0; 2023-01-11T21:41:26.1626865Z if(tmp65) 2023-01-11T21:41:26.1626950Z { 2023-01-11T21:41:26.1627088Z auto tmp117 = static_cast(1); 2023-01-11T21:41:26.1627197Z tmp116 = tmp117; 2023-01-11T21:41:26.1627283Z } 2023-01-11T21:41:26.1627403Z auto tmp118 = tmp116 + tmp115; 2023-01-11T21:41:26.1627510Z float tmp119 = 0.0; 2023-01-11T21:41:26.1627592Z if(tmp69) 2023-01-11T21:41:26.1627674Z { 2023-01-11T21:41:26.1627844Z auto tmp120 = static_cast(1); 2023-01-11T21:41:26.1627954Z tmp119 = tmp120; 2023-01-11T21:41:26.1628041Z } 2023-01-11T21:41:26.1628161Z auto tmp121 = tmp119 + tmp118; 2023-01-11T21:41:26.1628272Z float tmp122 = 0.0; 2023-01-11T21:41:26.1628355Z if(tmp73) 2023-01-11T21:41:26.1628439Z { 2023-01-11T21:41:26.1628579Z auto tmp123 = static_cast(1); 2023-01-11T21:41:26.1628689Z tmp122 = tmp123; 2023-01-11T21:41:26.1628774Z } 2023-01-11T21:41:26.1628897Z auto tmp124 = tmp122 + tmp121; 2023-01-11T21:41:26.1629009Z float tmp125 = 0.0; 2023-01-11T21:41:26.1629091Z if(tmp77) 2023-01-11T21:41:26.1629178Z { 2023-01-11T21:41:26.1629317Z auto tmp126 = static_cast(1); 2023-01-11T21:41:26.1629423Z tmp125 = tmp126; 2023-01-11T21:41:26.1629511Z } 2023-01-11T21:41:26.1629634Z auto tmp127 = tmp125 + tmp124; 2023-01-11T21:41:26.1629754Z auto tmp128 = tmp80 / tmp127; 2023-01-11T21:41:26.1629874Z out_ptr0[i2 + (6*i1) + (36*i0)] = tmp128; 2023-01-11T21:41:26.1629959Z } 2023-01-11T21:41:26.1630042Z } 2023-01-11T21:41:26.1630121Z } 2023-01-11T21:41:26.1630200Z } 2023-01-11T21:41:26.1630278Z } 2023-01-11T21:41:26.1630373Z #pragma omp for 2023-01-11T21:41:26.1630464Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.1630537Z { 2023-01-11T21:41:26.1630712Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1630882Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.1630986Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1631102Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.1631179Z } 2023-01-11T21:41:26.1631286Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1631390Z for(long i0=2048; i0<2048; i0+=1) 2023-01-11T21:41:26.1631464Z { 2023-01-11T21:41:26.1631566Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1631687Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.1631788Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1631887Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.1631953Z } 2023-01-11T21:41:26.1632029Z } 2023-01-11T21:41:26.1632099Z } 2023-01-11T21:41:26.1632239Z ''') 2023-01-11T21:41:26.1632247Z 2023-01-11T21:41:26.1632252Z 2023-01-11T21:41:26.1632363Z async_compile.wait(globals()) 2023-01-11T21:41:26.1632452Z del async_compile 2023-01-11T21:41:26.1632462Z 2023-01-11T21:41:26.1632547Z def call(args): 2023-01-11T21:41:26.1632629Z arg0_1, = args 2023-01-11T21:41:26.1632706Z args.clear() 2023-01-11T21:41:26.1633037Z buf0 = empty_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1633323Z buf1 = empty_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1633530Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1633615Z del arg0_1 2023-01-11T21:41:26.1633746Z buf2 = aten._adaptive_avg_pool2d(buf1, [2, 5]) 2023-01-11T21:41:26.1633829Z del buf1 2023-01-11T21:41:26.1633902Z buf3 = buf2 2023-01-11T21:41:26.1634030Z assert_size_stride(buf3, (2, 4, 2, 5), (40, 10, 5, 1)) 2023-01-11T21:41:26.1634109Z del buf2 2023-01-11T21:41:26.1634204Z return (buf0, buf3, ) 2023-01-11T21:41:26.1634211Z 2023-01-11T21:41:26.1634216Z 2023-01-11T21:41:26.1634343Z if __name__ == "__main__": 2023-01-11T21:41:26.1634487Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1634638Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1634923Z arg0_1 = rand_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1635058Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1635407Z [2023-01-11 21:24:04,110] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 8 2023-01-11T21:41:26.1635966Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1636125Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1636469Z [2023-01-11 21:24:04,153] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 9 2023-01-11T21:41:26.1636478Z 2023-01-11T21:41:26.1636483Z 2023-01-11T21:41:26.1636602Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1636684Z import torch 2023-01-11T21:41:26.1636771Z import random 2023-01-11T21:41:26.1636917Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1637056Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1637062Z 2023-01-11T21:41:26.1637155Z aten = torch.ops.aten 2023-01-11T21:41:26.1637322Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1637431Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1637437Z 2023-01-11T21:41:26.1637442Z 2023-01-11T21:41:26.1637609Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1637862Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1638018Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1638144Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1638230Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.1638290Z { 2023-01-11T21:41:26.1638384Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1638442Z { 2023-01-11T21:41:26.1638515Z #pragma omp for 2023-01-11T21:41:26.1638599Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1638659Z { 2023-01-11T21:41:26.1638725Z #pragma GCC ivdep 2023-01-11T21:41:26.1638805Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:41:26.1638866Z { 2023-01-11T21:41:26.1638946Z #pragma GCC ivdep 2023-01-11T21:41:26.1639032Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:41:26.1639091Z { 2023-01-11T21:41:26.1639145Z { 2023-01-11T21:41:26.1639211Z { 2023-01-11T21:41:26.1639323Z auto tmp0 = static_cast((i1 / 2)); 2023-01-11T21:41:26.1639437Z auto tmp1 = static_cast(((8 + (3*i1)) / 6)); 2023-01-11T21:41:26.1639566Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.1639676Z auto tmp3 = static_cast((i2 / 2)); 2023-01-11T21:41:26.1639789Z auto tmp4 = static_cast(((8 + (3*i2)) / 6)); 2023-01-11T21:41:26.1639880Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.1639958Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.1640045Z float tmp7 = 0.0; 2023-01-11T21:41:26.1640119Z if(tmp6) 2023-01-11T21:41:26.1640187Z { 2023-01-11T21:41:26.1640301Z auto tmp8 = in_ptr0[(3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:41:26.1640384Z tmp7 = tmp8; 2023-01-11T21:41:26.1640483Z } 2023-01-11T21:41:26.1640583Z auto tmp9 = static_cast(1 + (i2 / 2)); 2023-01-11T21:41:26.1640680Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:41:26.1640774Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:41:26.1640862Z float tmp12 = 0.0; 2023-01-11T21:41:26.1640936Z if(tmp11) 2023-01-11T21:41:26.1641006Z { 2023-01-11T21:41:26.1641121Z auto tmp13 = in_ptr0[1 + (3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:41:26.1641195Z tmp12 = tmp13; 2023-01-11T21:41:26.1641262Z } 2023-01-11T21:41:26.1641355Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:41:26.1641465Z auto tmp15 = static_cast(1 + (i1 / 2)); 2023-01-11T21:41:26.1641560Z auto tmp16 = tmp15 < tmp1; 2023-01-11T21:41:26.1641656Z auto tmp17 = tmp16 & tmp5; 2023-01-11T21:41:26.1641742Z float tmp18 = 0.0; 2023-01-11T21:41:26.1641819Z if(tmp17) 2023-01-11T21:41:26.1641875Z { 2023-01-11T21:41:26.1641987Z auto tmp19 = in_ptr0[3 + (3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:41:26.1642071Z tmp18 = tmp19; 2023-01-11T21:41:26.1642137Z } 2023-01-11T21:41:26.1642230Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:41:26.1642323Z auto tmp21 = tmp16 & tmp10; 2023-01-11T21:41:26.1642408Z float tmp22 = 0.0; 2023-01-11T21:41:26.1642471Z if(tmp21) 2023-01-11T21:41:26.1642537Z { 2023-01-11T21:41:26.1642650Z auto tmp23 = in_ptr0[4 + (3*(i1 / 2)) + (9*i0) + (i2 / 2)]; 2023-01-11T21:41:26.1642735Z tmp22 = tmp23; 2023-01-11T21:41:26.1642800Z } 2023-01-11T21:41:26.1642897Z auto tmp24 = tmp22 + tmp20; 2023-01-11T21:41:26.1642983Z float tmp25 = 0.0; 2023-01-11T21:41:26.1643045Z if(tmp6) 2023-01-11T21:41:26.1643112Z { 2023-01-11T21:41:26.1643218Z auto tmp26 = static_cast(1); 2023-01-11T21:41:26.1643300Z tmp25 = tmp26; 2023-01-11T21:41:26.1643366Z } 2023-01-11T21:41:26.1643449Z float tmp27 = 0.0; 2023-01-11T21:41:26.1643523Z if(tmp11) 2023-01-11T21:41:26.1643578Z { 2023-01-11T21:41:26.1643684Z auto tmp28 = static_cast(1); 2023-01-11T21:41:26.1643768Z tmp27 = tmp28; 2023-01-11T21:41:26.1643834Z } 2023-01-11T21:41:26.1643927Z auto tmp29 = tmp27 + tmp25; 2023-01-11T21:41:26.1644044Z float tmp30 = 0.0; 2023-01-11T21:41:26.1644120Z if(tmp17) 2023-01-11T21:41:26.1644175Z { 2023-01-11T21:41:26.1644280Z auto tmp31 = static_cast(1); 2023-01-11T21:41:26.1644362Z tmp30 = tmp31; 2023-01-11T21:41:26.1644428Z } 2023-01-11T21:41:26.1644522Z auto tmp32 = tmp30 + tmp29; 2023-01-11T21:41:26.1644608Z float tmp33 = 0.0; 2023-01-11T21:41:26.1644683Z if(tmp21) 2023-01-11T21:41:26.1644738Z { 2023-01-11T21:41:26.1644846Z auto tmp34 = static_cast(1); 2023-01-11T21:41:26.1644978Z tmp33 = tmp34; 2023-01-11T21:41:26.1645046Z } 2023-01-11T21:41:26.1645139Z auto tmp35 = tmp33 + tmp32; 2023-01-11T21:41:26.1645237Z auto tmp36 = tmp24 / tmp35; 2023-01-11T21:41:26.1645339Z out_ptr0[i2 + (6*i1) + (36*i0)] = tmp36; 2023-01-11T21:41:26.1645408Z } 2023-01-11T21:41:26.1645461Z } 2023-01-11T21:41:26.1645524Z } 2023-01-11T21:41:26.1645585Z } 2023-01-11T21:41:26.1645645Z } 2023-01-11T21:41:26.1645720Z #pragma omp for 2023-01-11T21:41:26.1645800Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1645850Z { 2023-01-11T21:41:26.1645927Z #pragma GCC ivdep 2023-01-11T21:41:26.1646009Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.1646071Z { 2023-01-11T21:41:26.1646150Z #pragma GCC ivdep 2023-01-11T21:41:26.1646237Z for(long i2=0; i2<5; i2+=1) 2023-01-11T21:41:26.1646302Z { 2023-01-11T21:41:26.1646355Z { 2023-01-11T21:41:26.1646427Z { 2023-01-11T21:41:26.1646539Z auto tmp0 = static_cast(((3*i1) / 2)); 2023-01-11T21:41:26.1646653Z auto tmp1 = static_cast(2 + (((3*i1) / 2))); 2023-01-11T21:41:26.1646748Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.1646857Z auto tmp3 = static_cast(((3*i2) / 5)); 2023-01-11T21:41:26.1646966Z auto tmp4 = static_cast(((7 + (3*i2)) / 5)); 2023-01-11T21:41:26.1647058Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.1647136Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.1647223Z float tmp7 = 0.0; 2023-01-11T21:41:26.1647297Z if(tmp6) 2023-01-11T21:41:26.1647368Z { 2023-01-11T21:41:26.1647490Z auto tmp8 = in_ptr0[(3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:41:26.1647599Z auto tmp9 = static_cast(1); 2023-01-11T21:41:26.1647692Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.1647765Z tmp7 = tmp10; 2023-01-11T21:41:26.1647833Z } 2023-01-11T21:41:26.1647944Z auto tmp11 = static_cast(1 + (((3*i2) / 5))); 2023-01-11T21:41:26.1648038Z auto tmp12 = tmp11 < tmp4; 2023-01-11T21:41:26.1648133Z auto tmp13 = tmp2 & tmp12; 2023-01-11T21:41:26.1648222Z float tmp14 = 0.0; 2023-01-11T21:41:26.1648296Z if(tmp13) 2023-01-11T21:41:26.1648353Z { 2023-01-11T21:41:26.1648475Z auto tmp15 = in_ptr0[1 + (3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:41:26.1648582Z auto tmp16 = static_cast(1); 2023-01-11T21:41:26.1648711Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:41:26.1648794Z tmp14 = tmp17; 2023-01-11T21:41:26.1648862Z } 2023-01-11T21:41:26.1648956Z auto tmp18 = tmp14 + tmp7; 2023-01-11T21:41:26.1649210Z auto tmp19 = static_cast(1 + (((3*i1) / 2))); 2023-01-11T21:41:26.1649299Z auto tmp20 = tmp19 < tmp1; 2023-01-11T21:41:26.1649393Z auto tmp21 = tmp20 & tmp5; 2023-01-11T21:41:26.1649480Z float tmp22 = 0.0; 2023-01-11T21:41:26.1649553Z if(tmp21) 2023-01-11T21:41:26.1649620Z { 2023-01-11T21:41:26.1649806Z auto tmp23 = in_ptr0[3 + (3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:41:26.1649916Z auto tmp24 = static_cast(1); 2023-01-11T21:41:26.1650003Z auto tmp25 = tmp23 + tmp24; 2023-01-11T21:41:26.1650086Z tmp22 = tmp25; 2023-01-11T21:41:26.1650152Z } 2023-01-11T21:41:26.1650246Z auto tmp26 = tmp22 + tmp18; 2023-01-11T21:41:26.1650339Z auto tmp27 = tmp20 & tmp12; 2023-01-11T21:41:26.1650424Z float tmp28 = 0.0; 2023-01-11T21:41:26.1650498Z if(tmp27) 2023-01-11T21:41:26.1650554Z { 2023-01-11T21:41:26.1650675Z auto tmp29 = in_ptr0[4 + (3*(((3*i1) / 2))) + (9*i0) + (((3*i2) / 5))]; 2023-01-11T21:41:26.1650782Z auto tmp30 = static_cast(1); 2023-01-11T21:41:26.1650882Z auto tmp31 = tmp29 + tmp30; 2023-01-11T21:41:26.1650964Z tmp28 = tmp31; 2023-01-11T21:41:26.1651031Z } 2023-01-11T21:41:26.1651126Z auto tmp32 = tmp28 + tmp26; 2023-01-11T21:41:26.1651211Z float tmp33 = 0.0; 2023-01-11T21:41:26.1651274Z if(tmp6) 2023-01-11T21:41:26.1651341Z { 2023-01-11T21:41:26.1651453Z auto tmp34 = static_cast(1); 2023-01-11T21:41:26.1651536Z tmp33 = tmp34; 2023-01-11T21:41:26.1651601Z } 2023-01-11T21:41:26.1651681Z float tmp35 = 0.0; 2023-01-11T21:41:26.1651755Z if(tmp13) 2023-01-11T21:41:26.1651810Z { 2023-01-11T21:41:26.1651917Z auto tmp36 = static_cast(1); 2023-01-11T21:41:26.1652002Z tmp35 = tmp36; 2023-01-11T21:41:26.1652068Z } 2023-01-11T21:41:26.1652159Z auto tmp37 = tmp35 + tmp33; 2023-01-11T21:41:26.1652246Z float tmp38 = 0.0; 2023-01-11T21:41:26.1652321Z if(tmp21) 2023-01-11T21:41:26.1652375Z { 2023-01-11T21:41:26.1652480Z auto tmp39 = static_cast(1); 2023-01-11T21:41:26.1652563Z tmp38 = tmp39; 2023-01-11T21:41:26.1652627Z } 2023-01-11T21:41:26.1652720Z auto tmp40 = tmp38 + tmp37; 2023-01-11T21:41:26.1652804Z float tmp41 = 0.0; 2023-01-11T21:41:26.1652881Z if(tmp27) 2023-01-11T21:41:26.1652937Z { 2023-01-11T21:41:26.1653041Z auto tmp42 = static_cast(1); 2023-01-11T21:41:26.1653123Z tmp41 = tmp42; 2023-01-11T21:41:26.1653190Z } 2023-01-11T21:41:26.1653324Z auto tmp43 = tmp41 + tmp40; 2023-01-11T21:41:26.1653416Z auto tmp44 = tmp32 / tmp43; 2023-01-11T21:41:26.1653519Z out_ptr1[i2 + (5*i1) + (10*i0)] = tmp44; 2023-01-11T21:41:26.1653574Z } 2023-01-11T21:41:26.1653639Z } 2023-01-11T21:41:26.1653699Z } 2023-01-11T21:41:26.1653760Z } 2023-01-11T21:41:26.1653819Z } 2023-01-11T21:41:26.1653877Z } 2023-01-11T21:41:26.1653934Z } 2023-01-11T21:41:26.1654013Z ''') 2023-01-11T21:41:26.1654019Z 2023-01-11T21:41:26.1654024Z 2023-01-11T21:41:26.1654114Z async_compile.wait(globals()) 2023-01-11T21:41:26.1654184Z del async_compile 2023-01-11T21:41:26.1654189Z 2023-01-11T21:41:26.1654258Z def call(args): 2023-01-11T21:41:26.1654324Z arg0_1, = args 2023-01-11T21:41:26.1654425Z args.clear() 2023-01-11T21:41:26.1654639Z buf0 = empty_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1654846Z buf1 = empty_strided((2, 4, 2, 5), (40, 10, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1654997Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1655064Z del arg0_1 2023-01-11T21:41:26.1655137Z return (buf0, buf1, ) 2023-01-11T21:41:26.1655142Z 2023-01-11T21:41:26.1655147Z 2023-01-11T21:41:26.1655220Z if __name__ == "__main__": 2023-01-11T21:41:26.1655332Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1655452Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1655660Z arg0_1 = rand_strided((2, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1655769Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1656020Z [2023-01-11 21:24:05,861] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 9 2023-01-11T21:41:26.1656447Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1656576Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1656830Z [2023-01-11 21:24:05,892] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 10 2023-01-11T21:41:26.1656835Z 2023-01-11T21:41:26.1656839Z 2023-01-11T21:41:26.1656934Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1657002Z import torch 2023-01-11T21:41:26.1657070Z import random 2023-01-11T21:41:26.1657184Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1657304Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1657309Z 2023-01-11T21:41:26.1657374Z aten = torch.ops.aten 2023-01-11T21:41:26.1657505Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1657593Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1657598Z 2023-01-11T21:41:26.1657602Z 2023-01-11T21:41:26.1657733Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1657936Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1658050Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1658148Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1658243Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.1658291Z { 2023-01-11T21:41:26.1658385Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1658445Z { 2023-01-11T21:41:26.1658520Z #pragma omp for 2023-01-11T21:41:26.1658602Z for(long i0=0; i0<36; i0+=1) 2023-01-11T21:41:26.1658662Z { 2023-01-11T21:41:26.1658796Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1658908Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1658969Z } 2023-01-11T21:41:26.1659061Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1659141Z for(long i0=288; i0<288; i0+=1) 2023-01-11T21:41:26.1659201Z { 2023-01-11T21:41:26.1659282Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1659363Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.1659411Z } 2023-01-11T21:41:26.1659486Z #pragma omp for 2023-01-11T21:41:26.1659566Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1659624Z { 2023-01-11T21:41:26.1659700Z #pragma GCC ivdep 2023-01-11T21:41:26.1659779Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.1659830Z { 2023-01-11T21:41:26.1659909Z #pragma GCC ivdep 2023-01-11T21:41:26.1660024Z for(long i2=0; i2<5; i2+=1) 2023-01-11T21:41:26.1660091Z { 2023-01-11T21:41:26.1660156Z { 2023-01-11T21:41:26.1660225Z { 2023-01-11T21:41:26.1660332Z auto tmp0 = static_cast(3*i1); 2023-01-11T21:41:26.1660432Z auto tmp1 = static_cast(3 + (3*i1)); 2023-01-11T21:41:26.1660526Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.1660638Z auto tmp3 = static_cast(((6*i2) / 5)); 2023-01-11T21:41:26.1660752Z auto tmp4 = static_cast(2 + (((6*i2) / 5))); 2023-01-11T21:41:26.1660843Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.1660933Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.1661019Z float tmp7 = 0.0; 2023-01-11T21:41:26.1661093Z if(tmp6) 2023-01-11T21:41:26.1661150Z { 2023-01-11T21:41:26.1661263Z auto tmp8 = in_ptr0[(18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1661373Z auto tmp9 = static_cast(1); 2023-01-11T21:41:26.1661469Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.1661552Z tmp7 = tmp10; 2023-01-11T21:41:26.1661619Z } 2023-01-11T21:41:26.1661734Z auto tmp11 = static_cast(1 + (((6*i2) / 5))); 2023-01-11T21:41:26.1661818Z auto tmp12 = tmp11 < tmp4; 2023-01-11T21:41:26.1661912Z auto tmp13 = tmp2 & tmp12; 2023-01-11T21:41:26.1661997Z float tmp14 = 0.0; 2023-01-11T21:41:26.1662072Z if(tmp13) 2023-01-11T21:41:26.1662139Z { 2023-01-11T21:41:26.1662257Z auto tmp15 = in_ptr0[1 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1662364Z auto tmp16 = static_cast(1); 2023-01-11T21:41:26.1662451Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:41:26.1662534Z tmp14 = tmp17; 2023-01-11T21:41:26.1662604Z } 2023-01-11T21:41:26.1662699Z auto tmp18 = tmp14 + tmp7; 2023-01-11T21:41:26.1662808Z auto tmp19 = static_cast(1 + (3*i1)); 2023-01-11T21:41:26.1662902Z auto tmp20 = tmp19 < tmp1; 2023-01-11T21:41:26.1662995Z auto tmp21 = tmp20 & tmp5; 2023-01-11T21:41:26.1663080Z float tmp22 = 0.0; 2023-01-11T21:41:26.1663231Z if(tmp21) 2023-01-11T21:41:26.1663306Z { 2023-01-11T21:41:26.1663422Z auto tmp23 = in_ptr0[6 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1663532Z auto tmp24 = static_cast(1); 2023-01-11T21:41:26.1663671Z auto tmp25 = tmp23 + tmp24; 2023-01-11T21:41:26.1663755Z tmp22 = tmp25; 2023-01-11T21:41:26.1663823Z } 2023-01-11T21:41:26.1663905Z auto tmp26 = tmp22 + tmp18; 2023-01-11T21:41:26.1663996Z auto tmp27 = tmp20 & tmp12; 2023-01-11T21:41:26.1664087Z float tmp28 = 0.0; 2023-01-11T21:41:26.1664162Z if(tmp27) 2023-01-11T21:41:26.1664229Z { 2023-01-11T21:41:26.1664341Z auto tmp29 = in_ptr0[7 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1664446Z auto tmp30 = static_cast(1); 2023-01-11T21:41:26.1664561Z auto tmp31 = tmp29 + tmp30; 2023-01-11T21:41:26.1664649Z tmp28 = tmp31; 2023-01-11T21:41:26.1664714Z } 2023-01-11T21:41:26.1664813Z auto tmp32 = tmp28 + tmp26; 2023-01-11T21:41:26.1664921Z auto tmp33 = static_cast(2 + (3*i1)); 2023-01-11T21:41:26.1665015Z auto tmp34 = tmp33 < tmp1; 2023-01-11T21:41:26.1665107Z auto tmp35 = tmp34 & tmp5; 2023-01-11T21:41:26.1665193Z float tmp36 = 0.0; 2023-01-11T21:41:26.1665255Z if(tmp35) 2023-01-11T21:41:26.1665322Z { 2023-01-11T21:41:26.1665438Z auto tmp37 = in_ptr0[12 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1665544Z auto tmp38 = static_cast(1); 2023-01-11T21:41:26.1665644Z auto tmp39 = tmp37 + tmp38; 2023-01-11T21:41:26.1665729Z tmp36 = tmp39; 2023-01-11T21:41:26.1665798Z } 2023-01-11T21:41:26.1665882Z auto tmp40 = tmp36 + tmp32; 2023-01-11T21:41:26.1665975Z auto tmp41 = tmp34 & tmp12; 2023-01-11T21:41:26.1666060Z float tmp42 = 0.0; 2023-01-11T21:41:26.1666134Z if(tmp41) 2023-01-11T21:41:26.1666201Z { 2023-01-11T21:41:26.1666314Z auto tmp43 = in_ptr0[13 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1666419Z auto tmp44 = static_cast(1); 2023-01-11T21:41:26.1666515Z auto tmp45 = tmp43 + tmp44; 2023-01-11T21:41:26.1666586Z tmp42 = tmp45; 2023-01-11T21:41:26.1666652Z } 2023-01-11T21:41:26.1666745Z auto tmp46 = tmp42 + tmp40; 2023-01-11T21:41:26.1666840Z auto tmp47 = tmp1 < tmp1; 2023-01-11T21:41:26.1666933Z auto tmp48 = tmp47 & tmp5; 2023-01-11T21:41:26.1667020Z float tmp49 = 0.0; 2023-01-11T21:41:26.1667094Z if(tmp48) 2023-01-11T21:41:26.1667150Z { 2023-01-11T21:41:26.1667261Z auto tmp50 = in_ptr0[18 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1667366Z auto tmp51 = static_cast(1); 2023-01-11T21:41:26.1667462Z auto tmp52 = tmp50 + tmp51; 2023-01-11T21:41:26.1667544Z tmp49 = tmp52; 2023-01-11T21:41:26.1667612Z } 2023-01-11T21:41:26.1667704Z auto tmp53 = tmp49 + tmp46; 2023-01-11T21:41:26.1667785Z auto tmp54 = tmp47 & tmp12; 2023-01-11T21:41:26.1667872Z float tmp55 = 0.0; 2023-01-11T21:41:26.1667946Z if(tmp54) 2023-01-11T21:41:26.1668013Z { 2023-01-11T21:41:26.1668158Z auto tmp56 = in_ptr0[19 + (18*i1) + (36*i0) + (((6*i2) / 5))]; 2023-01-11T21:41:26.1668264Z auto tmp57 = static_cast(1); 2023-01-11T21:41:26.1668359Z auto tmp58 = tmp56 + tmp57; 2023-01-11T21:41:26.1668441Z tmp55 = tmp58; 2023-01-11T21:41:26.1668496Z } 2023-01-11T21:41:26.1668588Z auto tmp59 = tmp55 + tmp53; 2023-01-11T21:41:26.1668676Z float tmp60 = 0.0; 2023-01-11T21:41:26.1668749Z if(tmp6) 2023-01-11T21:41:26.1668815Z { 2023-01-11T21:41:26.1668919Z auto tmp61 = static_cast(1); 2023-01-11T21:41:26.1669030Z tmp60 = tmp61; 2023-01-11T21:41:26.1669086Z } 2023-01-11T21:41:26.1669170Z float tmp62 = 0.0; 2023-01-11T21:41:26.1669248Z if(tmp13) 2023-01-11T21:41:26.1669314Z { 2023-01-11T21:41:26.1669421Z auto tmp63 = static_cast(1); 2023-01-11T21:41:26.1669502Z tmp62 = tmp63; 2023-01-11T21:41:26.1669568Z } 2023-01-11T21:41:26.1669648Z auto tmp64 = tmp62 + tmp60; 2023-01-11T21:41:26.1669751Z float tmp65 = 0.0; 2023-01-11T21:41:26.1669849Z if(tmp21) 2023-01-11T21:41:26.1669936Z { 2023-01-11T21:41:26.1670327Z auto tmp66 = static_cast(1); 2023-01-11T21:41:26.1670708Z tmp65 = tmp66; 2023-01-11T21:41:26.1670887Z } 2023-01-11T21:41:26.1671170Z auto tmp67 = tmp65 + tmp64; 2023-01-11T21:41:26.1671358Z float tmp68 = 0.0; 2023-01-11T21:41:26.1671511Z if(tmp27) 2023-01-11T21:41:26.1671656Z { 2023-01-11T21:41:26.1671887Z auto tmp69 = static_cast(1); 2023-01-11T21:41:26.1672062Z tmp68 = tmp69; 2023-01-11T21:41:26.1672210Z } 2023-01-11T21:41:26.1672397Z auto tmp70 = tmp68 + tmp67; 2023-01-11T21:41:26.1672578Z float tmp71 = 0.0; 2023-01-11T21:41:26.1672736Z if(tmp35) 2023-01-11T21:41:26.1672879Z { 2023-01-11T21:41:26.1673113Z auto tmp72 = static_cast(1); 2023-01-11T21:41:26.1673288Z tmp71 = tmp72; 2023-01-11T21:41:26.1673437Z } 2023-01-11T21:41:26.1673627Z auto tmp73 = tmp71 + tmp70; 2023-01-11T21:41:26.1673813Z float tmp74 = 0.0; 2023-01-11T21:41:26.1673975Z if(tmp41) 2023-01-11T21:41:26.1674119Z { 2023-01-11T21:41:26.1674352Z auto tmp75 = static_cast(1); 2023-01-11T21:41:26.1674528Z tmp74 = tmp75; 2023-01-11T21:41:26.1674669Z } 2023-01-11T21:41:26.1674856Z auto tmp76 = tmp74 + tmp73; 2023-01-11T21:41:26.1675037Z float tmp77 = 0.0; 2023-01-11T21:41:26.1675197Z if(tmp48) 2023-01-11T21:41:26.1675343Z { 2023-01-11T21:41:26.1675576Z auto tmp78 = static_cast(1); 2023-01-11T21:41:26.1675755Z tmp77 = tmp78; 2023-01-11T21:41:26.1675902Z } 2023-01-11T21:41:26.1676103Z auto tmp79 = tmp77 + tmp76; 2023-01-11T21:41:26.1676366Z float tmp80 = 0.0; 2023-01-11T21:41:26.1676528Z if(tmp54) 2023-01-11T21:41:26.1676671Z { 2023-01-11T21:41:26.1676905Z auto tmp81 = static_cast(1); 2023-01-11T21:41:26.1677084Z tmp80 = tmp81; 2023-01-11T21:41:26.1677225Z } 2023-01-11T21:41:26.1677432Z auto tmp82 = tmp80 + tmp79; 2023-01-11T21:41:26.1677623Z auto tmp83 = tmp59 / tmp82; 2023-01-11T21:41:26.1677843Z out_ptr1[i2 + (5*i1) + (10*i0)] = tmp83; 2023-01-11T21:41:26.1677983Z } 2023-01-11T21:41:26.1678120Z } 2023-01-11T21:41:26.1678255Z } 2023-01-11T21:41:26.1678460Z } 2023-01-11T21:41:26.1678594Z } 2023-01-11T21:41:26.1678704Z } 2023-01-11T21:41:26.1678829Z } 2023-01-11T21:41:26.1679033Z ''') 2023-01-11T21:41:26.1679046Z 2023-01-11T21:41:26.1679056Z 2023-01-11T21:41:26.1679251Z async_compile.wait(globals()) 2023-01-11T21:41:26.1679405Z del async_compile 2023-01-11T21:41:26.1679415Z 2023-01-11T21:41:26.1679564Z def call(args): 2023-01-11T21:41:26.1679709Z arg0_1, = args 2023-01-11T21:41:26.1679845Z args.clear() 2023-01-11T21:41:26.1680337Z buf0 = empty_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1680815Z buf1 = empty_strided((2, 4, 2, 5), (40, 10, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1681180Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1681324Z del arg0_1 2023-01-11T21:41:26.1681490Z return (buf0, buf1, ) 2023-01-11T21:41:26.1681500Z 2023-01-11T21:41:26.1681510Z 2023-01-11T21:41:26.1681677Z if __name__ == "__main__": 2023-01-11T21:41:26.1681921Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1682180Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1682667Z arg0_1 = rand_strided((2, 4, 6, 6), (144, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1682897Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1683510Z [2023-01-11 21:24:07,680] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 10 2023-01-11T21:41:26.1683520Z 2023-01-11T21:41:26.1683658Z ok (5.643s) 2023-01-11T21:41:26.1684806Z test_adaptive_avg_pool2d2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1685084Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1685680Z [2023-01-11 21:24:07,701] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 11 2023-01-11T21:41:26.1686249Z [2023-01-11 21:24:07,707] torch._inductor.ir: [WARNING] Using FallbackKernel: aten._adaptive_avg_pool2d 2023-01-11T21:41:26.1686840Z [2023-01-11 21:24:07,711] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 11 2023-01-11T21:41:26.1686868Z 2023-01-11T21:41:26.1687057Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1687205Z import torch 2023-01-11T21:41:26.1687349Z import random 2023-01-11T21:41:26.1687602Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1687869Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1687880Z 2023-01-11T21:41:26.1688044Z aten = torch.ops.aten 2023-01-11T21:41:26.1688347Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1688534Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1688546Z 2023-01-11T21:41:26.1688658Z 2023-01-11T21:41:26.1688838Z async_compile.wait(globals()) 2023-01-11T21:41:26.1688990Z del async_compile 2023-01-11T21:41:26.1689000Z 2023-01-11T21:41:26.1689283Z def call(args): 2023-01-11T21:41:26.1689425Z arg0_1, = args 2023-01-11T21:41:26.1689569Z args.clear() 2023-01-11T21:41:26.1689807Z buf0 = aten._adaptive_avg_pool2d(arg0_1, [4, 4]) 2023-01-11T21:41:26.1689947Z del arg0_1 2023-01-11T21:41:26.1690076Z buf1 = buf0 2023-01-11T21:41:26.1690299Z assert_size_stride(buf1, (2, 4, 4, 4), (64, 16, 4, 1)) 2023-01-11T21:41:26.1690439Z del buf0 2023-01-11T21:41:26.1690588Z return (buf1, ) 2023-01-11T21:41:26.1690599Z 2023-01-11T21:41:26.1690609Z 2023-01-11T21:41:26.1690766Z if __name__ == "__main__": 2023-01-11T21:41:26.1691012Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1691422Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1691926Z arg0_1 = rand_strided((2, 4, 21, 21), (1764, 441, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1692164Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1692176Z 2023-01-11T21:41:26.1692314Z ok (0.030s) 2023-01-11T21:41:26.1693430Z test_add_const_float_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1693708Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1694305Z [2023-01-11 21:24:07,723] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 12 2023-01-11T21:41:26.1694915Z [2023-01-11 21:24:09,267] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 12 2023-01-11T21:41:26.1694930Z 2023-01-11T21:41:26.1695090Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1695202Z import torch 2023-01-11T21:41:26.1695303Z import random 2023-01-11T21:41:26.1695493Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1695707Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1695717Z 2023-01-11T21:41:26.1695867Z aten = torch.ops.aten 2023-01-11T21:41:26.1696115Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1696293Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1696302Z 2023-01-11T21:41:26.1696310Z 2023-01-11T21:41:26.1696566Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1696945Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1697150Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1697343Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1697452Z { 2023-01-11T21:41:26.1697636Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1697742Z { 2023-01-11T21:41:26.1697883Z #pragma omp for 2023-01-11T21:41:26.1698037Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.1698134Z { 2023-01-11T21:41:26.1698398Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1698654Z auto tmp1 = at::vec::Vectorized(static_cast(1.5)); 2023-01-11T21:41:26.1698814Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1698982Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1699097Z } 2023-01-11T21:41:26.1699268Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1699419Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.1699515Z { 2023-01-11T21:41:26.1699667Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1699867Z auto tmp1 = static_cast(1.5); 2023-01-11T21:41:26.1700025Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1700330Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1700445Z } 2023-01-11T21:41:26.1700543Z } 2023-01-11T21:41:26.1700649Z } 2023-01-11T21:41:26.1700818Z ''') 2023-01-11T21:41:26.1700828Z 2023-01-11T21:41:26.1700836Z 2023-01-11T21:41:26.1701007Z async_compile.wait(globals()) 2023-01-11T21:41:26.1701141Z del async_compile 2023-01-11T21:41:26.1701149Z 2023-01-11T21:41:26.1701276Z def call(args): 2023-01-11T21:41:26.1701405Z arg0_1, = args 2023-01-11T21:41:26.1701532Z args.clear() 2023-01-11T21:41:26.1701955Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1702150Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1702249Z del arg0_1 2023-01-11T21:41:26.1702352Z return (buf0, ) 2023-01-11T21:41:26.1702359Z 2023-01-11T21:41:26.1702364Z 2023-01-11T21:41:26.1702549Z if __name__ == "__main__": 2023-01-11T21:41:26.1702728Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1702912Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1703258Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1703417Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1703424Z 2023-01-11T21:41:26.1703520Z ok (1.556s) 2023-01-11T21:41:26.1704207Z test_add_const_int_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1704391Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1704771Z [2023-01-11 21:24:09,280] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 13 2023-01-11T21:41:26.1705128Z [2023-01-11 21:24:10,798] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 13 2023-01-11T21:41:26.1705136Z 2023-01-11T21:41:26.1705252Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1705341Z import torch 2023-01-11T21:41:26.1705435Z import random 2023-01-11T21:41:26.1705574Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1705726Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1705731Z 2023-01-11T21:41:26.1705829Z aten = torch.ops.aten 2023-01-11T21:41:26.1705995Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1706109Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1706115Z 2023-01-11T21:41:26.1706121Z 2023-01-11T21:41:26.1706293Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1706548Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1706699Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1706813Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1706888Z { 2023-01-11T21:41:26.1707010Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1707085Z { 2023-01-11T21:41:26.1707180Z #pragma omp for 2023-01-11T21:41:26.1707282Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.1707349Z { 2023-01-11T21:41:26.1707522Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1707689Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.1707795Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1707911Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1707990Z } 2023-01-11T21:41:26.1708108Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1708214Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.1708278Z { 2023-01-11T21:41:26.1708383Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1708582Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.1708686Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1708788Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1708865Z } 2023-01-11T21:41:26.1708944Z } 2023-01-11T21:41:26.1709006Z } 2023-01-11T21:41:26.1709103Z ''') 2023-01-11T21:41:26.1709109Z 2023-01-11T21:41:26.1709113Z 2023-01-11T21:41:26.1709225Z async_compile.wait(globals()) 2023-01-11T21:41:26.1709319Z del async_compile 2023-01-11T21:41:26.1709325Z 2023-01-11T21:41:26.1709414Z def call(args): 2023-01-11T21:41:26.1709499Z arg0_1, = args 2023-01-11T21:41:26.1709592Z args.clear() 2023-01-11T21:41:26.1709832Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1709999Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1710145Z del arg0_1 2023-01-11T21:41:26.1710239Z return (buf0, ) 2023-01-11T21:41:26.1710245Z 2023-01-11T21:41:26.1710249Z 2023-01-11T21:41:26.1710347Z if __name__ == "__main__": 2023-01-11T21:41:26.1710491Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1710646Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1710899Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1711020Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1711026Z 2023-01-11T21:41:26.1711106Z ok (1.531s) 2023-01-11T21:41:26.1711734Z test_add_inplace_permuted_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1711895Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1712243Z [2023-01-11 21:24:10,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 14 2023-01-11T21:41:26.1712588Z [2023-01-11 21:24:12,320] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 14 2023-01-11T21:41:26.1712593Z 2023-01-11T21:41:26.1712710Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1712797Z import torch 2023-01-11T21:41:26.1712885Z import random 2023-01-11T21:41:26.1713017Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1713167Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1713173Z 2023-01-11T21:41:26.1713271Z aten = torch.ops.aten 2023-01-11T21:41:26.1713437Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1713552Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1713557Z 2023-01-11T21:41:26.1713566Z 2023-01-11T21:41:26.1713738Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1713992Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1714144Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1714263Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1714387Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1714462Z { 2023-01-11T21:41:26.1714583Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1714659Z { 2023-01-11T21:41:26.1714770Z #pragma omp for collapse(2) 2023-01-11T21:41:26.1714873Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.1714938Z { 2023-01-11T21:41:26.1715044Z for(long i1=0; i1<12; i1+=1) 2023-01-11T21:41:26.1715122Z { 2023-01-11T21:41:26.1715233Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:41:26.1715315Z { 2023-01-11T21:41:26.1715510Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i2) + (221*i1) + (2652*i0)); 2023-01-11T21:41:26.1715729Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i2) + (221*i0)); 2023-01-11T21:41:26.1715832Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1715972Z tmp2.store(out_ptr0 + (8*i2) + (221*i1) + (2652*i0)); 2023-01-11T21:41:26.1716051Z } 2023-01-11T21:41:26.1716173Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.1716286Z for(long i2=216; i2<221; i2+=1) 2023-01-11T21:41:26.1716366Z { 2023-01-11T21:41:26.1716502Z auto tmp0 = out_ptr0[i2 + (221*i1) + (2652*i0)]; 2023-01-11T21:41:26.1716626Z auto tmp1 = in_ptr1[i2 + (221*i0)]; 2023-01-11T21:41:26.1716725Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1716851Z out_ptr0[i2 + (221*i1) + (2652*i0)] = tmp2; 2023-01-11T21:41:26.1716964Z } 2023-01-11T21:41:26.1717044Z } 2023-01-11T21:41:26.1717122Z } 2023-01-11T21:41:26.1717202Z } 2023-01-11T21:41:26.1717263Z } 2023-01-11T21:41:26.1717360Z ''') 2023-01-11T21:41:26.1717366Z 2023-01-11T21:41:26.1717371Z 2023-01-11T21:41:26.1717481Z async_compile.wait(globals()) 2023-01-11T21:41:26.1717570Z del async_compile 2023-01-11T21:41:26.1717576Z 2023-01-11T21:41:26.1717664Z def call(args): 2023-01-11T21:41:26.1717757Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.1717845Z args.clear() 2023-01-11T21:41:26.1718051Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.1718123Z del arg1_1 2023-01-11T21:41:26.1718215Z return (arg0_1, ) 2023-01-11T21:41:26.1718221Z 2023-01-11T21:41:26.1718226Z 2023-01-11T21:41:26.1718319Z if __name__ == "__main__": 2023-01-11T21:41:26.1718462Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1718621Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1718910Z arg0_1 = rand_strided((2, 13, 12, 17), (2652, 17, 221, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1719195Z arg1_1 = rand_strided((2, 13, 1, 17), (221, 17, 17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1719340Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.1719346Z 2023-01-11T21:41:26.1719415Z ok (1.522s) 2023-01-11T21:41:26.1720017Z test_addmm_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1720176Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1720514Z [2023-01-11 21:24:12,350] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 15 2023-01-11T21:41:26.1720859Z [2023-01-11 21:24:13,927] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 15 2023-01-11T21:41:26.1720869Z 2023-01-11T21:41:26.1720986Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1721072Z import torch 2023-01-11T21:41:26.1721161Z import random 2023-01-11T21:41:26.1721305Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1721445Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1721451Z 2023-01-11T21:41:26.1721550Z aten = torch.ops.aten 2023-01-11T21:41:26.1721716Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1721829Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1721835Z 2023-01-11T21:41:26.1721839Z 2023-01-11T21:41:26.1722013Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1722268Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1722418Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1722586Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1722704Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.1722825Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1722947Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.1723067Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.1723143Z { 2023-01-11T21:41:26.1723266Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1723343Z { 2023-01-11T21:41:26.1723426Z #pragma omp for 2023-01-11T21:41:26.1723527Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1723604Z { 2023-01-11T21:41:26.1723771Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1723974Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.1724084Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1724199Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1724268Z } 2023-01-11T21:41:26.1724386Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1724489Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.1724567Z { 2023-01-11T21:41:26.1724672Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1724797Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.1724904Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1724993Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1725074Z } 2023-01-11T21:41:26.1725169Z #pragma omp for 2023-01-11T21:41:26.1725270Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1725347Z { 2023-01-11T21:41:26.1725511Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.1725680Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.1725773Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1725884Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.1725963Z } 2023-01-11T21:41:26.1726079Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1726181Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.1726258Z { 2023-01-11T21:41:26.1726360Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.1726472Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.1726578Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1726676Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.1726755Z } 2023-01-11T21:41:26.1726849Z #pragma omp for 2023-01-11T21:41:26.1726950Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1727026Z { 2023-01-11T21:41:26.1727176Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + 8*i0); 2023-01-11T21:41:26.1727344Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.1727449Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1727561Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.1727641Z } 2023-01-11T21:41:26.1727759Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1727862Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.1727927Z { 2023-01-11T21:41:26.1728030Z auto tmp0 = in_ptr2[i0]; 2023-01-11T21:41:26.1728152Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.1728257Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1728358Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.1728435Z } 2023-01-11T21:41:26.1728513Z } 2023-01-11T21:41:26.1728575Z } 2023-01-11T21:41:26.1728678Z ''') 2023-01-11T21:41:26.1728684Z 2023-01-11T21:41:26.1728689Z 2023-01-11T21:41:26.1728859Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.1729238Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1729386Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.1729461Z { 2023-01-11T21:41:26.1729655Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1729718Z { 2023-01-11T21:41:26.1729814Z #pragma omp for 2023-01-11T21:41:26.1729914Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1729992Z { 2023-01-11T21:41:26.1730165Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.1730340Z auto tmp1 = at::vec::Vectorized(static_cast(4)); 2023-01-11T21:41:26.1730445Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1730566Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.1730630Z } 2023-01-11T21:41:26.1730750Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1730852Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.1730928Z { 2023-01-11T21:41:26.1731038Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.1731203Z auto tmp1 = static_cast(4); 2023-01-11T21:41:26.1731308Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1731402Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1731479Z } 2023-01-11T21:41:26.1731556Z } 2023-01-11T21:41:26.1731630Z } 2023-01-11T21:41:26.1731730Z ''') 2023-01-11T21:41:26.1731736Z 2023-01-11T21:41:26.1731741Z 2023-01-11T21:41:26.1731852Z async_compile.wait(globals()) 2023-01-11T21:41:26.1731943Z del async_compile 2023-01-11T21:41:26.1731949Z 2023-01-11T21:41:26.1732023Z def call(args): 2023-01-11T21:41:26.1732124Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.1732211Z args.clear() 2023-01-11T21:41:26.1732465Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1732715Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1732962Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1733269Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.1733346Z del arg0_1 2023-01-11T21:41:26.1733427Z del arg1_1 2023-01-11T21:41:26.1733510Z del arg2_1 2023-01-11T21:41:26.1733760Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1733915Z aten.addmm.out(buf0, buf1, buf2, beta=1, alpha=1, out=buf3) 2023-01-11T21:41:26.1733997Z del buf0 2023-01-11T21:41:26.1734076Z del buf1 2023-01-11T21:41:26.1734145Z del buf2 2023-01-11T21:41:26.1734249Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:41:26.1734377Z kernel_cpp_1(c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.1734465Z return (buf4, ) 2023-01-11T21:41:26.1734471Z 2023-01-11T21:41:26.1734476Z 2023-01-11T21:41:26.1734568Z if __name__ == "__main__": 2023-01-11T21:41:26.1734714Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1734868Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1735125Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1735371Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1735618Z arg2_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1735774Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.1735780Z 2023-01-11T21:41:26.1735861Z ok (1.607s) 2023-01-11T21:41:26.1736481Z test_alexnet_prefix_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1736643Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1736984Z [2023-01-11 21:24:14,048] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 16 2023-01-11T21:41:26.1737301Z [2023-01-11 21:24:14,134] torch._inductor.scheduler: [DEBUG] removed dead node: buf2 2023-01-11T21:41:26.1737648Z [2023-01-11 21:24:15,789] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 16 2023-01-11T21:41:26.1737654Z 2023-01-11T21:41:26.1737772Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1737847Z import torch 2023-01-11T21:41:26.1737933Z import random 2023-01-11T21:41:26.1738078Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1738230Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1738236Z 2023-01-11T21:41:26.1738332Z aten = torch.ops.aten 2023-01-11T21:41:26.1738500Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1738649Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1738656Z 2023-01-11T21:41:26.1738661Z 2023-01-11T21:41:26.1738821Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1739078Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1739229Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1739352Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1739427Z { 2023-01-11T21:41:26.1739551Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1739628Z { 2023-01-11T21:41:26.1739711Z #pragma omp for 2023-01-11T21:41:26.1739818Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.1739896Z { 2023-01-11T21:41:26.1739995Z #pragma GCC ivdep 2023-01-11T21:41:26.1740099Z for(long i1=0; i1<27; i1+=1) 2023-01-11T21:41:26.1740178Z { 2023-01-11T21:41:26.1740278Z #pragma GCC ivdep 2023-01-11T21:41:26.1740379Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:41:26.1740460Z { 2023-01-11T21:41:26.1740543Z { 2023-01-11T21:41:26.1740632Z { 2023-01-11T21:41:26.1740773Z auto tmp0 = in_ptr0[(2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1740916Z auto tmp2 = in_ptr0[1 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741055Z auto tmp5 = in_ptr0[2 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741198Z auto tmp8 = in_ptr0[55 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741330Z auto tmp11 = in_ptr0[56 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741474Z auto tmp14 = in_ptr0[57 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741617Z auto tmp17 = in_ptr0[110 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741762Z auto tmp20 = in_ptr0[111 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1741902Z auto tmp23 = in_ptr0[112 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.1742030Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.1742152Z auto tmp3 = tmp2 * (tmp2>0); 2023-01-11T21:41:26.1742316Z auto tmp4 = (tmp1 != tmp1) ? tmp1 : std::max(tmp3, tmp1); 2023-01-11T21:41:26.1742425Z auto tmp6 = tmp5 * (tmp5>0); 2023-01-11T21:41:26.1742585Z auto tmp7 = (tmp4 != tmp4) ? tmp4 : std::max(tmp6, tmp4); 2023-01-11T21:41:26.1742706Z auto tmp9 = tmp8 * (tmp8>0); 2023-01-11T21:41:26.1742864Z auto tmp10 = (tmp7 != tmp7) ? tmp7 : std::max(tmp9, tmp7); 2023-01-11T21:41:26.1742993Z auto tmp12 = tmp11 * (tmp11>0); 2023-01-11T21:41:26.1743230Z auto tmp13 = (tmp10 != tmp10) ? tmp10 : std::max(tmp12, tmp10); 2023-01-11T21:41:26.1743370Z auto tmp15 = tmp14 * (tmp14>0); 2023-01-11T21:41:26.1743625Z auto tmp16 = (tmp13 != tmp13) ? tmp13 : std::max(tmp15, tmp13); 2023-01-11T21:41:26.1743758Z auto tmp18 = tmp17 * (tmp17>0); 2023-01-11T21:41:26.1743956Z auto tmp19 = (tmp16 != tmp16) ? tmp16 : std::max(tmp18, tmp16); 2023-01-11T21:41:26.1744116Z auto tmp21 = tmp20 * (tmp20>0); 2023-01-11T21:41:26.1744318Z auto tmp22 = (tmp19 != tmp19) ? tmp19 : std::max(tmp21, tmp19); 2023-01-11T21:41:26.1744474Z auto tmp24 = tmp23 * (tmp23>0); 2023-01-11T21:41:26.1744671Z auto tmp25 = (tmp22 != tmp22) ? tmp22 : std::max(tmp24, tmp22); 2023-01-11T21:41:26.1744838Z out_ptr0[i2 + (27*i1) + (729*i0)] = tmp25; 2023-01-11T21:41:26.1745161Z } 2023-01-11T21:41:26.1745269Z } 2023-01-11T21:41:26.1745382Z } 2023-01-11T21:41:26.1745553Z } 2023-01-11T21:41:26.1745718Z } 2023-01-11T21:41:26.1745871Z } 2023-01-11T21:41:26.1746028Z } 2023-01-11T21:41:26.1746238Z ''') 2023-01-11T21:41:26.1746251Z 2023-01-11T21:41:26.1746258Z 2023-01-11T21:41:26.1746411Z async_compile.wait(globals()) 2023-01-11T21:41:26.1746598Z del async_compile 2023-01-11T21:41:26.1746607Z 2023-01-11T21:41:26.1746955Z def call(args): 2023-01-11T21:41:26.1747091Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.1747261Z args.clear() 2023-01-11T21:41:26.1747546Z buf0 = aten.convolution(arg2_1, arg1_1, arg0_1, (4, 4), (2, 2), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.1747786Z assert_size_stride(buf0, (16, 64, 55, 55), (193600, 3025, 55, 1)) 2023-01-11T21:41:26.1747980Z del arg0_1 2023-01-11T21:41:26.1748144Z del arg1_1 2023-01-11T21:41:26.1748304Z del arg2_1 2023-01-11T21:41:26.1748732Z buf1 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1749041Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1749297Z return (buf1, ) 2023-01-11T21:41:26.1749308Z 2023-01-11T21:41:26.1749316Z 2023-01-11T21:41:26.1749502Z if __name__ == "__main__": 2023-01-11T21:41:26.1749756Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1750024Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1750442Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1750887Z arg1_1 = rand_strided((64, 3, 11, 11), (363, 121, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1751287Z arg2_1 = rand_strided((16, 3, 224, 224), (150528, 50176, 224, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1751574Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.1751590Z 2023-01-11T21:41:26.1751747Z ok (1.942s) 2023-01-11T21:41:26.1752731Z test_any_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1753022Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1753569Z [2023-01-11 21:24:15,907] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 17 2023-01-11T21:41:26.1754150Z [2023-01-11 21:24:17,477] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 17 2023-01-11T21:41:26.1754992Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1755447Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1755916Z [2023-01-11 21:24:17,514] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 18 2023-01-11T21:41:26.1756383Z [2023-01-11 21:24:19,164] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 18 2023-01-11T21:41:26.1756395Z 2023-01-11T21:41:26.1756527Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1756758Z import torch 2023-01-11T21:41:26.1756905Z import random 2023-01-11T21:41:26.1757120Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1757348Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1757356Z 2023-01-11T21:41:26.1757609Z aten = torch.ops.aten 2023-01-11T21:41:26.1757867Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1757998Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1758069Z 2023-01-11T21:41:26.1758172Z 2023-01-11T21:41:26.1758417Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1758831Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1759146Z extern "C" void kernel(bool* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.1759365Z bool* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.1759640Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1759851Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.1760056Z bool* __restrict__ out_ptr1) 2023-01-11T21:41:26.1760133Z { 2023-01-11T21:41:26.1760294Z auto out_ptr2 = in_out_ptr0; 2023-01-11T21:41:26.1760461Z auto out_ptr3 = in_out_ptr1; 2023-01-11T21:41:26.1760629Z { 2023-01-11T21:41:26.1760845Z { 2023-01-11T21:41:26.1761054Z bool tmp2 = 0; 2023-01-11T21:41:26.1761238Z bool tmp4 = 0; 2023-01-11T21:41:26.1761364Z bool tmp8 = 0; 2023-01-11T21:41:26.1761542Z bool tmp10 = 0; 2023-01-11T21:41:26.1761797Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1761969Z { 2023-01-11T21:41:26.1762333Z #pragma omp for reduction(||:tmp2) reduction(||:tmp4) reduction(||:tmp8) reduction(||:tmp10) 2023-01-11T21:41:26.1762547Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.1762784Z { 2023-01-11T21:41:26.1762899Z { 2023-01-11T21:41:26.1763153Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1763398Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.1763642Z auto tmp3 = std::isinf(tmp0); 2023-01-11T21:41:26.1763865Z auto tmp5 = tmp3 == 0; 2023-01-11T21:41:26.1764124Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:41:26.1764370Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.1764527Z auto tmp9 = tmp5 == 0; 2023-01-11T21:41:26.1764845Z tmp2 = tmp2 || tmp1; 2023-01-11T21:41:26.1765086Z tmp4 = tmp4 || tmp3; 2023-01-11T21:41:26.1765274Z tmp8 = tmp8 || tmp7; 2023-01-11T21:41:26.1765459Z tmp10 = tmp10 || tmp9; 2023-01-11T21:41:26.1765610Z } 2023-01-11T21:41:26.1765760Z } 2023-01-11T21:41:26.1765853Z } 2023-01-11T21:41:26.1766031Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.1766217Z out_ptr1[0] = tmp4; 2023-01-11T21:41:26.1766381Z out_ptr2[0] = tmp8; 2023-01-11T21:41:26.1766582Z out_ptr3[0] = tmp10; 2023-01-11T21:41:26.1766749Z } 2023-01-11T21:41:26.1766900Z } 2023-01-11T21:41:26.1767095Z { 2023-01-11T21:41:26.1767263Z { 2023-01-11T21:41:26.1767472Z auto tmp0 = out_ptr2[0]; 2023-01-11T21:41:26.1767776Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.1767979Z in_out_ptr0[0] = tmp1; 2023-01-11T21:41:26.1768144Z } 2023-01-11T21:41:26.1768241Z } 2023-01-11T21:41:26.1768467Z { 2023-01-11T21:41:26.1768623Z { 2023-01-11T21:41:26.1768824Z auto tmp0 = out_ptr3[0]; 2023-01-11T21:41:26.1769162Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.1769381Z in_out_ptr1[0] = tmp1; 2023-01-11T21:41:26.1769546Z } 2023-01-11T21:41:26.1769645Z } 2023-01-11T21:41:26.1769796Z } 2023-01-11T21:41:26.1770026Z ''') 2023-01-11T21:41:26.1770036Z 2023-01-11T21:41:26.1770043Z 2023-01-11T21:41:26.1770325Z async_compile.wait(globals()) 2023-01-11T21:41:26.1770512Z del async_compile 2023-01-11T21:41:26.1770521Z 2023-01-11T21:41:26.1770702Z def call(args): 2023-01-11T21:41:26.1770883Z arg0_1, = args 2023-01-11T21:41:26.1771120Z args.clear() 2023-01-11T21:41:26.1771543Z buf0 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1771937Z buf1 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1772326Z buf2 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1772701Z buf3 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1772951Z buf4 = buf2; del buf2 # reuse 2023-01-11T21:41:26.1773170Z buf5 = buf3; del buf3 # reuse 2023-01-11T21:41:26.1773718Z kernel_cpp_0(c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1773815Z del arg0_1 2023-01-11T21:41:26.1774002Z return (buf0, buf1, buf4, buf5, ) 2023-01-11T21:41:26.1774012Z 2023-01-11T21:41:26.1774018Z 2023-01-11T21:41:26.1774187Z if __name__ == "__main__": 2023-01-11T21:41:26.1774420Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1774670Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1775069Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1775348Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1775356Z 2023-01-11T21:41:26.1775364Z 2023-01-11T21:41:26.1775562Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1775662Z import torch 2023-01-11T21:41:26.1775818Z import random 2023-01-11T21:41:26.1776042Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1776286Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1776294Z 2023-01-11T21:41:26.1776464Z aten = torch.ops.aten 2023-01-11T21:41:26.1776714Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1776916Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1776925Z 2023-01-11T21:41:26.1776931Z 2023-01-11T21:41:26.1777223Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1777530Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1777756Z extern "C" void kernel(bool* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.1777964Z bool* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.1778174Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1778376Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.1778573Z bool* __restrict__ out_ptr1) 2023-01-11T21:41:26.1778756Z { 2023-01-11T21:41:26.1778885Z auto out_ptr3 = in_out_ptr0; 2023-01-11T21:41:26.1779071Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:41:26.1779309Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1779457Z { 2023-01-11T21:41:26.1779613Z #pragma omp for 2023-01-11T21:41:26.1779791Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.1779938Z { 2023-01-11T21:41:26.1780033Z { 2023-01-11T21:41:26.1780196Z { 2023-01-11T21:41:26.1780367Z bool tmp2 = 0; 2023-01-11T21:41:26.1780555Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.1780855Z { 2023-01-11T21:41:26.1781033Z { 2023-01-11T21:41:26.1781243Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.1781401Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.1781593Z tmp2 = tmp2 || tmp1; 2023-01-11T21:41:26.1781761Z } 2023-01-11T21:41:26.1781949Z } 2023-01-11T21:41:26.1782124Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1782276Z } 2023-01-11T21:41:26.1782547Z } 2023-01-11T21:41:26.1782652Z } 2023-01-11T21:41:26.1782811Z } 2023-01-11T21:41:26.1782980Z { 2023-01-11T21:41:26.1783231Z { 2023-01-11T21:41:26.1783423Z bool tmp2 = 0; 2023-01-11T21:41:26.1783678Z bool tmp5 = 0; 2023-01-11T21:41:26.1783862Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1784032Z { 2023-01-11T21:41:26.1784326Z #pragma omp for reduction(||:tmp2) reduction(||:tmp5) 2023-01-11T21:41:26.1784576Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.1784762Z { 2023-01-11T21:41:26.1784930Z { 2023-01-11T21:41:26.1785154Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1785343Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:41:26.1785593Z auto tmp3 = tmp1 == 0; 2023-01-11T21:41:26.1785800Z auto tmp4 = tmp3 == 0; 2023-01-11T21:41:26.1786014Z tmp2 = tmp2 || tmp1; 2023-01-11T21:41:26.1786229Z tmp5 = tmp5 || tmp4; 2023-01-11T21:41:26.1786450Z } 2023-01-11T21:41:26.1786616Z } 2023-01-11T21:41:26.1786716Z } 2023-01-11T21:41:26.1786912Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.1787106Z out_ptr2[0] = tmp5; 2023-01-11T21:41:26.1787269Z } 2023-01-11T21:41:26.1787430Z } 2023-01-11T21:41:26.1787656Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1787824Z { 2023-01-11T21:41:26.1787955Z #pragma omp for 2023-01-11T21:41:26.1788191Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1788352Z { 2023-01-11T21:41:26.1788516Z { 2023-01-11T21:41:26.1788686Z { 2023-01-11T21:41:26.1788907Z bool tmp5 = 0; 2023-01-11T21:41:26.1789142Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.1789304Z { 2023-01-11T21:41:26.1789468Z { 2023-01-11T21:41:26.1789683Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.1789927Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:41:26.1790131Z auto tmp2 = tmp1 == 0; 2023-01-11T21:41:26.1790352Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.1790577Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.1790710Z tmp5 = tmp5 || tmp4; 2023-01-11T21:41:26.1790854Z } 2023-01-11T21:41:26.1791021Z } 2023-01-11T21:41:26.1791198Z out_ptr3[i0] = tmp5; 2023-01-11T21:41:26.1791345Z } 2023-01-11T21:41:26.1791522Z } 2023-01-11T21:41:26.1791665Z } 2023-01-11T21:41:26.1791767Z #pragma omp for 2023-01-11T21:41:26.1791946Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1792128Z { 2023-01-11T21:41:26.1792287Z { 2023-01-11T21:41:26.1792437Z { 2023-01-11T21:41:26.1792629Z auto tmp0 = out_ptr3[i0]; 2023-01-11T21:41:26.1792753Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.1792949Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.1793133Z } 2023-01-11T21:41:26.1793277Z } 2023-01-11T21:41:26.1793504Z } 2023-01-11T21:41:26.1793674Z #pragma omp single 2023-01-11T21:41:26.1793819Z { 2023-01-11T21:41:26.1793907Z { 2023-01-11T21:41:26.1794064Z { 2023-01-11T21:41:26.1794254Z auto tmp0 = out_ptr2[0]; 2023-01-11T21:41:26.1794538Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.1794776Z in_out_ptr1[0] = tmp1; 2023-01-11T21:41:26.1794948Z } 2023-01-11T21:41:26.1795178Z } 2023-01-11T21:41:26.1795284Z } 2023-01-11T21:41:26.1795441Z } 2023-01-11T21:41:26.1795605Z } 2023-01-11T21:41:26.1795809Z ''') 2023-01-11T21:41:26.1795819Z 2023-01-11T21:41:26.1795826Z 2023-01-11T21:41:26.1796046Z async_compile.wait(globals()) 2023-01-11T21:41:26.1796230Z del async_compile 2023-01-11T21:41:26.1796241Z 2023-01-11T21:41:26.1796535Z def call(args): 2023-01-11T21:41:26.1796656Z arg0_1, = args 2023-01-11T21:41:26.1796819Z args.clear() 2023-01-11T21:41:26.1797240Z buf0 = empty_strided((16, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1797631Z buf1 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1798015Z buf4 = empty_strided((), (), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1798427Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.1798639Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:41:26.1798787Z buf5 = buf4; del buf4 # reuse 2023-01-11T21:41:26.1799234Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1799453Z del arg0_1 2023-01-11T21:41:26.1799711Z return (buf0, buf1, buf3, buf5, ) 2023-01-11T21:41:26.1799726Z 2023-01-11T21:41:26.1799732Z 2023-01-11T21:41:26.1799916Z if __name__ == "__main__": 2023-01-11T21:41:26.1800180Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1800468Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1800891Z arg0_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1801164Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1801173Z 2023-01-11T21:41:26.1801346Z ok (3.294s) 2023-01-11T21:41:26.1802135Z test_arange1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1802420Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1802880Z [2023-01-11 21:24:19,221] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 19 2023-01-11T21:41:26.1803370Z [2023-01-11 21:24:20,939] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 19 2023-01-11T21:41:26.1803386Z 2023-01-11T21:41:26.1803590Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1803750Z import torch 2023-01-11T21:41:26.1803876Z import random 2023-01-11T21:41:26.1900377Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1900751Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1900761Z 2023-01-11T21:41:26.1900896Z aten = torch.ops.aten 2023-01-11T21:41:26.1901132Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1901289Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1901296Z 2023-01-11T21:41:26.1901303Z 2023-01-11T21:41:26.1901613Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1901969Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1902178Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1902651Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.1902814Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.1902917Z { 2023-01-11T21:41:26.1903089Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1903263Z { 2023-01-11T21:41:26.1903381Z #pragma omp for 2023-01-11T21:41:26.1903519Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.1903626Z { 2023-01-11T21:41:26.1903731Z { 2023-01-11T21:41:26.1903843Z { 2023-01-11T21:41:26.1903993Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1904172Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.1904311Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.1904450Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.1904560Z } 2023-01-11T21:41:26.1904764Z } 2023-01-11T21:41:26.1904869Z } 2023-01-11T21:41:26.1904995Z #pragma omp for 2023-01-11T21:41:26.1905138Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1905226Z { 2023-01-11T21:41:26.1905361Z #pragma GCC ivdep 2023-01-11T21:41:26.1905500Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.1905603Z { 2023-01-11T21:41:26.1905714Z { 2023-01-11T21:41:26.1905824Z { 2023-01-11T21:41:26.1905985Z auto tmp0 = out_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.1906168Z auto tmp1 = static_cast(10 + i1); 2023-01-11T21:41:26.1906352Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.1906505Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.1906662Z out_ptr1[i1 + (8*i0)] = tmp3; 2023-01-11T21:41:26.1906775Z } 2023-01-11T21:41:26.1906885Z } 2023-01-11T21:41:26.1906979Z } 2023-01-11T21:41:26.1907083Z } 2023-01-11T21:41:26.1907185Z } 2023-01-11T21:41:26.1907290Z } 2023-01-11T21:41:26.1907444Z ''') 2023-01-11T21:41:26.1907452Z 2023-01-11T21:41:26.1907459Z 2023-01-11T21:41:26.1907613Z async_compile.wait(globals()) 2023-01-11T21:41:26.1907733Z del async_compile 2023-01-11T21:41:26.1907741Z 2023-01-11T21:41:26.1907860Z def call(args): 2023-01-11T21:41:26.1907961Z arg0_1, = args 2023-01-11T21:41:26.1908084Z args.clear() 2023-01-11T21:41:26.1908429Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1908768Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1909046Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1909159Z del arg0_1 2023-01-11T21:41:26.1909281Z return (buf0, buf1, ) 2023-01-11T21:41:26.1909287Z 2023-01-11T21:41:26.1909293Z 2023-01-11T21:41:26.1909386Z if __name__ == "__main__": 2023-01-11T21:41:26.1909539Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1909703Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1909977Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1910115Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1910121Z 2023-01-11T21:41:26.1910210Z ok (1.775s) 2023-01-11T21:41:26.1910819Z test_arange2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1910986Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1911342Z [2023-01-11 21:24:20,972] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 20 2023-01-11T21:41:26.1911749Z [2023-01-11 21:24:22,505] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 20 2023-01-11T21:41:26.1911852Z 2023-01-11T21:41:26.1912109Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1912254Z import torch 2023-01-11T21:41:26.1912421Z import random 2023-01-11T21:41:26.1912630Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1912865Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1912874Z 2023-01-11T21:41:26.1913033Z aten = torch.ops.aten 2023-01-11T21:41:26.1913294Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1913447Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1913456Z 2023-01-11T21:41:26.1913483Z 2023-01-11T21:41:26.1913736Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1914190Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1914424Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.1914618Z long* __restrict__ out_ptr0) 2023-01-11T21:41:26.1914742Z { 2023-01-11T21:41:26.1914935Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1915067Z { 2023-01-11T21:41:26.1915195Z #pragma omp for 2023-01-11T21:41:26.1915338Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.1915474Z { 2023-01-11T21:41:26.1915638Z #pragma GCC ivdep 2023-01-11T21:41:26.1915799Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.1915925Z { 2023-01-11T21:41:26.1916037Z { 2023-01-11T21:41:26.1916158Z { 2023-01-11T21:41:26.1916355Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.1916565Z auto tmp1 = static_cast(i1); 2023-01-11T21:41:26.1916749Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1916936Z out_ptr0[i1 + (8*i0)] = tmp2; 2023-01-11T21:41:26.1917049Z } 2023-01-11T21:41:26.1917171Z } 2023-01-11T21:41:26.1917296Z } 2023-01-11T21:41:26.1917420Z } 2023-01-11T21:41:26.1917542Z } 2023-01-11T21:41:26.1917666Z } 2023-01-11T21:41:26.1917839Z ''') 2023-01-11T21:41:26.1917847Z 2023-01-11T21:41:26.1917854Z 2023-01-11T21:41:26.1918029Z async_compile.wait(globals()) 2023-01-11T21:41:26.1918151Z del async_compile 2023-01-11T21:41:26.1918181Z 2023-01-11T21:41:26.1918299Z def call(args): 2023-01-11T21:41:26.1918441Z arg0_1, = args 2023-01-11T21:41:26.1918587Z args.clear() 2023-01-11T21:41:26.1918966Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1919223Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1919365Z del arg0_1 2023-01-11T21:41:26.1919504Z return (buf0, ) 2023-01-11T21:41:26.1919521Z 2023-01-11T21:41:26.1919528Z 2023-01-11T21:41:26.1919648Z if __name__ == "__main__": 2023-01-11T21:41:26.1919870Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1920108Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1920480Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1920666Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1920676Z 2023-01-11T21:41:26.1920812Z ok (1.566s) 2023-01-11T21:41:26.1921680Z test_arange3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1921933Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1922438Z [2023-01-11 21:24:22,544] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 21 2023-01-11T21:41:26.1923042Z [2023-01-11 21:24:24,015] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 21 2023-01-11T21:41:26.1923065Z 2023-01-11T21:41:26.1923231Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1923364Z import torch 2023-01-11T21:41:26.1923500Z import random 2023-01-11T21:41:26.1923733Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1923959Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1923966Z 2023-01-11T21:41:26.1924124Z aten = torch.ops.aten 2023-01-11T21:41:26.1924373Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1924531Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1924539Z 2023-01-11T21:41:26.1924548Z 2023-01-11T21:41:26.1924797Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1925272Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1925496Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1925691Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1925807Z { 2023-01-11T21:41:26.1926001Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1926103Z { 2023-01-11T21:41:26.1926249Z #pragma omp for 2023-01-11T21:41:26.1926416Z for(long i0=0; i0<14; i0+=1) 2023-01-11T21:41:26.1926540Z { 2023-01-11T21:41:26.1926659Z { 2023-01-11T21:41:26.1926793Z { 2023-01-11T21:41:26.1926964Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1927144Z auto tmp1 = static_cast(4*i0); 2023-01-11T21:41:26.1927356Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.1927519Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.1927687Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.1927814Z } 2023-01-11T21:41:26.1927940Z } 2023-01-11T21:41:26.1928068Z } 2023-01-11T21:41:26.1928167Z } 2023-01-11T21:41:26.1928284Z } 2023-01-11T21:41:26.1928439Z ''') 2023-01-11T21:41:26.1928451Z 2023-01-11T21:41:26.1928458Z 2023-01-11T21:41:26.1928634Z async_compile.wait(globals()) 2023-01-11T21:41:26.1928780Z del async_compile 2023-01-11T21:41:26.1928789Z 2023-01-11T21:41:26.1928924Z def call(args): 2023-01-11T21:41:26.1929198Z arg0_1, = args 2023-01-11T21:41:26.1929326Z args.clear() 2023-01-11T21:41:26.1929716Z buf0 = empty_strided((14, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1929963Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1930097Z del arg0_1 2023-01-11T21:41:26.1930237Z return (buf0, ) 2023-01-11T21:41:26.1930246Z 2023-01-11T21:41:26.1930253Z 2023-01-11T21:41:26.1930395Z if __name__ == "__main__": 2023-01-11T21:41:26.1930613Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1930844Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1931210Z arg0_1 = rand_strided((14, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1931401Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1931407Z 2023-01-11T21:41:26.1931539Z ok (1.511s) 2023-01-11T21:41:26.1932394Z test_arange4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1932642Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1933138Z [2023-01-11 21:24:24,058] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 22 2023-01-11T21:41:26.1933636Z [2023-01-11 21:24:25,581] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 22 2023-01-11T21:41:26.1933809Z 2023-01-11T21:41:26.1933967Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1934110Z import torch 2023-01-11T21:41:26.1934228Z import random 2023-01-11T21:41:26.1934446Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1934681Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1934689Z 2023-01-11T21:41:26.1934832Z aten = torch.ops.aten 2023-01-11T21:41:26.1935082Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1935261Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1935273Z 2023-01-11T21:41:26.1935280Z 2023-01-11T21:41:26.1935538Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1935900Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1936255Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1936457Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1936567Z { 2023-01-11T21:41:26.1936755Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1936883Z { 2023-01-11T21:41:26.1937039Z #pragma omp for 2023-01-11T21:41:26.1937203Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.1937304Z { 2023-01-11T21:41:26.1937414Z { 2023-01-11T21:41:26.1937540Z { 2023-01-11T21:41:26.1937720Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1938072Z auto tmp1 = static_cast(512 + ((-1)*i0)); 2023-01-11T21:41:26.1938267Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.1938519Z auto tmp3 = tmp0 - tmp2; 2023-01-11T21:41:26.1938675Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.1938808Z } 2023-01-11T21:41:26.1938937Z } 2023-01-11T21:41:26.1939063Z } 2023-01-11T21:41:26.1939174Z } 2023-01-11T21:41:26.1939286Z } 2023-01-11T21:41:26.1939455Z ''') 2023-01-11T21:41:26.1939465Z 2023-01-11T21:41:26.1939472Z 2023-01-11T21:41:26.1939626Z async_compile.wait(globals()) 2023-01-11T21:41:26.1939766Z del async_compile 2023-01-11T21:41:26.1939775Z 2023-01-11T21:41:26.1939919Z def call(args): 2023-01-11T21:41:26.1940052Z arg0_1, = args 2023-01-11T21:41:26.1940176Z args.clear() 2023-01-11T21:41:26.1940560Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1940809Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.1940923Z del arg0_1 2023-01-11T21:41:26.1941046Z return (buf0, ) 2023-01-11T21:41:26.1941057Z 2023-01-11T21:41:26.1941066Z 2023-01-11T21:41:26.1941214Z if __name__ == "__main__": 2023-01-11T21:41:26.1941447Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1941688Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1942048Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1942259Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1942271Z 2023-01-11T21:41:26.1942402Z ok (1.565s) 2023-01-11T21:41:26.1943367Z test_argmax_argmin1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1943596Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1944086Z [2023-01-11 21:24:25,616] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 23 2023-01-11T21:41:26.1944603Z [2023-01-11 21:24:27,087] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 23 2023-01-11T21:41:26.1944611Z 2023-01-11T21:41:26.1944904Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1945043Z import torch 2023-01-11T21:41:26.1945190Z import random 2023-01-11T21:41:26.1945415Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1945630Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1945640Z 2023-01-11T21:41:26.1945782Z aten = torch.ops.aten 2023-01-11T21:41:26.1946043Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1946217Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1946227Z 2023-01-11T21:41:26.1946234Z 2023-01-11T21:41:26.1946487Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1946860Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1947092Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1947353Z long* __restrict__ out_ptr0, 2023-01-11T21:41:26.1947546Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.1947657Z { 2023-01-11T21:41:26.1947782Z { 2023-01-11T21:41:26.1947902Z { 2023-01-11T21:41:26.1948129Z struct IndexValue_1 {size_t index; float value;}; 2023-01-11T21:41:26.1948629Z IndexValue_1 tmp1{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.1948889Z #pragma omp declare reduction(argmax : struct IndexValue_1 :\ 2023-01-11T21:41:26.1949151Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.1949428Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.1949876Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.1950081Z struct IndexValue_2 {size_t index; float value;}; 2023-01-11T21:41:26.1950339Z IndexValue_2 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.1950606Z #pragma omp declare reduction(argmin : struct IndexValue_2 :\ 2023-01-11T21:41:26.1950876Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.1951151Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.1951418Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.1951617Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1951707Z { 2023-01-11T21:41:26.1951970Z #pragma omp for reduction(argmax:tmp1) reduction(argmin:tmp2) 2023-01-11T21:41:26.1952148Z for(long i0=0; i0<524288; i0+=1) 2023-01-11T21:41:26.1952281Z { 2023-01-11T21:41:26.1952415Z { 2023-01-11T21:41:26.1952577Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1952759Z if (tmp1.value < tmp0) { 2023-01-11T21:41:26.1952950Z tmp1.index = i0; tmp1.value = tmp0; 2023-01-11T21:41:26.1953093Z } 2023-01-11T21:41:26.1953266Z if (tmp2.value > tmp0) { 2023-01-11T21:41:26.1953469Z tmp2.index = i0; tmp2.value = tmp0; 2023-01-11T21:41:26.1953604Z } 2023-01-11T21:41:26.1953739Z } 2023-01-11T21:41:26.1953869Z } 2023-01-11T21:41:26.1953981Z } 2023-01-11T21:41:26.1954145Z out_ptr0[0] = tmp1.index; 2023-01-11T21:41:26.1954306Z out_ptr1[0] = tmp2.index; 2023-01-11T21:41:26.1954417Z } 2023-01-11T21:41:26.1954537Z } 2023-01-11T21:41:26.1954666Z } 2023-01-11T21:41:26.1954838Z ''') 2023-01-11T21:41:26.1954848Z 2023-01-11T21:41:26.1954855Z 2023-01-11T21:41:26.1955007Z async_compile.wait(globals()) 2023-01-11T21:41:26.1955151Z del async_compile 2023-01-11T21:41:26.1955166Z 2023-01-11T21:41:26.1955291Z def call(args): 2023-01-11T21:41:26.1955433Z arg0_1, = args 2023-01-11T21:41:26.1955679Z args.clear() 2023-01-11T21:41:26.1956042Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1956380Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1956694Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.1956817Z del arg0_1 2023-01-11T21:41:26.1956961Z return (buf0, buf1, ) 2023-01-11T21:41:26.1956969Z 2023-01-11T21:41:26.1956976Z 2023-01-11T21:41:26.1957113Z if __name__ == "__main__": 2023-01-11T21:41:26.1957332Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1957564Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1957981Z arg0_1 = rand_strided((8, 256, 256), (65536, 256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1958275Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1958285Z 2023-01-11T21:41:26.1958416Z ok (1.511s) 2023-01-11T21:41:26.1959296Z test_argmax_argmin2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1959535Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1960031Z [2023-01-11 21:24:27,138] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 24 2023-01-11T21:41:26.1960526Z [2023-01-11 21:24:28,628] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 24 2023-01-11T21:41:26.1960536Z 2023-01-11T21:41:26.1960722Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1960872Z import torch 2023-01-11T21:41:26.1961012Z import random 2023-01-11T21:41:26.1961237Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1961456Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1961464Z 2023-01-11T21:41:26.1961598Z aten = torch.ops.aten 2023-01-11T21:41:26.1961853Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1962028Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1962035Z 2023-01-11T21:41:26.1962045Z 2023-01-11T21:41:26.1962294Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1962666Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1962898Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1963074Z long* __restrict__ out_ptr0, 2023-01-11T21:41:26.1963259Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.1963431Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.1963604Z long* __restrict__ out_ptr3) 2023-01-11T21:41:26.1963722Z { 2023-01-11T21:41:26.1963912Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1964033Z { 2023-01-11T21:41:26.1964195Z #pragma omp for 2023-01-11T21:41:26.1964368Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:41:26.1964474Z { 2023-01-11T21:41:26.1964595Z { 2023-01-11T21:41:26.1964719Z { 2023-01-11T21:41:26.1964938Z struct IndexValue_3 {size_t index; float value;}; 2023-01-11T21:41:26.1965431Z IndexValue_3 tmp1{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.1965688Z #pragma omp declare reduction(argmax : struct IndexValue_3 :\ 2023-01-11T21:41:26.1965979Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.1966251Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.1966717Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.1967067Z struct IndexValue_4 {size_t index; float value;}; 2023-01-11T21:41:26.1967310Z IndexValue_4 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.1967565Z #pragma omp declare reduction(argmin : struct IndexValue_4 :\ 2023-01-11T21:41:26.1967844Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.1968117Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.1968362Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.1968541Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:41:26.1968652Z { 2023-01-11T21:41:26.1968855Z { 2023-01-11T21:41:26.1969182Z auto tmp0 = in_ptr0[i0 + (144*i1)]; 2023-01-11T21:41:26.1969369Z if (tmp1.value < tmp0) { 2023-01-11T21:41:26.1969586Z tmp1.index = i1; tmp1.value = tmp0; 2023-01-11T21:41:26.1969717Z } 2023-01-11T21:41:26.1969900Z if (tmp2.value > tmp0) { 2023-01-11T21:41:26.1970084Z tmp2.index = i1; tmp2.value = tmp0; 2023-01-11T21:41:26.1970211Z } 2023-01-11T21:41:26.1970342Z } 2023-01-11T21:41:26.1970476Z } 2023-01-11T21:41:26.1970663Z out_ptr0[i0] = tmp1.index; 2023-01-11T21:41:26.1970836Z out_ptr1[i0] = tmp2.index; 2023-01-11T21:41:26.1970935Z } 2023-01-11T21:41:26.1971017Z } 2023-01-11T21:41:26.1971108Z } 2023-01-11T21:41:26.1971230Z #pragma omp for 2023-01-11T21:41:26.1971352Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:41:26.1971446Z { 2023-01-11T21:41:26.1971550Z { 2023-01-11T21:41:26.1971646Z { 2023-01-11T21:41:26.1971819Z struct IndexValue_5 {size_t index; float value;}; 2023-01-11T21:41:26.1972211Z IndexValue_5 tmp1{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.1972418Z #pragma omp declare reduction(argmax : struct IndexValue_5 :\ 2023-01-11T21:41:26.1972648Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.1972857Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.1973260Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.1973485Z struct IndexValue_6 {size_t index; float value;}; 2023-01-11T21:41:26.1973747Z IndexValue_6 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.1973994Z #pragma omp declare reduction(argmin : struct IndexValue_6 :\ 2023-01-11T21:41:26.1974276Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.1974548Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.1974826Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.1974997Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:41:26.1975114Z { 2023-01-11T21:41:26.1975252Z { 2023-01-11T21:41:26.1975446Z auto tmp0 = in_ptr0[i1 + (144*i0)]; 2023-01-11T21:41:26.1975619Z if (tmp1.value < tmp0) { 2023-01-11T21:41:26.1975847Z tmp1.index = i1; tmp1.value = tmp0; 2023-01-11T21:41:26.1975967Z } 2023-01-11T21:41:26.1976150Z if (tmp2.value > tmp0) { 2023-01-11T21:41:26.1976532Z tmp2.index = i1; tmp2.value = tmp0; 2023-01-11T21:41:26.1976675Z } 2023-01-11T21:41:26.1976804Z } 2023-01-11T21:41:26.1976907Z } 2023-01-11T21:41:26.1977091Z out_ptr2[i0] = tmp1.index; 2023-01-11T21:41:26.1977264Z out_ptr3[i0] = tmp2.index; 2023-01-11T21:41:26.1977388Z } 2023-01-11T21:41:26.1977517Z } 2023-01-11T21:41:26.1977645Z } 2023-01-11T21:41:26.1977837Z } 2023-01-11T21:41:26.1977938Z } 2023-01-11T21:41:26.1978091Z ''') 2023-01-11T21:41:26.1978099Z 2023-01-11T21:41:26.1978106Z 2023-01-11T21:41:26.1978251Z async_compile.wait(globals()) 2023-01-11T21:41:26.1978378Z del async_compile 2023-01-11T21:41:26.1978385Z 2023-01-11T21:41:26.1978599Z def call(args): 2023-01-11T21:41:26.1978707Z arg0_1, = args 2023-01-11T21:41:26.1978828Z args.clear() 2023-01-11T21:41:26.1979150Z buf0 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1979445Z buf1 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1979810Z buf2 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1980129Z buf3 = empty_strided((144, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.1980473Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.1980599Z del arg0_1 2023-01-11T21:41:26.1980751Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.1980761Z 2023-01-11T21:41:26.1980769Z 2023-01-11T21:41:26.1980904Z if __name__ == "__main__": 2023-01-11T21:41:26.1981084Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1981277Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1981624Z arg0_1 = rand_strided((144, 144), (144, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1981809Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1981821Z 2023-01-11T21:41:26.1981913Z ok (1.537s) 2023-01-11T21:41:26.1982107Z test_argmax_argmin3_cpu (__main__.CpuTests) ... skip: 2023-01-11T21:41:26.1982371Z FIXME: In the case of having equally max/min elements, our implementation returns 2023-01-11T21:41:26.1982548Z the last index instead of the first one 2023-01-11T21:41:26.1982647Z (0.001s) 2023-01-11T21:41:26.1983475Z test_as_strided_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1983680Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1984127Z [2023-01-11 21:24:28,663] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 25 2023-01-11T21:41:26.1984563Z [2023-01-11 21:24:30,154] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 25 2023-01-11T21:41:26.1984572Z 2023-01-11T21:41:26.1984728Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1984852Z import torch 2023-01-11T21:41:26.1984973Z import random 2023-01-11T21:41:26.1985148Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1985333Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1985359Z 2023-01-11T21:41:26.1985475Z aten = torch.ops.aten 2023-01-11T21:41:26.1985690Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1985851Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1985861Z 2023-01-11T21:41:26.1985867Z 2023-01-11T21:41:26.1986073Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1986505Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1986707Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.1986867Z const float* __restrict__ in_ptr0) 2023-01-11T21:41:26.1986960Z { 2023-01-11T21:41:26.1987130Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1987238Z { 2023-01-11T21:41:26.1987370Z #pragma omp for 2023-01-11T21:41:26.1987512Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:41:26.1987623Z { 2023-01-11T21:41:26.1987851Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1988069Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.1988202Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1988502Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.1988651Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.1988830Z tmp4.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.1988950Z } 2023-01-11T21:41:26.1989117Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.1989260Z for(long i0=4096; i0<4096; i0+=1) 2023-01-11T21:41:26.1989339Z { 2023-01-11T21:41:26.1989477Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.1989642Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.1989783Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.1989951Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.1990096Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.1990215Z in_out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.1990313Z } 2023-01-11T21:41:26.1990424Z } 2023-01-11T21:41:26.1990527Z } 2023-01-11T21:41:26.1990676Z ''') 2023-01-11T21:41:26.1990690Z 2023-01-11T21:41:26.1990699Z 2023-01-11T21:41:26.1990849Z async_compile.wait(globals()) 2023-01-11T21:41:26.1990961Z del async_compile 2023-01-11T21:41:26.1990974Z 2023-01-11T21:41:26.1991096Z def call(args): 2023-01-11T21:41:26.1991204Z arg0_1, = args 2023-01-11T21:41:26.1991335Z args.clear() 2023-01-11T21:41:26.1991676Z buf0 = empty_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1991853Z buf1 = as_strided(buf0, (8, 8, 64), (512, 64, 1)); del buf0 # reuse 2023-01-11T21:41:26.1992070Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.1992257Z return (as_strided(arg0_1, (8, 8, 64), (512, 64, 1)), buf1, ) 2023-01-11T21:41:26.1992265Z 2023-01-11T21:41:26.1992271Z 2023-01-11T21:41:26.1992398Z if __name__ == "__main__": 2023-01-11T21:41:26.1992576Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.1992762Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.1993100Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.1993274Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.1993289Z 2023-01-11T21:41:26.1993389Z ok (1.525s) 2023-01-11T21:41:26.1994159Z test_as_strided_scatter_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.1994353Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.1994784Z [2023-01-11 21:24:30,187] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 26 2023-01-11T21:41:26.1995216Z [2023-01-11 21:24:31,699] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 26 2023-01-11T21:41:26.1995224Z 2023-01-11T21:41:26.1995383Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.1995586Z import torch 2023-01-11T21:41:26.1995712Z import random 2023-01-11T21:41:26.1995908Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.1996112Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.1996120Z 2023-01-11T21:41:26.1996248Z aten = torch.ops.aten 2023-01-11T21:41:26.1996468Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.1996620Z async_compile = AsyncCompile() 2023-01-11T21:41:26.1996626Z 2023-01-11T21:41:26.1996633Z 2023-01-11T21:41:26.1996858Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.1997169Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.1997367Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.1997534Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.1997779Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.1997888Z { 2023-01-11T21:41:26.1998062Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.1998173Z { 2023-01-11T21:41:26.1998271Z #pragma omp for 2023-01-11T21:41:26.1998408Z for(long i0=0; i0<1280; i0+=1) 2023-01-11T21:41:26.1998517Z { 2023-01-11T21:41:26.1998743Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.1998963Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.1999092Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.1999309Z auto tmp3 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.1999459Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.1999599Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.1999707Z } 2023-01-11T21:41:26.1999868Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2000010Z for(long i0=10240; i0<10240; i0+=1) 2023-01-11T21:41:26.2000119Z { 2023-01-11T21:41:26.2000262Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2000425Z auto tmp1 = static_cast(8); 2023-01-11T21:41:26.2000549Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.2000712Z auto tmp3 = static_cast(10); 2023-01-11T21:41:26.2000839Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.2000976Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.2001088Z } 2023-01-11T21:41:26.2001221Z #pragma omp for 2023-01-11T21:41:26.2001345Z for(long i0=0; i0<5120; i0+=1) 2023-01-11T21:41:26.2001458Z { 2023-01-11T21:41:26.2001557Z { 2023-01-11T21:41:26.2001663Z { 2023-01-11T21:41:26.2001836Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.2002006Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2002158Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.2002310Z auto tmp3 = static_cast(4); 2023-01-11T21:41:26.2002557Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.2002706Z out_ptr0[2*i0] = tmp4; 2023-01-11T21:41:26.2002821Z } 2023-01-11T21:41:26.2002936Z } 2023-01-11T21:41:26.2003047Z } 2023-01-11T21:41:26.2003157Z } 2023-01-11T21:41:26.2003231Z } 2023-01-11T21:41:26.2003374Z ''') 2023-01-11T21:41:26.2003384Z 2023-01-11T21:41:26.2003392Z 2023-01-11T21:41:26.2003551Z async_compile.wait(globals()) 2023-01-11T21:41:26.2003678Z del async_compile 2023-01-11T21:41:26.2003685Z 2023-01-11T21:41:26.2003805Z def call(args): 2023-01-11T21:41:26.2003939Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2004052Z args.clear() 2023-01-11T21:41:26.2004379Z buf0 = empty_strided((10, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2004653Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2004771Z del arg0_1 2023-01-11T21:41:26.2004878Z del arg1_1 2023-01-11T21:41:26.2004996Z return (buf0, ) 2023-01-11T21:41:26.2005102Z 2023-01-11T21:41:26.2005108Z 2023-01-11T21:41:26.2005242Z if __name__ == "__main__": 2023-01-11T21:41:26.2005448Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2005653Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2005984Z arg0_1 = rand_strided((10, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2006312Z arg1_1 = rand_strided((10, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2006492Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2006498Z 2023-01-11T21:41:26.2006612Z ok (1.545s) 2023-01-11T21:41:26.2007444Z test_avg_pool2d1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2007670Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2008109Z [2023-01-11 21:24:31,722] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 27 2023-01-11T21:41:26.2008554Z [2023-01-11 21:24:33,266] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 27 2023-01-11T21:41:26.2008564Z 2023-01-11T21:41:26.2008720Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2008839Z import torch 2023-01-11T21:41:26.2008928Z import random 2023-01-11T21:41:26.2009276Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2009490Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2009497Z 2023-01-11T21:41:26.2009641Z aten = torch.ops.aten 2023-01-11T21:41:26.2009841Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2009989Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2010006Z 2023-01-11T21:41:26.2010013Z 2023-01-11T21:41:26.2010245Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2010574Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2010740Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2010907Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2011010Z { 2023-01-11T21:41:26.2011168Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2011269Z { 2023-01-11T21:41:26.2011408Z #pragma omp for 2023-01-11T21:41:26.2011530Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2011623Z { 2023-01-11T21:41:26.2011752Z #pragma GCC ivdep 2023-01-11T21:41:26.2011893Z for(long i1=0; i1<7; i1+=1) 2023-01-11T21:41:26.2012005Z { 2023-01-11T21:41:26.2012137Z #pragma GCC ivdep 2023-01-11T21:41:26.2012269Z for(long i2=0; i2<7; i2+=1) 2023-01-11T21:41:26.2012364Z { 2023-01-11T21:41:26.2012488Z { 2023-01-11T21:41:26.2012611Z { 2023-01-11T21:41:26.2012793Z auto tmp0 = in_ptr0[(2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2012987Z auto tmp1 = in_ptr0[1 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2013165Z auto tmp3 = in_ptr0[2 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2013364Z auto tmp5 = in_ptr0[16 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2013543Z auto tmp7 = in_ptr0[17 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2013706Z auto tmp9 = in_ptr0[18 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2013887Z auto tmp11 = in_ptr0[32 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2014072Z auto tmp13 = in_ptr0[33 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2014420Z auto tmp15 = in_ptr0[34 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.2014587Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:41:26.2014728Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:41:26.2014883Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:41:26.2015043Z auto tmp8 = tmp7 + tmp6; 2023-01-11T21:41:26.2015187Z auto tmp10 = tmp9 + tmp8; 2023-01-11T21:41:26.2015353Z auto tmp12 = tmp11 + tmp10; 2023-01-11T21:41:26.2015513Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:41:26.2015665Z auto tmp16 = tmp15 + tmp14; 2023-01-11T21:41:26.2015966Z auto tmp17 = static_cast(0.1111111111111111); 2023-01-11T21:41:26.2016125Z auto tmp18 = tmp16 * tmp17; 2023-01-11T21:41:26.2016308Z out_ptr0[i2 + (7*i1) + (49*i0)] = tmp18; 2023-01-11T21:41:26.2016398Z } 2023-01-11T21:41:26.2016514Z } 2023-01-11T21:41:26.2016631Z } 2023-01-11T21:41:26.2016738Z } 2023-01-11T21:41:26.2016846Z } 2023-01-11T21:41:26.2016947Z } 2023-01-11T21:41:26.2017054Z } 2023-01-11T21:41:26.2017191Z ''') 2023-01-11T21:41:26.2017198Z 2023-01-11T21:41:26.2017203Z 2023-01-11T21:41:26.2017353Z async_compile.wait(globals()) 2023-01-11T21:41:26.2017483Z del async_compile 2023-01-11T21:41:26.2017491Z 2023-01-11T21:41:26.2017614Z def call(args): 2023-01-11T21:41:26.2017732Z arg0_1, = args 2023-01-11T21:41:26.2017852Z args.clear() 2023-01-11T21:41:26.2018197Z buf0 = empty_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2018406Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2018532Z del arg0_1 2023-01-11T21:41:26.2018664Z return (buf0, ) 2023-01-11T21:41:26.2018674Z 2023-01-11T21:41:26.2018683Z 2023-01-11T21:41:26.2018813Z if __name__ == "__main__": 2023-01-11T21:41:26.2018997Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2019207Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2019582Z arg0_1 = rand_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2019747Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2019754Z 2023-01-11T21:41:26.2019853Z ok (1.566s) 2023-01-11T21:41:26.2020633Z test_avg_pool2d2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2020861Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2021284Z [2023-01-11 21:24:33,309] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 28 2023-01-11T21:41:26.2021722Z [2023-01-11 21:24:34,833] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 28 2023-01-11T21:41:26.2021731Z 2023-01-11T21:41:26.2021887Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2022000Z import torch 2023-01-11T21:41:26.2022124Z import random 2023-01-11T21:41:26.2022325Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2022511Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2022534Z 2023-01-11T21:41:26.2022657Z aten = torch.ops.aten 2023-01-11T21:41:26.2022876Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2023041Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2023050Z 2023-01-11T21:41:26.2023055Z 2023-01-11T21:41:26.2023481Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2023802Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2023997Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2024167Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2024260Z { 2023-01-11T21:41:26.2024419Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2024524Z { 2023-01-11T21:41:26.2024656Z #pragma omp for 2023-01-11T21:41:26.2024805Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.2024912Z { 2023-01-11T21:41:26.2025050Z #pragma GCC ivdep 2023-01-11T21:41:26.2025176Z for(long i1=0; i1<27; i1+=1) 2023-01-11T21:41:26.2025276Z { 2023-01-11T21:41:26.2025409Z #pragma GCC ivdep 2023-01-11T21:41:26.2025636Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:41:26.2025755Z { 2023-01-11T21:41:26.2025879Z { 2023-01-11T21:41:26.2025998Z { 2023-01-11T21:41:26.2026157Z auto tmp0 = in_ptr0[(2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2026348Z auto tmp1 = in_ptr0[1 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2026536Z auto tmp3 = in_ptr0[2 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2026728Z auto tmp5 = in_ptr0[55 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2026892Z auto tmp7 = in_ptr0[56 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2027075Z auto tmp9 = in_ptr0[57 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2027277Z auto tmp11 = in_ptr0[110 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2027473Z auto tmp13 = in_ptr0[111 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2027640Z auto tmp15 = in_ptr0[112 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.2027808Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:41:26.2027978Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:41:26.2028134Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:41:26.2028265Z auto tmp8 = tmp7 + tmp6; 2023-01-11T21:41:26.2028393Z auto tmp10 = tmp9 + tmp8; 2023-01-11T21:41:26.2028523Z auto tmp12 = tmp11 + tmp10; 2023-01-11T21:41:26.2028636Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:41:26.2028764Z auto tmp16 = tmp15 + tmp14; 2023-01-11T21:41:26.2028919Z auto tmp17 = static_cast(0.1111111111111111); 2023-01-11T21:41:26.2029051Z auto tmp18 = tmp16 * tmp17; 2023-01-11T21:41:26.2029191Z out_ptr0[i2 + (27*i1) + (729*i0)] = tmp18; 2023-01-11T21:41:26.2029282Z } 2023-01-11T21:41:26.2029372Z } 2023-01-11T21:41:26.2029463Z } 2023-01-11T21:41:26.2029534Z } 2023-01-11T21:41:26.2029615Z } 2023-01-11T21:41:26.2029691Z } 2023-01-11T21:41:26.2029772Z } 2023-01-11T21:41:26.2029886Z ''') 2023-01-11T21:41:26.2029892Z 2023-01-11T21:41:26.2029897Z 2023-01-11T21:41:26.2030021Z async_compile.wait(globals()) 2023-01-11T21:41:26.2030119Z del async_compile 2023-01-11T21:41:26.2030125Z 2023-01-11T21:41:26.2030203Z def call(args): 2023-01-11T21:41:26.2030290Z arg0_1, = args 2023-01-11T21:41:26.2030378Z args.clear() 2023-01-11T21:41:26.2030709Z buf0 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2030920Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2031146Z del arg0_1 2023-01-11T21:41:26.2031327Z return (buf0, ) 2023-01-11T21:41:26.2031420Z 2023-01-11T21:41:26.2031427Z 2023-01-11T21:41:26.2031600Z if __name__ == "__main__": 2023-01-11T21:41:26.2031817Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2032045Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2032473Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2032674Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2032687Z 2023-01-11T21:41:26.2032797Z ok (1.634s) 2023-01-11T21:41:26.2033750Z test_avg_pool2d3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2034000Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2034502Z [2023-01-11 21:24:34,921] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 29 2023-01-11T21:41:26.2035006Z [2023-01-11 21:24:36,487] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 29 2023-01-11T21:41:26.2035015Z 2023-01-11T21:41:26.2035173Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2035307Z import torch 2023-01-11T21:41:26.2035429Z import random 2023-01-11T21:41:26.2035650Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2035876Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2035886Z 2023-01-11T21:41:26.2036038Z aten = torch.ops.aten 2023-01-11T21:41:26.2036281Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2036447Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2036477Z 2023-01-11T21:41:26.2036486Z 2023-01-11T21:41:26.2036729Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2037107Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2037327Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2037519Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2037641Z { 2023-01-11T21:41:26.2037826Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2037943Z { 2023-01-11T21:41:26.2038070Z #pragma omp for 2023-01-11T21:41:26.2038221Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.2038357Z { 2023-01-11T21:41:26.2038515Z #pragma GCC ivdep 2023-01-11T21:41:26.2038667Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.2038787Z { 2023-01-11T21:41:26.2038915Z { 2023-01-11T21:41:26.2039021Z { 2023-01-11T21:41:26.2039361Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:41:26.2039560Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2039745Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2039925Z auto tmp3 = static_cast(8); 2023-01-11T21:41:26.2040102Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2040286Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.2040602Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:41:26.2040767Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:41:26.2040949Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:41:26.2041126Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:41:26.2041310Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:41:26.2041471Z float tmp11 = 0.0; 2023-01-11T21:41:26.2041611Z if(tmp10) 2023-01-11T21:41:26.2041728Z { 2023-01-11T21:41:26.2042067Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2042368Z tmp11 = tmp12; 2023-01-11T21:41:26.2042491Z } 2023-01-11T21:41:26.2042698Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:41:26.2042884Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:41:26.2043061Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:41:26.2043225Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:41:26.2043396Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:41:26.2043562Z float tmp18 = 0.0; 2023-01-11T21:41:26.2043713Z if(tmp17) 2023-01-11T21:41:26.2043845Z { 2023-01-11T21:41:26.2044177Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2044402Z tmp18 = tmp19; 2023-01-11T21:41:26.2044517Z } 2023-01-11T21:41:26.2044698Z auto tmp20 = tmp18 + tmp11; 2023-01-11T21:41:26.2044911Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:41:26.2045095Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:41:26.2045262Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:41:26.2045447Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:41:26.2045627Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:41:26.2045792Z float tmp26 = 0.0; 2023-01-11T21:41:26.2045921Z if(tmp25) 2023-01-11T21:41:26.2046049Z { 2023-01-11T21:41:26.2046389Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2046548Z tmp26 = tmp27; 2023-01-11T21:41:26.2046692Z } 2023-01-11T21:41:26.2046873Z auto tmp28 = tmp26 + tmp20; 2023-01-11T21:41:26.2047075Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:41:26.2047244Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:41:26.2047414Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:41:26.2047587Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:41:26.2047765Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:41:26.2047915Z float tmp34 = 0.0; 2023-01-11T21:41:26.2048069Z if(tmp33) 2023-01-11T21:41:26.2048200Z { 2023-01-11T21:41:26.2048513Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2048670Z tmp34 = tmp35; 2023-01-11T21:41:26.2048789Z } 2023-01-11T21:41:26.2048964Z auto tmp36 = tmp34 + tmp28; 2023-01-11T21:41:26.2049284Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:41:26.2049452Z float tmp38 = 0.0; 2023-01-11T21:41:26.2049604Z if(tmp37) 2023-01-11T21:41:26.2049724Z { 2023-01-11T21:41:26.2049918Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:41:26.2050075Z tmp38 = tmp39; 2023-01-11T21:41:26.2050212Z } 2023-01-11T21:41:26.2050393Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:41:26.2050571Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:41:26.2050723Z float tmp42 = 0.0; 2023-01-11T21:41:26.2050853Z if(tmp41) 2023-01-11T21:41:26.2050981Z { 2023-01-11T21:41:26.2051186Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2051340Z tmp42 = tmp43; 2023-01-11T21:41:26.2051477Z } 2023-01-11T21:41:26.2051645Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:41:26.2052024Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:41:26.2052185Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:41:26.2052363Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:41:26.2052527Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:41:26.2052696Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:41:26.2052861Z float tmp50 = 0.0; 2023-01-11T21:41:26.2053007Z if(tmp49) 2023-01-11T21:41:26.2053142Z { 2023-01-11T21:41:26.2053351Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2053485Z tmp50 = tmp51; 2023-01-11T21:41:26.2053618Z } 2023-01-11T21:41:26.2053890Z auto tmp52 = tmp50 + tmp44; 2023-01-11T21:41:26.2054071Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:41:26.2054239Z float tmp54 = 0.0; 2023-01-11T21:41:26.2054378Z if(tmp53) 2023-01-11T21:41:26.2054505Z { 2023-01-11T21:41:26.2054687Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2054851Z tmp54 = tmp55; 2023-01-11T21:41:26.2054987Z } 2023-01-11T21:41:26.2055173Z auto tmp56 = tmp54 + tmp52; 2023-01-11T21:41:26.2055330Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:41:26.2055498Z float tmp58 = 0.0; 2023-01-11T21:41:26.2055646Z if(tmp57) 2023-01-11T21:41:26.2055757Z { 2023-01-11T21:41:26.2055970Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2056133Z tmp58 = tmp59; 2023-01-11T21:41:26.2056248Z } 2023-01-11T21:41:26.2056436Z auto tmp60 = tmp58 + tmp56; 2023-01-11T21:41:26.2056671Z auto tmp61 = static_cast(0.1111111111111111); 2023-01-11T21:41:26.2056849Z auto tmp62 = tmp60 * tmp61; 2023-01-11T21:41:26.2057010Z out_ptr0[i1 + (4*i0)] = tmp62; 2023-01-11T21:41:26.2057128Z } 2023-01-11T21:41:26.2057255Z } 2023-01-11T21:41:26.2057388Z } 2023-01-11T21:41:26.2057517Z } 2023-01-11T21:41:26.2057636Z } 2023-01-11T21:41:26.2057767Z } 2023-01-11T21:41:26.2057930Z ''') 2023-01-11T21:41:26.2057939Z 2023-01-11T21:41:26.2057945Z 2023-01-11T21:41:26.2058108Z async_compile.wait(globals()) 2023-01-11T21:41:26.2058262Z del async_compile 2023-01-11T21:41:26.2058271Z 2023-01-11T21:41:26.2058414Z def call(args): 2023-01-11T21:41:26.2058552Z arg0_1, = args 2023-01-11T21:41:26.2058693Z args.clear() 2023-01-11T21:41:26.2059098Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2059336Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2059467Z del arg0_1 2023-01-11T21:41:26.2059606Z return (buf0, ) 2023-01-11T21:41:26.2059614Z 2023-01-11T21:41:26.2059619Z 2023-01-11T21:41:26.2059756Z if __name__ == "__main__": 2023-01-11T21:41:26.2059968Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2060206Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2060620Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2060808Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2060822Z 2023-01-11T21:41:26.2060936Z ok (1.589s) 2023-01-11T21:41:26.2061821Z test_avg_pool2d4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2062160Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2062662Z [2023-01-11 21:24:36,522] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 30 2023-01-11T21:41:26.2063253Z [2023-01-11 21:24:38,083] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 30 2023-01-11T21:41:26.2063266Z 2023-01-11T21:41:26.2063435Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2063576Z import torch 2023-01-11T21:41:26.2063719Z import random 2023-01-11T21:41:26.2063943Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2064153Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2064248Z 2023-01-11T21:41:26.2064399Z aten = torch.ops.aten 2023-01-11T21:41:26.2064652Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2064826Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2064837Z 2023-01-11T21:41:26.2064844Z 2023-01-11T21:41:26.2065109Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2065479Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2065702Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2065887Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2065995Z { 2023-01-11T21:41:26.2066174Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2066293Z { 2023-01-11T21:41:26.2066446Z #pragma omp for 2023-01-11T21:41:26.2066609Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.2066730Z { 2023-01-11T21:41:26.2066882Z #pragma GCC ivdep 2023-01-11T21:41:26.2067020Z for(long i1=0; i1<55; i1+=1) 2023-01-11T21:41:26.2067141Z { 2023-01-11T21:41:26.2067303Z #pragma GCC ivdep 2023-01-11T21:41:26.2067485Z for(long i2=0; i2<55; i2+=1) 2023-01-11T21:41:26.2067618Z { 2023-01-11T21:41:26.2067747Z { 2023-01-11T21:41:26.2067876Z { 2023-01-11T21:41:26.2068076Z auto tmp0 = in_ptr0[(2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2068297Z auto tmp1 = in_ptr0[1 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2068504Z auto tmp3 = in_ptr0[2 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2068717Z auto tmp5 = in_ptr0[111 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2068930Z auto tmp7 = in_ptr0[112 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2069148Z auto tmp9 = in_ptr0[113 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2069365Z auto tmp11 = in_ptr0[222 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2069580Z auto tmp13 = in_ptr0[223 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2069761Z auto tmp15 = in_ptr0[224 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.2069947Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:41:26.2070130Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:41:26.2070303Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:41:26.2070470Z auto tmp8 = tmp7 + tmp6; 2023-01-11T21:41:26.2070648Z auto tmp10 = tmp9 + tmp8; 2023-01-11T21:41:26.2070836Z auto tmp12 = tmp11 + tmp10; 2023-01-11T21:41:26.2071006Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:41:26.2071195Z auto tmp16 = tmp15 + tmp14; 2023-01-11T21:41:26.2071415Z auto tmp17 = static_cast(0.1111111111111111); 2023-01-11T21:41:26.2071674Z auto tmp18 = tmp16 * tmp17; 2023-01-11T21:41:26.2071873Z out_ptr0[i2 + (55*i1) + (3025*i0)] = tmp18; 2023-01-11T21:41:26.2072010Z } 2023-01-11T21:41:26.2072136Z } 2023-01-11T21:41:26.2072266Z } 2023-01-11T21:41:26.2072363Z } 2023-01-11T21:41:26.2072475Z } 2023-01-11T21:41:26.2072599Z } 2023-01-11T21:41:26.2072721Z } 2023-01-11T21:41:26.2072892Z ''') 2023-01-11T21:41:26.2072906Z 2023-01-11T21:41:26.2072913Z 2023-01-11T21:41:26.2073094Z async_compile.wait(globals()) 2023-01-11T21:41:26.2073233Z del async_compile 2023-01-11T21:41:26.2073244Z 2023-01-11T21:41:26.2073347Z def call(args): 2023-01-11T21:41:26.2073479Z arg0_1, = args 2023-01-11T21:41:26.2073620Z args.clear() 2023-01-11T21:41:26.2074141Z buf0 = empty_strided((2, 8, 55, 55), (24200, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2074392Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2074529Z del arg0_1 2023-01-11T21:41:26.2074671Z return (buf0, ) 2023-01-11T21:41:26.2074679Z 2023-01-11T21:41:26.2074686Z 2023-01-11T21:41:26.2074820Z if __name__ == "__main__": 2023-01-11T21:41:26.2075038Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2075264Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2075700Z arg0_1 = rand_strided((2, 8, 111, 111), (98568, 12321, 111, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2075920Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2075927Z 2023-01-11T21:41:26.2076044Z ok (1.601s) 2023-01-11T21:41:26.2076921Z test_avg_pool2d5_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2077179Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2077682Z [2023-01-11 21:24:38,113] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 31 2023-01-11T21:41:26.2077690Z 2023-01-11T21:41:26.2077855Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2077973Z import torch 2023-01-11T21:41:26.2078104Z import random 2023-01-11T21:41:26.2078319Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2078556Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2078570Z 2023-01-11T21:41:26.2078705Z aten = torch.ops.aten 2023-01-11T21:41:26.2078958Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2079144Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2079155Z 2023-01-11T21:41:26.2079162Z 2023-01-11T21:41:26.2079399Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2079781Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2080006Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2080194Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2080314Z { 2023-01-11T21:41:26.2080487Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2080608Z { 2023-01-11T21:41:26.2080743Z #pragma omp for 2023-01-11T21:41:26.2080903Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.2081017Z { 2023-01-11T21:41:26.2081169Z #pragma GCC ivdep 2023-01-11T21:41:26.2081314Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.2081447Z { 2023-01-11T21:41:26.2081576Z { 2023-01-11T21:41:26.2081684Z { 2023-01-11T21:41:26.2082030Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:41:26.2082214Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2082499Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2082705Z auto tmp3 = static_cast(8); 2023-01-11T21:41:26.2082891Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2083064Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.2083386Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:41:26.2083563Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:41:26.2083740Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:41:26.2083905Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:41:26.2084081Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:41:26.2084257Z float tmp11 = 0.0; 2023-01-11T21:41:26.2084480Z if(tmp10) 2023-01-11T21:41:26.2084618Z { 2023-01-11T21:41:26.2084934Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2085107Z tmp11 = tmp12; 2023-01-11T21:41:26.2085246Z } 2023-01-11T21:41:26.2085458Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:41:26.2085636Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:41:26.2085811Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:41:26.2085993Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:41:26.2086149Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:41:26.2086325Z float tmp18 = 0.0; 2023-01-11T21:41:26.2086479Z if(tmp17) 2023-01-11T21:41:26.2086606Z { 2023-01-11T21:41:26.2086952Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2087118Z tmp18 = tmp19; 2023-01-11T21:41:26.2087255Z } 2023-01-11T21:41:26.2087417Z auto tmp20 = tmp18 + tmp11; 2023-01-11T21:41:26.2087620Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:41:26.2087808Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:41:26.2087987Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:41:26.2088152Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:41:26.2088323Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:41:26.2088482Z float tmp26 = 0.0; 2023-01-11T21:41:26.2088608Z if(tmp25) 2023-01-11T21:41:26.2088762Z { 2023-01-11T21:41:26.2089224Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2089384Z tmp26 = tmp27; 2023-01-11T21:41:26.2089523Z } 2023-01-11T21:41:26.2089708Z auto tmp28 = tmp26 + tmp20; 2023-01-11T21:41:26.2089912Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:41:26.2090082Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:41:26.2090250Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:41:26.2090431Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:41:26.2090614Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:41:26.2090753Z float tmp34 = 0.0; 2023-01-11T21:41:26.2090866Z if(tmp33) 2023-01-11T21:41:26.2090970Z { 2023-01-11T21:41:26.2091242Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2091352Z tmp34 = tmp35; 2023-01-11T21:41:26.2091456Z } 2023-01-11T21:41:26.2091594Z auto tmp36 = tmp34 + tmp28; 2023-01-11T21:41:26.2091737Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:41:26.2091868Z float tmp38 = 0.0; 2023-01-11T21:41:26.2092115Z if(tmp37) 2023-01-11T21:41:26.2092218Z { 2023-01-11T21:41:26.2092365Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:41:26.2092490Z tmp38 = tmp39; 2023-01-11T21:41:26.2092595Z } 2023-01-11T21:41:26.2092730Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:41:26.2092863Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:41:26.2092989Z float tmp42 = 0.0; 2023-01-11T21:41:26.2093099Z if(tmp41) 2023-01-11T21:41:26.2093184Z { 2023-01-11T21:41:26.2093343Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2093462Z tmp42 = tmp43; 2023-01-11T21:41:26.2093614Z } 2023-01-11T21:41:26.2093751Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:41:26.2093919Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:41:26.2094058Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:41:26.2094179Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:41:26.2094312Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:41:26.2094448Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:41:26.2094576Z float tmp50 = 0.0; 2023-01-11T21:41:26.2094685Z if(tmp49) 2023-01-11T21:41:26.2094787Z { 2023-01-11T21:41:26.2094946Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2095052Z tmp50 = tmp51; 2023-01-11T21:41:26.2095148Z } 2023-01-11T21:41:26.2095289Z auto tmp52 = tmp50 + tmp44; 2023-01-11T21:41:26.2095423Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:41:26.2095546Z float tmp54 = 0.0; 2023-01-11T21:41:26.2095661Z if(tmp53) 2023-01-11T21:41:26.2095761Z { 2023-01-11T21:41:26.2095902Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2096023Z tmp54 = tmp55; 2023-01-11T21:41:26.2096120Z } 2023-01-11T21:41:26.2096255Z auto tmp56 = tmp54 + tmp52; 2023-01-11T21:41:26.2096390Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:41:26.2096515Z float tmp58 = 0.0; 2023-01-11T21:41:26.2096627Z if(tmp57) 2023-01-11T21:41:26.2096710Z { 2023-01-11T21:41:26.2096867Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2096990Z tmp58 = tmp59; 2023-01-11T21:41:26.2097090Z } 2023-01-11T21:41:26.2097226Z auto tmp60 = tmp58 + tmp56; 2023-01-11T21:41:26.2097353Z float tmp61 = 0.0; 2023-01-11T21:41:26.2097461Z if(tmp10) 2023-01-11T21:41:26.2097639Z { 2023-01-11T21:41:26.2097779Z auto tmp62 = static_cast(1); 2023-01-11T21:41:26.2097884Z tmp61 = tmp62; 2023-01-11T21:41:26.2097974Z } 2023-01-11T21:41:26.2098083Z float tmp63 = 0.0; 2023-01-11T21:41:26.2098181Z if(tmp17) 2023-01-11T21:41:26.2098270Z { 2023-01-11T21:41:26.2098410Z auto tmp64 = static_cast(1); 2023-01-11T21:41:26.2098500Z tmp63 = tmp64; 2023-01-11T21:41:26.2098585Z } 2023-01-11T21:41:26.2098714Z auto tmp65 = tmp63 + tmp61; 2023-01-11T21:41:26.2098824Z float tmp66 = 0.0; 2023-01-11T21:41:26.2098954Z if(tmp25) 2023-01-11T21:41:26.2099042Z { 2023-01-11T21:41:26.2099181Z auto tmp67 = static_cast(1); 2023-01-11T21:41:26.2099270Z tmp66 = tmp67; 2023-01-11T21:41:26.2099357Z } 2023-01-11T21:41:26.2099475Z auto tmp68 = tmp66 + tmp65; 2023-01-11T21:41:26.2099581Z float tmp69 = 0.0; 2023-01-11T21:41:26.2099677Z if(tmp33) 2023-01-11T21:41:26.2099765Z { 2023-01-11T21:41:26.2099903Z auto tmp70 = static_cast(1); 2023-01-11T21:41:26.2099993Z tmp69 = tmp70; 2023-01-11T21:41:26.2100079Z } 2023-01-11T21:41:26.2100199Z auto tmp71 = tmp69 + tmp68; 2023-01-11T21:41:26.2100340Z float tmp72 = 0.0; 2023-01-11T21:41:26.2100438Z if(tmp37) 2023-01-11T21:41:26.2100531Z { 2023-01-11T21:41:26.2100671Z auto tmp73 = static_cast(1); 2023-01-11T21:41:26.2100760Z tmp72 = tmp73; 2023-01-11T21:41:26.2100845Z } 2023-01-11T21:41:26.2100963Z auto tmp74 = tmp72 + tmp71; 2023-01-11T21:41:26.2101069Z float tmp75 = 0.0; 2023-01-11T21:41:26.2101162Z if(tmp41) 2023-01-11T21:41:26.2101251Z { 2023-01-11T21:41:26.2101388Z auto tmp76 = static_cast(1); 2023-01-11T21:41:26.2101475Z tmp75 = tmp76; 2023-01-11T21:41:26.2101562Z } 2023-01-11T21:41:26.2101681Z auto tmp77 = tmp75 + tmp74; 2023-01-11T21:41:26.2101791Z float tmp78 = 0.0; 2023-01-11T21:41:26.2101888Z if(tmp49) 2023-01-11T21:41:26.2101975Z { 2023-01-11T21:41:26.2102117Z auto tmp79 = static_cast(1); 2023-01-11T21:41:26.2102204Z tmp78 = tmp79; 2023-01-11T21:41:26.2102290Z } 2023-01-11T21:41:26.2102408Z auto tmp80 = tmp78 + tmp77; 2023-01-11T21:41:26.2102515Z float tmp81 = 0.0; 2023-01-11T21:41:26.2102611Z if(tmp53) 2023-01-11T21:41:26.2102697Z { 2023-01-11T21:41:26.2102831Z auto tmp82 = static_cast(1); 2023-01-11T21:41:26.2102919Z tmp81 = tmp82; 2023-01-11T21:41:26.2103005Z } 2023-01-11T21:41:26.2103187Z auto tmp83 = tmp81 + tmp80; 2023-01-11T21:41:26.2103296Z float tmp84 = 0.0; 2023-01-11T21:41:26.2103396Z if(tmp57) 2023-01-11T21:41:26.2103482Z { 2023-01-11T21:41:26.2103618Z auto tmp85 = static_cast(1); 2023-01-11T21:41:26.2103711Z tmp84 = tmp85; 2023-01-11T21:41:26.2103799Z } 2023-01-11T21:41:26.2103917Z auto tmp86 = tmp84 + tmp83; 2023-01-11T21:41:26.2104035Z auto tmp87 = tmp60 / tmp86; 2023-01-11T21:41:26.2104156Z out_ptr0[i1 + (4*i0)] = tmp87; 2023-01-11T21:41:26.2104242Z } 2023-01-11T21:41:26.2104328Z } 2023-01-11T21:41:26.2104397Z } 2023-01-11T21:41:26.2104478Z } 2023-01-11T21:41:26.2104557Z } 2023-01-11T21:41:26.2104640Z } 2023-01-11T21:41:26.2104746Z ''') 2023-01-11T21:41:26.2104752Z 2023-01-11T21:41:26.2104758Z 2023-01-11T21:41:26.2104878Z async_compile.wait(globals()) 2023-01-11T21:41:26.2104967Z del async_compile 2023-01-11T21:41:26.2104976Z 2023-01-11T21:41:26.2105054Z def call(args): 2023-01-11T21:41:26.2105142Z arg0_1, = args 2023-01-11T21:41:26.2105289Z args.clear() 2023-01-11T21:41:26.2105573Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2105747Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2105836Z del arg0_1 2023-01-11T21:41:26.2105927Z return (buf0, ) 2023-01-11T21:41:26.2105932Z 2023-01-11T21:41:26.2105937Z 2023-01-11T21:41:26.2106032Z if __name__ == "__main__": 2023-01-11T21:41:26.2106165Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2106323Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2106606Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2106746Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2107139Z [2023-01-11 21:24:39,689] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 31 2023-01-11T21:41:26.2107146Z 2023-01-11T21:41:26.2107231Z ok (1.598s) 2023-01-11T21:41:26.2107873Z test_avg_pool2d6_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2108038Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2108378Z [2023-01-11 21:24:39,711] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 32 2023-01-11T21:41:26.2108711Z [2023-01-11 21:24:41,258] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 32 2023-01-11T21:41:26.2108728Z 2023-01-11T21:41:26.2108837Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2108924Z import torch 2023-01-11T21:41:26.2109014Z import random 2023-01-11T21:41:26.2109166Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2109318Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2109324Z 2023-01-11T21:41:26.2109420Z aten = torch.ops.aten 2023-01-11T21:41:26.2109589Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2109692Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2109698Z 2023-01-11T21:41:26.2109703Z 2023-01-11T21:41:26.2109878Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2110135Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2110287Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2110411Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2110488Z { 2023-01-11T21:41:26.2110611Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2110679Z { 2023-01-11T21:41:26.2110777Z #pragma omp for 2023-01-11T21:41:26.2110888Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.2110971Z { 2023-01-11T21:41:26.2111073Z #pragma GCC ivdep 2023-01-11T21:41:26.2111182Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.2111265Z { 2023-01-11T21:41:26.2111335Z { 2023-01-11T21:41:26.2111416Z { 2023-01-11T21:41:26.2111644Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:41:26.2111774Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2111894Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2112028Z auto tmp3 = static_cast(8); 2023-01-11T21:41:26.2112151Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2112257Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.2112485Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:41:26.2112604Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:41:26.2112758Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:41:26.2112872Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:41:26.2112986Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:41:26.2113092Z float tmp11 = 0.0; 2023-01-11T21:41:26.2113176Z if(tmp10) 2023-01-11T21:41:26.2113261Z { 2023-01-11T21:41:26.2113489Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2113592Z tmp11 = tmp12; 2023-01-11T21:41:26.2113680Z } 2023-01-11T21:41:26.2113816Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:41:26.2113934Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:41:26.2114087Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:41:26.2114194Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:41:26.2114310Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:41:26.2114420Z float tmp18 = 0.0; 2023-01-11T21:41:26.2114512Z if(tmp17) 2023-01-11T21:41:26.2114598Z { 2023-01-11T21:41:26.2114820Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2114921Z tmp18 = tmp19; 2023-01-11T21:41:26.2114996Z } 2023-01-11T21:41:26.2115117Z auto tmp20 = tmp18 + tmp11; 2023-01-11T21:41:26.2115255Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:41:26.2115371Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:41:26.2115487Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:41:26.2115601Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:41:26.2115721Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:41:26.2115818Z float tmp26 = 0.0; 2023-01-11T21:41:26.2115913Z if(tmp25) 2023-01-11T21:41:26.2115996Z { 2023-01-11T21:41:26.2116221Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2116327Z tmp26 = tmp27; 2023-01-11T21:41:26.2116416Z } 2023-01-11T21:41:26.2116535Z auto tmp28 = tmp26 + tmp20; 2023-01-11T21:41:26.2116660Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:41:26.2116777Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:41:26.2116893Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:41:26.2117009Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:41:26.2117123Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:41:26.2117235Z float tmp34 = 0.0; 2023-01-11T21:41:26.2117326Z if(tmp33) 2023-01-11T21:41:26.2117399Z { 2023-01-11T21:41:26.2117626Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2117727Z tmp34 = tmp35; 2023-01-11T21:41:26.2117810Z } 2023-01-11T21:41:26.2117929Z auto tmp36 = tmp34 + tmp28; 2023-01-11T21:41:26.2118044Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:41:26.2118151Z float tmp38 = 0.0; 2023-01-11T21:41:26.2118247Z if(tmp37) 2023-01-11T21:41:26.2118320Z { 2023-01-11T21:41:26.2118451Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:41:26.2118555Z tmp38 = tmp39; 2023-01-11T21:41:26.2118638Z } 2023-01-11T21:41:26.2118757Z auto tmp40 = tmp38 + tmp36; 2023-01-11T21:41:26.2118875Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:41:26.2118984Z float tmp42 = 0.0; 2023-01-11T21:41:26.2119100Z if(tmp41) 2023-01-11T21:41:26.2119187Z { 2023-01-11T21:41:26.2119320Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2119426Z tmp42 = tmp43; 2023-01-11T21:41:26.2119513Z } 2023-01-11T21:41:26.2119628Z auto tmp44 = tmp42 + tmp40; 2023-01-11T21:41:26.2119766Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:41:26.2119870Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:41:26.2119983Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:41:26.2120101Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:41:26.2120216Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:41:26.2120354Z float tmp50 = 0.0; 2023-01-11T21:41:26.2120450Z if(tmp49) 2023-01-11T21:41:26.2120538Z { 2023-01-11T21:41:26.2120662Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2120763Z tmp50 = tmp51; 2023-01-11T21:41:26.2120848Z } 2023-01-11T21:41:26.2120967Z auto tmp52 = tmp50 + tmp44; 2023-01-11T21:41:26.2121084Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:41:26.2121189Z float tmp54 = 0.0; 2023-01-11T21:41:26.2121283Z if(tmp53) 2023-01-11T21:41:26.2121356Z { 2023-01-11T21:41:26.2121489Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2121590Z tmp54 = tmp55; 2023-01-11T21:41:26.2121676Z } 2023-01-11T21:41:26.2121794Z auto tmp56 = tmp54 + tmp52; 2023-01-11T21:41:26.2121907Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:41:26.2122016Z float tmp58 = 0.0; 2023-01-11T21:41:26.2122096Z if(tmp57) 2023-01-11T21:41:26.2122180Z { 2023-01-11T21:41:26.2122315Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.2122419Z tmp58 = tmp59; 2023-01-11T21:41:26.2122505Z } 2023-01-11T21:41:26.2122625Z auto tmp60 = tmp58 + tmp56; 2023-01-11T21:41:26.2122775Z auto tmp61 = static_cast(0.3333333333333333); 2023-01-11T21:41:26.2122881Z auto tmp62 = tmp60 * tmp61; 2023-01-11T21:41:26.2123002Z out_ptr0[i1 + (4*i0)] = tmp62; 2023-01-11T21:41:26.2123089Z } 2023-01-11T21:41:26.2123176Z } 2023-01-11T21:41:26.2123262Z } 2023-01-11T21:41:26.2123343Z } 2023-01-11T21:41:26.2123422Z } 2023-01-11T21:41:26.2123488Z } 2023-01-11T21:41:26.2123593Z ''') 2023-01-11T21:41:26.2123599Z 2023-01-11T21:41:26.2123604Z 2023-01-11T21:41:26.2123717Z async_compile.wait(globals()) 2023-01-11T21:41:26.2123811Z del async_compile 2023-01-11T21:41:26.2123816Z 2023-01-11T21:41:26.2123911Z def call(args): 2023-01-11T21:41:26.2124002Z arg0_1, = args 2023-01-11T21:41:26.2124096Z args.clear() 2023-01-11T21:41:26.2124367Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2124540Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2124626Z del arg0_1 2023-01-11T21:41:26.2124719Z return (buf0, ) 2023-01-11T21:41:26.2124724Z 2023-01-11T21:41:26.2124729Z 2023-01-11T21:41:26.2124825Z if __name__ == "__main__": 2023-01-11T21:41:26.2124969Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2125132Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2125414Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2125573Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2125591Z 2023-01-11T21:41:26.2125661Z ok (1.570s) 2023-01-11T21:41:26.2126312Z test_avg_pool2d7_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2126511Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2126915Z [2023-01-11 21:24:41,287] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 33 2023-01-11T21:41:26.2127494Z [2023-01-11 21:24:41,294] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.avg_pool2d 2023-01-11T21:41:26.2127985Z [2023-01-11 21:24:41,298] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 33 2023-01-11T21:41:26.2128003Z 2023-01-11T21:41:26.2128181Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2128331Z import torch 2023-01-11T21:41:26.2128470Z import random 2023-01-11T21:41:26.2128671Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2128897Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2128908Z 2023-01-11T21:41:26.2129185Z aten = torch.ops.aten 2023-01-11T21:41:26.2129435Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2129610Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2129620Z 2023-01-11T21:41:26.2129627Z 2023-01-11T21:41:26.2129793Z async_compile.wait(globals()) 2023-01-11T21:41:26.2129938Z del async_compile 2023-01-11T21:41:26.2129948Z 2023-01-11T21:41:26.2130089Z def call(args): 2023-01-11T21:41:26.2130208Z arg0_1, = args 2023-01-11T21:41:26.2130343Z args.clear() 2023-01-11T21:41:26.2130723Z buf0 = aten.avg_pool2d(arg0_1, [13, 13], [1, 1], [0, 0], False, True, None) 2023-01-11T21:41:26.2130853Z del arg0_1 2023-01-11T21:41:26.2130983Z buf1 = buf0 2023-01-11T21:41:26.2131196Z assert_size_stride(buf1, (1, 1, 12, 12), (144, 144, 12, 1)) 2023-01-11T21:41:26.2131326Z del buf0 2023-01-11T21:41:26.2131446Z return (buf1, ) 2023-01-11T21:41:26.2131454Z 2023-01-11T21:41:26.2131460Z 2023-01-11T21:41:26.2131610Z if __name__ == "__main__": 2023-01-11T21:41:26.2131826Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2132052Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2132498Z arg0_1 = rand_strided((1, 1, 24, 24), (576, 576, 24, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2132702Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2132709Z 2023-01-11T21:41:26.2132845Z ok (0.039s) 2023-01-11T21:41:26.2133727Z test_avg_pool2d_backward2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2133983Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2134466Z [2023-01-11 21:24:41,320] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 34 2023-01-11T21:41:26.2134493Z 2023-01-11T21:41:26.2134652Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2134780Z import torch 2023-01-11T21:41:26.2134919Z import random 2023-01-11T21:41:26.2135140Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2135378Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2135384Z 2023-01-11T21:41:26.2135527Z aten = torch.ops.aten 2023-01-11T21:41:26.2135778Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2136084Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2136092Z 2023-01-11T21:41:26.2136099Z 2023-01-11T21:41:26.2136373Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2136749Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2136970Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2137168Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2137281Z { 2023-01-11T21:41:26.2137467Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2137565Z { 2023-01-11T21:41:26.2137718Z #pragma omp for 2023-01-11T21:41:26.2137878Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:41:26.2138009Z { 2023-01-11T21:41:26.2138276Z #pragma GCC ivdep 2023-01-11T21:41:26.2138445Z for(long i1=0; i1<15; i1+=1) 2023-01-11T21:41:26.2138574Z { 2023-01-11T21:41:26.2138692Z { 2023-01-11T21:41:26.2138824Z { 2023-01-11T21:41:26.2139160Z auto tmp0 = static_cast((-1) + i0); 2023-01-11T21:41:26.2139471Z auto tmp1 = static_cast((-1) + i1); 2023-01-11T21:41:26.2139669Z auto tmp2 = static_cast(2 + i0); 2023-01-11T21:41:26.2139869Z auto tmp3 = static_cast(2 + i1); 2023-01-11T21:41:26.2140064Z auto tmp4 = static_cast(0); 2023-01-11T21:41:26.2140298Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp0, tmp4); 2023-01-11T21:41:26.2140536Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp1, tmp4); 2023-01-11T21:41:26.2140728Z auto tmp7 = static_cast(20); 2023-01-11T21:41:26.2140981Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp2, tmp7); 2023-01-11T21:41:26.2141176Z auto tmp9 = static_cast(15); 2023-01-11T21:41:26.2141425Z auto tmp10 = (tmp9 != tmp9) ? tmp9 : std::min(tmp3, tmp9); 2023-01-11T21:41:26.2141606Z auto tmp11 = tmp5 + tmp4; 2023-01-11T21:41:26.2141788Z auto tmp12 = tmp6 + tmp4; 2023-01-11T21:41:26.2141985Z auto tmp13 = static_cast(1); 2023-01-11T21:41:26.2142160Z auto tmp14 = static_cast(3); 2023-01-11T21:41:26.2142336Z auto tmp15 = tmp11 * tmp13; 2023-01-11T21:41:26.2142618Z auto tmp16 = tmp15 - tmp13; 2023-01-11T21:41:26.2142798Z auto tmp17 = tmp12 * tmp13; 2023-01-11T21:41:26.2143065Z auto tmp18 = tmp17 - tmp13; 2023-01-11T21:41:26.2143324Z auto tmp19 = tmp16 + tmp14; 2023-01-11T21:41:26.2143507Z auto tmp20 = tmp7 + tmp13; 2023-01-11T21:41:26.2143742Z auto tmp21 = (tmp20 != tmp20) ? tmp20 : std::min(tmp19, tmp20); 2023-01-11T21:41:26.2143921Z auto tmp22 = tmp18 + tmp14; 2023-01-11T21:41:26.2144095Z auto tmp23 = tmp9 + tmp13; 2023-01-11T21:41:26.2144333Z auto tmp24 = (tmp23 != tmp23) ? tmp23 : std::min(tmp22, tmp23); 2023-01-11T21:41:26.2144583Z auto tmp25 = (tmp4 != tmp4) ? tmp4 : std::max(tmp16, tmp4); 2023-01-11T21:41:26.2144826Z auto tmp26 = (tmp4 != tmp4) ? tmp4 : std::max(tmp18, tmp4); 2023-01-11T21:41:26.2145056Z auto tmp27 = (tmp7 != tmp7) ? tmp7 : std::min(tmp21, tmp7); 2023-01-11T21:41:26.2145288Z auto tmp28 = (tmp9 != tmp9) ? tmp9 : std::min(tmp24, tmp9); 2023-01-11T21:41:26.2145572Z auto tmp29 = tmp27 - tmp25; 2023-01-11T21:41:26.2145834Z auto tmp30 = tmp28 - tmp26; 2023-01-11T21:41:26.2146008Z auto tmp31 = tmp29 * tmp30; 2023-01-11T21:41:26.2146395Z auto tmp32 = tmp8 - tmp13; 2023-01-11T21:41:26.2146649Z auto tmp33 = (tmp32 != tmp32) ? tmp32 : std::min(tmp11, tmp32); 2023-01-11T21:41:26.2146912Z auto tmp34 = tmp10 - tmp13; 2023-01-11T21:41:26.2147152Z auto tmp35 = (tmp34 != tmp34) ? tmp34 : std::min(tmp12, tmp34); 2023-01-11T21:41:26.2147360Z auto tmp36 = in_ptr0[tmp35 + (15*tmp33)]; 2023-01-11T21:41:26.2147534Z auto tmp37 = tmp36 / tmp31; 2023-01-11T21:41:26.2147698Z auto tmp38 = tmp11 < tmp8; 2023-01-11T21:41:26.2147876Z auto tmp39 = tmp12 < tmp10; 2023-01-11T21:41:26.2148043Z auto tmp40 = tmp38 & tmp39; 2023-01-11T21:41:26.2148338Z auto tmp41 = static_cast(0.0); 2023-01-11T21:41:26.2148534Z auto tmp42 = tmp40 ? tmp37 : tmp41; 2023-01-11T21:41:26.2148711Z auto tmp43 = tmp6 + tmp13; 2023-01-11T21:41:26.2148894Z auto tmp44 = tmp43 * tmp13; 2023-01-11T21:41:26.2149161Z auto tmp45 = tmp44 - tmp13; 2023-01-11T21:41:26.2149335Z auto tmp46 = tmp45 + tmp14; 2023-01-11T21:41:26.2149578Z auto tmp47 = (tmp23 != tmp23) ? tmp23 : std::min(tmp46, tmp23); 2023-01-11T21:41:26.2149820Z auto tmp48 = (tmp4 != tmp4) ? tmp4 : std::max(tmp45, tmp4); 2023-01-11T21:41:26.2150054Z auto tmp49 = (tmp9 != tmp9) ? tmp9 : std::min(tmp47, tmp9); 2023-01-11T21:41:26.2150349Z auto tmp50 = tmp49 - tmp48; 2023-01-11T21:41:26.2150523Z auto tmp51 = tmp29 * tmp50; 2023-01-11T21:41:26.2150772Z auto tmp52 = (tmp34 != tmp34) ? tmp34 : std::min(tmp43, tmp34); 2023-01-11T21:41:26.2150971Z auto tmp53 = in_ptr0[tmp52 + (15*tmp33)]; 2023-01-11T21:41:26.2151148Z auto tmp54 = tmp53 / tmp51; 2023-01-11T21:41:26.2151327Z auto tmp55 = tmp43 < tmp10; 2023-01-11T21:41:26.2151503Z auto tmp56 = tmp38 & tmp55; 2023-01-11T21:41:26.2151675Z auto tmp57 = tmp42 + tmp54; 2023-01-11T21:41:26.2151863Z auto tmp58 = tmp56 ? tmp57 : tmp42; 2023-01-11T21:41:26.2152056Z auto tmp59 = static_cast(2); 2023-01-11T21:41:26.2152249Z auto tmp60 = tmp6 + tmp59; 2023-01-11T21:41:26.2152406Z auto tmp61 = tmp60 * tmp13; 2023-01-11T21:41:26.2152685Z auto tmp62 = tmp61 - tmp13; 2023-01-11T21:41:26.2152855Z auto tmp63 = tmp62 + tmp14; 2023-01-11T21:41:26.2153110Z auto tmp64 = (tmp23 != tmp23) ? tmp23 : std::min(tmp63, tmp23); 2023-01-11T21:41:26.2153348Z auto tmp65 = (tmp4 != tmp4) ? tmp4 : std::max(tmp62, tmp4); 2023-01-11T21:41:26.2153646Z auto tmp66 = (tmp9 != tmp9) ? tmp9 : std::min(tmp64, tmp9); 2023-01-11T21:41:26.2153918Z auto tmp67 = tmp66 - tmp65; 2023-01-11T21:41:26.2154093Z auto tmp68 = tmp29 * tmp67; 2023-01-11T21:41:26.2154320Z auto tmp69 = (tmp34 != tmp34) ? tmp34 : std::min(tmp60, tmp34); 2023-01-11T21:41:26.2154522Z auto tmp70 = in_ptr0[tmp69 + (15*tmp33)]; 2023-01-11T21:41:26.2154696Z auto tmp71 = tmp70 / tmp68; 2023-01-11T21:41:26.2154871Z auto tmp72 = tmp60 < tmp10; 2023-01-11T21:41:26.2155047Z auto tmp73 = tmp38 & tmp72; 2023-01-11T21:41:26.2155218Z auto tmp74 = tmp58 + tmp71; 2023-01-11T21:41:26.2155417Z auto tmp75 = tmp73 ? tmp74 : tmp58; 2023-01-11T21:41:26.2155578Z auto tmp76 = tmp5 + tmp13; 2023-01-11T21:41:26.2155745Z auto tmp77 = tmp76 * tmp13; 2023-01-11T21:41:26.2156144Z auto tmp78 = tmp77 - tmp13; 2023-01-11T21:41:26.2156322Z auto tmp79 = tmp78 + tmp14; 2023-01-11T21:41:26.2156595Z auto tmp80 = (tmp20 != tmp20) ? tmp20 : std::min(tmp79, tmp20); 2023-01-11T21:41:26.2156832Z auto tmp81 = (tmp4 != tmp4) ? tmp4 : std::max(tmp78, tmp4); 2023-01-11T21:41:26.2157068Z auto tmp82 = (tmp7 != tmp7) ? tmp7 : std::min(tmp80, tmp7); 2023-01-11T21:41:26.2157340Z auto tmp83 = tmp82 - tmp81; 2023-01-11T21:41:26.2157491Z auto tmp84 = tmp83 * tmp30; 2023-01-11T21:41:26.2157726Z auto tmp85 = (tmp32 != tmp32) ? tmp32 : std::min(tmp76, tmp32); 2023-01-11T21:41:26.2158014Z auto tmp86 = in_ptr0[tmp35 + (15*tmp85)]; 2023-01-11T21:41:26.2158194Z auto tmp87 = tmp86 / tmp84; 2023-01-11T21:41:26.2158379Z auto tmp88 = tmp76 < tmp8; 2023-01-11T21:41:26.2158546Z auto tmp89 = tmp88 & tmp39; 2023-01-11T21:41:26.2158716Z auto tmp90 = tmp75 + tmp87; 2023-01-11T21:41:26.2158915Z auto tmp91 = tmp89 ? tmp90 : tmp75; 2023-01-11T21:41:26.2159077Z auto tmp92 = tmp83 * tmp50; 2023-01-11T21:41:26.2159282Z auto tmp93 = in_ptr0[tmp52 + (15*tmp85)]; 2023-01-11T21:41:26.2159449Z auto tmp94 = tmp93 / tmp92; 2023-01-11T21:41:26.2159624Z auto tmp95 = tmp88 & tmp55; 2023-01-11T21:41:26.2159790Z auto tmp96 = tmp91 + tmp94; 2023-01-11T21:41:26.2159985Z auto tmp97 = tmp95 ? tmp96 : tmp91; 2023-01-11T21:41:26.2160168Z auto tmp98 = tmp83 * tmp67; 2023-01-11T21:41:26.2160349Z auto tmp99 = in_ptr0[tmp69 + (15*tmp85)]; 2023-01-11T21:41:26.2160524Z auto tmp100 = tmp99 / tmp98; 2023-01-11T21:41:26.2160712Z auto tmp101 = tmp88 & tmp72; 2023-01-11T21:41:26.2160892Z auto tmp102 = tmp97 + tmp100; 2023-01-11T21:41:26.2161092Z auto tmp103 = tmp101 ? tmp102 : tmp97; 2023-01-11T21:41:26.2161265Z auto tmp104 = tmp5 + tmp59; 2023-01-11T21:41:26.2161434Z auto tmp105 = tmp104 * tmp13; 2023-01-11T21:41:26.2161730Z auto tmp106 = tmp105 - tmp13; 2023-01-11T21:41:26.2161890Z auto tmp107 = tmp106 + tmp14; 2023-01-11T21:41:26.2162145Z auto tmp108 = (tmp20 != tmp20) ? tmp20 : std::min(tmp107, tmp20); 2023-01-11T21:41:26.2162382Z auto tmp109 = (tmp4 != tmp4) ? tmp4 : std::max(tmp106, tmp4); 2023-01-11T21:41:26.2162633Z auto tmp110 = (tmp7 != tmp7) ? tmp7 : std::min(tmp108, tmp7); 2023-01-11T21:41:26.2162923Z auto tmp111 = tmp110 - tmp109; 2023-01-11T21:41:26.2163102Z auto tmp112 = tmp111 * tmp30; 2023-01-11T21:41:26.2163345Z auto tmp113 = (tmp32 != tmp32) ? tmp32 : std::min(tmp104, tmp32); 2023-01-11T21:41:26.2163555Z auto tmp114 = in_ptr0[tmp35 + (15*tmp113)]; 2023-01-11T21:41:26.2163720Z auto tmp115 = tmp114 / tmp112; 2023-01-11T21:41:26.2163908Z auto tmp116 = tmp104 < tmp8; 2023-01-11T21:41:26.2164087Z auto tmp117 = tmp116 & tmp39; 2023-01-11T21:41:26.2164268Z auto tmp118 = tmp103 + tmp115; 2023-01-11T21:41:26.2164462Z auto tmp119 = tmp117 ? tmp118 : tmp103; 2023-01-11T21:41:26.2164645Z auto tmp120 = tmp111 * tmp50; 2023-01-11T21:41:26.2164851Z auto tmp121 = in_ptr0[tmp52 + (15*tmp113)]; 2023-01-11T21:41:26.2165033Z auto tmp122 = tmp121 / tmp120; 2023-01-11T21:41:26.2165313Z auto tmp123 = tmp116 & tmp55; 2023-01-11T21:41:26.2165491Z auto tmp124 = tmp119 + tmp122; 2023-01-11T21:41:26.2165698Z auto tmp125 = tmp123 ? tmp124 : tmp119; 2023-01-11T21:41:26.2165878Z auto tmp126 = tmp111 * tmp67; 2023-01-11T21:41:26.2166081Z auto tmp127 = in_ptr0[tmp69 + (15*tmp113)]; 2023-01-11T21:41:26.2166249Z auto tmp128 = tmp127 / tmp126; 2023-01-11T21:41:26.2166422Z auto tmp129 = tmp116 & tmp72; 2023-01-11T21:41:26.2166583Z auto tmp130 = tmp125 + tmp128; 2023-01-11T21:41:26.2166786Z auto tmp131 = tmp129 ? tmp130 : tmp125; 2023-01-11T21:41:26.2166972Z out_ptr0[i1 + (15*i0)] = tmp131; 2023-01-11T21:41:26.2167182Z } 2023-01-11T21:41:26.2167314Z } 2023-01-11T21:41:26.2167439Z } 2023-01-11T21:41:26.2167569Z } 2023-01-11T21:41:26.2167673Z } 2023-01-11T21:41:26.2167794Z } 2023-01-11T21:41:26.2167960Z ''') 2023-01-11T21:41:26.2167971Z 2023-01-11T21:41:26.2167980Z 2023-01-11T21:41:26.2168140Z async_compile.wait(globals()) 2023-01-11T21:41:26.2168275Z del async_compile 2023-01-11T21:41:26.2168287Z 2023-01-11T21:41:26.2168423Z def call(args): 2023-01-11T21:41:26.2168571Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2168697Z args.clear() 2023-01-11T21:41:26.2169403Z buf0 = empty_strided((1, 1, 20, 15), (300, 300, 15, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2169669Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2169804Z del arg0_1 2023-01-11T21:41:26.2169948Z return (buf0, ) 2023-01-11T21:41:26.2169957Z 2023-01-11T21:41:26.2169965Z 2023-01-11T21:41:26.2170117Z if __name__ == "__main__": 2023-01-11T21:41:26.2170326Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2170564Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2170970Z arg0_1 = rand_strided((1, 1, 20, 15), (300, 300, 15, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2171367Z arg1_1 = rand_strided((1, 1, 20, 15), (300, 300, 15, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2171591Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2172097Z [2023-01-11 21:24:42,936] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 34 2023-01-11T21:41:26.2172105Z 2023-01-11T21:41:26.2172227Z ok (1.638s) 2023-01-11T21:41:26.2173110Z test_avg_pool2d_backward3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2173351Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2173846Z [2023-01-11 21:24:42,967] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 35 2023-01-11T21:41:26.2174332Z [2023-01-11 21:24:44,699] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 35 2023-01-11T21:41:26.2174342Z 2023-01-11T21:41:26.2174513Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2174630Z import torch 2023-01-11T21:41:26.2174772Z import random 2023-01-11T21:41:26.2174981Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2175197Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2175208Z 2023-01-11T21:41:26.2175356Z aten = torch.ops.aten 2023-01-11T21:41:26.2175610Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2175793Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2175801Z 2023-01-11T21:41:26.2175953Z 2023-01-11T21:41:26.2176221Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2176576Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2176799Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2176980Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2177100Z { 2023-01-11T21:41:26.2177289Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2177407Z { 2023-01-11T21:41:26.2177554Z #pragma omp for 2023-01-11T21:41:26.2177702Z for(long i0=0; i0<2016; i0+=1) 2023-01-11T21:41:26.2177820Z { 2023-01-11T21:41:26.2177972Z #pragma GCC ivdep 2023-01-11T21:41:26.2178133Z for(long i1=0; i1<21; i1+=1) 2023-01-11T21:41:26.2178263Z { 2023-01-11T21:41:26.2178541Z #pragma GCC ivdep 2023-01-11T21:41:26.2178719Z for(long i2=0; i2<21; i2+=1) 2023-01-11T21:41:26.2178818Z { 2023-01-11T21:41:26.2178955Z { 2023-01-11T21:41:26.2179090Z { 2023-01-11T21:41:26.2179306Z auto tmp0 = static_cast(((1 + i1) / 2)); 2023-01-11T21:41:26.2179510Z auto tmp1 = static_cast(((1 + i2) / 2)); 2023-01-11T21:41:26.2179717Z auto tmp2 = static_cast(1 + (i1 / 2)); 2023-01-11T21:41:26.2179922Z auto tmp3 = static_cast(1 + (i2 / 2)); 2023-01-11T21:41:26.2180105Z auto tmp4 = static_cast(0); 2023-01-11T21:41:26.2180341Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp0, tmp4); 2023-01-11T21:41:26.2180580Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp1, tmp4); 2023-01-11T21:41:26.2180788Z auto tmp7 = static_cast(11); 2023-01-11T21:41:26.2181022Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp2, tmp7); 2023-01-11T21:41:26.2181262Z auto tmp9 = (tmp7 != tmp7) ? tmp7 : std::min(tmp3, tmp7); 2023-01-11T21:41:26.2181448Z auto tmp10 = tmp5 + tmp4; 2023-01-11T21:41:26.2181622Z auto tmp11 = tmp6 + tmp4; 2023-01-11T21:41:26.2181799Z auto tmp12 = static_cast(1); 2023-01-11T21:41:26.2182109Z auto tmp13 = tmp8 - tmp12; 2023-01-11T21:41:26.2182351Z auto tmp14 = (tmp13 != tmp13) ? tmp13 : std::min(tmp10, tmp13); 2023-01-11T21:41:26.2182631Z auto tmp15 = tmp9 - tmp12; 2023-01-11T21:41:26.2182890Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp11, tmp15); 2023-01-11T21:41:26.2183114Z auto tmp17 = in_ptr0[tmp16 + (11*tmp14) + (121*i0)]; 2023-01-11T21:41:26.2183371Z auto tmp18 = tmp17 / 1; 2023-01-11T21:41:26.2183552Z auto tmp19 = tmp10 < tmp8; 2023-01-11T21:41:26.2183721Z auto tmp20 = tmp11 < tmp9; 2023-01-11T21:41:26.2183905Z auto tmp21 = tmp19 & tmp20; 2023-01-11T21:41:26.2184104Z auto tmp22 = static_cast(0.0); 2023-01-11T21:41:26.2184299Z auto tmp23 = tmp21 ? tmp18 : tmp22; 2023-01-11T21:41:26.2184495Z out_ptr0[i2 + (21*i1) + (441*i0)] = tmp23; 2023-01-11T21:41:26.2184624Z } 2023-01-11T21:41:26.2184755Z } 2023-01-11T21:41:26.2184878Z } 2023-01-11T21:41:26.2184986Z } 2023-01-11T21:41:26.2185112Z } 2023-01-11T21:41:26.2185239Z } 2023-01-11T21:41:26.2185368Z } 2023-01-11T21:41:26.2185520Z ''') 2023-01-11T21:41:26.2185535Z 2023-01-11T21:41:26.2185547Z 2023-01-11T21:41:26.2185724Z async_compile.wait(globals()) 2023-01-11T21:41:26.2185867Z del async_compile 2023-01-11T21:41:26.2185977Z 2023-01-11T21:41:26.2186103Z def call(args): 2023-01-11T21:41:26.2186244Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2186406Z args.clear() 2023-01-11T21:41:26.2186849Z buf0 = empty_strided((1, 2016, 21, 21), (889056, 441, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2187104Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2187242Z del arg0_1 2023-01-11T21:41:26.2187373Z return (buf0, ) 2023-01-11T21:41:26.2187381Z 2023-01-11T21:41:26.2187387Z 2023-01-11T21:41:26.2187519Z if __name__ == "__main__": 2023-01-11T21:41:26.2187739Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2187971Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2188500Z arg0_1 = rand_strided((1, 2016, 11, 11), (243936, 121, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2188928Z arg1_1 = rand_strided((1, 2016, 21, 21), (889056, 441, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2189152Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2189160Z 2023-01-11T21:41:26.2189295Z ok (1.791s) 2023-01-11T21:41:26.2190211Z test_avg_pool2d_backward4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2190446Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2190850Z [2023-01-11 21:24:44,750] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 36 2023-01-11T21:41:26.2191301Z [2023-01-11 21:24:44,761] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.avg_pool2d_backward 2023-01-11T21:41:26.2191804Z [2023-01-11 21:24:44,763] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 36 2023-01-11T21:41:26.2191822Z 2023-01-11T21:41:26.2192007Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2192146Z import torch 2023-01-11T21:41:26.2192273Z import random 2023-01-11T21:41:26.2192504Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2192739Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2192750Z 2023-01-11T21:41:26.2192906Z aten = torch.ops.aten 2023-01-11T21:41:26.2193136Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2193315Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2193329Z 2023-01-11T21:41:26.2193336Z 2023-01-11T21:41:26.2193501Z async_compile.wait(globals()) 2023-01-11T21:41:26.2193651Z del async_compile 2023-01-11T21:41:26.2193659Z 2023-01-11T21:41:26.2193803Z def call(args): 2023-01-11T21:41:26.2193936Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2194070Z args.clear() 2023-01-11T21:41:26.2194325Z buf0 = aten.avg_pool2d_backward(arg0_1, arg1_1, [13, 13], [1, 1], [0, 0], True, False, None) 2023-01-11T21:41:26.2194455Z del arg0_1 2023-01-11T21:41:26.2194592Z del arg1_1 2023-01-11T21:41:26.2194722Z buf1 = buf0 2023-01-11T21:41:26.2194928Z assert_size_stride(buf1, (1, 16, 24, 24), (9216, 576, 24, 1)) 2023-01-11T21:41:26.2195060Z del buf0 2023-01-11T21:41:26.2195208Z return (buf1, ) 2023-01-11T21:41:26.2195215Z 2023-01-11T21:41:26.2195222Z 2023-01-11T21:41:26.2195370Z if __name__ == "__main__": 2023-01-11T21:41:26.2195568Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2195791Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2196299Z arg0_1 = rand_strided((1, 16, 12, 12), (2304, 144, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2196658Z arg1_1 = rand_strided((1, 16, 24, 24), (9216, 576, 24, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2196841Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2196960Z 2023-01-11T21:41:26.2197078Z ok (0.036s) 2023-01-11T21:41:26.2197857Z test_avg_pool2d_backward_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2198053Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2198477Z [2023-01-11 21:24:44,785] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 37 2023-01-11T21:41:26.2198965Z [2023-01-11 21:24:46,434] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 37 2023-01-11T21:41:26.2199001Z 2023-01-11T21:41:26.2199146Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2199268Z import torch 2023-01-11T21:41:26.2199388Z import random 2023-01-11T21:41:26.2199576Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2199774Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2199780Z 2023-01-11T21:41:26.2199912Z aten = torch.ops.aten 2023-01-11T21:41:26.2200130Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2200266Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2200274Z 2023-01-11T21:41:26.2200300Z 2023-01-11T21:41:26.2200502Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2200832Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2201033Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2201197Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2201301Z { 2023-01-11T21:41:26.2201465Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2201573Z { 2023-01-11T21:41:26.2201690Z #pragma omp for 2023-01-11T21:41:26.2201826Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2201936Z { 2023-01-11T21:41:26.2202071Z #pragma GCC ivdep 2023-01-11T21:41:26.2202210Z for(long i1=0; i1<14; i1+=1) 2023-01-11T21:41:26.2202320Z { 2023-01-11T21:41:26.2202445Z #pragma GCC ivdep 2023-01-11T21:41:26.2202597Z for(long i2=0; i2<14; i2+=1) 2023-01-11T21:41:26.2202715Z { 2023-01-11T21:41:26.2202822Z { 2023-01-11T21:41:26.2202934Z { 2023-01-11T21:41:26.2203123Z auto tmp0 = static_cast((i1 / 2)); 2023-01-11T21:41:26.2203297Z auto tmp1 = static_cast((i2 / 2)); 2023-01-11T21:41:26.2203473Z auto tmp2 = static_cast(1 + (i1 / 2)); 2023-01-11T21:41:26.2203653Z auto tmp3 = static_cast(1 + (i2 / 2)); 2023-01-11T21:41:26.2203834Z auto tmp4 = static_cast(0); 2023-01-11T21:41:26.2204053Z auto tmp5 = (tmp4 != tmp4) ? tmp4 : std::max(tmp0, tmp4); 2023-01-11T21:41:26.2204269Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp1, tmp4); 2023-01-11T21:41:26.2204431Z auto tmp7 = static_cast(7); 2023-01-11T21:41:26.2204644Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp2, tmp7); 2023-01-11T21:41:26.2204852Z auto tmp9 = (tmp7 != tmp7) ? tmp7 : std::min(tmp3, tmp7); 2023-01-11T21:41:26.2205012Z auto tmp10 = tmp5 + tmp4; 2023-01-11T21:41:26.2205144Z auto tmp11 = tmp6 + tmp4; 2023-01-11T21:41:26.2205318Z auto tmp12 = static_cast(1); 2023-01-11T21:41:26.2205593Z auto tmp13 = tmp8 - tmp12; 2023-01-11T21:41:26.2205811Z auto tmp14 = (tmp13 != tmp13) ? tmp13 : std::min(tmp10, tmp13); 2023-01-11T21:41:26.2206147Z auto tmp15 = tmp9 - tmp12; 2023-01-11T21:41:26.2206364Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp11, tmp15); 2023-01-11T21:41:26.2206559Z auto tmp17 = in_ptr0[tmp16 + (7*tmp14) + (49*i0)]; 2023-01-11T21:41:26.2206714Z auto tmp18 = tmp17 / 4; 2023-01-11T21:41:26.2206845Z auto tmp19 = tmp10 < tmp8; 2023-01-11T21:41:26.2207004Z auto tmp20 = tmp11 < tmp9; 2023-01-11T21:41:26.2207166Z auto tmp21 = tmp19 & tmp20; 2023-01-11T21:41:26.2207356Z auto tmp22 = static_cast(0.0); 2023-01-11T21:41:26.2207592Z auto tmp23 = tmp21 ? tmp18 : tmp22; 2023-01-11T21:41:26.2207775Z out_ptr0[i2 + (14*i1) + (196*i0)] = tmp23; 2023-01-11T21:41:26.2207905Z } 2023-01-11T21:41:26.2208002Z } 2023-01-11T21:41:26.2208115Z } 2023-01-11T21:41:26.2208230Z } 2023-01-11T21:41:26.2208332Z } 2023-01-11T21:41:26.2208437Z } 2023-01-11T21:41:26.2208541Z } 2023-01-11T21:41:26.2208683Z ''') 2023-01-11T21:41:26.2208691Z 2023-01-11T21:41:26.2208697Z 2023-01-11T21:41:26.2208830Z async_compile.wait(globals()) 2023-01-11T21:41:26.2208953Z del async_compile 2023-01-11T21:41:26.2208960Z 2023-01-11T21:41:26.2209202Z def call(args): 2023-01-11T21:41:26.2209327Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2209453Z args.clear() 2023-01-11T21:41:26.2209824Z buf0 = empty_strided((2, 4, 14, 14), (784, 196, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2210045Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2210135Z del arg0_1 2023-01-11T21:41:26.2210255Z return (buf0, ) 2023-01-11T21:41:26.2210265Z 2023-01-11T21:41:26.2210276Z 2023-01-11T21:41:26.2210406Z if __name__ == "__main__": 2023-01-11T21:41:26.2210593Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2210794Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2211144Z arg0_1 = rand_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2211508Z arg1_1 = rand_strided((2, 4, 14, 14), (784, 196, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2211688Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2211694Z 2023-01-11T21:41:26.2211802Z ok (1.699s) 2023-01-11T21:41:26.2212544Z test_baddbmm_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2212759Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2213199Z [2023-01-11 21:24:46,521] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 38 2023-01-11T21:41:26.2213639Z [2023-01-11 21:24:48,229] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 38 2023-01-11T21:41:26.2213647Z 2023-01-11T21:41:26.2213808Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2213933Z import torch 2023-01-11T21:41:26.2214049Z import random 2023-01-11T21:41:26.2214241Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2214444Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2214450Z 2023-01-11T21:41:26.2214569Z aten = torch.ops.aten 2023-01-11T21:41:26.2214793Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2214938Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2214944Z 2023-01-11T21:41:26.2215089Z 2023-01-11T21:41:26.2215318Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2215645Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2215824Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.2216005Z const float* __restrict__ in_ptr0) 2023-01-11T21:41:26.2216111Z { 2023-01-11T21:41:26.2216258Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2216358Z { 2023-01-11T21:41:26.2216504Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2216640Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.2216750Z { 2023-01-11T21:41:26.2216895Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.2216991Z { 2023-01-11T21:41:26.2217143Z for(long i2=0; i2<12; i2+=1) 2023-01-11T21:41:26.2217337Z { 2023-01-11T21:41:26.2217602Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i2) + (100*i0)); 2023-01-11T21:41:26.2217862Z auto tmp1 = at::vec::Vectorized::loadu(in_out_ptr0 + (8*i2) + (100*i1) + (12800*i0)); 2023-01-11T21:41:26.2218018Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2218194Z tmp2.store(in_out_ptr0 + (8*i2) + (100*i1) + (12800*i0)); 2023-01-11T21:41:26.2218318Z } 2023-01-11T21:41:26.2218468Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.2218624Z for(long i2=96; i2<100; i2+=1) 2023-01-11T21:41:26.2218736Z { 2023-01-11T21:41:26.2218897Z auto tmp0 = in_ptr0[i2 + (100*i0)]; 2023-01-11T21:41:26.2219070Z auto tmp1 = in_out_ptr0[i2 + (100*i1) + (12800*i0)]; 2023-01-11T21:41:26.2219232Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2219412Z in_out_ptr0[i2 + (100*i1) + (12800*i0)] = tmp2; 2023-01-11T21:41:26.2219508Z } 2023-01-11T21:41:26.2219618Z } 2023-01-11T21:41:26.2219724Z } 2023-01-11T21:41:26.2219822Z } 2023-01-11T21:41:26.2219930Z } 2023-01-11T21:41:26.2220075Z ''') 2023-01-11T21:41:26.2220083Z 2023-01-11T21:41:26.2220089Z 2023-01-11T21:41:26.2220239Z async_compile.wait(globals()) 2023-01-11T21:41:26.2220346Z del async_compile 2023-01-11T21:41:26.2220371Z 2023-01-11T21:41:26.2220471Z def call(args): 2023-01-11T21:41:26.2220606Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.2220732Z args.clear() 2023-01-11T21:41:26.2221087Z buf0 = empty_strided((6, 128, 100), (12800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2221248Z aten.bmm.out(arg1_1, arg2_1, out=buf0) 2023-01-11T21:41:26.2221364Z del arg1_1 2023-01-11T21:41:26.2221441Z del arg2_1 2023-01-11T21:41:26.2221583Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.2221810Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.2221931Z del arg0_1 2023-01-11T21:41:26.2222057Z return (buf1, ) 2023-01-11T21:41:26.2222068Z 2023-01-11T21:41:26.2222074Z 2023-01-11T21:41:26.2222203Z if __name__ == "__main__": 2023-01-11T21:41:26.2222385Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2222590Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2222924Z arg0_1 = rand_strided((6, 1, 100), (100, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2223341Z arg1_1 = rand_strided((6, 128, 64), (8192, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2223697Z arg2_1 = rand_strided((6, 64, 100), (6400, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2223884Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.2223893Z 2023-01-11T21:41:26.2224003Z ok (1.771s) 2023-01-11T21:41:26.2224760Z test_batch_norm_2d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2225075Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2225517Z [2023-01-11 21:24:48,543] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 39 2023-01-11T21:41:26.2225953Z [2023-01-11 21:24:50,318] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 39 2023-01-11T21:41:26.2226757Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2226973Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2227387Z [2023-01-11 21:24:50,608] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 40 2023-01-11T21:41:26.2227394Z 2023-01-11T21:41:26.2227550Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2227673Z import torch 2023-01-11T21:41:26.2227791Z import random 2023-01-11T21:41:26.2227975Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2228181Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2228188Z 2023-01-11T21:41:26.2228327Z aten = torch.ops.aten 2023-01-11T21:41:26.2228528Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2228689Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2228695Z 2023-01-11T21:41:26.2228702Z 2023-01-11T21:41:26.2228933Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2229274Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2229465Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2229643Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2229807Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.2229977Z const float* __restrict__ in_ptr3, 2023-01-11T21:41:26.2230147Z const float* __restrict__ in_ptr4, 2023-01-11T21:41:26.2230282Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2230444Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.2230610Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.2230769Z bool* __restrict__ out_ptr3) 2023-01-11T21:41:26.2230876Z { 2023-01-11T21:41:26.2231034Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2231151Z { 2023-01-11T21:41:26.2231267Z #pragma omp for 2023-01-11T21:41:26.2231402Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2231512Z { 2023-01-11T21:41:26.2231739Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2231891Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2232001Z } 2023-01-11T21:41:26.2232151Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2232292Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.2232392Z { 2023-01-11T21:41:26.2232528Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2232660Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.2232765Z } 2023-01-11T21:41:26.2232900Z #pragma omp for 2023-01-11T21:41:26.2233019Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2233129Z { 2023-01-11T21:41:26.2233356Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.2233500Z tmp0.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.2233609Z } 2023-01-11T21:41:26.2233778Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2234027Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.2234115Z { 2023-01-11T21:41:26.2234250Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.2234375Z out_ptr1[i0] = tmp0; 2023-01-11T21:41:26.2234489Z } 2023-01-11T21:41:26.2234648Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2234785Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2234891Z { 2023-01-11T21:41:26.2235016Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.2235119Z { 2023-01-11T21:41:26.2235273Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:41:26.2235393Z { 2023-01-11T21:41:26.2235645Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + (8*i2) + (64*i1) + (640*i0)); 2023-01-11T21:41:26.2235919Z auto tmp1 = at::vec::Vectorized(out_ptr0[i1]); 2023-01-11T21:41:26.2236140Z auto tmp3 = at::vec::Vectorized(out_ptr1[i1]); 2023-01-11T21:41:26.2236355Z auto tmp11 = at::vec::Vectorized(in_ptr3[i1]); 2023-01-11T21:41:26.2236547Z auto tmp13 = at::vec::Vectorized(in_ptr4[i1]); 2023-01-11T21:41:26.2236794Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2237157Z auto tmp4 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:41:26.2237317Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.2237460Z auto tmp6 = tmp5.sqrt(); 2023-01-11T21:41:26.2237632Z auto tmp7 = tmp6.reciprocal(); 2023-01-11T21:41:26.2237861Z auto tmp8 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.2238016Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.2238163Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:41:26.2238317Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:41:26.2238477Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.2238699Z auto tmp15 = at::vec::clamp_min(tmp14, decltype(tmp14)(0)); 2023-01-11T21:41:26.2238888Z tmp15.store(out_ptr2 + (8*i2) + (64*i1) + (640*i0)); 2023-01-11T21:41:26.2239004Z } 2023-01-11T21:41:26.2239161Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.2239295Z for(long i2=64; i2<64; i2+=1) 2023-01-11T21:41:26.2239407Z { 2023-01-11T21:41:26.2239581Z auto tmp0 = in_ptr2[i2 + (64*i1) + (640*i0)]; 2023-01-11T21:41:26.2239737Z auto tmp1 = out_ptr0[i1]; 2023-01-11T21:41:26.2239883Z auto tmp3 = out_ptr1[i1]; 2023-01-11T21:41:26.2240038Z auto tmp11 = in_ptr3[i1]; 2023-01-11T21:41:26.2240187Z auto tmp13 = in_ptr4[i1]; 2023-01-11T21:41:26.2240414Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2240668Z auto tmp4 = static_cast(1e-05); 2023-01-11T21:41:26.2240822Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.2240999Z auto tmp6 = std::sqrt(tmp5); 2023-01-11T21:41:26.2241154Z auto tmp7 = 1 / tmp6; 2023-01-11T21:41:26.2241332Z auto tmp8 = static_cast(1); 2023-01-11T21:41:26.2241477Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.2241632Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:41:26.2241777Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:41:26.2241929Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.2242096Z auto tmp15 = tmp14 * (tmp14>0); 2023-01-11T21:41:26.2242262Z out_ptr2[i2 + (64*i1) + (640*i0)] = tmp15; 2023-01-11T21:41:26.2242381Z } 2023-01-11T21:41:26.2242496Z } 2023-01-11T21:41:26.2242609Z } 2023-01-11T21:41:26.2242729Z #pragma omp for 2023-01-11T21:41:26.2242867Z for(long i0=0; i0<1280; i0+=1) 2023-01-11T21:41:26.2243064Z { 2023-01-11T21:41:26.2243175Z { 2023-01-11T21:41:26.2243290Z { 2023-01-11T21:41:26.2243450Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:41:26.2243611Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2243767Z auto tmp2 = tmp0 <= tmp1; 2023-01-11T21:41:26.2243898Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.2244006Z } 2023-01-11T21:41:26.2244118Z } 2023-01-11T21:41:26.2244232Z } 2023-01-11T21:41:26.2244340Z } 2023-01-11T21:41:26.2244423Z } 2023-01-11T21:41:26.2244568Z ''') 2023-01-11T21:41:26.2244576Z 2023-01-11T21:41:26.2244582Z 2023-01-11T21:41:26.2244730Z async_compile.wait(globals()) 2023-01-11T21:41:26.2244863Z del async_compile 2023-01-11T21:41:26.2244871Z 2023-01-11T21:41:26.2245023Z def call(args): 2023-01-11T21:41:26.2245211Z primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args 2023-01-11T21:41:26.2245308Z args.clear() 2023-01-11T21:41:26.2245564Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2245815Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2246103Z buf2 = empty_strided((2, 10, 8, 8), (640, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2246375Z buf3 = empty_strided((2, 10, 8, 8), (640, 64, 8, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2246811Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(primals_4.data_ptr()), c_void_p(primals_6.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.2246907Z del primals_1 2023-01-11T21:41:26.2247001Z del primals_2 2023-01-11T21:41:26.2247093Z del primals_3 2023-01-11T21:41:26.2247185Z del primals_4 2023-01-11T21:41:26.2247322Z return (buf0, buf1, buf2, primals_6, buf0, buf1, buf3, ) 2023-01-11T21:41:26.2247328Z 2023-01-11T21:41:26.2247333Z 2023-01-11T21:41:26.2247429Z if __name__ == "__main__": 2023-01-11T21:41:26.2247574Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2247731Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2247994Z primals_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2248257Z primals_2 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2248524Z primals_3 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2248786Z primals_4 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2249131Z primals_5 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2249424Z primals_6 = rand_strided((2, 10, 8, 8), (640, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2249651Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])) 2023-01-11T21:41:26.2249657Z 2023-01-11T21:41:26.2250012Z [2023-01-11 21:24:52,269] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 40 2023-01-11T21:41:26.2250019Z 2023-01-11T21:41:26.2250139Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2250226Z import torch 2023-01-11T21:41:26.2250320Z import random 2023-01-11T21:41:26.2250467Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2250607Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2250613Z 2023-01-11T21:41:26.2250713Z aten = torch.ops.aten 2023-01-11T21:41:26.2250879Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2250996Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2251005Z 2023-01-11T21:41:26.2251011Z 2023-01-11T21:41:26.2251188Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2251515Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2251668Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2251804Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2251923Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.2252055Z const float* __restrict__ in_ptr3, 2023-01-11T21:41:26.2252186Z const float* __restrict__ in_ptr4, 2023-01-11T21:41:26.2252313Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2252438Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.2252561Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.2252684Z bool* __restrict__ out_ptr3) 2023-01-11T21:41:26.2252763Z { 2023-01-11T21:41:26.2252921Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2253001Z { 2023-01-11T21:41:26.2253100Z #pragma omp for 2023-01-11T21:41:26.2253209Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2253293Z { 2023-01-11T21:41:26.2253472Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2253580Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2253661Z } 2023-01-11T21:41:26.2253784Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2253892Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.2253974Z { 2023-01-11T21:41:26.2254081Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2254187Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.2254252Z } 2023-01-11T21:41:26.2254349Z #pragma omp for 2023-01-11T21:41:26.2254454Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2254536Z { 2023-01-11T21:41:26.2254708Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.2254823Z tmp0.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.2254909Z } 2023-01-11T21:41:26.2255016Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2255120Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.2255199Z { 2023-01-11T21:41:26.2255303Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.2255402Z out_ptr1[i0] = tmp0; 2023-01-11T21:41:26.2255483Z } 2023-01-11T21:41:26.2255596Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2255685Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2255763Z { 2023-01-11T21:41:26.2255869Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.2255952Z { 2023-01-11T21:41:26.2256063Z for(long i2=0; i2<32; i2+=1) 2023-01-11T21:41:26.2256147Z { 2023-01-11T21:41:26.2256344Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + (8*i2) + (256*i1) + (2560*i0)); 2023-01-11T21:41:26.2256494Z auto tmp1 = at::vec::Vectorized(out_ptr0[i1]); 2023-01-11T21:41:26.2256659Z auto tmp3 = at::vec::Vectorized(out_ptr1[i1]); 2023-01-11T21:41:26.2256819Z auto tmp11 = at::vec::Vectorized(in_ptr3[i1]); 2023-01-11T21:41:26.2256979Z auto tmp13 = at::vec::Vectorized(in_ptr4[i1]); 2023-01-11T21:41:26.2257157Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2257439Z auto tmp4 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:41:26.2257559Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.2257678Z auto tmp6 = tmp5.sqrt(); 2023-01-11T21:41:26.2257795Z auto tmp7 = tmp6.reciprocal(); 2023-01-11T21:41:26.2257970Z auto tmp8 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.2258089Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.2258205Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:41:26.2258323Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:41:26.2258480Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.2258652Z auto tmp15 = at::vec::clamp_min(tmp14, decltype(tmp14)(0)); 2023-01-11T21:41:26.2258797Z tmp15.store(out_ptr2 + (8*i2) + (256*i1) + (2560*i0)); 2023-01-11T21:41:26.2258867Z } 2023-01-11T21:41:26.2258989Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.2259103Z for(long i2=256; i2<256; i2+=1) 2023-01-11T21:41:26.2259189Z { 2023-01-11T21:41:26.2259325Z auto tmp0 = in_ptr2[i2 + (256*i1) + (2560*i0)]; 2023-01-11T21:41:26.2259445Z auto tmp1 = out_ptr0[i1]; 2023-01-11T21:41:26.2259566Z auto tmp3 = out_ptr1[i1]; 2023-01-11T21:41:26.2259667Z auto tmp11 = in_ptr3[i1]; 2023-01-11T21:41:26.2259813Z auto tmp13 = in_ptr4[i1]; 2023-01-11T21:41:26.2259987Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2260202Z auto tmp4 = static_cast(1e-05); 2023-01-11T21:41:26.2260319Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.2260447Z auto tmp6 = std::sqrt(tmp5); 2023-01-11T21:41:26.2260555Z auto tmp7 = 1 / tmp6; 2023-01-11T21:41:26.2260673Z auto tmp8 = static_cast(1); 2023-01-11T21:41:26.2260789Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.2260904Z auto tmp10 = tmp2 * tmp9; 2023-01-11T21:41:26.2261020Z auto tmp12 = tmp10 * tmp11; 2023-01-11T21:41:26.2261139Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.2261263Z auto tmp15 = tmp14 * (tmp14>0); 2023-01-11T21:41:26.2261395Z out_ptr2[i2 + (256*i1) + (2560*i0)] = tmp15; 2023-01-11T21:41:26.2261483Z } 2023-01-11T21:41:26.2261550Z } 2023-01-11T21:41:26.2261629Z } 2023-01-11T21:41:26.2261734Z #pragma omp for 2023-01-11T21:41:26.2261841Z for(long i0=0; i0<7680; i0+=1) 2023-01-11T21:41:26.2261922Z { 2023-01-11T21:41:26.2262003Z { 2023-01-11T21:41:26.2262072Z { 2023-01-11T21:41:26.2262211Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:41:26.2262373Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2262534Z auto tmp2 = tmp0 <= tmp1; 2023-01-11T21:41:26.2262676Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.2262766Z } 2023-01-11T21:41:26.2262878Z } 2023-01-11T21:41:26.2262969Z } 2023-01-11T21:41:26.2263068Z } 2023-01-11T21:41:26.2263321Z } 2023-01-11T21:41:26.2263458Z ''') 2023-01-11T21:41:26.2263468Z 2023-01-11T21:41:26.2263475Z 2023-01-11T21:41:26.2263626Z async_compile.wait(globals()) 2023-01-11T21:41:26.2263738Z del async_compile 2023-01-11T21:41:26.2263746Z 2023-01-11T21:41:26.2263868Z def call(args): 2023-01-11T21:41:26.2264082Z primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args 2023-01-11T21:41:26.2264204Z args.clear() 2023-01-11T21:41:26.2264528Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2264843Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2265199Z buf2 = empty_strided((3, 10, 16, 16), (2560, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2265551Z buf3 = empty_strided((3, 10, 16, 16), (2560, 256, 16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2266078Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(primals_4.data_ptr()), c_void_p(primals_6.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.2266205Z del primals_1 2023-01-11T21:41:26.2266329Z del primals_2 2023-01-11T21:41:26.2266518Z del primals_3 2023-01-11T21:41:26.2266641Z del primals_4 2023-01-11T21:41:26.2266824Z return (buf0, buf1, buf2, primals_6, buf0, buf1, buf3, ) 2023-01-11T21:41:26.2266831Z 2023-01-11T21:41:26.2266837Z 2023-01-11T21:41:26.2266971Z if __name__ == "__main__": 2023-01-11T21:41:26.2267162Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2267367Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2267700Z primals_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2268019Z primals_2 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2268345Z primals_3 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2268680Z primals_4 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2269065Z primals_5 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2269453Z primals_6 = rand_strided((3, 10, 16, 16), (2560, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2269737Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])) 2023-01-11T21:41:26.2269744Z 2023-01-11T21:41:26.2269856Z ok (4.036s) 2023-01-11T21:41:26.2270618Z test_bernoulli1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2270823Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2271260Z [2023-01-11 21:24:52,308] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 41 2023-01-11T21:41:26.2271689Z [2023-01-11 21:24:53,808] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 41 2023-01-11T21:41:26.2271720Z 2023-01-11T21:41:26.2271868Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2271980Z import torch 2023-01-11T21:41:26.2272100Z import random 2023-01-11T21:41:26.2272294Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2272496Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2272506Z 2023-01-11T21:41:26.2272635Z aten = torch.ops.aten 2023-01-11T21:41:26.2272853Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2272988Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2272999Z 2023-01-11T21:41:26.2273005Z 2023-01-11T21:41:26.2273230Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2273566Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2273753Z extern "C" void kernel(float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2273868Z { 2023-01-11T21:41:26.2274035Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2274142Z { 2023-01-11T21:41:26.2274252Z #pragma omp for 2023-01-11T21:41:26.2274391Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.2274493Z { 2023-01-11T21:41:26.2274728Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:41:26.2274882Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2274989Z } 2023-01-11T21:41:26.2275143Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2275265Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.2275370Z { 2023-01-11T21:41:26.2275533Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.2275676Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.2275782Z } 2023-01-11T21:41:26.2275888Z } 2023-01-11T21:41:26.2275998Z } 2023-01-11T21:41:26.2276115Z ''') 2023-01-11T21:41:26.2276122Z 2023-01-11T21:41:26.2276129Z 2023-01-11T21:41:26.2276279Z async_compile.wait(globals()) 2023-01-11T21:41:26.2276495Z del async_compile 2023-01-11T21:41:26.2276501Z 2023-01-11T21:41:26.2276624Z def call(args): 2023-01-11T21:41:26.2276745Z arg0_1, = args 2023-01-11T21:41:26.2276862Z args.clear() 2023-01-11T21:41:26.2277192Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2277340Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2277481Z aten.bernoulli_(buf0, ) 2023-01-11T21:41:26.2277608Z return (buf0, buf0, ) 2023-01-11T21:41:26.2277615Z 2023-01-11T21:41:26.2277622Z 2023-01-11T21:41:26.2277753Z if __name__ == "__main__": 2023-01-11T21:41:26.2277943Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2278144Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2278534Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2278715Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2278723Z 2023-01-11T21:41:26.2278820Z ok (1.538s) 2023-01-11T21:41:26.2279589Z test_bernoulli2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2279796Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2280229Z [2023-01-11 21:24:53,833] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 42 2023-01-11T21:41:26.2280660Z [2023-01-11 21:24:53,833] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.2281092Z [2023-01-11 21:24:55,452] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 42 2023-01-11T21:41:26.2281100Z 2023-01-11T21:41:26.2281260Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2281382Z import torch 2023-01-11T21:41:26.2281496Z import random 2023-01-11T21:41:26.2281691Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2281872Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2281884Z 2023-01-11T21:41:26.2282001Z aten = torch.ops.aten 2023-01-11T21:41:26.2282222Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2282384Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2282639Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.2282647Z 2023-01-11T21:41:26.2282654Z 2023-01-11T21:41:26.2282882Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2283214Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2283403Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.2283569Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2283741Z bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.2283844Z { 2023-01-11T21:41:26.2284013Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2284111Z { 2023-01-11T21:41:26.2284243Z #pragma omp for 2023-01-11T21:41:26.2284384Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2284473Z { 2023-01-11T21:41:26.2284576Z { 2023-01-11T21:41:26.2284685Z { 2023-01-11T21:41:26.2284828Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.2284978Z auto tmp5 = in_ptr1[i0]; 2023-01-11T21:41:26.2285154Z auto tmp1 = static_cast(65535); 2023-01-11T21:41:26.2285310Z auto tmp2 = tmp0 ^ tmp1; 2023-01-11T21:41:26.2285463Z auto tmp3 = static_cast(i0); 2023-01-11T21:41:26.2285692Z auto tmp4 = static_cast(normalized_rand_cpu(tmp2, tmp3));; 2023-01-11T21:41:26.2285936Z auto tmp6 = tmp4 < tmp5; 2023-01-11T21:41:26.2286073Z out_ptr0[i0] = tmp6; 2023-01-11T21:41:26.2286185Z } 2023-01-11T21:41:26.2286298Z } 2023-01-11T21:41:26.2286406Z } 2023-01-11T21:41:26.2286497Z } 2023-01-11T21:41:26.2286603Z } 2023-01-11T21:41:26.2286747Z ''') 2023-01-11T21:41:26.2286754Z 2023-01-11T21:41:26.2286760Z 2023-01-11T21:41:26.2286911Z async_compile.wait(globals()) 2023-01-11T21:41:26.2287037Z del async_compile 2023-01-11T21:41:26.2287046Z 2023-01-11T21:41:26.2287163Z def call(args): 2023-01-11T21:41:26.2287280Z arg0_1, = args 2023-01-11T21:41:26.2287382Z args.clear() 2023-01-11T21:41:26.2287601Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.2287979Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2288270Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2288394Z del arg0_1 2023-01-11T21:41:26.2288521Z return (buf0, ) 2023-01-11T21:41:26.2288528Z 2023-01-11T21:41:26.2288535Z 2023-01-11T21:41:26.2288664Z if __name__ == "__main__": 2023-01-11T21:41:26.2288852Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2289158Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2289504Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2289825Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2290013Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2290022Z 2023-01-11T21:41:26.2290133Z ok (1.643s) 2023-01-11T21:41:26.2290893Z test_bitwise2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2291111Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2291544Z [2023-01-11 21:24:55,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 43 2023-01-11T21:41:26.2291974Z [2023-01-11 21:24:56,955] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 43 2023-01-11T21:41:26.2291981Z 2023-01-11T21:41:26.2292122Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2292242Z import torch 2023-01-11T21:41:26.2292365Z import random 2023-01-11T21:41:26.2292550Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2292748Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2292759Z 2023-01-11T21:41:26.2292892Z aten = torch.ops.aten 2023-01-11T21:41:26.2293117Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2293260Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2293287Z 2023-01-11T21:41:26.2293294Z 2023-01-11T21:41:26.2293501Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2293825Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2294024Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.2294196Z const bool* __restrict__ in_ptr1, 2023-01-11T21:41:26.2294350Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.2294514Z bool* __restrict__ out_ptr1, 2023-01-11T21:41:26.2294669Z bool* __restrict__ out_ptr2, 2023-01-11T21:41:26.2294808Z bool* __restrict__ out_ptr3) 2023-01-11T21:41:26.2294919Z { 2023-01-11T21:41:26.2295085Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2295187Z { 2023-01-11T21:41:26.2295323Z #pragma omp for 2023-01-11T21:41:26.2295616Z for(long i0=0; i0<40; i0+=1) 2023-01-11T21:41:26.2295729Z { 2023-01-11T21:41:26.2295819Z { 2023-01-11T21:41:26.2295927Z { 2023-01-11T21:41:26.2296084Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2296236Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.2296384Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.2296538Z auto tmp3 = tmp0 | tmp2; 2023-01-11T21:41:26.2296682Z auto tmp4 = tmp0 ^ tmp2; 2023-01-11T21:41:26.2296813Z auto tmp5 = tmp0 & tmp2; 2023-01-11T21:41:26.2296956Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.2297095Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.2297239Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.2297448Z out_ptr3[i0] = tmp5; 2023-01-11T21:41:26.2297562Z } 2023-01-11T21:41:26.2297672Z } 2023-01-11T21:41:26.2297766Z } 2023-01-11T21:41:26.2297864Z } 2023-01-11T21:41:26.2297968Z } 2023-01-11T21:41:26.2298119Z ''') 2023-01-11T21:41:26.2298129Z 2023-01-11T21:41:26.2298135Z 2023-01-11T21:41:26.2298281Z async_compile.wait(globals()) 2023-01-11T21:41:26.2298406Z del async_compile 2023-01-11T21:41:26.2298412Z 2023-01-11T21:41:26.2298533Z def call(args): 2023-01-11T21:41:26.2298644Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2298772Z args.clear() 2023-01-11T21:41:26.2299096Z buf0 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2299411Z buf1 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2299724Z buf2 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2300041Z buf3 = empty_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2300433Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.2300549Z del arg0_1 2023-01-11T21:41:26.2300649Z del arg1_1 2023-01-11T21:41:26.2300794Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.2300802Z 2023-01-11T21:41:26.2300807Z 2023-01-11T21:41:26.2300928Z if __name__ == "__main__": 2023-01-11T21:41:26.2301117Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2301318Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2301639Z arg0_1 = rand_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2301952Z arg1_1 = rand_strided((2, 20), (20, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2302138Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2302146Z 2023-01-11T21:41:26.2302241Z ok (1.503s) 2023-01-11T21:41:26.2302999Z test_bitwise_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2303310Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2303753Z [2023-01-11 21:24:56,977] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 44 2023-01-11T21:41:26.2304189Z [2023-01-11 21:24:58,656] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 44 2023-01-11T21:41:26.2304197Z 2023-01-11T21:41:26.2304355Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2304477Z import torch 2023-01-11T21:41:26.2304597Z import random 2023-01-11T21:41:26.2304794Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2304977Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2304984Z 2023-01-11T21:41:26.2305209Z aten = torch.ops.aten 2023-01-11T21:41:26.2305428Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2305585Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2305595Z 2023-01-11T21:41:26.2305602Z 2023-01-11T21:41:26.2305827Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2306151Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2306350Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.2306532Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.2306674Z int* __restrict__ out_ptr0, 2023-01-11T21:41:26.2306835Z int* __restrict__ out_ptr1, 2023-01-11T21:41:26.2306982Z int* __restrict__ out_ptr2, 2023-01-11T21:41:26.2307200Z int* __restrict__ out_ptr3) 2023-01-11T21:41:26.2307303Z { 2023-01-11T21:41:26.2307475Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2307576Z { 2023-01-11T21:41:26.2307687Z #pragma omp for 2023-01-11T21:41:26.2307818Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.2307930Z { 2023-01-11T21:41:26.2308041Z { 2023-01-11T21:41:26.2308156Z { 2023-01-11T21:41:26.2308316Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2308461Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.2308583Z auto tmp1 = ~tmp0; 2023-01-11T21:41:26.2308736Z auto tmp3 = tmp0 | tmp2; 2023-01-11T21:41:26.2308889Z auto tmp4 = tmp0 ^ tmp2; 2023-01-11T21:41:26.2309045Z auto tmp5 = tmp0 & tmp2; 2023-01-11T21:41:26.2309183Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.2309323Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.2309467Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.2309587Z out_ptr3[i0] = tmp5; 2023-01-11T21:41:26.2309704Z } 2023-01-11T21:41:26.2309813Z } 2023-01-11T21:41:26.2309918Z } 2023-01-11T21:41:26.2310014Z } 2023-01-11T21:41:26.2310121Z } 2023-01-11T21:41:26.2310242Z ''') 2023-01-11T21:41:26.2310255Z 2023-01-11T21:41:26.2310279Z 2023-01-11T21:41:26.2310416Z async_compile.wait(globals()) 2023-01-11T21:41:26.2310546Z del async_compile 2023-01-11T21:41:26.2310554Z 2023-01-11T21:41:26.2310676Z def call(args): 2023-01-11T21:41:26.2310795Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2310916Z args.clear() 2023-01-11T21:41:26.2311243Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.2311551Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.2311848Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.2312173Z buf3 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.2312550Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.2312673Z del arg0_1 2023-01-11T21:41:26.2312787Z del arg1_1 2023-01-11T21:41:26.2312939Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.2312947Z 2023-01-11T21:41:26.2312954Z 2023-01-11T21:41:26.2313078Z if __name__ == "__main__": 2023-01-11T21:41:26.2313268Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2313458Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2313773Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.2314058Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.2314215Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2314222Z 2023-01-11T21:41:26.2314312Z ok (1.701s) 2023-01-11T21:41:26.2314943Z test_bmm1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2315198Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2315554Z [2023-01-11 21:24:58,680] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 45 2023-01-11T21:41:26.2315922Z [2023-01-11 21:25:00,364] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 45 2023-01-11T21:41:26.2316560Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2316735Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2317072Z [2023-01-11 21:25:00,388] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 46 2023-01-11T21:41:26.2317433Z [2023-01-11 21:25:01,942] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 46 2023-01-11T21:41:26.2317439Z 2023-01-11T21:41:26.2317565Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2317664Z import torch 2023-01-11T21:41:26.2317758Z import random 2023-01-11T21:41:26.2317909Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2318070Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2318076Z 2023-01-11T21:41:26.2318185Z aten = torch.ops.aten 2023-01-11T21:41:26.2318350Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2318475Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2318481Z 2023-01-11T21:41:26.2318487Z 2023-01-11T21:41:26.2318669Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2318933Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2319091Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2319230Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2319361Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2319484Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2319546Z { 2023-01-11T21:41:26.2319670Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2319761Z { 2023-01-11T21:41:26.2319887Z #pragma omp for 2023-01-11T21:41:26.2320016Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.2320125Z { 2023-01-11T21:41:26.2320342Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2320575Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.2320719Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2320876Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2320981Z } 2023-01-11T21:41:26.2321140Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2321281Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.2321386Z { 2023-01-11T21:41:26.2321515Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2321748Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.2321931Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2322088Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.2322384Z } 2023-01-11T21:41:26.2322574Z #pragma omp for 2023-01-11T21:41:26.2322768Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.2322912Z { 2023-01-11T21:41:26.2323128Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.2323466Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.2323643Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2323827Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.2323966Z } 2023-01-11T21:41:26.2324218Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2324393Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.2324485Z { 2023-01-11T21:41:26.2324662Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.2324870Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2325044Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2325216Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.2325353Z } 2023-01-11T21:41:26.2325509Z } 2023-01-11T21:41:26.2325593Z } 2023-01-11T21:41:26.2325818Z ''') 2023-01-11T21:41:26.2325890Z 2023-01-11T21:41:26.2325900Z 2023-01-11T21:41:26.2326204Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2326609Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2326840Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.2326971Z { 2023-01-11T21:41:26.2327186Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2327274Z { 2023-01-11T21:41:26.2327438Z #pragma omp for 2023-01-11T21:41:26.2327611Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.2327814Z { 2023-01-11T21:41:26.2328095Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.2328359Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.2328539Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2328752Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.2328844Z } 2023-01-11T21:41:26.2329163Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2329329Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.2329465Z { 2023-01-11T21:41:26.2329721Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.2329906Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.2330017Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2330176Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.2330312Z } 2023-01-11T21:41:26.2330441Z } 2023-01-11T21:41:26.2330570Z } 2023-01-11T21:41:26.2330738Z ''') 2023-01-11T21:41:26.2330746Z 2023-01-11T21:41:26.2330752Z 2023-01-11T21:41:26.2330922Z async_compile.wait(globals()) 2023-01-11T21:41:26.2331017Z del async_compile 2023-01-11T21:41:26.2331112Z 2023-01-11T21:41:26.2331206Z def call(args): 2023-01-11T21:41:26.2331353Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2331509Z args.clear() 2023-01-11T21:41:26.2331884Z buf0 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2332064Z aten.bmm.out(arg0_1, arg1_1, out=buf0) 2023-01-11T21:41:26.2332418Z buf1 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2332776Z buf2 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2333057Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2333196Z del arg0_1 2023-01-11T21:41:26.2333407Z del arg1_1 2023-01-11T21:41:26.2333775Z buf3 = empty_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2333948Z aten.bmm.out(buf1, buf2, out=buf3) 2023-01-11T21:41:26.2334079Z del buf1 2023-01-11T21:41:26.2334210Z del buf2 2023-01-11T21:41:26.2334325Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:41:26.2334512Z kernel_cpp_1(c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.2334664Z return (buf0, buf4, ) 2023-01-11T21:41:26.2334677Z 2023-01-11T21:41:26.2334684Z 2023-01-11T21:41:26.2334831Z if __name__ == "__main__": 2023-01-11T21:41:26.2335097Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2335433Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2335805Z arg0_1 = rand_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2336159Z arg1_1 = rand_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2336319Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2336328Z 2023-01-11T21:41:26.2336383Z 2023-01-11T21:41:26.2336511Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2336647Z import torch 2023-01-11T21:41:26.2336790Z import random 2023-01-11T21:41:26.2337041Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2337308Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2337316Z 2023-01-11T21:41:26.2337468Z aten = torch.ops.aten 2023-01-11T21:41:26.2337789Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2337913Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2337924Z 2023-01-11T21:41:26.2337929Z 2023-01-11T21:41:26.2338189Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2338541Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2338768Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2338965Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2339146Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2339378Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2339506Z { 2023-01-11T21:41:26.2339644Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2339768Z { 2023-01-11T21:41:26.2339920Z #pragma omp for 2023-01-11T21:41:26.2340085Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.2340223Z { 2023-01-11T21:41:26.2340498Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2340742Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.2340854Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2341071Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2341203Z } 2023-01-11T21:41:26.2341381Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2341553Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.2341681Z { 2023-01-11T21:41:26.2341838Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2341978Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.2342140Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2342295Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.2342464Z } 2023-01-11T21:41:26.2342619Z #pragma omp for 2023-01-11T21:41:26.2342787Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.2342872Z { 2023-01-11T21:41:26.2343113Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.2343421Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.2343611Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2343786Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.2343913Z } 2023-01-11T21:41:26.2344135Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2344307Z for(long i0=80; i0<80; i0+=1) 2023-01-11T21:41:26.2344388Z { 2023-01-11T21:41:26.2344549Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.2344731Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2344889Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2345039Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.2345173Z } 2023-01-11T21:41:26.2345251Z } 2023-01-11T21:41:26.2345376Z } 2023-01-11T21:41:26.2345596Z ''') 2023-01-11T21:41:26.2345604Z 2023-01-11T21:41:26.2345615Z 2023-01-11T21:41:26.2345867Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2346226Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2346520Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.2346674Z { 2023-01-11T21:41:26.2346860Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2346936Z { 2023-01-11T21:41:26.2347090Z #pragma omp for 2023-01-11T21:41:26.2347257Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:41:26.2347452Z { 2023-01-11T21:41:26.2347703Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.2347943Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.2348104Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2348233Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.2348359Z } 2023-01-11T21:41:26.2348620Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2348789Z for(long i0=160; i0<160; i0+=1) 2023-01-11T21:41:26.2348919Z { 2023-01-11T21:41:26.2349134Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.2349322Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.2349435Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2349595Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.2349752Z } 2023-01-11T21:41:26.2349888Z } 2023-01-11T21:41:26.2350014Z } 2023-01-11T21:41:26.2350179Z ''') 2023-01-11T21:41:26.2350188Z 2023-01-11T21:41:26.2350195Z 2023-01-11T21:41:26.2350370Z async_compile.wait(globals()) 2023-01-11T21:41:26.2350467Z del async_compile 2023-01-11T21:41:26.2350475Z 2023-01-11T21:41:26.2350660Z def call(args): 2023-01-11T21:41:26.2350808Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2350952Z args.clear() 2023-01-11T21:41:26.2351341Z buf0 = empty_strided((1, 16, 10), (160, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2351635Z aten.mm.out(as_strided(arg0_1, (16, 8), (8, 1)), as_strided(arg1_1, (8, 10), (10, 1)), out=as_strided(buf0, (16, 10), (10, 1))) 2023-01-11T21:41:26.2352001Z buf1 = empty_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2352359Z buf2 = empty_strided((1, 8, 10), (80, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2352640Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2352782Z del arg0_1 2023-01-11T21:41:26.2352961Z del arg1_1 2023-01-11T21:41:26.2353328Z buf3 = empty_strided((1, 16, 10), (160, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2353624Z aten.mm.out(as_strided(buf1, (16, 8), (8, 1)), as_strided(buf2, (8, 10), (10, 1)), out=as_strided(buf3, (16, 10), (10, 1))) 2023-01-11T21:41:26.2353782Z del buf1 2023-01-11T21:41:26.2353914Z del buf2 2023-01-11T21:41:26.2354033Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:41:26.2354225Z kernel_cpp_1(c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.2354377Z return (buf0, buf4, ) 2023-01-11T21:41:26.2354390Z 2023-01-11T21:41:26.2354396Z 2023-01-11T21:41:26.2354547Z if __name__ == "__main__": 2023-01-11T21:41:26.2354798Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2355039Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2355411Z arg0_1 = rand_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2355728Z arg1_1 = rand_strided((1, 8, 10), (80, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2355891Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2355948Z 2023-01-11T21:41:26.2356035Z ok (3.286s) 2023-01-11T21:41:26.2356821Z test_bmm2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2357126Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2357592Z [2023-01-11 21:25:01,960] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 47 2023-01-11T21:41:26.2358121Z [2023-01-11 21:25:01,963] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 47 2023-01-11T21:41:26.2358130Z 2023-01-11T21:41:26.2358313Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2358484Z import torch 2023-01-11T21:41:26.2358626Z import random 2023-01-11T21:41:26.2358793Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2359018Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2359025Z 2023-01-11T21:41:26.2359186Z aten = torch.ops.aten 2023-01-11T21:41:26.2359501Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2359682Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2359693Z 2023-01-11T21:41:26.2359700Z 2023-01-11T21:41:26.2359907Z async_compile.wait(globals()) 2023-01-11T21:41:26.2360053Z del async_compile 2023-01-11T21:41:26.2360060Z 2023-01-11T21:41:26.2360201Z def call(args): 2023-01-11T21:41:26.2360302Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2360447Z args.clear() 2023-01-11T21:41:26.2360818Z buf0 = empty_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2361115Z aten.mm.out(as_strided(arg0_1, (8, 8), (1, 8)), as_strided(arg1_1, (8, 8), (8, 1)), out=as_strided(buf0, (8, 8), (8, 1))) 2023-01-11T21:41:26.2361253Z del arg0_1 2023-01-11T21:41:26.2361389Z del arg1_1 2023-01-11T21:41:26.2361562Z return (buf0, ) 2023-01-11T21:41:26.2361570Z 2023-01-11T21:41:26.2361576Z 2023-01-11T21:41:26.2361751Z if __name__ == "__main__": 2023-01-11T21:41:26.2361920Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2362145Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2362515Z arg0_1 = rand_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2362884Z arg1_1 = rand_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2363096Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2363104Z 2023-01-11T21:41:26.2363241Z ok (0.019s) 2023-01-11T21:41:26.2364023Z test_bool_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2364295Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2364751Z [2023-01-11 21:25:01,994] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 48 2023-01-11T21:41:26.2365169Z [2023-01-11 21:25:03,657] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 48 2023-01-11T21:41:26.2365226Z 2023-01-11T21:41:26.2365357Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2365508Z import torch 2023-01-11T21:41:26.2365650Z import random 2023-01-11T21:41:26.2365863Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2366084Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2366092Z 2023-01-11T21:41:26.2366247Z aten = torch.ops.aten 2023-01-11T21:41:26.2366556Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2366685Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2366691Z 2023-01-11T21:41:26.2366746Z 2023-01-11T21:41:26.2366947Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2367312Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2367601Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.2367794Z const bool* __restrict__ in_ptr1, 2023-01-11T21:41:26.2367975Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.2368156Z bool* __restrict__ out_ptr1, 2023-01-11T21:41:26.2368337Z bool* __restrict__ out_ptr2, 2023-01-11T21:41:26.2368468Z bool* __restrict__ out_ptr3, 2023-01-11T21:41:26.2368675Z bool* __restrict__ out_ptr4, 2023-01-11T21:41:26.2368866Z bool* __restrict__ out_ptr5, 2023-01-11T21:41:26.2369163Z bool* __restrict__ out_ptr6, 2023-01-11T21:41:26.2369340Z bool* __restrict__ out_ptr7, 2023-01-11T21:41:26.2369517Z bool* __restrict__ out_ptr8) 2023-01-11T21:41:26.2369728Z { 2023-01-11T21:41:26.2369870Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2370000Z { 2023-01-11T21:41:26.2370199Z #pragma omp for 2023-01-11T21:41:26.2370394Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.2370524Z { 2023-01-11T21:41:26.2370660Z { 2023-01-11T21:41:26.2370795Z { 2023-01-11T21:41:26.2370923Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2371095Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.2371270Z auto tmp2 = tmp0 || tmp1; 2023-01-11T21:41:26.2371450Z auto tmp3 = tmp0 && tmp1; 2023-01-11T21:41:26.2371593Z auto tmp4 = tmp0 & tmp1; 2023-01-11T21:41:26.2371759Z auto tmp5 = tmp0 | tmp1; 2023-01-11T21:41:26.2371906Z auto tmp6 = tmp0 ^ tmp1; 2023-01-11T21:41:26.2372004Z auto tmp7 = tmp0 == 0; 2023-01-11T21:41:26.2372145Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.2372280Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.2372413Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.2372559Z out_ptr3[i0] = tmp5; 2023-01-11T21:41:26.2372713Z out_ptr4[i0] = tmp6; 2023-01-11T21:41:26.2372845Z out_ptr5[i0] = tmp3; 2023-01-11T21:41:26.2372937Z out_ptr6[i0] = tmp2; 2023-01-11T21:41:26.2373092Z out_ptr7[i0] = tmp7; 2023-01-11T21:41:26.2373224Z out_ptr8[i0] = tmp1; 2023-01-11T21:41:26.2373337Z } 2023-01-11T21:41:26.2373448Z } 2023-01-11T21:41:26.2373564Z } 2023-01-11T21:41:26.2373630Z } 2023-01-11T21:41:26.2373734Z } 2023-01-11T21:41:26.2373880Z ''') 2023-01-11T21:41:26.2373886Z 2023-01-11T21:41:26.2373891Z 2023-01-11T21:41:26.2374036Z async_compile.wait(globals()) 2023-01-11T21:41:26.2374180Z del async_compile 2023-01-11T21:41:26.2374186Z 2023-01-11T21:41:26.2374310Z def call(args): 2023-01-11T21:41:26.2374435Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2374564Z args.clear() 2023-01-11T21:41:26.2374807Z buf0 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2375078Z buf1 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2375344Z buf2 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2375638Z buf3 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2375905Z buf4 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2376197Z buf5 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2376467Z buf6 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2376693Z buf7 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2376970Z buf8 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2377450Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:41:26.2377642Z del arg0_1 2023-01-11T21:41:26.2377758Z del arg1_1 2023-01-11T21:41:26.2377938Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, ) 2023-01-11T21:41:26.2377944Z 2023-01-11T21:41:26.2377949Z 2023-01-11T21:41:26.2378077Z if __name__ == "__main__": 2023-01-11T21:41:26.2378276Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2378472Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2378704Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2378979Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.2379197Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2379204Z 2023-01-11T21:41:26.2379371Z ok (1.696s) 2023-01-11T21:41:26.2379850Z test_both_scalars_cpu (__main__.CpuTests) ... [2023-01-11 21:25:03,720] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 49 2023-01-11T21:41:26.2380229Z [2023-01-11 21:25:05,338] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 49 2023-01-11T21:41:26.2380236Z 2023-01-11T21:41:26.2380394Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2380538Z import torch 2023-01-11T21:41:26.2380615Z import random 2023-01-11T21:41:26.2380794Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2380979Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2380985Z 2023-01-11T21:41:26.2381111Z aten = torch.ops.aten 2023-01-11T21:41:26.2381310Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2381456Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2381462Z 2023-01-11T21:41:26.2381468Z 2023-01-11T21:41:26.2381678Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2381966Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2382162Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2382273Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.2382422Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.2382568Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.2382715Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.2382902Z float* __restrict__ out_ptr5) 2023-01-11T21:41:26.2383219Z { 2023-01-11T21:41:26.2383326Z { 2023-01-11T21:41:26.2383393Z { 2023-01-11T21:41:26.2383545Z auto tmp0 = static_cast(4); 2023-01-11T21:41:26.2383725Z auto tmp1 = static_cast(3.3); 2023-01-11T21:41:26.2383864Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2383992Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.2384103Z } 2023-01-11T21:41:26.2384169Z } 2023-01-11T21:41:26.2384278Z { 2023-01-11T21:41:26.2384381Z { 2023-01-11T21:41:26.2384534Z auto tmp0 = static_cast(3.3); 2023-01-11T21:41:26.2384683Z auto tmp1 = static_cast(4); 2023-01-11T21:41:26.2384836Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2384961Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.2385027Z } 2023-01-11T21:41:26.2385129Z } 2023-01-11T21:41:26.2385280Z { 2023-01-11T21:41:26.2385382Z { 2023-01-11T21:41:26.2385531Z auto tmp0 = static_cast(4); 2023-01-11T21:41:26.2385680Z auto tmp1 = static_cast(3.3); 2023-01-11T21:41:26.2385867Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2385952Z out_ptr2[0] = tmp2; 2023-01-11T21:41:26.2386076Z } 2023-01-11T21:41:26.2386182Z } 2023-01-11T21:41:26.2386292Z { 2023-01-11T21:41:26.2386395Z { 2023-01-11T21:41:26.2386565Z auto tmp0 = static_cast(3.3); 2023-01-11T21:41:26.2386752Z auto tmp1 = static_cast(4); 2023-01-11T21:41:26.2386997Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2387153Z out_ptr3[0] = tmp2; 2023-01-11T21:41:26.2387287Z } 2023-01-11T21:41:26.2387457Z } 2023-01-11T21:41:26.2387598Z { 2023-01-11T21:41:26.2387751Z { 2023-01-11T21:41:26.2387894Z auto tmp0 = static_cast(4); 2023-01-11T21:41:26.2388075Z auto tmp1 = static_cast(3.3); 2023-01-11T21:41:26.2388235Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.2388388Z out_ptr4[0] = tmp2; 2023-01-11T21:41:26.2388523Z } 2023-01-11T21:41:26.2388643Z } 2023-01-11T21:41:26.2388832Z { 2023-01-11T21:41:26.2388919Z { 2023-01-11T21:41:26.2389182Z auto tmp0 = static_cast(3.3); 2023-01-11T21:41:26.2389366Z auto tmp1 = static_cast(4); 2023-01-11T21:41:26.2389525Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.2389671Z out_ptr5[0] = tmp2; 2023-01-11T21:41:26.2389795Z } 2023-01-11T21:41:26.2389873Z } 2023-01-11T21:41:26.2390009Z } 2023-01-11T21:41:26.2390179Z ''') 2023-01-11T21:41:26.2390186Z 2023-01-11T21:41:26.2390193Z 2023-01-11T21:41:26.2390415Z async_compile.wait(globals()) 2023-01-11T21:41:26.2390580Z del async_compile 2023-01-11T21:41:26.2390588Z 2023-01-11T21:41:26.2390729Z def call(args): 2023-01-11T21:41:26.2391069Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2391388Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2391668Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2392002Z buf3 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2392334Z buf4 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2392652Z buf5 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2393110Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:41:26.2393305Z return (buf0, buf1, buf2, buf3, buf4, buf5, ) 2023-01-11T21:41:26.2393314Z 2023-01-11T21:41:26.2393320Z 2023-01-11T21:41:26.2450829Z if __name__ == "__main__": 2023-01-11T21:41:26.2451275Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2451455Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2451630Z print_performance(lambda: call([])) 2023-01-11T21:41:26.2451640Z 2023-01-11T21:41:26.2451755Z ok (1.681s) 2023-01-11T21:41:26.2452394Z test_cat_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2452574Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2452992Z [2023-01-11 21:25:05,391] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 50 2023-01-11T21:41:26.2453365Z [2023-01-11 21:25:06,995] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 50 2023-01-11T21:41:26.2453941Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2454116Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2454624Z [2023-01-11 21:25:07,045] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 51 2023-01-11T21:41:26.2454986Z [2023-01-11 21:25:08,715] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 51 2023-01-11T21:41:26.2454994Z 2023-01-11T21:41:26.2455131Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2455232Z import torch 2023-01-11T21:41:26.2455336Z import random 2023-01-11T21:41:26.2455497Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2455664Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2455672Z 2023-01-11T21:41:26.2455783Z aten = torch.ops.aten 2023-01-11T21:41:26.2455952Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2456083Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2456091Z 2023-01-11T21:41:26.2456156Z 2023-01-11T21:41:26.2456355Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2456628Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2456797Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2456937Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2457074Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.2457227Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.2457346Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.2457485Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.2457625Z double* __restrict__ out_ptr5, 2023-01-11T21:41:26.2457758Z double* __restrict__ out_ptr6) 2023-01-11T21:41:26.2457845Z { 2023-01-11T21:41:26.2457982Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2458070Z { 2023-01-11T21:41:26.2458169Z #pragma omp for 2023-01-11T21:41:26.2458284Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2458375Z { 2023-01-11T21:41:26.2458496Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.2458587Z { 2023-01-11T21:41:26.2458797Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (16*i0)); 2023-01-11T21:41:26.2458986Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.2459130Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2459309Z tmp0.store(out_ptr0 + (8*i1) + (36*i0)); 2023-01-11T21:41:26.2459453Z tmp2.store(out_ptr1 + (8*i1) + (36*i0)); 2023-01-11T21:41:26.2459566Z } 2023-01-11T21:41:26.2459698Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.2459824Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:41:26.2459920Z { 2023-01-11T21:41:26.2460041Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:41:26.2460183Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2460310Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2460445Z out_ptr0[i1 + (36*i0)] = tmp0; 2023-01-11T21:41:26.2460572Z out_ptr1[i1 + (36*i0)] = tmp2; 2023-01-11T21:41:26.2460663Z } 2023-01-11T21:41:26.2460772Z } 2023-01-11T21:41:26.2460866Z #pragma omp for 2023-01-11T21:41:26.2460982Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2461073Z { 2023-01-11T21:41:26.2461190Z #pragma GCC ivdep 2023-01-11T21:41:26.2461326Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.2461439Z { 2023-01-11T21:41:26.2461532Z { 2023-01-11T21:41:26.2461612Z { 2023-01-11T21:41:26.2461750Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:41:26.2461897Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.2462029Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2462168Z out_ptr2[i1 + (36*i0)] = tmp2; 2023-01-11T21:41:26.2462311Z } 2023-01-11T21:41:26.2462407Z } 2023-01-11T21:41:26.2462482Z } 2023-01-11T21:41:26.2462574Z } 2023-01-11T21:41:26.2462685Z #pragma omp for 2023-01-11T21:41:26.2462802Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.2462895Z { 2023-01-11T21:41:26.2462988Z { 2023-01-11T21:41:26.2463065Z { 2023-01-11T21:41:26.2463270Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2463412Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2463543Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.2463695Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.2463819Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.2463940Z out_ptr4[i0] = tmp2; 2023-01-11T21:41:26.2464083Z out_ptr5[i0] = tmp3; 2023-01-11T21:41:26.2464208Z out_ptr6[i0] = tmp3; 2023-01-11T21:41:26.2464310Z } 2023-01-11T21:41:26.2464401Z } 2023-01-11T21:41:26.2464492Z } 2023-01-11T21:41:26.2464582Z } 2023-01-11T21:41:26.2464670Z } 2023-01-11T21:41:26.2464774Z ''') 2023-01-11T21:41:26.2464780Z 2023-01-11T21:41:26.2464786Z 2023-01-11T21:41:26.2464934Z async_compile.wait(globals()) 2023-01-11T21:41:26.2465036Z del async_compile 2023-01-11T21:41:26.2465043Z 2023-01-11T21:41:26.2465165Z def call(args): 2023-01-11T21:41:26.2465267Z arg0_1, = args 2023-01-11T21:41:26.2465373Z args.clear() 2023-01-11T21:41:26.2465661Z buf3 = empty_strided((8, 36), (36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2465807Z buf0 = as_strided(buf3, (8, 16), (36, 1)) # alias 2023-01-11T21:41:26.2465934Z buf2 = as_strided(buf3, (8, 16), (36, 1), 20) # alias 2023-01-11T21:41:26.2466077Z buf1 = as_strided(buf3, (8, 4), (36, 1), 16) # alias 2023-01-11T21:41:26.2466367Z buf6 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2466510Z buf4 = as_strided(buf6, (8, 16), (16, 1)) # alias 2023-01-11T21:41:26.2466656Z buf5 = as_strided(buf6, (8, 16), (16, 1), 128) # alias 2023-01-11T21:41:26.2466934Z buf9 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.2467074Z buf7 = as_strided(buf9, (8, 16), (16, 1)) # alias 2023-01-11T21:41:26.2467203Z buf8 = as_strided(buf9, (8, 16), (16, 1), 128) # alias 2023-01-11T21:41:26.2467583Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:41:26.2467683Z del arg0_1 2023-01-11T21:41:26.2467806Z return (buf3, buf6, buf9, ) 2023-01-11T21:41:26.2467813Z 2023-01-11T21:41:26.2467818Z 2023-01-11T21:41:26.2467932Z if __name__ == "__main__": 2023-01-11T21:41:26.2468097Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2468275Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2468554Z arg0_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2468709Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2468717Z 2023-01-11T21:41:26.2468721Z 2023-01-11T21:41:26.2468836Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2468952Z import torch 2023-01-11T21:41:26.2469051Z import random 2023-01-11T21:41:26.2469214Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2469383Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2469390Z 2023-01-11T21:41:26.2469500Z aten = torch.ops.aten 2023-01-11T21:41:26.2469687Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2469798Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2469827Z 2023-01-11T21:41:26.2469833Z 2023-01-11T21:41:26.2470007Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2470276Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2470492Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2470640Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2470785Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.2470935Z const double* __restrict__ in_ptr3, 2023-01-11T21:41:26.2471076Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2471194Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.2471330Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.2471459Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.2471592Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.2471764Z float* __restrict__ out_ptr5, 2023-01-11T21:41:26.2471909Z double* __restrict__ out_ptr6, 2023-01-11T21:41:26.2472052Z double* __restrict__ out_ptr7, 2023-01-11T21:41:26.2472192Z float* __restrict__ out_ptr8, 2023-01-11T21:41:26.2472313Z double* __restrict__ out_ptr9) 2023-01-11T21:41:26.2472405Z { 2023-01-11T21:41:26.2472542Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2472636Z { 2023-01-11T21:41:26.2472770Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2472887Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2472979Z { 2023-01-11T21:41:26.2473089Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.2473202Z { 2023-01-11T21:41:26.2473351Z #pragma GCC ivdep 2023-01-11T21:41:26.2473512Z for(long i2=0; i2<16; i2+=1) 2023-01-11T21:41:26.2473631Z { 2023-01-11T21:41:26.2473758Z { 2023-01-11T21:41:26.2473869Z { 2023-01-11T21:41:26.2474065Z auto tmp0 = in_ptr0[i0 + (3*i2) + (48*i1)]; 2023-01-11T21:41:26.2474266Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.2474440Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2474635Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.2474808Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.2474997Z out_ptr0[i2 + (48*i1) + (144*i0)] = tmp0; 2023-01-11T21:41:26.2475183Z out_ptr1[i2 + (48*i1) + (144*i0)] = tmp2; 2023-01-11T21:41:26.2475346Z out_ptr2[i2 + (48*i1) + (144*i0)] = tmp4; 2023-01-11T21:41:26.2475470Z } 2023-01-11T21:41:26.2496261Z } 2023-01-11T21:41:26.2496402Z } 2023-01-11T21:41:26.2496483Z } 2023-01-11T21:41:26.2496564Z } 2023-01-11T21:41:26.2496695Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2496791Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2496874Z { 2023-01-11T21:41:26.2496981Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:41:26.2497059Z { 2023-01-11T21:41:26.2497145Z { 2023-01-11T21:41:26.2497218Z { 2023-01-11T21:41:26.2497347Z auto tmp0 = in_ptr1[i1 + (144*i0)]; 2023-01-11T21:41:26.2497465Z out_ptr3[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.2497547Z } 2023-01-11T21:41:26.2497624Z } 2023-01-11T21:41:26.2497698Z } 2023-01-11T21:41:26.2497773Z } 2023-01-11T21:41:26.2497879Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2497980Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2498055Z { 2023-01-11T21:41:26.2498158Z for(long i1=0; i1<48; i1+=1) 2023-01-11T21:41:26.2498237Z { 2023-01-11T21:41:26.2498316Z { 2023-01-11T21:41:26.2498390Z { 2023-01-11T21:41:26.2498639Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.2498769Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2498885Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.2499004Z out_ptr4[i1 + (48*i0)] = tmp2; 2023-01-11T21:41:26.2499084Z } 2023-01-11T21:41:26.2499165Z } 2023-01-11T21:41:26.2499233Z } 2023-01-11T21:41:26.2499308Z } 2023-01-11T21:41:26.2499404Z #pragma omp for 2023-01-11T21:41:26.2499505Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:41:26.2499580Z { 2023-01-11T21:41:26.2499656Z { 2023-01-11T21:41:26.2499733Z { 2023-01-11T21:41:26.2499842Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:41:26.2500030Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.2500141Z out_ptr5[i0] = tmp0; 2023-01-11T21:41:26.2500245Z out_ptr6[i0] = tmp1; 2023-01-11T21:41:26.2500354Z out_ptr7[i0] = tmp1; 2023-01-11T21:41:26.2500435Z } 2023-01-11T21:41:26.2500511Z } 2023-01-11T21:41:26.2500578Z } 2023-01-11T21:41:26.2500693Z #pragma omp for collapse(3) 2023-01-11T21:41:26.2500790Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2500865Z { 2023-01-11T21:41:26.2500969Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.2501047Z { 2023-01-11T21:41:26.2501156Z for(long i2=0; i2<48; i2+=1) 2023-01-11T21:41:26.2501228Z { 2023-01-11T21:41:26.2501306Z { 2023-01-11T21:41:26.2501392Z { 2023-01-11T21:41:26.2501530Z auto tmp0 = in_ptr2[i2 + (48*i1) + (144*i0)]; 2023-01-11T21:41:26.2501667Z out_ptr8[i1 + (3*i2) + (144*i0)] = tmp0; 2023-01-11T21:41:26.2501754Z } 2023-01-11T21:41:26.2501835Z } 2023-01-11T21:41:26.2501912Z } 2023-01-11T21:41:26.2501989Z } 2023-01-11T21:41:26.2502065Z } 2023-01-11T21:41:26.2502178Z #pragma omp for collapse(3) 2023-01-11T21:41:26.2502278Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2502353Z { 2023-01-11T21:41:26.2502448Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.2502523Z { 2023-01-11T21:41:26.2502632Z for(long i2=0; i2<48; i2+=1) 2023-01-11T21:41:26.2502710Z { 2023-01-11T21:41:26.2502790Z { 2023-01-11T21:41:26.2502872Z { 2023-01-11T21:41:26.2503008Z auto tmp0 = in_ptr3[i2 + (48*i1) + (144*i0)]; 2023-01-11T21:41:26.2503192Z out_ptr9[i1 + (3*i2) + (144*i0)] = tmp0; 2023-01-11T21:41:26.2503281Z } 2023-01-11T21:41:26.2503362Z } 2023-01-11T21:41:26.2503439Z } 2023-01-11T21:41:26.2503519Z } 2023-01-11T21:41:26.2503594Z } 2023-01-11T21:41:26.2503669Z } 2023-01-11T21:41:26.2503735Z } 2023-01-11T21:41:26.2503869Z ''') 2023-01-11T21:41:26.2503878Z 2023-01-11T21:41:26.2503883Z 2023-01-11T21:41:26.2503996Z async_compile.wait(globals()) 2023-01-11T21:41:26.2504087Z del async_compile 2023-01-11T21:41:26.2504093Z 2023-01-11T21:41:26.2504179Z def call(args): 2023-01-11T21:41:26.2504265Z arg0_1, = args 2023-01-11T21:41:26.2504353Z args.clear() 2023-01-11T21:41:26.2504640Z buf3 = empty_strided((1, 3, 3, 48), (432, 144, 48, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2504780Z buf0 = as_strided(buf3, (1, 3, 3, 16), (432, 144, 48, 1)) # alias 2023-01-11T21:41:26.2504918Z buf1 = as_strided(buf3, (1, 3, 3, 16), (432, 144, 48, 1), 16) # alias 2023-01-11T21:41:26.2505058Z buf2 = as_strided(buf3, (1, 3, 3, 16), (432, 144, 48, 1), 32) # alias 2023-01-11T21:41:26.2505344Z buf4 = empty_strided((1, 3, 3, 48), (432, 1, 144, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2505675Z buf7 = empty_strided((2, 3, 3, 16), (144, 48, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2505812Z buf5 = as_strided(buf7, (1, 3, 3, 16), (144, 48, 16, 1)) # alias 2023-01-11T21:41:26.2505949Z buf6 = as_strided(buf7, (1, 3, 3, 16), (144, 48, 16, 1), 144) # alias 2023-01-11T21:41:26.2506224Z buf11 = empty_strided((2, 3, 3, 16), (144, 48, 16, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.2506362Z buf9 = as_strided(buf11, (1, 3, 3, 16), (144, 48, 16, 1)) # alias 2023-01-11T21:41:26.2506501Z buf10 = as_strided(buf11, (1, 3, 3, 16), (144, 48, 16, 1), 144) # alias 2023-01-11T21:41:26.2506778Z buf8 = empty_strided((2, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2507100Z buf12 = empty_strided((2, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.2507648Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf12.data_ptr())) 2023-01-11T21:41:26.2507739Z del arg0_1 2023-01-11T21:41:26.2507820Z del buf0 2023-01-11T21:41:26.2507902Z del buf1 2023-01-11T21:41:26.2507976Z del buf10 2023-01-11T21:41:26.2508055Z del buf11 2023-01-11T21:41:26.2508135Z del buf2 2023-01-11T21:41:26.2508215Z del buf3 2023-01-11T21:41:26.2508296Z del buf5 2023-01-11T21:41:26.2508374Z del buf6 2023-01-11T21:41:26.2508444Z del buf7 2023-01-11T21:41:26.2508521Z del buf9 2023-01-11T21:41:26.2508628Z return (buf4, buf8, buf12, ) 2023-01-11T21:41:26.2508634Z 2023-01-11T21:41:26.2508642Z 2023-01-11T21:41:26.2508738Z if __name__ == "__main__": 2023-01-11T21:41:26.2508881Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2509040Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2509325Z arg0_1 = rand_strided((1, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2509461Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2509468Z 2023-01-11T21:41:26.2509541Z ok (3.376s) 2023-01-11T21:41:26.2510164Z test_cat_extern_kernel_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2510329Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2510679Z [2023-01-11 21:25:08,760] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 52 2023-01-11T21:41:26.2511045Z [2023-01-11 21:25:10,266] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 52 2023-01-11T21:41:26.2511052Z 2023-01-11T21:41:26.2511170Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2511257Z import torch 2023-01-11T21:41:26.2511344Z import random 2023-01-11T21:41:26.2511490Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2511634Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2511641Z 2023-01-11T21:41:26.2511738Z aten = torch.ops.aten 2023-01-11T21:41:26.2511905Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2512018Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2512025Z 2023-01-11T21:41:26.2512030Z 2023-01-11T21:41:26.2512205Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2512464Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2512661Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2512785Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2512852Z { 2023-01-11T21:41:26.2512973Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2513045Z { 2023-01-11T21:41:26.2513140Z #pragma omp for 2023-01-11T21:41:26.2513243Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.2513319Z { 2023-01-11T21:41:26.2513425Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.2513495Z { 2023-01-11T21:41:26.2513688Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (256*i0)); 2023-01-11T21:41:26.2513816Z tmp0.store(out_ptr0 + (8*i1) + (512*i0)); 2023-01-11T21:41:26.2513893Z } 2023-01-11T21:41:26.2514010Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.2514179Z for(long i1=256; i1<256; i1+=1) 2023-01-11T21:41:26.2514260Z { 2023-01-11T21:41:26.2514374Z auto tmp0 = in_ptr0[i1 + (256*i0)]; 2023-01-11T21:41:26.2514491Z out_ptr0[i1 + (512*i0)] = tmp0; 2023-01-11T21:41:26.2514567Z } 2023-01-11T21:41:26.2514644Z } 2023-01-11T21:41:26.2514718Z } 2023-01-11T21:41:26.2514794Z } 2023-01-11T21:41:26.2514895Z ''') 2023-01-11T21:41:26.2514902Z 2023-01-11T21:41:26.2514908Z 2023-01-11T21:41:26.2515010Z async_compile.wait(globals()) 2023-01-11T21:41:26.2515101Z del async_compile 2023-01-11T21:41:26.2515107Z 2023-01-11T21:41:26.2515191Z def call(args): 2023-01-11T21:41:26.2515302Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.2515389Z args.clear() 2023-01-11T21:41:26.2515663Z buf0 = empty_strided((256, 1600), (1600, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2515781Z aten.mm.out(arg1_1, arg2_1, out=buf0) 2023-01-11T21:41:26.2515881Z del arg1_1 2023-01-11T21:41:26.2515975Z del arg2_1 2023-01-11T21:41:26.2516251Z buf3 = empty_strided((256, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2516395Z buf1 = as_strided(buf3, (256, 256), (512, 1)) # alias 2023-01-11T21:41:26.2516539Z aten.mm.out(as_strided(buf0, (256, 100), (1600, 1)), arg3_1, out=buf1) 2023-01-11T21:41:26.2516630Z del arg3_1 2023-01-11T21:41:26.2516717Z del buf0 2023-01-11T21:41:26.2516860Z buf2 = as_strided(buf3, (256, 256), (512, 1), 256) # alias 2023-01-11T21:41:26.2517039Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2517136Z del arg0_1 2023-01-11T21:41:26.2517235Z return (buf3, ) 2023-01-11T21:41:26.2517242Z 2023-01-11T21:41:26.2517247Z 2023-01-11T21:41:26.2517332Z if __name__ == "__main__": 2023-01-11T21:41:26.2517487Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2517655Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2517940Z arg0_1 = rand_strided((256, 256), (256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2518222Z arg1_1 = rand_strided((256, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2518510Z arg2_1 = rand_strided((1024, 1600), (1600, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2518787Z arg3_1 = rand_strided((100, 256), (256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2518961Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.2518968Z 2023-01-11T21:41:26.2519043Z ok (1.588s) 2023-01-11T21:41:26.2519671Z test_cat_upcasting_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2519841Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2520233Z [2023-01-11 21:25:10,326] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 53 2023-01-11T21:41:26.2520590Z [2023-01-11 21:25:11,839] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 53 2023-01-11T21:41:26.2520597Z 2023-01-11T21:41:26.2520728Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2520829Z import torch 2023-01-11T21:41:26.2520925Z import random 2023-01-11T21:41:26.2521083Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2521227Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2521250Z 2023-01-11T21:41:26.2521342Z aten = torch.ops.aten 2023-01-11T21:41:26.2521518Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2521644Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2521651Z 2023-01-11T21:41:26.2521693Z 2023-01-11T21:41:26.2521882Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2522150Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2522313Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2522458Z const half* __restrict__ in_ptr1, 2023-01-11T21:41:26.2522574Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2522703Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2522786Z { 2023-01-11T21:41:26.2522918Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2523004Z { 2023-01-11T21:41:26.2523111Z #pragma omp for 2023-01-11T21:41:26.2523223Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2523294Z { 2023-01-11T21:41:26.2523405Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.2523491Z { 2023-01-11T21:41:26.2523685Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (16*i0)); 2023-01-11T21:41:26.2523825Z tmp0.store(out_ptr0 + (8*i1) + (36*i0)); 2023-01-11T21:41:26.2523915Z } 2023-01-11T21:41:26.2524043Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.2524142Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:41:26.2524227Z { 2023-01-11T21:41:26.2524356Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:41:26.2524480Z out_ptr0[i1 + (36*i0)] = tmp0; 2023-01-11T21:41:26.2524567Z } 2023-01-11T21:41:26.2524653Z } 2023-01-11T21:41:26.2524759Z #pragma omp for 2023-01-11T21:41:26.2524851Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2524938Z { 2023-01-11T21:41:26.2525046Z #pragma GCC ivdep 2023-01-11T21:41:26.2525159Z for(long i1=0; i1<20; i1+=1) 2023-01-11T21:41:26.2525245Z { 2023-01-11T21:41:26.2525332Z { 2023-01-11T21:41:26.2525423Z { 2023-01-11T21:41:26.2525575Z auto tmp0 = static_cast(in_ptr1[i1 + (20*i0)]); 2023-01-11T21:41:26.2525721Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.2525852Z out_ptr1[i1 + (36*i0)] = tmp1; 2023-01-11T21:41:26.2525942Z } 2023-01-11T21:41:26.2526029Z } 2023-01-11T21:41:26.2526114Z } 2023-01-11T21:41:26.2526199Z } 2023-01-11T21:41:26.2526267Z } 2023-01-11T21:41:26.2526348Z } 2023-01-11T21:41:26.2526454Z ''') 2023-01-11T21:41:26.2526462Z 2023-01-11T21:41:26.2526467Z 2023-01-11T21:41:26.2526584Z async_compile.wait(globals()) 2023-01-11T21:41:26.2526684Z del async_compile 2023-01-11T21:41:26.2526691Z 2023-01-11T21:41:26.2526786Z def call(args): 2023-01-11T21:41:26.2526885Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2526971Z args.clear() 2023-01-11T21:41:26.2527221Z buf2 = empty_strided((8, 36), (36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2527325Z buf0 = as_strided(buf2, (8, 16), (36, 1)) # alias 2023-01-11T21:41:26.2527427Z buf1 = as_strided(buf2, (8, 20), (36, 1), 16) # alias 2023-01-11T21:41:26.2527654Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2527722Z del arg0_1 2023-01-11T21:41:26.2527788Z del arg1_1 2023-01-11T21:41:26.2527847Z return (buf2, ) 2023-01-11T21:41:26.2527863Z 2023-01-11T21:41:26.2527868Z 2023-01-11T21:41:26.2527930Z if __name__ == "__main__": 2023-01-11T21:41:26.2528041Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2528164Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2528365Z arg0_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2528561Z arg1_1 = rand_strided((8, 20), (20, 1), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.2528709Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2528714Z 2023-01-11T21:41:26.2528781Z ok (1.536s) 2023-01-11T21:41:26.2529521Z test_cauchy_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2529655Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2529907Z [2023-01-11 21:25:11,863] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 54 2023-01-11T21:41:26.2530168Z [2023-01-11 21:25:13,344] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 54 2023-01-11T21:41:26.2530174Z 2023-01-11T21:41:26.2530272Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2530342Z import torch 2023-01-11T21:41:26.2530414Z import random 2023-01-11T21:41:26.2530527Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2530649Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2530655Z 2023-01-11T21:41:26.2530731Z aten = torch.ops.aten 2023-01-11T21:41:26.2530852Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2530942Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2530948Z 2023-01-11T21:41:26.2530952Z 2023-01-11T21:41:26.2531085Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2531290Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2531407Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2531510Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2531607Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2531665Z { 2023-01-11T21:41:26.2531712Z { 2023-01-11T21:41:26.2531776Z { 2023-01-11T21:41:26.2531852Z float tmp6 = 0; 2023-01-11T21:41:26.2531956Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2532020Z { 2023-01-11T21:41:26.2532123Z #pragma omp for reduction(+:tmp6) 2023-01-11T21:41:26.2532201Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2532263Z { 2023-01-11T21:41:26.2532352Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.2532418Z { 2023-01-11T21:41:26.2532484Z { 2023-01-11T21:41:26.2532578Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2532672Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.2532801Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.2532890Z auto tmp3 = 1 / tmp2; 2023-01-11T21:41:26.2532996Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.2533092Z auto tmp5 = tmp3 * tmp4; 2023-01-11T21:41:26.2533173Z tmp6 += tmp5; 2023-01-11T21:41:26.2533300Z } 2023-01-11T21:41:26.2533367Z } 2023-01-11T21:41:26.2533417Z } 2023-01-11T21:41:26.2533479Z } 2023-01-11T21:41:26.2533557Z out_ptr0[0] = tmp6; 2023-01-11T21:41:26.2533622Z } 2023-01-11T21:41:26.2533686Z } 2023-01-11T21:41:26.2533746Z } 2023-01-11T21:41:26.2533825Z ''') 2023-01-11T21:41:26.2533831Z 2023-01-11T21:41:26.2533835Z 2023-01-11T21:41:26.2533909Z async_compile.wait(globals()) 2023-01-11T21:41:26.2533980Z del async_compile 2023-01-11T21:41:26.2533985Z 2023-01-11T21:41:26.2534054Z def call(args): 2023-01-11T21:41:26.2534129Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2534201Z args.clear() 2023-01-11T21:41:26.2534385Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2534588Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2534645Z del arg0_1 2023-01-11T21:41:26.2534716Z del arg1_1 2023-01-11T21:41:26.2534786Z return (buf0, ) 2023-01-11T21:41:26.2534791Z 2023-01-11T21:41:26.2534795Z 2023-01-11T21:41:26.2534868Z if __name__ == "__main__": 2023-01-11T21:41:26.2534980Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2535104Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2535299Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2535491Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2535593Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2535610Z 2023-01-11T21:41:26.2535663Z ok (1.505s) 2023-01-11T21:41:26.2536127Z test_clamp_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2536255Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2536541Z [2023-01-11 21:25:13,377] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 55 2023-01-11T21:41:26.2537022Z [2023-01-11 21:25:14,977] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 55 2023-01-11T21:41:26.2537031Z 2023-01-11T21:41:26.2537198Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2537323Z import torch 2023-01-11T21:41:26.2537449Z import random 2023-01-11T21:41:26.2537643Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2537869Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2537879Z 2023-01-11T21:41:26.2538021Z aten = torch.ops.aten 2023-01-11T21:41:26.2538269Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2538443Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2538453Z 2023-01-11T21:41:26.2538460Z 2023-01-11T21:41:26.2538718Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2539099Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2539317Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2539459Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2539576Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2539699Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.2539827Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.2539907Z { 2023-01-11T21:41:26.2540039Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2540121Z { 2023-01-11T21:41:26.2540213Z #pragma omp for 2023-01-11T21:41:26.2540322Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2540408Z { 2023-01-11T21:41:26.2540669Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2540847Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.2541158Z auto tmp1 = at::vec::Vectorized(static_cast(-0.10000000149011612)); 2023-01-11T21:41:26.2541308Z auto tmp2 = at::vec::maximum(tmp0, tmp1); 2023-01-11T21:41:26.2541495Z auto tmp3 = at::vec::Vectorized(static_cast(0.10000000149011612)); 2023-01-11T21:41:26.2541642Z auto tmp4 = at::vec::minimum(tmp2, tmp3); 2023-01-11T21:41:26.2541806Z auto tmp6 = at::vec::Vectorized(static_cast(0.0)); 2023-01-11T21:41:26.2541953Z auto tmp7 = at::vec::maximum(tmp5, tmp6); 2023-01-11T21:41:26.2542071Z auto tmp8 = tmp0 + tmp5; 2023-01-11T21:41:26.2542262Z auto tmp9 = at::vec::minimum(tmp8, tmp6); 2023-01-11T21:41:26.2542391Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2542517Z tmp7.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.2542641Z tmp9.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.2542711Z } 2023-01-11T21:41:26.2542835Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2542949Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.2543038Z { 2023-01-11T21:41:26.2543222Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2543334Z auto tmp5 = in_ptr1[i0]; 2023-01-11T21:41:26.2543574Z auto tmp1 = static_cast(-0.10000000149011612); 2023-01-11T21:41:26.2543727Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:41:26.2543890Z auto tmp3 = static_cast(0.10000000149011612); 2023-01-11T21:41:26.2544089Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::min(tmp2, tmp3); 2023-01-11T21:41:26.2544259Z auto tmp6 = static_cast(0.0); 2023-01-11T21:41:26.2544458Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::max(tmp5, tmp6); 2023-01-11T21:41:26.2544610Z auto tmp8 = tmp0 + tmp5; 2023-01-11T21:41:26.2544812Z auto tmp9 = (tmp6 != tmp6) ? tmp6 : std::min(tmp8, tmp6); 2023-01-11T21:41:26.2544951Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.2545070Z out_ptr1[i0] = tmp7; 2023-01-11T21:41:26.2545212Z out_ptr2[i0] = tmp9; 2023-01-11T21:41:26.2545321Z } 2023-01-11T21:41:26.2545429Z } 2023-01-11T21:41:26.2545533Z } 2023-01-11T21:41:26.2545680Z ''') 2023-01-11T21:41:26.2545688Z 2023-01-11T21:41:26.2545693Z 2023-01-11T21:41:26.2545819Z async_compile.wait(globals()) 2023-01-11T21:41:26.2545900Z del async_compile 2023-01-11T21:41:26.2545923Z 2023-01-11T21:41:26.2546021Z def call(args): 2023-01-11T21:41:26.2546168Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.2546313Z args.clear() 2023-01-11T21:41:26.2546712Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2547034Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2547367Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2547717Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2547830Z del arg0_1 2023-01-11T21:41:26.2547972Z del arg1_1 2023-01-11T21:41:26.2548143Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.2548151Z 2023-01-11T21:41:26.2548156Z 2023-01-11T21:41:26.2548286Z if __name__ == "__main__": 2023-01-11T21:41:26.2548504Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2548731Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2549100Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2549453Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2549661Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.2549809Z 2023-01-11T21:41:26.2549950Z ok (1.633s) 2023-01-11T21:41:26.2550632Z test_clone_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2550833Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2551273Z [2023-01-11 21:25:15,009] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 56 2023-01-11T21:41:26.2551787Z [2023-01-11 21:25:16,523] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 56 2023-01-11T21:41:26.2551809Z 2023-01-11T21:41:26.2552020Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2552178Z import torch 2023-01-11T21:41:26.2552336Z import random 2023-01-11T21:41:26.2552513Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2552672Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2552679Z 2023-01-11T21:41:26.2552782Z aten = torch.ops.aten 2023-01-11T21:41:26.2552961Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2553086Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2553093Z 2023-01-11T21:41:26.2553098Z 2023-01-11T21:41:26.2553291Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2553555Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2553716Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2553838Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2553975Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2554062Z { 2023-01-11T21:41:26.2554197Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2554280Z { 2023-01-11T21:41:26.2554385Z #pragma omp for 2023-01-11T21:41:26.2554499Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2554569Z { 2023-01-11T21:41:26.2554753Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2554932Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.2555049Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2555224Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.2555339Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.2555464Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2555572Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.2555657Z } 2023-01-11T21:41:26.2555787Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2555900Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.2555989Z { 2023-01-11T21:41:26.2556103Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2556238Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.2556337Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.2556474Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.2556585Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.2556696Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.2556803Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.2556893Z } 2023-01-11T21:41:26.2556977Z } 2023-01-11T21:41:26.2557042Z } 2023-01-11T21:41:26.2557149Z ''') 2023-01-11T21:41:26.2557155Z 2023-01-11T21:41:26.2557160Z 2023-01-11T21:41:26.2557279Z async_compile.wait(globals()) 2023-01-11T21:41:26.2557381Z del async_compile 2023-01-11T21:41:26.2557389Z 2023-01-11T21:41:26.2557485Z def call(args): 2023-01-11T21:41:26.2557585Z arg0_1, = args 2023-01-11T21:41:26.2557682Z args.clear() 2023-01-11T21:41:26.2557944Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2558292Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2558506Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2558601Z del arg0_1 2023-01-11T21:41:26.2558708Z return (buf0, buf1, ) 2023-01-11T21:41:26.2558715Z 2023-01-11T21:41:26.2558720Z 2023-01-11T21:41:26.2558822Z if __name__ == "__main__": 2023-01-11T21:41:26.2558974Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2559139Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2559394Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2559540Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2559547Z 2023-01-11T21:41:26.2559676Z ok (1.545s) 2023-01-11T21:41:26.2560306Z test_constant_pad_1d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2560480Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2560837Z [2023-01-11 21:25:16,553] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 57 2023-01-11T21:41:26.2561196Z [2023-01-11 21:25:18,046] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 57 2023-01-11T21:41:26.2561203Z 2023-01-11T21:41:26.2561330Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2561429Z import torch 2023-01-11T21:41:26.2561532Z import random 2023-01-11T21:41:26.2561669Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2561828Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2561838Z 2023-01-11T21:41:26.2561943Z aten = torch.ops.aten 2023-01-11T21:41:26.2562123Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2562247Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2562254Z 2023-01-11T21:41:26.2562260Z 2023-01-11T21:41:26.2562443Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2562708Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2562869Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2562987Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2563116Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2563201Z { 2023-01-11T21:41:26.2563335Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2563423Z { 2023-01-11T21:41:26.2563532Z #pragma omp for 2023-01-11T21:41:26.2563642Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2563718Z { 2023-01-11T21:41:26.2563827Z #pragma GCC ivdep 2023-01-11T21:41:26.2563941Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.2564031Z { 2023-01-11T21:41:26.2564122Z { 2023-01-11T21:41:26.2564214Z { 2023-01-11T21:41:26.2564341Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.2564479Z auto tmp1 = static_cast(31); 2023-01-11T21:41:26.2564602Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.2564715Z float tmp3 = 6.0; 2023-01-11T21:41:26.2564823Z if(tmp2) 2023-01-11T21:41:26.2564920Z { 2023-01-11T21:41:26.2565060Z auto tmp4 = in_ptr0[i1 + (31*i0)]; 2023-01-11T21:41:26.2565156Z tmp3 = tmp4; 2023-01-11T21:41:26.2565249Z } 2023-01-11T21:41:26.2565376Z out_ptr0[i1 + (32*i0)] = tmp3; 2023-01-11T21:41:26.2565509Z } 2023-01-11T21:41:26.2565599Z } 2023-01-11T21:41:26.2565687Z } 2023-01-11T21:41:26.2565774Z } 2023-01-11T21:41:26.2565866Z #pragma omp for 2023-01-11T21:41:26.2565979Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2566061Z { 2023-01-11T21:41:26.2566170Z #pragma GCC ivdep 2023-01-11T21:41:26.2566285Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:41:26.2566375Z { 2023-01-11T21:41:26.2566464Z { 2023-01-11T21:41:26.2566541Z { 2023-01-11T21:41:26.2566769Z auto tmp0 = static_cast((-2) + i1); 2023-01-11T21:41:26.2566910Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2567096Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2567242Z auto tmp3 = static_cast(31); 2023-01-11T21:41:26.2567365Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2567494Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.2567597Z float tmp6 = 99.0; 2023-01-11T21:41:26.2567699Z if(tmp5) 2023-01-11T21:41:26.2567790Z { 2023-01-11T21:41:26.2568026Z auto tmp7 = in_ptr0[(-2) + i1 + (31*i0)]; 2023-01-11T21:41:26.2568139Z tmp6 = tmp7; 2023-01-11T21:41:26.2568234Z } 2023-01-11T21:41:26.2568357Z out_ptr1[i1 + (36*i0)] = tmp6; 2023-01-11T21:41:26.2568431Z } 2023-01-11T21:41:26.2568519Z } 2023-01-11T21:41:26.2568603Z } 2023-01-11T21:41:26.2568687Z } 2023-01-11T21:41:26.2568769Z } 2023-01-11T21:41:26.2568851Z } 2023-01-11T21:41:26.2568963Z ''') 2023-01-11T21:41:26.2568970Z 2023-01-11T21:41:26.2568975Z 2023-01-11T21:41:26.2569300Z async_compile.wait(globals()) 2023-01-11T21:41:26.2569405Z del async_compile 2023-01-11T21:41:26.2569412Z 2023-01-11T21:41:26.2569504Z def call(args): 2023-01-11T21:41:26.2569596Z arg0_1, = args 2023-01-11T21:41:26.2569689Z args.clear() 2023-01-11T21:41:26.2569980Z buf0 = empty_strided((2, 16, 32), (512, 32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2570265Z buf1 = empty_strided((2, 16, 36), (576, 36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2570464Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2570557Z del arg0_1 2023-01-11T21:41:26.2570656Z return (buf0, buf1, ) 2023-01-11T21:41:26.2570663Z 2023-01-11T21:41:26.2570668Z 2023-01-11T21:41:26.2570769Z if __name__ == "__main__": 2023-01-11T21:41:26.2570922Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2571088Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2571373Z arg0_1 = rand_strided((2, 16, 31), (496, 31, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2571525Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2571532Z 2023-01-11T21:41:26.2571620Z ok (1.522s) 2023-01-11T21:41:26.2572230Z test_constant_pad_2d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2572399Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2572747Z [2023-01-11 21:25:18,076] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 58 2023-01-11T21:41:26.2573108Z [2023-01-11 21:25:19,605] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 58 2023-01-11T21:41:26.2573187Z 2023-01-11T21:41:26.2573314Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2573409Z import torch 2023-01-11T21:41:26.2573505Z import random 2023-01-11T21:41:26.2573658Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2573817Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2573825Z 2023-01-11T21:41:26.2573914Z aten = torch.ops.aten 2023-01-11T21:41:26.2574088Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2574208Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2574215Z 2023-01-11T21:41:26.2574221Z 2023-01-11T21:41:26.2574407Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2574672Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2574828Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2575016Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2575147Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2575219Z { 2023-01-11T21:41:26.2575351Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2575433Z { 2023-01-11T21:41:26.2575535Z #pragma omp for 2023-01-11T21:41:26.2575647Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.2575735Z { 2023-01-11T21:41:26.2575827Z #pragma GCC ivdep 2023-01-11T21:41:26.2575939Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.2576024Z { 2023-01-11T21:41:26.2576111Z { 2023-01-11T21:41:26.2576202Z { 2023-01-11T21:41:26.2576431Z auto tmp0 = static_cast((-1) + i0); 2023-01-11T21:41:26.2576567Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2576677Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2576813Z auto tmp3 = static_cast(8); 2023-01-11T21:41:26.2576935Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2577168Z auto tmp5 = static_cast((-1) + i1); 2023-01-11T21:41:26.2577297Z auto tmp6 = tmp5 >= tmp1; 2023-01-11T21:41:26.2577421Z auto tmp7 = tmp5 < tmp3; 2023-01-11T21:41:26.2577540Z auto tmp8 = tmp2 & tmp4; 2023-01-11T21:41:26.2577660Z auto tmp9 = tmp8 & tmp6; 2023-01-11T21:41:26.2577769Z auto tmp10 = tmp9 & tmp7; 2023-01-11T21:41:26.2577882Z float tmp11 = 6.0; 2023-01-11T21:41:26.2577985Z if(tmp10) 2023-01-11T21:41:26.2578076Z { 2023-01-11T21:41:26.2578307Z auto tmp12 = in_ptr0[(-9) + i1 + (8*i0)]; 2023-01-11T21:41:26.2578417Z tmp11 = tmp12; 2023-01-11T21:41:26.2578513Z } 2023-01-11T21:41:26.2578625Z out_ptr0[i1 + (10*i0)] = tmp11; 2023-01-11T21:41:26.2578714Z } 2023-01-11T21:41:26.2578804Z } 2023-01-11T21:41:26.2578889Z } 2023-01-11T21:41:26.2578974Z } 2023-01-11T21:41:26.2579077Z #pragma omp for 2023-01-11T21:41:26.2579170Z for(long i0=0; i0<15; i0+=1) 2023-01-11T21:41:26.2579253Z { 2023-01-11T21:41:26.2579360Z #pragma GCC ivdep 2023-01-11T21:41:26.2579475Z for(long i1=0; i1<11; i1+=1) 2023-01-11T21:41:26.2579564Z { 2023-01-11T21:41:26.2579648Z { 2023-01-11T21:41:26.2579734Z { 2023-01-11T21:41:26.2579947Z auto tmp0 = static_cast((-3) + i0); 2023-01-11T21:41:26.2580079Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2580207Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2580344Z auto tmp3 = static_cast(8); 2023-01-11T21:41:26.2580467Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2580695Z auto tmp5 = static_cast((-1) + i1); 2023-01-11T21:41:26.2580861Z auto tmp6 = tmp5 >= tmp1; 2023-01-11T21:41:26.2580972Z auto tmp7 = tmp5 < tmp3; 2023-01-11T21:41:26.2581090Z auto tmp8 = tmp2 & tmp4; 2023-01-11T21:41:26.2581209Z auto tmp9 = tmp8 & tmp6; 2023-01-11T21:41:26.2581330Z auto tmp10 = tmp9 & tmp7; 2023-01-11T21:41:26.2581446Z float tmp11 = 99.0; 2023-01-11T21:41:26.2581548Z if(tmp10) 2023-01-11T21:41:26.2581639Z { 2023-01-11T21:41:26.2581875Z auto tmp12 = in_ptr0[(-25) + i1 + (8*i0)]; 2023-01-11T21:41:26.2581973Z tmp11 = tmp12; 2023-01-11T21:41:26.2582062Z } 2023-01-11T21:41:26.2582227Z out_ptr1[i1 + (11*i0)] = tmp11; 2023-01-11T21:41:26.2582318Z } 2023-01-11T21:41:26.2582410Z } 2023-01-11T21:41:26.2582499Z } 2023-01-11T21:41:26.2582570Z } 2023-01-11T21:41:26.2582649Z } 2023-01-11T21:41:26.2582726Z } 2023-01-11T21:41:26.2582835Z ''') 2023-01-11T21:41:26.2582842Z 2023-01-11T21:41:26.2582846Z 2023-01-11T21:41:26.2582965Z async_compile.wait(globals()) 2023-01-11T21:41:26.2583062Z del async_compile 2023-01-11T21:41:26.2583069Z 2023-01-11T21:41:26.2583215Z def call(args): 2023-01-11T21:41:26.2583309Z arg0_1, = args 2023-01-11T21:41:26.2583390Z args.clear() 2023-01-11T21:41:26.2583690Z buf0 = empty_strided((1, 1, 10, 10), (100, 100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2583982Z buf1 = empty_strided((1, 1, 15, 11), (165, 165, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2584201Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2584295Z del arg0_1 2023-01-11T21:41:26.2584400Z return (buf0, buf1, ) 2023-01-11T21:41:26.2584410Z 2023-01-11T21:41:26.2584415Z 2023-01-11T21:41:26.2584515Z if __name__ == "__main__": 2023-01-11T21:41:26.2584668Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2584816Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2585103Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2585249Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2585256Z 2023-01-11T21:41:26.2585344Z ok (1.559s) 2023-01-11T21:41:26.2585969Z test_constant_pad_3d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2586139Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2586498Z [2023-01-11 21:25:19,635] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 59 2023-01-11T21:41:26.2586859Z [2023-01-11 21:25:21,181] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 59 2023-01-11T21:41:26.2586867Z 2023-01-11T21:41:26.2586994Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2587073Z import torch 2023-01-11T21:41:26.2587169Z import random 2023-01-11T21:41:26.2587321Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2587484Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2587491Z 2023-01-11T21:41:26.2587600Z aten = torch.ops.aten 2023-01-11T21:41:26.2587779Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2587904Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2587912Z 2023-01-11T21:41:26.2587917Z 2023-01-11T21:41:26.2588104Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2588398Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2588556Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2588686Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2588818Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2588902Z { 2023-01-11T21:41:26.2589034Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2589120Z { 2023-01-11T21:41:26.2589227Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2589335Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2589420Z { 2023-01-11T21:41:26.2589531Z for(long i1=0; i1<15; i1+=1) 2023-01-11T21:41:26.2589618Z { 2023-01-11T21:41:26.2589728Z #pragma GCC ivdep 2023-01-11T21:41:26.2589891Z for(long i2=0; i2<11; i2+=1) 2023-01-11T21:41:26.2589967Z { 2023-01-11T21:41:26.2590082Z #pragma GCC ivdep 2023-01-11T21:41:26.2590205Z for(long i3=0; i3<7; i3+=1) 2023-01-11T21:41:26.2590298Z { 2023-01-11T21:41:26.2590395Z { 2023-01-11T21:41:26.2590493Z { 2023-01-11T21:41:26.2590736Z auto tmp0 = static_cast((-5) + i1); 2023-01-11T21:41:26.2590865Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2590995Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2591138Z auto tmp3 = static_cast(4); 2023-01-11T21:41:26.2591271Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2591510Z auto tmp5 = static_cast((-3) + i2); 2023-01-11T21:41:26.2591645Z auto tmp6 = tmp5 >= tmp1; 2023-01-11T21:41:26.2591778Z auto tmp7 = tmp5 < tmp3; 2023-01-11T21:41:26.2592010Z auto tmp8 = static_cast((-1) + i3); 2023-01-11T21:41:26.2592141Z auto tmp9 = tmp8 >= tmp1; 2023-01-11T21:41:26.2592269Z auto tmp10 = tmp8 < tmp3; 2023-01-11T21:41:26.2592401Z auto tmp11 = tmp2 & tmp4; 2023-01-11T21:41:26.2592536Z auto tmp12 = tmp11 & tmp6; 2023-01-11T21:41:26.2592670Z auto tmp13 = tmp12 & tmp7; 2023-01-11T21:41:26.2592802Z auto tmp14 = tmp13 & tmp9; 2023-01-11T21:41:26.2592941Z auto tmp15 = tmp14 & tmp10; 2023-01-11T21:41:26.2593046Z float tmp16 = 6.0; 2023-01-11T21:41:26.2593155Z if(tmp15) 2023-01-11T21:41:26.2593259Z { 2023-01-11T21:41:26.2593534Z auto tmp17 = in_ptr0[(-93) + i3 + (4*i2) + (16*i1) + (64*i0)]; 2023-01-11T21:41:26.2593660Z tmp16 = tmp17; 2023-01-11T21:41:26.2593760Z } 2023-01-11T21:41:26.2593913Z out_ptr0[i3 + (7*i2) + (77*i1) + (1155*i0)] = tmp16; 2023-01-11T21:41:26.2593991Z } 2023-01-11T21:41:26.2594085Z } 2023-01-11T21:41:26.2594177Z } 2023-01-11T21:41:26.2594266Z } 2023-01-11T21:41:26.2594352Z } 2023-01-11T21:41:26.2594439Z } 2023-01-11T21:41:26.2594547Z #pragma omp for 2023-01-11T21:41:26.2594644Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.2594730Z { 2023-01-11T21:41:26.2594837Z #pragma GCC ivdep 2023-01-11T21:41:26.2594948Z for(long i1=0; i1<11; i1+=1) 2023-01-11T21:41:26.2595042Z { 2023-01-11T21:41:26.2595158Z #pragma GCC ivdep 2023-01-11T21:41:26.2595275Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:41:26.2595407Z { 2023-01-11T21:41:26.2595493Z { 2023-01-11T21:41:26.2595584Z { 2023-01-11T21:41:26.2595823Z auto tmp0 = static_cast((-3) + i1); 2023-01-11T21:41:26.2595964Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.2596094Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.2596236Z auto tmp3 = static_cast(4); 2023-01-11T21:41:26.2596348Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.2596473Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.2596590Z float tmp6 = 6.0; 2023-01-11T21:41:26.2596693Z if(tmp5) 2023-01-11T21:41:26.2596829Z { 2023-01-11T21:41:26.2597089Z auto tmp7 = in_ptr0[(-12) + i2 + (4*i1) + (16*i0)]; 2023-01-11T21:41:26.2597214Z tmp6 = tmp7; 2023-01-11T21:41:26.2597293Z } 2023-01-11T21:41:26.2597403Z out_ptr1[i2 + (4*i1) + (44*i0)] = tmp6; 2023-01-11T21:41:26.2597470Z } 2023-01-11T21:41:26.2597535Z } 2023-01-11T21:41:26.2597599Z } 2023-01-11T21:41:26.2597661Z } 2023-01-11T21:41:26.2597720Z } 2023-01-11T21:41:26.2597769Z } 2023-01-11T21:41:26.2597829Z } 2023-01-11T21:41:26.2597908Z ''') 2023-01-11T21:41:26.2597914Z 2023-01-11T21:41:26.2597918Z 2023-01-11T21:41:26.2598006Z async_compile.wait(globals()) 2023-01-11T21:41:26.2598079Z del async_compile 2023-01-11T21:41:26.2598084Z 2023-01-11T21:41:26.2598153Z def call(args): 2023-01-11T21:41:26.2598221Z arg0_1, = args 2023-01-11T21:41:26.2598282Z args.clear() 2023-01-11T21:41:26.2598501Z buf0 = empty_strided((2, 15, 11, 7), (1155, 77, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2598717Z buf1 = empty_strided((2, 4, 11, 4), (176, 44, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2598884Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2598954Z del arg0_1 2023-01-11T21:41:26.2599029Z return (buf0, buf1, ) 2023-01-11T21:41:26.2599034Z 2023-01-11T21:41:26.2599039Z 2023-01-11T21:41:26.2599114Z if __name__ == "__main__": 2023-01-11T21:41:26.2599230Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2599340Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2599551Z arg0_1 = rand_strided((2, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2599658Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.2599663Z 2023-01-11T21:41:26.2599730Z ok (1.576s) 2023-01-11T21:41:26.2600218Z test_conv2d_backward_channels_last_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2600346Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2600605Z [2023-01-11 21:25:21,224] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 60 2023-01-11T21:41:26.2600865Z [2023-01-11 21:25:21,243] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 60 2023-01-11T21:41:26.2600871Z 2023-01-11T21:41:26.2600964Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2601033Z import torch 2023-01-11T21:41:26.2601090Z import random 2023-01-11T21:41:26.2601205Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2601324Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2601364Z 2023-01-11T21:41:26.2601443Z aten = torch.ops.aten 2023-01-11T21:41:26.2601575Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2601664Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2601669Z 2023-01-11T21:41:26.2601674Z 2023-01-11T21:41:26.2601759Z async_compile.wait(globals()) 2023-01-11T21:41:26.2601819Z del async_compile 2023-01-11T21:41:26.2601835Z 2023-01-11T21:41:26.2601893Z def call(args): 2023-01-11T21:41:26.2601975Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.2602046Z args.clear() 2023-01-11T21:41:26.2602209Z buf0 = aten.convolution_backward(arg0_1, arg1_1, arg2_1, [320], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, True, True]) 2023-01-11T21:41:26.2602278Z del arg0_1 2023-01-11T21:41:26.2602344Z del arg1_1 2023-01-11T21:41:26.2602439Z del arg2_1 2023-01-11T21:41:26.2602495Z buf1 = buf0[0] 2023-01-11T21:41:26.2602607Z assert_size_stride(buf1, (2, 2048, 8, 8), (131072, 1, 16384, 2048)) 2023-01-11T21:41:26.2602675Z buf2 = buf0[1] 2023-01-11T21:41:26.2602785Z assert_size_stride(buf2, (320, 2048, 1, 1), (2048, 1, 2048, 2048)) 2023-01-11T21:41:26.2602852Z buf3 = buf0[2] 2023-01-11T21:41:26.2602947Z assert_size_stride(buf3, (320, ), (1, )) 2023-01-11T21:41:26.2603011Z del buf0 2023-01-11T21:41:26.2603080Z return (buf1, buf2, buf3, ) 2023-01-11T21:41:26.2603085Z 2023-01-11T21:41:26.2603089Z 2023-01-11T21:41:26.2603162Z if __name__ == "__main__": 2023-01-11T21:41:26.2603273Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2603393Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2603612Z arg0_1 = rand_strided((2, 320, 8, 8), (20480, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2603834Z arg1_1 = rand_strided((2, 2048, 8, 8), (131072, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2604063Z arg2_1 = rand_strided((320, 2048, 1, 1), (2048, 1, 2048, 2048), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2604187Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.2604192Z 2023-01-11T21:41:26.2604245Z ok (0.087s) 2023-01-11T21:41:26.2604436Z test_conv2d_binary_cpu (__main__.CpuTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:41:26.2604909Z test_conv2d_channels_last_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2605032Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2605290Z [2023-01-11 21:25:21,343] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 61 2023-01-11T21:41:26.2605555Z [2023-01-11 21:25:22,841] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 61 2023-01-11T21:41:26.2605980Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2606103Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2606359Z [2023-01-11 21:25:22,911] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 62 2023-01-11T21:41:26.2606619Z [2023-01-11 21:25:22,933] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 62 2023-01-11T21:41:26.2607042Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2607206Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2607445Z [2023-01-11 21:25:23,002] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 63 2023-01-11T21:41:26.2607705Z [2023-01-11 21:25:23,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 63 2023-01-11T21:41:26.2607710Z 2023-01-11T21:41:26.2607803Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2607871Z import torch 2023-01-11T21:41:26.2607940Z import random 2023-01-11T21:41:26.2608083Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2608205Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2608213Z 2023-01-11T21:41:26.2608290Z aten = torch.ops.aten 2023-01-11T21:41:26.2608410Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2608500Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2608505Z 2023-01-11T21:41:26.2608509Z 2023-01-11T21:41:26.2608643Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2608846Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2608965Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2609215Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2609304Z { 2023-01-11T21:41:26.2609428Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2609479Z { 2023-01-11T21:41:26.2609568Z #pragma omp for collapse(3) 2023-01-11T21:41:26.2609656Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2609718Z { 2023-01-11T21:41:26.2609800Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.2609865Z { 2023-01-11T21:41:26.2609941Z for(long i2=0; i2<256; i2+=1) 2023-01-11T21:41:26.2610005Z { 2023-01-11T21:41:26.2610071Z { 2023-01-11T21:41:26.2610139Z { 2023-01-11T21:41:26.2610250Z auto tmp0 = in_ptr0[i2 + (256*i1) + (768*i0)]; 2023-01-11T21:41:26.2610358Z out_ptr0[i1 + (3*i2) + (768*i0)] = tmp0; 2023-01-11T21:41:26.2610426Z } 2023-01-11T21:41:26.2610479Z } 2023-01-11T21:41:26.2610544Z } 2023-01-11T21:41:26.2610607Z } 2023-01-11T21:41:26.2610669Z } 2023-01-11T21:41:26.2610730Z } 2023-01-11T21:41:26.2610790Z } 2023-01-11T21:41:26.2610871Z ''') 2023-01-11T21:41:26.2610877Z 2023-01-11T21:41:26.2610881Z 2023-01-11T21:41:26.2610958Z async_compile.wait(globals()) 2023-01-11T21:41:26.2611030Z del async_compile 2023-01-11T21:41:26.2611035Z 2023-01-11T21:41:26.2611104Z def call(args): 2023-01-11T21:41:26.2611206Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.2611275Z args.clear() 2023-01-11T21:41:26.2611491Z buf0 = empty_strided((2, 3, 16, 16), (768, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2611629Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2611774Z buf1 = aten.convolution(buf0, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.2611867Z assert_size_stride(buf1, (2, 3, 16, 16), (768, 1, 48, 3)) 2023-01-11T21:41:26.2611931Z del buf0 2023-01-11T21:41:26.2612001Z del primals_2 2023-01-11T21:41:26.2612098Z return (buf1, primals_1, primals_3, ) 2023-01-11T21:41:26.2612103Z 2023-01-11T21:41:26.2612107Z 2023-01-11T21:41:26.2612181Z if __name__ == "__main__": 2023-01-11T21:41:26.2612293Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2612414Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2612689Z primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2612874Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2613092Z primals_3 = rand_strided((2, 3, 16, 16), (768, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2613229Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.2613234Z 2023-01-11T21:41:26.2613239Z 2023-01-11T21:41:26.2613332Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2613402Z import torch 2023-01-11T21:41:26.2613473Z import random 2023-01-11T21:41:26.2613586Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2613706Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2613710Z 2023-01-11T21:41:26.2613831Z aten = torch.ops.aten 2023-01-11T21:41:26.2613965Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2614055Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2614062Z 2023-01-11T21:41:26.2614066Z 2023-01-11T21:41:26.2614153Z async_compile.wait(globals()) 2023-01-11T21:41:26.2614222Z del async_compile 2023-01-11T21:41:26.2614227Z 2023-01-11T21:41:26.2614295Z def call(args): 2023-01-11T21:41:26.2614396Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.2614467Z args.clear() 2023-01-11T21:41:26.2614606Z buf0 = aten.convolution(primals_3, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.2614711Z assert_size_stride(buf0, (2, 3, 16, 16), (768, 1, 48, 3)) 2023-01-11T21:41:26.2614781Z del primals_2 2023-01-11T21:41:26.2614879Z return (buf0, primals_1, primals_3, ) 2023-01-11T21:41:26.2614883Z 2023-01-11T21:41:26.2614887Z 2023-01-11T21:41:26.2614961Z if __name__ == "__main__": 2023-01-11T21:41:26.2615078Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2615198Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2615400Z primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2615598Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2615815Z primals_3 = rand_strided((2, 3, 16, 16), (768, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2615951Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.2615956Z 2023-01-11T21:41:26.2615960Z 2023-01-11T21:41:26.2616054Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2616123Z import torch 2023-01-11T21:41:26.2616191Z import random 2023-01-11T21:41:26.2616302Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2616408Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2616424Z 2023-01-11T21:41:26.2616488Z aten = torch.ops.aten 2023-01-11T21:41:26.2616622Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2616711Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2616718Z 2023-01-11T21:41:26.2616722Z 2023-01-11T21:41:26.2616807Z async_compile.wait(globals()) 2023-01-11T21:41:26.2616878Z del async_compile 2023-01-11T21:41:26.2616883Z 2023-01-11T21:41:26.2616952Z def call(args): 2023-01-11T21:41:26.2617051Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.2617108Z args.clear() 2023-01-11T21:41:26.2617260Z buf0 = aten.convolution(primals_3, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.2617364Z assert_size_stride(buf0, (2, 3, 16, 16), (768, 1, 48, 3)) 2023-01-11T21:41:26.2617436Z del primals_2 2023-01-11T21:41:26.2617533Z return (buf0, primals_1, primals_3, ) 2023-01-11T21:41:26.2617538Z 2023-01-11T21:41:26.2617542Z 2023-01-11T21:41:26.2617617Z if __name__ == "__main__": 2023-01-11T21:41:26.2617731Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2617850Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2618050Z primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2618279Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2618500Z primals_3 = rand_strided((2, 3, 16, 16), (768, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2618638Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.2618643Z 2023-01-11T21:41:26.2618708Z ok (1.753s) 2023-01-11T21:41:26.2619207Z test_conv2d_packed_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2619334Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2619595Z [2023-01-11 21:25:23,074] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 64 2023-01-11T21:41:26.2619856Z [2023-01-11 21:25:24,629] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 64 2023-01-11T21:41:26.2619861Z 2023-01-11T21:41:26.2619955Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2620012Z import torch 2023-01-11T21:41:26.2620080Z import random 2023-01-11T21:41:26.2620192Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2620310Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2620315Z 2023-01-11T21:41:26.2620391Z aten = torch.ops.aten 2023-01-11T21:41:26.2620523Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2620611Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2620619Z 2023-01-11T21:41:26.2620623Z 2023-01-11T21:41:26.2620755Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2620946Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2621064Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2621164Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2621224Z { 2023-01-11T21:41:26.2621320Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2621380Z { 2023-01-11T21:41:26.2621468Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2621536Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2621597Z { 2023-01-11T21:41:26.2621683Z for(long i1=0; i1<3136; i1+=1) 2023-01-11T21:41:26.2621749Z { 2023-01-11T21:41:26.2621812Z { 2023-01-11T21:41:26.2621878Z { 2023-01-11T21:41:26.2621980Z auto tmp0 = in_ptr0[i1 + (3136*i0)]; 2023-01-11T21:41:26.2622064Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.2622131Z } 2023-01-11T21:41:26.2622200Z } 2023-01-11T21:41:26.2622265Z } 2023-01-11T21:41:26.2622327Z } 2023-01-11T21:41:26.2622388Z } 2023-01-11T21:41:26.2622434Z } 2023-01-11T21:41:26.2622514Z ''') 2023-01-11T21:41:26.2622519Z 2023-01-11T21:41:26.2622524Z 2023-01-11T21:41:26.2622657Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2622860Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2622978Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2623080Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2623220Z { 2023-01-11T21:41:26.2623326Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2623374Z { 2023-01-11T21:41:26.2623451Z #pragma omp for 2023-01-11T21:41:26.2623533Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.2623600Z { 2023-01-11T21:41:26.2623682Z #pragma GCC ivdep 2023-01-11T21:41:26.2623771Z for(long i1=0; i1<324; i1+=1) 2023-01-11T21:41:26.2623875Z { 2023-01-11T21:41:26.2623927Z { 2023-01-11T21:41:26.2623994Z { 2023-01-11T21:41:26.2624099Z auto tmp0 = in_ptr0[i0 + (64*i1)]; 2023-01-11T21:41:26.2624198Z out_ptr0[i1 + (324*i0)] = tmp0; 2023-01-11T21:41:26.2624265Z } 2023-01-11T21:41:26.2624330Z } 2023-01-11T21:41:26.2624381Z } 2023-01-11T21:41:26.2624444Z } 2023-01-11T21:41:26.2624506Z } 2023-01-11T21:41:26.2624568Z } 2023-01-11T21:41:26.2624650Z ''') 2023-01-11T21:41:26.2624655Z 2023-01-11T21:41:26.2624660Z 2023-01-11T21:41:26.2624750Z async_compile.wait(globals()) 2023-01-11T21:41:26.2624825Z del async_compile 2023-01-11T21:41:26.2624830Z 2023-01-11T21:41:26.2624900Z def call(args): 2023-01-11T21:41:26.2625001Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.2625075Z args.clear() 2023-01-11T21:41:26.2625292Z buf0 = empty_strided((1, 3, 56, 56), (9408, 1, 168, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2625429Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2625499Z del arg2_1 2023-01-11T21:41:26.2625752Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (3, 3), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.2625866Z assert_size_stride(buf1, (1, 64, 18, 18), (20736, 1, 1152, 64)) 2023-01-11T21:41:26.2625921Z del arg0_1 2023-01-11T21:41:26.2625991Z del arg1_1 2023-01-11T21:41:26.2626057Z del buf0 2023-01-11T21:41:26.2626279Z buf2 = empty_strided((1, 64, 18, 18), (20736, 324, 18, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2626411Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2626483Z return (buf2, ) 2023-01-11T21:41:26.2626491Z 2023-01-11T21:41:26.2626495Z 2023-01-11T21:41:26.2626572Z if __name__ == "__main__": 2023-01-11T21:41:26.2626686Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2626797Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2627006Z arg0_1 = rand_strided((64, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2627200Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2627418Z arg2_1 = rand_strided((1, 3, 56, 56), (9408, 3136, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2627540Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.2627545Z 2023-01-11T21:41:26.2627614Z ok (1.607s) 2023-01-11T21:41:26.2627802Z test_conv2d_unary_cpu (__main__.CpuTests) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:41:26.2628292Z test_conv3d_channels_last_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2628421Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2628664Z [2023-01-11 21:25:24,704] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 65 2023-01-11T21:41:26.2628924Z [2023-01-11 21:25:26,389] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 65 2023-01-11T21:41:26.2629350Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2629475Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2629767Z [2023-01-11 21:25:26,459] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 66 2023-01-11T21:41:26.2630025Z [2023-01-11 21:25:28,004] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 66 2023-01-11T21:41:26.2630448Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2630570Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2630849Z [2023-01-11 21:25:28,076] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 67 2023-01-11T21:41:26.2631110Z [2023-01-11 21:25:28,108] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 67 2023-01-11T21:41:26.2631119Z 2023-01-11T21:41:26.2631212Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2631269Z import torch 2023-01-11T21:41:26.2631338Z import random 2023-01-11T21:41:26.2631450Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2631570Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2631575Z 2023-01-11T21:41:26.2631651Z aten = torch.ops.aten 2023-01-11T21:41:26.2631783Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2631872Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2631878Z 2023-01-11T21:41:26.2631882Z 2023-01-11T21:41:26.2632015Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2632209Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2632324Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2632422Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2632482Z { 2023-01-11T21:41:26.2632580Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2632642Z { 2023-01-11T21:41:26.2632717Z #pragma omp for 2023-01-11T21:41:26.2632785Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2632847Z { 2023-01-11T21:41:26.2632985Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2633079Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2633142Z } 2023-01-11T21:41:26.2633233Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2633311Z for(long i0=8; i0<9; i0+=1) 2023-01-11T21:41:26.2633361Z { 2023-01-11T21:41:26.2633443Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2633523Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.2633584Z } 2023-01-11T21:41:26.2633648Z } 2023-01-11T21:41:26.2633706Z } 2023-01-11T21:41:26.2633783Z ''') 2023-01-11T21:41:26.2633788Z 2023-01-11T21:41:26.2633799Z 2023-01-11T21:41:26.2633875Z async_compile.wait(globals()) 2023-01-11T21:41:26.2633944Z del async_compile 2023-01-11T21:41:26.2633949Z 2023-01-11T21:41:26.2634018Z def call(args): 2023-01-11T21:41:26.2634117Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.2634187Z args.clear() 2023-01-11T21:41:26.2634405Z buf0 = empty_strided((3, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2634544Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2634694Z buf1 = aten.convolution(primals_3, buf0, primals_2, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.2634793Z assert_size_stride(buf1, (2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1)) 2023-01-11T21:41:26.2634857Z del buf0 2023-01-11T21:41:26.2634928Z del primals_2 2023-01-11T21:41:26.2635029Z return (buf1, primals_1, primals_3, ) 2023-01-11T21:41:26.2635035Z 2023-01-11T21:41:26.2635039Z 2023-01-11T21:41:26.2635149Z if __name__ == "__main__": 2023-01-11T21:41:26.2635260Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2635381Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2635591Z primals_1 = rand_strided((3, 3, 1, 1, 1), (3, 1, 3, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2635788Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2636022Z primals_3 = rand_strided((2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2636158Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.2636164Z 2023-01-11T21:41:26.2636168Z 2023-01-11T21:41:26.2636259Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2636329Z import torch 2023-01-11T21:41:26.2636431Z import random 2023-01-11T21:41:26.2636548Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2636656Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2636675Z 2023-01-11T21:41:26.2636739Z aten = torch.ops.aten 2023-01-11T21:41:26.2636870Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2636959Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2636965Z 2023-01-11T21:41:26.2636969Z 2023-01-11T21:41:26.2637101Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2637305Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2637423Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2637527Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2637625Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2637708Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2637768Z { 2023-01-11T21:41:26.2637867Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2637927Z { 2023-01-11T21:41:26.2638001Z #pragma omp for 2023-01-11T21:41:26.2638082Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2638133Z { 2023-01-11T21:41:26.2638265Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2638355Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2638420Z } 2023-01-11T21:41:26.2638518Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2638598Z for(long i0=8; i0<9; i0+=1) 2023-01-11T21:41:26.2638665Z { 2023-01-11T21:41:26.2638736Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2638814Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.2638874Z } 2023-01-11T21:41:26.2638961Z #pragma omp for collapse(3) 2023-01-11T21:41:26.2639041Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2639099Z { 2023-01-11T21:41:26.2639182Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.2639233Z { 2023-01-11T21:41:26.2639322Z for(long i2=0; i2<4096; i2+=1) 2023-01-11T21:41:26.2639388Z { 2023-01-11T21:41:26.2639454Z { 2023-01-11T21:41:26.2639520Z { 2023-01-11T21:41:26.2639627Z auto tmp0 = in_ptr1[i1 + (3*i2) + (12288*i0)]; 2023-01-11T21:41:26.2639731Z out_ptr1[i2 + (4096*i1) + (12288*i0)] = tmp0; 2023-01-11T21:41:26.2639785Z } 2023-01-11T21:41:26.2639849Z } 2023-01-11T21:41:26.2639912Z } 2023-01-11T21:41:26.2639974Z } 2023-01-11T21:41:26.2640034Z } 2023-01-11T21:41:26.2640094Z } 2023-01-11T21:41:26.2640150Z } 2023-01-11T21:41:26.2640218Z ''') 2023-01-11T21:41:26.2640223Z 2023-01-11T21:41:26.2640228Z 2023-01-11T21:41:26.2640316Z async_compile.wait(globals()) 2023-01-11T21:41:26.2640387Z del async_compile 2023-01-11T21:41:26.2640396Z 2023-01-11T21:41:26.2640467Z def call(args): 2023-01-11T21:41:26.2640567Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.2640688Z args.clear() 2023-01-11T21:41:26.2640904Z buf0 = empty_strided((3, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2641122Z buf1 = empty_strided((2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2641323Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2641467Z buf2 = aten.convolution(buf1, buf0, primals_2, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.2641580Z assert_size_stride(buf2, (2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1)) 2023-01-11T21:41:26.2641647Z del buf0 2023-01-11T21:41:26.2641713Z del buf1 2023-01-11T21:41:26.2641785Z del primals_2 2023-01-11T21:41:26.2641914Z return (buf2, primals_1, primals_3, ) 2023-01-11T21:41:26.2641920Z 2023-01-11T21:41:26.2641924Z 2023-01-11T21:41:26.2641988Z if __name__ == "__main__": 2023-01-11T21:41:26.2642102Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2642223Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2642444Z primals_1 = rand_strided((3, 3, 1, 1, 1), (3, 1, 3, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2642642Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2642872Z primals_3 = rand_strided((2, 3, 16, 16, 16), (12288, 1, 768, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2643009Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.2643014Z 2023-01-11T21:41:26.2643018Z 2023-01-11T21:41:26.2643111Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2643178Z import torch 2023-01-11T21:41:26.2643234Z import random 2023-01-11T21:41:26.2643350Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2643468Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2643475Z 2023-01-11T21:41:26.2643551Z aten = torch.ops.aten 2023-01-11T21:41:26.2643681Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2643770Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2643776Z 2023-01-11T21:41:26.2643780Z 2023-01-11T21:41:26.2643912Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2644117Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2644222Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2644323Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.2644419Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.2644513Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.2644573Z { 2023-01-11T21:41:26.2644671Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2644731Z { 2023-01-11T21:41:26.2644794Z #pragma omp for 2023-01-11T21:41:26.2644875Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.2644938Z { 2023-01-11T21:41:26.2645073Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.2645162Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.2645224Z } 2023-01-11T21:41:26.2645316Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.2645384Z for(long i0=8; i0<9; i0+=1) 2023-01-11T21:41:26.2645445Z { 2023-01-11T21:41:26.2645528Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.2645605Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.2645665Z } 2023-01-11T21:41:26.2645751Z #pragma omp for collapse(3) 2023-01-11T21:41:26.2645816Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.2645876Z { 2023-01-11T21:41:26.2645956Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.2646020Z { 2023-01-11T21:41:26.2646110Z for(long i2=0; i2<4096; i2+=1) 2023-01-11T21:41:26.2646174Z { 2023-01-11T21:41:26.2646270Z { 2023-01-11T21:41:26.2646325Z { 2023-01-11T21:41:26.2646434Z auto tmp0 = in_ptr1[i1 + (3*i2) + (12288*i0)]; 2023-01-11T21:41:26.2646538Z out_ptr1[i2 + (4096*i1) + (12288*i0)] = tmp0; 2023-01-11T21:41:26.2646604Z } 2023-01-11T21:41:26.2646667Z } 2023-01-11T21:41:26.2646730Z } 2023-01-11T21:41:26.2646793Z } 2023-01-11T21:41:26.2646842Z } 2023-01-11T21:41:26.2646901Z } 2023-01-11T21:41:26.2646958Z } 2023-01-11T21:41:26.2647038Z ''') 2023-01-11T21:41:26.2647043Z 2023-01-11T21:41:26.2647047Z 2023-01-11T21:41:26.2647135Z async_compile.wait(globals()) 2023-01-11T21:41:26.2647205Z del async_compile 2023-01-11T21:41:26.2647210Z 2023-01-11T21:41:26.2647311Z def call(args): 2023-01-11T21:41:26.2647401Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.2647472Z args.clear() 2023-01-11T21:41:26.2647688Z buf0 = empty_strided((3, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2647918Z buf1 = empty_strided((2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2648114Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.2648260Z buf2 = aten.convolution(buf1, buf0, primals_2, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.2648373Z assert_size_stride(buf2, (2, 3, 16, 16, 16), (12288, 4096, 256, 16, 1)) 2023-01-11T21:41:26.2648439Z del buf0 2023-01-11T21:41:26.2648491Z del buf1 2023-01-11T21:41:26.2648561Z del primals_2 2023-01-11T21:41:26.2648662Z return (buf2, primals_1, primals_3, ) 2023-01-11T21:41:26.2648667Z 2023-01-11T21:41:26.2648674Z 2023-01-11T21:41:26.2648750Z if __name__ == "__main__": 2023-01-11T21:41:26.2648864Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2648987Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2649408Z primals_1 = rand_strided((3, 3, 1, 1, 1), (3, 1, 3, 3, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2649612Z primals_2 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2649830Z primals_3 = rand_strided((2, 3, 16, 16, 16), (12288, 1, 768, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2649969Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.2649975Z 2023-01-11T21:41:26.2650040Z ok (3.477s) 2023-01-11T21:41:26.2650178Z test_conv_autotune_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:41:26.2650515Z test_conv_backward_cpu (__main__.CpuTests) ... [2023-01-11 21:25:28,187] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 68 2023-01-11T21:41:26.2650777Z [2023-01-11 21:25:28,257] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 68 2023-01-11T21:41:26.2650785Z 2023-01-11T21:41:26.2650878Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2650947Z import torch 2023-01-11T21:41:26.2651019Z import random 2023-01-11T21:41:26.2651121Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2651240Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2651245Z 2023-01-11T21:41:26.2651325Z aten = torch.ops.aten 2023-01-11T21:41:26.2651461Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2651551Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2651556Z 2023-01-11T21:41:26.2651561Z 2023-01-11T21:41:26.2651646Z async_compile.wait(globals()) 2023-01-11T21:41:26.2651717Z del async_compile 2023-01-11T21:41:26.2651722Z 2023-01-11T21:41:26.2651792Z def call(args): 2023-01-11T21:41:26.2651906Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1 = args 2023-01-11T21:41:26.2652038Z args.clear() 2023-01-11T21:41:26.2652200Z buf0 = aten.convolution_backward(arg0_1, arg1_1, arg2_1, [4], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, True, True]) 2023-01-11T21:41:26.2652269Z buf1 = buf0[0] 2023-01-11T21:41:26.2652375Z assert_size_stride(buf1, (3, 4, 5, 5), (100, 25, 5, 1)) 2023-01-11T21:41:26.2652443Z buf2 = buf0[1] 2023-01-11T21:41:26.2652547Z assert_size_stride(buf2, (4, 4, 3, 3), (36, 9, 3, 1)) 2023-01-11T21:41:26.2652601Z buf3 = buf0[2] 2023-01-11T21:41:26.2652694Z assert_size_stride(buf3, (4, ), (1, )) 2023-01-11T21:41:26.2652760Z del buf0 2023-01-11T21:41:26.2652925Z buf4 = aten.convolution_backward(arg0_1, arg1_1, arg2_1, [4], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [True, False, False]) 2023-01-11T21:41:26.2652992Z del arg0_1 2023-01-11T21:41:26.2653059Z del arg1_1 2023-01-11T21:41:26.2653198Z del arg2_1 2023-01-11T21:41:26.2653256Z buf5 = buf4[0] 2023-01-11T21:41:26.2653361Z assert_size_stride(buf5, (3, 4, 5, 5), (100, 25, 5, 1)) 2023-01-11T21:41:26.2653426Z del buf4 2023-01-11T21:41:26.2653584Z buf6 = aten.convolution_backward(arg3_1, arg4_1, arg5_1, [4], [1], [0], [1], False, [0], 1, [True, True, True]) 2023-01-11T21:41:26.2653652Z del arg3_1 2023-01-11T21:41:26.2653717Z del arg4_1 2023-01-11T21:41:26.2653780Z del arg5_1 2023-01-11T21:41:26.2653835Z buf7 = buf6[0] 2023-01-11T21:41:26.2653939Z assert_size_stride(buf7, (3, 4, 5, 5), (100, 25, 5, 1)) 2023-01-11T21:41:26.2654009Z buf8 = buf6[1] 2023-01-11T21:41:26.2654109Z assert_size_stride(buf8, (4, 4, 3, 3), (36, 9, 3, 1)) 2023-01-11T21:41:26.2654177Z buf9 = buf6[2] 2023-01-11T21:41:26.2654272Z assert_size_stride(buf9, (4, ), (1, )) 2023-01-11T21:41:26.2654340Z del buf6 2023-01-11T21:41:26.2654498Z buf10 = aten.convolution_backward(arg6_1, arg7_1, arg8_1, [4], [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1, [True, True, True]) 2023-01-11T21:41:26.2654567Z del arg6_1 2023-01-11T21:41:26.2654636Z del arg7_1 2023-01-11T21:41:26.2654707Z del arg8_1 2023-01-11T21:41:26.2654777Z buf11 = buf10[0] 2023-01-11T21:41:26.2654891Z assert_size_stride(buf11, (3, 4, 5, 5, 5), (500, 125, 25, 5, 1)) 2023-01-11T21:41:26.2654966Z buf12 = buf10[1] 2023-01-11T21:41:26.2655062Z assert_size_stride(buf12, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) 2023-01-11T21:41:26.2655131Z buf13 = buf10[2] 2023-01-11T21:41:26.2655227Z assert_size_stride(buf13, (4, ), (1, )) 2023-01-11T21:41:26.2655295Z del buf10 2023-01-11T21:41:26.2655425Z return (buf1, buf2, buf3, buf5, buf7, buf8, buf9, buf11, buf12, buf13, ) 2023-01-11T21:41:26.2655430Z 2023-01-11T21:41:26.2655435Z 2023-01-11T21:41:26.2655512Z if __name__ == "__main__": 2023-01-11T21:41:26.2655628Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2655741Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2655957Z arg0_1 = rand_strided((3, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2656173Z arg1_1 = rand_strided((3, 4, 5, 5), (100, 25, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2656384Z arg2_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2656587Z arg3_1 = rand_strided((3, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2656794Z arg4_1 = rand_strided((3, 4, 5, 5), (100, 25, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2657002Z arg5_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2657222Z arg6_1 = rand_strided((3, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2657444Z arg7_1 = rand_strided((3, 4, 5, 5, 5), (500, 125, 25, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2657648Z arg8_1 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2657812Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1])) 2023-01-11T21:41:26.2657850Z 2023-01-11T21:41:26.2657920Z ok (0.150s) 2023-01-11T21:41:26.2658393Z test_conv_bn_fuse_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2658522Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2658786Z [2023-01-11 21:25:28,489] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 69 2023-01-11T21:41:26.2659076Z [2023-01-11 21:25:28,511] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 69 2023-01-11T21:41:26.2659508Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2659637Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2659896Z [2023-01-11 21:25:28,658] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 70 2023-01-11T21:41:26.2660160Z [2023-01-11 21:25:28,681] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 70 2023-01-11T21:41:26.2660589Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2660705Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2660962Z [2023-01-11 21:25:28,790] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 71 2023-01-11T21:41:26.2661216Z [2023-01-11 21:25:28,812] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 71 2023-01-11T21:41:26.2661641Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2661764Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2662012Z [2023-01-11 21:25:28,921] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 72 2023-01-11T21:41:26.2662273Z [2023-01-11 21:25:28,943] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 72 2023-01-11T21:41:26.2662698Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2662822Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2663073Z [2023-01-11 21:25:29,053] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 73 2023-01-11T21:41:26.2663447Z [2023-01-11 21:25:29,076] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 73 2023-01-11T21:41:26.2663867Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2664022Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2664278Z [2023-01-11 21:25:29,187] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 74 2023-01-11T21:41:26.2664283Z 2023-01-11T21:41:26.2664377Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2664450Z import torch 2023-01-11T21:41:26.2664519Z import random 2023-01-11T21:41:26.2664635Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2664782Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2664789Z 2023-01-11T21:41:26.2664870Z aten = torch.ops.aten 2023-01-11T21:41:26.2664990Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2665082Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2665087Z 2023-01-11T21:41:26.2665091Z 2023-01-11T21:41:26.2665178Z async_compile.wait(globals()) 2023-01-11T21:41:26.2665252Z del async_compile 2023-01-11T21:41:26.2665257Z 2023-01-11T21:41:26.2665325Z def call(args): 2023-01-11T21:41:26.2665445Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2665521Z args.clear() 2023-01-11T21:41:26.2665651Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:41:26.2665743Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:41:26.2665812Z del arg0_1 2023-01-11T21:41:26.2665876Z del arg1_1 2023-01-11T21:41:26.2665942Z del arg7_1 2023-01-11T21:41:26.2666017Z return (buf0, ) 2023-01-11T21:41:26.2666022Z 2023-01-11T21:41:26.2666026Z 2023-01-11T21:41:26.2666100Z if __name__ == "__main__": 2023-01-11T21:41:26.2666213Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2666324Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2666528Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2666717Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2666906Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2667090Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2667278Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2667464Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2667643Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2667836Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2667992Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2667998Z 2023-01-11T21:41:26.2668002Z 2023-01-11T21:41:26.2668095Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2668164Z import torch 2023-01-11T21:41:26.2668237Z import random 2023-01-11T21:41:26.2668350Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2668468Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2668473Z 2023-01-11T21:41:26.2668549Z aten = torch.ops.aten 2023-01-11T21:41:26.2668668Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2668758Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2668763Z 2023-01-11T21:41:26.2668767Z 2023-01-11T21:41:26.2668852Z async_compile.wait(globals()) 2023-01-11T21:41:26.2668922Z del async_compile 2023-01-11T21:41:26.2668929Z 2023-01-11T21:41:26.2668998Z def call(args): 2023-01-11T21:41:26.2669113Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2669221Z args.clear() 2023-01-11T21:41:26.2669352Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:41:26.2669446Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:41:26.2669511Z del arg0_1 2023-01-11T21:41:26.2669576Z del arg1_1 2023-01-11T21:41:26.2669641Z del arg7_1 2023-01-11T21:41:26.2669709Z return (buf0, ) 2023-01-11T21:41:26.2669715Z 2023-01-11T21:41:26.2669719Z 2023-01-11T21:41:26.2669792Z if __name__ == "__main__": 2023-01-11T21:41:26.2669904Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2670024Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2670219Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2670438Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2670632Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2670824Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2671012Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2671198Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2671375Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2671585Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2671726Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2671731Z 2023-01-11T21:41:26.2671747Z 2023-01-11T21:41:26.2671828Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2671896Z import torch 2023-01-11T21:41:26.2671967Z import random 2023-01-11T21:41:26.2672080Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2672201Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2672207Z 2023-01-11T21:41:26.2672282Z aten = torch.ops.aten 2023-01-11T21:41:26.2672414Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2672491Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2672497Z 2023-01-11T21:41:26.2672501Z 2023-01-11T21:41:26.2672587Z async_compile.wait(globals()) 2023-01-11T21:41:26.2672657Z del async_compile 2023-01-11T21:41:26.2672662Z 2023-01-11T21:41:26.2672733Z def call(args): 2023-01-11T21:41:26.2672850Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2672921Z args.clear() 2023-01-11T21:41:26.2673049Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:41:26.2673154Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:41:26.2673212Z del arg0_1 2023-01-11T21:41:26.2673278Z del arg1_1 2023-01-11T21:41:26.2673343Z del arg7_1 2023-01-11T21:41:26.2673416Z return (buf0, ) 2023-01-11T21:41:26.2673421Z 2023-01-11T21:41:26.2673425Z 2023-01-11T21:41:26.2673498Z if __name__ == "__main__": 2023-01-11T21:41:26.2673607Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2673728Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2673919Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2674108Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2674295Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2674484Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2674673Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2674861Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2675041Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2675283Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2675423Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2675439Z 2023-01-11T21:41:26.2675443Z 2023-01-11T21:41:26.2675524Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2675592Z import torch 2023-01-11T21:41:26.2675661Z import random 2023-01-11T21:41:26.2675774Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2675893Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2675899Z 2023-01-11T21:41:26.2675974Z aten = torch.ops.aten 2023-01-11T21:41:26.2676104Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2676182Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2676216Z 2023-01-11T21:41:26.2676232Z 2023-01-11T21:41:26.2676308Z async_compile.wait(globals()) 2023-01-11T21:41:26.2676380Z del async_compile 2023-01-11T21:41:26.2676385Z 2023-01-11T21:41:26.2676453Z def call(args): 2023-01-11T21:41:26.2676567Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2676637Z args.clear() 2023-01-11T21:41:26.2676765Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:41:26.2676868Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:41:26.2676924Z del arg0_1 2023-01-11T21:41:26.2676990Z del arg1_1 2023-01-11T21:41:26.2677053Z del arg7_1 2023-01-11T21:41:26.2677124Z return (buf0, ) 2023-01-11T21:41:26.2677129Z 2023-01-11T21:41:26.2677133Z 2023-01-11T21:41:26.2677208Z if __name__ == "__main__": 2023-01-11T21:41:26.2677321Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2677443Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2677636Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2677833Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2678021Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2678209Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2678397Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2678581Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2678754Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2678964Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2679106Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2679128Z 2023-01-11T21:41:26.2679132Z 2023-01-11T21:41:26.2679213Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2679282Z import torch 2023-01-11T21:41:26.2679350Z import random 2023-01-11T21:41:26.2679463Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2679582Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2679587Z 2023-01-11T21:41:26.2679663Z aten = torch.ops.aten 2023-01-11T21:41:26.2679795Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2679873Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2679889Z 2023-01-11T21:41:26.2679894Z 2023-01-11T21:41:26.2679968Z async_compile.wait(globals()) 2023-01-11T21:41:26.2680039Z del async_compile 2023-01-11T21:41:26.2680044Z 2023-01-11T21:41:26.2680113Z def call(args): 2023-01-11T21:41:26.2680228Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2680297Z args.clear() 2023-01-11T21:41:26.2680427Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:41:26.2680536Z assert_size_stride(buf0, (1, 32, 110), (3520, 110, 1)) 2023-01-11T21:41:26.2680627Z del arg0_1 2023-01-11T21:41:26.2680691Z del arg1_1 2023-01-11T21:41:26.2680757Z del arg7_1 2023-01-11T21:41:26.2680827Z return (buf0, ) 2023-01-11T21:41:26.2680833Z 2023-01-11T21:41:26.2680837Z 2023-01-11T21:41:26.2680913Z if __name__ == "__main__": 2023-01-11T21:41:26.2681025Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2681146Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2681352Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2681529Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2681715Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2681955Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2682145Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2682332Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2682511Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2682716Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2682871Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2682877Z 2023-01-11T21:41:26.2683131Z [2023-01-11 21:25:29,209] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 74 2023-01-11T21:41:26.2683564Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2683693Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2683951Z [2023-01-11 21:25:29,322] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 75 2023-01-11T21:41:26.2684213Z [2023-01-11 21:25:29,345] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 75 2023-01-11T21:41:26.2684638Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2684764Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2685021Z [2023-01-11 21:25:29,456] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 76 2023-01-11T21:41:26.2685282Z [2023-01-11 21:25:29,479] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 76 2023-01-11T21:41:26.2685703Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2685826Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2686077Z [2023-01-11 21:25:29,590] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 77 2023-01-11T21:41:26.2686321Z [2023-01-11 21:25:29,612] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 77 2023-01-11T21:41:26.2686747Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2686915Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2687166Z [2023-01-11 21:25:29,731] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 78 2023-01-11T21:41:26.2687423Z [2023-01-11 21:25:29,753] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 78 2023-01-11T21:41:26.2687874Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2688003Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2688254Z [2023-01-11 21:25:29,865] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 79 2023-01-11T21:41:26.2688259Z 2023-01-11T21:41:26.2688353Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2688421Z import torch 2023-01-11T21:41:26.2688491Z import random 2023-01-11T21:41:26.2688593Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2688710Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2688715Z 2023-01-11T21:41:26.2688796Z aten = torch.ops.aten 2023-01-11T21:41:26.2688927Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2689141Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2689150Z 2023-01-11T21:41:26.2689156Z 2023-01-11T21:41:26.2689297Z async_compile.wait(globals()) 2023-01-11T21:41:26.2689385Z del async_compile 2023-01-11T21:41:26.2689391Z 2023-01-11T21:41:26.2689467Z def call(args): 2023-01-11T21:41:26.2689574Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2689645Z args.clear() 2023-01-11T21:41:26.2689778Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:41:26.2689884Z assert_size_stride(buf0, (1, 128, 110), (14080, 110, 1)) 2023-01-11T21:41:26.2689953Z del arg0_1 2023-01-11T21:41:26.2690021Z del arg1_1 2023-01-11T21:41:26.2690088Z del arg7_1 2023-01-11T21:41:26.2690146Z return (buf0, ) 2023-01-11T21:41:26.2690150Z 2023-01-11T21:41:26.2690155Z 2023-01-11T21:41:26.2690229Z if __name__ == "__main__": 2023-01-11T21:41:26.2690343Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2690468Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2690685Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2690879Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2691073Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2691264Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2691439Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2691625Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2691803Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2692016Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2692171Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2692177Z 2023-01-11T21:41:26.2692181Z 2023-01-11T21:41:26.2692277Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2692346Z import torch 2023-01-11T21:41:26.2692414Z import random 2023-01-11T21:41:26.2692580Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2692699Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2692704Z 2023-01-11T21:41:26.2692781Z aten = torch.ops.aten 2023-01-11T21:41:26.2692914Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2693004Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2693009Z 2023-01-11T21:41:26.2693014Z 2023-01-11T21:41:26.2693102Z async_compile.wait(globals()) 2023-01-11T21:41:26.2693178Z del async_compile 2023-01-11T21:41:26.2693183Z 2023-01-11T21:41:26.2693256Z def call(args): 2023-01-11T21:41:26.2693360Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2693430Z args.clear() 2023-01-11T21:41:26.2693608Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:41:26.2693714Z assert_size_stride(buf0, (1, 32, 108), (3456, 108, 1)) 2023-01-11T21:41:26.2693780Z del arg0_1 2023-01-11T21:41:26.2693847Z del arg1_1 2023-01-11T21:41:26.2693913Z del arg7_1 2023-01-11T21:41:26.2693971Z return (buf0, ) 2023-01-11T21:41:26.2693977Z 2023-01-11T21:41:26.2693992Z 2023-01-11T21:41:26.2694054Z if __name__ == "__main__": 2023-01-11T21:41:26.2694164Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2694283Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2694489Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2694681Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2694871Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2695065Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2695243Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2695427Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2695606Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2695814Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2695968Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2695974Z 2023-01-11T21:41:26.2695978Z 2023-01-11T21:41:26.2696073Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2696144Z import torch 2023-01-11T21:41:26.2696218Z import random 2023-01-11T21:41:26.2696320Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2696440Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2696446Z 2023-01-11T21:41:26.2696524Z aten = torch.ops.aten 2023-01-11T21:41:26.2696661Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2696755Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2696760Z 2023-01-11T21:41:26.2696766Z 2023-01-11T21:41:26.2696856Z async_compile.wait(globals()) 2023-01-11T21:41:26.2696928Z del async_compile 2023-01-11T21:41:26.2696933Z 2023-01-11T21:41:26.2697006Z def call(args): 2023-01-11T21:41:26.2697110Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2697183Z args.clear() 2023-01-11T21:41:26.2697313Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:41:26.2697422Z assert_size_stride(buf0, (1, 128, 108), (13824, 108, 1)) 2023-01-11T21:41:26.2697493Z del arg0_1 2023-01-11T21:41:26.2697565Z del arg1_1 2023-01-11T21:41:26.2697631Z del arg7_1 2023-01-11T21:41:26.2697691Z return (buf0, ) 2023-01-11T21:41:26.2697710Z 2023-01-11T21:41:26.2697715Z 2023-01-11T21:41:26.2697778Z if __name__ == "__main__": 2023-01-11T21:41:26.2697894Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2698018Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2698269Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2698467Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2698664Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2698854Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2699033Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2699227Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2699404Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2699616Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2699804Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2699810Z 2023-01-11T21:41:26.2699815Z 2023-01-11T21:41:26.2699911Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2699981Z import torch 2023-01-11T21:41:26.2700056Z import random 2023-01-11T21:41:26.2700173Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2700279Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2700284Z 2023-01-11T21:41:26.2700363Z aten = torch.ops.aten 2023-01-11T21:41:26.2700495Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2700589Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2700594Z 2023-01-11T21:41:26.2700598Z 2023-01-11T21:41:26.2700691Z async_compile.wait(globals()) 2023-01-11T21:41:26.2700766Z del async_compile 2023-01-11T21:41:26.2700771Z 2023-01-11T21:41:26.2700842Z def call(args): 2023-01-11T21:41:26.2700961Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2701020Z args.clear() 2023-01-11T21:41:26.2701150Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:41:26.2701262Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:41:26.2701332Z del arg0_1 2023-01-11T21:41:26.2701396Z del arg1_1 2023-01-11T21:41:26.2701463Z del arg7_1 2023-01-11T21:41:26.2701536Z return (buf0, ) 2023-01-11T21:41:26.2701541Z 2023-01-11T21:41:26.2701545Z 2023-01-11T21:41:26.2701607Z if __name__ == "__main__": 2023-01-11T21:41:26.2701720Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2701843Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2702053Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2702245Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2702441Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2702632Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2702818Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2702990Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2703246Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2703461Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2703615Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2703620Z 2023-01-11T21:41:26.2703624Z 2023-01-11T21:41:26.2703720Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2703793Z import torch 2023-01-11T21:41:26.2703864Z import random 2023-01-11T21:41:26.2703979Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2704089Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2704094Z 2023-01-11T21:41:26.2704172Z aten = torch.ops.aten 2023-01-11T21:41:26.2704351Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2704442Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2704447Z 2023-01-11T21:41:26.2704452Z 2023-01-11T21:41:26.2704539Z async_compile.wait(globals()) 2023-01-11T21:41:26.2704611Z del async_compile 2023-01-11T21:41:26.2704617Z 2023-01-11T21:41:26.2704685Z def call(args): 2023-01-11T21:41:26.2704802Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2704860Z args.clear() 2023-01-11T21:41:26.2704987Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:41:26.2705091Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:41:26.2705156Z del arg0_1 2023-01-11T21:41:26.2705223Z del arg1_1 2023-01-11T21:41:26.2705290Z del arg7_1 2023-01-11T21:41:26.2705394Z return (buf0, ) 2023-01-11T21:41:26.2705399Z 2023-01-11T21:41:26.2705403Z 2023-01-11T21:41:26.2705465Z if __name__ == "__main__": 2023-01-11T21:41:26.2705578Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2705698Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2705906Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2706097Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2706291Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2706477Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2706669Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2706846Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2707028Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2707237Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2707393Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2707398Z 2023-01-11T21:41:26.2707711Z [2023-01-11 21:25:29,887] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 79 2023-01-11T21:41:26.2709095Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2709394Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2710006Z [2023-01-11 21:25:29,997] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 80 2023-01-11T21:41:26.2710622Z [2023-01-11 21:25:30,019] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 80 2023-01-11T21:41:26.2711646Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2711931Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2712508Z [2023-01-11 21:25:30,129] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 81 2023-01-11T21:41:26.2713116Z [2023-01-11 21:25:30,151] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 81 2023-01-11T21:41:26.2714147Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2714579Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2715177Z [2023-01-11 21:25:30,261] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 82 2023-01-11T21:41:26.2715798Z [2023-01-11 21:25:30,282] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 82 2023-01-11T21:41:26.2716906Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2717193Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2717800Z [2023-01-11 21:25:30,391] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 83 2023-01-11T21:41:26.2718416Z [2023-01-11 21:25:30,412] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 83 2023-01-11T21:41:26.2719433Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2719712Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2720287Z [2023-01-11 21:25:30,522] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 84 2023-01-11T21:41:26.2720330Z 2023-01-11T21:41:26.2720519Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2720689Z import torch 2023-01-11T21:41:26.2720848Z import random 2023-01-11T21:41:26.2721111Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2721386Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2721398Z 2023-01-11T21:41:26.2721576Z aten = torch.ops.aten 2023-01-11T21:41:26.2721884Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2722067Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2722079Z 2023-01-11T21:41:26.2722108Z 2023-01-11T21:41:26.2722293Z async_compile.wait(globals()) 2023-01-11T21:41:26.2722456Z del async_compile 2023-01-11T21:41:26.2722469Z 2023-01-11T21:41:26.2722631Z def call(args): 2023-01-11T21:41:26.2722900Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2723060Z args.clear() 2023-01-11T21:41:26.2723364Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:41:26.2723596Z assert_size_stride(buf0, (1, 32, 112), (3584, 112, 1)) 2023-01-11T21:41:26.2723734Z del arg0_1 2023-01-11T21:41:26.2723883Z del arg1_1 2023-01-11T21:41:26.2724031Z del arg7_1 2023-01-11T21:41:26.2724191Z return (buf0, ) 2023-01-11T21:41:26.2724205Z 2023-01-11T21:41:26.2724213Z 2023-01-11T21:41:26.2724387Z if __name__ == "__main__": 2023-01-11T21:41:26.2724650Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2724934Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2725403Z arg0_1 = rand_strided((32, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2725856Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2726302Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2726744Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2727184Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2727748Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2728163Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2728637Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2728970Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2729175Z 2023-01-11T21:41:26.2729184Z 2023-01-11T21:41:26.2729377Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2729536Z import torch 2023-01-11T21:41:26.2729692Z import random 2023-01-11T21:41:26.2729954Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2730233Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2730246Z 2023-01-11T21:41:26.2730549Z aten = torch.ops.aten 2023-01-11T21:41:26.2730866Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2731064Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2731100Z 2023-01-11T21:41:26.2731112Z 2023-01-11T21:41:26.2731291Z async_compile.wait(globals()) 2023-01-11T21:41:26.2731459Z del async_compile 2023-01-11T21:41:26.2731470Z 2023-01-11T21:41:26.2731628Z def call(args): 2023-01-11T21:41:26.2731886Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2732042Z args.clear() 2023-01-11T21:41:26.2732333Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:41:26.2732571Z assert_size_stride(buf0, (1, 128, 112), (14336, 112, 1)) 2023-01-11T21:41:26.2732706Z del arg0_1 2023-01-11T21:41:26.2732854Z del arg1_1 2023-01-11T21:41:26.2732999Z del arg7_1 2023-01-11T21:41:26.2733159Z return (buf0, ) 2023-01-11T21:41:26.2733171Z 2023-01-11T21:41:26.2733181Z 2023-01-11T21:41:26.2733357Z if __name__ == "__main__": 2023-01-11T21:41:26.2733613Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2733904Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2734403Z arg0_1 = rand_strided((128, 3, 1), (3, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2734828Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2735278Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2735718Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2736164Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2736600Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2737016Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2737501Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2737859Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2737883Z 2023-01-11T21:41:26.2737892Z 2023-01-11T21:41:26.2738090Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2738244Z import torch 2023-01-11T21:41:26.2738399Z import random 2023-01-11T21:41:26.2738665Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2738943Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2738955Z 2023-01-11T21:41:26.2739129Z aten = torch.ops.aten 2023-01-11T21:41:26.2739437Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2739639Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2739653Z 2023-01-11T21:41:26.2739662Z 2023-01-11T21:41:26.2739842Z async_compile.wait(globals()) 2023-01-11T21:41:26.2740012Z del async_compile 2023-01-11T21:41:26.2740023Z 2023-01-11T21:41:26.2740185Z def call(args): 2023-01-11T21:41:26.2740456Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2740756Z args.clear() 2023-01-11T21:41:26.2741052Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 1) 2023-01-11T21:41:26.2741288Z assert_size_stride(buf0, (1, 32, 110), (3520, 110, 1)) 2023-01-11T21:41:26.2741418Z del arg0_1 2023-01-11T21:41:26.2741569Z del arg1_1 2023-01-11T21:41:26.2741718Z del arg7_1 2023-01-11T21:41:26.2741882Z return (buf0, ) 2023-01-11T21:41:26.2741892Z 2023-01-11T21:41:26.2741900Z 2023-01-11T21:41:26.2742068Z if __name__ == "__main__": 2023-01-11T21:41:26.2742324Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2742607Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2743102Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2743707Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2744156Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2744599Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2745030Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2745457Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2745869Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2746338Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2746706Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2746721Z 2023-01-11T21:41:26.2746730Z 2023-01-11T21:41:26.2746948Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2747082Z import torch 2023-01-11T21:41:26.2747240Z import random 2023-01-11T21:41:26.2747511Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2747786Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2747807Z 2023-01-11T21:41:26.2747983Z aten = torch.ops.aten 2023-01-11T21:41:26.2748295Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2748500Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2748511Z 2023-01-11T21:41:26.2748521Z 2023-01-11T21:41:26.2748705Z async_compile.wait(globals()) 2023-01-11T21:41:26.2748864Z del async_compile 2023-01-11T21:41:26.2748875Z 2023-01-11T21:41:26.2749034Z def call(args): 2023-01-11T21:41:26.2749298Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2749457Z args.clear() 2023-01-11T21:41:26.2749755Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (1,), False, (0,), 4) 2023-01-11T21:41:26.2749994Z assert_size_stride(buf0, (1, 128, 110), (14080, 110, 1)) 2023-01-11T21:41:26.2750150Z del arg0_1 2023-01-11T21:41:26.2750286Z del arg1_1 2023-01-11T21:41:26.2750434Z del arg7_1 2023-01-11T21:41:26.2750594Z return (buf0, ) 2023-01-11T21:41:26.2750616Z 2023-01-11T21:41:26.2750625Z 2023-01-11T21:41:26.2750793Z if __name__ == "__main__": 2023-01-11T21:41:26.2751056Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2751338Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2751829Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2752255Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2752702Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2753145Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2753585Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2754025Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2754447Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2755038Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2755386Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2755398Z 2023-01-11T21:41:26.2755406Z 2023-01-11T21:41:26.2755576Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2755682Z import torch 2023-01-11T21:41:26.2755801Z import random 2023-01-11T21:41:26.2756001Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2756208Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2756217Z 2023-01-11T21:41:26.2756350Z aten = torch.ops.aten 2023-01-11T21:41:26.2756579Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2756737Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2756746Z 2023-01-11T21:41:26.2756753Z 2023-01-11T21:41:26.2756970Z async_compile.wait(globals()) 2023-01-11T21:41:26.2757083Z del async_compile 2023-01-11T21:41:26.2757091Z 2023-01-11T21:41:26.2757216Z def call(args): 2023-01-11T21:41:26.2757418Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2757542Z args.clear() 2023-01-11T21:41:26.2757768Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 1) 2023-01-11T21:41:26.2757950Z assert_size_stride(buf0, (1, 32, 108), (3456, 108, 1)) 2023-01-11T21:41:26.2758069Z del arg0_1 2023-01-11T21:41:26.2758168Z del arg1_1 2023-01-11T21:41:26.2758279Z del arg7_1 2023-01-11T21:41:26.2758403Z return (buf0, ) 2023-01-11T21:41:26.2758412Z 2023-01-11T21:41:26.2758418Z 2023-01-11T21:41:26.2758547Z if __name__ == "__main__": 2023-01-11T21:41:26.2758742Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2758951Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2759326Z arg0_1 = rand_strided((32, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2759674Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2760007Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2760347Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2760687Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2761024Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2761347Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2761718Z arg7_1 = rand_strided((1, 3, 112), (336, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2761991Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2762002Z 2023-01-11T21:41:26.2762537Z [2023-01-11 21:25:30,543] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 84 2023-01-11T21:41:26.2763103Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2763261Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2763610Z [2023-01-11 21:25:30,697] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 85 2023-01-11T21:41:26.2763971Z [2023-01-11 21:25:32,293] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 85 2023-01-11T21:41:26.2764539Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2764771Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2765117Z [2023-01-11 21:25:32,407] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 86 2023-01-11T21:41:26.2765472Z [2023-01-11 21:25:32,430] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 86 2023-01-11T21:41:26.2766031Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2766247Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2766596Z [2023-01-11 21:25:32,549] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 87 2023-01-11T21:41:26.2766606Z 2023-01-11T21:41:26.2766883Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2766961Z import torch 2023-01-11T21:41:26.2767054Z import random 2023-01-11T21:41:26.2767206Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2767362Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2767369Z 2023-01-11T21:41:26.2767470Z aten = torch.ops.aten 2023-01-11T21:41:26.2767645Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2767770Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2767778Z 2023-01-11T21:41:26.2767782Z 2023-01-11T21:41:26.2767901Z async_compile.wait(globals()) 2023-01-11T21:41:26.2767981Z del async_compile 2023-01-11T21:41:26.2767988Z 2023-01-11T21:41:26.2768086Z def call(args): 2023-01-11T21:41:26.2768241Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2768340Z args.clear() 2023-01-11T21:41:26.2768513Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1,), (0,), (2,), False, (0,), 4) 2023-01-11T21:41:26.2768656Z assert_size_stride(buf0, (1, 128, 108), (13824, 108, 1)) 2023-01-11T21:41:26.2768750Z del arg0_1 2023-01-11T21:41:26.2768825Z del arg1_1 2023-01-11T21:41:26.2768914Z del arg7_1 2023-01-11T21:41:26.2769122Z return (buf0, ) 2023-01-11T21:41:26.2769131Z 2023-01-11T21:41:26.2769137Z 2023-01-11T21:41:26.2769238Z if __name__ == "__main__": 2023-01-11T21:41:26.2769393Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2769558Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2769848Z arg0_1 = rand_strided((128, 3, 3), (9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2770120Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2770372Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2770638Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2770901Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2771165Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2771413Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2771702Z arg7_1 = rand_strided((1, 12, 112), (1344, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2771909Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2771916Z 2023-01-11T21:41:26.2771921Z 2023-01-11T21:41:26.2772049Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2772145Z import torch 2023-01-11T21:41:26.2772226Z import random 2023-01-11T21:41:26.2772384Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2772549Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2772616Z 2023-01-11T21:41:26.2772721Z aten = torch.ops.aten 2023-01-11T21:41:26.2772898Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2773022Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2773030Z 2023-01-11T21:41:26.2773035Z 2023-01-11T21:41:26.2773222Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2773487Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2773630Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2773762Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2773845Z { 2023-01-11T21:41:26.2773978Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2774063Z { 2023-01-11T21:41:26.2774186Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2774322Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2774415Z { 2023-01-11T21:41:26.2774533Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2774624Z { 2023-01-11T21:41:26.2774713Z { 2023-01-11T21:41:26.2774808Z { 2023-01-11T21:41:26.2774956Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2775067Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.2775158Z } 2023-01-11T21:41:26.2775246Z } 2023-01-11T21:41:26.2775339Z } 2023-01-11T21:41:26.2775428Z } 2023-01-11T21:41:26.2775514Z } 2023-01-11T21:41:26.2775596Z } 2023-01-11T21:41:26.2775692Z ''') 2023-01-11T21:41:26.2775698Z 2023-01-11T21:41:26.2775704Z 2023-01-11T21:41:26.2775888Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2776155Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2776319Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2776453Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2776538Z { 2023-01-11T21:41:26.2776673Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2776846Z { 2023-01-11T21:41:26.2776950Z #pragma omp for 2023-01-11T21:41:26.2777060Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2777147Z { 2023-01-11T21:41:26.2777255Z #pragma GCC ivdep 2023-01-11T21:41:26.2777373Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2777459Z { 2023-01-11T21:41:26.2777531Z { 2023-01-11T21:41:26.2777623Z { 2023-01-11T21:41:26.2777760Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.2777891Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.2777983Z } 2023-01-11T21:41:26.2778070Z } 2023-01-11T21:41:26.2778154Z } 2023-01-11T21:41:26.2778226Z } 2023-01-11T21:41:26.2778331Z } 2023-01-11T21:41:26.2778434Z } 2023-01-11T21:41:26.2778624Z ''') 2023-01-11T21:41:26.2778638Z 2023-01-11T21:41:26.2778644Z 2023-01-11T21:41:26.2778916Z async_compile.wait(globals()) 2023-01-11T21:41:26.2779059Z del async_compile 2023-01-11T21:41:26.2779127Z 2023-01-11T21:41:26.2779285Z def call(args): 2023-01-11T21:41:26.2779497Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2779642Z args.clear() 2023-01-11T21:41:26.2780099Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2780371Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2780522Z del arg7_1 2023-01-11T21:41:26.2781026Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.2781263Z assert_size_stride(buf1, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.2781406Z del arg0_1 2023-01-11T21:41:26.2781517Z del arg1_1 2023-01-11T21:41:26.2781653Z del buf0 2023-01-11T21:41:26.2782203Z buf2 = empty_strided((1, 32, 112, 112), (401408, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2782467Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2782609Z return (buf2, ) 2023-01-11T21:41:26.2782619Z 2023-01-11T21:41:26.2782625Z 2023-01-11T21:41:26.2782783Z if __name__ == "__main__": 2023-01-11T21:41:26.2783026Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2783365Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2783803Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2784195Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2784670Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2785066Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2785471Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2785848Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2786225Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2786656Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2786976Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2786988Z 2023-01-11T21:41:26.2786995Z 2023-01-11T21:41:26.2787189Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2787348Z import torch 2023-01-11T21:41:26.2787487Z import random 2023-01-11T21:41:26.2787721Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2787977Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2787987Z 2023-01-11T21:41:26.2788152Z aten = torch.ops.aten 2023-01-11T21:41:26.2788403Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2788591Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2788601Z 2023-01-11T21:41:26.2788609Z 2023-01-11T21:41:26.2788796Z async_compile.wait(globals()) 2023-01-11T21:41:26.2788942Z del async_compile 2023-01-11T21:41:26.2788951Z 2023-01-11T21:41:26.2789099Z def call(args): 2023-01-11T21:41:26.2789341Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2789474Z args.clear() 2023-01-11T21:41:26.2790004Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.2790218Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.2790366Z del arg0_1 2023-01-11T21:41:26.2790502Z del arg1_1 2023-01-11T21:41:26.2790649Z del arg7_1 2023-01-11T21:41:26.2790801Z return (buf0, ) 2023-01-11T21:41:26.2790811Z 2023-01-11T21:41:26.2790817Z 2023-01-11T21:41:26.2790984Z if __name__ == "__main__": 2023-01-11T21:41:26.2791213Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2791452Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2791875Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2792271Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2792653Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2793054Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2793434Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2793818Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2794192Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2794627Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2795033Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2795064Z 2023-01-11T21:41:26.2795578Z [2023-01-11 21:25:34,136] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 87 2023-01-11T21:41:26.2796425Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2796681Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2797254Z [2023-01-11 21:25:34,279] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 88 2023-01-11T21:41:26.2797801Z [2023-01-11 21:25:34,302] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 88 2023-01-11T21:41:26.2798642Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2798898Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2799411Z [2023-01-11 21:25:34,442] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 89 2023-01-11T21:41:26.2799425Z 2023-01-11T21:41:26.2799612Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2799773Z import torch 2023-01-11T21:41:26.2799906Z import random 2023-01-11T21:41:26.2800140Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2800395Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2800411Z 2023-01-11T21:41:26.2800582Z aten = torch.ops.aten 2023-01-11T21:41:26.2800854Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2801044Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2801053Z 2023-01-11T21:41:26.2801058Z 2023-01-11T21:41:26.2801334Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2801735Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2801966Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2802156Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2802287Z { 2023-01-11T21:41:26.2802496Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2802626Z { 2023-01-11T21:41:26.2802785Z #pragma omp for 2023-01-11T21:41:26.2802965Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.2803066Z { 2023-01-11T21:41:26.2803234Z #pragma GCC ivdep 2023-01-11T21:41:26.2803420Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2803564Z { 2023-01-11T21:41:26.2803704Z { 2023-01-11T21:41:26.2803850Z { 2023-01-11T21:41:26.2804050Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2804228Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.2804371Z } 2023-01-11T21:41:26.2804508Z } 2023-01-11T21:41:26.2804641Z } 2023-01-11T21:41:26.2804773Z } 2023-01-11T21:41:26.2804907Z } 2023-01-11T21:41:26.2805008Z } 2023-01-11T21:41:26.2805176Z ''') 2023-01-11T21:41:26.2805188Z 2023-01-11T21:41:26.2805195Z 2023-01-11T21:41:26.2805487Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2805908Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2806138Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2806439Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2806564Z { 2023-01-11T21:41:26.2806773Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2806883Z { 2023-01-11T21:41:26.2807032Z #pragma omp for 2023-01-11T21:41:26.2807205Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.2807341Z { 2023-01-11T21:41:26.2807512Z #pragma GCC ivdep 2023-01-11T21:41:26.2807701Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2807812Z { 2023-01-11T21:41:26.2807933Z { 2023-01-11T21:41:26.2808064Z { 2023-01-11T21:41:26.2808284Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.2808490Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.2808627Z } 2023-01-11T21:41:26.2808834Z } 2023-01-11T21:41:26.2808935Z } 2023-01-11T21:41:26.2809201Z } 2023-01-11T21:41:26.2809344Z } 2023-01-11T21:41:26.2809470Z } 2023-01-11T21:41:26.2809672Z ''') 2023-01-11T21:41:26.2809685Z 2023-01-11T21:41:26.2809692Z 2023-01-11T21:41:26.2809877Z async_compile.wait(globals()) 2023-01-11T21:41:26.2810020Z del async_compile 2023-01-11T21:41:26.2810028Z 2023-01-11T21:41:26.2810150Z def call(args): 2023-01-11T21:41:26.2810395Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2810547Z args.clear() 2023-01-11T21:41:26.2811011Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2811283Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2811409Z del arg7_1 2023-01-11T21:41:26.2811808Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.2811982Z assert_size_stride(buf1, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.2812073Z del arg0_1 2023-01-11T21:41:26.2812175Z del arg1_1 2023-01-11T21:41:26.2812275Z del buf0 2023-01-11T21:41:26.2812644Z buf2 = empty_strided((1, 128, 112, 112), (1605632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2812847Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2812956Z return (buf2, ) 2023-01-11T21:41:26.2812964Z 2023-01-11T21:41:26.2812969Z 2023-01-11T21:41:26.2813103Z if __name__ == "__main__": 2023-01-11T21:41:26.2813314Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2813537Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2813977Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2814397Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2814808Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2815176Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2815481Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2815783Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2816107Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2816883Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2817234Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2817247Z 2023-01-11T21:41:26.2817257Z 2023-01-11T21:41:26.2817471Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2817634Z import torch 2023-01-11T21:41:26.2817799Z import random 2023-01-11T21:41:26.2818070Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2818348Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2818501Z 2023-01-11T21:41:26.2818680Z aten = torch.ops.aten 2023-01-11T21:41:26.2818967Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2819176Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2819188Z 2023-01-11T21:41:26.2819197Z 2023-01-11T21:41:26.2819393Z async_compile.wait(globals()) 2023-01-11T21:41:26.2819559Z del async_compile 2023-01-11T21:41:26.2819570Z 2023-01-11T21:41:26.2819734Z def call(args): 2023-01-11T21:41:26.2820001Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2820157Z args.clear() 2023-01-11T21:41:26.2820768Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.2821008Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.2821254Z del arg0_1 2023-01-11T21:41:26.2821410Z del arg1_1 2023-01-11T21:41:26.2821559Z del arg7_1 2023-01-11T21:41:26.2821724Z return (buf0, ) 2023-01-11T21:41:26.2821736Z 2023-01-11T21:41:26.2821745Z 2023-01-11T21:41:26.2821922Z if __name__ == "__main__": 2023-01-11T21:41:26.2822180Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2822443Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2822941Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2823496Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2823956Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2824412Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2824863Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2825318Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2825742Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2826259Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2826614Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2826627Z 2023-01-11T21:41:26.2827243Z [2023-01-11 21:25:34,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 89 2023-01-11T21:41:26.2828263Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2828554Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2829163Z [2023-01-11 21:25:34,586] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 90 2023-01-11T21:41:26.2829794Z [2023-01-11 21:25:34,609] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 90 2023-01-11T21:41:26.2830824Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2831107Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2831721Z [2023-01-11 21:25:34,719] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 91 2023-01-11T21:41:26.2832339Z [2023-01-11 21:25:34,752] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 91 2023-01-11T21:41:26.2833360Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2833733Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2834333Z [2023-01-11 21:25:34,887] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 92 2023-01-11T21:41:26.2834346Z 2023-01-11T21:41:26.2834561Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2834721Z import torch 2023-01-11T21:41:26.2834880Z import random 2023-01-11T21:41:26.2835148Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2835499Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2835515Z 2023-01-11T21:41:26.2835693Z aten = torch.ops.aten 2023-01-11T21:41:26.2835991Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2836198Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2836210Z 2023-01-11T21:41:26.2836220Z 2023-01-11T21:41:26.2836547Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2837026Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2837301Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2837525Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2837659Z { 2023-01-11T21:41:26.2837880Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2837995Z { 2023-01-11T21:41:26.2838201Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2838384Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2838527Z { 2023-01-11T21:41:26.2838727Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2838867Z { 2023-01-11T21:41:26.2839008Z { 2023-01-11T21:41:26.2839145Z { 2023-01-11T21:41:26.2839375Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2839581Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.2839730Z } 2023-01-11T21:41:26.2839867Z } 2023-01-11T21:41:26.2840011Z } 2023-01-11T21:41:26.2840175Z } 2023-01-11T21:41:26.2840266Z } 2023-01-11T21:41:26.2840368Z } 2023-01-11T21:41:26.2840524Z ''') 2023-01-11T21:41:26.2840534Z 2023-01-11T21:41:26.2840541Z 2023-01-11T21:41:26.2840789Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2841185Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2841421Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2841627Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2841731Z { 2023-01-11T21:41:26.2841929Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2842066Z { 2023-01-11T21:41:26.2842225Z #pragma omp for 2023-01-11T21:41:26.2842391Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2842515Z { 2023-01-11T21:41:26.2842680Z #pragma GCC ivdep 2023-01-11T21:41:26.2842842Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2842982Z { 2023-01-11T21:41:26.2843106Z { 2023-01-11T21:41:26.2843240Z { 2023-01-11T21:41:26.2843452Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.2843649Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.2843786Z } 2023-01-11T21:41:26.2843899Z } 2023-01-11T21:41:26.2844029Z } 2023-01-11T21:41:26.2844155Z } 2023-01-11T21:41:26.2844279Z } 2023-01-11T21:41:26.2844407Z } 2023-01-11T21:41:26.2844606Z ''') 2023-01-11T21:41:26.2844617Z 2023-01-11T21:41:26.2844624Z 2023-01-11T21:41:26.2844816Z async_compile.wait(globals()) 2023-01-11T21:41:26.2845122Z del async_compile 2023-01-11T21:41:26.2845133Z 2023-01-11T21:41:26.2845280Z def call(args): 2023-01-11T21:41:26.2845519Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2845667Z args.clear() 2023-01-11T21:41:26.2846154Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2846424Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2846571Z del arg7_1 2023-01-11T21:41:26.2847105Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.2847270Z assert_size_stride(buf1, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.2847371Z del arg0_1 2023-01-11T21:41:26.2847595Z del arg1_1 2023-01-11T21:41:26.2847718Z del buf0 2023-01-11T21:41:26.2848092Z buf2 = empty_strided((1, 32, 112, 112), (401408, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2848293Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2848384Z return (buf2, ) 2023-01-11T21:41:26.2848415Z 2023-01-11T21:41:26.2848421Z 2023-01-11T21:41:26.2848521Z if __name__ == "__main__": 2023-01-11T21:41:26.2848684Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2848855Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2849311Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2849596Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2849870Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2850144Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2850419Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2850672Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2850918Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2851237Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2851448Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2851456Z 2023-01-11T21:41:26.2851461Z 2023-01-11T21:41:26.2851588Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2851688Z import torch 2023-01-11T21:41:26.2851787Z import random 2023-01-11T21:41:26.2851942Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2852086Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2852092Z 2023-01-11T21:41:26.2852200Z aten = torch.ops.aten 2023-01-11T21:41:26.2852378Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2852506Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2852513Z 2023-01-11T21:41:26.2852518Z 2023-01-11T21:41:26.2852638Z async_compile.wait(globals()) 2023-01-11T21:41:26.2852737Z del async_compile 2023-01-11T21:41:26.2852744Z 2023-01-11T21:41:26.2852839Z def call(args): 2023-01-11T21:41:26.2852999Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2853082Z args.clear() 2023-01-11T21:41:26.2853422Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.2853572Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.2853668Z del arg0_1 2023-01-11T21:41:26.2853763Z del arg1_1 2023-01-11T21:41:26.2853854Z del arg7_1 2023-01-11T21:41:26.2853955Z return (buf0, ) 2023-01-11T21:41:26.2853961Z 2023-01-11T21:41:26.2853969Z 2023-01-11T21:41:26.2854057Z if __name__ == "__main__": 2023-01-11T21:41:26.2854244Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2854572Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2854926Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2855253Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2855590Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2855907Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2856355Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2856719Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2857068Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2857588Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2857888Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2857904Z 2023-01-11T21:41:26.2857910Z 2023-01-11T21:41:26.2858099Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2858254Z import torch 2023-01-11T21:41:26.2858408Z import random 2023-01-11T21:41:26.2858646Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2858860Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2858891Z 2023-01-11T21:41:26.2859024Z aten = torch.ops.aten 2023-01-11T21:41:26.2859281Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2859466Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2859476Z 2023-01-11T21:41:26.2859483Z 2023-01-11T21:41:26.2859760Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2860150Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2860387Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2860590Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2860692Z { 2023-01-11T21:41:26.2860876Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2860998Z { 2023-01-11T21:41:26.2861155Z #pragma omp for 2023-01-11T21:41:26.2861327Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.2861459Z { 2023-01-11T21:41:26.2861620Z #pragma GCC ivdep 2023-01-11T21:41:26.2861780Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2861899Z { 2023-01-11T21:41:26.2862033Z { 2023-01-11T21:41:26.2862167Z { 2023-01-11T21:41:26.2862372Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2862569Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.2862709Z } 2023-01-11T21:41:26.2862911Z } 2023-01-11T21:41:26.2863014Z } 2023-01-11T21:41:26.2863197Z } 2023-01-11T21:41:26.2863320Z } 2023-01-11T21:41:26.2863429Z } 2023-01-11T21:41:26.2863576Z ''') 2023-01-11T21:41:26.2863588Z 2023-01-11T21:41:26.2863594Z 2023-01-11T21:41:26.2863845Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2864160Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2864371Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2864538Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2864650Z { 2023-01-11T21:41:26.2864824Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2864925Z { 2023-01-11T21:41:26.2865063Z #pragma omp for 2023-01-11T21:41:26.2865194Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.2865304Z { 2023-01-11T21:41:26.2865445Z #pragma GCC ivdep 2023-01-11T21:41:26.2865605Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2865726Z { 2023-01-11T21:41:26.2865838Z { 2023-01-11T21:41:26.2866048Z { 2023-01-11T21:41:26.2866207Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.2866377Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.2866498Z } 2023-01-11T21:41:26.2866616Z } 2023-01-11T21:41:26.2866735Z } 2023-01-11T21:41:26.2866837Z } 2023-01-11T21:41:26.2866925Z } 2023-01-11T21:41:26.2867034Z } 2023-01-11T21:41:26.2867186Z ''') 2023-01-11T21:41:26.2867194Z 2023-01-11T21:41:26.2867199Z 2023-01-11T21:41:26.2867352Z async_compile.wait(globals()) 2023-01-11T21:41:26.2867484Z del async_compile 2023-01-11T21:41:26.2867493Z 2023-01-11T21:41:26.2867722Z def call(args): 2023-01-11T21:41:26.2867948Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2868166Z args.clear() 2023-01-11T21:41:26.2868605Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2868865Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2869001Z del arg7_1 2023-01-11T21:41:26.2869502Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.2869725Z assert_size_stride(buf1, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.2869869Z del arg0_1 2023-01-11T21:41:26.2870008Z del arg1_1 2023-01-11T21:41:26.2870122Z del buf0 2023-01-11T21:41:26.2870576Z buf2 = empty_strided((1, 128, 112, 112), (1605632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2870837Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2870971Z return (buf2, ) 2023-01-11T21:41:26.2870983Z 2023-01-11T21:41:26.2870991Z 2023-01-11T21:41:26.2871152Z if __name__ == "__main__": 2023-01-11T21:41:26.2871389Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2871644Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2872054Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2872426Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2872811Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2873177Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2873560Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2873938Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2874391Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2874789Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2875047Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2875058Z 2023-01-11T21:41:26.2875514Z [2023-01-11 21:25:34,910] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 92 2023-01-11T21:41:26.2876189Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2876404Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2876852Z [2023-01-11 21:25:35,031] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 93 2023-01-11T21:41:26.2877298Z [2023-01-11 21:25:36,581] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 93 2023-01-11T21:41:26.2878082Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2878297Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2878730Z [2023-01-11 21:25:36,688] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 94 2023-01-11T21:41:26.2879176Z [2023-01-11 21:25:36,710] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 94 2023-01-11T21:41:26.2879928Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2880148Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2880583Z [2023-01-11 21:25:36,855] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 95 2023-01-11T21:41:26.2880597Z 2023-01-11T21:41:26.2880758Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2880865Z import torch 2023-01-11T21:41:26.2880988Z import random 2023-01-11T21:41:26.2881193Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2881395Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2881403Z 2023-01-11T21:41:26.2881534Z aten = torch.ops.aten 2023-01-11T21:41:26.2881756Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2881923Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2881931Z 2023-01-11T21:41:26.2881939Z 2023-01-11T21:41:26.2882096Z async_compile.wait(globals()) 2023-01-11T21:41:26.2882209Z del async_compile 2023-01-11T21:41:26.2882223Z 2023-01-11T21:41:26.2882357Z def call(args): 2023-01-11T21:41:26.2882551Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2882680Z args.clear() 2023-01-11T21:41:26.2883120Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.2883307Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.2883415Z del arg0_1 2023-01-11T21:41:26.2883517Z del arg1_1 2023-01-11T21:41:26.2883641Z del arg7_1 2023-01-11T21:41:26.2883761Z return (buf0, ) 2023-01-11T21:41:26.2883775Z 2023-01-11T21:41:26.2883780Z 2023-01-11T21:41:26.2883921Z if __name__ == "__main__": 2023-01-11T21:41:26.2884125Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2884322Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2884698Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2885034Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2885346Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2885682Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2886022Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2886336Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2886644Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2887032Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2887295Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2887306Z 2023-01-11T21:41:26.2887394Z 2023-01-11T21:41:26.2887555Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2887660Z import torch 2023-01-11T21:41:26.2887787Z import random 2023-01-11T21:41:26.2887987Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2888184Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2888194Z 2023-01-11T21:41:26.2888334Z aten = torch.ops.aten 2023-01-11T21:41:26.2888568Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2888728Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2888736Z 2023-01-11T21:41:26.2888741Z 2023-01-11T21:41:26.2888969Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2889413Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2889738Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2889915Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2890006Z { 2023-01-11T21:41:26.2890185Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2890304Z { 2023-01-11T21:41:26.2890477Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2890606Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2890718Z { 2023-01-11T21:41:26.2890881Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2890987Z { 2023-01-11T21:41:26.2891103Z { 2023-01-11T21:41:26.2891219Z { 2023-01-11T21:41:26.2891401Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2891549Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.2891670Z } 2023-01-11T21:41:26.2891787Z } 2023-01-11T21:41:26.2891889Z } 2023-01-11T21:41:26.2891995Z } 2023-01-11T21:41:26.2892108Z } 2023-01-11T21:41:26.2892223Z } 2023-01-11T21:41:26.2892361Z ''') 2023-01-11T21:41:26.2892379Z 2023-01-11T21:41:26.2892385Z 2023-01-11T21:41:26.2892625Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2892963Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2893174Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2893356Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2893459Z { 2023-01-11T21:41:26.2893634Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2893722Z { 2023-01-11T21:41:26.2893850Z #pragma omp for 2023-01-11T21:41:26.2893998Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2894116Z { 2023-01-11T21:41:26.2894264Z #pragma GCC ivdep 2023-01-11T21:41:26.2894417Z for(long i1=0; i1<12100; i1+=1) 2023-01-11T21:41:26.2894536Z { 2023-01-11T21:41:26.2894638Z { 2023-01-11T21:41:26.2894748Z { 2023-01-11T21:41:26.2894930Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.2895108Z out_ptr0[i1 + (12100*i0)] = tmp0; 2023-01-11T21:41:26.2895238Z } 2023-01-11T21:41:26.2895456Z } 2023-01-11T21:41:26.2895587Z } 2023-01-11T21:41:26.2895698Z } 2023-01-11T21:41:26.2895813Z } 2023-01-11T21:41:26.2895937Z } 2023-01-11T21:41:26.2896114Z ''') 2023-01-11T21:41:26.2896124Z 2023-01-11T21:41:26.2896133Z 2023-01-11T21:41:26.2896310Z async_compile.wait(globals()) 2023-01-11T21:41:26.2896464Z del async_compile 2023-01-11T21:41:26.2896475Z 2023-01-11T21:41:26.2896621Z def call(args): 2023-01-11T21:41:26.2896822Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2896974Z args.clear() 2023-01-11T21:41:26.2897409Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2897685Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2897814Z del arg7_1 2023-01-11T21:41:26.2898310Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.2898661Z assert_size_stride(buf1, (1, 32, 110, 110), (387200, 1, 3520, 32)) 2023-01-11T21:41:26.2898791Z del arg0_1 2023-01-11T21:41:26.2898910Z del arg1_1 2023-01-11T21:41:26.2899049Z del buf0 2023-01-11T21:41:26.2899514Z buf2 = empty_strided((1, 32, 110, 110), (387200, 12100, 110, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2899772Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2899913Z return (buf2, ) 2023-01-11T21:41:26.2899925Z 2023-01-11T21:41:26.2899935Z 2023-01-11T21:41:26.2900092Z if __name__ == "__main__": 2023-01-11T21:41:26.2900316Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2900609Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2901028Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2901423Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2901802Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2902248Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2902578Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2902897Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2903297Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2903660Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2903922Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2903936Z 2023-01-11T21:41:26.2903942Z 2023-01-11T21:41:26.2904103Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2904240Z import torch 2023-01-11T21:41:26.2904369Z import random 2023-01-11T21:41:26.2904576Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2904781Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2904789Z 2023-01-11T21:41:26.2904919Z aten = torch.ops.aten 2023-01-11T21:41:26.2905126Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2905307Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2905317Z 2023-01-11T21:41:26.2905323Z 2023-01-11T21:41:26.2905483Z async_compile.wait(globals()) 2023-01-11T21:41:26.2905615Z del async_compile 2023-01-11T21:41:26.2905624Z 2023-01-11T21:41:26.2905738Z def call(args): 2023-01-11T21:41:26.2905943Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2906073Z args.clear() 2023-01-11T21:41:26.2906517Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.2906690Z assert_size_stride(buf0, (1, 32, 110, 110), (387200, 1, 3520, 32)) 2023-01-11T21:41:26.2906815Z del arg0_1 2023-01-11T21:41:26.2906939Z del arg1_1 2023-01-11T21:41:26.2907064Z del arg7_1 2023-01-11T21:41:26.2907200Z return (buf0, ) 2023-01-11T21:41:26.2907214Z 2023-01-11T21:41:26.2907220Z 2023-01-11T21:41:26.2907359Z if __name__ == "__main__": 2023-01-11T21:41:26.2907556Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2907771Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2908116Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2908438Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2908778Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2909120Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2909433Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2909858Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2910181Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2910560Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2910805Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2910814Z 2023-01-11T21:41:26.2911262Z [2023-01-11 21:25:38,531] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 95 2023-01-11T21:41:26.2912039Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2912262Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2912723Z [2023-01-11 21:25:38,669] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 96 2023-01-11T21:41:26.2913170Z [2023-01-11 21:25:38,691] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 96 2023-01-11T21:41:26.2913868Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2914091Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2914539Z [2023-01-11 21:25:38,817] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 97 2023-01-11T21:41:26.2914555Z 2023-01-11T21:41:26.2914719Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2914835Z import torch 2023-01-11T21:41:26.2914943Z import random 2023-01-11T21:41:26.2915147Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2915357Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2915366Z 2023-01-11T21:41:26.2915514Z aten = torch.ops.aten 2023-01-11T21:41:26.2915732Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2915904Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2915913Z 2023-01-11T21:41:26.2915920Z 2023-01-11T21:41:26.2916157Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2916505Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2916701Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2916869Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2916986Z { 2023-01-11T21:41:26.2917158Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2917378Z { 2023-01-11T21:41:26.2917532Z #pragma omp for 2023-01-11T21:41:26.2917694Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.2917803Z { 2023-01-11T21:41:26.2917970Z #pragma GCC ivdep 2023-01-11T21:41:26.2918158Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2918290Z { 2023-01-11T21:41:26.2918421Z { 2023-01-11T21:41:26.2918551Z { 2023-01-11T21:41:26.2918732Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2918884Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.2918986Z } 2023-01-11T21:41:26.2919090Z } 2023-01-11T21:41:26.2919199Z } 2023-01-11T21:41:26.2919330Z } 2023-01-11T21:41:26.2919452Z } 2023-01-11T21:41:26.2933900Z } 2023-01-11T21:41:26.2934162Z ''') 2023-01-11T21:41:26.2934327Z 2023-01-11T21:41:26.2934332Z 2023-01-11T21:41:26.2934618Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2934964Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2935171Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2935334Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2935427Z { 2023-01-11T21:41:26.2935593Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2935707Z { 2023-01-11T21:41:26.2935843Z #pragma omp for 2023-01-11T21:41:26.2935990Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.2936110Z { 2023-01-11T21:41:26.2936242Z #pragma GCC ivdep 2023-01-11T21:41:26.2936380Z for(long i1=0; i1<12100; i1+=1) 2023-01-11T21:41:26.2936493Z { 2023-01-11T21:41:26.2936721Z { 2023-01-11T21:41:26.2936845Z { 2023-01-11T21:41:26.2937026Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.2937192Z out_ptr0[i1 + (12100*i0)] = tmp0; 2023-01-11T21:41:26.2937310Z } 2023-01-11T21:41:26.2937411Z } 2023-01-11T21:41:26.2937526Z } 2023-01-11T21:41:26.2937645Z } 2023-01-11T21:41:26.2937755Z } 2023-01-11T21:41:26.2937863Z } 2023-01-11T21:41:26.2938019Z ''') 2023-01-11T21:41:26.2938029Z 2023-01-11T21:41:26.2938035Z 2023-01-11T21:41:26.2938162Z async_compile.wait(globals()) 2023-01-11T21:41:26.2938296Z del async_compile 2023-01-11T21:41:26.2938307Z 2023-01-11T21:41:26.2938434Z def call(args): 2023-01-11T21:41:26.2938638Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2938762Z args.clear() 2023-01-11T21:41:26.2939163Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2939394Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2939523Z del arg7_1 2023-01-11T21:41:26.2939939Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.2940128Z assert_size_stride(buf1, (1, 128, 110, 110), (1548800, 1, 14080, 128)) 2023-01-11T21:41:26.2940254Z del arg0_1 2023-01-11T21:41:26.2940369Z del arg1_1 2023-01-11T21:41:26.2940491Z del buf0 2023-01-11T21:41:26.2940883Z buf2 = empty_strided((1, 128, 110, 110), (1548800, 12100, 110, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2941114Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2941223Z return (buf2, ) 2023-01-11T21:41:26.2941253Z 2023-01-11T21:41:26.2941260Z 2023-01-11T21:41:26.2941379Z if __name__ == "__main__": 2023-01-11T21:41:26.2941583Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2941790Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2942153Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2942488Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2942813Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2943224Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2943564Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2943869Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2944187Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2944581Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2944841Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2944854Z 2023-01-11T21:41:26.2944952Z 2023-01-11T21:41:26.2945118Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2945240Z import torch 2023-01-11T21:41:26.2945370Z import random 2023-01-11T21:41:26.2945563Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2945740Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2945750Z 2023-01-11T21:41:26.2945889Z aten = torch.ops.aten 2023-01-11T21:41:26.2946121Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2946287Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2946296Z 2023-01-11T21:41:26.2946304Z 2023-01-11T21:41:26.2946459Z async_compile.wait(globals()) 2023-01-11T21:41:26.2946576Z del async_compile 2023-01-11T21:41:26.2946585Z 2023-01-11T21:41:26.2946709Z def call(args): 2023-01-11T21:41:26.2946971Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2947086Z args.clear() 2023-01-11T21:41:26.2947529Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.2947729Z assert_size_stride(buf0, (1, 128, 110, 110), (1548800, 1, 14080, 128)) 2023-01-11T21:41:26.2947851Z del arg0_1 2023-01-11T21:41:26.2947972Z del arg1_1 2023-01-11T21:41:26.2948097Z del arg7_1 2023-01-11T21:41:26.2948220Z return (buf0, ) 2023-01-11T21:41:26.2948230Z 2023-01-11T21:41:26.2948236Z 2023-01-11T21:41:26.2948352Z if __name__ == "__main__": 2023-01-11T21:41:26.2948543Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2948753Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2949120Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2949440Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2949778Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2950113Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2950443Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2950760Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2951072Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2951441Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2951702Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2951717Z 2023-01-11T21:41:26.2952169Z [2023-01-11 21:25:40,417] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 97 2023-01-11T21:41:26.2952896Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2953109Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2953562Z [2023-01-11 21:25:40,523] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 98 2023-01-11T21:41:26.2954001Z [2023-01-11 21:25:40,546] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 98 2023-01-11T21:41:26.2954713Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2954921Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2955441Z [2023-01-11 21:25:40,656] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 99 2023-01-11T21:41:26.2955884Z [2023-01-11 21:25:42,191] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 99 2023-01-11T21:41:26.2956592Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2956787Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2957286Z [2023-01-11 21:25:42,323] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 100 2023-01-11T21:41:26.2957303Z 2023-01-11T21:41:26.2957475Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2957600Z import torch 2023-01-11T21:41:26.2957723Z import random 2023-01-11T21:41:26.2957923Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2958114Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2958146Z 2023-01-11T21:41:26.2958380Z aten = torch.ops.aten 2023-01-11T21:41:26.2958636Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2958812Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2958822Z 2023-01-11T21:41:26.2958829Z 2023-01-11T21:41:26.2959107Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2959493Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2959714Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2959919Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2960025Z { 2023-01-11T21:41:26.2960220Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2960345Z { 2023-01-11T21:41:26.2960537Z #pragma omp for collapse(2) 2023-01-11T21:41:26.2960691Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.2960816Z { 2023-01-11T21:41:26.2960995Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2961111Z { 2023-01-11T21:41:26.2961242Z { 2023-01-11T21:41:26.2961379Z { 2023-01-11T21:41:26.2961582Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2961762Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.2961896Z } 2023-01-11T21:41:26.2962030Z } 2023-01-11T21:41:26.2962140Z } 2023-01-11T21:41:26.2962268Z } 2023-01-11T21:41:26.2962390Z } 2023-01-11T21:41:26.2962510Z } 2023-01-11T21:41:26.2962687Z ''') 2023-01-11T21:41:26.2962700Z 2023-01-11T21:41:26.2962712Z 2023-01-11T21:41:26.2962977Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2963366Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2963584Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2963774Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2963896Z { 2023-01-11T21:41:26.2964096Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2964222Z { 2023-01-11T21:41:26.2964379Z #pragma omp for 2023-01-11T21:41:26.2964546Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.2964657Z { 2023-01-11T21:41:26.2964890Z #pragma GCC ivdep 2023-01-11T21:41:26.2965057Z for(long i1=0; i1<11664; i1+=1) 2023-01-11T21:41:26.2965169Z { 2023-01-11T21:41:26.2965288Z { 2023-01-11T21:41:26.2965406Z { 2023-01-11T21:41:26.2965584Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.2965737Z out_ptr0[i1 + (11664*i0)] = tmp0; 2023-01-11T21:41:26.2965842Z } 2023-01-11T21:41:26.2966051Z } 2023-01-11T21:41:26.2966164Z } 2023-01-11T21:41:26.2966279Z } 2023-01-11T21:41:26.2966385Z } 2023-01-11T21:41:26.2966475Z } 2023-01-11T21:41:26.2966632Z ''') 2023-01-11T21:41:26.2966641Z 2023-01-11T21:41:26.2966647Z 2023-01-11T21:41:26.2966788Z async_compile.wait(globals()) 2023-01-11T21:41:26.2966913Z del async_compile 2023-01-11T21:41:26.2966925Z 2023-01-11T21:41:26.2967048Z def call(args): 2023-01-11T21:41:26.2967242Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2967365Z args.clear() 2023-01-11T21:41:26.2967743Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2967946Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2968136Z del arg7_1 2023-01-11T21:41:26.2968578Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.2968767Z assert_size_stride(buf1, (1, 32, 108, 108), (373248, 1, 3456, 32)) 2023-01-11T21:41:26.2968894Z del arg0_1 2023-01-11T21:41:26.2969143Z del arg1_1 2023-01-11T21:41:26.2969265Z del buf0 2023-01-11T21:41:26.2969652Z buf2 = empty_strided((1, 32, 108, 108), (373248, 11664, 108, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2969861Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2969990Z return (buf2, ) 2023-01-11T21:41:26.2969998Z 2023-01-11T21:41:26.2970005Z 2023-01-11T21:41:26.2970139Z if __name__ == "__main__": 2023-01-11T21:41:26.2970338Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2970551Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2970907Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2971241Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2971546Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2971879Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2972203Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2972522Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2972847Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2973240Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2973497Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2973505Z 2023-01-11T21:41:26.2973511Z 2023-01-11T21:41:26.2973680Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2973803Z import torch 2023-01-11T21:41:26.2973917Z import random 2023-01-11T21:41:26.2974128Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2974324Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2974333Z 2023-01-11T21:41:26.2974469Z aten = torch.ops.aten 2023-01-11T21:41:26.2974695Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2974857Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2974865Z 2023-01-11T21:41:26.2974872Z 2023-01-11T21:41:26.2975027Z async_compile.wait(globals()) 2023-01-11T21:41:26.2975163Z del async_compile 2023-01-11T21:41:26.2975170Z 2023-01-11T21:41:26.2975265Z def call(args): 2023-01-11T21:41:26.2975465Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2975589Z args.clear() 2023-01-11T21:41:26.2976035Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.2976221Z assert_size_stride(buf0, (1, 32, 108, 108), (373248, 1, 3456, 32)) 2023-01-11T21:41:26.2976470Z del arg0_1 2023-01-11T21:41:26.2976589Z del arg1_1 2023-01-11T21:41:26.2976697Z del arg7_1 2023-01-11T21:41:26.2976825Z return (buf0, ) 2023-01-11T21:41:26.2976837Z 2023-01-11T21:41:26.2976843Z 2023-01-11T21:41:26.2976970Z if __name__ == "__main__": 2023-01-11T21:41:26.2977284Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2977526Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2977946Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2978318Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2978700Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2979068Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2979541Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2979932Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2980295Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2980740Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2981050Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2981066Z 2023-01-11T21:41:26.2981073Z 2023-01-11T21:41:26.2981248Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.2981393Z import torch 2023-01-11T21:41:26.2981522Z import random 2023-01-11T21:41:26.2981752Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.2981989Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.2981999Z 2023-01-11T21:41:26.2982148Z aten = torch.ops.aten 2023-01-11T21:41:26.2982412Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.2982598Z async_compile = AsyncCompile() 2023-01-11T21:41:26.2982617Z 2023-01-11T21:41:26.2982624Z 2023-01-11T21:41:26.2982901Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.2983354Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2983537Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2983675Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2983771Z { 2023-01-11T21:41:26.2983945Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2984057Z { 2023-01-11T21:41:26.2984199Z #pragma omp for 2023-01-11T21:41:26.2984350Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.2984450Z { 2023-01-11T21:41:26.2984597Z #pragma GCC ivdep 2023-01-11T21:41:26.2984756Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.2984883Z { 2023-01-11T21:41:26.2985005Z { 2023-01-11T21:41:26.2985127Z { 2023-01-11T21:41:26.2985318Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.2985481Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.2985604Z } 2023-01-11T21:41:26.2985724Z } 2023-01-11T21:41:26.2985838Z } 2023-01-11T21:41:26.2985954Z } 2023-01-11T21:41:26.2986067Z } 2023-01-11T21:41:26.2986175Z } 2023-01-11T21:41:26.2986339Z ''') 2023-01-11T21:41:26.2986351Z 2023-01-11T21:41:26.2986357Z 2023-01-11T21:41:26.2986629Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.2987009Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.2987229Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.2987409Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.2987522Z { 2023-01-11T21:41:26.2987713Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.2987812Z { 2023-01-11T21:41:26.2987952Z #pragma omp for 2023-01-11T21:41:26.2988243Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.2988359Z { 2023-01-11T21:41:26.2988505Z #pragma GCC ivdep 2023-01-11T21:41:26.2988669Z for(long i1=0; i1<11664; i1+=1) 2023-01-11T21:41:26.2988786Z { 2023-01-11T21:41:26.2988888Z { 2023-01-11T21:41:26.2989008Z { 2023-01-11T21:41:26.2989198Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.2989377Z out_ptr0[i1 + (11664*i0)] = tmp0; 2023-01-11T21:41:26.2989500Z } 2023-01-11T21:41:26.2989619Z } 2023-01-11T21:41:26.2989736Z } 2023-01-11T21:41:26.2989834Z } 2023-01-11T21:41:26.2989944Z } 2023-01-11T21:41:26.2990050Z } 2023-01-11T21:41:26.2990223Z ''') 2023-01-11T21:41:26.2990236Z 2023-01-11T21:41:26.2990328Z 2023-01-11T21:41:26.2990518Z async_compile.wait(globals()) 2023-01-11T21:41:26.2990653Z del async_compile 2023-01-11T21:41:26.2990670Z 2023-01-11T21:41:26.2990800Z def call(args): 2023-01-11T21:41:26.2991004Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.2991135Z args.clear() 2023-01-11T21:41:26.2991594Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2991845Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.2991965Z del arg7_1 2023-01-11T21:41:26.2992456Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.2992663Z assert_size_stride(buf1, (1, 128, 108, 108), (1492992, 1, 13824, 128)) 2023-01-11T21:41:26.2992770Z del arg0_1 2023-01-11T21:41:26.2992895Z del arg1_1 2023-01-11T21:41:26.2993011Z del buf0 2023-01-11T21:41:26.2993471Z buf2 = empty_strided((1, 128, 108, 108), (1492992, 11664, 108, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2993720Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.2993854Z return (buf2, ) 2023-01-11T21:41:26.2993867Z 2023-01-11T21:41:26.2993874Z 2023-01-11T21:41:26.2994009Z if __name__ == "__main__": 2023-01-11T21:41:26.2994222Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.2994434Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.2994864Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2995248Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2995624Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2995993Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2996369Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2996820Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2997122Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.2997473Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.2997721Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.2997732Z 2023-01-11T21:41:26.2998182Z [2023-01-11 21:25:42,345] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 100 2023-01-11T21:41:26.2998885Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.2999100Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.2999659Z [2023-01-11 21:25:42,465] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 101 2023-01-11T21:41:26.3000116Z [2023-01-11 21:25:42,496] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 101 2023-01-11T21:41:26.3000814Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3001018Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3001546Z [2023-01-11 21:25:42,601] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 102 2023-01-11T21:41:26.3002015Z [2023-01-11 21:25:42,634] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 102 2023-01-11T21:41:26.3002713Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3002914Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3003347Z [2023-01-11 21:25:42,759] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 103 2023-01-11T21:41:26.3003359Z 2023-01-11T21:41:26.3003515Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3003623Z import torch 2023-01-11T21:41:26.3003740Z import random 2023-01-11T21:41:26.3003928Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3004126Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3004141Z 2023-01-11T21:41:26.3004269Z aten = torch.ops.aten 2023-01-11T21:41:26.3004463Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3004592Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3004599Z 2023-01-11T21:41:26.3004604Z 2023-01-11T21:41:26.3004736Z async_compile.wait(globals()) 2023-01-11T21:41:26.3004845Z del async_compile 2023-01-11T21:41:26.3004853Z 2023-01-11T21:41:26.3004961Z def call(args): 2023-01-11T21:41:26.3005149Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3005262Z args.clear() 2023-01-11T21:41:26.3005703Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.3005865Z assert_size_stride(buf0, (1, 128, 108, 108), (1492992, 1, 13824, 128)) 2023-01-11T21:41:26.3005979Z del arg0_1 2023-01-11T21:41:26.3006082Z del arg1_1 2023-01-11T21:41:26.3006185Z del arg7_1 2023-01-11T21:41:26.3006301Z return (buf0, ) 2023-01-11T21:41:26.3006310Z 2023-01-11T21:41:26.3006316Z 2023-01-11T21:41:26.3006433Z if __name__ == "__main__": 2023-01-11T21:41:26.3006613Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3006805Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3007156Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3007478Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3007796Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3008112Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3008427Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3008745Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3009180Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3009674Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3009907Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3009917Z 2023-01-11T21:41:26.3009939Z 2023-01-11T21:41:26.3010073Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3010182Z import torch 2023-01-11T21:41:26.3010295Z import random 2023-01-11T21:41:26.3010473Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3010663Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3010671Z 2023-01-11T21:41:26.3010792Z aten = torch.ops.aten 2023-01-11T21:41:26.3011000Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3011245Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3011257Z 2023-01-11T21:41:26.3011281Z 2023-01-11T21:41:26.3011513Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3011843Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3012029Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3012183Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3012281Z { 2023-01-11T21:41:26.3012437Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3012532Z { 2023-01-11T21:41:26.3012661Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3012789Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3012887Z { 2023-01-11T21:41:26.3013026Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3013123Z { 2023-01-11T21:41:26.3013222Z { 2023-01-11T21:41:26.3013311Z { 2023-01-11T21:41:26.3013479Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3013624Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.3013730Z } 2023-01-11T21:41:26.3013837Z } 2023-01-11T21:41:26.3013934Z } 2023-01-11T21:41:26.3014031Z } 2023-01-11T21:41:26.3014113Z } 2023-01-11T21:41:26.3014207Z } 2023-01-11T21:41:26.3014351Z ''') 2023-01-11T21:41:26.3014360Z 2023-01-11T21:41:26.3014365Z 2023-01-11T21:41:26.3014588Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3014915Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3015105Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3015259Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3015336Z { 2023-01-11T21:41:26.3015491Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3015584Z { 2023-01-11T21:41:26.3015703Z #pragma omp for 2023-01-11T21:41:26.3015840Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3015944Z { 2023-01-11T21:41:26.3016071Z #pragma GCC ivdep 2023-01-11T21:41:26.3016199Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3016297Z { 2023-01-11T21:41:26.3016392Z { 2023-01-11T21:41:26.3016495Z { 2023-01-11T21:41:26.3016653Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.3016803Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.3016907Z } 2023-01-11T21:41:26.3016993Z } 2023-01-11T21:41:26.3017091Z } 2023-01-11T21:41:26.3017186Z } 2023-01-11T21:41:26.3017279Z } 2023-01-11T21:41:26.3017372Z } 2023-01-11T21:41:26.3017522Z ''') 2023-01-11T21:41:26.3017532Z 2023-01-11T21:41:26.3017538Z 2023-01-11T21:41:26.3017684Z async_compile.wait(globals()) 2023-01-11T21:41:26.3017782Z del async_compile 2023-01-11T21:41:26.3017790Z 2023-01-11T21:41:26.3017906Z def call(args): 2023-01-11T21:41:26.3018095Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3018299Z args.clear() 2023-01-11T21:41:26.3018675Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3018887Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3018994Z del arg7_1 2023-01-11T21:41:26.3019399Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.3019573Z assert_size_stride(buf1, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.3019680Z del arg0_1 2023-01-11T21:41:26.3019785Z del arg1_1 2023-01-11T21:41:26.3019890Z del buf0 2023-01-11T21:41:26.3020264Z buf2 = empty_strided((1, 32, 112, 112), (401408, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3020599Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3020722Z return (buf2, ) 2023-01-11T21:41:26.3020732Z 2023-01-11T21:41:26.3020738Z 2023-01-11T21:41:26.3020849Z if __name__ == "__main__": 2023-01-11T21:41:26.3021031Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3021224Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3021581Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3021892Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3022180Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3022482Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3022796Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3023093Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3023467Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3023831Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3024083Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3024094Z 2023-01-11T21:41:26.3024100Z 2023-01-11T21:41:26.3024251Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3024361Z import torch 2023-01-11T21:41:26.3024472Z import random 2023-01-11T21:41:26.3024655Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3024827Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3024851Z 2023-01-11T21:41:26.3024959Z aten = torch.ops.aten 2023-01-11T21:41:26.3025170Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3025319Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3025327Z 2023-01-11T21:41:26.3025333Z 2023-01-11T21:41:26.3025477Z async_compile.wait(globals()) 2023-01-11T21:41:26.3025594Z del async_compile 2023-01-11T21:41:26.3025601Z 2023-01-11T21:41:26.3025718Z def call(args): 2023-01-11T21:41:26.3025901Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3025997Z args.clear() 2023-01-11T21:41:26.3026438Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.3026611Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.3026716Z del arg0_1 2023-01-11T21:41:26.3026820Z del arg1_1 2023-01-11T21:41:26.3026926Z del arg7_1 2023-01-11T21:41:26.3027038Z return (buf0, ) 2023-01-11T21:41:26.3027047Z 2023-01-11T21:41:26.3027053Z 2023-01-11T21:41:26.3027171Z if __name__ == "__main__": 2023-01-11T21:41:26.3027335Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3027529Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3027896Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3028221Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3028629Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3028936Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3029241Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3029544Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3029825Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3030182Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3030432Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3030441Z 2023-01-11T21:41:26.3030966Z [2023-01-11 21:25:42,791] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 103 2023-01-11T21:41:26.3031675Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3031872Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3032307Z [2023-01-11 21:25:42,925] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 104 2023-01-11T21:41:26.3032757Z [2023-01-11 21:25:42,947] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 104 2023-01-11T21:41:26.3033455Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3033658Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3034091Z [2023-01-11 21:25:43,074] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 105 2023-01-11T21:41:26.3034101Z 2023-01-11T21:41:26.3034233Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3034346Z import torch 2023-01-11T21:41:26.3034456Z import random 2023-01-11T21:41:26.3034640Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3034832Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3034841Z 2023-01-11T21:41:26.3034963Z aten = torch.ops.aten 2023-01-11T21:41:26.3035176Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3035309Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3035335Z 2023-01-11T21:41:26.3035341Z 2023-01-11T21:41:26.3035569Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3035897Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3036088Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3036243Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3036340Z { 2023-01-11T21:41:26.3036495Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3036589Z { 2023-01-11T21:41:26.3036693Z #pragma omp for 2023-01-11T21:41:26.3036822Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3036920Z { 2023-01-11T21:41:26.3037049Z #pragma GCC ivdep 2023-01-11T21:41:26.3037188Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3037287Z { 2023-01-11T21:41:26.3037388Z { 2023-01-11T21:41:26.3037484Z { 2023-01-11T21:41:26.3037652Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3037892Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.3037996Z } 2023-01-11T21:41:26.3038096Z } 2023-01-11T21:41:26.3038194Z } 2023-01-11T21:41:26.3038277Z } 2023-01-11T21:41:26.3038371Z } 2023-01-11T21:41:26.3038466Z } 2023-01-11T21:41:26.3038610Z ''') 2023-01-11T21:41:26.3038619Z 2023-01-11T21:41:26.3038625Z 2023-01-11T21:41:26.3038852Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3039153Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3039363Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3039536Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3039628Z { 2023-01-11T21:41:26.3039803Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3039976Z { 2023-01-11T21:41:26.3040126Z #pragma omp for 2023-01-11T21:41:26.3040274Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.3040393Z { 2023-01-11T21:41:26.3040536Z #pragma GCC ivdep 2023-01-11T21:41:26.3040678Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3040793Z { 2023-01-11T21:41:26.3040909Z { 2023-01-11T21:41:26.3041029Z { 2023-01-11T21:41:26.3041213Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.3041382Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.3041485Z } 2023-01-11T21:41:26.3041600Z } 2023-01-11T21:41:26.3041716Z } 2023-01-11T21:41:26.3041826Z } 2023-01-11T21:41:26.3041936Z } 2023-01-11T21:41:26.3042043Z } 2023-01-11T21:41:26.3042190Z ''') 2023-01-11T21:41:26.3042199Z 2023-01-11T21:41:26.3042206Z 2023-01-11T21:41:26.3042352Z async_compile.wait(globals()) 2023-01-11T21:41:26.3042486Z del async_compile 2023-01-11T21:41:26.3042495Z 2023-01-11T21:41:26.3042618Z def call(args): 2023-01-11T21:41:26.3042835Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3042967Z args.clear() 2023-01-11T21:41:26.3043388Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3043626Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3043748Z del arg7_1 2023-01-11T21:41:26.3044207Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.3044412Z assert_size_stride(buf1, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.3044536Z del arg0_1 2023-01-11T21:41:26.3044655Z del arg1_1 2023-01-11T21:41:26.3044775Z del buf0 2023-01-11T21:41:26.3045207Z buf2 = empty_strided((1, 128, 112, 112), (1605632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3045446Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3045565Z return (buf2, ) 2023-01-11T21:41:26.3045590Z 2023-01-11T21:41:26.3045598Z 2023-01-11T21:41:26.3045716Z if __name__ == "__main__": 2023-01-11T21:41:26.3045925Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3046147Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3046543Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3046913Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3047276Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3047632Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3047974Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3048344Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3048680Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3049301Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3049555Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3049564Z 2023-01-11T21:41:26.3049571Z 2023-01-11T21:41:26.3049724Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3049837Z import torch 2023-01-11T21:41:26.3049949Z import random 2023-01-11T21:41:26.3050133Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3050311Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3050320Z 2023-01-11T21:41:26.3050443Z aten = torch.ops.aten 2023-01-11T21:41:26.3050656Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3050900Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3050911Z 2023-01-11T21:41:26.3050917Z 2023-01-11T21:41:26.3051062Z async_compile.wait(globals()) 2023-01-11T21:41:26.3051187Z del async_compile 2023-01-11T21:41:26.3051194Z 2023-01-11T21:41:26.3051306Z def call(args): 2023-01-11T21:41:26.3051493Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3051590Z args.clear() 2023-01-11T21:41:26.3052021Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.3052201Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.3052310Z del arg0_1 2023-01-11T21:41:26.3052416Z del arg1_1 2023-01-11T21:41:26.3052523Z del arg7_1 2023-01-11T21:41:26.3052637Z return (buf0, ) 2023-01-11T21:41:26.3052645Z 2023-01-11T21:41:26.3052650Z 2023-01-11T21:41:26.3052753Z if __name__ == "__main__": 2023-01-11T21:41:26.3052941Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3053138Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3053489Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3053818Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3054136Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3054456Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3054767Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3055062Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3055356Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3055673Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3055892Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3055899Z 2023-01-11T21:41:26.3056269Z [2023-01-11 21:25:43,107] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 105 2023-01-11T21:41:26.3056858Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3057029Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3057387Z [2023-01-11 21:25:43,217] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 106 2023-01-11T21:41:26.3057765Z [2023-01-11 21:25:43,239] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 106 2023-01-11T21:41:26.3058354Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3058603Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3058942Z [2023-01-11 21:25:43,351] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 107 2023-01-11T21:41:26.3059332Z [2023-01-11 21:25:43,382] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 107 2023-01-11T21:41:26.3060134Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3060359Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3060824Z [2023-01-11 21:25:43,518] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 108 2023-01-11T21:41:26.3060832Z 2023-01-11T21:41:26.3060996Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3061121Z import torch 2023-01-11T21:41:26.3061246Z import random 2023-01-11T21:41:26.3061449Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3061645Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3061669Z 2023-01-11T21:41:26.3061789Z aten = torch.ops.aten 2023-01-11T21:41:26.3062026Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3062186Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3062194Z 2023-01-11T21:41:26.3062201Z 2023-01-11T21:41:26.3062451Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3062815Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3063027Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3063270Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3063364Z { 2023-01-11T21:41:26.3063533Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3063639Z { 2023-01-11T21:41:26.3063794Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3063929Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3064042Z { 2023-01-11T21:41:26.3064192Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3064287Z { 2023-01-11T21:41:26.3064396Z { 2023-01-11T21:41:26.3064511Z { 2023-01-11T21:41:26.3064689Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3064855Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.3064971Z } 2023-01-11T21:41:26.3065087Z } 2023-01-11T21:41:26.3065183Z } 2023-01-11T21:41:26.3065290Z } 2023-01-11T21:41:26.3065395Z } 2023-01-11T21:41:26.3065499Z } 2023-01-11T21:41:26.3065649Z ''') 2023-01-11T21:41:26.3065657Z 2023-01-11T21:41:26.3065663Z 2023-01-11T21:41:26.3065909Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3066268Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3066457Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3066629Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3066734Z { 2023-01-11T21:41:26.3066907Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3067016Z { 2023-01-11T21:41:26.3067155Z #pragma omp for 2023-01-11T21:41:26.3067297Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3067392Z { 2023-01-11T21:41:26.3067537Z #pragma GCC ivdep 2023-01-11T21:41:26.3067691Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3067880Z { 2023-01-11T21:41:26.3067993Z { 2023-01-11T21:41:26.3068107Z { 2023-01-11T21:41:26.3068285Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.3068438Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.3068552Z } 2023-01-11T21:41:26.3068662Z } 2023-01-11T21:41:26.3068777Z } 2023-01-11T21:41:26.3068886Z } 2023-01-11T21:41:26.3068989Z } 2023-01-11T21:41:26.3069076Z } 2023-01-11T21:41:26.3069228Z ''') 2023-01-11T21:41:26.3069237Z 2023-01-11T21:41:26.3069244Z 2023-01-11T21:41:26.3069399Z async_compile.wait(globals()) 2023-01-11T21:41:26.3069526Z del async_compile 2023-01-11T21:41:26.3069534Z 2023-01-11T21:41:26.3069658Z def call(args): 2023-01-11T21:41:26.3069917Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3070050Z args.clear() 2023-01-11T21:41:26.3070453Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3070675Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3070791Z del arg7_1 2023-01-11T21:41:26.3071246Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.3071437Z assert_size_stride(buf1, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.3071556Z del arg0_1 2023-01-11T21:41:26.3071669Z del arg1_1 2023-01-11T21:41:26.3071761Z del buf0 2023-01-11T21:41:26.3072067Z buf2 = empty_strided((1, 32, 112, 112), (401408, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3072249Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3072348Z return (buf2, ) 2023-01-11T21:41:26.3072359Z 2023-01-11T21:41:26.3072365Z 2023-01-11T21:41:26.3072467Z if __name__ == "__main__": 2023-01-11T21:41:26.3072620Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3072786Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3073126Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3073587Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3073980Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3074368Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3074758Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3075128Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3075498Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3075953Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3076273Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3076284Z 2023-01-11T21:41:26.3076293Z 2023-01-11T21:41:26.3076485Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3076617Z import torch 2023-01-11T21:41:26.3076740Z import random 2023-01-11T21:41:26.3076978Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3077222Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3077236Z 2023-01-11T21:41:26.3077387Z aten = torch.ops.aten 2023-01-11T21:41:26.3077648Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3077840Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3077852Z 2023-01-11T21:41:26.3077859Z 2023-01-11T21:41:26.3078044Z async_compile.wait(globals()) 2023-01-11T21:41:26.3078195Z del async_compile 2023-01-11T21:41:26.3078213Z 2023-01-11T21:41:26.3078324Z def call(args): 2023-01-11T21:41:26.3078561Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3078821Z args.clear() 2023-01-11T21:41:26.3079333Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.3079559Z assert_size_stride(buf0, (1, 32, 112, 112), (401408, 1, 3584, 32)) 2023-01-11T21:41:26.3079695Z del arg0_1 2023-01-11T21:41:26.3079838Z del arg1_1 2023-01-11T21:41:26.3079954Z del arg7_1 2023-01-11T21:41:26.3080101Z return (buf0, ) 2023-01-11T21:41:26.3080112Z 2023-01-11T21:41:26.3080120Z 2023-01-11T21:41:26.3080280Z if __name__ == "__main__": 2023-01-11T21:41:26.3080510Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3080756Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3081283Z arg0_1 = rand_strided((32, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3081685Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3082066Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3082426Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3082797Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3083193Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3083556Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3083998Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3084312Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3084323Z 2023-01-11T21:41:26.3084329Z 2023-01-11T21:41:26.3084510Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3084658Z import torch 2023-01-11T21:41:26.3084792Z import random 2023-01-11T21:41:26.3085021Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3085270Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3085282Z 2023-01-11T21:41:26.3085435Z aten = torch.ops.aten 2023-01-11T21:41:26.3085701Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3085888Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3085897Z 2023-01-11T21:41:26.3085907Z 2023-01-11T21:41:26.3086183Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3086564Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3086786Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3086985Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3087109Z { 2023-01-11T21:41:26.3087296Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3087434Z { 2023-01-11T21:41:26.3087599Z #pragma omp for 2023-01-11T21:41:26.3087768Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3087886Z { 2023-01-11T21:41:26.3088036Z #pragma GCC ivdep 2023-01-11T21:41:26.3088221Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3088355Z { 2023-01-11T21:41:26.3088491Z { 2023-01-11T21:41:26.3088632Z { 2023-01-11T21:41:26.3088838Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3088990Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.3089279Z } 2023-01-11T21:41:26.3089415Z } 2023-01-11T21:41:26.3089552Z } 2023-01-11T21:41:26.3089687Z } 2023-01-11T21:41:26.3089809Z } 2023-01-11T21:41:26.3089912Z } 2023-01-11T21:41:26.3090091Z ''') 2023-01-11T21:41:26.3090102Z 2023-01-11T21:41:26.3090111Z 2023-01-11T21:41:26.3090402Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3090812Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3091183Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3091390Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3091521Z { 2023-01-11T21:41:26.3091715Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3091806Z { 2023-01-11T21:41:26.3091962Z #pragma omp for 2023-01-11T21:41:26.3092132Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.3092264Z { 2023-01-11T21:41:26.3092426Z #pragma GCC ivdep 2023-01-11T21:41:26.3092601Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3092718Z { 2023-01-11T21:41:26.3092834Z { 2023-01-11T21:41:26.3092971Z { 2023-01-11T21:41:26.3093181Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.3093477Z out_ptr0[i1 + (12544*i0)] = tmp0; 2023-01-11T21:41:26.3093611Z } 2023-01-11T21:41:26.3093748Z } 2023-01-11T21:41:26.3093867Z } 2023-01-11T21:41:26.3093997Z } 2023-01-11T21:41:26.3094127Z } 2023-01-11T21:41:26.3094251Z } 2023-01-11T21:41:26.3094437Z ''') 2023-01-11T21:41:26.3094446Z 2023-01-11T21:41:26.3094453Z 2023-01-11T21:41:26.3094618Z async_compile.wait(globals()) 2023-01-11T21:41:26.3094777Z del async_compile 2023-01-11T21:41:26.3094786Z 2023-01-11T21:41:26.3094935Z def call(args): 2023-01-11T21:41:26.3095147Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3095290Z args.clear() 2023-01-11T21:41:26.3095750Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3096019Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3096158Z del arg7_1 2023-01-11T21:41:26.3096642Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.3096869Z assert_size_stride(buf1, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.3096998Z del arg0_1 2023-01-11T21:41:26.3097140Z del arg1_1 2023-01-11T21:41:26.3097269Z del buf0 2023-01-11T21:41:26.3097738Z buf2 = empty_strided((1, 128, 112, 112), (1605632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3098008Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3098141Z return (buf2, ) 2023-01-11T21:41:26.3098150Z 2023-01-11T21:41:26.3098156Z 2023-01-11T21:41:26.3098314Z if __name__ == "__main__": 2023-01-11T21:41:26.3098547Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3098769Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3099197Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3099592Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3099975Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3100376Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3100738Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3101125Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3101495Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3101909Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3102216Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3102230Z 2023-01-11T21:41:26.3102757Z [2023-01-11 21:25:43,540] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 108 2023-01-11T21:41:26.3103643Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3104026Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3104546Z [2023-01-11 21:25:43,664] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 109 2023-01-11T21:41:26.3105088Z [2023-01-11 21:25:43,695] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 109 2023-01-11T21:41:26.3105982Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3106231Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3106756Z [2023-01-11 21:25:43,800] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 110 2023-01-11T21:41:26.3107265Z [2023-01-11 21:25:43,822] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 110 2023-01-11T21:41:26.3108067Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3108301Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3108821Z [2023-01-11 21:25:43,934] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 111 2023-01-11T21:41:26.3108837Z 2023-01-11T21:41:26.3109024Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3109175Z import torch 2023-01-11T21:41:26.3109331Z import random 2023-01-11T21:41:26.3109562Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3109804Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3109816Z 2023-01-11T21:41:26.3109974Z aten = torch.ops.aten 2023-01-11T21:41:26.3110223Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3110415Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3110425Z 2023-01-11T21:41:26.3110436Z 2023-01-11T21:41:26.3110611Z async_compile.wait(globals()) 2023-01-11T21:41:26.3110751Z del async_compile 2023-01-11T21:41:26.3110761Z 2023-01-11T21:41:26.3110909Z def call(args): 2023-01-11T21:41:26.3111156Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3111309Z args.clear() 2023-01-11T21:41:26.3111825Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.3112047Z assert_size_stride(buf0, (1, 128, 112, 112), (1605632, 1, 14336, 128)) 2023-01-11T21:41:26.3112190Z del arg0_1 2023-01-11T21:41:26.3112337Z del arg1_1 2023-01-11T21:41:26.3112459Z del arg7_1 2023-01-11T21:41:26.3112610Z return (buf0, ) 2023-01-11T21:41:26.3112620Z 2023-01-11T21:41:26.3112627Z 2023-01-11T21:41:26.3112783Z if __name__ == "__main__": 2023-01-11T21:41:26.3113011Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3113256Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3113664Z arg0_1 = rand_strided((128, 3, 1, 1), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3114067Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3114461Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3114841Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3115327Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3115714Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3116075Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3116528Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3116805Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3116818Z 2023-01-11T21:41:26.3116848Z 2023-01-11T21:41:26.3117020Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3117161Z import torch 2023-01-11T21:41:26.3117323Z import random 2023-01-11T21:41:26.3117630Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3117862Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3117882Z 2023-01-11T21:41:26.3118036Z aten = torch.ops.aten 2023-01-11T21:41:26.3118300Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3118468Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3118480Z 2023-01-11T21:41:26.3118487Z 2023-01-11T21:41:26.3118757Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3119141Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3119380Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3119571Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3119706Z { 2023-01-11T21:41:26.3119905Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3120010Z { 2023-01-11T21:41:26.3120188Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3120350Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3120475Z { 2023-01-11T21:41:26.3120667Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3120799Z { 2023-01-11T21:41:26.3120934Z { 2023-01-11T21:41:26.3121052Z { 2023-01-11T21:41:26.3121263Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3121442Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.3121581Z } 2023-01-11T21:41:26.3121719Z } 2023-01-11T21:41:26.3121847Z } 2023-01-11T21:41:26.3121974Z } 2023-01-11T21:41:26.3122084Z } 2023-01-11T21:41:26.3122199Z } 2023-01-11T21:41:26.3122374Z ''') 2023-01-11T21:41:26.3122387Z 2023-01-11T21:41:26.3122395Z 2023-01-11T21:41:26.3122673Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3123066Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3123300Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3123505Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3123617Z { 2023-01-11T21:41:26.3123820Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3123939Z { 2023-01-11T21:41:26.3124089Z #pragma omp for 2023-01-11T21:41:26.3124258Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3124391Z { 2023-01-11T21:41:26.3124561Z #pragma GCC ivdep 2023-01-11T21:41:26.3124721Z for(long i1=0; i1<12100; i1+=1) 2023-01-11T21:41:26.3124841Z { 2023-01-11T21:41:26.3124975Z { 2023-01-11T21:41:26.3125117Z { 2023-01-11T21:41:26.3125326Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.3125529Z out_ptr0[i1 + (12100*i0)] = tmp0; 2023-01-11T21:41:26.3125663Z } 2023-01-11T21:41:26.3125762Z } 2023-01-11T21:41:26.3125892Z } 2023-01-11T21:41:26.3126029Z } 2023-01-11T21:41:26.3126167Z } 2023-01-11T21:41:26.3126289Z } 2023-01-11T21:41:26.3126467Z ''') 2023-01-11T21:41:26.3126584Z 2023-01-11T21:41:26.3126592Z 2023-01-11T21:41:26.3126774Z async_compile.wait(globals()) 2023-01-11T21:41:26.3126912Z del async_compile 2023-01-11T21:41:26.3126921Z 2023-01-11T21:41:26.3127069Z def call(args): 2023-01-11T21:41:26.3127311Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3127462Z args.clear() 2023-01-11T21:41:26.3127913Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3128188Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3128328Z del arg7_1 2023-01-11T21:41:26.3128802Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.3129340Z assert_size_stride(buf1, (1, 32, 110, 110), (387200, 1, 3520, 32)) 2023-01-11T21:41:26.3129508Z del arg0_1 2023-01-11T21:41:26.3129641Z del arg1_1 2023-01-11T21:41:26.3129780Z del buf0 2023-01-11T21:41:26.3130262Z buf2 = empty_strided((1, 32, 110, 110), (387200, 12100, 110, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3130517Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3130668Z return (buf2, ) 2023-01-11T21:41:26.3130679Z 2023-01-11T21:41:26.3130685Z 2023-01-11T21:41:26.3130819Z if __name__ == "__main__": 2023-01-11T21:41:26.3131042Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3131276Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3131714Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3132092Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3132489Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3132874Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3133192Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3133488Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3133782Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3134135Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3134385Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3134395Z 2023-01-11T21:41:26.3134402Z 2023-01-11T21:41:26.3134596Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3134745Z import torch 2023-01-11T21:41:26.3134895Z import random 2023-01-11T21:41:26.3135133Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3135352Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3135362Z 2023-01-11T21:41:26.3135522Z aten = torch.ops.aten 2023-01-11T21:41:26.3135807Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3135999Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3136011Z 2023-01-11T21:41:26.3136018Z 2023-01-11T21:41:26.3136188Z async_compile.wait(globals()) 2023-01-11T21:41:26.3136341Z del async_compile 2023-01-11T21:41:26.3136351Z 2023-01-11T21:41:26.3136501Z def call(args): 2023-01-11T21:41:26.3136743Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3136867Z args.clear() 2023-01-11T21:41:26.3137370Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.3137589Z assert_size_stride(buf0, (1, 32, 110, 110), (387200, 1, 3520, 32)) 2023-01-11T21:41:26.3137726Z del arg0_1 2023-01-11T21:41:26.3137872Z del arg1_1 2023-01-11T21:41:26.3138001Z del arg7_1 2023-01-11T21:41:26.3138151Z return (buf0, ) 2023-01-11T21:41:26.3138164Z 2023-01-11T21:41:26.3138171Z 2023-01-11T21:41:26.3138465Z if __name__ == "__main__": 2023-01-11T21:41:26.3138675Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3138900Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3139344Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3139839Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3140179Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3140517Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3140843Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3141166Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3141557Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3141952Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3142233Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3142244Z 2023-01-11T21:41:26.3142709Z [2023-01-11 21:25:43,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 111 2023-01-11T21:41:26.3143492Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3143716Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3144175Z [2023-01-11 21:25:44,104] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 112 2023-01-11T21:41:26.3144630Z [2023-01-11 21:25:44,126] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 112 2023-01-11T21:41:26.3145330Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3145553Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3146000Z [2023-01-11 21:25:44,257] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 113 2023-01-11T21:41:26.3146014Z 2023-01-11T21:41:26.3146166Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3146297Z import torch 2023-01-11T21:41:26.3146423Z import random 2023-01-11T21:41:26.3146621Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3146831Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3146846Z 2023-01-11T21:41:26.3146985Z aten = torch.ops.aten 2023-01-11T21:41:26.3147228Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3147358Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3147388Z 2023-01-11T21:41:26.3147395Z 2023-01-11T21:41:26.3147624Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3147962Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3148153Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3148339Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3148452Z { 2023-01-11T21:41:26.3148629Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3148738Z { 2023-01-11T21:41:26.3148858Z #pragma omp for 2023-01-11T21:41:26.3148997Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3149117Z { 2023-01-11T21:41:26.3149265Z #pragma GCC ivdep 2023-01-11T21:41:26.3149535Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3149661Z { 2023-01-11T21:41:26.3149767Z { 2023-01-11T21:41:26.3149873Z { 2023-01-11T21:41:26.3150065Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3150241Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.3150365Z } 2023-01-11T21:41:26.3150483Z } 2023-01-11T21:41:26.3150602Z } 2023-01-11T21:41:26.3150685Z } 2023-01-11T21:41:26.3150804Z } 2023-01-11T21:41:26.3150919Z } 2023-01-11T21:41:26.3151082Z ''') 2023-01-11T21:41:26.3151091Z 2023-01-11T21:41:26.3151096Z 2023-01-11T21:41:26.3151344Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3151743Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3151960Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3152143Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3152233Z { 2023-01-11T21:41:26.3152400Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3152512Z { 2023-01-11T21:41:26.3152652Z #pragma omp for 2023-01-11T21:41:26.3152809Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.3152924Z { 2023-01-11T21:41:26.3153055Z #pragma GCC ivdep 2023-01-11T21:41:26.3153195Z for(long i1=0; i1<12100; i1+=1) 2023-01-11T21:41:26.3153311Z { 2023-01-11T21:41:26.3153437Z { 2023-01-11T21:41:26.3153566Z { 2023-01-11T21:41:26.3153756Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.3153926Z out_ptr0[i1 + (12100*i0)] = tmp0; 2023-01-11T21:41:26.3154015Z } 2023-01-11T21:41:26.3154129Z } 2023-01-11T21:41:26.3154250Z } 2023-01-11T21:41:26.3154376Z } 2023-01-11T21:41:26.3154489Z } 2023-01-11T21:41:26.3154599Z } 2023-01-11T21:41:26.3154759Z ''') 2023-01-11T21:41:26.3154768Z 2023-01-11T21:41:26.3154774Z 2023-01-11T21:41:26.3154894Z async_compile.wait(globals()) 2023-01-11T21:41:26.3155023Z del async_compile 2023-01-11T21:41:26.3155034Z 2023-01-11T21:41:26.3155163Z def call(args): 2023-01-11T21:41:26.3155371Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3155506Z args.clear() 2023-01-11T21:41:26.3155893Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3156125Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3156256Z del arg7_1 2023-01-11T21:41:26.3156674Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.3156871Z assert_size_stride(buf1, (1, 128, 110, 110), (1548800, 1, 14080, 128)) 2023-01-11T21:41:26.3157009Z del arg0_1 2023-01-11T21:41:26.3157133Z del arg1_1 2023-01-11T21:41:26.3157248Z del buf0 2023-01-11T21:41:26.3157646Z buf2 = empty_strided((1, 128, 110, 110), (1548800, 12100, 110, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3157876Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3157990Z return (buf2, ) 2023-01-11T21:41:26.3158003Z 2023-01-11T21:41:26.3158027Z 2023-01-11T21:41:26.3158135Z if __name__ == "__main__": 2023-01-11T21:41:26.3158334Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3158544Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3158915Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3159259Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3159598Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3160031Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3160345Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3160676Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3161001Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3161386Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3161664Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3161674Z 2023-01-11T21:41:26.3161680Z 2023-01-11T21:41:26.3161851Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3161988Z import torch 2023-01-11T21:41:26.3162111Z import random 2023-01-11T21:41:26.3162389Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3162610Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3162629Z 2023-01-11T21:41:26.3162773Z aten = torch.ops.aten 2023-01-11T21:41:26.3162990Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3163147Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3163155Z 2023-01-11T21:41:26.3163160Z 2023-01-11T21:41:26.3163324Z async_compile.wait(globals()) 2023-01-11T21:41:26.3163459Z del async_compile 2023-01-11T21:41:26.3163469Z 2023-01-11T21:41:26.3163595Z def call(args): 2023-01-11T21:41:26.3163780Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3163907Z args.clear() 2023-01-11T21:41:26.3164349Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (1, 1), 4, 'none', [], '') 2023-01-11T21:41:26.3164543Z assert_size_stride(buf0, (1, 128, 110, 110), (1548800, 1, 14080, 128)) 2023-01-11T21:41:26.3164674Z del arg0_1 2023-01-11T21:41:26.3164799Z del arg1_1 2023-01-11T21:41:26.3164925Z del arg7_1 2023-01-11T21:41:26.3165056Z return (buf0, ) 2023-01-11T21:41:26.3165067Z 2023-01-11T21:41:26.3165075Z 2023-01-11T21:41:26.3165198Z if __name__ == "__main__": 2023-01-11T21:41:26.3165381Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3165590Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3165964Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3166295Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3166631Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3166962Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3167297Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3167617Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3167930Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3168327Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3168597Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3168611Z 2023-01-11T21:41:26.3169204Z [2023-01-11 21:25:44,289] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 113 2023-01-11T21:41:26.3169914Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3170138Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3170584Z [2023-01-11 21:25:44,396] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 114 2023-01-11T21:41:26.3171165Z [2023-01-11 21:25:44,417] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 114 2023-01-11T21:41:26.3171868Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3172091Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3172532Z [2023-01-11 21:25:44,529] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 115 2023-01-11T21:41:26.3173063Z [2023-01-11 21:25:44,561] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 115 2023-01-11T21:41:26.3173784Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3174005Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3174445Z [2023-01-11 21:25:44,695] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 116 2023-01-11T21:41:26.3174457Z 2023-01-11T21:41:26.3174633Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3174761Z import torch 2023-01-11T21:41:26.3174891Z import random 2023-01-11T21:41:26.3175085Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3175283Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3175293Z 2023-01-11T21:41:26.3175444Z aten = torch.ops.aten 2023-01-11T21:41:26.3175682Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3175845Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3175854Z 2023-01-11T21:41:26.3175859Z 2023-01-11T21:41:26.3176101Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3176443Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3176646Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3176810Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3176900Z { 2023-01-11T21:41:26.3177073Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3177187Z { 2023-01-11T21:41:26.3177349Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3177494Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3177613Z { 2023-01-11T21:41:26.3177780Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3177881Z { 2023-01-11T21:41:26.3178001Z { 2023-01-11T21:41:26.3178127Z { 2023-01-11T21:41:26.3178307Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3178469Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.3178592Z } 2023-01-11T21:41:26.3178710Z } 2023-01-11T21:41:26.3178814Z } 2023-01-11T21:41:26.3178924Z } 2023-01-11T21:41:26.3179034Z } 2023-01-11T21:41:26.3179141Z } 2023-01-11T21:41:26.3179304Z ''') 2023-01-11T21:41:26.3179316Z 2023-01-11T21:41:26.3179322Z 2023-01-11T21:41:26.3179579Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3179919Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3180114Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3180294Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3180407Z { 2023-01-11T21:41:26.3180591Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3180791Z { 2023-01-11T21:41:26.3180938Z #pragma omp for 2023-01-11T21:41:26.3181097Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3181194Z { 2023-01-11T21:41:26.3181340Z #pragma GCC ivdep 2023-01-11T21:41:26.3181494Z for(long i1=0; i1<11664; i1+=1) 2023-01-11T21:41:26.3181607Z { 2023-01-11T21:41:26.3181725Z { 2023-01-11T21:41:26.3181846Z { 2023-01-11T21:41:26.3182002Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.3182168Z out_ptr0[i1 + (11664*i0)] = tmp0; 2023-01-11T21:41:26.3182293Z } 2023-01-11T21:41:26.3182401Z } 2023-01-11T21:41:26.3182518Z } 2023-01-11T21:41:26.3182633Z } 2023-01-11T21:41:26.3182744Z } 2023-01-11T21:41:26.3182898Z } 2023-01-11T21:41:26.3183078Z ''') 2023-01-11T21:41:26.3183085Z 2023-01-11T21:41:26.3183092Z 2023-01-11T21:41:26.3183322Z async_compile.wait(globals()) 2023-01-11T21:41:26.3183466Z del async_compile 2023-01-11T21:41:26.3183478Z 2023-01-11T21:41:26.3183604Z def call(args): 2023-01-11T21:41:26.3183810Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3183946Z args.clear() 2023-01-11T21:41:26.3184349Z buf0 = empty_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3184569Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3184699Z del arg7_1 2023-01-11T21:41:26.3185130Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.3185326Z assert_size_stride(buf1, (1, 32, 108, 108), (373248, 1, 3456, 32)) 2023-01-11T21:41:26.3185454Z del arg0_1 2023-01-11T21:41:26.3185583Z del arg1_1 2023-01-11T21:41:26.3185696Z del buf0 2023-01-11T21:41:26.3186066Z buf2 = empty_strided((1, 32, 108, 108), (373248, 11664, 108, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3186305Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3186431Z return (buf2, ) 2023-01-11T21:41:26.3186439Z 2023-01-11T21:41:26.3186446Z 2023-01-11T21:41:26.3186582Z if __name__ == "__main__": 2023-01-11T21:41:26.3186787Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3187002Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3187362Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3187709Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3188025Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3188371Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3188700Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3189030Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3189356Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3189679Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3189891Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3189899Z 2023-01-11T21:41:26.3189904Z 2023-01-11T21:41:26.3190035Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3190132Z import torch 2023-01-11T21:41:26.3190216Z import random 2023-01-11T21:41:26.3190373Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3190536Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3190543Z 2023-01-11T21:41:26.3190653Z aten = torch.ops.aten 2023-01-11T21:41:26.3190835Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3191063Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3191071Z 2023-01-11T21:41:26.3191076Z 2023-01-11T21:41:26.3191194Z async_compile.wait(globals()) 2023-01-11T21:41:26.3191276Z del async_compile 2023-01-11T21:41:26.3191298Z 2023-01-11T21:41:26.3191375Z def call(args): 2023-01-11T21:41:26.3191563Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3191689Z args.clear() 2023-01-11T21:41:26.3192252Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 1, 'none', [], '') 2023-01-11T21:41:26.3192473Z assert_size_stride(buf0, (1, 32, 108, 108), (373248, 1, 3456, 32)) 2023-01-11T21:41:26.3192609Z del arg0_1 2023-01-11T21:41:26.3192744Z del arg1_1 2023-01-11T21:41:26.3192862Z del arg7_1 2023-01-11T21:41:26.3193015Z return (buf0, ) 2023-01-11T21:41:26.3193025Z 2023-01-11T21:41:26.3193102Z 2023-01-11T21:41:26.3193265Z if __name__ == "__main__": 2023-01-11T21:41:26.3193492Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3193731Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3194158Z arg0_1 = rand_strided((32, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3194537Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3194918Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3195272Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3195655Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3196031Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3196385Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3196831Z arg7_1 = rand_strided((1, 3, 112, 112), (37632, 1, 336, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3197135Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3197154Z 2023-01-11T21:41:26.3197160Z 2023-01-11T21:41:26.3197346Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3197491Z import torch 2023-01-11T21:41:26.3197614Z import random 2023-01-11T21:41:26.3197842Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3198076Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3198086Z 2023-01-11T21:41:26.3198246Z aten = torch.ops.aten 2023-01-11T21:41:26.3198502Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3198689Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3198699Z 2023-01-11T21:41:26.3198704Z 2023-01-11T21:41:26.3198972Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3199362Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3199582Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3199789Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3199919Z { 2023-01-11T21:41:26.3200110Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3200235Z { 2023-01-11T21:41:26.3200394Z #pragma omp for 2023-01-11T21:41:26.3200558Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3200652Z { 2023-01-11T21:41:26.3200822Z #pragma GCC ivdep 2023-01-11T21:41:26.3201000Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.3201134Z { 2023-01-11T21:41:26.3201265Z { 2023-01-11T21:41:26.3201398Z { 2023-01-11T21:41:26.3201602Z auto tmp0 = in_ptr0[i1 + (12544*i0)]; 2023-01-11T21:41:26.3201768Z out_ptr0[i0 + (12*i1)] = tmp0; 2023-01-11T21:41:26.3201908Z } 2023-01-11T21:41:26.3202041Z } 2023-01-11T21:41:26.3202175Z } 2023-01-11T21:41:26.3202313Z } 2023-01-11T21:41:26.3202543Z } 2023-01-11T21:41:26.3202652Z } 2023-01-11T21:41:26.3202830Z ''') 2023-01-11T21:41:26.3202840Z 2023-01-11T21:41:26.3202848Z 2023-01-11T21:41:26.3203128Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3203528Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3203759Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3203957Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3204083Z { 2023-01-11T21:41:26.3204277Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3204383Z { 2023-01-11T21:41:26.3204549Z #pragma omp for 2023-01-11T21:41:26.3204713Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.3204842Z { 2023-01-11T21:41:26.3205005Z #pragma GCC ivdep 2023-01-11T21:41:26.3205266Z for(long i1=0; i1<11664; i1+=1) 2023-01-11T21:41:26.3205401Z { 2023-01-11T21:41:26.3205518Z { 2023-01-11T21:41:26.3205657Z { 2023-01-11T21:41:26.3205865Z auto tmp0 = in_ptr0[i0 + (128*i1)]; 2023-01-11T21:41:26.3206051Z out_ptr0[i1 + (11664*i0)] = tmp0; 2023-01-11T21:41:26.3206186Z } 2023-01-11T21:41:26.3206320Z } 2023-01-11T21:41:26.3206436Z } 2023-01-11T21:41:26.3206565Z } 2023-01-11T21:41:26.3206691Z } 2023-01-11T21:41:26.3206817Z } 2023-01-11T21:41:26.3206994Z ''') 2023-01-11T21:41:26.3207004Z 2023-01-11T21:41:26.3207013Z 2023-01-11T21:41:26.3207189Z async_compile.wait(globals()) 2023-01-11T21:41:26.3207338Z del async_compile 2023-01-11T21:41:26.3207348Z 2023-01-11T21:41:26.3207498Z def call(args): 2023-01-11T21:41:26.3207717Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3207862Z args.clear() 2023-01-11T21:41:26.3208341Z buf0 = empty_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3208609Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3208732Z del arg7_1 2023-01-11T21:41:26.3209373Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.3209603Z assert_size_stride(buf1, (1, 128, 108, 108), (1492992, 1, 13824, 128)) 2023-01-11T21:41:26.3209719Z del arg0_1 2023-01-11T21:41:26.3209856Z del arg1_1 2023-01-11T21:41:26.3210001Z del buf0 2023-01-11T21:41:26.3210463Z buf2 = empty_strided((1, 128, 108, 108), (1492992, 11664, 108, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3210718Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3210861Z return (buf2, ) 2023-01-11T21:41:26.3210875Z 2023-01-11T21:41:26.3210881Z 2023-01-11T21:41:26.3211042Z if __name__ == "__main__": 2023-01-11T21:41:26.3211271Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3211499Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3211925Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3212308Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3212693Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3213081Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3213472Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3213855Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3214217Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3214660Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 12544, 112, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3214967Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3215113Z 2023-01-11T21:41:26.3215670Z [2023-01-11 21:25:44,717] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 116 2023-01-11T21:41:26.3216490Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3216730Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3217243Z [2023-01-11 21:25:44,858] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 117 2023-01-11T21:41:26.3217863Z [2023-01-11 21:25:44,881] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 117 2023-01-11T21:41:26.3218709Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3218948Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3219454Z [2023-01-11 21:25:45,121] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 118 2023-01-11T21:41:26.3219974Z [2023-01-11 21:25:46,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 118 2023-01-11T21:41:26.3220791Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3221015Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3221521Z [2023-01-11 21:25:47,184] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 119 2023-01-11T21:41:26.3222031Z [2023-01-11 21:25:47,207] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 119 2023-01-11T21:41:26.3222839Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3223089Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3223692Z [2023-01-11 21:25:47,904] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 120 2023-01-11T21:41:26.3223709Z 2023-01-11T21:41:26.3223906Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3224054Z import torch 2023-01-11T21:41:26.3224196Z import random 2023-01-11T21:41:26.3224409Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3224640Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3224655Z 2023-01-11T21:41:26.3224806Z aten = torch.ops.aten 2023-01-11T21:41:26.3225077Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3225262Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3225276Z 2023-01-11T21:41:26.3225283Z 2023-01-11T21:41:26.3225457Z async_compile.wait(globals()) 2023-01-11T21:41:26.3225603Z del async_compile 2023-01-11T21:41:26.3225612Z 2023-01-11T21:41:26.3225764Z def call(args): 2023-01-11T21:41:26.3225982Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3226236Z args.clear() 2023-01-11T21:41:26.3226755Z buf0 = torch.ops.mkldnn._convolution_pointwise(arg7_1, arg0_1, arg1_1, (0, 0), (1, 1), (2, 2), 4, 'none', [], '') 2023-01-11T21:41:26.3226975Z assert_size_stride(buf0, (1, 128, 108, 108), (1492992, 1, 13824, 128)) 2023-01-11T21:41:26.3227117Z del arg0_1 2023-01-11T21:41:26.3227252Z del arg1_1 2023-01-11T21:41:26.3227387Z del arg7_1 2023-01-11T21:41:26.3227538Z return (buf0, ) 2023-01-11T21:41:26.3227551Z 2023-01-11T21:41:26.3227558Z 2023-01-11T21:41:26.3227686Z if __name__ == "__main__": 2023-01-11T21:41:26.3227911Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3228145Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3228580Z arg0_1 = rand_strided((128, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3229043Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3229441Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3229836Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3230223Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3230599Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3230953Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3231399Z arg7_1 = rand_strided((1, 12, 112, 112), (150528, 1, 1344, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3231700Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3231715Z 2023-01-11T21:41:26.3231723Z 2023-01-11T21:41:26.3231911Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3232062Z import torch 2023-01-11T21:41:26.3232216Z import random 2023-01-11T21:41:26.3232453Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3232665Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3232678Z 2023-01-11T21:41:26.3232835Z aten = torch.ops.aten 2023-01-11T21:41:26.3233095Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3233281Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3233290Z 2023-01-11T21:41:26.3233296Z 2023-01-11T21:41:26.3233472Z async_compile.wait(globals()) 2023-01-11T21:41:26.3233616Z del async_compile 2023-01-11T21:41:26.3233627Z 2023-01-11T21:41:26.3233771Z def call(args): 2023-01-11T21:41:26.3233995Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3234120Z args.clear() 2023-01-11T21:41:26.3234389Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3234632Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3234777Z del arg0_1 2023-01-11T21:41:26.3234912Z del arg1_1 2023-01-11T21:41:26.3235061Z del arg7_1 2023-01-11T21:41:26.3235196Z return (buf0, ) 2023-01-11T21:41:26.3235208Z 2023-01-11T21:41:26.3235216Z 2023-01-11T21:41:26.3235370Z if __name__ == "__main__": 2023-01-11T21:41:26.3235581Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3235815Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3236265Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3236654Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3237040Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3237416Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3237793Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3238155Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3238624Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3239094Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3239400Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3239413Z 2023-01-11T21:41:26.3239422Z 2023-01-11T21:41:26.3239607Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3239760Z import torch 2023-01-11T21:41:26.3239907Z import random 2023-01-11T21:41:26.3240140Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3240362Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3240390Z 2023-01-11T21:41:26.3240525Z aten = torch.ops.aten 2023-01-11T21:41:26.3240883Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3241075Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3241090Z 2023-01-11T21:41:26.3241103Z 2023-01-11T21:41:26.3241374Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3241768Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3242000Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3242191Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3242315Z { 2023-01-11T21:41:26.3242496Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3242626Z { 2023-01-11T21:41:26.3242820Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3242990Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3243113Z { 2023-01-11T21:41:26.3243302Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3243419Z { 2023-01-11T21:41:26.3243553Z { 2023-01-11T21:41:26.3243697Z { 2023-01-11T21:41:26.3243893Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3244097Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3244248Z } 2023-01-11T21:41:26.3244378Z } 2023-01-11T21:41:26.3244492Z } 2023-01-11T21:41:26.3244626Z } 2023-01-11T21:41:26.3244746Z } 2023-01-11T21:41:26.3244863Z } 2023-01-11T21:41:26.3245050Z ''') 2023-01-11T21:41:26.3245061Z 2023-01-11T21:41:26.3245069Z 2023-01-11T21:41:26.3245241Z async_compile.wait(globals()) 2023-01-11T21:41:26.3245393Z del async_compile 2023-01-11T21:41:26.3245403Z 2023-01-11T21:41:26.3245525Z def call(args): 2023-01-11T21:41:26.3245758Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3245902Z args.clear() 2023-01-11T21:41:26.3246390Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3246659Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3246804Z del arg7_1 2023-01-11T21:41:26.3247091Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3247324Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3247432Z del arg0_1 2023-01-11T21:41:26.3247567Z del arg1_1 2023-01-11T21:41:26.3247714Z return (buf1, ) 2023-01-11T21:41:26.3247723Z 2023-01-11T21:41:26.3247730Z 2023-01-11T21:41:26.3247894Z if __name__ == "__main__": 2023-01-11T21:41:26.3248122Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3248368Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3248817Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3249341Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3249725Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3250098Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3250624Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3250940Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3251230Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3251614Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3251862Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3251871Z 2023-01-11T21:41:26.3251878Z 2023-01-11T21:41:26.3252026Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3252123Z import torch 2023-01-11T21:41:26.3252235Z import random 2023-01-11T21:41:26.3252466Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3252655Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3252667Z 2023-01-11T21:41:26.3252785Z aten = torch.ops.aten 2023-01-11T21:41:26.3252989Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3253127Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3253135Z 2023-01-11T21:41:26.3253140Z 2023-01-11T21:41:26.3253274Z async_compile.wait(globals()) 2023-01-11T21:41:26.3253369Z del async_compile 2023-01-11T21:41:26.3253376Z 2023-01-11T21:41:26.3253485Z def call(args): 2023-01-11T21:41:26.3253662Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3253770Z args.clear() 2023-01-11T21:41:26.3253984Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3254162Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3254271Z del arg0_1 2023-01-11T21:41:26.3254359Z del arg1_1 2023-01-11T21:41:26.3254462Z del arg7_1 2023-01-11T21:41:26.3254571Z return (buf0, ) 2023-01-11T21:41:26.3254583Z 2023-01-11T21:41:26.3254589Z 2023-01-11T21:41:26.3254704Z if __name__ == "__main__": 2023-01-11T21:41:26.3254879Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3255064Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3255410Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3255722Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3256010Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3256313Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3256610Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3256917Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3257202Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3257673Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3257887Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3257893Z 2023-01-11T21:41:26.3258264Z [2023-01-11 21:25:49,549] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 120 2023-01-11T21:41:26.3258833Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3259004Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3259344Z [2023-01-11 21:25:50,097] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 121 2023-01-11T21:41:26.3259741Z [2023-01-11 21:25:50,120] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 121 2023-01-11T21:41:26.3260304Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3260466Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3260815Z [2023-01-11 21:25:50,338] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 122 2023-01-11T21:41:26.3261206Z [2023-01-11 21:25:50,367] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 122 2023-01-11T21:41:26.3261771Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3261938Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3262290Z [2023-01-11 21:25:50,670] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 123 2023-01-11T21:41:26.3262646Z [2023-01-11 21:25:50,694] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 123 2023-01-11T21:41:26.3263267Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3263437Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3263771Z [2023-01-11 21:25:51,340] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 124 2023-01-11T21:41:26.3263794Z 2023-01-11T21:41:26.3263903Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3263995Z import torch 2023-01-11T21:41:26.3264092Z import random 2023-01-11T21:41:26.3264245Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3264403Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3264411Z 2023-01-11T21:41:26.3264514Z aten = torch.ops.aten 2023-01-11T21:41:26.3264686Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3264796Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3264803Z 2023-01-11T21:41:26.3264808Z 2023-01-11T21:41:26.3264991Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3265255Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3265415Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3265547Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3265628Z { 2023-01-11T21:41:26.3265758Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3265824Z { 2023-01-11T21:41:26.3265927Z #pragma omp for 2023-01-11T21:41:26.3266037Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3266121Z { 2023-01-11T21:41:26.3266226Z #pragma GCC ivdep 2023-01-11T21:41:26.3266344Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3266430Z { 2023-01-11T21:41:26.3266502Z { 2023-01-11T21:41:26.3266588Z { 2023-01-11T21:41:26.3266728Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3266857Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3266984Z } 2023-01-11T21:41:26.3267070Z } 2023-01-11T21:41:26.3267153Z } 2023-01-11T21:41:26.3267220Z } 2023-01-11T21:41:26.3267300Z } 2023-01-11T21:41:26.3267378Z } 2023-01-11T21:41:26.3267485Z ''') 2023-01-11T21:41:26.3267492Z 2023-01-11T21:41:26.3267497Z 2023-01-11T21:41:26.3267615Z async_compile.wait(globals()) 2023-01-11T21:41:26.3267712Z del async_compile 2023-01-11T21:41:26.3267719Z 2023-01-11T21:41:26.3267812Z def call(args): 2023-01-11T21:41:26.3267953Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3268048Z args.clear() 2023-01-11T21:41:26.3268371Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3268588Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3268683Z del arg7_1 2023-01-11T21:41:26.3268869Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3269026Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3269117Z del arg0_1 2023-01-11T21:41:26.3269192Z del arg1_1 2023-01-11T21:41:26.3269287Z return (buf1, ) 2023-01-11T21:41:26.3269294Z 2023-01-11T21:41:26.3269299Z 2023-01-11T21:41:26.3269398Z if __name__ == "__main__": 2023-01-11T21:41:26.3269547Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3269709Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3270007Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3270270Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3270538Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3270788Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3271049Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3271308Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3271555Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3271879Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3272084Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3272091Z 2023-01-11T21:41:26.3272096Z 2023-01-11T21:41:26.3272220Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3272315Z import torch 2023-01-11T21:41:26.3272395Z import random 2023-01-11T21:41:26.3272551Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3272710Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3272717Z 2023-01-11T21:41:26.3272822Z aten = torch.ops.aten 2023-01-11T21:41:26.3272997Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3273117Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3273124Z 2023-01-11T21:41:26.3273129Z 2023-01-11T21:41:26.3273246Z async_compile.wait(globals()) 2023-01-11T21:41:26.3273345Z del async_compile 2023-01-11T21:41:26.3273351Z 2023-01-11T21:41:26.3273430Z def call(args): 2023-01-11T21:41:26.3273584Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3273678Z args.clear() 2023-01-11T21:41:26.3273865Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3274019Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3274109Z del arg0_1 2023-01-11T21:41:26.3274204Z del arg1_1 2023-01-11T21:41:26.3274279Z del arg7_1 2023-01-11T21:41:26.3274373Z return (buf0, ) 2023-01-11T21:41:26.3274415Z 2023-01-11T21:41:26.3274420Z 2023-01-11T21:41:26.3274522Z if __name__ == "__main__": 2023-01-11T21:41:26.3274672Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3274835Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3275129Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3275396Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3275657Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3275902Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3276165Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3276453Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3276702Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3277026Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3277232Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3277239Z 2023-01-11T21:41:26.3277243Z 2023-01-11T21:41:26.3277370Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3277463Z import torch 2023-01-11T21:41:26.3277557Z import random 2023-01-11T21:41:26.3277696Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3277854Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3277861Z 2023-01-11T21:41:26.3277964Z aten = torch.ops.aten 2023-01-11T21:41:26.3278136Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3278257Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3278267Z 2023-01-11T21:41:26.3278272Z 2023-01-11T21:41:26.3278456Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3278722Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3278879Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3278996Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3279079Z { 2023-01-11T21:41:26.3279209Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3279291Z { 2023-01-11T21:41:26.3279411Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3279521Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3279604Z { 2023-01-11T21:41:26.3279710Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3279793Z { 2023-01-11T21:41:26.3279879Z { 2023-01-11T21:41:26.3279968Z { 2023-01-11T21:41:26.3280102Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3280233Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3280310Z } 2023-01-11T21:41:26.3280399Z } 2023-01-11T21:41:26.3280482Z } 2023-01-11T21:41:26.3280565Z } 2023-01-11T21:41:26.3280645Z } 2023-01-11T21:41:26.3280723Z } 2023-01-11T21:41:26.3280830Z ''') 2023-01-11T21:41:26.3280837Z 2023-01-11T21:41:26.3280842Z 2023-01-11T21:41:26.3280945Z async_compile.wait(globals()) 2023-01-11T21:41:26.3281041Z del async_compile 2023-01-11T21:41:26.3281048Z 2023-01-11T21:41:26.3281139Z def call(args): 2023-01-11T21:41:26.3281295Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3281390Z args.clear() 2023-01-11T21:41:26.3281711Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3281885Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3281980Z del arg7_1 2023-01-11T21:41:26.3282149Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3282341Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3282432Z del arg0_1 2023-01-11T21:41:26.3282521Z del arg1_1 2023-01-11T21:41:26.3282614Z return (buf1, ) 2023-01-11T21:41:26.3282620Z 2023-01-11T21:41:26.3282625Z 2023-01-11T21:41:26.3282724Z if __name__ == "__main__": 2023-01-11T21:41:26.3282875Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3283037Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3283318Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3283581Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3283843Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3284136Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3284398Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3284659Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3284907Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3285276Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3285520Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3285528Z 2023-01-11T21:41:26.3285554Z 2023-01-11T21:41:26.3285724Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3285854Z import torch 2023-01-11T21:41:26.3286028Z import random 2023-01-11T21:41:26.3286242Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3286445Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3286455Z 2023-01-11T21:41:26.3286597Z aten = torch.ops.aten 2023-01-11T21:41:26.3286828Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3286984Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3286995Z 2023-01-11T21:41:26.3287000Z 2023-01-11T21:41:26.3287157Z async_compile.wait(globals()) 2023-01-11T21:41:26.3287288Z del async_compile 2023-01-11T21:41:26.3287298Z 2023-01-11T21:41:26.3287425Z def call(args): 2023-01-11T21:41:26.3287625Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3287755Z args.clear() 2023-01-11T21:41:26.3287984Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3288177Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3288287Z del arg0_1 2023-01-11T21:41:26.3288408Z del arg1_1 2023-01-11T21:41:26.3288537Z del arg7_1 2023-01-11T21:41:26.3288777Z return (buf0, ) 2023-01-11T21:41:26.3288787Z 2023-01-11T21:41:26.3288794Z 2023-01-11T21:41:26.3288958Z if __name__ == "__main__": 2023-01-11T21:41:26.3289331Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3289582Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3290036Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3290436Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3290829Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3291217Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3291610Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3291983Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3292353Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3292830Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3293277Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3293309Z 2023-01-11T21:41:26.3293823Z [2023-01-11 21:25:51,368] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 124 2023-01-11T21:41:26.3294643Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3294890Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3295521Z [2023-01-11 21:25:51,954] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 125 2023-01-11T21:41:26.3296057Z [2023-01-11 21:25:51,979] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 125 2023-01-11T21:41:26.3296883Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3297132Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3297654Z [2023-01-11 21:25:52,200] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 126 2023-01-11T21:41:26.3298185Z [2023-01-11 21:25:52,230] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 126 2023-01-11T21:41:26.3298996Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3299250Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3299758Z [2023-01-11 21:25:52,558] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 127 2023-01-11T21:41:26.3300270Z [2023-01-11 21:25:52,586] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 127 2023-01-11T21:41:26.3301088Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3301345Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3301855Z [2023-01-11 21:25:53,274] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 128 2023-01-11T21:41:26.3301869Z 2023-01-11T21:41:26.3302064Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3302214Z import torch 2023-01-11T21:41:26.3302368Z import random 2023-01-11T21:41:26.3302599Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3302828Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3302843Z 2023-01-11T21:41:26.3302983Z aten = torch.ops.aten 2023-01-11T21:41:26.3303332Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3303527Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3303539Z 2023-01-11T21:41:26.3303550Z 2023-01-11T21:41:26.3303845Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3304245Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3304595Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3304789Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3304924Z { 2023-01-11T21:41:26.3305115Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3305242Z { 2023-01-11T21:41:26.3305408Z #pragma omp for 2023-01-11T21:41:26.3305584Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3305719Z { 2023-01-11T21:41:26.3305883Z #pragma GCC ivdep 2023-01-11T21:41:26.3306054Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3306190Z { 2023-01-11T21:41:26.3306328Z { 2023-01-11T21:41:26.3306468Z { 2023-01-11T21:41:26.3306676Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3306974Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3307120Z } 2023-01-11T21:41:26.3307236Z } 2023-01-11T21:41:26.3307382Z } 2023-01-11T21:41:26.3307510Z } 2023-01-11T21:41:26.3307646Z } 2023-01-11T21:41:26.3307755Z } 2023-01-11T21:41:26.3307944Z ''') 2023-01-11T21:41:26.3307954Z 2023-01-11T21:41:26.3307961Z 2023-01-11T21:41:26.3308144Z async_compile.wait(globals()) 2023-01-11T21:41:26.3308269Z del async_compile 2023-01-11T21:41:26.3308299Z 2023-01-11T21:41:26.3308425Z def call(args): 2023-01-11T21:41:26.3308658Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3308802Z args.clear() 2023-01-11T21:41:26.3309297Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3309566Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3309699Z del arg7_1 2023-01-11T21:41:26.3309976Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3310192Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3310336Z del arg0_1 2023-01-11T21:41:26.3310479Z del arg1_1 2023-01-11T21:41:26.3310620Z return (buf1, ) 2023-01-11T21:41:26.3310629Z 2023-01-11T21:41:26.3310636Z 2023-01-11T21:41:26.3310792Z if __name__ == "__main__": 2023-01-11T21:41:26.3311015Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3311264Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3311703Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3312084Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3312480Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3312880Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3313267Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3313646Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3314013Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3314464Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3314765Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3314782Z 2023-01-11T21:41:26.3314790Z 2023-01-11T21:41:26.3314972Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3315115Z import torch 2023-01-11T21:41:26.3315266Z import random 2023-01-11T21:41:26.3315482Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3315726Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3315743Z 2023-01-11T21:41:26.3315911Z aten = torch.ops.aten 2023-01-11T21:41:26.3316170Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3316468Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3316480Z 2023-01-11T21:41:26.3316486Z 2023-01-11T21:41:26.3316647Z async_compile.wait(globals()) 2023-01-11T21:41:26.3316809Z del async_compile 2023-01-11T21:41:26.3316819Z 2023-01-11T21:41:26.3316965Z def call(args): 2023-01-11T21:41:26.3317205Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3317354Z args.clear() 2023-01-11T21:41:26.3317612Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3317840Z assert_size_stride(buf0, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3317984Z del arg0_1 2023-01-11T21:41:26.3318101Z del arg1_1 2023-01-11T21:41:26.3318248Z del arg7_1 2023-01-11T21:41:26.3318470Z return (buf0, ) 2023-01-11T21:41:26.3318487Z 2023-01-11T21:41:26.3318493Z 2023-01-11T21:41:26.3318648Z if __name__ == "__main__": 2023-01-11T21:41:26.3318884Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3319128Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3319591Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3319959Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3320337Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3320721Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3321108Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3321477Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3321845Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3322327Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3322637Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3322653Z 2023-01-11T21:41:26.3322660Z 2023-01-11T21:41:26.3322857Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3322982Z import torch 2023-01-11T21:41:26.3323130Z import random 2023-01-11T21:41:26.3323355Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3323591Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3323604Z 2023-01-11T21:41:26.3323764Z aten = torch.ops.aten 2023-01-11T21:41:26.3324026Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3324216Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3324228Z 2023-01-11T21:41:26.3324235Z 2023-01-11T21:41:26.3324521Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3324899Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3325139Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3325339Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3325470Z { 2023-01-11T21:41:26.3325670Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3325810Z { 2023-01-11T21:41:26.3326001Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3326141Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3326273Z { 2023-01-11T21:41:26.3326452Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3326589Z { 2023-01-11T21:41:26.3326722Z { 2023-01-11T21:41:26.3326866Z { 2023-01-11T21:41:26.3327060Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3327238Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3327390Z } 2023-01-11T21:41:26.3327533Z } 2023-01-11T21:41:26.3327663Z } 2023-01-11T21:41:26.3327799Z } 2023-01-11T21:41:26.3328032Z } 2023-01-11T21:41:26.3328143Z } 2023-01-11T21:41:26.3328333Z ''') 2023-01-11T21:41:26.3328347Z 2023-01-11T21:41:26.3328353Z 2023-01-11T21:41:26.3328536Z async_compile.wait(globals()) 2023-01-11T21:41:26.3328691Z del async_compile 2023-01-11T21:41:26.3328700Z 2023-01-11T21:41:26.3328850Z def call(args): 2023-01-11T21:41:26.3329221Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3329375Z args.clear() 2023-01-11T21:41:26.3329869Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3330116Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3330266Z del arg7_1 2023-01-11T21:41:26.3330658Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3330899Z assert_size_stride(buf1, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3331041Z del arg0_1 2023-01-11T21:41:26.3331189Z del arg1_1 2023-01-11T21:41:26.3331338Z return (buf1, ) 2023-01-11T21:41:26.3331350Z 2023-01-11T21:41:26.3331356Z 2023-01-11T21:41:26.3331510Z if __name__ == "__main__": 2023-01-11T21:41:26.3331723Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3331961Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3332422Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3332819Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3333201Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3333578Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3333960Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3334352Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3334699Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3335147Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3335449Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3335461Z 2023-01-11T21:41:26.3335469Z 2023-01-11T21:41:26.3335664Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3335813Z import torch 2023-01-11T21:41:26.3335947Z import random 2023-01-11T21:41:26.3336180Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3336428Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3336440Z 2023-01-11T21:41:26.3336578Z aten = torch.ops.aten 2023-01-11T21:41:26.3336833Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3337019Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3337036Z 2023-01-11T21:41:26.3337046Z 2023-01-11T21:41:26.3337234Z async_compile.wait(globals()) 2023-01-11T21:41:26.3337384Z del async_compile 2023-01-11T21:41:26.3337393Z 2023-01-11T21:41:26.3337543Z def call(args): 2023-01-11T21:41:26.3337783Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3337929Z args.clear() 2023-01-11T21:41:26.3338169Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3338406Z assert_size_stride(buf0, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3338552Z del arg0_1 2023-01-11T21:41:26.3338692Z del arg1_1 2023-01-11T21:41:26.3338818Z del arg7_1 2023-01-11T21:41:26.3338964Z return (buf0, ) 2023-01-11T21:41:26.3338977Z 2023-01-11T21:41:26.3338983Z 2023-01-11T21:41:26.3339146Z if __name__ == "__main__": 2023-01-11T21:41:26.3339356Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3339743Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3340206Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3340608Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3341004Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3341390Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3341762Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3342147Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3342491Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3343059Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3343471Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3343492Z 2023-01-11T21:41:26.3344035Z [2023-01-11 21:25:53,303] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 128 2023-01-11T21:41:26.3344860Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3345117Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3345622Z [2023-01-11 21:25:53,937] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 129 2023-01-11T21:41:26.3346154Z [2023-01-11 21:25:53,960] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 129 2023-01-11T21:41:26.3346968Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3347216Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3347728Z [2023-01-11 21:25:54,281] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 130 2023-01-11T21:41:26.3348271Z [2023-01-11 21:25:54,311] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 130 2023-01-11T21:41:26.3349068Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3349327Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3349832Z [2023-01-11 21:25:54,685] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 131 2023-01-11T21:41:26.3350270Z [2023-01-11 21:25:54,708] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 131 2023-01-11T21:41:26.3351091Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3351341Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3351849Z [2023-01-11 21:25:55,319] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 132 2023-01-11T21:41:26.3351972Z 2023-01-11T21:41:26.3352179Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3352319Z import torch 2023-01-11T21:41:26.3352461Z import random 2023-01-11T21:41:26.3352672Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3352917Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3352928Z 2023-01-11T21:41:26.3353087Z aten = torch.ops.aten 2023-01-11T21:41:26.3353352Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3353546Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3353557Z 2023-01-11T21:41:26.3353563Z 2023-01-11T21:41:26.3353840Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3354344Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3354593Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3354777Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3354897Z { 2023-01-11T21:41:26.3355086Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3355218Z { 2023-01-11T21:41:26.3355380Z #pragma omp for 2023-01-11T21:41:26.3355549Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3355679Z { 2023-01-11T21:41:26.3355819Z #pragma GCC ivdep 2023-01-11T21:41:26.3356001Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3356168Z { 2023-01-11T21:41:26.3356306Z { 2023-01-11T21:41:26.3356445Z { 2023-01-11T21:41:26.3356641Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3356837Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3356957Z } 2023-01-11T21:41:26.3357095Z } 2023-01-11T21:41:26.3357230Z } 2023-01-11T21:41:26.3357367Z } 2023-01-11T21:41:26.3357499Z } 2023-01-11T21:41:26.3357617Z } 2023-01-11T21:41:26.3357778Z ''') 2023-01-11T21:41:26.3357790Z 2023-01-11T21:41:26.3357817Z 2023-01-11T21:41:26.3357980Z async_compile.wait(globals()) 2023-01-11T21:41:26.3358125Z del async_compile 2023-01-11T21:41:26.3358138Z 2023-01-11T21:41:26.3358285Z def call(args): 2023-01-11T21:41:26.3358516Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3358672Z args.clear() 2023-01-11T21:41:26.3359154Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3359416Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3359544Z del arg7_1 2023-01-11T21:41:26.3359861Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3360092Z assert_size_stride(buf1, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3360232Z del arg0_1 2023-01-11T21:41:26.3360372Z del arg1_1 2023-01-11T21:41:26.3360519Z return (buf1, ) 2023-01-11T21:41:26.3360529Z 2023-01-11T21:41:26.3360536Z 2023-01-11T21:41:26.3360694Z if __name__ == "__main__": 2023-01-11T21:41:26.3360918Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3361138Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3361591Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3361984Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3362368Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3362752Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3363142Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3363524Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3363986Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3364437Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3364750Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3364766Z 2023-01-11T21:41:26.3364773Z 2023-01-11T21:41:26.3364961Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3365115Z import torch 2023-01-11T21:41:26.3365262Z import random 2023-01-11T21:41:26.3365496Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3365735Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3365747Z 2023-01-11T21:41:26.3365903Z aten = torch.ops.aten 2023-01-11T21:41:26.3366223Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3366424Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3366440Z 2023-01-11T21:41:26.3366449Z 2023-01-11T21:41:26.3366630Z async_compile.wait(globals()) 2023-01-11T21:41:26.3366779Z del async_compile 2023-01-11T21:41:26.3366791Z 2023-01-11T21:41:26.3366927Z def call(args): 2023-01-11T21:41:26.3367159Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3367313Z args.clear() 2023-01-11T21:41:26.3367588Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3367801Z assert_size_stride(buf0, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3367937Z del arg0_1 2023-01-11T21:41:26.3368073Z del arg1_1 2023-01-11T21:41:26.3368214Z del arg7_1 2023-01-11T21:41:26.3368357Z return (buf0, ) 2023-01-11T21:41:26.3368368Z 2023-01-11T21:41:26.3368375Z 2023-01-11T21:41:26.3368537Z if __name__ == "__main__": 2023-01-11T21:41:26.3368757Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3368982Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3369741Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3370087Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3370419Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3370758Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3371100Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3371435Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3371748Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3372144Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3372416Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3372432Z 2023-01-11T21:41:26.3372440Z 2023-01-11T21:41:26.3372604Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3372724Z import torch 2023-01-11T21:41:26.3372852Z import random 2023-01-11T21:41:26.3373045Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3373255Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3373263Z 2023-01-11T21:41:26.3373397Z aten = torch.ops.aten 2023-01-11T21:41:26.3373620Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3373760Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3373768Z 2023-01-11T21:41:26.3373777Z 2023-01-11T21:41:26.3374025Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3374368Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3374577Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3374888Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3375001Z { 2023-01-11T21:41:26.3375174Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3375266Z { 2023-01-11T21:41:26.3375426Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3375570Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3375686Z { 2023-01-11T21:41:26.3375848Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3375962Z { 2023-01-11T21:41:26.3376075Z { 2023-01-11T21:41:26.3376184Z { 2023-01-11T21:41:26.3376356Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3376537Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3376662Z } 2023-01-11T21:41:26.3376783Z } 2023-01-11T21:41:26.3376895Z } 2023-01-11T21:41:26.3377106Z } 2023-01-11T21:41:26.3377208Z } 2023-01-11T21:41:26.3377315Z } 2023-01-11T21:41:26.3377477Z ''') 2023-01-11T21:41:26.3377494Z 2023-01-11T21:41:26.3377500Z 2023-01-11T21:41:26.3377651Z async_compile.wait(globals()) 2023-01-11T21:41:26.3377782Z del async_compile 2023-01-11T21:41:26.3377794Z 2023-01-11T21:41:26.3377922Z def call(args): 2023-01-11T21:41:26.3378130Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3378245Z args.clear() 2023-01-11T21:41:26.3378650Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3378879Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3379005Z del arg7_1 2023-01-11T21:41:26.3379245Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3379450Z assert_size_stride(buf1, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3379582Z del arg0_1 2023-01-11T21:41:26.3379702Z del arg1_1 2023-01-11T21:41:26.3379812Z return (buf1, ) 2023-01-11T21:41:26.3379822Z 2023-01-11T21:41:26.3379828Z 2023-01-11T21:41:26.3379958Z if __name__ == "__main__": 2023-01-11T21:41:26.3380157Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3380376Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3380765Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3381106Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3381443Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3381772Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3382088Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3382417Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3382734Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3383255Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3383526Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3383537Z 2023-01-11T21:41:26.3383543Z 2023-01-11T21:41:26.3383718Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3383842Z import torch 2023-01-11T21:41:26.3383975Z import random 2023-01-11T21:41:26.3384151Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3384363Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3384376Z 2023-01-11T21:41:26.3384513Z aten = torch.ops.aten 2023-01-11T21:41:26.3384735Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3384899Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3384909Z 2023-01-11T21:41:26.3384916Z 2023-01-11T21:41:26.3385072Z async_compile.wait(globals()) 2023-01-11T21:41:26.3385311Z del async_compile 2023-01-11T21:41:26.3385323Z 2023-01-11T21:41:26.3385454Z def call(args): 2023-01-11T21:41:26.3385628Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3385755Z args.clear() 2023-01-11T21:41:26.3385988Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3386187Z assert_size_stride(buf0, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3386318Z del arg0_1 2023-01-11T21:41:26.3386437Z del arg1_1 2023-01-11T21:41:26.3386558Z del arg7_1 2023-01-11T21:41:26.3386666Z return (buf0, ) 2023-01-11T21:41:26.3386677Z 2023-01-11T21:41:26.3386709Z 2023-01-11T21:41:26.3386831Z if __name__ == "__main__": 2023-01-11T21:41:26.3387112Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3387322Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3387733Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3388073Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3388411Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3388736Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3389051Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3389379Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3389697Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3390104Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3390376Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3390394Z 2023-01-11T21:41:26.3390851Z [2023-01-11 21:25:55,348] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 132 2023-01-11T21:41:26.3391565Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3391789Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3392236Z [2023-01-11 21:25:55,850] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 133 2023-01-11T21:41:26.3392682Z [2023-01-11 21:25:55,872] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 133 2023-01-11T21:41:26.3393382Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3393594Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3394044Z [2023-01-11 21:25:56,081] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 134 2023-01-11T21:41:26.3394494Z [2023-01-11 21:25:56,109] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 134 2023-01-11T21:41:26.3395202Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3395510Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3395963Z [2023-01-11 21:25:56,389] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 135 2023-01-11T21:41:26.3396420Z [2023-01-11 21:25:56,411] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 135 2023-01-11T21:41:26.3397124Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3397337Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3397852Z [2023-01-11 21:25:57,045] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 136 2023-01-11T21:41:26.3397872Z 2023-01-11T21:41:26.3398040Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3398151Z import torch 2023-01-11T21:41:26.3398285Z import random 2023-01-11T21:41:26.3398480Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3398690Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3398698Z 2023-01-11T21:41:26.3398834Z aten = torch.ops.aten 2023-01-11T21:41:26.3399065Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3399229Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3399239Z 2023-01-11T21:41:26.3399245Z 2023-01-11T21:41:26.3399485Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3399816Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3400027Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3400202Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3400307Z { 2023-01-11T21:41:26.3400482Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3400593Z { 2023-01-11T21:41:26.3400735Z #pragma omp for 2023-01-11T21:41:26.3400863Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3400978Z { 2023-01-11T21:41:26.3401117Z #pragma GCC ivdep 2023-01-11T21:41:26.3401270Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3401386Z { 2023-01-11T21:41:26.3401508Z { 2023-01-11T21:41:26.3401627Z { 2023-01-11T21:41:26.3401796Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3401961Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3402086Z } 2023-01-11T21:41:26.3402199Z } 2023-01-11T21:41:26.3402318Z } 2023-01-11T21:41:26.3402443Z } 2023-01-11T21:41:26.3402557Z } 2023-01-11T21:41:26.3402641Z } 2023-01-11T21:41:26.3402800Z ''') 2023-01-11T21:41:26.3402818Z 2023-01-11T21:41:26.3402824Z 2023-01-11T21:41:26.3402983Z async_compile.wait(globals()) 2023-01-11T21:41:26.3403114Z del async_compile 2023-01-11T21:41:26.3403122Z 2023-01-11T21:41:26.3403255Z def call(args): 2023-01-11T21:41:26.3403447Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3403579Z args.clear() 2023-01-11T21:41:26.3403989Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3404219Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3404348Z del arg7_1 2023-01-11T21:41:26.3404580Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3404739Z assert_size_stride(buf1, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3404831Z del arg0_1 2023-01-11T21:41:26.3404920Z del arg1_1 2023-01-11T21:41:26.3405000Z return (buf1, ) 2023-01-11T21:41:26.3405087Z 2023-01-11T21:41:26.3405092Z 2023-01-11T21:41:26.3405179Z if __name__ == "__main__": 2023-01-11T21:41:26.3405329Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3405491Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3405793Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3406062Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3406325Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3406590Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3406853Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3407135Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3407382Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3407706Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3407910Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3407917Z 2023-01-11T21:41:26.3407922Z 2023-01-11T21:41:26.3408046Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3408142Z import torch 2023-01-11T21:41:26.3408235Z import random 2023-01-11T21:41:26.3408388Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3408531Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3408537Z 2023-01-11T21:41:26.3408640Z aten = torch.ops.aten 2023-01-11T21:41:26.3408816Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3408940Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3408947Z 2023-01-11T21:41:26.3408952Z 2023-01-11T21:41:26.3409243Z async_compile.wait(globals()) 2023-01-11T21:41:26.3409345Z del async_compile 2023-01-11T21:41:26.3409352Z 2023-01-11T21:41:26.3409444Z def call(args): 2023-01-11T21:41:26.3409603Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3409684Z args.clear() 2023-01-11T21:41:26.3409868Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3410020Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3410111Z del arg0_1 2023-01-11T21:41:26.3410201Z del arg1_1 2023-01-11T21:41:26.3410290Z del arg7_1 2023-01-11T21:41:26.3410384Z return (buf0, ) 2023-01-11T21:41:26.3410391Z 2023-01-11T21:41:26.3410396Z 2023-01-11T21:41:26.3410495Z if __name__ == "__main__": 2023-01-11T21:41:26.3410633Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3410791Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3411089Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3411356Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3411615Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3411875Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3412135Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3412378Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3412625Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3412950Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3413159Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3413166Z 2023-01-11T21:41:26.3413234Z 2023-01-11T21:41:26.3413363Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3413455Z import torch 2023-01-11T21:41:26.3413549Z import random 2023-01-11T21:41:26.3413703Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3413847Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3413868Z 2023-01-11T21:41:26.3413957Z aten = torch.ops.aten 2023-01-11T21:41:26.3414131Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3414251Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3414258Z 2023-01-11T21:41:26.3414264Z 2023-01-11T21:41:26.3414450Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3414710Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3414865Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3415037Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3415122Z { 2023-01-11T21:41:26.3415240Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3415322Z { 2023-01-11T21:41:26.3415445Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3415554Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3415640Z { 2023-01-11T21:41:26.3415759Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3415831Z { 2023-01-11T21:41:26.3415918Z { 2023-01-11T21:41:26.3416007Z { 2023-01-11T21:41:26.3416146Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3416275Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3416362Z } 2023-01-11T21:41:26.3416448Z } 2023-01-11T21:41:26.3416516Z } 2023-01-11T21:41:26.3416599Z } 2023-01-11T21:41:26.3416679Z } 2023-01-11T21:41:26.3416757Z } 2023-01-11T21:41:26.3416868Z ''') 2023-01-11T21:41:26.3416875Z 2023-01-11T21:41:26.3416879Z 2023-01-11T21:41:26.3416998Z async_compile.wait(globals()) 2023-01-11T21:41:26.3417102Z del async_compile 2023-01-11T21:41:26.3417109Z 2023-01-11T21:41:26.3417187Z def call(args): 2023-01-11T21:41:26.3417341Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3417434Z args.clear() 2023-01-11T21:41:26.3417756Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3417932Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3418022Z del arg7_1 2023-01-11T21:41:26.3418205Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3418357Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3418433Z del arg0_1 2023-01-11T21:41:26.3418525Z del arg1_1 2023-01-11T21:41:26.3418619Z return (buf1, ) 2023-01-11T21:41:26.3418626Z 2023-01-11T21:41:26.3418631Z 2023-01-11T21:41:26.3418734Z if __name__ == "__main__": 2023-01-11T21:41:26.3418882Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3419044Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3419336Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3419598Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3419858Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3420195Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3420516Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3420842Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3421149Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3421554Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3421871Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3421880Z 2023-01-11T21:41:26.3421885Z 2023-01-11T21:41:26.3422053Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3422156Z import torch 2023-01-11T21:41:26.3422279Z import random 2023-01-11T21:41:26.3422479Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3422680Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3422689Z 2023-01-11T21:41:26.3422831Z aten = torch.ops.aten 2023-01-11T21:41:26.3423057Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3423292Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3423305Z 2023-01-11T21:41:26.3423311Z 2023-01-11T21:41:26.3423528Z async_compile.wait(globals()) 2023-01-11T21:41:26.3423644Z del async_compile 2023-01-11T21:41:26.3423652Z 2023-01-11T21:41:26.3423787Z def call(args): 2023-01-11T21:41:26.3423987Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3424114Z args.clear() 2023-01-11T21:41:26.3424347Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3424540Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3424657Z del arg0_1 2023-01-11T21:41:26.3424765Z del arg1_1 2023-01-11T21:41:26.3424883Z del arg7_1 2023-01-11T21:41:26.3425010Z return (buf0, ) 2023-01-11T21:41:26.3425018Z 2023-01-11T21:41:26.3425025Z 2023-01-11T21:41:26.3425151Z if __name__ == "__main__": 2023-01-11T21:41:26.3425349Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3425564Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3425961Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3426300Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3426611Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3426948Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3427281Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3427610Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3427921Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3428331Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3428588Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3428604Z 2023-01-11T21:41:26.3429071Z [2023-01-11 21:25:57,072] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 136 2023-01-11T21:41:26.3429791Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3430003Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3430435Z [2023-01-11 21:25:57,624] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 137 2023-01-11T21:41:26.3430889Z [2023-01-11 21:25:57,646] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 137 2023-01-11T21:41:26.3431587Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3431900Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3432335Z [2023-01-11 21:25:57,851] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 138 2023-01-11T21:41:26.3432794Z [2023-01-11 21:25:57,880] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 138 2023-01-11T21:41:26.3433564Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3433790Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3434234Z [2023-01-11 21:25:58,155] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 139 2023-01-11T21:41:26.3434705Z [2023-01-11 21:25:58,178] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 139 2023-01-11T21:41:26.3435423Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3435637Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3436060Z [2023-01-11 21:25:58,810] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 140 2023-01-11T21:41:26.3436094Z 2023-01-11T21:41:26.3436243Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3436367Z import torch 2023-01-11T21:41:26.3436493Z import random 2023-01-11T21:41:26.3436689Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3436899Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3436910Z 2023-01-11T21:41:26.3437044Z aten = torch.ops.aten 2023-01-11T21:41:26.3437276Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3437406Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3437416Z 2023-01-11T21:41:26.3437422Z 2023-01-11T21:41:26.3437672Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3438010Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3438213Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3438386Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3438510Z { 2023-01-11T21:41:26.3438685Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3438776Z { 2023-01-11T21:41:26.3438913Z #pragma omp for 2023-01-11T21:41:26.3439059Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3439175Z { 2023-01-11T21:41:26.3439323Z #pragma GCC ivdep 2023-01-11T21:41:26.3439478Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3439595Z { 2023-01-11T21:41:26.3439691Z { 2023-01-11T21:41:26.3439810Z { 2023-01-11T21:41:26.3439992Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3440159Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3440277Z } 2023-01-11T21:41:26.3440392Z } 2023-01-11T21:41:26.3440495Z } 2023-01-11T21:41:26.3440590Z } 2023-01-11T21:41:26.3440697Z } 2023-01-11T21:41:26.3440803Z } 2023-01-11T21:41:26.3440958Z ''') 2023-01-11T21:41:26.3440975Z 2023-01-11T21:41:26.3440982Z 2023-01-11T21:41:26.3441142Z async_compile.wait(globals()) 2023-01-11T21:41:26.3441349Z del async_compile 2023-01-11T21:41:26.3441361Z 2023-01-11T21:41:26.3441490Z def call(args): 2023-01-11T21:41:26.3441678Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3441815Z args.clear() 2023-01-11T21:41:26.3442231Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3442466Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3442586Z del arg7_1 2023-01-11T21:41:26.3442822Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3443023Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3443141Z del arg0_1 2023-01-11T21:41:26.3443249Z del arg1_1 2023-01-11T21:41:26.3443448Z return (buf1, ) 2023-01-11T21:41:26.3443459Z 2023-01-11T21:41:26.3443465Z 2023-01-11T21:41:26.3443600Z if __name__ == "__main__": 2023-01-11T21:41:26.3443805Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3444022Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3444397Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3444738Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3445088Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3445405Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3445733Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3446061Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3446379Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3446775Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3447040Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3447049Z 2023-01-11T21:41:26.3447054Z 2023-01-11T21:41:26.3447215Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3447344Z import torch 2023-01-11T21:41:26.3447453Z import random 2023-01-11T21:41:26.3447644Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3447851Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3447859Z 2023-01-11T21:41:26.3447990Z aten = torch.ops.aten 2023-01-11T21:41:26.3448216Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3448366Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3448374Z 2023-01-11T21:41:26.3448382Z 2023-01-11T21:41:26.3448541Z async_compile.wait(globals()) 2023-01-11T21:41:26.3448675Z del async_compile 2023-01-11T21:41:26.3448685Z 2023-01-11T21:41:26.3448797Z def call(args): 2023-01-11T21:41:26.3449126Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3449265Z args.clear() 2023-01-11T21:41:26.3449507Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3449714Z assert_size_stride(buf0, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3449842Z del arg0_1 2023-01-11T21:41:26.3449960Z del arg1_1 2023-01-11T21:41:26.3450069Z del arg7_1 2023-01-11T21:41:26.3450203Z return (buf0, ) 2023-01-11T21:41:26.3450212Z 2023-01-11T21:41:26.3450217Z 2023-01-11T21:41:26.3450349Z if __name__ == "__main__": 2023-01-11T21:41:26.3450535Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3450742Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3451149Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3451485Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3451945Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3452262Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3452587Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3452916Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3453225Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3453618Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3453884Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3453895Z 2023-01-11T21:41:26.3454006Z 2023-01-11T21:41:26.3454182Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3454315Z import torch 2023-01-11T21:41:26.3454451Z import random 2023-01-11T21:41:26.3454627Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3454835Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3454844Z 2023-01-11T21:41:26.3454977Z aten = torch.ops.aten 2023-01-11T21:41:26.3455208Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3455369Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3455379Z 2023-01-11T21:41:26.3455384Z 2023-01-11T21:41:26.3455626Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3455971Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3456181Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3456334Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3456453Z { 2023-01-11T21:41:26.3456631Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3456749Z { 2023-01-11T21:41:26.3456912Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3457061Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3457181Z { 2023-01-11T21:41:26.3457321Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3457430Z { 2023-01-11T21:41:26.3457554Z { 2023-01-11T21:41:26.3457674Z { 2023-01-11T21:41:26.3457852Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3458021Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3458123Z } 2023-01-11T21:41:26.3458238Z } 2023-01-11T21:41:26.3458354Z } 2023-01-11T21:41:26.3458470Z } 2023-01-11T21:41:26.3458578Z } 2023-01-11T21:41:26.3458685Z } 2023-01-11T21:41:26.3458840Z ''') 2023-01-11T21:41:26.3458849Z 2023-01-11T21:41:26.3458854Z 2023-01-11T21:41:26.3458996Z async_compile.wait(globals()) 2023-01-11T21:41:26.3459129Z del async_compile 2023-01-11T21:41:26.3459139Z 2023-01-11T21:41:26.3459263Z def call(args): 2023-01-11T21:41:26.3459462Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3459597Z args.clear() 2023-01-11T21:41:26.3460009Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3460240Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3460361Z del arg7_1 2023-01-11T21:41:26.3460579Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3460785Z assert_size_stride(buf1, (1, 32, 55, 55, 55), (5324000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3460916Z del arg0_1 2023-01-11T21:41:26.3461037Z del arg1_1 2023-01-11T21:41:26.3461166Z return (buf1, ) 2023-01-11T21:41:26.3461177Z 2023-01-11T21:41:26.3461191Z 2023-01-11T21:41:26.3461322Z if __name__ == "__main__": 2023-01-11T21:41:26.3461514Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3461832Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3462208Z arg0_1 = rand_strided((32, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3462534Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3462869Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3463270Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3463604Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3463934Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3464255Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3464730Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3464984Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3465002Z 2023-01-11T21:41:26.3465031Z 2023-01-11T21:41:26.3465181Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3465307Z import torch 2023-01-11T21:41:26.3465434Z import random 2023-01-11T21:41:26.3465628Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3465836Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3465847Z 2023-01-11T21:41:26.3465986Z aten = torch.ops.aten 2023-01-11T21:41:26.3466215Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3466353Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3466360Z 2023-01-11T21:41:26.3466365Z 2023-01-11T21:41:26.3466527Z async_compile.wait(globals()) 2023-01-11T21:41:26.3466662Z del async_compile 2023-01-11T21:41:26.3466670Z 2023-01-11T21:41:26.3466802Z def call(args): 2023-01-11T21:41:26.3467013Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3467144Z args.clear() 2023-01-11T21:41:26.3467385Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3467588Z assert_size_stride(buf0, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3467702Z del arg0_1 2023-01-11T21:41:26.3467825Z del arg1_1 2023-01-11T21:41:26.3467937Z del arg7_1 2023-01-11T21:41:26.3468070Z return (buf0, ) 2023-01-11T21:41:26.3468079Z 2023-01-11T21:41:26.3468086Z 2023-01-11T21:41:26.3468218Z if __name__ == "__main__": 2023-01-11T21:41:26.3468413Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3468627Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3469010Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3469354Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3469692Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3470034Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3470369Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3470705Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3471017Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3471426Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3471668Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3471697Z 2023-01-11T21:41:26.3472115Z [2023-01-11 21:25:58,838] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 140 2023-01-11T21:41:26.3472700Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3472961Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3473374Z [2023-01-11 21:25:59,443] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 141 2023-01-11T21:41:26.3473810Z [2023-01-11 21:25:59,465] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 141 2023-01-11T21:41:26.3474557Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3474773Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3475194Z [2023-01-11 21:25:59,699] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 142 2023-01-11T21:41:26.3475623Z [2023-01-11 21:25:59,727] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 142 2023-01-11T21:41:26.3476310Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3476514Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3476942Z [2023-01-11 21:26:00,070] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 143 2023-01-11T21:41:26.3477372Z [2023-01-11 21:26:00,092] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 143 2023-01-11T21:41:26.3478060Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3478256Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3478684Z [2023-01-11 21:26:00,817] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 144 2023-01-11T21:41:26.3478694Z 2023-01-11T21:41:26.3478849Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3478959Z import torch 2023-01-11T21:41:26.3479069Z import random 2023-01-11T21:41:26.3479250Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3479447Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3479457Z 2023-01-11T21:41:26.3479563Z aten = torch.ops.aten 2023-01-11T21:41:26.3479770Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3479912Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3479920Z 2023-01-11T21:41:26.3479927Z 2023-01-11T21:41:26.3480161Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3480487Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3480675Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3480829Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3480925Z { 2023-01-11T21:41:26.3481065Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3481167Z { 2023-01-11T21:41:26.3481290Z #pragma omp for 2023-01-11T21:41:26.3481418Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3481613Z { 2023-01-11T21:41:26.3481739Z #pragma GCC ivdep 2023-01-11T21:41:26.3481863Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3481963Z { 2023-01-11T21:41:26.3482062Z { 2023-01-11T21:41:26.3482164Z { 2023-01-11T21:41:26.3482323Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3482473Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3482575Z } 2023-01-11T21:41:26.3482657Z } 2023-01-11T21:41:26.3482760Z } 2023-01-11T21:41:26.3482856Z } 2023-01-11T21:41:26.3482948Z } 2023-01-11T21:41:26.3483041Z } 2023-01-11T21:41:26.3483185Z ''') 2023-01-11T21:41:26.3483195Z 2023-01-11T21:41:26.3483200Z 2023-01-11T21:41:26.3483409Z async_compile.wait(globals()) 2023-01-11T21:41:26.3483520Z del async_compile 2023-01-11T21:41:26.3483546Z 2023-01-11T21:41:26.3483638Z def call(args): 2023-01-11T21:41:26.3483833Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3483942Z args.clear() 2023-01-11T21:41:26.3484350Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3484560Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3484667Z del arg7_1 2023-01-11T21:41:26.3484885Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3485052Z assert_size_stride(buf1, (1, 128, 55, 55, 55), (21296000, 166375, 3025, 55, 1)) 2023-01-11T21:41:26.3485157Z del arg0_1 2023-01-11T21:41:26.3485261Z del arg1_1 2023-01-11T21:41:26.3485373Z return (buf1, ) 2023-01-11T21:41:26.3485382Z 2023-01-11T21:41:26.3485387Z 2023-01-11T21:41:26.3485511Z if __name__ == "__main__": 2023-01-11T21:41:26.3485694Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3485896Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3486276Z arg0_1 = rand_strided((128, 3, 1, 1, 1), (3, 1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3486588Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3486909Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3487229Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3487540Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3487848Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3488144Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3488539Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3488787Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3488803Z 2023-01-11T21:41:26.3488809Z 2023-01-11T21:41:26.3488942Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3489184Z import torch 2023-01-11T21:41:26.3489299Z import random 2023-01-11T21:41:26.3489477Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3489673Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3489682Z 2023-01-11T21:41:26.3489801Z aten = torch.ops.aten 2023-01-11T21:41:26.3490017Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3490142Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3490149Z 2023-01-11T21:41:26.3490155Z 2023-01-11T21:41:26.3490265Z async_compile.wait(globals()) 2023-01-11T21:41:26.3490385Z del async_compile 2023-01-11T21:41:26.3490392Z 2023-01-11T21:41:26.3490510Z def call(args): 2023-01-11T21:41:26.3490704Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3490938Z args.clear() 2023-01-11T21:41:26.3491181Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3491380Z assert_size_stride(buf0, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3491498Z del arg0_1 2023-01-11T21:41:26.3491595Z del arg1_1 2023-01-11T21:41:26.3491708Z del arg7_1 2023-01-11T21:41:26.3491827Z return (buf0, ) 2023-01-11T21:41:26.3491835Z 2023-01-11T21:41:26.3491842Z 2023-01-11T21:41:26.3491968Z if __name__ == "__main__": 2023-01-11T21:41:26.3492168Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3492388Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3492817Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3493250Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3493614Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3493973Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3494317Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3494670Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3494996Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3495430Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3495702Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3495713Z 2023-01-11T21:41:26.3495719Z 2023-01-11T21:41:26.3495883Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3495993Z import torch 2023-01-11T21:41:26.3496116Z import random 2023-01-11T21:41:26.3496316Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3496537Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3496546Z 2023-01-11T21:41:26.3496683Z aten = torch.ops.aten 2023-01-11T21:41:26.3496919Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3497080Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3497089Z 2023-01-11T21:41:26.3497096Z 2023-01-11T21:41:26.3497357Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3497706Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3497915Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3498091Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3498198Z { 2023-01-11T21:41:26.3498371Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3498479Z { 2023-01-11T21:41:26.3498641Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3498765Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3498882Z { 2023-01-11T21:41:26.3499034Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3499141Z { 2023-01-11T21:41:26.3499255Z { 2023-01-11T21:41:26.3499370Z { 2023-01-11T21:41:26.3499543Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3499699Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3499811Z } 2023-01-11T21:41:26.3499923Z } 2023-01-11T21:41:26.3500034Z } 2023-01-11T21:41:26.3500145Z } 2023-01-11T21:41:26.3500246Z } 2023-01-11T21:41:26.3500335Z } 2023-01-11T21:41:26.3500494Z ''') 2023-01-11T21:41:26.3500504Z 2023-01-11T21:41:26.3500511Z 2023-01-11T21:41:26.3500668Z async_compile.wait(globals()) 2023-01-11T21:41:26.3500792Z del async_compile 2023-01-11T21:41:26.3500807Z 2023-01-11T21:41:26.3500932Z def call(args): 2023-01-11T21:41:26.3501141Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3501365Z args.clear() 2023-01-11T21:41:26.3501808Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3502026Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3502144Z del arg7_1 2023-01-11T21:41:26.3502387Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3502590Z assert_size_stride(buf1, (1, 32, 53, 53, 53), (4764064, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3502708Z del arg0_1 2023-01-11T21:41:26.3502827Z del arg1_1 2023-01-11T21:41:26.3502951Z return (buf1, ) 2023-01-11T21:41:26.3502960Z 2023-01-11T21:41:26.3502966Z 2023-01-11T21:41:26.3503097Z if __name__ == "__main__": 2023-01-11T21:41:26.3503403Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3503612Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3503991Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3504303Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3504607Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3504911Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3505216Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3505527Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3505811Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3506189Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3506443Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3506459Z 2023-01-11T21:41:26.3506465Z 2023-01-11T21:41:26.3506613Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3506720Z import torch 2023-01-11T21:41:26.3506831Z import random 2023-01-11T21:41:26.3507014Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3507201Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3507210Z 2023-01-11T21:41:26.3507317Z aten = torch.ops.aten 2023-01-11T21:41:26.3507526Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3507671Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3507680Z 2023-01-11T21:41:26.3507686Z 2023-01-11T21:41:26.3507826Z async_compile.wait(globals()) 2023-01-11T21:41:26.3507939Z del async_compile 2023-01-11T21:41:26.3507947Z 2023-01-11T21:41:26.3508058Z def call(args): 2023-01-11T21:41:26.3508244Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3508360Z args.clear() 2023-01-11T21:41:26.3508565Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3508742Z assert_size_stride(buf0, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3508842Z del arg0_1 2023-01-11T21:41:26.3508950Z del arg1_1 2023-01-11T21:41:26.3509055Z del arg7_1 2023-01-11T21:41:26.3509168Z return (buf0, ) 2023-01-11T21:41:26.3509176Z 2023-01-11T21:41:26.3509182Z 2023-01-11T21:41:26.3509302Z if __name__ == "__main__": 2023-01-11T21:41:26.3509470Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3509668Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3510055Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3510387Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3510710Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3511147Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3511464Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3511778Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3512062Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3512456Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3512709Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3512718Z 2023-01-11T21:41:26.3513166Z [2023-01-11 21:26:00,845] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 144 2023-01-11T21:41:26.3513932Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3514149Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3514585Z [2023-01-11 21:26:01,488] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 145 2023-01-11T21:41:26.3515027Z [2023-01-11 21:26:01,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 145 2023-01-11T21:41:26.3515734Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3515936Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3516373Z [2023-01-11 21:26:01,748] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 146 2023-01-11T21:41:26.3516812Z [2023-01-11 21:26:01,776] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 146 2023-01-11T21:41:26.3517504Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3517704Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3518140Z [2023-01-11 21:26:02,089] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 147 2023-01-11T21:41:26.3518582Z [2023-01-11 21:26:02,111] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 147 2023-01-11T21:41:26.3519286Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3519483Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3519916Z [2023-01-11 21:26:02,768] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 148 2023-01-11T21:41:26.3519926Z 2023-01-11T21:41:26.3520078Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3520189Z import torch 2023-01-11T21:41:26.3520302Z import random 2023-01-11T21:41:26.3520479Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3520676Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3520760Z 2023-01-11T21:41:26.3520898Z aten = torch.ops.aten 2023-01-11T21:41:26.3521115Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3521263Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3521271Z 2023-01-11T21:41:26.3521277Z 2023-01-11T21:41:26.3521504Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3521835Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3522026Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3522170Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3522267Z { 2023-01-11T21:41:26.3522426Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3522526Z { 2023-01-11T21:41:26.3522651Z #pragma omp for 2023-01-11T21:41:26.3522863Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3522975Z { 2023-01-11T21:41:26.3523085Z #pragma GCC ivdep 2023-01-11T21:41:26.3523233Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3523337Z { 2023-01-11T21:41:26.3530083Z { 2023-01-11T21:41:26.3530203Z { 2023-01-11T21:41:26.3530354Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3530487Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3530562Z } 2023-01-11T21:41:26.3530648Z } 2023-01-11T21:41:26.3530735Z } 2023-01-11T21:41:26.3530817Z } 2023-01-11T21:41:26.3530898Z } 2023-01-11T21:41:26.3530980Z } 2023-01-11T21:41:26.3531103Z ''') 2023-01-11T21:41:26.3531111Z 2023-01-11T21:41:26.3531131Z 2023-01-11T21:41:26.3531239Z async_compile.wait(globals()) 2023-01-11T21:41:26.3531336Z del async_compile 2023-01-11T21:41:26.3531343Z 2023-01-11T21:41:26.3531443Z def call(args): 2023-01-11T21:41:26.3531605Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3531708Z args.clear() 2023-01-11T21:41:26.3532047Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3532226Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3532303Z del arg7_1 2023-01-11T21:41:26.3532488Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (1, 1, 1), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3532641Z assert_size_stride(buf1, (1, 128, 53, 53, 53), (19056256, 148877, 2809, 53, 1)) 2023-01-11T21:41:26.3532732Z del arg0_1 2023-01-11T21:41:26.3532818Z del arg1_1 2023-01-11T21:41:26.3532911Z return (buf1, ) 2023-01-11T21:41:26.3532919Z 2023-01-11T21:41:26.3532924Z 2023-01-11T21:41:26.3533025Z if __name__ == "__main__": 2023-01-11T21:41:26.3533182Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3533333Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3533637Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3533912Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3534176Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3534440Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3534704Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3534963Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3535209Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3535518Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3535730Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3535737Z 2023-01-11T21:41:26.3535858Z 2023-01-11T21:41:26.3535985Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3536078Z import torch 2023-01-11T21:41:26.3536174Z import random 2023-01-11T21:41:26.3536330Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3536488Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3536494Z 2023-01-11T21:41:26.3536597Z aten = torch.ops.aten 2023-01-11T21:41:26.3536757Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3536877Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3536884Z 2023-01-11T21:41:26.3536889Z 2023-01-11T21:41:26.3537006Z async_compile.wait(globals()) 2023-01-11T21:41:26.3537103Z del async_compile 2023-01-11T21:41:26.3537111Z 2023-01-11T21:41:26.3537204Z def call(args): 2023-01-11T21:41:26.3537410Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3537508Z args.clear() 2023-01-11T21:41:26.3537693Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3537835Z assert_size_stride(buf0, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3537924Z del arg0_1 2023-01-11T21:41:26.3538012Z del arg1_1 2023-01-11T21:41:26.3538099Z del arg7_1 2023-01-11T21:41:26.3538194Z return (buf0, ) 2023-01-11T21:41:26.3538201Z 2023-01-11T21:41:26.3538206Z 2023-01-11T21:41:26.3538306Z if __name__ == "__main__": 2023-01-11T21:41:26.3538456Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3538604Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3538943Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3539255Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3539578Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3539886Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3540211Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3540526Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3540823Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3541191Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3541444Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3541456Z 2023-01-11T21:41:26.3541462Z 2023-01-11T21:41:26.3541619Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3541736Z import torch 2023-01-11T21:41:26.3541853Z import random 2023-01-11T21:41:26.3542043Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3542239Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3542254Z 2023-01-11T21:41:26.3542377Z aten = torch.ops.aten 2023-01-11T21:41:26.3542578Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3542725Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3542734Z 2023-01-11T21:41:26.3542739Z 2023-01-11T21:41:26.3542987Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3543399Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3543593Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3543752Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3543852Z { 2023-01-11T21:41:26.3544008Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3544094Z { 2023-01-11T21:41:26.3544238Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3544378Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3544479Z { 2023-01-11T21:41:26.3544623Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3544844Z { 2023-01-11T21:41:26.3544950Z { 2023-01-11T21:41:26.3545041Z { 2023-01-11T21:41:26.3545209Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3545366Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3545476Z } 2023-01-11T21:41:26.3545578Z } 2023-01-11T21:41:26.3545682Z } 2023-01-11T21:41:26.3545786Z } 2023-01-11T21:41:26.3545865Z } 2023-01-11T21:41:26.3545957Z } 2023-01-11T21:41:26.3546114Z ''') 2023-01-11T21:41:26.3546125Z 2023-01-11T21:41:26.3546130Z 2023-01-11T21:41:26.3546282Z async_compile.wait(globals()) 2023-01-11T21:41:26.3546402Z del async_compile 2023-01-11T21:41:26.3546409Z 2023-01-11T21:41:26.3546523Z def call(args): 2023-01-11T21:41:26.3546794Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3546911Z args.clear() 2023-01-11T21:41:26.3547323Z buf0 = empty_strided((1, 3, 55, 55, 55), (499125, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3547542Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3547654Z del arg7_1 2023-01-11T21:41:26.3547873Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 1) 2023-01-11T21:41:26.3548055Z assert_size_stride(buf1, (1, 32, 51, 51, 51), (4244832, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3548166Z del arg0_1 2023-01-11T21:41:26.3548275Z del arg1_1 2023-01-11T21:41:26.3548372Z return (buf1, ) 2023-01-11T21:41:26.3548382Z 2023-01-11T21:41:26.3548387Z 2023-01-11T21:41:26.3548510Z if __name__ == "__main__": 2023-01-11T21:41:26.3548693Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3548895Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3549289Z arg0_1 = rand_strided((32, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3549631Z arg1_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3549957Z arg2_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3550277Z arg3_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3550576Z arg4_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3550885Z arg5_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3551186Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3551566Z arg7_1 = rand_strided((1, 3, 55, 55, 55), (499125, 1, 9075, 165, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3551819Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3551829Z 2023-01-11T21:41:26.3551835Z 2023-01-11T21:41:26.3551987Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3552108Z import torch 2023-01-11T21:41:26.3552222Z import random 2023-01-11T21:41:26.3552388Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3552582Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3552590Z 2023-01-11T21:41:26.3552714Z aten = torch.ops.aten 2023-01-11T21:41:26.3552930Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3553075Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3553083Z 2023-01-11T21:41:26.3553089Z 2023-01-11T21:41:26.3553227Z async_compile.wait(globals()) 2023-01-11T21:41:26.3553345Z del async_compile 2023-01-11T21:41:26.3553353Z 2023-01-11T21:41:26.3553467Z def call(args): 2023-01-11T21:41:26.3553635Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3553748Z args.clear() 2023-01-11T21:41:26.3553978Z buf0 = aten.convolution(arg7_1, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3554275Z assert_size_stride(buf0, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3554383Z del arg0_1 2023-01-11T21:41:26.3554489Z del arg1_1 2023-01-11T21:41:26.3554596Z del arg7_1 2023-01-11T21:41:26.3554693Z return (buf0, ) 2023-01-11T21:41:26.3554703Z 2023-01-11T21:41:26.3554724Z 2023-01-11T21:41:26.3554828Z if __name__ == "__main__": 2023-01-11T21:41:26.3555012Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3555206Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3555601Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3555938Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3556336Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3556672Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3556971Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3557273Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3557561Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3557946Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3558170Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3558180Z 2023-01-11T21:41:26.3558638Z [2023-01-11 21:26:02,796] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 148 2023-01-11T21:41:26.3558647Z 2023-01-11T21:41:26.3558799Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3558910Z import torch 2023-01-11T21:41:26.3559031Z import random 2023-01-11T21:41:26.3559202Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3559400Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3559408Z 2023-01-11T21:41:26.3559531Z aten = torch.ops.aten 2023-01-11T21:41:26.3559748Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3559896Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3559904Z 2023-01-11T21:41:26.3559910Z 2023-01-11T21:41:26.3560133Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3560460Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3560651Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3560793Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3560890Z { 2023-01-11T21:41:26.3561047Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3561146Z { 2023-01-11T21:41:26.3561274Z #pragma omp for 2023-01-11T21:41:26.3561407Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3561511Z { 2023-01-11T21:41:26.3561627Z #pragma GCC ivdep 2023-01-11T21:41:26.3561770Z for(long i1=0; i1<166375; i1+=1) 2023-01-11T21:41:26.3561874Z { 2023-01-11T21:41:26.3561980Z { 2023-01-11T21:41:26.3562085Z { 2023-01-11T21:41:26.3562247Z auto tmp0 = in_ptr0[i0 + (12*i1)]; 2023-01-11T21:41:26.3562385Z out_ptr0[i1 + (166375*i0)] = tmp0; 2023-01-11T21:41:26.3562492Z } 2023-01-11T21:41:26.3562594Z } 2023-01-11T21:41:26.3562697Z } 2023-01-11T21:41:26.3562796Z } 2023-01-11T21:41:26.3562897Z } 2023-01-11T21:41:26.3562992Z } 2023-01-11T21:41:26.3563106Z ''') 2023-01-11T21:41:26.3563114Z 2023-01-11T21:41:26.3563120Z 2023-01-11T21:41:26.3563265Z async_compile.wait(globals()) 2023-01-11T21:41:26.3563379Z del async_compile 2023-01-11T21:41:26.3563392Z 2023-01-11T21:41:26.3563505Z def call(args): 2023-01-11T21:41:26.3563695Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1 = args 2023-01-11T21:41:26.3563889Z args.clear() 2023-01-11T21:41:26.3564286Z buf0 = empty_strided((1, 12, 55, 55, 55), (1996500, 166375, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3564497Z kernel_cpp_0(c_void_p(arg7_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3564590Z del arg7_1 2023-01-11T21:41:26.3564810Z buf1 = aten.convolution(buf0, arg0_1, arg1_1, (1, 1, 1), (0, 0, 0), (2, 2, 2), False, (0, 0, 0), 4) 2023-01-11T21:41:26.3565000Z assert_size_stride(buf1, (1, 128, 51, 51, 51), (16979328, 132651, 2601, 51, 1)) 2023-01-11T21:41:26.3565111Z del arg0_1 2023-01-11T21:41:26.3565218Z del arg1_1 2023-01-11T21:41:26.3565331Z return (buf1, ) 2023-01-11T21:41:26.3565340Z 2023-01-11T21:41:26.3565346Z 2023-01-11T21:41:26.3565467Z if __name__ == "__main__": 2023-01-11T21:41:26.3565685Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3565891Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3566264Z arg0_1 = rand_strided((128, 3, 3, 3, 3), (81, 27, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3566585Z arg1_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3566904Z arg2_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3567219Z arg3_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3567529Z arg4_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3567846Z arg5_1 = rand_strided((128, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3568126Z arg6_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3568519Z arg7_1 = rand_strided((1, 12, 55, 55, 55), (1996500, 1, 36300, 660, 12), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3568771Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1])) 2023-01-11T21:41:26.3568785Z 2023-01-11T21:41:26.3568890Z ok (34.968s) 2023-01-11T21:41:26.3569821Z test_conv_functional_bn_fuse_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3570027Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3570466Z [2023-01-11 21:26:03,341] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 149 2023-01-11T21:41:26.3570914Z [2023-01-11 21:26:04,875] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 149 2023-01-11T21:41:26.3570923Z 2023-01-11T21:41:26.3571079Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3571198Z import torch 2023-01-11T21:41:26.3571297Z import random 2023-01-11T21:41:26.3571481Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3571676Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3571684Z 2023-01-11T21:41:26.3571809Z aten = torch.ops.aten 2023-01-11T21:41:26.3572023Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3572172Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3572180Z 2023-01-11T21:41:26.3572186Z 2023-01-11T21:41:26.3572414Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3572744Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3572918Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3573076Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3573178Z { 2023-01-11T21:41:26.3573339Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3573436Z { 2023-01-11T21:41:26.3573683Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3573824Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3573917Z { 2023-01-11T21:41:26.3574067Z for(long i1=0; i1<31136; i1+=1) 2023-01-11T21:41:26.3574176Z { 2023-01-11T21:41:26.3574290Z { 2023-01-11T21:41:26.3574406Z { 2023-01-11T21:41:26.3574583Z auto tmp0 = in_ptr0[i1 + (31136*i0)]; 2023-01-11T21:41:26.3574746Z out_ptr0[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.3574846Z } 2023-01-11T21:41:26.3574963Z } 2023-01-11T21:41:26.3575073Z } 2023-01-11T21:41:26.3575183Z } 2023-01-11T21:41:26.3575290Z } 2023-01-11T21:41:26.3575393Z } 2023-01-11T21:41:26.3575525Z ''') 2023-01-11T21:41:26.3575550Z 2023-01-11T21:41:26.3575557Z 2023-01-11T21:41:26.3575851Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3576217Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3576432Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3576605Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3576711Z { 2023-01-11T21:41:26.3576881Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3576986Z { 2023-01-11T21:41:26.3577103Z #pragma omp for 2023-01-11T21:41:26.3577247Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.3577359Z { 2023-01-11T21:41:26.3577500Z #pragma GCC ivdep 2023-01-11T21:41:26.3577652Z for(long i1=0; i1<29916; i1+=1) 2023-01-11T21:41:26.3577766Z { 2023-01-11T21:41:26.3577875Z { 2023-01-11T21:41:26.3577975Z { 2023-01-11T21:41:26.3578152Z auto tmp0 = in_ptr0[i0 + (64*i1)]; 2023-01-11T21:41:26.3578323Z out_ptr0[i1 + (29916*i0)] = tmp0; 2023-01-11T21:41:26.3578439Z } 2023-01-11T21:41:26.3578558Z } 2023-01-11T21:41:26.3578669Z } 2023-01-11T21:41:26.3578763Z } 2023-01-11T21:41:26.3578869Z } 2023-01-11T21:41:26.3578974Z } 2023-01-11T21:41:26.3579125Z ''') 2023-01-11T21:41:26.3579134Z 2023-01-11T21:41:26.3579140Z 2023-01-11T21:41:26.3579298Z async_compile.wait(globals()) 2023-01-11T21:41:26.3579425Z del async_compile 2023-01-11T21:41:26.3579433Z 2023-01-11T21:41:26.3579558Z def call(args): 2023-01-11T21:41:26.3579754Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args 2023-01-11T21:41:26.3579863Z args.clear() 2023-01-11T21:41:26.3580262Z buf0 = empty_strided((1, 3, 556, 56), (93408, 1, 168, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3580499Z kernel_cpp_0(c_void_p(arg6_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3580621Z del arg6_1 2023-01-11T21:41:26.3581082Z buf1 = torch.ops.mkldnn._convolution_pointwise(buf0, arg2_1, arg3_1, (0, 0), (1, 1), (1, 1), 1, 'none', [], '') 2023-01-11T21:41:26.3581279Z assert_size_stride(buf1, (1, 64, 554, 54), (1914624, 1, 3456, 64)) 2023-01-11T21:41:26.3581400Z del arg2_1 2023-01-11T21:41:26.3581500Z del arg3_1 2023-01-11T21:41:26.3581610Z del buf0 2023-01-11T21:41:26.3582027Z buf2 = empty_strided((1, 64, 554, 54), (1914624, 29916, 54, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3582259Z kernel_cpp_1(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3582387Z return (buf2, ) 2023-01-11T21:41:26.3582397Z 2023-01-11T21:41:26.3582404Z 2023-01-11T21:41:26.3582533Z if __name__ == "__main__": 2023-01-11T21:41:26.3582735Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3582952Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3583362Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3583715Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3584091Z arg2_1 = rand_strided((64, 3, 3, 3), (1, 0, 0, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3584517Z arg3_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3584860Z arg4_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3585198Z arg5_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3585601Z arg6_1 = rand_strided((1, 3, 556, 56), (93408, 31136, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3585860Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1])) 2023-01-11T21:41:26.3585869Z 2023-01-11T21:41:26.3585969Z ok (1.669s) 2023-01-11T21:41:26.3586649Z test_convolution1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3586825Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3587181Z [2023-01-11 21:26:04,984] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 150 2023-01-11T21:41:26.3587542Z [2023-01-11 21:26:06,493] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 150 2023-01-11T21:41:26.3587549Z 2023-01-11T21:41:26.3587674Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3587768Z import torch 2023-01-11T21:41:26.3587864Z import random 2023-01-11T21:41:26.3588017Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3588162Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3588188Z 2023-01-11T21:41:26.3588277Z aten = torch.ops.aten 2023-01-11T21:41:26.3588455Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3588582Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3588589Z 2023-01-11T21:41:26.3588594Z 2023-01-11T21:41:26.3588777Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3589041Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3589194Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.3589323Z bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.3589390Z { 2023-01-11T21:41:26.3589519Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3589601Z { 2023-01-11T21:41:26.3589703Z #pragma omp for 2023-01-11T21:41:26.3589815Z for(long i0=0; i0<2352; i0+=1) 2023-01-11T21:41:26.3589900Z { 2023-01-11T21:41:26.3589985Z { 2023-01-11T21:41:26.3590056Z { 2023-01-11T21:41:26.3590186Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3590312Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.3590453Z auto tmp2 = static_cast(0); 2023-01-11T21:41:26.3590575Z auto tmp3 = tmp1 <= tmp2; 2023-01-11T21:41:26.3590694Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3590808Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.3590879Z } 2023-01-11T21:41:26.3590963Z } 2023-01-11T21:41:26.3591045Z } 2023-01-11T21:41:26.3591129Z } 2023-01-11T21:41:26.3591211Z } 2023-01-11T21:41:26.3591317Z ''') 2023-01-11T21:41:26.3591324Z 2023-01-11T21:41:26.3591329Z 2023-01-11T21:41:26.3591449Z async_compile.wait(globals()) 2023-01-11T21:41:26.3591531Z del async_compile 2023-01-11T21:41:26.3591538Z 2023-01-11T21:41:26.3591631Z def call(args): 2023-01-11T21:41:26.3591769Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.3591869Z args.clear() 2023-01-11T21:41:26.3592071Z buf0 = aten.convolution(primals_3, primals_1, primals_2, (1, 1), (0, 0), (1, 1), False, (0, 0), 1) 2023-01-11T21:41:26.3592258Z assert_size_stride(buf0, (2, 6, 14, 14), (1176, 196, 14, 1)) 2023-01-11T21:41:26.3592355Z del primals_2 2023-01-11T21:41:26.3592497Z buf1 = as_strided(buf0, (2, 6, 14, 14), (1176, 196, 14, 1)); del buf0 # reuse 2023-01-11T21:41:26.3592788Z buf2 = empty_strided((2, 6, 14, 14), (1176, 196, 14, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.3592966Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.3593105Z return (buf1, primals_1, primals_3, buf2, ) 2023-01-11T21:41:26.3593112Z 2023-01-11T21:41:26.3593117Z 2023-01-11T21:41:26.3593216Z if __name__ == "__main__": 2023-01-11T21:41:26.3593365Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3593527Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3593935Z primals_1 = rand_strided((6, 5, 3, 3), (45, 9, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3594212Z primals_2 = rand_strided((6, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3594506Z primals_3 = rand_strided((2, 5, 16, 16), (1280, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3594691Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.3594698Z 2023-01-11T21:41:26.3594789Z ok (1.595s) 2023-01-11T21:41:26.3595407Z test_convolution2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3595572Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3595931Z [2023-01-11 21:26:06,536] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 151 2023-01-11T21:41:26.3596297Z [2023-01-11 21:26:06,558] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 151 2023-01-11T21:41:26.3596304Z 2023-01-11T21:41:26.3596428Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3596522Z import torch 2023-01-11T21:41:26.3596603Z import random 2023-01-11T21:41:26.3596753Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3596911Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3596918Z 2023-01-11T21:41:26.3597021Z aten = torch.ops.aten 2023-01-11T21:41:26.3597196Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3597318Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3597325Z 2023-01-11T21:41:26.3597330Z 2023-01-11T21:41:26.3597449Z async_compile.wait(globals()) 2023-01-11T21:41:26.3597544Z del async_compile 2023-01-11T21:41:26.3597555Z 2023-01-11T21:41:26.3597633Z def call(args): 2023-01-11T21:41:26.3597742Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.3597839Z args.clear() 2023-01-11T21:41:26.3598011Z buf0 = aten.convolution(arg0_1, arg1_1, arg2_1, (4,), (0,), (1,), True, (0,), 1) 2023-01-11T21:41:26.3598151Z assert_size_stride(buf0, (2, 16, 364), (5824, 364, 1)) 2023-01-11T21:41:26.3598243Z del arg0_1 2023-01-11T21:41:26.3598331Z del arg1_1 2023-01-11T21:41:26.3598404Z del arg2_1 2023-01-11T21:41:26.3598499Z return (buf0, ) 2023-01-11T21:41:26.3598506Z 2023-01-11T21:41:26.3598511Z 2023-01-11T21:41:26.3598610Z if __name__ == "__main__": 2023-01-11T21:41:26.3598760Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3598921Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3599209Z arg0_1 = rand_strided((2, 32, 90), (2880, 90, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3599495Z arg1_1 = rand_strided((32, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3599759Z arg2_1 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3599945Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.3599967Z 2023-01-11T21:41:26.3600041Z ok (0.065s) 2023-01-11T21:41:26.3600647Z test_cos_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3600810Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3601159Z [2023-01-11 21:26:06,590] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 152 2023-01-11T21:41:26.3601558Z [2023-01-11 21:26:08,068] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 152 2023-01-11T21:41:26.3601567Z 2023-01-11T21:41:26.3601698Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3601791Z import torch 2023-01-11T21:41:26.3601886Z import random 2023-01-11T21:41:26.3602023Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3602182Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3602190Z 2023-01-11T21:41:26.3602293Z aten = torch.ops.aten 2023-01-11T21:41:26.3602468Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3602591Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3602597Z 2023-01-11T21:41:26.3602602Z 2023-01-11T21:41:26.3602785Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3603049Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3603206Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3603338Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3603454Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.3603541Z { 2023-01-11T21:41:26.3603671Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3603753Z { 2023-01-11T21:41:26.3603856Z #pragma omp for 2023-01-11T21:41:26.3603968Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3604036Z { 2023-01-11T21:41:26.3604238Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3604350Z auto tmp1 = tmp0.cos(); 2023-01-11T21:41:26.3604527Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.3604640Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.3604812Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.3604925Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.3605036Z auto tmp6 = tmp5.cos(); 2023-01-11T21:41:26.3605145Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3605265Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.3605355Z } 2023-01-11T21:41:26.3605482Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3605592Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.3605675Z { 2023-01-11T21:41:26.3605786Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3605889Z auto tmp1 = std::cos(tmp0); 2023-01-11T21:41:26.3606019Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.3606134Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.3606265Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.3606377Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.3606496Z auto tmp6 = std::cos(tmp5); 2023-01-11T21:41:26.3606601Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.3606692Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.3606773Z } 2023-01-11T21:41:26.3606857Z } 2023-01-11T21:41:26.3606941Z } 2023-01-11T21:41:26.3607048Z ''') 2023-01-11T21:41:26.3607055Z 2023-01-11T21:41:26.3607097Z 2023-01-11T21:41:26.3607216Z async_compile.wait(globals()) 2023-01-11T21:41:26.3607315Z del async_compile 2023-01-11T21:41:26.3607322Z 2023-01-11T21:41:26.3607401Z def call(args): 2023-01-11T21:41:26.3607494Z arg0_1, = args 2023-01-11T21:41:26.3607588Z args.clear() 2023-01-11T21:41:26.3607861Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3608132Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3608346Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.3608437Z del arg0_1 2023-01-11T21:41:26.3608524Z return (buf0, buf1, ) 2023-01-11T21:41:26.3608546Z 2023-01-11T21:41:26.3608551Z 2023-01-11T21:41:26.3608635Z if __name__ == "__main__": 2023-01-11T21:41:26.3608818Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3608984Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3609388Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3609532Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3609538Z 2023-01-11T21:41:26.3609626Z ok (1.510s) 2023-01-11T21:41:26.3610245Z test_cpp_wrapper_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3610413Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3610770Z [2023-01-11 21:26:08,101] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 153 2023-01-11T21:41:26.3610779Z 2023-01-11T21:41:26.3610886Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3610985Z import torch 2023-01-11T21:41:26.3611078Z import random 2023-01-11T21:41:26.3611230Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3611386Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3611392Z 2023-01-11T21:41:26.3611495Z aten = torch.ops.aten 2023-01-11T21:41:26.3611670Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3611776Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3611798Z 2023-01-11T21:41:26.3611803Z 2023-01-11T21:41:26.3611968Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3612230Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3612385Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.3612525Z const float* __restrict__ in_ptr0) 2023-01-11T21:41:26.3612610Z { 2023-01-11T21:41:26.3612739Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3612821Z { 2023-01-11T21:41:26.3612913Z #pragma omp for 2023-01-11T21:41:26.3613022Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:41:26.3613104Z { 2023-01-11T21:41:26.3613280Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3613456Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.3613571Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3613743Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.3613858Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3613973Z tmp4.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3614055Z } 2023-01-11T21:41:26.3614184Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3614299Z for(long i0=4096; i0<4096; i0+=1) 2023-01-11T21:41:26.3614382Z { 2023-01-11T21:41:26.3614498Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3614615Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.3614793Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3614923Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.3615035Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3615145Z in_out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.3615229Z } 2023-01-11T21:41:26.3615311Z } 2023-01-11T21:41:26.3615376Z } 2023-01-11T21:41:26.3615487Z ''') 2023-01-11T21:41:26.3615493Z 2023-01-11T21:41:26.3615613Z async_compile.wait(globals()) 2023-01-11T21:41:26.3615712Z del async_compile 2023-01-11T21:41:26.3615868Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3615964Z wrapper = ( 2023-01-11T21:41:26.3616069Z ''' 2023-01-11T21:41:26.3616153Z #include 2023-01-11T21:41:26.3616250Z #include 2023-01-11T21:41:26.3616466Z std::vector call_0(std::vector args) { 2023-01-11T21:41:26.3616574Z at::Tensor arg0_1; 2023-01-11T21:41:26.3616670Z arg0_1 = args[0]; 2023-01-11T21:41:26.3616852Z auto buf0 = at::empty_strided({64, 64}, {64, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3617026Z auto buf1 = at::as_strided(buf0, {8, 8, 64}, {512, 64, 1}); buf0.reset(); // reuse 2023-01-11T21:41:26.3617353Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/7t/c7teerg2txdzjxddrmv3s7fxnncw2uo4ovbnvjzi3xo2blybtvpk.so", RTLD_NOW); 2023-01-11T21:41:26.3617467Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3617611Z void (*kernel_cpp_0)(float*,const float*); 2023-01-11T21:41:26.3617822Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3618047Z kernel_cpp_0((float*)(buf1.data_ptr()), (float*)(arg0_1.data_ptr())); 2023-01-11T21:41:26.3618455Z return std::vector({at::as_strided(arg0_1, {8, 8, 64}, {512, 64, 1}), buf1}); }''' ) 2023-01-11T21:41:26.3618464Z 2023-01-11T21:41:26.3618598Z module = load_inline( 2023-01-11T21:41:26.3619075Z name='inline_extension_cvr6w7wpa3pkttzmjiie5bttvbnlvilrhuls2ejiiqdffyagh3el', 2023-01-11T21:41:26.3619227Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3619409Z functions=['call_0'], 2023-01-11T21:41:26.3620075Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3620339Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3621475Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3621486Z 2023-01-11T21:41:26.3621612Z def _wrap_func(f): 2023-01-11T21:41:26.3621730Z def g(args): 2023-01-11T21:41:26.3621860Z return f(args) 2023-01-11T21:41:26.3621974Z return g 2023-01-11T21:41:26.3622117Z call = _wrap_func(module.call_0) 2023-01-11T21:41:26.3622146Z 2023-01-11T21:41:26.3622154Z 2023-01-11T21:41:26.3622269Z if __name__ == "__main__": 2023-01-11T21:41:26.3622472Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3622688Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3623049Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3623297Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3623308Z 2023-01-11T21:41:26.3623784Z [2023-01-11 21:26:26,886] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 153 2023-01-11T21:41:26.3624563Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3624845Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3625321Z [2023-01-11 21:26:26,907] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 154 2023-01-11T21:41:26.3625331Z 2023-01-11T21:41:26.3625479Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3625602Z import torch 2023-01-11T21:41:26.3625725Z import random 2023-01-11T21:41:26.3625928Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3626141Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3626151Z 2023-01-11T21:41:26.3626286Z aten = torch.ops.aten 2023-01-11T21:41:26.3626522Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3626667Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3626693Z 2023-01-11T21:41:26.3626700Z 2023-01-11T21:41:26.3626973Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3627347Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3627560Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.3627737Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.3627905Z int* __restrict__ out_ptr0, 2023-01-11T21:41:26.3628067Z int* __restrict__ out_ptr1, 2023-01-11T21:41:26.3628226Z int* __restrict__ out_ptr2, 2023-01-11T21:41:26.3628370Z int* __restrict__ out_ptr3) 2023-01-11T21:41:26.3628487Z { 2023-01-11T21:41:26.3628660Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3628766Z { 2023-01-11T21:41:26.3628899Z #pragma omp for 2023-01-11T21:41:26.3629039Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.3629148Z { 2023-01-11T21:41:26.3629241Z { 2023-01-11T21:41:26.3629355Z { 2023-01-11T21:41:26.3629513Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3629672Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.3629818Z auto tmp1 = ~tmp0; 2023-01-11T21:41:26.3629975Z auto tmp3 = tmp0 | tmp2; 2023-01-11T21:41:26.3630130Z auto tmp4 = tmp0 ^ tmp2; 2023-01-11T21:41:26.3630269Z auto tmp5 = tmp0 & tmp2; 2023-01-11T21:41:26.3630410Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3630553Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.3630697Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.3630841Z out_ptr3[i0] = tmp5; 2023-01-11T21:41:26.3630946Z } 2023-01-11T21:41:26.3631054Z } 2023-01-11T21:41:26.3631122Z } 2023-01-11T21:41:26.3631204Z } 2023-01-11T21:41:26.3631283Z } 2023-01-11T21:41:26.3631396Z ''') 2023-01-11T21:41:26.3631403Z 2023-01-11T21:41:26.3631525Z async_compile.wait(globals()) 2023-01-11T21:41:26.3631624Z del async_compile 2023-01-11T21:41:26.3631782Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3631867Z wrapper = ( 2023-01-11T21:41:26.3631977Z ''' 2023-01-11T21:41:26.3632076Z #include 2023-01-11T21:41:26.3632175Z #include 2023-01-11T21:41:26.3632351Z std::vector call_1(std::vector args) { 2023-01-11T21:41:26.3632464Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3632544Z arg0_1 = args[0]; 2023-01-11T21:41:26.3632638Z arg1_1 = args[1]; 2023-01-11T21:41:26.3632810Z auto buf0 = at::empty_strided({64, }, {1, }, at::ScalarType::Int); 2023-01-11T21:41:26.3632980Z auto buf1 = at::empty_strided({64, }, {1, }, at::ScalarType::Int); 2023-01-11T21:41:26.3633147Z auto buf2 = at::empty_strided({64, }, {1, }, at::ScalarType::Int); 2023-01-11T21:41:26.3633312Z auto buf3 = at::empty_strided({64, }, {1, }, at::ScalarType::Int); 2023-01-11T21:41:26.3633643Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/rv/crvxoskxizzxrfommbf7bg5tkfmti76e7o2dzmn36stpkt3uvwnx.so", RTLD_NOW); 2023-01-11T21:41:26.3633823Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3633990Z void (*kernel_cpp_0)(const int*,const int*,int*,int*,int*,int*); 2023-01-11T21:41:26.3634135Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3634417Z kernel_cpp_0((int*)(arg0_1.data_ptr()), (int*)(arg1_1.data_ptr()), (int*)(buf0.data_ptr()), (int*)(buf1.data_ptr()), (int*)(buf2.data_ptr()), (int*)(buf3.data_ptr())); 2023-01-11T21:41:26.3634511Z arg0_1.reset(); 2023-01-11T21:41:26.3634603Z arg1_1.reset(); 2023-01-11T21:41:26.3634857Z return std::vector({buf0, buf1, buf2, buf3}); }''' ) 2023-01-11T21:41:26.3634865Z 2023-01-11T21:41:26.3634965Z module = load_inline( 2023-01-11T21:41:26.3635309Z name='inline_extension_cuyauoq6gdklrmicb22pr47u4ph7mongsidlmteo5v4kpvsi5a4d', 2023-01-11T21:41:26.3635467Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3635611Z functions=['call_1'], 2023-01-11T21:41:26.3636099Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3636303Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3637107Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3637114Z 2023-01-11T21:41:26.3637212Z def _wrap_func(f): 2023-01-11T21:41:26.3637305Z def g(args): 2023-01-11T21:41:26.3637402Z return f(args) 2023-01-11T21:41:26.3637489Z return g 2023-01-11T21:41:26.3637595Z call = _wrap_func(module.call_1) 2023-01-11T21:41:26.3637602Z 2023-01-11T21:41:26.3637622Z 2023-01-11T21:41:26.3637710Z if __name__ == "__main__": 2023-01-11T21:41:26.3637859Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3638025Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3638289Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.3638548Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.3638699Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3638706Z 2023-01-11T21:41:26.3639067Z [2023-01-11 21:26:46,297] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 154 2023-01-11T21:41:26.3639636Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3639804Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3640142Z [2023-01-11 21:26:46,321] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 155 2023-01-11T21:41:26.3640150Z 2023-01-11T21:41:26.3640274Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3640365Z import torch 2023-01-11T21:41:26.3640460Z import random 2023-01-11T21:41:26.3640612Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3640772Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3640779Z 2023-01-11T21:41:26.3640882Z aten = torch.ops.aten 2023-01-11T21:41:26.3641042Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3641163Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3641170Z 2023-01-11T21:41:26.3641175Z 2023-01-11T21:41:26.3641359Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3641625Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3641781Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3641960Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3642092Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3642218Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.3642283Z { 2023-01-11T21:41:26.3642414Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3642494Z { 2023-01-11T21:41:26.3642597Z #pragma omp for 2023-01-11T21:41:26.3642707Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.3642791Z { 2023-01-11T21:41:26.3642968Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3643133Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.3643246Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3643398Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3643490Z } 2023-01-11T21:41:26.3643617Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3643730Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.3643815Z { 2023-01-11T21:41:26.3643912Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3644043Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.3644155Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3644261Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3644345Z } 2023-01-11T21:41:26.3644448Z #pragma omp for 2023-01-11T21:41:26.3644553Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.3644621Z { 2023-01-11T21:41:26.3644794Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3644969Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.3645084Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3645207Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.3645290Z } 2023-01-11T21:41:26.3645415Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3645514Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.3645597Z { 2023-01-11T21:41:26.3645709Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.3645839Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3645949Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3646056Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.3646140Z } 2023-01-11T21:41:26.3646205Z } 2023-01-11T21:41:26.3646284Z } 2023-01-11T21:41:26.3646393Z ''') 2023-01-11T21:41:26.3646400Z 2023-01-11T21:41:26.3646405Z 2023-01-11T21:41:26.3646589Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3646851Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3647005Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.3647086Z { 2023-01-11T21:41:26.3647216Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3647284Z { 2023-01-11T21:41:26.3647386Z #pragma omp for 2023-01-11T21:41:26.3647497Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.3647581Z { 2023-01-11T21:41:26.3647762Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3647939Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.3648051Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3648164Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3648248Z } 2023-01-11T21:41:26.3648373Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3648482Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.3648566Z { 2023-01-11T21:41:26.3648685Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3648815Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.3648918Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3649156Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3649244Z } 2023-01-11T21:41:26.3649396Z } 2023-01-11T21:41:26.3649476Z } 2023-01-11T21:41:26.3649586Z ''') 2023-01-11T21:41:26.3649593Z 2023-01-11T21:41:26.3649699Z async_compile.wait(globals()) 2023-01-11T21:41:26.3649797Z del async_compile 2023-01-11T21:41:26.3649951Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3650047Z wrapper = ( 2023-01-11T21:41:26.3650155Z ''' 2023-01-11T21:41:26.3650253Z #include 2023-01-11T21:41:26.3650352Z #include 2023-01-11T21:41:26.3650505Z std::vector call_2(std::vector args) { 2023-01-11T21:41:26.3650617Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3650711Z arg0_1 = args[0]; 2023-01-11T21:41:26.3650805Z arg1_1 = args[1]; 2023-01-11T21:41:26.3650982Z auto buf0 = at::empty_strided({2, 8, 8}, {64, 8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3651197Z at::bmm_out(buf0, arg0_1, arg1_1); 2023-01-11T21:41:26.3651375Z auto buf1 = at::empty_strided({2, 8, 8}, {64, 8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3651553Z auto buf2 = at::empty_strided({2, 8, 8}, {64, 8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3651869Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/pc/cpc65tdxpyhvrndvlki6qhxomio7koznfdtyy2it7cwxowywkzk6.so", RTLD_NOW); 2023-01-11T21:41:26.3652000Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3652163Z void (*kernel_cpp_0)(const float*,const float*,float*,float*); 2023-01-11T21:41:26.3652324Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3652563Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(arg1_1.data_ptr()), (float*)(buf1.data_ptr()), (float*)(buf2.data_ptr())); 2023-01-11T21:41:26.3652660Z arg0_1.reset(); 2023-01-11T21:41:26.3652753Z arg1_1.reset(); 2023-01-11T21:41:26.3652933Z auto buf3 = at::empty_strided({2, 8, 8}, {64, 8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3653037Z at::bmm_out(buf3, buf1, buf2); 2023-01-11T21:41:26.3653133Z buf1.reset(); 2023-01-11T21:41:26.3653229Z buf2.reset(); 2023-01-11T21:41:26.3653363Z auto buf4 = buf3; buf3.reset(); // reuse 2023-01-11T21:41:26.3653691Z auto kernel_cpp_1_lib = dlopen("/tmp/torchinductor_jenkins/2i/c2iaojccekodbchj66prruw6huckuqrbwyh2qznbbrfrnmn36tp4.so", RTLD_NOW); 2023-01-11T21:41:26.3653817Z assert(kernel_cpp_1_lib != nullptr); 2023-01-11T21:41:26.3653930Z void (*kernel_cpp_1)(float*); 2023-01-11T21:41:26.3654077Z *(void **) (&kernel_cpp_1) = dlsym(kernel_cpp_1_lib, "kernel"); 2023-01-11T21:41:26.3654210Z kernel_cpp_1((float*)(buf4.data_ptr())); 2023-01-11T21:41:26.3654439Z return std::vector({buf0, buf4}); }''' ) 2023-01-11T21:41:26.3654447Z 2023-01-11T21:41:26.3654549Z module = load_inline( 2023-01-11T21:41:26.3654892Z name='inline_extension_chfnadliirwsn3ujofkzbsnpr6hburp722b4pdqce6kt2trz36ns', 2023-01-11T21:41:26.3655012Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3655166Z functions=['call_2'], 2023-01-11T21:41:26.3655657Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3655844Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3656646Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3656670Z 2023-01-11T21:41:26.3656751Z def _wrap_func(f): 2023-01-11T21:41:26.3656842Z def g(args): 2023-01-11T21:41:26.3656940Z return f(args) 2023-01-11T21:41:26.3657027Z return g 2023-01-11T21:41:26.3657148Z call = _wrap_func(module.call_2) 2023-01-11T21:41:26.3657155Z 2023-01-11T21:41:26.3657160Z 2023-01-11T21:41:26.3657264Z if __name__ == "__main__": 2023-01-11T21:41:26.3657413Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3657597Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3657878Z arg0_1 = rand_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3658149Z arg1_1 = rand_strided((2, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3658300Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3658307Z 2023-01-11T21:41:26.3658671Z [2023-01-11 21:27:05,496] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 155 2023-01-11T21:41:26.3659268Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3659438Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3659798Z [2023-01-11 21:27:05,519] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 156 2023-01-11T21:41:26.3659804Z 2023-01-11T21:41:26.3659927Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3660018Z import torch 2023-01-11T21:41:26.3660096Z import random 2023-01-11T21:41:26.3660247Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3660410Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3660417Z 2023-01-11T21:41:26.3660518Z aten = torch.ops.aten 2023-01-11T21:41:26.3660693Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3660814Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3660821Z 2023-01-11T21:41:26.3660826Z 2023-01-11T21:41:26.3661010Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3661257Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3661413Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3661554Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3661686Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3661814Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.3661895Z { 2023-01-11T21:41:26.3662023Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3662104Z { 2023-01-11T21:41:26.3662193Z #pragma omp for 2023-01-11T21:41:26.3662300Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.3662384Z { 2023-01-11T21:41:26.3662562Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3662738Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.3662851Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3662973Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3663043Z } 2023-01-11T21:41:26.3663237Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3663355Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.3663439Z { 2023-01-11T21:41:26.3663552Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3663683Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.3663792Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3663884Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3663967Z } 2023-01-11T21:41:26.3664069Z #pragma omp for 2023-01-11T21:41:26.3664175Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.3664260Z { 2023-01-11T21:41:26.3664436Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3664613Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.3664709Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3664833Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.3664919Z } 2023-01-11T21:41:26.3665043Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3665192Z for(long i0=80; i0<80; i0+=1) 2023-01-11T21:41:26.3665276Z { 2023-01-11T21:41:26.3665385Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.3665501Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3665610Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3665716Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.3665801Z } 2023-01-11T21:41:26.3665881Z } 2023-01-11T21:41:26.3665961Z } 2023-01-11T21:41:26.3666055Z ''') 2023-01-11T21:41:26.3666064Z 2023-01-11T21:41:26.3666084Z 2023-01-11T21:41:26.3666252Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3666513Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3666668Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.3666787Z { 2023-01-11T21:41:26.3666920Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3667002Z { 2023-01-11T21:41:26.3667107Z #pragma omp for 2023-01-11T21:41:26.3667201Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:41:26.3667286Z { 2023-01-11T21:41:26.3667466Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3667642Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.3667754Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3667881Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3667965Z } 2023-01-11T21:41:26.3668075Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3668184Z for(long i0=160; i0<160; i0+=1) 2023-01-11T21:41:26.3668267Z { 2023-01-11T21:41:26.3668385Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3668517Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.3668633Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3668745Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3668818Z } 2023-01-11T21:41:26.3668898Z } 2023-01-11T21:41:26.3668977Z } 2023-01-11T21:41:26.3669084Z ''') 2023-01-11T21:41:26.3669090Z 2023-01-11T21:41:26.3669208Z async_compile.wait(globals()) 2023-01-11T21:41:26.3669306Z del async_compile 2023-01-11T21:41:26.3669461Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3669540Z wrapper = ( 2023-01-11T21:41:26.3669648Z ''' 2023-01-11T21:41:26.3669748Z #include 2023-01-11T21:41:26.3669847Z #include 2023-01-11T21:41:26.3670016Z std::vector call_3(std::vector args) { 2023-01-11T21:41:26.3670128Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3670222Z arg0_1 = args[0]; 2023-01-11T21:41:26.3670301Z arg1_1 = args[1]; 2023-01-11T21:41:26.3670482Z auto buf0 = at::empty_strided({1, 16, 10}, {160, 10, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3670648Z auto buf0_as_strided = at::as_strided(buf0, {16, 10}, {10, 1}); 2023-01-11T21:41:26.3670858Z at::mm_out(buf0_as_strided, at::as_strided(arg0_1, {16, 8}, {8, 1}), at::as_strided(arg1_1, {8, 10}, {10, 1})); 2023-01-11T21:41:26.3671041Z auto buf1 = at::empty_strided({1, 16, 8}, {128, 8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3671212Z auto buf2 = at::empty_strided({1, 8, 10}, {80, 10, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3671536Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/ra/cralzjg7p7jfrh7lq7f5aawuy5ztcxsmezjq7ltkvv7n75g5gmjr.so", RTLD_NOW); 2023-01-11T21:41:26.3671663Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3671813Z void (*kernel_cpp_0)(const float*,const float*,float*,float*); 2023-01-11T21:41:26.3671974Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3672214Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(arg1_1.data_ptr()), (float*)(buf1.data_ptr()), (float*)(buf2.data_ptr())); 2023-01-11T21:41:26.3672309Z arg0_1.reset(); 2023-01-11T21:41:26.3672401Z arg1_1.reset(); 2023-01-11T21:41:26.3672620Z auto buf3 = at::empty_strided({1, 16, 10}, {160, 10, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3672782Z auto buf3_as_strided = at::as_strided(buf3, {16, 10}, {10, 1}); 2023-01-11T21:41:26.3672987Z at::mm_out(buf3_as_strided, at::as_strided(buf1, {16, 8}, {8, 1}), at::as_strided(buf2, {8, 10}, {10, 1})); 2023-01-11T21:41:26.3673080Z buf1.reset(); 2023-01-11T21:41:26.3673158Z buf2.reset(); 2023-01-11T21:41:26.3673287Z auto buf4 = buf3; buf3.reset(); // reuse 2023-01-11T21:41:26.3673601Z auto kernel_cpp_1_lib = dlopen("/tmp/torchinductor_jenkins/yc/cycbydl6b3o6njowlq7op2e3gon6ehl777xoi27mhfawtegw4ri4.so", RTLD_NOW); 2023-01-11T21:41:26.3673729Z assert(kernel_cpp_1_lib != nullptr); 2023-01-11T21:41:26.3673842Z void (*kernel_cpp_1)(float*); 2023-01-11T21:41:26.3674046Z *(void **) (&kernel_cpp_1) = dlsym(kernel_cpp_1_lib, "kernel"); 2023-01-11T21:41:26.3674186Z kernel_cpp_1((float*)(buf4.data_ptr())); 2023-01-11T21:41:26.3674400Z return std::vector({buf0, buf4}); }''' ) 2023-01-11T21:41:26.3674426Z 2023-01-11T21:41:26.3674512Z module = load_inline( 2023-01-11T21:41:26.3674856Z name='inline_extension_cfk34ucpswp45ihunrnj5h3vvmenylbjrdehpsrzmjuafwmv7mzt', 2023-01-11T21:41:26.3674967Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3675118Z functions=['call_3'], 2023-01-11T21:41:26.3675608Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3675831Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3676439Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3676446Z 2023-01-11T21:41:26.3676519Z def _wrap_func(f): 2023-01-11T21:41:26.3676577Z def g(args): 2023-01-11T21:41:26.3676649Z return f(args) 2023-01-11T21:41:26.3676715Z return g 2023-01-11T21:41:26.3676804Z call = _wrap_func(module.call_3) 2023-01-11T21:41:26.3676809Z 2023-01-11T21:41:26.3676814Z 2023-01-11T21:41:26.3676890Z if __name__ == "__main__": 2023-01-11T21:41:26.3677001Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3677122Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3677329Z arg0_1 = rand_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3677516Z arg1_1 = rand_strided((1, 8, 10), (80, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3677633Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3677638Z 2023-01-11T21:41:26.3677908Z [2023-01-11 21:27:24,602] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 156 2023-01-11T21:41:26.3678338Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3678467Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3678725Z [2023-01-11 21:27:24,619] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 157 2023-01-11T21:41:26.3678730Z 2023-01-11T21:41:26.3678823Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3678893Z import torch 2023-01-11T21:41:26.3678963Z import random 2023-01-11T21:41:26.3679065Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3679185Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3679190Z 2023-01-11T21:41:26.3679269Z aten = torch.ops.aten 2023-01-11T21:41:26.3679404Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3679533Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3679538Z 2023-01-11T21:41:26.3679626Z async_compile.wait(globals()) 2023-01-11T21:41:26.3679699Z del async_compile 2023-01-11T21:41:26.3679815Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3679872Z wrapper = ( 2023-01-11T21:41:26.3679953Z ''' 2023-01-11T21:41:26.3680028Z #include 2023-01-11T21:41:26.3680102Z #include 2023-01-11T21:41:26.3680215Z at::Tensor call_4(std::vector args) { 2023-01-11T21:41:26.3680298Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3680355Z arg0_1 = args[0]; 2023-01-11T21:41:26.3680425Z arg1_1 = args[1]; 2023-01-11T21:41:26.3680557Z auto buf0 = at::empty_strided({1, 8, 8}, {64, 8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3680707Z auto buf0_as_strided = at::as_strided(buf0, {8, 8}, {8, 1}); 2023-01-11T21:41:26.3680867Z at::mm_out(buf0_as_strided, at::as_strided(arg0_1, {8, 8}, {1, 8}), at::as_strided(arg1_1, {8, 8}, {8, 1})); 2023-01-11T21:41:26.3680941Z arg0_1.reset(); 2023-01-11T21:41:26.3681009Z arg1_1.reset(); 2023-01-11T21:41:26.3681118Z return buf0; }''' ) 2023-01-11T21:41:26.3681123Z 2023-01-11T21:41:26.3681184Z module = load_inline( 2023-01-11T21:41:26.3681440Z name='inline_extension_chbemg2ahqboherkh3dfy5k24qgsw5gtkd5ehfcdmncijlslqgpn', 2023-01-11T21:41:26.3681524Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3681633Z functions=['call_4'], 2023-01-11T21:41:26.3681987Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3682135Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3682731Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3682739Z 2023-01-11T21:41:26.3682812Z def _wrap_func(f): 2023-01-11T21:41:26.3682880Z def g(args): 2023-01-11T21:41:26.3682939Z return f(args) 2023-01-11T21:41:26.3683007Z return g 2023-01-11T21:41:26.3683101Z call = _wrap_func(module.call_4) 2023-01-11T21:41:26.3683106Z 2023-01-11T21:41:26.3683111Z 2023-01-11T21:41:26.3683188Z if __name__ == "__main__": 2023-01-11T21:41:26.3683302Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3683424Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3683630Z arg0_1 = rand_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3683834Z arg1_1 = rand_strided((1, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3683936Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3683941Z 2023-01-11T21:41:26.3684209Z [2023-01-11 21:27:43,519] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 157 2023-01-11T21:41:26.3684639Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3684769Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3685029Z [2023-01-11 21:27:43,569] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 158 2023-01-11T21:41:26.3685034Z 2023-01-11T21:41:26.3685128Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3685198Z import torch 2023-01-11T21:41:26.3685272Z import random 2023-01-11T21:41:26.3685386Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3685522Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3685526Z 2023-01-11T21:41:26.3685605Z aten = torch.ops.aten 2023-01-11T21:41:26.3685737Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3685828Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3685833Z 2023-01-11T21:41:26.3685838Z 2023-01-11T21:41:26.3685972Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3686176Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3686295Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3686397Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3686479Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.3686573Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.3686699Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.3686797Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.3686896Z double* __restrict__ out_ptr5, 2023-01-11T21:41:26.3686991Z double* __restrict__ out_ptr6) 2023-01-11T21:41:26.3687051Z { 2023-01-11T21:41:26.3687134Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3687194Z { 2023-01-11T21:41:26.3687271Z #pragma omp for 2023-01-11T21:41:26.3687354Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.3687417Z { 2023-01-11T21:41:26.3687498Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.3687561Z { 2023-01-11T21:41:26.3687689Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (16*i0)); 2023-01-11T21:41:26.3687824Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.3687915Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3688017Z tmp0.store(out_ptr0 + (8*i1) + (36*i0)); 2023-01-11T21:41:26.3688117Z tmp2.store(out_ptr1 + (8*i1) + (36*i0)); 2023-01-11T21:41:26.3688182Z } 2023-01-11T21:41:26.3688273Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.3688345Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:41:26.3688408Z { 2023-01-11T21:41:26.3688504Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:41:26.3688602Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3688687Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3688776Z out_ptr0[i1 + (36*i0)] = tmp0; 2023-01-11T21:41:26.3688865Z out_ptr1[i1 + (36*i0)] = tmp2; 2023-01-11T21:41:26.3688915Z } 2023-01-11T21:41:26.3688977Z } 2023-01-11T21:41:26.3689198Z #pragma omp for 2023-01-11T21:41:26.3689326Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.3689422Z { 2023-01-11T21:41:26.3689526Z #pragma GCC ivdep 2023-01-11T21:41:26.3689611Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.3689664Z { 2023-01-11T21:41:26.3689727Z { 2023-01-11T21:41:26.3689793Z { 2023-01-11T21:41:26.3689894Z auto tmp0 = in_ptr0[i1 + (16*i0)]; 2023-01-11T21:41:26.3689997Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.3690089Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3690182Z out_ptr2[i1 + (36*i0)] = tmp2; 2023-01-11T21:41:26.3690235Z } 2023-01-11T21:41:26.3690299Z } 2023-01-11T21:41:26.3690361Z } 2023-01-11T21:41:26.3690423Z } 2023-01-11T21:41:26.3690498Z #pragma omp for 2023-01-11T21:41:26.3690579Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.3690644Z { 2023-01-11T21:41:26.3690694Z { 2023-01-11T21:41:26.3690757Z { 2023-01-11T21:41:26.3690850Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3690950Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3691099Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3691205Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.3691290Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.3691360Z out_ptr4[i0] = tmp2; 2023-01-11T21:41:26.3691441Z out_ptr5[i0] = tmp3; 2023-01-11T21:41:26.3691523Z out_ptr6[i0] = tmp3; 2023-01-11T21:41:26.3691587Z } 2023-01-11T21:41:26.3691649Z } 2023-01-11T21:41:26.3691710Z } 2023-01-11T21:41:26.3691759Z } 2023-01-11T21:41:26.3691818Z } 2023-01-11T21:41:26.3691903Z ''') 2023-01-11T21:41:26.3691909Z 2023-01-11T21:41:26.3691997Z async_compile.wait(globals()) 2023-01-11T21:41:26.3692070Z del async_compile 2023-01-11T21:41:26.3692227Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3692300Z wrapper = ( 2023-01-11T21:41:26.3692365Z ''' 2023-01-11T21:41:26.3692441Z #include 2023-01-11T21:41:26.3692512Z #include 2023-01-11T21:41:26.3692642Z std::vector call_5(std::vector args) { 2023-01-11T21:41:26.3692718Z at::Tensor arg0_1; 2023-01-11T21:41:26.3692790Z arg0_1 = args[0]; 2023-01-11T21:41:26.3692922Z auto buf3 = at::empty_strided({8, 36}, {36, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3693034Z auto buf0 = at::as_strided(buf3, {8, 16}, {36, 1}); // alias 2023-01-11T21:41:26.3693137Z auto buf2 = at::as_strided(buf3, {8, 16}, {36, 1}, 20); // alias 2023-01-11T21:41:26.3693247Z auto buf1 = at::as_strided(buf3, {8, 4}, {36, 1}, 16); // alias 2023-01-11T21:41:26.3693376Z auto buf6 = at::empty_strided({16, 16}, {16, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3693486Z auto buf4 = at::as_strided(buf6, {8, 16}, {16, 1}); // alias 2023-01-11T21:41:26.3693601Z auto buf5 = at::as_strided(buf6, {8, 16}, {16, 1}, 128); // alias 2023-01-11T21:41:26.3693731Z auto buf9 = at::empty_strided({16, 16}, {16, 1}, at::ScalarType::Double); 2023-01-11T21:41:26.3693842Z auto buf7 = at::as_strided(buf9, {8, 16}, {16, 1}); // alias 2023-01-11T21:41:26.3693955Z auto buf8 = at::as_strided(buf9, {8, 16}, {16, 1}, 128); // alias 2023-01-11T21:41:26.3694216Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/xx/cxxvcduhvysrcz4iolqfqobmycduemx7yqmtsfsczg53dn526b2j.so", RTLD_NOW); 2023-01-11T21:41:26.3694298Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3694445Z void (*kernel_cpp_0)(const float*,float*,float*,float*,float*,float*,double*,double*); 2023-01-11T21:41:26.3694565Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3694839Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(buf0.data_ptr()), (float*)(buf2.data_ptr()), (float*)(buf1.data_ptr()), (float*)(buf4.data_ptr()), (float*)(buf5.data_ptr()), (double*)(buf7.data_ptr()), (double*)(buf8.data_ptr())); 2023-01-11T21:41:26.3694910Z arg0_1.reset(); 2023-01-11T21:41:26.3695091Z return std::vector({buf3, buf6, buf9}); }''' ) 2023-01-11T21:41:26.3695096Z 2023-01-11T21:41:26.3695171Z module = load_inline( 2023-01-11T21:41:26.3695428Z name='inline_extension_cji7g5r4jyhbjebn7otwyol5fhfvue57jqht5etdlccgyremizfh', 2023-01-11T21:41:26.3695499Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3695610Z functions=['call_5'], 2023-01-11T21:41:26.3695968Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3696117Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3696718Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3696724Z 2023-01-11T21:41:26.3696828Z def _wrap_func(f): 2023-01-11T21:41:26.3696897Z def g(args): 2023-01-11T21:41:26.3696968Z return f(args) 2023-01-11T21:41:26.3697033Z return g 2023-01-11T21:41:26.3697110Z call = _wrap_func(module.call_5) 2023-01-11T21:41:26.3697115Z 2023-01-11T21:41:26.3697120Z 2023-01-11T21:41:26.3697196Z if __name__ == "__main__": 2023-01-11T21:41:26.3697310Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3697432Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3697632Z arg0_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3697739Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3697744Z 2023-01-11T21:41:26.3698052Z [2023-01-11 21:28:02,476] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 158 2023-01-11T21:41:26.3698481Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3698610Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3698855Z [2023-01-11 21:28:02,537] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 159 2023-01-11T21:41:26.3698873Z 2023-01-11T21:41:26.3698955Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3699027Z import torch 2023-01-11T21:41:26.3699095Z import random 2023-01-11T21:41:26.3699207Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3699325Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3699330Z 2023-01-11T21:41:26.3699409Z aten = torch.ops.aten 2023-01-11T21:41:26.3699541Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3699620Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3699625Z 2023-01-11T21:41:26.3699629Z 2023-01-11T21:41:26.3699764Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3699968Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3700086Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3700188Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3700292Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.3700397Z const double* __restrict__ in_ptr3, 2023-01-11T21:41:26.3700494Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3700576Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.3700669Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.3700764Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.3700859Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.3700953Z float* __restrict__ out_ptr5, 2023-01-11T21:41:26.3701051Z double* __restrict__ out_ptr6, 2023-01-11T21:41:26.3701147Z double* __restrict__ out_ptr7, 2023-01-11T21:41:26.3701228Z float* __restrict__ out_ptr8, 2023-01-11T21:41:26.3701323Z double* __restrict__ out_ptr9) 2023-01-11T21:41:26.3701384Z { 2023-01-11T21:41:26.3701482Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3701542Z { 2023-01-11T21:41:26.3701632Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3701713Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3701763Z { 2023-01-11T21:41:26.3701844Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.3701909Z { 2023-01-11T21:41:26.3701992Z #pragma GCC ivdep 2023-01-11T21:41:26.3702080Z for(long i2=0; i2<16; i2+=1) 2023-01-11T21:41:26.3702144Z { 2023-01-11T21:41:26.3702240Z { 2023-01-11T21:41:26.3702295Z { 2023-01-11T21:41:26.3702405Z auto tmp0 = in_ptr0[i0 + (3*i2) + (48*i1)]; 2023-01-11T21:41:26.3702512Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.3702608Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3702714Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.3702808Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.3702914Z out_ptr0[i2 + (48*i1) + (144*i0)] = tmp0; 2023-01-11T21:41:26.3703002Z out_ptr1[i2 + (48*i1) + (144*i0)] = tmp2; 2023-01-11T21:41:26.3703098Z out_ptr2[i2 + (48*i1) + (144*i0)] = tmp4; 2023-01-11T21:41:26.3703284Z } 2023-01-11T21:41:26.3703360Z } 2023-01-11T21:41:26.3703424Z } 2023-01-11T21:41:26.3703488Z } 2023-01-11T21:41:26.3703549Z } 2023-01-11T21:41:26.3703627Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3703710Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3703775Z { 2023-01-11T21:41:26.3703861Z for(long i1=0; i1<144; i1+=1) 2023-01-11T21:41:26.3703925Z { 2023-01-11T21:41:26.3703988Z { 2023-01-11T21:41:26.3704052Z { 2023-01-11T21:41:26.3704143Z auto tmp0 = in_ptr1[i1 + (144*i0)]; 2023-01-11T21:41:26.3704235Z out_ptr3[i0 + (3*i1)] = tmp0; 2023-01-11T21:41:26.3704300Z } 2023-01-11T21:41:26.3704363Z } 2023-01-11T21:41:26.3704425Z } 2023-01-11T21:41:26.3704486Z } 2023-01-11T21:41:26.3704574Z #pragma omp for collapse(2) 2023-01-11T21:41:26.3704643Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3704704Z { 2023-01-11T21:41:26.3704787Z for(long i1=0; i1<48; i1+=1) 2023-01-11T21:41:26.3704851Z { 2023-01-11T21:41:26.3704915Z { 2023-01-11T21:41:26.3704979Z { 2023-01-11T21:41:26.3705067Z auto tmp0 = in_ptr0[i0 + (3*i1)]; 2023-01-11T21:41:26.3705173Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3705264Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3705359Z out_ptr4[i1 + (48*i0)] = tmp2; 2023-01-11T21:41:26.3705423Z } 2023-01-11T21:41:26.3705485Z } 2023-01-11T21:41:26.3705546Z } 2023-01-11T21:41:26.3705595Z } 2023-01-11T21:41:26.3705669Z #pragma omp for 2023-01-11T21:41:26.3705749Z for(long i0=0; i0<144; i0+=1) 2023-01-11T21:41:26.3705811Z { 2023-01-11T21:41:26.3705877Z { 2023-01-11T21:41:26.3705939Z { 2023-01-11T21:41:26.3706031Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:41:26.3706127Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3706212Z out_ptr5[i0] = tmp0; 2023-01-11T21:41:26.3706297Z out_ptr6[i0] = tmp1; 2023-01-11T21:41:26.3706378Z out_ptr7[i0] = tmp1; 2023-01-11T21:41:26.3706442Z } 2023-01-11T21:41:26.3706505Z } 2023-01-11T21:41:26.3706566Z } 2023-01-11T21:41:26.3706643Z #pragma omp for collapse(3) 2023-01-11T21:41:26.3706723Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.3706785Z { 2023-01-11T21:41:26.3706866Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.3706929Z { 2023-01-11T21:41:26.3707015Z for(long i2=0; i2<48; i2+=1) 2023-01-11T21:41:26.3707066Z { 2023-01-11T21:41:26.3707130Z { 2023-01-11T21:41:26.3707199Z { 2023-01-11T21:41:26.3707308Z auto tmp0 = in_ptr2[i2 + (48*i1) + (144*i0)]; 2023-01-11T21:41:26.3707443Z out_ptr8[i1 + (3*i2) + (144*i0)] = tmp0; 2023-01-11T21:41:26.3707511Z } 2023-01-11T21:41:26.3707576Z } 2023-01-11T21:41:26.3707626Z } 2023-01-11T21:41:26.3707689Z } 2023-01-11T21:41:26.3707749Z } 2023-01-11T21:41:26.3707842Z #pragma omp for collapse(3) 2023-01-11T21:41:26.3707922Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.3707983Z { 2023-01-11T21:41:26.3708062Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.3708112Z { 2023-01-11T21:41:26.3708201Z for(long i2=0; i2<48; i2+=1) 2023-01-11T21:41:26.3708264Z { 2023-01-11T21:41:26.3708328Z { 2023-01-11T21:41:26.3708395Z { 2023-01-11T21:41:26.3708532Z auto tmp0 = in_ptr3[i2 + (48*i1) + (144*i0)]; 2023-01-11T21:41:26.3708638Z out_ptr9[i1 + (3*i2) + (144*i0)] = tmp0; 2023-01-11T21:41:26.3708695Z } 2023-01-11T21:41:26.3708760Z } 2023-01-11T21:41:26.3708823Z } 2023-01-11T21:41:26.3708885Z } 2023-01-11T21:41:26.3708946Z } 2023-01-11T21:41:26.3709006Z } 2023-01-11T21:41:26.3709052Z } 2023-01-11T21:41:26.3709137Z ''') 2023-01-11T21:41:26.3709143Z 2023-01-11T21:41:26.3709235Z async_compile.wait(globals()) 2023-01-11T21:41:26.3709307Z del async_compile 2023-01-11T21:41:26.3709422Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3709491Z wrapper = ( 2023-01-11T21:41:26.3709569Z ''' 2023-01-11T21:41:26.3709629Z #include 2023-01-11T21:41:26.3709701Z #include 2023-01-11T21:41:26.3709831Z std::vector call_6(std::vector args) { 2023-01-11T21:41:26.3709911Z at::Tensor arg0_1; 2023-01-11T21:41:26.3709983Z arg0_1 = args[0]; 2023-01-11T21:41:26.3710121Z auto buf3 = at::empty_strided({1, 3, 3, 48}, {432, 144, 48, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3710245Z auto buf0 = at::as_strided(buf3, {1, 3, 3, 16}, {432, 144, 48, 1}); // alias 2023-01-11T21:41:26.3710369Z auto buf1 = at::as_strided(buf3, {1, 3, 3, 16}, {432, 144, 48, 1}, 16); // alias 2023-01-11T21:41:26.3710486Z auto buf2 = at::as_strided(buf3, {1, 3, 3, 16}, {432, 144, 48, 1}, 32); // alias 2023-01-11T21:41:26.3710608Z auto buf4 = at::empty_strided({1, 3, 3, 48}, {432, 1, 144, 3}, at::ScalarType::Float); 2023-01-11T21:41:26.3710741Z auto buf7 = at::empty_strided({2, 3, 3, 16}, {144, 48, 16, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3710861Z auto buf5 = at::as_strided(buf7, {1, 3, 3, 16}, {144, 48, 16, 1}); // alias 2023-01-11T21:41:26.3710983Z auto buf6 = at::as_strided(buf7, {1, 3, 3, 16}, {144, 48, 16, 1}, 144); // alias 2023-01-11T21:41:26.3711121Z auto buf11 = at::empty_strided({2, 3, 3, 16}, {144, 48, 16, 1}, at::ScalarType::Double); 2023-01-11T21:41:26.3711239Z auto buf9 = at::as_strided(buf11, {1, 3, 3, 16}, {144, 48, 16, 1}); // alias 2023-01-11T21:41:26.3711366Z auto buf10 = at::as_strided(buf11, {1, 3, 3, 16}, {144, 48, 16, 1}, 144); // alias 2023-01-11T21:41:26.3711498Z auto buf8 = at::empty_strided({2, 3, 3, 16}, {144, 1, 48, 3}, at::ScalarType::Float); 2023-01-11T21:41:26.3711636Z auto buf12 = at::empty_strided({2, 3, 3, 16}, {144, 1, 48, 3}, at::ScalarType::Double); 2023-01-11T21:41:26.3711893Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/tf/ctf2pptj3ayxmvzwwc77hmhshbex7tnnbmizfndel6malv4tyfpu.so", RTLD_NOW); 2023-01-11T21:41:26.3711978Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3712191Z void (*kernel_cpp_0)(const float*,const float*,const float*,const double*,float*,float*,float*,float*,float*,float*,double*,double*,float*,double*); 2023-01-11T21:41:26.3712315Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3712732Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(buf3.data_ptr()), (float*)(buf7.data_ptr()), (double*)(buf11.data_ptr()), (float*)(buf0.data_ptr()), (float*)(buf1.data_ptr()), (float*)(buf2.data_ptr()), (float*)(buf4.data_ptr()), (float*)(buf5.data_ptr()), (float*)(buf6.data_ptr()), (double*)(buf9.data_ptr()), (double*)(buf10.data_ptr()), (float*)(buf8.data_ptr()), (double*)(buf12.data_ptr())); 2023-01-11T21:41:26.3712836Z arg0_1.reset(); 2023-01-11T21:41:26.3712905Z buf0.reset(); 2023-01-11T21:41:26.3712973Z buf1.reset(); 2023-01-11T21:41:26.3713044Z buf10.reset(); 2023-01-11T21:41:26.3713100Z buf11.reset(); 2023-01-11T21:41:26.3713168Z buf2.reset(); 2023-01-11T21:41:26.3713237Z buf3.reset(); 2023-01-11T21:41:26.3713304Z buf5.reset(); 2023-01-11T21:41:26.3713372Z buf6.reset(); 2023-01-11T21:41:26.3713438Z buf7.reset(); 2023-01-11T21:41:26.3713505Z buf9.reset(); 2023-01-11T21:41:26.3713706Z return std::vector({buf4, buf8, buf12}); }''' ) 2023-01-11T21:41:26.3713712Z 2023-01-11T21:41:26.3713790Z module = load_inline( 2023-01-11T21:41:26.3714056Z name='inline_extension_cwwd52gevofbwzpjosptdssanute3m5y5v4upouhvxxh6jtkg7ny', 2023-01-11T21:41:26.3714142Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3714251Z functions=['call_6'], 2023-01-11T21:41:26.3714612Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3714760Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3715356Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3715361Z 2023-01-11T21:41:26.3715438Z def _wrap_func(f): 2023-01-11T21:41:26.3715493Z def g(args): 2023-01-11T21:41:26.3715565Z return f(args) 2023-01-11T21:41:26.3715631Z return g 2023-01-11T21:41:26.3715720Z call = _wrap_func(module.call_6) 2023-01-11T21:41:26.3715725Z 2023-01-11T21:41:26.3715729Z 2023-01-11T21:41:26.3715804Z if __name__ == "__main__": 2023-01-11T21:41:26.3715916Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3716039Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3716238Z arg0_1 = rand_strided((1, 3, 3, 16), (144, 1, 48, 3), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3716345Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3716350Z 2023-01-11T21:41:26.3716615Z [2023-01-11 21:28:20,791] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 159 2023-01-11T21:41:26.3717043Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3717175Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3717431Z [2023-01-11 21:28:20,844] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 160 2023-01-11T21:41:26.3717437Z 2023-01-11T21:41:26.3717530Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3717600Z import torch 2023-01-11T21:41:26.3717670Z import random 2023-01-11T21:41:26.3717784Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3717891Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3717897Z 2023-01-11T21:41:26.3717977Z aten = torch.ops.aten 2023-01-11T21:41:26.3718109Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3718203Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3718209Z 2023-01-11T21:41:26.3718213Z 2023-01-11T21:41:26.3718347Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3718591Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3718705Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.3718766Z { 2023-01-11T21:41:26.3718849Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3718910Z { 2023-01-11T21:41:26.3718988Z #pragma omp for 2023-01-11T21:41:26.3719073Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.3719135Z { 2023-01-11T21:41:26.3719274Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3719409Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:41:26.3719491Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3719553Z } 2023-01-11T21:41:26.3719675Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3719760Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.3719825Z { 2023-01-11T21:41:26.3719913Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3720050Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:41:26.3720119Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:41:26.3720202Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3720263Z } 2023-01-11T21:41:26.3720323Z } 2023-01-11T21:41:26.3720382Z } 2023-01-11T21:41:26.3720459Z ''') 2023-01-11T21:41:26.3720464Z 2023-01-11T21:41:26.3720551Z async_compile.wait(globals()) 2023-01-11T21:41:26.3720610Z del async_compile 2023-01-11T21:41:26.3720725Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3720795Z wrapper = ( 2023-01-11T21:41:26.3720873Z ''' 2023-01-11T21:41:26.3720945Z #include 2023-01-11T21:41:26.3721018Z #include 2023-01-11T21:41:26.3721134Z std::vector call_7(std::vector args) { 2023-01-11T21:41:26.3721244Z at::Tensor primals_1, primals_2, primals_3; 2023-01-11T21:41:26.3721320Z primals_1 = args[0]; 2023-01-11T21:41:26.3721398Z primals_2 = args[1]; 2023-01-11T21:41:26.3721471Z primals_3 = args[2]; 2023-01-11T21:41:26.3721602Z auto buf0 = at::empty_strided({2, 16}, {16, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3721751Z at::addmm_out(buf0, primals_2, primals_3, at::as_strided(primals_1, {8, 16}, {1, 8}), 1, 1); 2023-01-11T21:41:26.3721826Z primals_1.reset(); 2023-01-11T21:41:26.3721886Z primals_2.reset(); 2023-01-11T21:41:26.3721983Z auto buf1 = buf0; buf0.reset(); // reuse 2023-01-11T21:41:26.3722233Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/iw/ciwiq5etlmci4iuytny63x3zhsv2pxo7evslwt4lbr6dhqxlpznj.so", RTLD_NOW); 2023-01-11T21:41:26.3722333Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3722418Z void (*kernel_cpp_0)(float*); 2023-01-11T21:41:26.3722543Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3722649Z kernel_cpp_0((float*)(buf1.data_ptr())); 2023-01-11T21:41:26.3722824Z return std::vector({buf1, primals_3, buf1}); }''' ) 2023-01-11T21:41:26.3722844Z 2023-01-11T21:41:26.3722906Z module = load_inline( 2023-01-11T21:41:26.3723159Z name='inline_extension_cfo4kg3ofnmy3tbyyrnmb4ko7l4ctd5apfqvog3nnpfe7zmqeqge', 2023-01-11T21:41:26.3723242Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3723351Z functions=['call_7'], 2023-01-11T21:41:26.3723710Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3723859Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3724450Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3724456Z 2023-01-11T21:41:26.3724560Z def _wrap_func(f): 2023-01-11T21:41:26.3724617Z def g(args): 2023-01-11T21:41:26.3724689Z return f(args) 2023-01-11T21:41:26.3724754Z return g 2023-01-11T21:41:26.3724845Z call = _wrap_func(module.call_7) 2023-01-11T21:41:26.3724849Z 2023-01-11T21:41:26.3724854Z 2023-01-11T21:41:26.3724929Z if __name__ == "__main__": 2023-01-11T21:41:26.3725041Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3725162Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3725368Z primals_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3725555Z primals_2 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3725755Z primals_3 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3725917Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.3725923Z 2023-01-11T21:41:26.3726192Z [2023-01-11 21:28:41,541] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 160 2023-01-11T21:41:26.3726624Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3726750Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3727007Z [2023-01-11 21:28:41,725] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 161 2023-01-11T21:41:26.3727012Z 2023-01-11T21:41:26.3727104Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3727173Z import torch 2023-01-11T21:41:26.3727231Z import random 2023-01-11T21:41:26.3727345Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3727463Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3727470Z 2023-01-11T21:41:26.3727547Z aten = torch.ops.aten 2023-01-11T21:41:26.3727680Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3727769Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3727774Z 2023-01-11T21:41:26.3727778Z 2023-01-11T21:41:26.3727912Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3728114Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3728228Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.3728275Z { 2023-01-11T21:41:26.3728368Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3728432Z { 2023-01-11T21:41:26.3728508Z #pragma omp for 2023-01-11T21:41:26.3728588Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.3728652Z { 2023-01-11T21:41:26.3728776Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3728906Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.3729000Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3729226Z } 2023-01-11T21:41:26.3729369Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3729481Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.3729546Z { 2023-01-11T21:41:26.3729624Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3729712Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.3729794Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3729857Z } 2023-01-11T21:41:26.3729918Z } 2023-01-11T21:41:26.3729978Z } 2023-01-11T21:41:26.3730059Z ''') 2023-01-11T21:41:26.3730064Z 2023-01-11T21:41:26.3730068Z 2023-01-11T21:41:26.3730200Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.3730396Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3730514Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.3730631Z { 2023-01-11T21:41:26.3730728Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3730789Z { 2023-01-11T21:41:26.3730864Z #pragma omp for 2023-01-11T21:41:26.3730945Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.3730993Z { 2023-01-11T21:41:26.3731130Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3731258Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.3731353Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3731414Z } 2023-01-11T21:41:26.3731507Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3731588Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.3731637Z { 2023-01-11T21:41:26.3731723Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3731843Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.3731930Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3731994Z } 2023-01-11T21:41:26.3732054Z } 2023-01-11T21:41:26.3732099Z } 2023-01-11T21:41:26.3732179Z ''') 2023-01-11T21:41:26.3732185Z 2023-01-11T21:41:26.3732189Z 2023-01-11T21:41:26.3732320Z kernel_cpp_2 = async_compile.cpp(''' 2023-01-11T21:41:26.3732522Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3732636Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.3732695Z { 2023-01-11T21:41:26.3732789Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3732848Z { 2023-01-11T21:41:26.3732910Z #pragma omp for 2023-01-11T21:41:26.3732988Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.3733048Z { 2023-01-11T21:41:26.3733183Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3733311Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.3733405Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.3733468Z } 2023-01-11T21:41:26.3733550Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3733631Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.3733693Z { 2023-01-11T21:41:26.3733780Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3733865Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.3733946Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3734007Z } 2023-01-11T21:41:26.3734054Z } 2023-01-11T21:41:26.3734113Z } 2023-01-11T21:41:26.3734193Z ''') 2023-01-11T21:41:26.3734198Z 2023-01-11T21:41:26.3734202Z 2023-01-11T21:41:26.3734336Z kernel_cpp_3 = async_compile.cpp(''' 2023-01-11T21:41:26.3734540Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3734655Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.3734752Z bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.3734798Z { 2023-01-11T21:41:26.3734895Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3734954Z { 2023-01-11T21:41:26.3735031Z #pragma omp for 2023-01-11T21:41:26.3735112Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.3735173Z { 2023-01-11T21:41:26.3735236Z { 2023-01-11T21:41:26.3735287Z { 2023-01-11T21:41:26.3735383Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.3735479Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.3735583Z auto tmp2 = static_cast(0); 2023-01-11T21:41:26.3735674Z auto tmp3 = tmp1 <= tmp2; 2023-01-11T21:41:26.3735761Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3735844Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.3735895Z } 2023-01-11T21:41:26.3735959Z } 2023-01-11T21:41:26.3736018Z } 2023-01-11T21:41:26.3736078Z } 2023-01-11T21:41:26.3736136Z } 2023-01-11T21:41:26.3736245Z ''') 2023-01-11T21:41:26.3736250Z 2023-01-11T21:41:26.3736340Z async_compile.wait(globals()) 2023-01-11T21:41:26.3736400Z del async_compile 2023-01-11T21:41:26.3736515Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3736585Z wrapper = ( 2023-01-11T21:41:26.3736663Z ''' 2023-01-11T21:41:26.3736735Z #include 2023-01-11T21:41:26.3736808Z #include 2023-01-11T21:41:26.3736922Z std::vector call_8(std::vector args) { 2023-01-11T21:41:26.3737099Z at::Tensor primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9; 2023-01-11T21:41:26.3737175Z primals_1 = args[0]; 2023-01-11T21:41:26.3737258Z primals_2 = args[1]; 2023-01-11T21:41:26.3737330Z primals_3 = args[2]; 2023-01-11T21:41:26.3737404Z primals_4 = args[3]; 2023-01-11T21:41:26.3737521Z primals_5 = args[4]; 2023-01-11T21:41:26.3737597Z primals_6 = args[5]; 2023-01-11T21:41:26.3737658Z primals_7 = args[6]; 2023-01-11T21:41:26.3737733Z primals_8 = args[7]; 2023-01-11T21:41:26.3737806Z primals_9 = args[8]; 2023-01-11T21:41:26.3737936Z auto buf0 = at::empty_strided({2, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3738082Z at::addmm_out(buf0, primals_2, primals_9, at::as_strided(primals_1, {8, 8}, {1, 8}), 1, 1); 2023-01-11T21:41:26.3738157Z primals_1.reset(); 2023-01-11T21:41:26.3738231Z primals_2.reset(); 2023-01-11T21:41:26.3738316Z auto buf1 = buf0; buf0.reset(); // reuse 2023-01-11T21:41:26.3738576Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/qf/cqfoag4edkqhhwar6dcfekr7xrl4rhfowlfpqtdov7pzkh5vony6.so", RTLD_NOW); 2023-01-11T21:41:26.3738674Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3738760Z void (*kernel_cpp_0)(float*); 2023-01-11T21:41:26.3738885Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3738987Z kernel_cpp_0((float*)(buf1.data_ptr())); 2023-01-11T21:41:26.3739117Z auto buf2 = at::empty_strided({2, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3739262Z at::addmm_out(buf2, primals_4, buf1, at::as_strided(primals_3, {8, 8}, {1, 8}), 1, 1); 2023-01-11T21:41:26.3739324Z primals_4.reset(); 2023-01-11T21:41:26.3739420Z auto buf3 = buf2; buf2.reset(); // reuse 2023-01-11T21:41:26.3739676Z auto kernel_cpp_1_lib = dlopen("/tmp/torchinductor_jenkins/qf/cqfoag4edkqhhwar6dcfekr7xrl4rhfowlfpqtdov7pzkh5vony6.so", RTLD_NOW); 2023-01-11T21:41:26.3739771Z assert(kernel_cpp_1_lib != nullptr); 2023-01-11T21:41:26.3739857Z void (*kernel_cpp_1)(float*); 2023-01-11T21:41:26.3739978Z *(void **) (&kernel_cpp_1) = dlsym(kernel_cpp_1_lib, "kernel"); 2023-01-11T21:41:26.3740079Z kernel_cpp_1((float*)(buf3.data_ptr())); 2023-01-11T21:41:26.3740207Z auto buf4 = at::empty_strided({2, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3740339Z at::addmm_out(buf4, primals_6, buf3, at::as_strided(primals_5, {8, 8}, {1, 8}), 1, 1); 2023-01-11T21:41:26.3740418Z primals_6.reset(); 2023-01-11T21:41:26.3740513Z auto buf5 = buf4; buf4.reset(); // reuse 2023-01-11T21:41:26.3740766Z auto kernel_cpp_2_lib = dlopen("/tmp/torchinductor_jenkins/qf/cqfoag4edkqhhwar6dcfekr7xrl4rhfowlfpqtdov7pzkh5vony6.so", RTLD_NOW); 2023-01-11T21:41:26.3740860Z assert(kernel_cpp_2_lib != nullptr); 2023-01-11T21:41:26.3740945Z void (*kernel_cpp_2)(float*); 2023-01-11T21:41:26.3741066Z *(void **) (&kernel_cpp_2) = dlsym(kernel_cpp_2_lib, "kernel"); 2023-01-11T21:41:26.3741154Z kernel_cpp_2((float*)(buf5.data_ptr())); 2023-01-11T21:41:26.3741282Z auto buf6 = at::empty_strided({2, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3741420Z at::addmm_out(buf6, primals_8, buf5, at::as_strided(primals_7, {8, 8}, {1, 8}), 1, 1); 2023-01-11T21:41:26.3741495Z primals_8.reset(); 2023-01-11T21:41:26.3741593Z auto buf7 = buf6; buf6.reset(); // reuse 2023-01-11T21:41:26.3741718Z auto buf8 = at::empty_strided({2, 8}, {8, 1}, at::ScalarType::Bool); 2023-01-11T21:41:26.3741989Z auto kernel_cpp_3_lib = dlopen("/tmp/torchinductor_jenkins/by/cby2ob4hd4n2ixdn4t25zfpvb6vyfd66nfdv33d5vsx36mxcwhy4.so", RTLD_NOW); 2023-01-11T21:41:26.3742085Z assert(kernel_cpp_3_lib != nullptr); 2023-01-11T21:41:26.3742176Z void (*kernel_cpp_3)(float*,bool*); 2023-01-11T21:41:26.3742284Z *(void **) (&kernel_cpp_3) = dlsym(kernel_cpp_3_lib, "kernel"); 2023-01-11T21:41:26.3742410Z kernel_cpp_3((float*)(buf7.data_ptr()), (bool*)(buf8.data_ptr())); 2023-01-11T21:41:26.3742803Z return std::vector({buf7, primals_9, buf1, buf3, buf5, buf8, at::as_strided(primals_7, {8, 8}, {8, 1}), at::as_strided(primals_5, {8, 8}, {8, 1}), at::as_strided(primals_3, {8, 8}, {8, 1})}); }''' ) 2023-01-11T21:41:26.3742810Z 2023-01-11T21:41:26.3742887Z module = load_inline( 2023-01-11T21:41:26.3743258Z name='inline_extension_csdpljql3gdtwyefwna55hislgjyk4wkihbuoidk4i5vw3bqzfra', 2023-01-11T21:41:26.3743353Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3743469Z functions=['call_8'], 2023-01-11T21:41:26.3743840Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3743975Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3744570Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3744590Z 2023-01-11T21:41:26.3744650Z def _wrap_func(f): 2023-01-11T21:41:26.3744721Z def g(args): 2023-01-11T21:41:26.3744796Z return f(args) 2023-01-11T21:41:26.3744863Z return g 2023-01-11T21:41:26.3744955Z call = _wrap_func(module.call_8) 2023-01-11T21:41:26.3744960Z 2023-01-11T21:41:26.3744965Z 2023-01-11T21:41:26.3745041Z if __name__ == "__main__": 2023-01-11T21:41:26.3745156Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3745267Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3745471Z primals_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3745668Z primals_2 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3745868Z primals_3 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3746060Z primals_4 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3746255Z primals_5 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3746450Z primals_6 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3746651Z primals_7 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3746834Z primals_8 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3747034Z primals_9 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3747238Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])) 2023-01-11T21:41:26.3747244Z 2023-01-11T21:41:26.3747510Z [2023-01-11 21:29:02,667] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 161 2023-01-11T21:41:26.3747766Z [2023-01-11 21:29:02,690] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 162 2023-01-11T21:41:26.3747772Z 2023-01-11T21:41:26.3747865Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3747934Z import torch 2023-01-11T21:41:26.3748003Z import random 2023-01-11T21:41:26.3748120Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3748229Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3748235Z 2023-01-11T21:41:26.3748312Z aten = torch.ops.aten 2023-01-11T21:41:26.3748497Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3748588Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3748593Z 2023-01-11T21:41:26.3748598Z 2023-01-11T21:41:26.3748733Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3748936Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3749055Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3749164Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3749251Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3749311Z { 2023-01-11T21:41:26.3749408Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3749468Z { 2023-01-11T21:41:26.3749544Z #pragma omp for 2023-01-11T21:41:26.3749653Z for(long i0=0; i0<12500; i0+=1) 2023-01-11T21:41:26.3749705Z { 2023-01-11T21:41:26.3749839Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3749970Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3750056Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3750145Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3750208Z } 2023-01-11T21:41:26.3750302Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3750391Z for(long i0=100000; i0<100000; i0+=1) 2023-01-11T21:41:26.3750441Z { 2023-01-11T21:41:26.3750526Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3750608Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.3750689Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3750767Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3750828Z } 2023-01-11T21:41:26.3750888Z } 2023-01-11T21:41:26.3750934Z } 2023-01-11T21:41:26.3751014Z ''') 2023-01-11T21:41:26.3751020Z 2023-01-11T21:41:26.3751108Z async_compile.wait(globals()) 2023-01-11T21:41:26.3751178Z del async_compile 2023-01-11T21:41:26.3751299Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3751368Z wrapper = ( 2023-01-11T21:41:26.3751433Z ''' 2023-01-11T21:41:26.3751506Z #include 2023-01-11T21:41:26.3751578Z #include 2023-01-11T21:41:26.3751709Z std::vector call_9(std::vector args) { 2023-01-11T21:41:26.3751800Z at::Tensor primals_1, primals_2; 2023-01-11T21:41:26.3751878Z primals_1 = args[0]; 2023-01-11T21:41:26.3751954Z primals_2 = args[1]; 2023-01-11T21:41:26.3752074Z auto buf0 = at::empty_strided({100000, }, {1, }, at::ScalarType::Float); 2023-01-11T21:41:26.3752312Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/76/c76av2fn5v7sv2ienoi5x7je4ut64tlvvozup7k5kastmftp5d3z.so", RTLD_NOW); 2023-01-11T21:41:26.3752407Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3752526Z void (*kernel_cpp_0)(const float*,const float*,float*); 2023-01-11T21:41:26.3752648Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3752818Z kernel_cpp_0((float*)(primals_1.data_ptr()), (float*)(primals_2.data_ptr()), (float*)(buf0.data_ptr())); 2023-01-11T21:41:26.3752894Z primals_2.reset(); 2023-01-11T21:41:26.3753072Z return std::vector({buf0, primals_1}); }''' ) 2023-01-11T21:41:26.3753078Z 2023-01-11T21:41:26.3753153Z module = load_inline( 2023-01-11T21:41:26.3753394Z name='inline_extension_c5mwnoxgxnxcege5ed3o2rm3o6dlemfn2y763tsgjbijuxitr5bs', 2023-01-11T21:41:26.3753477Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3753589Z functions=['call_9'], 2023-01-11T21:41:26.3753948Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3754096Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3754698Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3754734Z 2023-01-11T21:41:26.3754809Z def _wrap_func(f): 2023-01-11T21:41:26.3754878Z def g(args): 2023-01-11T21:41:26.3754939Z return f(args) 2023-01-11T21:41:26.3755005Z return g 2023-01-11T21:41:26.3755094Z call = _wrap_func(module.call_9) 2023-01-11T21:41:26.3755100Z 2023-01-11T21:41:26.3755104Z 2023-01-11T21:41:26.3755179Z if __name__ == "__main__": 2023-01-11T21:41:26.3755293Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3755412Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3755621Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3755853Z primals_2 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3755969Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:41:26.3755976Z 2023-01-11T21:41:26.3756243Z [2023-01-11 21:29:23,682] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 162 2023-01-11T21:41:26.3756503Z [2023-01-11 21:29:23,684] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 162 2023-01-11T21:41:26.3756508Z 2023-01-11T21:41:26.3756602Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3756674Z import torch 2023-01-11T21:41:26.3756744Z import random 2023-01-11T21:41:26.3756857Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3756976Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3756981Z 2023-01-11T21:41:26.3757046Z aten = torch.ops.aten 2023-01-11T21:41:26.3757181Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3757274Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3757279Z 2023-01-11T21:41:26.3757284Z 2023-01-11T21:41:26.3757425Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3757629Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3757747Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3757850Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3757949Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3757997Z { 2023-01-11T21:41:26.3758094Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3758155Z { 2023-01-11T21:41:26.3758230Z #pragma omp for 2023-01-11T21:41:26.3758313Z for(long i0=0; i0<12500; i0+=1) 2023-01-11T21:41:26.3758375Z { 2023-01-11T21:41:26.3758514Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3758634Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3758720Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3758809Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3758875Z } 2023-01-11T21:41:26.3758969Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3759057Z for(long i0=100000; i0<100000; i0+=1) 2023-01-11T21:41:26.3759119Z { 2023-01-11T21:41:26.3759190Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3759271Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.3759354Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3759432Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3759492Z } 2023-01-11T21:41:26.3759552Z } 2023-01-11T21:41:26.3759609Z } 2023-01-11T21:41:26.3759675Z ''') 2023-01-11T21:41:26.3759680Z 2023-01-11T21:41:26.3759769Z async_compile.wait(globals()) 2023-01-11T21:41:26.3759840Z del async_compile 2023-01-11T21:41:26.3759957Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3760028Z wrapper = ( 2023-01-11T21:41:26.3760105Z ''' 2023-01-11T21:41:26.3760179Z #include 2023-01-11T21:41:26.3760273Z #include 2023-01-11T21:41:26.3760400Z std::vector call_10(std::vector args) { 2023-01-11T21:41:26.3760495Z at::Tensor primals_1, tangents_1; 2023-01-11T21:41:26.3760572Z primals_1 = args[0]; 2023-01-11T21:41:26.3760648Z tangents_1 = args[1]; 2023-01-11T21:41:26.3760781Z auto buf0 = at::empty_strided({100000, }, {1, }, at::ScalarType::Float); 2023-01-11T21:41:26.3761019Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/76/c76av2fn5v7sv2ienoi5x7je4ut64tlvvozup7k5kastmftp5d3z.so", RTLD_NOW); 2023-01-11T21:41:26.3761104Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3761222Z void (*kernel_cpp_0)(const float*,const float*,float*); 2023-01-11T21:41:26.3761345Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3761539Z kernel_cpp_0((float*)(tangents_1.data_ptr()), (float*)(primals_1.data_ptr()), (float*)(buf0.data_ptr())); 2023-01-11T21:41:26.3761617Z primals_1.reset(); 2023-01-11T21:41:26.3761694Z tangents_1.reset(); 2023-01-11T21:41:26.3761877Z return std::vector({at::Tensor(), buf0}); }''' ) 2023-01-11T21:41:26.3761883Z 2023-01-11T21:41:26.3761958Z module = load_inline( 2023-01-11T21:41:26.3762201Z name='inline_extension_cw4gwewvco6iido3xvjhqkdjwb76c4nhgeylgbiva5xor4layxbv', 2023-01-11T21:41:26.3762283Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3762395Z functions=['call_10'], 2023-01-11T21:41:26.3762755Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3762902Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3763500Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3763507Z 2023-01-11T21:41:26.3763583Z def _wrap_func(f): 2023-01-11T21:41:26.3763652Z def g(args): 2023-01-11T21:41:26.3763725Z return f(args) 2023-01-11T21:41:26.3763778Z return g 2023-01-11T21:41:26.3763869Z call = _wrap_func(module.call_10) 2023-01-11T21:41:26.3763874Z 2023-01-11T21:41:26.3763879Z 2023-01-11T21:41:26.3763955Z if __name__ == "__main__": 2023-01-11T21:41:26.3764066Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3764187Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3764395Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3764601Z tangents_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3764715Z print_performance(lambda: call([primals_1, tangents_1])) 2023-01-11T21:41:26.3764734Z 2023-01-11T21:41:26.3764988Z [2023-01-11 21:29:42,426] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 162 2023-01-11T21:41:26.3765244Z [2023-01-11 21:29:42,545] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 163 2023-01-11T21:41:26.3765496Z [2023-01-11 21:29:42,546] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.3765740Z [2023-01-11 21:29:42,548] torch._inductor.graph: [DEBUG] Set _can_use_cpp_wrapper to False due to Constants 2023-01-11T21:41:26.3765998Z [2023-01-11 21:29:44,064] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 163 2023-01-11T21:41:26.3766249Z [2023-01-11 21:29:44,067] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 163 2023-01-11T21:41:26.3766255Z 2023-01-11T21:41:26.3766347Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3766419Z import torch 2023-01-11T21:41:26.3766476Z import random 2023-01-11T21:41:26.3766590Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3766753Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3766758Z 2023-01-11T21:41:26.3766836Z aten = torch.ops.aten 2023-01-11T21:41:26.3766968Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3767059Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3767219Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.3767225Z 2023-01-11T21:41:26.3767230Z 2023-01-11T21:41:26.3767365Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3767568Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3767669Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.3767772Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3767906Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.3768005Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3768068Z { 2023-01-11T21:41:26.3768164Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3768224Z { 2023-01-11T21:41:26.3768287Z #pragma omp for 2023-01-11T21:41:26.3768371Z for(long i0=0; i0<100000; i0+=1) 2023-01-11T21:41:26.3768435Z { 2023-01-11T21:41:26.3768498Z { 2023-01-11T21:41:26.3768563Z { 2023-01-11T21:41:26.3768650Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.3768729Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.3768819Z auto tmp7 = in_ptr2[i0]; 2023-01-11T21:41:26.3768918Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.3769310Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.3769454Z auto tmp3 = static_cast(0.33); 2023-01-11T21:41:26.3769553Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.3769656Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.3769748Z auto tmp8 = tmp6 * tmp7; 2023-01-11T21:41:26.3769823Z auto tmp9 = tmp5 * tmp8; 2023-01-11T21:41:26.3769937Z auto tmp10 = static_cast(1.492537313432836); 2023-01-11T21:41:26.3770028Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:41:26.3770112Z out_ptr0[i0] = tmp11; 2023-01-11T21:41:26.3770177Z } 2023-01-11T21:41:26.3770241Z } 2023-01-11T21:41:26.3770302Z } 2023-01-11T21:41:26.3770350Z } 2023-01-11T21:41:26.3770408Z } 2023-01-11T21:41:26.3770493Z ''') 2023-01-11T21:41:26.3770497Z 2023-01-11T21:41:26.3770502Z 2023-01-11T21:41:26.3770590Z async_compile.wait(globals()) 2023-01-11T21:41:26.3770663Z del async_compile 2023-01-11T21:41:26.3770668Z 2023-01-11T21:41:26.3770740Z def call(args): 2023-01-11T21:41:26.3770827Z primals_1, primals_2 = args 2023-01-11T21:41:26.3770885Z args.clear() 2023-01-11T21:41:26.3771020Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.3771221Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3771431Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3771504Z del primals_2 2023-01-11T21:41:26.3771616Z return (buf0, primals_1, seed_cpu_None.clone(), ) 2023-01-11T21:41:26.3771621Z 2023-01-11T21:41:26.3771625Z 2023-01-11T21:41:26.3771700Z if __name__ == "__main__": 2023-01-11T21:41:26.3771811Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3771919Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3772116Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3772326Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3772527Z primals_2 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3772718Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:41:26.3772724Z 2023-01-11T21:41:26.3772728Z 2023-01-11T21:41:26.3772821Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3772891Z import torch 2023-01-11T21:41:26.3772960Z import random 2023-01-11T21:41:26.3773060Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3773178Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3773183Z 2023-01-11T21:41:26.3773260Z aten = torch.ops.aten 2023-01-11T21:41:26.3773392Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3773481Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3773486Z 2023-01-11T21:41:26.3773490Z 2023-01-11T21:41:26.3773660Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3773867Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3773986Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.3774078Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3774183Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.3774279Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3774341Z { 2023-01-11T21:41:26.3774436Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3774495Z { 2023-01-11T21:41:26.3774574Z #pragma omp for 2023-01-11T21:41:26.3774647Z for(long i0=0; i0<100000; i0+=1) 2023-01-11T21:41:26.3774709Z { 2023-01-11T21:41:26.3774774Z { 2023-01-11T21:41:26.3774842Z { 2023-01-11T21:41:26.3774932Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.3775022Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.3775115Z auto tmp10 = in_ptr2[i0]; 2023-01-11T21:41:26.3775203Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.3775341Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.3775445Z auto tmp3 = static_cast(0.33); 2023-01-11T21:41:26.3775535Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.3775639Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.3775730Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.3775841Z auto tmp8 = static_cast(1.492537313432836); 2023-01-11T21:41:26.3775920Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.3776011Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:41:26.3776094Z out_ptr0[i0] = tmp11; 2023-01-11T21:41:26.3776159Z } 2023-01-11T21:41:26.3776221Z } 2023-01-11T21:41:26.3776286Z } 2023-01-11T21:41:26.3776349Z } 2023-01-11T21:41:26.3776396Z } 2023-01-11T21:41:26.3776476Z ''') 2023-01-11T21:41:26.3776481Z 2023-01-11T21:41:26.3776571Z async_compile.wait(globals()) 2023-01-11T21:41:26.3776643Z del async_compile 2023-01-11T21:41:26.3776760Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3776829Z wrapper = ( 2023-01-11T21:41:26.3776906Z ''' 2023-01-11T21:41:26.3776965Z #include 2023-01-11T21:41:26.3777041Z #include 2023-01-11T21:41:26.3777174Z std::vector call_11(std::vector args) { 2023-01-11T21:41:26.3777292Z at::Tensor primals_1, philox_seed_like, tangents_1; 2023-01-11T21:41:26.3777368Z primals_1 = args[0]; 2023-01-11T21:41:26.3777453Z philox_seed_like = args[1]; 2023-01-11T21:41:26.3777532Z tangents_1 = args[2]; 2023-01-11T21:41:26.3777652Z auto buf0 = at::empty_strided({100000, }, {1, }, at::ScalarType::Float); 2023-01-11T21:41:26.3777915Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/lq/clqibsqxpldu4echxzc3z6phb5szhugslpae44irpgfrltvzbhob.so", RTLD_NOW); 2023-01-11T21:41:26.3778011Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3778180Z void (*kernel_cpp_0)(const long*,const float*,const float*,float*); 2023-01-11T21:41:26.3778303Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3778563Z kernel_cpp_0((long*)(philox_seed_like.data_ptr()), (float*)(tangents_1.data_ptr()), (float*)(primals_1.data_ptr()), (float*)(buf0.data_ptr())); 2023-01-11T21:41:26.3778681Z philox_seed_like.reset(); 2023-01-11T21:41:26.3778784Z primals_1.reset(); 2023-01-11T21:41:26.3778876Z tangents_1.reset(); 2023-01-11T21:41:26.3779122Z return std::vector({at::Tensor(), buf0}); }''' ) 2023-01-11T21:41:26.3779130Z 2023-01-11T21:41:26.3779232Z module = load_inline( 2023-01-11T21:41:26.3779748Z name='inline_extension_c7pb2bael7vzlyb6qu32uoilu6pwiy3hiolshidh4zeg5hqyeqvp', 2023-01-11T21:41:26.3780090Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3780384Z functions=['call_11'], 2023-01-11T21:41:26.3781315Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3781690Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3782866Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3782896Z 2023-01-11T21:41:26.3783009Z def _wrap_func(f): 2023-01-11T21:41:26.3783208Z def g(args): 2023-01-11T21:41:26.3783346Z return f(args) 2023-01-11T21:41:26.3783509Z return g 2023-01-11T21:41:26.3783731Z call = _wrap_func(module.call_11) 2023-01-11T21:41:26.3783742Z 2023-01-11T21:41:26.3783750Z 2023-01-11T21:41:26.3783935Z if __name__ == "__main__": 2023-01-11T21:41:26.3784210Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3784519Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3785003Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3785417Z philox_seed_like = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.3785805Z tangents_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3786071Z print_performance(lambda: call([primals_1, philox_seed_like, tangents_1])) 2023-01-11T21:41:26.3786081Z 2023-01-11T21:41:26.3786607Z [2023-01-11 21:30:04,139] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 163 2023-01-11T21:41:26.3787626Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3787926Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3788485Z [2023-01-11 21:30:04,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 164 2023-01-11T21:41:26.3788496Z 2023-01-11T21:41:26.3788668Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3788776Z import torch 2023-01-11T21:41:26.3788902Z import random 2023-01-11T21:41:26.3789109Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3789321Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3789331Z 2023-01-11T21:41:26.3789467Z aten = torch.ops.aten 2023-01-11T21:41:26.3789758Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3789978Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3789997Z 2023-01-11T21:41:26.3790220Z async_compile.wait(globals()) 2023-01-11T21:41:26.3790367Z del async_compile 2023-01-11T21:41:26.3790763Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3790927Z wrapper = ( 2023-01-11T21:41:26.3791132Z ''' 2023-01-11T21:41:26.3791311Z #include 2023-01-11T21:41:26.3791468Z #include 2023-01-11T21:41:26.3791685Z at::Tensor call_12(std::vector args) { 2023-01-11T21:41:26.3791823Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3791956Z arg0_1 = args[0]; 2023-01-11T21:41:26.3792084Z arg1_1 = args[1]; 2023-01-11T21:41:26.3792322Z auto buf0 = at::empty_strided({32, 32}, {32, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3792547Z at::mm_out(buf0, arg0_1, at::as_strided(arg1_1, {32, 32}, {32, 1})); 2023-01-11T21:41:26.3792675Z arg0_1.reset(); 2023-01-11T21:41:26.3792834Z arg1_1.reset(); 2023-01-11T21:41:26.3793076Z return buf0; }''' ) 2023-01-11T21:41:26.3793089Z 2023-01-11T21:41:26.3793350Z module = load_inline( 2023-01-11T21:41:26.3793960Z name='inline_extension_cbk5vdefanataz2xcfa5gu6egrblcazbommb7bzzso26owifwayb', 2023-01-11T21:41:26.3794166Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3794437Z functions=['call_12'], 2023-01-11T21:41:26.3795124Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3795402Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3796700Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3796721Z 2023-01-11T21:41:26.3796898Z def _wrap_func(f): 2023-01-11T21:41:26.3797040Z def g(args): 2023-01-11T21:41:26.3797218Z return f(args) 2023-01-11T21:41:26.3797374Z return g 2023-01-11T21:41:26.3797594Z call = _wrap_func(module.call_12) 2023-01-11T21:41:26.3797614Z 2023-01-11T21:41:26.3797623Z 2023-01-11T21:41:26.3797781Z if __name__ == "__main__": 2023-01-11T21:41:26.3797989Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3798211Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3798574Z arg0_1 = rand_strided((32, 32), (1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3798948Z arg1_1 = rand_strided((32, 1, 32), (32, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3799201Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3799214Z 2023-01-11T21:41:26.3799844Z [2023-01-11 21:30:22,669] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 164 2023-01-11T21:41:26.3800443Z STAGE:2023-01-11 21:30:22 1448:1448 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:41:26.3801006Z [2023-01-11 21:30:22,682] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 165 2023-01-11T21:41:26.3801506Z [2023-01-11 21:30:22,682] torch._inductor.graph: [DEBUG] Set _can_use_cpp_wrapper to False due to profiler not supported 2023-01-11T21:41:26.3802006Z [2023-01-11 21:30:24,357] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 165 2023-01-11T21:41:26.3802584Z STAGE:2023-01-11 21:30:24 1448:1448 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:41:26.3803179Z STAGE:2023-01-11 21:30:24 1448:1448 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:41:26.3804119Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3804355Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3804925Z [2023-01-11 21:30:24,388] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 166 2023-01-11T21:41:26.3804937Z 2023-01-11T21:41:26.3805114Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3805289Z import torch 2023-01-11T21:41:26.3805459Z import random 2023-01-11T21:41:26.3805733Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3806006Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3806023Z 2023-01-11T21:41:26.3806191Z aten = torch.ops.aten 2023-01-11T21:41:26.3806511Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3806725Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3806737Z 2023-01-11T21:41:26.3806749Z 2023-01-11T21:41:26.3807051Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3807480Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3807702Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3807897Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3808079Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3808197Z { 2023-01-11T21:41:26.3808422Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3808573Z { 2023-01-11T21:41:26.3808760Z #pragma omp for 2023-01-11T21:41:26.3808950Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.3809229Z { 2023-01-11T21:41:26.3809557Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3809842Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3810042Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3810233Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3810355Z } 2023-01-11T21:41:26.3810535Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3810686Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.3810805Z { 2023-01-11T21:41:26.3810941Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3811096Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.3811243Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3811400Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3811552Z } 2023-01-11T21:41:26.3811688Z } 2023-01-11T21:41:26.3811828Z } 2023-01-11T21:41:26.3812027Z ''') 2023-01-11T21:41:26.3812039Z 2023-01-11T21:41:26.3812049Z 2023-01-11T21:41:26.3812257Z async_compile.wait(globals()) 2023-01-11T21:41:26.3812429Z del async_compile 2023-01-11T21:41:26.3812441Z 2023-01-11T21:41:26.3812609Z def call(args): 2023-01-11T21:41:26.3812787Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.3812956Z args.clear() 2023-01-11T21:41:26.3813207Z from torch.profiler import record_function 2023-01-11T21:41:26.3813511Z with record_function('inductor_wrapper_call'): 2023-01-11T21:41:26.3813889Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3814178Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.3814307Z del arg0_1 2023-01-11T21:41:26.3814458Z del arg1_1 2023-01-11T21:41:26.3814630Z return (buf0, ) 2023-01-11T21:41:26.3814647Z 2023-01-11T21:41:26.3814656Z 2023-01-11T21:41:26.3814844Z if __name__ == "__main__": 2023-01-11T21:41:26.3815103Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3815373Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3815840Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3816285Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3816492Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3816507Z 2023-01-11T21:41:26.3816514Z 2023-01-11T21:41:26.3816686Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3816933Z import torch 2023-01-11T21:41:26.3817064Z import random 2023-01-11T21:41:26.3817270Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3817523Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3817535Z 2023-01-11T21:41:26.3817722Z aten = torch.ops.aten 2023-01-11T21:41:26.3818030Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3818247Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3818260Z 2023-01-11T21:41:26.3818269Z 2023-01-11T21:41:26.3818598Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3819073Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3819308Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3819485Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3819717Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.3819896Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.3820073Z long* __restrict__ out_ptr3, 2023-01-11T21:41:26.3820245Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.3820383Z { 2023-01-11T21:41:26.3820530Z { 2023-01-11T21:41:26.3820680Z { 2023-01-11T21:41:26.3820835Z float tmp1 = 0; 2023-01-11T21:41:26.3821376Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.3821665Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.3821931Z struct IndexValue_7 {size_t index; float value;}; 2023-01-11T21:41:26.3822389Z IndexValue_7 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.3822641Z #pragma omp declare reduction(argmax : struct IndexValue_7 :\ 2023-01-11T21:41:26.3822915Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.3823270Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.3823737Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.3824005Z struct IndexValue_8 {size_t index; float value;}; 2023-01-11T21:41:26.3824316Z IndexValue_8 tmp5{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.3824639Z #pragma omp declare reduction(argmin : struct IndexValue_8 :\ 2023-01-11T21:41:26.3824984Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.3825305Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.3825581Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.3825736Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.3825842Z { 2023-01-11T21:41:26.3825959Z { 2023-01-11T21:41:26.3826123Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3826272Z tmp1 += tmp0; 2023-01-11T21:41:26.3826455Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:41:26.3826636Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:41:26.3826851Z if (tmp4.value < tmp0) { 2023-01-11T21:41:26.3827099Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:41:26.3827248Z } 2023-01-11T21:41:26.3827462Z if (tmp5.value > tmp0) { 2023-01-11T21:41:26.3827706Z tmp5.index = i0; tmp5.value = tmp0; 2023-01-11T21:41:26.3827852Z } 2023-01-11T21:41:26.3828007Z } 2023-01-11T21:41:26.3828154Z } 2023-01-11T21:41:26.3828318Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.3828487Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.3828640Z out_ptr2[0] = tmp3; 2023-01-11T21:41:26.3828797Z out_ptr3[0] = tmp4.index; 2023-01-11T21:41:26.3829035Z out_ptr4[0] = tmp5.index; 2023-01-11T21:41:26.3829150Z } 2023-01-11T21:41:26.3829260Z } 2023-01-11T21:41:26.3829351Z } 2023-01-11T21:41:26.3829507Z ''') 2023-01-11T21:41:26.3829518Z 2023-01-11T21:41:26.3829680Z async_compile.wait(globals()) 2023-01-11T21:41:26.3829842Z del async_compile 2023-01-11T21:41:26.3830113Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3830279Z wrapper = ( 2023-01-11T21:41:26.3830467Z ''' 2023-01-11T21:41:26.3830618Z #include 2023-01-11T21:41:26.3830793Z #include 2023-01-11T21:41:26.3831102Z std::vector call_13(std::vector args) { 2023-01-11T21:41:26.3831288Z at::Tensor arg0_1; 2023-01-11T21:41:26.3831463Z arg0_1 = args[0]; 2023-01-11T21:41:26.3831717Z auto buf0 = at::empty_strided({}, {}, at::ScalarType::Float); 2023-01-11T21:41:26.3832005Z auto buf1 = at::empty_strided({}, {}, at::ScalarType::Float); 2023-01-11T21:41:26.3832220Z auto buf2 = at::empty_strided({}, {}, at::ScalarType::Float); 2023-01-11T21:41:26.3832431Z auto buf3 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3832643Z auto buf4 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3833197Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/5l/c5l5a67pncykxc4k6lcjmgu7elavbipctmegtckslekz4senmd6h.so", RTLD_NOW); 2023-01-11T21:41:26.3833417Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3833724Z void (*kernel_cpp_0)(const float*,float*,float*,float*,long*,long*); 2023-01-11T21:41:26.3834004Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3834526Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(buf0.data_ptr()), (float*)(buf1.data_ptr()), (float*)(buf2.data_ptr()), (long*)(buf3.data_ptr()), (long*)(buf4.data_ptr())); 2023-01-11T21:41:26.3834674Z arg0_1.reset(); 2023-01-11T21:41:26.3835042Z return std::vector({buf0, buf1, buf2, buf3, buf4}); }''' ) 2023-01-11T21:41:26.3835075Z 2023-01-11T21:41:26.3835196Z module = load_inline( 2023-01-11T21:41:26.3835663Z name='inline_extension_cnves6oopp5lj6abdi7pghxpzsce42tujpsuwbgsp347d4fyecyk', 2023-01-11T21:41:26.3835826Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3836107Z functions=['call_13'], 2023-01-11T21:41:26.3836955Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3837309Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3838519Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3838531Z 2023-01-11T21:41:26.3838663Z def _wrap_func(f): 2023-01-11T21:41:26.3838769Z def g(args): 2023-01-11T21:41:26.3838909Z return f(args) 2023-01-11T21:41:26.3839055Z return g 2023-01-11T21:41:26.3839278Z call = _wrap_func(module.call_13) 2023-01-11T21:41:26.3839292Z 2023-01-11T21:41:26.3839301Z 2023-01-11T21:41:26.3839487Z if __name__ == "__main__": 2023-01-11T21:41:26.3839752Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3840052Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3840510Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3840737Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3840747Z 2023-01-11T21:41:26.3841259Z [2023-01-11 21:30:44,275] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 166 2023-01-11T21:41:26.3842090Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3842489Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3843099Z [2023-01-11 21:30:44,309] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 167 2023-01-11T21:41:26.3843111Z 2023-01-11T21:41:26.3843339Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3843507Z import torch 2023-01-11T21:41:26.3843674Z import random 2023-01-11T21:41:26.3843921Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3844122Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3844132Z 2023-01-11T21:41:26.3844271Z aten = torch.ops.aten 2023-01-11T21:41:26.3844572Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3844745Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3844755Z 2023-01-11T21:41:26.3844766Z 2023-01-11T21:41:26.3845037Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3845511Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3845780Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3846025Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3846240Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3846471Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.3846621Z { 2023-01-11T21:41:26.3846833Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3846953Z { 2023-01-11T21:41:26.3847095Z #pragma omp for 2023-01-11T21:41:26.3847241Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.3847338Z { 2023-01-11T21:41:26.3847590Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3847832Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3848129Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.3848335Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.3848620Z auto tmp4 = at::vec::clamp_min(tmp3, decltype(tmp3)(0)); 2023-01-11T21:41:26.3848945Z auto tmp5 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.3849283Z auto tmp6 = tmp4 / tmp5; 2023-01-11T21:41:26.3849480Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3849699Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.3849840Z } 2023-01-11T21:41:26.3850027Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3850180Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.3850294Z { 2023-01-11T21:41:26.3850444Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3850582Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.3850740Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.3850892Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.3851063Z auto tmp4 = tmp3 * (tmp3>0); 2023-01-11T21:41:26.3851300Z auto tmp5 = static_cast(10); 2023-01-11T21:41:26.3851497Z auto tmp6 = tmp4 / tmp5; 2023-01-11T21:41:26.3851694Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.3851858Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.3852007Z } 2023-01-11T21:41:26.3852154Z } 2023-01-11T21:41:26.3852295Z } 2023-01-11T21:41:26.3852506Z ''') 2023-01-11T21:41:26.3852517Z 2023-01-11T21:41:26.3852721Z async_compile.wait(globals()) 2023-01-11T21:41:26.3852865Z del async_compile 2023-01-11T21:41:26.3853100Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3853225Z wrapper = ( 2023-01-11T21:41:26.3853374Z ''' 2023-01-11T21:41:26.3853505Z #include 2023-01-11T21:41:26.3853641Z #include 2023-01-11T21:41:26.3853882Z std::vector call_14(std::vector args) { 2023-01-11T21:41:26.3854141Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3854314Z arg0_1 = args[0]; 2023-01-11T21:41:26.3854487Z arg1_1 = args[1]; 2023-01-11T21:41:26.3854796Z auto buf0 = at::empty_strided({8, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3855104Z auto buf1 = at::empty_strided({8, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3855698Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/7x/c7xp2x2aeezqsrsqkwdk4izewjw4zicynazuew4aormeadx7we4w.so", RTLD_NOW); 2023-01-11T21:41:26.3855922Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3856158Z void (*kernel_cpp_0)(const float*,const float*,float*,float*); 2023-01-11T21:41:26.3856361Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3856756Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(arg1_1.data_ptr()), (float*)(buf0.data_ptr()), (float*)(buf1.data_ptr())); 2023-01-11T21:41:26.3856889Z arg0_1.reset(); 2023-01-11T21:41:26.3857014Z arg1_1.reset(); 2023-01-11T21:41:26.3857418Z return std::vector({buf0, buf1}); }''' ) 2023-01-11T21:41:26.3857430Z 2023-01-11T21:41:26.3857609Z module = load_inline( 2023-01-11T21:41:26.3858232Z name='inline_extension_calgsbsip6x4xs4ezhgcztxahbh3ege57zlzguw75tt24wn43c6r', 2023-01-11T21:41:26.3858433Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3858689Z functions=['call_14'], 2023-01-11T21:41:26.3859425Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3859694Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3860983Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3861003Z 2023-01-11T21:41:26.3861185Z def _wrap_func(f): 2023-01-11T21:41:26.3861349Z def g(args): 2023-01-11T21:41:26.3861525Z return f(args) 2023-01-11T21:41:26.3861683Z return g 2023-01-11T21:41:26.3861883Z call = _wrap_func(module.call_14) 2023-01-11T21:41:26.3861918Z 2023-01-11T21:41:26.3861932Z 2023-01-11T21:41:26.3862077Z if __name__ == "__main__": 2023-01-11T21:41:26.3862293Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3862519Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3862898Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3863349Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3863597Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.3863607Z 2023-01-11T21:41:26.3864246Z [2023-01-11 21:31:04,272] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 167 2023-01-11T21:41:26.3865247Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3865484Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3865962Z [2023-01-11 21:31:04,293] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 168 2023-01-11T21:41:26.3865972Z 2023-01-11T21:41:26.3866141Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3866261Z import torch 2023-01-11T21:41:26.3866389Z import random 2023-01-11T21:41:26.3866644Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3866934Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3866946Z 2023-01-11T21:41:26.3867128Z aten = torch.ops.aten 2023-01-11T21:41:26.3867545Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3867741Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3867753Z 2023-01-11T21:41:26.3867762Z 2023-01-11T21:41:26.3868096Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3868495Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3868711Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3868887Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.3868997Z { 2023-01-11T21:41:26.3869174Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3869261Z { 2023-01-11T21:41:26.3869406Z #pragma omp for 2023-01-11T21:41:26.3869597Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.3869750Z { 2023-01-11T21:41:26.3870151Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.3870482Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:41:26.3870690Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3870880Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.3871031Z } 2023-01-11T21:41:26.3871239Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3871403Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.3871518Z { 2023-01-11T21:41:26.3871670Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3871939Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:41:26.3872070Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:41:26.3872222Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:41:26.3872365Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.3872497Z } 2023-01-11T21:41:26.3872645Z } 2023-01-11T21:41:26.3872789Z } 2023-01-11T21:41:26.3872974Z ''') 2023-01-11T21:41:26.3872989Z 2023-01-11T21:41:26.3873173Z async_compile.wait(globals()) 2023-01-11T21:41:26.3873347Z del async_compile 2023-01-11T21:41:26.3873642Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3873808Z wrapper = ( 2023-01-11T21:41:26.3873996Z ''' 2023-01-11T21:41:26.3874176Z #include 2023-01-11T21:41:26.3874329Z #include 2023-01-11T21:41:26.3874536Z at::Tensor call_15(std::vector args) { 2023-01-11T21:41:26.3874674Z at::Tensor arg0_1; 2023-01-11T21:41:26.3874796Z arg0_1 = args[0]; 2023-01-11T21:41:26.3875034Z auto buf0 = at::empty_strided({8, 8}, {8, 1}, at::ScalarType::Float); 2023-01-11T21:41:26.3875467Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/35/c35igtmj5ncrr7wfhg5mi3p27d5wx6jrpmulflkkuspmmqmzjoe5.so", RTLD_NOW); 2023-01-11T21:41:26.3875692Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3875926Z void (*kernel_cpp_0)(const float*,float*); 2023-01-11T21:41:26.3876204Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3876512Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(buf0.data_ptr())); 2023-01-11T21:41:26.3876690Z arg0_1.reset(); 2023-01-11T21:41:26.3876963Z return buf0; }''' ) 2023-01-11T21:41:26.3876977Z 2023-01-11T21:41:26.3877148Z module = load_inline( 2023-01-11T21:41:26.3877663Z name='inline_extension_cjm5ytgzhvhh3tc653lkgnoh5sagh4gzhwzzhzx6xddloix3de7v', 2023-01-11T21:41:26.3877818Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3878025Z functions=['call_15'], 2023-01-11T21:41:26.3878714Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3879071Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3880488Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3880582Z 2023-01-11T21:41:26.3880716Z def _wrap_func(f): 2023-01-11T21:41:26.3880841Z def g(args): 2023-01-11T21:41:26.3880971Z return f(args) 2023-01-11T21:41:26.3881091Z return g 2023-01-11T21:41:26.3881257Z call = _wrap_func(module.call_15) 2023-01-11T21:41:26.3881267Z 2023-01-11T21:41:26.3881274Z 2023-01-11T21:41:26.3881409Z if __name__ == "__main__": 2023-01-11T21:41:26.3881634Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3881914Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3882383Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3882638Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3882653Z 2023-01-11T21:41:26.3883367Z [2023-01-11 21:31:24,171] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 168 2023-01-11T21:41:26.3884169Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3884403Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3884950Z [2023-01-11 21:31:24,192] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 169 2023-01-11T21:41:26.3884960Z 2023-01-11T21:41:26.3885185Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3885337Z import torch 2023-01-11T21:41:26.3885508Z import random 2023-01-11T21:41:26.3885777Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3886065Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3886083Z 2023-01-11T21:41:26.3886280Z aten = torch.ops.aten 2023-01-11T21:41:26.3886569Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3886746Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3886755Z 2023-01-11T21:41:26.3886763Z 2023-01-11T21:41:26.3887017Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3887367Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3887584Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3887782Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.3888021Z double* __restrict__ out_ptr1, 2023-01-11T21:41:26.3888250Z double* __restrict__ out_ptr2) 2023-01-11T21:41:26.3888403Z { 2023-01-11T21:41:26.3888638Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3888762Z { 2023-01-11T21:41:26.3888943Z #pragma omp for 2023-01-11T21:41:26.3889280Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3889433Z { 2023-01-11T21:41:26.3889587Z { 2023-01-11T21:41:26.3889731Z { 2023-01-11T21:41:26.3889895Z double tmp2 = 0; 2023-01-11T21:41:26.3890044Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.3890165Z { 2023-01-11T21:41:26.3890287Z { 2023-01-11T21:41:26.3890474Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.3890678Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3890826Z tmp2 += tmp1; 2023-01-11T21:41:26.3890970Z } 2023-01-11T21:41:26.3891107Z } 2023-01-11T21:41:26.3891304Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.3891465Z } 2023-01-11T21:41:26.3891627Z } 2023-01-11T21:41:26.3891775Z } 2023-01-11T21:41:26.3891914Z } 2023-01-11T21:41:26.3892036Z { 2023-01-11T21:41:26.3892187Z { 2023-01-11T21:41:26.3892380Z double tmp2 = 0; 2023-01-11T21:41:26.3892753Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3892884Z { 2023-01-11T21:41:26.3893073Z #pragma omp for reduction(+:tmp2) 2023-01-11T21:41:26.3893236Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.3893339Z { 2023-01-11T21:41:26.3893459Z { 2023-01-11T21:41:26.3893630Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3893829Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3893976Z tmp2 += tmp1; 2023-01-11T21:41:26.3894132Z } 2023-01-11T21:41:26.3894289Z } 2023-01-11T21:41:26.3894425Z } 2023-01-11T21:41:26.3894603Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.3894751Z } 2023-01-11T21:41:26.3894890Z } 2023-01-11T21:41:26.3895204Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3895355Z { 2023-01-11T21:41:26.3895536Z #pragma omp for 2023-01-11T21:41:26.3895716Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.3895851Z { 2023-01-11T21:41:26.3896016Z #pragma GCC ivdep 2023-01-11T21:41:26.3896172Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.3896286Z { 2023-01-11T21:41:26.3896402Z { 2023-01-11T21:41:26.3896506Z { 2023-01-11T21:41:26.3896689Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.3896861Z auto tmp2 = out_ptr0[i1]; 2023-01-11T21:41:26.3897030Z auto tmp4 = out_ptr1[0]; 2023-01-11T21:41:26.3897273Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3897490Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.3897722Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.3897918Z out_ptr2[i1 + (32*i0)] = tmp5; 2023-01-11T21:41:26.3898072Z } 2023-01-11T21:41:26.3898232Z } 2023-01-11T21:41:26.3898385Z } 2023-01-11T21:41:26.3898530Z } 2023-01-11T21:41:26.3898677Z } 2023-01-11T21:41:26.3898817Z } 2023-01-11T21:41:26.3898995Z ''') 2023-01-11T21:41:26.3899007Z 2023-01-11T21:41:26.3899185Z async_compile.wait(globals()) 2023-01-11T21:41:26.3899316Z del async_compile 2023-01-11T21:41:26.3899529Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3899656Z wrapper = ( 2023-01-11T21:41:26.3899802Z ''' 2023-01-11T21:41:26.3899938Z #include 2023-01-11T21:41:26.3900054Z #include 2023-01-11T21:41:26.3900311Z at::Tensor call_16(std::vector args) { 2023-01-11T21:41:26.3900499Z at::Tensor arg0_1; 2023-01-11T21:41:26.3900672Z arg0_1 = args[0]; 2023-01-11T21:41:26.3900990Z auto buf0 = at::empty_strided({32, }, {1, }, at::ScalarType::Double); 2023-01-11T21:41:26.3901288Z auto buf1 = at::empty_strided({}, {}, at::ScalarType::Double); 2023-01-11T21:41:26.3901596Z auto buf2 = at::empty_strided({32, 32}, {32, 1}, at::ScalarType::Double); 2023-01-11T21:41:26.3902123Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/zh/czhbish5ijarri5zlmhjqoss3r374biyjp3mnifm6ga2y5j5hx55.so", RTLD_NOW); 2023-01-11T21:41:26.3902281Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3902503Z void (*kernel_cpp_0)(const float*,double*,double*,double*); 2023-01-11T21:41:26.3902728Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3903070Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (double*)(buf0.data_ptr()), (double*)(buf1.data_ptr()), (double*)(buf2.data_ptr())); 2023-01-11T21:41:26.3903307Z arg0_1.reset(); 2023-01-11T21:41:26.3903579Z return buf2; }''' ) 2023-01-11T21:41:26.3903594Z 2023-01-11T21:41:26.3903777Z module = load_inline( 2023-01-11T21:41:26.3904393Z name='inline_extension_cch76d6suiocuagkhrlcimmdoy5nhjvwl4xulurcswqzhcc7kzny', 2023-01-11T21:41:26.3904577Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3904944Z functions=['call_16'], 2023-01-11T21:41:26.3905664Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3905936Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3907219Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3907233Z 2023-01-11T21:41:26.3907408Z def _wrap_func(f): 2023-01-11T21:41:26.3907580Z def g(args): 2023-01-11T21:41:26.3907754Z return f(args) 2023-01-11T21:41:26.3907894Z return g 2023-01-11T21:41:26.3908234Z call = _wrap_func(module.call_16) 2023-01-11T21:41:26.3908248Z 2023-01-11T21:41:26.3908256Z 2023-01-11T21:41:26.3908420Z if __name__ == "__main__": 2023-01-11T21:41:26.3908626Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3908847Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3909222Z arg0_1 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.3909415Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3909424Z 2023-01-11T21:41:26.3909989Z [2023-01-11 21:31:44,909] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 169 2023-01-11T21:41:26.3910995Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3911273Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3911815Z [2023-01-11 21:31:44,930] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 170 2023-01-11T21:41:26.3911826Z 2023-01-11T21:41:26.3911994Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3912119Z import torch 2023-01-11T21:41:26.3912246Z import random 2023-01-11T21:41:26.3912454Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3912666Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3912676Z 2023-01-11T21:41:26.3912816Z aten = torch.ops.aten 2023-01-11T21:41:26.3913052Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3913277Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3913290Z 2023-01-11T21:41:26.3913299Z 2023-01-11T21:41:26.3913631Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3914114Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3914371Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.3914621Z const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.3914835Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.3914959Z { 2023-01-11T21:41:26.3915100Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.3915211Z { 2023-01-11T21:41:26.3915322Z { 2023-01-11T21:41:26.3915461Z long tmp2 = 0; 2023-01-11T21:41:26.3915600Z long tmp3 = 0; 2023-01-11T21:41:26.3915792Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3915912Z { 2023-01-11T21:41:26.3916143Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:41:26.3916353Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.3916505Z { 2023-01-11T21:41:26.3916672Z { 2023-01-11T21:41:26.3916903Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3917134Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3917409Z tmp2 += tmp1; 2023-01-11T21:41:26.3917570Z tmp3 += tmp1; 2023-01-11T21:41:26.3917732Z } 2023-01-11T21:41:26.3917884Z } 2023-01-11T21:41:26.3918013Z } 2023-01-11T21:41:26.3918149Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.3918292Z out_ptr1[0] = tmp3; 2023-01-11T21:41:26.3918392Z } 2023-01-11T21:41:26.3918502Z } 2023-01-11T21:41:26.3918609Z { 2023-01-11T21:41:26.3918722Z { 2023-01-11T21:41:26.3918877Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.3919028Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:41:26.3919213Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3919397Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3919668Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3919863Z in_out_ptr0[0] = tmp4; 2023-01-11T21:41:26.3920016Z } 2023-01-11T21:41:26.3920166Z } 2023-01-11T21:41:26.3920310Z } 2023-01-11T21:41:26.3920520Z ''') 2023-01-11T21:41:26.3920538Z 2023-01-11T21:41:26.3920730Z async_compile.wait(globals()) 2023-01-11T21:41:26.3920904Z del async_compile 2023-01-11T21:41:26.3921138Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3921266Z wrapper = ( 2023-01-11T21:41:26.3921418Z ''' 2023-01-11T21:41:26.3921556Z #include 2023-01-11T21:41:26.3921676Z #include 2023-01-11T21:41:26.3921887Z at::Tensor call_17(std::vector args) { 2023-01-11T21:41:26.3922026Z at::Tensor arg0_1; 2023-01-11T21:41:26.3922157Z arg0_1 = args[0]; 2023-01-11T21:41:26.3922401Z auto buf0 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3922687Z auto buf1 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3922916Z auto buf2 = buf0; buf0.reset(); // reuse 2023-01-11T21:41:26.3923507Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/7i/c7ikfrx6rninixt746snmnigf7nld7jz6nxxc6lhqudu4kpzv6cu.so", RTLD_NOW); 2023-01-11T21:41:26.3923724Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3923981Z void (*kernel_cpp_0)(long*,const bool*,long*); 2023-01-11T21:41:26.3924252Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3924529Z kernel_cpp_0((long*)(buf2.data_ptr()), (bool*)(arg0_1.data_ptr()), (long*)(buf1.data_ptr())); 2023-01-11T21:41:26.3924657Z arg0_1.reset(); 2023-01-11T21:41:26.3924862Z return buf2; }''' ) 2023-01-11T21:41:26.3924872Z 2023-01-11T21:41:26.3925008Z module = load_inline( 2023-01-11T21:41:26.3925481Z name='inline_extension_cilgouchaeqshp6duams4dexs6tbjv33w7cmpjeqyecqjxdnhm6c', 2023-01-11T21:41:26.3925617Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3925838Z functions=['call_17'], 2023-01-11T21:41:26.3926701Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3927057Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3928276Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3928288Z 2023-01-11T21:41:26.3928423Z def _wrap_func(f): 2023-01-11T21:41:26.3928546Z def g(args): 2023-01-11T21:41:26.3928679Z return f(args) 2023-01-11T21:41:26.3928773Z return g 2023-01-11T21:41:26.3928980Z call = _wrap_func(module.call_17) 2023-01-11T21:41:26.3928992Z 2023-01-11T21:41:26.3929000Z 2023-01-11T21:41:26.3929360Z if __name__ == "__main__": 2023-01-11T21:41:26.3929638Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3929924Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3930392Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.3930772Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3930783Z 2023-01-11T21:41:26.3931302Z [2023-01-11 21:32:05,720] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 170 2023-01-11T21:41:26.3932102Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3932391Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3933074Z [2023-01-11 21:32:05,738] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 171 2023-01-11T21:41:26.3933090Z 2023-01-11T21:41:26.3933316Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3933494Z import torch 2023-01-11T21:41:26.3933668Z import random 2023-01-11T21:41:26.3933927Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3934150Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3934160Z 2023-01-11T21:41:26.3934295Z aten = torch.ops.aten 2023-01-11T21:41:26.3934518Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3934685Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3934694Z 2023-01-11T21:41:26.3934701Z 2023-01-11T21:41:26.3934954Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3935314Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3935526Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.3935789Z const unsigned char* __restrict__ in_ptr0, 2023-01-11T21:41:26.3936024Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.3936173Z { 2023-01-11T21:41:26.3936349Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.3936489Z { 2023-01-11T21:41:26.3936634Z { 2023-01-11T21:41:26.3936796Z long tmp2 = 0; 2023-01-11T21:41:26.3936945Z long tmp3 = 0; 2023-01-11T21:41:26.3937135Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3937252Z { 2023-01-11T21:41:26.3937463Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:41:26.3937623Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.3937737Z { 2023-01-11T21:41:26.3937859Z { 2023-01-11T21:41:26.3938046Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3938292Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3938480Z tmp2 += tmp1; 2023-01-11T21:41:26.3938652Z tmp3 += tmp1; 2023-01-11T21:41:26.3938811Z } 2023-01-11T21:41:26.3938959Z } 2023-01-11T21:41:26.3939109Z } 2023-01-11T21:41:26.3939293Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.3939475Z out_ptr1[0] = tmp3; 2023-01-11T21:41:26.3939625Z } 2023-01-11T21:41:26.3939747Z } 2023-01-11T21:41:26.3939889Z { 2023-01-11T21:41:26.3940030Z { 2023-01-11T21:41:26.3940200Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.3940351Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:41:26.3940531Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3940668Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3940809Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3940956Z in_out_ptr0[0] = tmp4; 2023-01-11T21:41:26.3941072Z } 2023-01-11T21:41:26.3941181Z } 2023-01-11T21:41:26.3941291Z } 2023-01-11T21:41:26.3941496Z ''') 2023-01-11T21:41:26.3941515Z 2023-01-11T21:41:26.3941697Z async_compile.wait(globals()) 2023-01-11T21:41:26.3941868Z del async_compile 2023-01-11T21:41:26.3942246Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3942416Z wrapper = ( 2023-01-11T21:41:26.3942607Z ''' 2023-01-11T21:41:26.3942779Z #include 2023-01-11T21:41:26.3942959Z #include 2023-01-11T21:41:26.3943277Z at::Tensor call_18(std::vector args) { 2023-01-11T21:41:26.3943428Z at::Tensor arg0_1; 2023-01-11T21:41:26.3943556Z arg0_1 = args[0]; 2023-01-11T21:41:26.3943783Z auto buf0 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3944004Z auto buf1 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3944179Z auto buf2 = buf0; buf0.reset(); // reuse 2023-01-11T21:41:26.3944615Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/tb/ctbh34bqrqepgalem35dqwj3753otv7p7fp3h5othhadkxb5qbmw.so", RTLD_NOW); 2023-01-11T21:41:26.3944896Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3945176Z void (*kernel_cpp_0)(long*,const unsigned char*,long*); 2023-01-11T21:41:26.3945466Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3945849Z kernel_cpp_0((long*)(buf2.data_ptr()), (unsigned char*)(arg0_1.data_ptr()), (long*)(buf1.data_ptr())); 2023-01-11T21:41:26.3946015Z arg0_1.reset(); 2023-01-11T21:41:26.3946275Z return buf2; }''' ) 2023-01-11T21:41:26.3946294Z 2023-01-11T21:41:26.3946469Z module = load_inline( 2023-01-11T21:41:26.3946951Z name='inline_extension_cd35e6efhhtvu2vyxgwximssv66dj3ogpttagtwmu3k3432jc22z', 2023-01-11T21:41:26.3947084Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3947289Z functions=['call_18'], 2023-01-11T21:41:26.3948023Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3948389Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3949742Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3949759Z 2023-01-11T21:41:26.3949892Z def _wrap_func(f): 2023-01-11T21:41:26.3950017Z def g(args): 2023-01-11T21:41:26.3950151Z return f(args) 2023-01-11T21:41:26.3950254Z return g 2023-01-11T21:41:26.3950414Z call = _wrap_func(module.call_18) 2023-01-11T21:41:26.3950424Z 2023-01-11T21:41:26.3950431Z 2023-01-11T21:41:26.3950565Z if __name__ == "__main__": 2023-01-11T21:41:26.3950769Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3950989Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3951343Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.uint8) 2023-01-11T21:41:26.3951583Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3951600Z 2023-01-11T21:41:26.3952207Z [2023-01-11 21:32:25,897] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 171 2023-01-11T21:41:26.3953215Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3953455Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3953923Z [2023-01-11 21:32:25,916] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 172 2023-01-11T21:41:26.3953949Z 2023-01-11T21:41:26.3954103Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3954227Z import torch 2023-01-11T21:41:26.3954359Z import random 2023-01-11T21:41:26.3954568Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3954787Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3954864Z 2023-01-11T21:41:26.3955012Z aten = torch.ops.aten 2023-01-11T21:41:26.3955316Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3955490Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3955507Z 2023-01-11T21:41:26.3955516Z 2023-01-11T21:41:26.3955837Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3956310Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3956570Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.3956810Z const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.3957006Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.3957118Z { 2023-01-11T21:41:26.3957258Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.3957453Z { 2023-01-11T21:41:26.3957565Z { 2023-01-11T21:41:26.3957703Z long tmp2 = 0; 2023-01-11T21:41:26.3957841Z long tmp3 = 0; 2023-01-11T21:41:26.3958030Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3958143Z { 2023-01-11T21:41:26.3958352Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:41:26.3958519Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.3958663Z { 2023-01-11T21:41:26.3958823Z { 2023-01-11T21:41:26.3959050Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.3959297Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.3959485Z tmp2 += tmp1; 2023-01-11T21:41:26.3959649Z tmp3 += tmp1; 2023-01-11T21:41:26.3959801Z } 2023-01-11T21:41:26.3959956Z } 2023-01-11T21:41:26.3960098Z } 2023-01-11T21:41:26.3960292Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.3960444Z out_ptr1[0] = tmp3; 2023-01-11T21:41:26.3960563Z } 2023-01-11T21:41:26.3960663Z } 2023-01-11T21:41:26.3960770Z { 2023-01-11T21:41:26.3960886Z { 2023-01-11T21:41:26.3961039Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.3961185Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:41:26.3961362Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3961495Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3961633Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3961779Z in_out_ptr0[0] = tmp4; 2023-01-11T21:41:26.3961893Z } 2023-01-11T21:41:26.3962003Z } 2023-01-11T21:41:26.3962109Z } 2023-01-11T21:41:26.3962283Z ''') 2023-01-11T21:41:26.3962297Z 2023-01-11T21:41:26.3962492Z async_compile.wait(globals()) 2023-01-11T21:41:26.3962664Z del async_compile 2023-01-11T21:41:26.3962948Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3963120Z wrapper = ( 2023-01-11T21:41:26.3963310Z ''' 2023-01-11T21:41:26.3963478Z #include 2023-01-11T21:41:26.3963654Z #include 2023-01-11T21:41:26.3963908Z at::Tensor call_19(std::vector args) { 2023-01-11T21:41:26.3964076Z at::Tensor arg0_1; 2023-01-11T21:41:26.3964209Z arg0_1 = args[0]; 2023-01-11T21:41:26.3964429Z auto buf0 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3964655Z auto buf1 = at::empty_strided({}, {}, at::ScalarType::Long); 2023-01-11T21:41:26.3964832Z auto buf2 = buf0; buf0.reset(); // reuse 2023-01-11T21:41:26.3965283Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/3h/c3h2ropcb3kmljlkoaniup2ktv5vwaget4hkir3pmqeix6qdyoww.so", RTLD_NOW); 2023-01-11T21:41:26.3965463Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3965638Z void (*kernel_cpp_0)(long*,const int*,long*); 2023-01-11T21:41:26.3965857Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3966154Z kernel_cpp_0((long*)(buf2.data_ptr()), (int*)(arg0_1.data_ptr()), (long*)(buf1.data_ptr())); 2023-01-11T21:41:26.3966423Z arg0_1.reset(); 2023-01-11T21:41:26.3966683Z return buf2; }''' ) 2023-01-11T21:41:26.3966695Z 2023-01-11T21:41:26.3966852Z module = load_inline( 2023-01-11T21:41:26.3967478Z name='inline_extension_cnlotoitsz6eiybqu2bw3lgfkvhrhrmri7y2brdfjlaghnyjsytr', 2023-01-11T21:41:26.3967655Z cpp_sources=[wrapper], 2023-01-11T21:41:26.3967924Z functions=['call_19'], 2023-01-11T21:41:26.3968600Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.3968877Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.3970284Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.3970305Z 2023-01-11T21:41:26.3970494Z def _wrap_func(f): 2023-01-11T21:41:26.3970654Z def g(args): 2023-01-11T21:41:26.3970829Z return f(args) 2023-01-11T21:41:26.3970981Z return g 2023-01-11T21:41:26.3971182Z call = _wrap_func(module.call_19) 2023-01-11T21:41:26.3971194Z 2023-01-11T21:41:26.3971203Z 2023-01-11T21:41:26.3971380Z if __name__ == "__main__": 2023-01-11T21:41:26.3971654Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.3971936Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.3972304Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.3972497Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.3972506Z 2023-01-11T21:41:26.3973006Z [2023-01-11 21:32:46,022] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 172 2023-01-11T21:41:26.3973800Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.3974073Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.3974646Z [2023-01-11 21:32:46,045] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 173 2023-01-11T21:41:26.3974682Z 2023-01-11T21:41:26.3974884Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.3975052Z import torch 2023-01-11T21:41:26.3975210Z import random 2023-01-11T21:41:26.3975470Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.3975752Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.3975764Z 2023-01-11T21:41:26.3975923Z aten = torch.ops.aten 2023-01-11T21:41:26.3976166Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.3976321Z async_compile = AsyncCompile() 2023-01-11T21:41:26.3976331Z 2023-01-11T21:41:26.3976338Z 2023-01-11T21:41:26.3976596Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.3976959Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.3977173Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.3977364Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.3977541Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.3977712Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.3977830Z { 2023-01-11T21:41:26.3978035Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.3978187Z { 2023-01-11T21:41:26.3978377Z #pragma omp for 2023-01-11T21:41:26.3978576Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.3978736Z { 2023-01-11T21:41:26.3978915Z #pragma GCC ivdep 2023-01-11T21:41:26.3979090Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.3979348Z { 2023-01-11T21:41:26.3979504Z { 2023-01-11T21:41:26.3979652Z { 2023-01-11T21:41:26.3979845Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.3980022Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.3980192Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.3980346Z out_ptr0[i0 + (8*i1)] = tmp2; 2023-01-11T21:41:26.3980463Z } 2023-01-11T21:41:26.3980577Z } 2023-01-11T21:41:26.3980692Z } 2023-01-11T21:41:26.3980802Z } 2023-01-11T21:41:26.3980941Z #pragma omp for 2023-01-11T21:41:26.3981085Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.3981180Z { 2023-01-11T21:41:26.3981479Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.3981759Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.3981972Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3982271Z auto tmp3 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.3982470Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3982679Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.3982827Z } 2023-01-11T21:41:26.3983033Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.3983343Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.3983496Z { 2023-01-11T21:41:26.3983670Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.3983848Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.3983999Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.3984160Z auto tmp3 = static_cast(10); 2023-01-11T21:41:26.3984308Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.3984449Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.3984566Z } 2023-01-11T21:41:26.3984681Z } 2023-01-11T21:41:26.3984793Z } 2023-01-11T21:41:26.3984959Z ''') 2023-01-11T21:41:26.3984971Z 2023-01-11T21:41:26.3985115Z async_compile.wait(globals()) 2023-01-11T21:41:26.3985247Z del async_compile 2023-01-11T21:41:26.3985459Z from torch.utils.cpp_extension import load_inline 2023-01-11T21:41:26.3985593Z wrapper = ( 2023-01-11T21:41:26.3985783Z ''' 2023-01-11T21:41:26.3985947Z #include 2023-01-11T21:41:26.3986121Z #include 2023-01-11T21:41:26.3986401Z std::vector call_20(std::vector args) { 2023-01-11T21:41:26.3986606Z at::Tensor arg0_1, arg1_1; 2023-01-11T21:41:26.3986777Z arg0_1 = args[0]; 2023-01-11T21:41:26.3986944Z arg1_1 = args[1]; 2023-01-11T21:41:26.3987244Z auto buf0 = at::empty_strided({8, 8}, {1, 8}, at::ScalarType::Float); 2023-01-11T21:41:26.3987532Z auto buf1 = at::empty_strided({8, 8}, {1, 8}, at::ScalarType::Float); 2023-01-11T21:41:26.3987969Z auto kernel_cpp_0_lib = dlopen("/tmp/torchinductor_jenkins/ue/cueituey67usa3z6yqp6aokcyslwfb22e2edl237c4xqodiu4ah2.so", RTLD_NOW); 2023-01-11T21:41:26.3988148Z assert(kernel_cpp_0_lib != nullptr); 2023-01-11T21:41:26.3988356Z void (*kernel_cpp_0)(const float*,const float*,float*,float*); 2023-01-11T21:41:26.3988576Z *(void **) (&kernel_cpp_0) = dlsym(kernel_cpp_0_lib, "kernel"); 2023-01-11T21:41:26.3988906Z kernel_cpp_0((float*)(arg0_1.data_ptr()), (float*)(arg1_1.data_ptr()), (float*)(buf0.data_ptr()), (float*)(buf1.data_ptr())); 2023-01-11T21:41:26.3989035Z arg0_1.reset(); 2023-01-11T21:41:26.3989162Z arg1_1.reset(); 2023-01-11T21:41:26.3989514Z return std::vector({buf0, buf1}); }''' ) 2023-01-11T21:41:26.3989531Z 2023-01-11T21:41:26.3989719Z module = load_inline( 2023-01-11T21:41:26.3990321Z name='inline_extension_cjhlg7jjaalr6ljwfilqinh666vxmfig6blf4xoze25v3hhrk5f6', 2023-01-11T21:41:26.3990510Z cpp_sources=[wrapper], 2023-01-11T21:41:26.4000229Z functions=['call_20'], 2023-01-11T21:41:26.4001220Z extra_cflags=['-std=c++17 -Wno-unused-variable -march=native -O3 -ffast-math -fno-finite-math-only -fopenmp -Wall -D C10_USING_CUSTOM_GENERATED_MACROS'], 2023-01-11T21:41:26.4001720Z extra_ldflags=['-shared -fPIC -lgomp'], 2023-01-11T21:41:26.4002887Z extra_include_paths=['-I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10']) 2023-01-11T21:41:26.4002903Z 2023-01-11T21:41:26.4003083Z def _wrap_func(f): 2023-01-11T21:41:26.4003252Z def g(args): 2023-01-11T21:41:26.4003426Z return f(args) 2023-01-11T21:41:26.4003561Z return g 2023-01-11T21:41:26.4003776Z call = _wrap_func(module.call_20) 2023-01-11T21:41:26.4003789Z 2023-01-11T21:41:26.4003869Z 2023-01-11T21:41:26.4004048Z if __name__ == "__main__": 2023-01-11T21:41:26.4004317Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4004621Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4005026Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4005389Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4005597Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4005608Z 2023-01-11T21:41:26.4006108Z [2023-01-11 21:33:06,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 173 2023-01-11T21:41:26.4006272Z ok (418.898s) 2023-01-11T21:41:26.4006592Z test_cudnn_rnn_cpu (__main__.CpuTests) ... skip: requires CUDA (0.002s) 2023-01-11T21:41:26.4007050Z test_dense_mask_index_cpu (__main__.CpuTests) ... skip: https://github.com/pytorch/torchdynamo/issues/1697 (0.001s) 2023-01-11T21:41:26.4008096Z test_div1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4008335Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4008824Z [2023-01-11 21:33:07,026] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 174 2023-01-11T21:41:26.4009573Z [2023-01-11 21:33:08,694] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 174 2023-01-11T21:41:26.4009586Z 2023-01-11T21:41:26.4009805Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4009976Z import torch 2023-01-11T21:41:26.4010126Z import random 2023-01-11T21:41:26.4010411Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4010697Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4010709Z 2023-01-11T21:41:26.4010900Z aten = torch.ops.aten 2023-01-11T21:41:26.4011195Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4011364Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4011373Z 2023-01-11T21:41:26.4011380Z 2023-01-11T21:41:26.4011639Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4012003Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4012204Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4012393Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4012612Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4012843Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4013065Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.4013295Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4013513Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.4013765Z { 2023-01-11T21:41:26.4013980Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4014125Z { 2023-01-11T21:41:26.4014285Z #pragma omp for 2023-01-11T21:41:26.4014440Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4014555Z { 2023-01-11T21:41:26.4014807Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4015029Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4015180Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4015333Z auto tmp3 = tmp2.floor(); 2023-01-11T21:41:26.4015506Z auto tmp4 = tmp2.trunc(); 2023-01-11T21:41:26.4015723Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4015940Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4016241Z tmp4.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4016426Z tmp2.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.4016634Z tmp3.store(out_ptr4 + 8*i0); 2023-01-11T21:41:26.4016792Z } 2023-01-11T21:41:26.4017021Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4017215Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.4017339Z { 2023-01-11T21:41:26.4017504Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4017639Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4017788Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4017962Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.4018126Z auto tmp4 = std::trunc(tmp2); 2023-01-11T21:41:26.4018270Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4018413Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4018554Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.4018708Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.4018902Z out_ptr4[i0] = tmp3; 2023-01-11T21:41:26.4019052Z } 2023-01-11T21:41:26.4019203Z } 2023-01-11T21:41:26.4019325Z } 2023-01-11T21:41:26.4019537Z ''') 2023-01-11T21:41:26.4019551Z 2023-01-11T21:41:26.4019561Z 2023-01-11T21:41:26.4019776Z async_compile.wait(globals()) 2023-01-11T21:41:26.4019933Z del async_compile 2023-01-11T21:41:26.4019945Z 2023-01-11T21:41:26.4020104Z def call(args): 2023-01-11T21:41:26.4020278Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4020442Z args.clear() 2023-01-11T21:41:26.4020839Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4021199Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4021554Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4021971Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4022396Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4023005Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4023291Z del arg0_1 2023-01-11T21:41:26.4023455Z del arg1_1 2023-01-11T21:41:26.4023657Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4023669Z 2023-01-11T21:41:26.4023678Z 2023-01-11T21:41:26.4023823Z if __name__ == "__main__": 2023-01-11T21:41:26.4024030Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4024250Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4024599Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4024979Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4025238Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4025251Z 2023-01-11T21:41:26.4025424Z ok (1.726s) 2023-01-11T21:41:26.4026515Z test_div2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4026902Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4027395Z [2023-01-11 21:33:08,761] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 175 2023-01-11T21:41:26.4027892Z [2023-01-11 21:33:10,462] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 175 2023-01-11T21:41:26.4027902Z 2023-01-11T21:41:26.4028080Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4028227Z import torch 2023-01-11T21:41:26.4028393Z import random 2023-01-11T21:41:26.4028741Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4029024Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4029042Z 2023-01-11T21:41:26.4029232Z aten = torch.ops.aten 2023-01-11T21:41:26.4029541Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4029753Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4029766Z 2023-01-11T21:41:26.4029775Z 2023-01-11T21:41:26.4030067Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4030414Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4030632Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4030818Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4030997Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4031172Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4031397Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.4031630Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4031834Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.4031972Z { 2023-01-11T21:41:26.4032211Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4032355Z { 2023-01-11T21:41:26.4032542Z #pragma omp for 2023-01-11T21:41:26.4032728Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4032881Z { 2023-01-11T21:41:26.4033012Z { 2023-01-11T21:41:26.4033154Z { 2023-01-11T21:41:26.4033333Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4033498Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.4033693Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4033856Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.4034045Z auto tmp4 = std::floor(tmp3); 2023-01-11T21:41:26.4034216Z auto tmp5 = std::trunc(tmp3); 2023-01-11T21:41:26.4034371Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.4034551Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.4034744Z out_ptr2[i0] = tmp5; 2023-01-11T21:41:26.4034938Z out_ptr3[i0] = tmp3; 2023-01-11T21:41:26.4035142Z out_ptr4[i0] = tmp4; 2023-01-11T21:41:26.4035292Z } 2023-01-11T21:41:26.4035421Z } 2023-01-11T21:41:26.4035566Z } 2023-01-11T21:41:26.4035710Z } 2023-01-11T21:41:26.4035865Z } 2023-01-11T21:41:26.4036071Z ''') 2023-01-11T21:41:26.4036090Z 2023-01-11T21:41:26.4036100Z 2023-01-11T21:41:26.4036287Z async_compile.wait(globals()) 2023-01-11T21:41:26.4036431Z del async_compile 2023-01-11T21:41:26.4036442Z 2023-01-11T21:41:26.4036567Z def call(args): 2023-01-11T21:41:26.4036688Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4036815Z args.clear() 2023-01-11T21:41:26.4037184Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4037557Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4038108Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4038569Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4039018Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4039536Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4039664Z del arg0_1 2023-01-11T21:41:26.4039790Z del arg1_1 2023-01-11T21:41:26.4039964Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4039974Z 2023-01-11T21:41:26.4039981Z 2023-01-11T21:41:26.4040116Z if __name__ == "__main__": 2023-01-11T21:41:26.4040383Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4040665Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4041146Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4041595Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4041866Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4041879Z 2023-01-11T21:41:26.4042039Z ok (1.768s) 2023-01-11T21:41:26.4042956Z test_div3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4043188Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4043706Z [2023-01-11 21:33:10,517] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 176 2023-01-11T21:41:26.4044316Z [2023-01-11 21:33:12,207] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 176 2023-01-11T21:41:26.4044339Z 2023-01-11T21:41:26.4044558Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4044725Z import torch 2023-01-11T21:41:26.4044892Z import random 2023-01-11T21:41:26.4045142Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4045417Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4045429Z 2023-01-11T21:41:26.4045580Z aten = torch.ops.aten 2023-01-11T21:41:26.4045824Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4045992Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4046002Z 2023-01-11T21:41:26.4046008Z 2023-01-11T21:41:26.4046263Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4046625Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4046890Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4047099Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4047334Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4047551Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4047784Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4048015Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4048236Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4048375Z { 2023-01-11T21:41:26.4048564Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4048678Z { 2023-01-11T21:41:26.4048817Z #pragma omp for 2023-01-11T21:41:26.4048963Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4049224Z { 2023-01-11T21:41:26.4049340Z { 2023-01-11T21:41:26.4049459Z { 2023-01-11T21:41:26.4049616Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4049777Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.4050132Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4050391Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.4050611Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:41:26.4051218Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:41:26.4051425Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:41:26.4051607Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.4051781Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.4051930Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.4052075Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.4052223Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.4052340Z } 2023-01-11T21:41:26.4052551Z } 2023-01-11T21:41:26.4052650Z } 2023-01-11T21:41:26.4052766Z } 2023-01-11T21:41:26.4052875Z } 2023-01-11T21:41:26.4053054Z ''') 2023-01-11T21:41:26.4053066Z 2023-01-11T21:41:26.4053075Z 2023-01-11T21:41:26.4053290Z async_compile.wait(globals()) 2023-01-11T21:41:26.4053472Z del async_compile 2023-01-11T21:41:26.4053484Z 2023-01-11T21:41:26.4053648Z def call(args): 2023-01-11T21:41:26.4053808Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4053971Z args.clear() 2023-01-11T21:41:26.4054436Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4054879Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4055226Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4055580Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4055916Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4056469Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4056627Z del arg0_1 2023-01-11T21:41:26.4056775Z del arg1_1 2023-01-11T21:41:26.4057004Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4057017Z 2023-01-11T21:41:26.4057026Z 2023-01-11T21:41:26.4057207Z if __name__ == "__main__": 2023-01-11T21:41:26.4057484Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4057772Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4058181Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4058537Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4058730Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4058739Z 2023-01-11T21:41:26.4058865Z ok (1.744s) 2023-01-11T21:41:26.4059837Z test_div4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4060144Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4060761Z [2023-01-11 21:33:12,261] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 177 2023-01-11T21:41:26.4061317Z [2023-01-11 21:33:12,281] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 177 2023-01-11T21:41:26.4061327Z 2023-01-11T21:41:26.4061495Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4061625Z import torch 2023-01-11T21:41:26.4061755Z import random 2023-01-11T21:41:26.4061953Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4062175Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4062258Z 2023-01-11T21:41:26.4062424Z aten = torch.ops.aten 2023-01-11T21:41:26.4062747Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4062962Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4062974Z 2023-01-11T21:41:26.4062984Z 2023-01-11T21:41:26.4063394Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4063875Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4064148Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4064343Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4064522Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4064685Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4064916Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4065096Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4065265Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4065383Z { 2023-01-11T21:41:26.4065544Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4065684Z { 2023-01-11T21:41:26.4065867Z #pragma omp for 2023-01-11T21:41:26.4066074Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4066226Z { 2023-01-11T21:41:26.4066379Z { 2023-01-11T21:41:26.4066535Z { 2023-01-11T21:41:26.4066718Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4066930Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.4067182Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4067427Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.4067607Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:41:26.4068100Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:41:26.4068266Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:41:26.4068408Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.4068561Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.4068721Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.4068925Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.4069128Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.4069277Z } 2023-01-11T21:41:26.4069425Z } 2023-01-11T21:41:26.4069552Z } 2023-01-11T21:41:26.4069702Z } 2023-01-11T21:41:26.4069846Z } 2023-01-11T21:41:26.4070047Z ''') 2023-01-11T21:41:26.4070063Z 2023-01-11T21:41:26.4070071Z 2023-01-11T21:41:26.4070288Z async_compile.wait(globals()) 2023-01-11T21:41:26.4070463Z del async_compile 2023-01-11T21:41:26.4070479Z 2023-01-11T21:41:26.4070625Z def call(args): 2023-01-11T21:41:26.4070752Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4070881Z args.clear() 2023-01-11T21:41:26.4071249Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4071606Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4072021Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4072476Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4072933Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4073540Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4073689Z del arg0_1 2023-01-11T21:41:26.4073806Z del arg1_1 2023-01-11T21:41:26.4073982Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4073992Z 2023-01-11T21:41:26.4074004Z 2023-01-11T21:41:26.4074140Z if __name__ == "__main__": 2023-01-11T21:41:26.4074348Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4074649Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4075012Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4075453Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4075700Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4075737Z 2023-01-11T21:41:26.4075870Z ok (0.074s) 2023-01-11T21:41:26.4076939Z test_div5_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4077225Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4077716Z [2023-01-11 21:33:12,328] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 178 2023-01-11T21:41:26.4078209Z [2023-01-11 21:33:13,878] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 178 2023-01-11T21:41:26.4078219Z 2023-01-11T21:41:26.4078438Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4078609Z import torch 2023-01-11T21:41:26.4078789Z import random 2023-01-11T21:41:26.4079033Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4079309Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4079323Z 2023-01-11T21:41:26.4079508Z aten = torch.ops.aten 2023-01-11T21:41:26.4079820Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4080041Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4080052Z 2023-01-11T21:41:26.4080060Z 2023-01-11T21:41:26.4080330Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4080688Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4080899Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4081074Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4081228Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4081394Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4081615Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4081834Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4081965Z { 2023-01-11T21:41:26.4082193Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4082338Z { 2023-01-11T21:41:26.4082502Z #pragma omp for 2023-01-11T21:41:26.4082695Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4082859Z { 2023-01-11T21:41:26.4083015Z { 2023-01-11T21:41:26.4083173Z { 2023-01-11T21:41:26.4083361Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4083543Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4083730Z auto tmp2 = static_cast(16); 2023-01-11T21:41:26.4083895Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.4084081Z auto tmp4 = static_cast(16); 2023-01-11T21:41:26.4084562Z auto tmp5 = ((tmp0 < 0) != (tmp4 < 0) ? (tmp0 % tmp4 != 0 ? tmp0 / tmp4 - 1 : tmp0 / tmp4) : tmp0 / tmp4); 2023-01-11T21:41:26.4084770Z auto tmp6 = tmp0 / tmp4; 2023-01-11T21:41:26.4084962Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.4085162Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.4085347Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.4085542Z out_ptr3[i0] = tmp3; 2023-01-11T21:41:26.4085740Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.4085898Z } 2023-01-11T21:41:26.4086050Z } 2023-01-11T21:41:26.4086195Z } 2023-01-11T21:41:26.4086419Z } 2023-01-11T21:41:26.4086526Z } 2023-01-11T21:41:26.4086676Z ''') 2023-01-11T21:41:26.4086686Z 2023-01-11T21:41:26.4086693Z 2023-01-11T21:41:26.4086856Z async_compile.wait(globals()) 2023-01-11T21:41:26.4086989Z del async_compile 2023-01-11T21:41:26.4086998Z 2023-01-11T21:41:26.4087122Z def call(args): 2023-01-11T21:41:26.4087247Z arg0_1, = args 2023-01-11T21:41:26.4087375Z args.clear() 2023-01-11T21:41:26.4087729Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4088152Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4088612Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4089211Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4089761Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4090216Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4090349Z del arg0_1 2023-01-11T21:41:26.4090523Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4090534Z 2023-01-11T21:41:26.4090542Z 2023-01-11T21:41:26.4090655Z if __name__ == "__main__": 2023-01-11T21:41:26.4090859Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4091084Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4091529Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4091787Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4091803Z 2023-01-11T21:41:26.4091962Z ok (1.597s) 2023-01-11T21:41:26.4093026Z test_div6_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4093274Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4093770Z [2023-01-11 21:33:13,928] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 179 2023-01-11T21:41:26.4094248Z [2023-01-11 21:33:15,464] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 179 2023-01-11T21:41:26.4094275Z 2023-01-11T21:41:26.4094433Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4094595Z import torch 2023-01-11T21:41:26.4094765Z import random 2023-01-11T21:41:26.4095025Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4095320Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4095333Z 2023-01-11T21:41:26.4095519Z aten = torch.ops.aten 2023-01-11T21:41:26.4095831Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4096038Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4096050Z 2023-01-11T21:41:26.4096080Z 2023-01-11T21:41:26.4096363Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4096720Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4096928Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.4097111Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4097283Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4097444Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4097614Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4097808Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4098034Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4098173Z { 2023-01-11T21:41:26.4098408Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4098672Z { 2023-01-11T21:41:26.4098859Z #pragma omp for 2023-01-11T21:41:26.4099056Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4099180Z { 2023-01-11T21:41:26.4099330Z { 2023-01-11T21:41:26.4099472Z { 2023-01-11T21:41:26.4099650Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4099817Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.4100008Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4100205Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.4100382Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.4100541Z auto tmp5 = tmp2 / tmp4; 2023-01-11T21:41:26.4101146Z auto tmp6 = ((tmp1 < 0) != (tmp3 < 0) ? (tmp1 % tmp3 != 0 ? tmp1 / tmp3 - 1 : tmp1 / tmp3) : tmp1 / tmp3); 2023-01-11T21:41:26.4101365Z auto tmp7 = tmp1 / tmp3; 2023-01-11T21:41:26.4101626Z auto tmp8 = static_cast(tmp0); 2023-01-11T21:41:26.4101840Z auto tmp9 = tmp8 / tmp4; 2023-01-11T21:41:26.4102039Z out_ptr0[i0] = tmp5; 2023-01-11T21:41:26.4102210Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.4102408Z out_ptr2[i0] = tmp7; 2023-01-11T21:41:26.4102593Z out_ptr3[i0] = tmp9; 2023-01-11T21:41:26.4102775Z out_ptr4[i0] = tmp6; 2023-01-11T21:41:26.4102907Z } 2023-01-11T21:41:26.4103022Z } 2023-01-11T21:41:26.4103232Z } 2023-01-11T21:41:26.4103331Z } 2023-01-11T21:41:26.4103444Z } 2023-01-11T21:41:26.4103600Z ''') 2023-01-11T21:41:26.4103611Z 2023-01-11T21:41:26.4103619Z 2023-01-11T21:41:26.4103781Z async_compile.wait(globals()) 2023-01-11T21:41:26.4103917Z del async_compile 2023-01-11T21:41:26.4103927Z 2023-01-11T21:41:26.4104055Z def call(args): 2023-01-11T21:41:26.4104195Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4104336Z args.clear() 2023-01-11T21:41:26.4104806Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4105250Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4105643Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4105994Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4106343Z buf4 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4106813Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4106976Z del arg0_1 2023-01-11T21:41:26.4107123Z del arg1_1 2023-01-11T21:41:26.4107344Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4107354Z 2023-01-11T21:41:26.4107365Z 2023-01-11T21:41:26.4107542Z if __name__ == "__main__": 2023-01-11T21:41:26.4107809Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4108097Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4108557Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.4108954Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4109165Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4109175Z 2023-01-11T21:41:26.4109278Z ok (1.586s) 2023-01-11T21:41:26.4110102Z test_div7_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4110540Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4111169Z [2023-01-11 21:33:15,516] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 180 2023-01-11T21:41:26.4111792Z [2023-01-11 21:33:17,052] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 180 2023-01-11T21:41:26.4111805Z 2023-01-11T21:41:26.4112007Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4112143Z import torch 2023-01-11T21:41:26.4112270Z import random 2023-01-11T21:41:26.4112477Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4112679Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4112707Z 2023-01-11T21:41:26.4112829Z aten = torch.ops.aten 2023-01-11T21:41:26.4113130Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4113322Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4113337Z 2023-01-11T21:41:26.4113344Z 2023-01-11T21:41:26.4113676Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4114146Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4114430Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4114653Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4114889Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4115089Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4115273Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4115448Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4115618Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4115729Z { 2023-01-11T21:41:26.4115910Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4116025Z { 2023-01-11T21:41:26.4116148Z #pragma omp for 2023-01-11T21:41:26.4116313Z for(long i0=0; i0<10000; i0+=1) 2023-01-11T21:41:26.4116469Z { 2023-01-11T21:41:26.4116624Z { 2023-01-11T21:41:26.4116787Z { 2023-01-11T21:41:26.4117005Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4117183Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.4117429Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4117670Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.4117881Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:41:26.4118399Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:41:26.4118558Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:41:26.4118713Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.4118863Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.4119003Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.4119152Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.4119305Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.4119440Z } 2023-01-11T21:41:26.4119591Z } 2023-01-11T21:41:26.4119751Z } 2023-01-11T21:41:26.4119875Z } 2023-01-11T21:41:26.4120002Z } 2023-01-11T21:41:26.4120200Z ''') 2023-01-11T21:41:26.4120212Z 2023-01-11T21:41:26.4120221Z 2023-01-11T21:41:26.4120434Z async_compile.wait(globals()) 2023-01-11T21:41:26.4120603Z del async_compile 2023-01-11T21:41:26.4120617Z 2023-01-11T21:41:26.4120784Z def call(args): 2023-01-11T21:41:26.4120967Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4121140Z args.clear() 2023-01-11T21:41:26.4121531Z buf0 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4121907Z buf1 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4122288Z buf2 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4122685Z buf3 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4123244Z buf4 = empty_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4123843Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4124007Z del arg0_1 2023-01-11T21:41:26.4124169Z del arg1_1 2023-01-11T21:41:26.4124361Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4124374Z 2023-01-11T21:41:26.4124381Z 2023-01-11T21:41:26.4124537Z if __name__ == "__main__": 2023-01-11T21:41:26.4124746Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4124963Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4125411Z arg0_1 = rand_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4125817Z arg1_1 = rand_strided((100, 100), (100, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4126093Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4126108Z 2023-01-11T21:41:26.4126270Z ok (1.589s) 2023-01-11T21:41:26.4127001Z test_div8_cpu (__main__.CpuTests) ... [2023-01-11 21:33:17,101] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 181 2023-01-11T21:41:26.4127617Z [2023-01-11 21:33:18,619] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 181 2023-01-11T21:41:26.4127632Z 2023-01-11T21:41:26.4127792Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4127919Z import torch 2023-01-11T21:41:26.4128047Z import random 2023-01-11T21:41:26.4128251Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4128467Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4128482Z 2023-01-11T21:41:26.4128623Z aten = torch.ops.aten 2023-01-11T21:41:26.4128839Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4129266Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4129284Z 2023-01-11T21:41:26.4129292Z 2023-01-11T21:41:26.4129624Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4130081Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4130340Z extern "C" void kernel(long* __restrict__ out_ptr0, 2023-01-11T21:41:26.4130565Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4130779Z long* __restrict__ out_ptr2) 2023-01-11T21:41:26.4130922Z { 2023-01-11T21:41:26.4131026Z { 2023-01-11T21:41:26.4131139Z { 2023-01-11T21:41:26.4131321Z auto tmp0 = static_cast(1024); 2023-01-11T21:41:26.4131497Z auto tmp1 = static_cast(100); 2023-01-11T21:41:26.4131657Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4131804Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.4131918Z } 2023-01-11T21:41:26.4132018Z } 2023-01-11T21:41:26.4132127Z { 2023-01-11T21:41:26.4132238Z { 2023-01-11T21:41:26.4132465Z auto tmp0 = static_cast(1024); 2023-01-11T21:41:26.4132700Z auto tmp1 = static_cast(100); 2023-01-11T21:41:26.4133258Z auto tmp2 = ((tmp0 < 0) != (tmp1 < 0) ? (tmp0 % tmp1 != 0 ? tmp0 / tmp1 - 1 : tmp0 / tmp1) : tmp0 / tmp1); 2023-01-11T21:41:26.4133448Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.4133577Z } 2023-01-11T21:41:26.4133726Z } 2023-01-11T21:41:26.4133863Z { 2023-01-11T21:41:26.4134014Z { 2023-01-11T21:41:26.4134232Z auto tmp0 = static_cast(1024); 2023-01-11T21:41:26.4134416Z auto tmp1 = static_cast(100); 2023-01-11T21:41:26.4134547Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4134686Z out_ptr2[0] = tmp2; 2023-01-11T21:41:26.4134805Z } 2023-01-11T21:41:26.4134918Z } 2023-01-11T21:41:26.4135027Z } 2023-01-11T21:41:26.4135177Z ''') 2023-01-11T21:41:26.4135298Z 2023-01-11T21:41:26.4135304Z 2023-01-11T21:41:26.4135471Z async_compile.wait(globals()) 2023-01-11T21:41:26.4135598Z del async_compile 2023-01-11T21:41:26.4135612Z 2023-01-11T21:41:26.4135776Z def call(args): 2023-01-11T21:41:26.4136211Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4136649Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4137072Z buf2 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4137431Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4137590Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4137599Z 2023-01-11T21:41:26.4137605Z 2023-01-11T21:41:26.4137741Z if __name__ == "__main__": 2023-01-11T21:41:26.4138027Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4138256Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4138437Z print_performance(lambda: call([])) 2023-01-11T21:41:26.4138452Z 2023-01-11T21:41:26.4138569Z ok (1.567s) 2023-01-11T21:41:26.4139625Z test_div_prim_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4139927Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4140525Z [2023-01-11 21:33:18,675] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 182 2023-01-11T21:41:26.4141017Z [2023-01-11 21:33:20,187] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 182 2023-01-11T21:41:26.4141880Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4142164Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4142775Z [2023-01-11 21:33:20,227] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 183 2023-01-11T21:41:26.4143458Z [2023-01-11 21:33:21,914] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 183 2023-01-11T21:41:26.4143491Z 2023-01-11T21:41:26.4143651Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4143778Z import torch 2023-01-11T21:41:26.4143904Z import random 2023-01-11T21:41:26.4144118Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4144333Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4144348Z 2023-01-11T21:41:26.4144487Z aten = torch.ops.aten 2023-01-11T21:41:26.4144734Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4144925Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4144939Z 2023-01-11T21:41:26.4144947Z 2023-01-11T21:41:26.4145262Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4145739Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4146016Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4146266Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4146496Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4146619Z { 2023-01-11T21:41:26.4146786Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4146899Z { 2023-01-11T21:41:26.4147040Z #pragma omp for 2023-01-11T21:41:26.4147191Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.4147306Z { 2023-01-11T21:41:26.4147644Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4147905Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4148103Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4148296Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4148450Z } 2023-01-11T21:41:26.4148685Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4148887Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.4149032Z { 2023-01-11T21:41:26.4149235Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4149403Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4149584Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4149758Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4149880Z } 2023-01-11T21:41:26.4149992Z } 2023-01-11T21:41:26.4150159Z } 2023-01-11T21:41:26.4150324Z ''') 2023-01-11T21:41:26.4150334Z 2023-01-11T21:41:26.4150341Z 2023-01-11T21:41:26.4150491Z async_compile.wait(globals()) 2023-01-11T21:41:26.4150616Z del async_compile 2023-01-11T21:41:26.4150625Z 2023-01-11T21:41:26.4150744Z def call(args): 2023-01-11T21:41:26.4150877Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4151008Z args.clear() 2023-01-11T21:41:26.4151460Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4151834Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4151997Z del arg0_1 2023-01-11T21:41:26.4152139Z del arg1_1 2023-01-11T21:41:26.4152294Z return (buf0, ) 2023-01-11T21:41:26.4152307Z 2023-01-11T21:41:26.4152316Z 2023-01-11T21:41:26.4152497Z if __name__ == "__main__": 2023-01-11T21:41:26.4152773Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4153026Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4153397Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4153763Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4153972Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4153982Z 2023-01-11T21:41:26.4153989Z 2023-01-11T21:41:26.4154143Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4154305Z import torch 2023-01-11T21:41:26.4154472Z import random 2023-01-11T21:41:26.4154749Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4155038Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4155047Z 2023-01-11T21:41:26.4155221Z aten = torch.ops.aten 2023-01-11T21:41:26.4155539Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4155737Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4155773Z 2023-01-11T21:41:26.4155782Z 2023-01-11T21:41:26.4156077Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4156440Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4156660Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4156840Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4157015Z long* __restrict__ out_ptr0) 2023-01-11T21:41:26.4157125Z { 2023-01-11T21:41:26.4157304Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4157426Z { 2023-01-11T21:41:26.4157616Z #pragma omp for 2023-01-11T21:41:26.4157811Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:41:26.4157950Z { 2023-01-11T21:41:26.4158103Z { 2023-01-11T21:41:26.4158259Z { 2023-01-11T21:41:26.4158481Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4158680Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4158893Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4159107Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4159236Z } 2023-01-11T21:41:26.4159424Z } 2023-01-11T21:41:26.4159537Z } 2023-01-11T21:41:26.4159629Z } 2023-01-11T21:41:26.4159736Z } 2023-01-11T21:41:26.4159891Z ''') 2023-01-11T21:41:26.4159901Z 2023-01-11T21:41:26.4159908Z 2023-01-11T21:41:26.4160069Z async_compile.wait(globals()) 2023-01-11T21:41:26.4160198Z del async_compile 2023-01-11T21:41:26.4160207Z 2023-01-11T21:41:26.4160357Z def call(args): 2023-01-11T21:41:26.4160535Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4160703Z args.clear() 2023-01-11T21:41:26.4161144Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4161519Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4161681Z del arg0_1 2023-01-11T21:41:26.4161844Z del arg1_1 2023-01-11T21:41:26.4161999Z return (buf0, ) 2023-01-11T21:41:26.4162083Z 2023-01-11T21:41:26.4162098Z 2023-01-11T21:41:26.4162255Z if __name__ == "__main__": 2023-01-11T21:41:26.4162461Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4162675Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4163045Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4163453Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4163723Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4163737Z 2023-01-11T21:41:26.4163896Z ok (3.294s) 2023-01-11T21:41:26.4165016Z test_div_zero_dim_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4165253Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4165747Z [2023-01-11 21:33:21,969] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 184 2023-01-11T21:41:26.4166266Z [2023-01-11 21:33:23,673] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 184 2023-01-11T21:41:26.4167235Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4167530Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4168101Z [2023-01-11 21:33:23,727] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 185 2023-01-11T21:41:26.4168593Z [2023-01-11 21:33:25,364] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 185 2023-01-11T21:41:26.4169602Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4169883Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4170492Z [2023-01-11 21:33:25,411] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 186 2023-01-11T21:41:26.4170505Z 2023-01-11T21:41:26.4170729Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4170896Z import torch 2023-01-11T21:41:26.4171060Z import random 2023-01-11T21:41:26.4171293Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4171495Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4171505Z 2023-01-11T21:41:26.4171759Z aten = torch.ops.aten 2023-01-11T21:41:26.4171992Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4172161Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4172173Z 2023-01-11T21:41:26.4172182Z 2023-01-11T21:41:26.4172500Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4172954Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4173235Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4173487Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4173684Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4173902Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4174112Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.4174361Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4174535Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.4174652Z { 2023-01-11T21:41:26.4174833Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4174927Z { 2023-01-11T21:41:26.4175066Z #pragma omp for 2023-01-11T21:41:26.4175247Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.4175407Z { 2023-01-11T21:41:26.4175728Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4176013Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.4176209Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4176392Z auto tmp3 = tmp2.floor(); 2023-01-11T21:41:26.4176596Z auto tmp4 = tmp2.trunc(); 2023-01-11T21:41:26.4176810Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4176999Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4177169Z tmp4.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4177330Z tmp2.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.4177489Z tmp3.store(out_ptr4 + 8*i0); 2023-01-11T21:41:26.4177589Z } 2023-01-11T21:41:26.4177759Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4177906Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.4178021Z { 2023-01-11T21:41:26.4178217Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4178415Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.4178605Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4178794Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.4179012Z auto tmp4 = std::trunc(tmp2); 2023-01-11T21:41:26.4179203Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4179397Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4179581Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.4179770Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.4179940Z out_ptr4[i0] = tmp3; 2023-01-11T21:41:26.4180038Z } 2023-01-11T21:41:26.4180148Z } 2023-01-11T21:41:26.4180253Z } 2023-01-11T21:41:26.4180423Z ''') 2023-01-11T21:41:26.4180433Z 2023-01-11T21:41:26.4180441Z 2023-01-11T21:41:26.4180602Z async_compile.wait(globals()) 2023-01-11T21:41:26.4180733Z del async_compile 2023-01-11T21:41:26.4180743Z 2023-01-11T21:41:26.4180872Z def call(args): 2023-01-11T21:41:26.4181000Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4181162Z args.clear() 2023-01-11T21:41:26.4181619Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4182076Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4182532Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4182946Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4183379Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4183858Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4184083Z del arg0_1 2023-01-11T21:41:26.4184214Z del arg1_1 2023-01-11T21:41:26.4184444Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4184458Z 2023-01-11T21:41:26.4184467Z 2023-01-11T21:41:26.4184650Z if __name__ == "__main__": 2023-01-11T21:41:26.4184916Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4185208Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4185669Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4186060Z arg1_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4186248Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4186277Z 2023-01-11T21:41:26.4186284Z 2023-01-11T21:41:26.4186495Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4186629Z import torch 2023-01-11T21:41:26.4186756Z import random 2023-01-11T21:41:26.4186975Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4187246Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4187262Z 2023-01-11T21:41:26.4187447Z aten = torch.ops.aten 2023-01-11T21:41:26.4187760Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4187954Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4187970Z 2023-01-11T21:41:26.4188000Z 2023-01-11T21:41:26.4188284Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4188750Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4189000Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4189180Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4189360Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4189537Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4189708Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.4189866Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4190076Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.4190226Z { 2023-01-11T21:41:26.4190465Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4190603Z { 2023-01-11T21:41:26.4190789Z #pragma omp for 2023-01-11T21:41:26.4190978Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.4191105Z { 2023-01-11T21:41:26.4191403Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:41:26.4191708Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4191882Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4192036Z auto tmp3 = tmp2.floor(); 2023-01-11T21:41:26.4192195Z auto tmp4 = tmp2.trunc(); 2023-01-11T21:41:26.4192357Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4192505Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4192664Z tmp4.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4192829Z tmp2.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.4193028Z tmp3.store(out_ptr4 + 8*i0); 2023-01-11T21:41:26.4193180Z } 2023-01-11T21:41:26.4193392Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4193582Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.4193711Z { 2023-01-11T21:41:26.4193905Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.4194101Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4194295Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4194516Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.4194717Z auto tmp4 = std::trunc(tmp2); 2023-01-11T21:41:26.4194874Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4195005Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4195147Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.4195285Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.4195496Z out_ptr4[i0] = tmp3; 2023-01-11T21:41:26.4195610Z } 2023-01-11T21:41:26.4195719Z } 2023-01-11T21:41:26.4195830Z } 2023-01-11T21:41:26.4196005Z ''') 2023-01-11T21:41:26.4196021Z 2023-01-11T21:41:26.4196031Z 2023-01-11T21:41:26.4196229Z async_compile.wait(globals()) 2023-01-11T21:41:26.4196409Z del async_compile 2023-01-11T21:41:26.4196422Z 2023-01-11T21:41:26.4196595Z def call(args): 2023-01-11T21:41:26.4196771Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4196941Z args.clear() 2023-01-11T21:41:26.4197414Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4197824Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4198164Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4198576Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4198923Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4199525Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4199700Z del arg0_1 2023-01-11T21:41:26.4199862Z del arg1_1 2023-01-11T21:41:26.4200083Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4200094Z 2023-01-11T21:41:26.4200101Z 2023-01-11T21:41:26.4200280Z if __name__ == "__main__": 2023-01-11T21:41:26.4200525Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4200801Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4201155Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4201517Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4201724Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4201738Z 2023-01-11T21:41:26.4202322Z [2023-01-11 21:33:27,090] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 186 2023-01-11T21:41:26.4203312Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4203607Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4204143Z [2023-01-11 21:33:27,137] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 187 2023-01-11T21:41:26.4204632Z [2023-01-11 21:33:28,781] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 187 2023-01-11T21:41:26.4204661Z 2023-01-11T21:41:26.4204814Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4204949Z import torch 2023-01-11T21:41:26.4205121Z import random 2023-01-11T21:41:26.4205387Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4205658Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4205671Z 2023-01-11T21:41:26.4205857Z aten = torch.ops.aten 2023-01-11T21:41:26.4206173Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4206373Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4206388Z 2023-01-11T21:41:26.4206397Z 2023-01-11T21:41:26.4206726Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4207106Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4207319Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4207509Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4207687Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4207859Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4208140Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4208337Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4208565Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4208715Z { 2023-01-11T21:41:26.4208950Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4209230Z { 2023-01-11T21:41:26.4209418Z #pragma omp for 2023-01-11T21:41:26.4209621Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.4209737Z { 2023-01-11T21:41:26.4209893Z { 2023-01-11T21:41:26.4210023Z { 2023-01-11T21:41:26.4210200Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4210366Z auto tmp2 = in_ptr1[0]; 2023-01-11T21:41:26.4210644Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4210820Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.4210985Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:41:26.4211545Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:41:26.4211772Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:41:26.4211978Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.4212167Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.4212340Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.4212538Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.4212708Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.4212861Z } 2023-01-11T21:41:26.4213008Z } 2023-01-11T21:41:26.4213138Z } 2023-01-11T21:41:26.4213252Z } 2023-01-11T21:41:26.4213359Z } 2023-01-11T21:41:26.4213495Z ''') 2023-01-11T21:41:26.4213522Z 2023-01-11T21:41:26.4213535Z 2023-01-11T21:41:26.4213682Z async_compile.wait(globals()) 2023-01-11T21:41:26.4213814Z del async_compile 2023-01-11T21:41:26.4213828Z 2023-01-11T21:41:26.4213958Z def call(args): 2023-01-11T21:41:26.4214096Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4214240Z args.clear() 2023-01-11T21:41:26.4214706Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4215141Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4215568Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4216016Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4216369Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4216837Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4216966Z del arg0_1 2023-01-11T21:41:26.4217089Z del arg1_1 2023-01-11T21:41:26.4217291Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4217306Z 2023-01-11T21:41:26.4217314Z 2023-01-11T21:41:26.4217499Z if __name__ == "__main__": 2023-01-11T21:41:26.4217732Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4218026Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4218480Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4218922Z arg1_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4219161Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4219171Z 2023-01-11T21:41:26.4219178Z 2023-01-11T21:41:26.4219348Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4219477Z import torch 2023-01-11T21:41:26.4219605Z import random 2023-01-11T21:41:26.4219799Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4220015Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4220025Z 2023-01-11T21:41:26.4220288Z aten = torch.ops.aten 2023-01-11T21:41:26.4220590Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4220806Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4220820Z 2023-01-11T21:41:26.4220831Z 2023-01-11T21:41:26.4221153Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4221624Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4221892Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4222100Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4222287Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4222460Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.4222632Z long* __restrict__ out_ptr2, 2023-01-11T21:41:26.4222895Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4223073Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.4223279Z { 2023-01-11T21:41:26.4223481Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4223629Z { 2023-01-11T21:41:26.4223823Z #pragma omp for 2023-01-11T21:41:26.4224016Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.4224173Z { 2023-01-11T21:41:26.4224327Z { 2023-01-11T21:41:26.4224480Z { 2023-01-11T21:41:26.4224655Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.4224870Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.4225122Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4225331Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.4225497Z auto tmp4 = tmp1 / tmp3; 2023-01-11T21:41:26.4225993Z auto tmp5 = ((tmp0 < 0) != (tmp2 < 0) ? (tmp0 % tmp2 != 0 ? tmp0 / tmp2 - 1 : tmp0 / tmp2) : tmp0 / tmp2); 2023-01-11T21:41:26.4226158Z auto tmp6 = tmp0 / tmp2; 2023-01-11T21:41:26.4226299Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.4226487Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.4226695Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.4226895Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.4227097Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.4227241Z } 2023-01-11T21:41:26.4227395Z } 2023-01-11T21:41:26.4227522Z } 2023-01-11T21:41:26.4227670Z } 2023-01-11T21:41:26.4227806Z } 2023-01-11T21:41:26.4228002Z ''') 2023-01-11T21:41:26.4228015Z 2023-01-11T21:41:26.4228026Z 2023-01-11T21:41:26.4228234Z async_compile.wait(globals()) 2023-01-11T21:41:26.4228380Z del async_compile 2023-01-11T21:41:26.4228389Z 2023-01-11T21:41:26.4228516Z def call(args): 2023-01-11T21:41:26.4228631Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4228765Z args.clear() 2023-01-11T21:41:26.4229117Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4229494Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4229929Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4230381Z buf3 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4230816Z buf4 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4231380Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4231505Z del arg0_1 2023-01-11T21:41:26.4231610Z del arg1_1 2023-01-11T21:41:26.4231782Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4231791Z 2023-01-11T21:41:26.4231798Z 2023-01-11T21:41:26.4231939Z if __name__ == "__main__": 2023-01-11T21:41:26.4232144Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4232458Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4232879Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4233325Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4233569Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4233610Z 2023-01-11T21:41:26.4233744Z ok (6.867s) 2023-01-11T21:41:26.4234474Z test_dropout_cpu (__main__.CpuTests) ... [2023-01-11 21:33:28,848] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 188 2023-01-11T21:41:26.4234957Z [2023-01-11 21:33:28,848] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.4235461Z [2023-01-11 21:33:30,464] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 188 2023-01-11T21:41:26.4236143Z [2023-01-11 21:33:30,530] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 189 2023-01-11T21:41:26.4236751Z [2023-01-11 21:33:30,530] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.4237378Z [2023-01-11 21:33:30,539] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 189 2023-01-11T21:41:26.4237389Z 2023-01-11T21:41:26.4237568Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4237674Z import torch 2023-01-11T21:41:26.4237804Z import random 2023-01-11T21:41:26.4238006Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4238226Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4238236Z 2023-01-11T21:41:26.4238375Z aten = torch.ops.aten 2023-01-11T21:41:26.4238631Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4238849Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4239214Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.4239225Z 2023-01-11T21:41:26.4239238Z 2023-01-11T21:41:26.4239550Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4240033Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4240301Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.4240533Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4240713Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4240823Z { 2023-01-11T21:41:26.4241002Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4241112Z { 2023-01-11T21:41:26.4241234Z #pragma omp for 2023-01-11T21:41:26.4241383Z for(long i0=0; i0<1000; i0+=1) 2023-01-11T21:41:26.4241499Z { 2023-01-11T21:41:26.4241613Z { 2023-01-11T21:41:26.4241761Z { 2023-01-11T21:41:26.4241978Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.4242165Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.4242403Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.4242744Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.4242995Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.4243209Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.4243453Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.4243633Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.4243825Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.4243972Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.4244123Z out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.4244240Z } 2023-01-11T21:41:26.4244354Z } 2023-01-11T21:41:26.4244468Z } 2023-01-11T21:41:26.4244579Z } 2023-01-11T21:41:26.4244677Z } 2023-01-11T21:41:26.4244863Z ''') 2023-01-11T21:41:26.4244875Z 2023-01-11T21:41:26.4244886Z 2023-01-11T21:41:26.4245194Z async_compile.wait(globals()) 2023-01-11T21:41:26.4245371Z del async_compile 2023-01-11T21:41:26.4245381Z 2023-01-11T21:41:26.4245547Z def call(args): 2023-01-11T21:41:26.4245712Z arg0_1, = args 2023-01-11T21:41:26.4245882Z args.clear() 2023-01-11T21:41:26.4246179Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.4246632Z buf0 = empty_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4246938Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4247060Z del arg0_1 2023-01-11T21:41:26.4247189Z return (buf0, ) 2023-01-11T21:41:26.4247199Z 2023-01-11T21:41:26.4247206Z 2023-01-11T21:41:26.4247338Z if __name__ == "__main__": 2023-01-11T21:41:26.4247542Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4247890Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4248372Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4248815Z arg0_1 = rand_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4249209Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4249224Z 2023-01-11T21:41:26.4249232Z 2023-01-11T21:41:26.4249451Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4249601Z import torch 2023-01-11T21:41:26.4249743Z import random 2023-01-11T21:41:26.4249952Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4250169Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4250178Z 2023-01-11T21:41:26.4250308Z aten = torch.ops.aten 2023-01-11T21:41:26.4250533Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4250701Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4251069Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.4251081Z 2023-01-11T21:41:26.4251089Z 2023-01-11T21:41:26.4251416Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4251895Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4252163Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.4252407Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4252617Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4252719Z { 2023-01-11T21:41:26.4252897Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4253008Z { 2023-01-11T21:41:26.4253148Z #pragma omp for 2023-01-11T21:41:26.4253298Z for(long i0=0; i0<1000; i0+=1) 2023-01-11T21:41:26.4253413Z { 2023-01-11T21:41:26.4253513Z { 2023-01-11T21:41:26.4253648Z { 2023-01-11T21:41:26.4253859Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.4254058Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.4254291Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.4254624Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.4254877Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.4255067Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.4255316Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.4255499Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.4255687Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.4255851Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.4256010Z out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.4256127Z } 2023-01-11T21:41:26.4256231Z } 2023-01-11T21:41:26.4256344Z } 2023-01-11T21:41:26.4256457Z } 2023-01-11T21:41:26.4256581Z } 2023-01-11T21:41:26.4256790Z ''') 2023-01-11T21:41:26.4256804Z 2023-01-11T21:41:26.4256812Z 2023-01-11T21:41:26.4257025Z async_compile.wait(globals()) 2023-01-11T21:41:26.4257337Z del async_compile 2023-01-11T21:41:26.4257350Z 2023-01-11T21:41:26.4257513Z def call(args): 2023-01-11T21:41:26.4257662Z arg0_1, = args 2023-01-11T21:41:26.4257820Z args.clear() 2023-01-11T21:41:26.4258127Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.4258549Z buf0 = empty_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4258864Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4258990Z del arg0_1 2023-01-11T21:41:26.4259118Z return (buf0, ) 2023-01-11T21:41:26.4259127Z 2023-01-11T21:41:26.4259133Z 2023-01-11T21:41:26.4259247Z if __name__ == "__main__": 2023-01-11T21:41:26.4259483Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4259864Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4260339Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4260772Z arg0_1 = rand_strided((1000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4260970Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4260981Z 2023-01-11T21:41:26.4261101Z ok (1.757s) 2023-01-11T21:41:26.4261793Z test_dropout_deterministic_cpu (__main__.CpuTests) ... [2023-01-11 21:33:30,605] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 190 2023-01-11T21:41:26.4262383Z [2023-01-11 21:33:30,606] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.4263000Z [2023-01-11 21:33:32,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 190 2023-01-11T21:41:26.4263681Z [2023-01-11 21:33:32,210] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 191 2023-01-11T21:41:26.4264180Z [2023-01-11 21:33:32,210] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.4264680Z [2023-01-11 21:33:32,220] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 191 2023-01-11T21:41:26.4264690Z 2023-01-11T21:41:26.4264857Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4264983Z import torch 2023-01-11T21:41:26.4265113Z import random 2023-01-11T21:41:26.4265321Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4265563Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4265577Z 2023-01-11T21:41:26.4265760Z aten = torch.ops.aten 2023-01-11T21:41:26.4266070Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4266295Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4266656Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.4266677Z 2023-01-11T21:41:26.4266688Z 2023-01-11T21:41:26.4267021Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4267440Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4267655Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.4267824Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4268000Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4268107Z { 2023-01-11T21:41:26.4268286Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4268397Z { 2023-01-11T21:41:26.4268537Z #pragma omp for 2023-01-11T21:41:26.4268685Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.4268784Z { 2023-01-11T21:41:26.4268899Z { 2023-01-11T21:41:26.4269016Z { 2023-01-11T21:41:26.4269172Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.4269366Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.4269607Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.4269937Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.4270245Z auto tmp3 = static_cast(0.55); 2023-01-11T21:41:26.4270468Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.4270713Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.4270925Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.4271165Z auto tmp8 = static_cast(2.2222222222222223); 2023-01-11T21:41:26.4271333Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.4271479Z out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.4271582Z } 2023-01-11T21:41:26.4271697Z } 2023-01-11T21:41:26.4271808Z } 2023-01-11T21:41:26.4271914Z } 2023-01-11T21:41:26.4272023Z } 2023-01-11T21:41:26.4272182Z ''') 2023-01-11T21:41:26.4272191Z 2023-01-11T21:41:26.4272256Z 2023-01-11T21:41:26.4272422Z async_compile.wait(globals()) 2023-01-11T21:41:26.4272544Z del async_compile 2023-01-11T21:41:26.4272575Z 2023-01-11T21:41:26.4272685Z def call(args): 2023-01-11T21:41:26.4272806Z arg0_1, = args 2023-01-11T21:41:26.4272931Z args.clear() 2023-01-11T21:41:26.4273175Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.4273653Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4274043Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4274207Z del arg0_1 2023-01-11T21:41:26.4274356Z return (buf0, ) 2023-01-11T21:41:26.4274369Z 2023-01-11T21:41:26.4274378Z 2023-01-11T21:41:26.4274558Z if __name__ == "__main__": 2023-01-11T21:41:26.4274829Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4275095Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4275466Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4275836Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4276034Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4276043Z 2023-01-11T21:41:26.4276050Z 2023-01-11T21:41:26.4276217Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4276326Z import torch 2023-01-11T21:41:26.4276456Z import random 2023-01-11T21:41:26.4276662Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4276881Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4276891Z 2023-01-11T21:41:26.4277044Z aten = torch.ops.aten 2023-01-11T21:41:26.4277346Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4277564Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4277912Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.4277949Z 2023-01-11T21:41:26.4277958Z 2023-01-11T21:41:26.4278253Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4278727Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4278952Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.4279142Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4279323Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4279435Z { 2023-01-11T21:41:26.4279612Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4279708Z { 2023-01-11T21:41:26.4279845Z #pragma omp for 2023-01-11T21:41:26.4279997Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.4280131Z { 2023-01-11T21:41:26.4280284Z { 2023-01-11T21:41:26.4280444Z { 2023-01-11T21:41:26.4280654Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.4280848Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.4281091Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.4281405Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.4281729Z auto tmp3 = static_cast(0.55); 2023-01-11T21:41:26.4281929Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.4282131Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.4282296Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.4282481Z auto tmp8 = static_cast(2.2222222222222223); 2023-01-11T21:41:26.4282644Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.4282796Z out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.4282915Z } 2023-01-11T21:41:26.4283031Z } 2023-01-11T21:41:26.4283154Z } 2023-01-11T21:41:26.4283304Z } 2023-01-11T21:41:26.4283428Z } 2023-01-11T21:41:26.4283636Z ''') 2023-01-11T21:41:26.4283652Z 2023-01-11T21:41:26.4283733Z 2023-01-11T21:41:26.4283942Z async_compile.wait(globals()) 2023-01-11T21:41:26.4284098Z del async_compile 2023-01-11T21:41:26.4284116Z 2023-01-11T21:41:26.4284282Z def call(args): 2023-01-11T21:41:26.4284443Z arg0_1, = args 2023-01-11T21:41:26.4284612Z args.clear() 2023-01-11T21:41:26.4284897Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.4285281Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4285594Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4285715Z del arg0_1 2023-01-11T21:41:26.4285841Z return (buf0, ) 2023-01-11T21:41:26.4285851Z 2023-01-11T21:41:26.4285857Z 2023-01-11T21:41:26.4285995Z if __name__ == "__main__": 2023-01-11T21:41:26.4286200Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4286490Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4286924Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4287390Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4287649Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4287660Z 2023-01-11T21:41:26.4287814Z ok (1.681s) 2023-01-11T21:41:26.4288525Z test_dtype_mismatch_issue_cpu (__main__.CpuTests) ... [2023-01-11 21:33:32,243] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 192 2023-01-11T21:41:26.4289213Z [2023-01-11 21:33:33,824] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 192 2023-01-11T21:41:26.4289224Z 2023-01-11T21:41:26.4289395Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4289521Z import torch 2023-01-11T21:41:26.4289681Z import random 2023-01-11T21:41:26.4289921Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4290204Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4290228Z 2023-01-11T21:41:26.4290417Z aten = torch.ops.aten 2023-01-11T21:41:26.4290721Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4290946Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4290960Z 2023-01-11T21:41:26.4290970Z 2023-01-11T21:41:26.4291303Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4291694Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4291900Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.4292072Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4292248Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4292421Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4292537Z { 2023-01-11T21:41:26.4292735Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.4292972Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4293131Z { 2023-01-11T21:41:26.4293297Z #pragma omp for 2023-01-11T21:41:26.4293494Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:41:26.4293767Z { 2023-01-11T21:41:26.4293918Z { 2023-01-11T21:41:26.4294056Z { 2023-01-11T21:41:26.4294579Z float tmp5 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.4294749Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:41:26.4294855Z { 2023-01-11T21:41:26.4294979Z { 2023-01-11T21:41:26.4295174Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.4295367Z auto tmp1 = static_cast(63); 2023-01-11T21:41:26.4295538Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.4295720Z float tmp3 = 0.0; 2023-01-11T21:41:26.4295902Z if(tmp2) 2023-01-11T21:41:26.4296051Z { 2023-01-11T21:41:26.4296456Z auto tmp4 = in_ptr0[i1 + (63*i0)]; 2023-01-11T21:41:26.4296650Z tmp3 = tmp4; 2023-01-11T21:41:26.4296822Z } 2023-01-11T21:41:26.4297068Z tmp5 = std::max(tmp5, tmp3); 2023-01-11T21:41:26.4297225Z } 2023-01-11T21:41:26.4297386Z } 2023-01-11T21:41:26.4297542Z out_ptr0[i0] = tmp5; 2023-01-11T21:41:26.4297657Z } 2023-01-11T21:41:26.4297768Z } 2023-01-11T21:41:26.4297885Z } 2023-01-11T21:41:26.4298026Z #pragma omp for 2023-01-11T21:41:26.4298175Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:41:26.4298271Z { 2023-01-11T21:41:26.4298384Z { 2023-01-11T21:41:26.4298497Z { 2023-01-11T21:41:26.4298639Z float tmp8 = 0; 2023-01-11T21:41:26.4298802Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:41:26.4298960Z { 2023-01-11T21:41:26.4299131Z { 2023-01-11T21:41:26.4299334Z auto tmp5 = out_ptr0[i0]; 2023-01-11T21:41:26.4299583Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.4299830Z auto tmp1 = static_cast(63); 2023-01-11T21:41:26.4300054Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.4300254Z float tmp3 = 0.0; 2023-01-11T21:41:26.4300432Z if(tmp2) 2023-01-11T21:41:26.4300593Z { 2023-01-11T21:41:26.4300788Z auto tmp4 = in_ptr0[i1 + (63*i0)]; 2023-01-11T21:41:26.4300942Z tmp3 = tmp4; 2023-01-11T21:41:26.4301064Z } 2023-01-11T21:41:26.4301348Z auto tmp6 = tmp3 - tmp5; 2023-01-11T21:41:26.4301540Z auto tmp7 = std::exp(tmp6); 2023-01-11T21:41:26.4301719Z out_ptr1[i1 + (64*i0)] = tmp7; 2023-01-11T21:41:26.4301872Z tmp8 += tmp7; 2023-01-11T21:41:26.4302039Z } 2023-01-11T21:41:26.4302174Z } 2023-01-11T21:41:26.4302351Z out_ptr2[i0] = tmp8; 2023-01-11T21:41:26.4302505Z } 2023-01-11T21:41:26.4302659Z } 2023-01-11T21:41:26.4302809Z } 2023-01-11T21:41:26.4302989Z #pragma omp for 2023-01-11T21:41:26.4303241Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:41:26.4303400Z { 2023-01-11T21:41:26.4303597Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.4303746Z { 2023-01-11T21:41:26.4304031Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + (8*i1) + (64*i0)); 2023-01-11T21:41:26.4304262Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:41:26.4304419Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4304616Z tmp2.store(in_out_ptr0 + (8*i1) + (64*i0)); 2023-01-11T21:41:26.4304717Z } 2023-01-11T21:41:26.4304965Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.4305137Z for(long i1=64; i1<64; i1+=1) 2023-01-11T21:41:26.4305297Z { 2023-01-11T21:41:26.4305534Z auto tmp0 = out_ptr1[i1 + (64*i0)]; 2023-01-11T21:41:26.4305747Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:41:26.4305950Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.4306141Z in_out_ptr0[i1 + (64*i0)] = tmp2; 2023-01-11T21:41:26.4306294Z } 2023-01-11T21:41:26.4306437Z } 2023-01-11T21:41:26.4306566Z } 2023-01-11T21:41:26.4306711Z } 2023-01-11T21:41:26.4306909Z ''') 2023-01-11T21:41:26.4306923Z 2023-01-11T21:41:26.4306931Z 2023-01-11T21:41:26.4307102Z async_compile.wait(globals()) 2023-01-11T21:41:26.4307216Z del async_compile 2023-01-11T21:41:26.4307226Z 2023-01-11T21:41:26.4307437Z def call(args): 2023-01-11T21:41:26.4307562Z arg0_1, = args 2023-01-11T21:41:26.4307690Z args.clear() 2023-01-11T21:41:26.4308088Z buf0 = empty_strided((128, 32, 1), (32, 1, 4096), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4308534Z buf1 = empty_strided((128, 32, 64), (2048, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4309021Z buf2 = empty_strided((128, 32, 1), (32, 1, 4096), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4309196Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.4309609Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4309774Z del arg0_1 2023-01-11T21:41:26.4309939Z return (buf3, ) 2023-01-11T21:41:26.4309951Z 2023-01-11T21:41:26.4309961Z 2023-01-11T21:41:26.4310128Z if __name__ == "__main__": 2023-01-11T21:41:26.4310347Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4310576Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4310971Z arg0_1 = rand_strided((128, 32, 63), (2016, 63, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4311153Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4311179Z 2023-01-11T21:41:26.4311281Z ok (1.607s) 2023-01-11T21:41:26.4312284Z test_elu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4312580Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4313208Z [2023-01-11 21:33:33,870] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 193 2023-01-11T21:41:26.4313721Z [2023-01-11 21:33:35,415] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 193 2023-01-11T21:41:26.4313731Z 2023-01-11T21:41:26.4313905Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4314031Z import torch 2023-01-11T21:41:26.4314157Z import random 2023-01-11T21:41:26.4314351Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4314566Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4314578Z 2023-01-11T21:41:26.4314757Z aten = torch.ops.aten 2023-01-11T21:41:26.4315046Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4315266Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4315279Z 2023-01-11T21:41:26.4315288Z 2023-01-11T21:41:26.4315614Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4316088Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4316368Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4316563Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4316719Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4316899Z { 2023-01-11T21:41:26.4317078Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4317187Z { 2023-01-11T21:41:26.4317323Z #pragma omp for 2023-01-11T21:41:26.4317473Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.4317567Z { 2023-01-11T21:41:26.4317693Z { 2023-01-11T21:41:26.4317827Z { 2023-01-11T21:41:26.4318048Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4318301Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.4318514Z auto tmp2 = tmp0 > tmp1; 2023-01-11T21:41:26.4318784Z auto tmp3 = static_cast(1.0507009873554805); 2023-01-11T21:41:26.4318972Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4319200Z auto tmp5 = static_cast(1.0); 2023-01-11T21:41:26.4319490Z auto tmp6 = tmp0 * tmp5; 2023-01-11T21:41:26.4319697Z auto tmp7 = std::expm1(tmp6); 2023-01-11T21:41:26.4319909Z auto tmp8 = static_cast(1.7580993408473766); 2023-01-11T21:41:26.4320071Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.4320248Z auto tmp10 = tmp2 ? tmp4 : tmp9; 2023-01-11T21:41:26.4320435Z auto tmp11 = static_cast(2); 2023-01-11T21:41:26.4320587Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.4320788Z auto tmp13 = static_cast(1); 2023-01-11T21:41:26.4321011Z auto tmp14 = tmp0 + tmp13; 2023-01-11T21:41:26.4321232Z auto tmp15 = tmp14 > tmp1; 2023-01-11T21:41:26.4321465Z auto tmp16 = static_cast(3); 2023-01-11T21:41:26.4321681Z auto tmp17 = tmp14 * tmp16; 2023-01-11T21:41:26.4321911Z auto tmp18 = static_cast(4); 2023-01-11T21:41:26.4322109Z auto tmp19 = tmp14 * tmp18; 2023-01-11T21:41:26.4322347Z auto tmp20 = std::expm1(tmp19); 2023-01-11T21:41:26.4322582Z auto tmp21 = static_cast(6); 2023-01-11T21:41:26.4322764Z auto tmp22 = tmp20 * tmp21; 2023-01-11T21:41:26.4322941Z auto tmp23 = tmp15 ? tmp17 : tmp22; 2023-01-11T21:41:26.4323091Z out_ptr0[i0] = tmp12; 2023-01-11T21:41:26.4323244Z out_ptr1[i0] = tmp23; 2023-01-11T21:41:26.4323337Z } 2023-01-11T21:41:26.4323450Z } 2023-01-11T21:41:26.4323563Z } 2023-01-11T21:41:26.4323676Z } 2023-01-11T21:41:26.4323785Z } 2023-01-11T21:41:26.4323955Z ''') 2023-01-11T21:41:26.4323969Z 2023-01-11T21:41:26.4323977Z 2023-01-11T21:41:26.4324188Z async_compile.wait(globals()) 2023-01-11T21:41:26.4324343Z del async_compile 2023-01-11T21:41:26.4324356Z 2023-01-11T21:41:26.4324532Z def call(args): 2023-01-11T21:41:26.4324688Z arg0_1, = args 2023-01-11T21:41:26.4324861Z args.clear() 2023-01-11T21:41:26.4325342Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4325810Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4326117Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4326240Z del arg0_1 2023-01-11T21:41:26.4326362Z return (buf0, buf1, ) 2023-01-11T21:41:26.4326371Z 2023-01-11T21:41:26.4326379Z 2023-01-11T21:41:26.4326516Z if __name__ == "__main__": 2023-01-11T21:41:26.4326726Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4326950Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4327396Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4327641Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4327664Z 2023-01-11T21:41:26.4327825Z ok (1.590s) 2023-01-11T21:41:26.4328929Z test_embedding_bag_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4329404Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4329888Z [2023-01-11 21:33:35,466] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 194 2023-01-11T21:41:26.4330326Z [2023-01-11 21:33:35,492] torch._inductor.ir: [WARNING] Using FallbackKernel: aten._embedding_bag 2023-01-11T21:41:26.4330940Z [2023-01-11 21:33:35,498] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 194 2023-01-11T21:41:26.4331048Z 2023-01-11T21:41:26.4331284Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4331453Z import torch 2023-01-11T21:41:26.4331636Z import random 2023-01-11T21:41:26.4331894Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4332174Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4332186Z 2023-01-11T21:41:26.4332326Z aten = torch.ops.aten 2023-01-11T21:41:26.4332570Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4332739Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4332748Z 2023-01-11T21:41:26.4332755Z 2023-01-11T21:41:26.4332913Z async_compile.wait(globals()) 2023-01-11T21:41:26.4333044Z del async_compile 2023-01-11T21:41:26.4333052Z 2023-01-11T21:41:26.4333181Z def call(args): 2023-01-11T21:41:26.4333330Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4333481Z args.clear() 2023-01-11T21:41:26.4333713Z buf0 = aten._embedding_bag(arg0_1, arg1_1, arg2_1) 2023-01-11T21:41:26.4333891Z del arg0_1 2023-01-11T21:41:26.4334058Z del arg1_1 2023-01-11T21:41:26.4334211Z del arg2_1 2023-01-11T21:41:26.4334360Z buf1 = buf0[0] 2023-01-11T21:41:26.4334590Z assert_size_stride(buf1, (3, 4), (4, 1)) 2023-01-11T21:41:26.4334732Z buf2 = buf0[1] 2023-01-11T21:41:26.4334946Z assert_size_stride(buf2, (0, ), (1, )) 2023-01-11T21:41:26.4335109Z buf3 = buf0[2] 2023-01-11T21:41:26.4335316Z assert_size_stride(buf3, (3, ), (1, )) 2023-01-11T21:41:26.4335452Z buf4 = buf0[3] 2023-01-11T21:41:26.4335620Z assert_size_stride(buf4, (3, ), (1, )) 2023-01-11T21:41:26.4335737Z del buf0 2023-01-11T21:41:26.4335876Z return (buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.4335902Z 2023-01-11T21:41:26.4335909Z 2023-01-11T21:41:26.4336026Z if __name__ == "__main__": 2023-01-11T21:41:26.4336223Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4336443Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4336895Z arg0_1 = rand_strided((10, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4337345Z arg1_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4337808Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4338096Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4338107Z 2023-01-11T21:41:26.4338243Z ok (0.084s) 2023-01-11T21:41:26.4339149Z test_embedding_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4339379Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4339910Z [2023-01-11 21:33:35,698] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 195 2023-01-11T21:41:26.4340529Z [2023-01-11 21:33:37,904] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 195 2023-01-11T21:41:26.4340652Z 2023-01-11T21:41:26.4340873Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4341042Z import torch 2023-01-11T21:41:26.4341215Z import random 2023-01-11T21:41:26.4341483Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4341728Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4341757Z 2023-01-11T21:41:26.4341878Z aten = torch.ops.aten 2023-01-11T21:41:26.4342120Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4342284Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4342293Z 2023-01-11T21:41:26.4342300Z 2023-01-11T21:41:26.4342561Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4342998Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4343367Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4343617Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4343849Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4344054Z bool* __restrict__ out_ptr1, 2023-01-11T21:41:26.4344267Z long* __restrict__ out_ptr2) 2023-01-11T21:41:26.4344413Z { 2023-01-11T21:41:26.4344649Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4344792Z { 2023-01-11T21:41:26.4344948Z #pragma omp for 2023-01-11T21:41:26.4345081Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.4345196Z { 2023-01-11T21:41:26.4345338Z #pragma GCC ivdep 2023-01-11T21:41:26.4345489Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.4345602Z { 2023-01-11T21:41:26.4345719Z { 2023-01-11T21:41:26.4345840Z { 2023-01-11T21:41:26.4345996Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4346197Z auto tmp1 = in_ptr1[i1 + (4*tmp0)]; 2023-01-11T21:41:26.4346431Z auto tmp2 = tmp1 * (tmp1>0); 2023-01-11T21:41:26.4346661Z out_ptr0[i1 + (4*i0)] = tmp2; 2023-01-11T21:41:26.4346823Z } 2023-01-11T21:41:26.4346964Z } 2023-01-11T21:41:26.4347114Z } 2023-01-11T21:41:26.4347245Z } 2023-01-11T21:41:26.4347426Z #pragma omp for 2023-01-11T21:41:26.4347622Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4347769Z { 2023-01-11T21:41:26.4347919Z { 2023-01-11T21:41:26.4348046Z { 2023-01-11T21:41:26.4348221Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.4348391Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.4348554Z auto tmp2 = tmp0 <= tmp1; 2023-01-11T21:41:26.4348710Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.4348826Z } 2023-01-11T21:41:26.4348941Z } 2023-01-11T21:41:26.4349056Z } 2023-01-11T21:41:26.4349201Z #pragma omp for 2023-01-11T21:41:26.4349330Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.4349446Z { 2023-01-11T21:41:26.4349575Z { 2023-01-11T21:41:26.4349687Z { 2023-01-11T21:41:26.4349856Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4350101Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4350321Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.4350522Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.4350676Z } 2023-01-11T21:41:26.4350824Z } 2023-01-11T21:41:26.4350974Z } 2023-01-11T21:41:26.4351121Z } 2023-01-11T21:41:26.4351259Z } 2023-01-11T21:41:26.4351450Z ''') 2023-01-11T21:41:26.4351463Z 2023-01-11T21:41:26.4351471Z 2023-01-11T21:41:26.4351681Z async_compile.wait(globals()) 2023-01-11T21:41:26.4351827Z del async_compile 2023-01-11T21:41:26.4351837Z 2023-01-11T21:41:26.4351961Z def call(args): 2023-01-11T21:41:26.4352198Z primals_1, primals_2 = args 2023-01-11T21:41:26.4352328Z args.clear() 2023-01-11T21:41:26.4352712Z buf0 = empty_strided((2, 8, 4), (32, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4353077Z buf1 = empty_strided((2, 8, 4), (32, 4, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.4353412Z buf2 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4353865Z kernel_cpp_0(c_void_p(primals_2.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4354054Z del primals_1 2023-01-11T21:41:26.4354232Z del primals_2 2023-01-11T21:41:26.4354437Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4354449Z 2023-01-11T21:41:26.4354460Z 2023-01-11T21:41:26.4354724Z if __name__ == "__main__": 2023-01-11T21:41:26.4354999Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4355280Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4355691Z primals_1 = rand_strided((10, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4356069Z primals_2 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4356299Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:41:26.4356309Z 2023-01-11T21:41:26.4356428Z ok (2.404s) 2023-01-11T21:41:26.4357285Z test_exp_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4357585Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4358200Z [2023-01-11 21:33:37,923] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 196 2023-01-11T21:41:26.4358816Z [2023-01-11 21:33:39,439] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 196 2023-01-11T21:41:26.4358827Z 2023-01-11T21:41:26.4359048Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4359179Z import torch 2023-01-11T21:41:26.4359321Z import random 2023-01-11T21:41:26.4359527Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4359744Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4359754Z 2023-01-11T21:41:26.4359889Z aten = torch.ops.aten 2023-01-11T21:41:26.4360130Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4360294Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4360303Z 2023-01-11T21:41:26.4360311Z 2023-01-11T21:41:26.4360565Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4360910Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4361170Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4361414Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4361646Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4361860Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4362005Z { 2023-01-11T21:41:26.4362237Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4362362Z { 2023-01-11T21:41:26.4362552Z #pragma omp for 2023-01-11T21:41:26.4362747Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4362891Z { 2023-01-11T21:41:26.4363152Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4363393Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4363553Z auto tmp1 = tmp0.exp(); 2023-01-11T21:41:26.4363698Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.4363831Z auto tmp4 = tmp3.exp(); 2023-01-11T21:41:26.4364065Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4364236Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4364397Z } 2023-01-11T21:41:26.4364624Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4364808Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.4364939Z { 2023-01-11T21:41:26.4365141Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4365337Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.4365554Z auto tmp1 = std::exp(tmp0); 2023-01-11T21:41:26.4365757Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.4365968Z auto tmp4 = std::exp(tmp3); 2023-01-11T21:41:26.4366134Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4366264Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.4366379Z } 2023-01-11T21:41:26.4366548Z } 2023-01-11T21:41:26.4366664Z } 2023-01-11T21:41:26.4366822Z ''') 2023-01-11T21:41:26.4366833Z 2023-01-11T21:41:26.4366844Z 2023-01-11T21:41:26.4367008Z async_compile.wait(globals()) 2023-01-11T21:41:26.4367140Z del async_compile 2023-01-11T21:41:26.4367149Z 2023-01-11T21:41:26.4367277Z def call(args): 2023-01-11T21:41:26.4367397Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4367556Z args.clear() 2023-01-11T21:41:26.4368028Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4368490Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4368934Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4369229Z del arg0_1 2023-01-11T21:41:26.4369388Z del arg1_1 2023-01-11T21:41:26.4369531Z return (buf0, buf1, ) 2023-01-11T21:41:26.4369541Z 2023-01-11T21:41:26.4369548Z 2023-01-11T21:41:26.4369694Z if __name__ == "__main__": 2023-01-11T21:41:26.4369904Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4370132Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4370506Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4370880Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4371142Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4371157Z 2023-01-11T21:41:26.4371323Z ok (1.535s) 2023-01-11T21:41:26.4372424Z test_expand_as_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4372687Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4373179Z [2023-01-11 21:33:39,477] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 197 2023-01-11T21:41:26.4373680Z [2023-01-11 21:33:41,001] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 197 2023-01-11T21:41:26.4373690Z 2023-01-11T21:41:26.4373862Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4373992Z import torch 2023-01-11T21:41:26.4374165Z import random 2023-01-11T21:41:26.4374434Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4374704Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4374717Z 2023-01-11T21:41:26.4374881Z aten = torch.ops.aten 2023-01-11T21:41:26.4375191Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4375425Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4375438Z 2023-01-11T21:41:26.4375446Z 2023-01-11T21:41:26.4375779Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4376152Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4376478Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4376656Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4376767Z { 2023-01-11T21:41:26.4376927Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4377036Z { 2023-01-11T21:41:26.4377238Z #pragma omp for collapse(2) 2023-01-11T21:41:26.4377443Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.4377573Z { 2023-01-11T21:41:26.4377777Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.4377925Z { 2023-01-11T21:41:26.4378109Z for(long i2=0; i2<12; i2+=1) 2023-01-11T21:41:26.4378263Z { 2023-01-11T21:41:26.4378604Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i2) + (100*i0)); 2023-01-11T21:41:26.4379003Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4379179Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4379346Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:41:26.4379543Z tmp3.store(out_ptr0 + (8*i2) + (100*i1) + (12800*i0)); 2023-01-11T21:41:26.4379645Z } 2023-01-11T21:41:26.4379818Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.4379977Z for(long i2=96; i2<100; i2+=1) 2023-01-11T21:41:26.4380098Z { 2023-01-11T21:41:26.4380331Z auto tmp0 = in_ptr0[i2 + (100*i0)]; 2023-01-11T21:41:26.4380570Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4380786Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4380985Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:41:26.4381219Z out_ptr0[i2 + (100*i1) + (12800*i0)] = tmp3; 2023-01-11T21:41:26.4381377Z } 2023-01-11T21:41:26.4381535Z } 2023-01-11T21:41:26.4381678Z } 2023-01-11T21:41:26.4381822Z } 2023-01-11T21:41:26.4381957Z } 2023-01-11T21:41:26.4382111Z ''') 2023-01-11T21:41:26.4382121Z 2023-01-11T21:41:26.4382144Z 2023-01-11T21:41:26.4382291Z async_compile.wait(globals()) 2023-01-11T21:41:26.4382420Z del async_compile 2023-01-11T21:41:26.4382430Z 2023-01-11T21:41:26.4382557Z def call(args): 2023-01-11T21:41:26.4382693Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4382823Z args.clear() 2023-01-11T21:41:26.4383327Z buf0 = empty_strided((6, 128, 100), (12800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4383635Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4383864Z return (as_strided(arg0_1, (6, 128, 100), (100, 0, 1)), buf0, ) 2023-01-11T21:41:26.4383877Z 2023-01-11T21:41:26.4383910Z 2023-01-11T21:41:26.4384067Z if __name__ == "__main__": 2023-01-11T21:41:26.4384337Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4384625Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4385106Z arg0_1 = rand_strided((6, 1, 100), (100, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4385506Z arg1_1 = rand_strided((6, 128, 100), (12800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4385715Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4385727Z 2023-01-11T21:41:26.4385844Z ok (1.564s) 2023-01-11T21:41:26.4386797Z test_expand_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4387066Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4387687Z [2023-01-11 21:33:41,031] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 198 2023-01-11T21:41:26.4388357Z [2023-01-11 21:33:42,591] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 198 2023-01-11T21:41:26.4388366Z 2023-01-11T21:41:26.4388535Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4388661Z import torch 2023-01-11T21:41:26.4388788Z import random 2023-01-11T21:41:26.4388988Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4389206Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4389215Z 2023-01-11T21:41:26.4389339Z aten = torch.ops.aten 2023-01-11T21:41:26.4389619Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4389830Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4389841Z 2023-01-11T21:41:26.4389847Z 2023-01-11T21:41:26.4390175Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4390740Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4391025Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4391250Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4391442Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4391534Z { 2023-01-11T21:41:26.4391710Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4391821Z { 2023-01-11T21:41:26.4391959Z #pragma omp for 2023-01-11T21:41:26.4392106Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.4392217Z { 2023-01-11T21:41:26.4392359Z #pragma GCC ivdep 2023-01-11T21:41:26.4392494Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.4392633Z { 2023-01-11T21:41:26.4392817Z #pragma GCC ivdep 2023-01-11T21:41:26.4393026Z for(long i2=0; i2<3; i2+=1) 2023-01-11T21:41:26.4393187Z { 2023-01-11T21:41:26.4393389Z #pragma GCC ivdep 2023-01-11T21:41:26.4393597Z for(long i3=0; i3<2; i3+=1) 2023-01-11T21:41:26.4393740Z { 2023-01-11T21:41:26.4393908Z { 2023-01-11T21:41:26.4394062Z { 2023-01-11T21:41:26.4394299Z auto tmp0 = in_ptr0[i3 + (2*i1)]; 2023-01-11T21:41:26.4394530Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4394706Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4394903Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.4395060Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.4395254Z out_ptr0[i3 + (2*i2) + (6*i1) + (12*i0)] = tmp4; 2023-01-11T21:41:26.4395377Z } 2023-01-11T21:41:26.4395499Z } 2023-01-11T21:41:26.4395616Z } 2023-01-11T21:41:26.4395737Z } 2023-01-11T21:41:26.4395874Z } 2023-01-11T21:41:26.4396001Z } 2023-01-11T21:41:26.4396224Z #pragma omp for collapse(2) 2023-01-11T21:41:26.4396435Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.4396579Z { 2023-01-11T21:41:26.4396774Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.4396918Z { 2023-01-11T21:41:26.4397111Z #pragma GCC ivdep 2023-01-11T21:41:26.4397297Z for(long i2=0; i2<3; i2+=1) 2023-01-11T21:41:26.4397447Z { 2023-01-11T21:41:26.4397636Z #pragma GCC ivdep 2023-01-11T21:41:26.4397811Z for(long i3=0; i3<2; i3+=1) 2023-01-11T21:41:26.4397935Z { 2023-01-11T21:41:26.4398054Z { 2023-01-11T21:41:26.4398162Z { 2023-01-11T21:41:26.4398347Z auto tmp0 = in_ptr0[i3 + (2*i1)]; 2023-01-11T21:41:26.4398548Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.4398724Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4399001Z out_ptr1[i3 + (2*i2) + (6*i1) + (12*i0)] = tmp2; 2023-01-11T21:41:26.4399171Z } 2023-01-11T21:41:26.4399340Z } 2023-01-11T21:41:26.4399502Z } 2023-01-11T21:41:26.4399636Z } 2023-01-11T21:41:26.4399766Z } 2023-01-11T21:41:26.4399916Z } 2023-01-11T21:41:26.4400060Z } 2023-01-11T21:41:26.4400201Z } 2023-01-11T21:41:26.4400412Z ''') 2023-01-11T21:41:26.4400424Z 2023-01-11T21:41:26.4400432Z 2023-01-11T21:41:26.4400638Z async_compile.wait(globals()) 2023-01-11T21:41:26.4400789Z del async_compile 2023-01-11T21:41:26.4400801Z 2023-01-11T21:41:26.4400947Z def call(args): 2023-01-11T21:41:26.4401074Z arg0_1, = args 2023-01-11T21:41:26.4401202Z args.clear() 2023-01-11T21:41:26.4401687Z buf0 = empty_strided((3, 4, 2, 3, 2), (48, 12, 6, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4402095Z buf1 = empty_strided((2, 1, 2, 3, 2), (12, 12, 6, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4402461Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4402699Z return (buf0, buf1, as_strided(arg0_1, (2, 2, 5, 2), (0, 2, 0, 1)), ) 2023-01-11T21:41:26.4402738Z 2023-01-11T21:41:26.4402747Z 2023-01-11T21:41:26.4402906Z if __name__ == "__main__": 2023-01-11T21:41:26.4403175Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4403466Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4403949Z arg0_1 = rand_strided((2, 1, 2), (2, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4404159Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4404169Z 2023-01-11T21:41:26.4404287Z ok (1.588s) 2023-01-11T21:41:26.4405600Z test_expanded_reduction_cpu (__main__.CpuTests) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/87157 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.001s) 2023-01-11T21:41:26.4406699Z test_expm1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4406982Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4407485Z [2023-01-11 21:33:42,612] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 199 2023-01-11T21:41:26.4407978Z [2023-01-11 21:33:44,147] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 199 2023-01-11T21:41:26.4408861Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4409334Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4409947Z [2023-01-11 21:33:44,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 200 2023-01-11T21:41:26.4410535Z [2023-01-11 21:33:45,671] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 200 2023-01-11T21:41:26.4411325Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4411654Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4412194Z [2023-01-11 21:33:45,846] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 201 2023-01-11T21:41:26.4412788Z [2023-01-11 21:33:47,387] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 201 2023-01-11T21:41:26.4413852Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4414089Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4414573Z [2023-01-11 21:33:47,404] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 202 2023-01-11T21:41:26.4415043Z [2023-01-11 21:33:49,097] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 202 2023-01-11T21:41:26.4415977Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4416265Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4416888Z [2023-01-11 21:33:49,114] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 203 2023-01-11T21:41:26.4416906Z 2023-01-11T21:41:26.4417088Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4417219Z import torch 2023-01-11T21:41:26.4417352Z import random 2023-01-11T21:41:26.4417564Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4417784Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4417794Z 2023-01-11T21:41:26.4417918Z aten = torch.ops.aten 2023-01-11T21:41:26.4418162Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4418351Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4418364Z 2023-01-11T21:41:26.4418372Z 2023-01-11T21:41:26.4418685Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4419156Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4419435Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:41:26.4419662Z half* __restrict__ out_ptr0, 2023-01-11T21:41:26.4419875Z half* __restrict__ out_ptr1) 2023-01-11T21:41:26.4419998Z { 2023-01-11T21:41:26.4420203Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4420322Z { 2023-01-11T21:41:26.4420464Z #pragma omp for 2023-01-11T21:41:26.4420612Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4420725Z { 2023-01-11T21:41:26.4420839Z { 2023-01-11T21:41:26.4420943Z { 2023-01-11T21:41:26.4421149Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:41:26.4421344Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:41:26.4421578Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.4421789Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4421997Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4422204Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4422337Z } 2023-01-11T21:41:26.4422475Z } 2023-01-11T21:41:26.4422625Z } 2023-01-11T21:41:26.4422776Z } 2023-01-11T21:41:26.4422914Z } 2023-01-11T21:41:26.4423113Z ''') 2023-01-11T21:41:26.4423218Z 2023-01-11T21:41:26.4423326Z 2023-01-11T21:41:26.4423513Z async_compile.wait(globals()) 2023-01-11T21:41:26.4423628Z del async_compile 2023-01-11T21:41:26.4423638Z 2023-01-11T21:41:26.4423764Z def call(args): 2023-01-11T21:41:26.4423887Z arg0_1, = args 2023-01-11T21:41:26.4424013Z args.clear() 2023-01-11T21:41:26.4424385Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.4424740Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.4425118Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4425261Z del arg0_1 2023-01-11T21:41:26.4425441Z return (buf0, buf1, ) 2023-01-11T21:41:26.4425454Z 2023-01-11T21:41:26.4425463Z 2023-01-11T21:41:26.4425634Z if __name__ == "__main__": 2023-01-11T21:41:26.4425969Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4426198Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4426554Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.4426743Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4426753Z 2023-01-11T21:41:26.4426759Z 2023-01-11T21:41:26.4426922Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4427038Z import torch 2023-01-11T21:41:26.4427191Z import random 2023-01-11T21:41:26.4427455Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4427725Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4427739Z 2023-01-11T21:41:26.4427929Z aten = torch.ops.aten 2023-01-11T21:41:26.4428221Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4428447Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4428462Z 2023-01-11T21:41:26.4428469Z 2023-01-11T21:41:26.4428798Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4429213Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4429498Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:41:26.4429724Z half* __restrict__ out_ptr0, 2023-01-11T21:41:26.4429943Z half* __restrict__ out_ptr1) 2023-01-11T21:41:26.4430083Z { 2023-01-11T21:41:26.4430308Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4430457Z { 2023-01-11T21:41:26.4430617Z #pragma omp for 2023-01-11T21:41:26.4430815Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.4430968Z { 2023-01-11T21:41:26.4431109Z { 2023-01-11T21:41:26.4431252Z { 2023-01-11T21:41:26.4431522Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:41:26.4431762Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:41:26.4431982Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.4432215Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4432412Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4432625Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4432818Z } 2023-01-11T21:41:26.4432969Z } 2023-01-11T21:41:26.4433116Z } 2023-01-11T21:41:26.4433228Z } 2023-01-11T21:41:26.4433363Z } 2023-01-11T21:41:26.4433579Z ''') 2023-01-11T21:41:26.4433590Z 2023-01-11T21:41:26.4433598Z 2023-01-11T21:41:26.4433804Z async_compile.wait(globals()) 2023-01-11T21:41:26.4433975Z del async_compile 2023-01-11T21:41:26.4433991Z 2023-01-11T21:41:26.4434151Z def call(args): 2023-01-11T21:41:26.4434305Z arg0_1, = args 2023-01-11T21:41:26.4434449Z args.clear() 2023-01-11T21:41:26.4434908Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.4435346Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.4435728Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4435889Z del arg0_1 2023-01-11T21:41:26.4436185Z return (buf0, buf1, ) 2023-01-11T21:41:26.4436196Z 2023-01-11T21:41:26.4436202Z 2023-01-11T21:41:26.4436373Z if __name__ == "__main__": 2023-01-11T21:41:26.4436644Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4436898Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4437348Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.4437602Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4437616Z 2023-01-11T21:41:26.4437623Z 2023-01-11T21:41:26.4437834Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4437995Z import torch 2023-01-11T21:41:26.4438162Z import random 2023-01-11T21:41:26.4438416Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4438783Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4438799Z 2023-01-11T21:41:26.4438960Z aten = torch.ops.aten 2023-01-11T21:41:26.4439253Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4439471Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4439482Z 2023-01-11T21:41:26.4439491Z 2023-01-11T21:41:26.4439816Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4440251Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4440535Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4440762Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4440980Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4441102Z { 2023-01-11T21:41:26.4441314Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4441457Z { 2023-01-11T21:41:26.4441643Z #pragma omp for 2023-01-11T21:41:26.4441840Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4441993Z { 2023-01-11T21:41:26.4442291Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4442475Z auto tmp1 = tmp0.expm1(); 2023-01-11T21:41:26.4442780Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.4442980Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4443193Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4443386Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4443540Z } 2023-01-11T21:41:26.4443758Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4443932Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.4444079Z { 2023-01-11T21:41:26.4444272Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4444486Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:41:26.4444711Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.4444906Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4445101Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4445262Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4445391Z } 2023-01-11T21:41:26.4445545Z } 2023-01-11T21:41:26.4445685Z } 2023-01-11T21:41:26.4445961Z ''') 2023-01-11T21:41:26.4445971Z 2023-01-11T21:41:26.4445978Z 2023-01-11T21:41:26.4446139Z async_compile.wait(globals()) 2023-01-11T21:41:26.4446269Z del async_compile 2023-01-11T21:41:26.4446278Z 2023-01-11T21:41:26.4446369Z def call(args): 2023-01-11T21:41:26.4446492Z arg0_1, = args 2023-01-11T21:41:26.4446623Z args.clear() 2023-01-11T21:41:26.4446972Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4447294Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4447573Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4447696Z del arg0_1 2023-01-11T21:41:26.4447815Z return (buf0, buf1, ) 2023-01-11T21:41:26.4447844Z 2023-01-11T21:41:26.4447854Z 2023-01-11T21:41:26.4447975Z if __name__ == "__main__": 2023-01-11T21:41:26.4448165Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4448478Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4448826Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4449136Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4449144Z 2023-01-11T21:41:26.4449150Z 2023-01-11T21:41:26.4449323Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4449462Z import torch 2023-01-11T21:41:26.4449588Z import random 2023-01-11T21:41:26.4449763Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4449957Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4449968Z 2023-01-11T21:41:26.4450107Z aten = torch.ops.aten 2023-01-11T21:41:26.4450338Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4450621Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4450631Z 2023-01-11T21:41:26.4450637Z 2023-01-11T21:41:26.4450889Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4451236Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4451445Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4451602Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4451757Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4451865Z { 2023-01-11T21:41:26.4452035Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4452152Z { 2023-01-11T21:41:26.4452292Z #pragma omp for 2023-01-11T21:41:26.4452427Z for(long i0=0; i0<25; i0+=1) 2023-01-11T21:41:26.4452530Z { 2023-01-11T21:41:26.4452771Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4452928Z auto tmp1 = tmp0.expm1(); 2023-01-11T21:41:26.4453158Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.4453312Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4453463Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4453630Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4453728Z } 2023-01-11T21:41:26.4453889Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4454033Z for(long i0=200; i0<201; i0+=1) 2023-01-11T21:41:26.4454145Z { 2023-01-11T21:41:26.4454287Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4454460Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:41:26.4454632Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.4454764Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4454909Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4455048Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4455158Z } 2023-01-11T21:41:26.4455277Z } 2023-01-11T21:41:26.4455389Z } 2023-01-11T21:41:26.4455534Z ''') 2023-01-11T21:41:26.4455570Z 2023-01-11T21:41:26.4455577Z 2023-01-11T21:41:26.4455719Z async_compile.wait(globals()) 2023-01-11T21:41:26.4455851Z del async_compile 2023-01-11T21:41:26.4455859Z 2023-01-11T21:41:26.4455972Z def call(args): 2023-01-11T21:41:26.4456098Z arg0_1, = args 2023-01-11T21:41:26.4456220Z args.clear() 2023-01-11T21:41:26.4456571Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4456894Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4457157Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4457284Z del arg0_1 2023-01-11T21:41:26.4457417Z return (buf0, buf1, ) 2023-01-11T21:41:26.4457427Z 2023-01-11T21:41:26.4457434Z 2023-01-11T21:41:26.4457569Z if __name__ == "__main__": 2023-01-11T21:41:26.4457760Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4457984Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4458334Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4458631Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4458640Z 2023-01-11T21:41:26.4459091Z [2023-01-11 21:33:50,642] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 203 2023-01-11T21:41:26.4459790Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4460012Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4460449Z [2023-01-11 21:33:50,660] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 204 2023-01-11T21:41:26.4460998Z [2023-01-11 21:33:52,176] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 204 2023-01-11T21:41:26.4461705Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4461914Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4462369Z [2023-01-11 21:33:52,193] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 205 2023-01-11T21:41:26.4462826Z [2023-01-11 21:33:53,681] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 205 2023-01-11T21:41:26.4463605Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4463823Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4464268Z [2023-01-11 21:33:53,699] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 206 2023-01-11T21:41:26.4464680Z [2023-01-11 21:33:55,241] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 206 2023-01-11T21:41:26.4465370Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4465591Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4466037Z [2023-01-11 21:33:55,267] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 207 2023-01-11T21:41:26.4466056Z 2023-01-11T21:41:26.4466210Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4466342Z import torch 2023-01-11T21:41:26.4466475Z import random 2023-01-11T21:41:26.4466684Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4466901Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4466911Z 2023-01-11T21:41:26.4467020Z aten = torch.ops.aten 2023-01-11T21:41:26.4467255Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4467411Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4467420Z 2023-01-11T21:41:26.4467427Z 2023-01-11T21:41:26.4467672Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4468002Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4468215Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.4468499Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.4468676Z double* __restrict__ out_ptr1) 2023-01-11T21:41:26.4468751Z { 2023-01-11T21:41:26.4468930Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4469053Z { 2023-01-11T21:41:26.4469198Z #pragma omp for 2023-01-11T21:41:26.4469346Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4469466Z { 2023-01-11T21:41:26.4469574Z { 2023-01-11T21:41:26.4469662Z { 2023-01-11T21:41:26.4469821Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4470014Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:41:26.4470196Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.4470361Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4470601Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4470758Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4470864Z } 2023-01-11T21:41:26.4470986Z } 2023-01-11T21:41:26.4471100Z } 2023-01-11T21:41:26.4471215Z } 2023-01-11T21:41:26.4471324Z } 2023-01-11T21:41:26.4471474Z ''') 2023-01-11T21:41:26.4471483Z 2023-01-11T21:41:26.4471489Z 2023-01-11T21:41:26.4471649Z async_compile.wait(globals()) 2023-01-11T21:41:26.4471759Z del async_compile 2023-01-11T21:41:26.4471769Z 2023-01-11T21:41:26.4471896Z def call(args): 2023-01-11T21:41:26.4472022Z arg0_1, = args 2023-01-11T21:41:26.4472148Z args.clear() 2023-01-11T21:41:26.4472479Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.4472819Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.4473081Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4473189Z del arg0_1 2023-01-11T21:41:26.4473328Z return (buf0, buf1, ) 2023-01-11T21:41:26.4473336Z 2023-01-11T21:41:26.4473352Z 2023-01-11T21:41:26.4473486Z if __name__ == "__main__": 2023-01-11T21:41:26.4473682Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4473895Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4474222Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.4474404Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4474417Z 2023-01-11T21:41:26.4474423Z 2023-01-11T21:41:26.4474590Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4474715Z import torch 2023-01-11T21:41:26.4474808Z import random 2023-01-11T21:41:26.4475000Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4475205Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4475213Z 2023-01-11T21:41:26.4475359Z aten = torch.ops.aten 2023-01-11T21:41:26.4475590Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4475736Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4475753Z 2023-01-11T21:41:26.4475760Z 2023-01-11T21:41:26.4476007Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4476325Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4476525Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.4476706Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.4476882Z double* __restrict__ out_ptr1) 2023-01-11T21:41:26.4476993Z { 2023-01-11T21:41:26.4477169Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4477283Z { 2023-01-11T21:41:26.4477387Z #pragma omp for 2023-01-11T21:41:26.4477534Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.4477652Z { 2023-01-11T21:41:26.4477771Z { 2023-01-11T21:41:26.4477882Z { 2023-01-11T21:41:26.4478053Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4478222Z auto tmp1 = std::expm1(tmp0); 2023-01-11T21:41:26.4478522Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.4478683Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.4478841Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.4478999Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.4479105Z } 2023-01-11T21:41:26.4479226Z } 2023-01-11T21:41:26.4479342Z } 2023-01-11T21:41:26.4479438Z } 2023-01-11T21:41:26.4479549Z } 2023-01-11T21:41:26.4479715Z ''') 2023-01-11T21:41:26.4479724Z 2023-01-11T21:41:26.4479732Z 2023-01-11T21:41:26.4479886Z async_compile.wait(globals()) 2023-01-11T21:41:26.4479999Z del async_compile 2023-01-11T21:41:26.4480012Z 2023-01-11T21:41:26.4480142Z def call(args): 2023-01-11T21:41:26.4480265Z arg0_1, = args 2023-01-11T21:41:26.4480371Z args.clear() 2023-01-11T21:41:26.4480799Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.4481130Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.4481410Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4481539Z del arg0_1 2023-01-11T21:41:26.4481681Z return (buf0, buf1, ) 2023-01-11T21:41:26.4481688Z 2023-01-11T21:41:26.4481697Z 2023-01-11T21:41:26.4481829Z if __name__ == "__main__": 2023-01-11T21:41:26.4482023Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4482219Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4482553Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.4482735Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4482749Z 2023-01-11T21:41:26.4482754Z 2023-01-11T21:41:26.4482927Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4483058Z import torch 2023-01-11T21:41:26.4483189Z import random 2023-01-11T21:41:26.4483382Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4483585Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4483593Z 2023-01-11T21:41:26.4483713Z aten = torch.ops.aten 2023-01-11T21:41:26.4483949Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4484114Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4484122Z 2023-01-11T21:41:26.4484128Z 2023-01-11T21:41:26.4484359Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4484689Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4484890Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.4485064Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4485224Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4485318Z { 2023-01-11T21:41:26.4485497Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4485609Z { 2023-01-11T21:41:26.4485748Z #pragma omp for 2023-01-11T21:41:26.4485904Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4486011Z { 2023-01-11T21:41:26.4486130Z { 2023-01-11T21:41:26.4486236Z { 2023-01-11T21:41:26.4486399Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4486586Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4486769Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:41:26.4486939Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.4487109Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.4487260Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4487393Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.4487512Z } 2023-01-11T21:41:26.4487629Z } 2023-01-11T21:41:26.4487733Z } 2023-01-11T21:41:26.4487850Z } 2023-01-11T21:41:26.4487966Z } 2023-01-11T21:41:26.4488105Z ''') 2023-01-11T21:41:26.4488138Z 2023-01-11T21:41:26.4488146Z 2023-01-11T21:41:26.4488385Z async_compile.wait(globals()) 2023-01-11T21:41:26.4488519Z del async_compile 2023-01-11T21:41:26.4488527Z 2023-01-11T21:41:26.4488639Z def call(args): 2023-01-11T21:41:26.4488768Z arg0_1, = args 2023-01-11T21:41:26.4488902Z args.clear() 2023-01-11T21:41:26.4489383Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4489707Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4489959Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4490086Z del arg0_1 2023-01-11T21:41:26.4490227Z return (buf0, buf1, ) 2023-01-11T21:41:26.4490236Z 2023-01-11T21:41:26.4490241Z 2023-01-11T21:41:26.4490378Z if __name__ == "__main__": 2023-01-11T21:41:26.4490677Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4490892Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4491224Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.4491398Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4491408Z 2023-01-11T21:41:26.4491414Z 2023-01-11T21:41:26.4491557Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4491683Z import torch 2023-01-11T21:41:26.4491818Z import random 2023-01-11T21:41:26.4492027Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4492224Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4492232Z 2023-01-11T21:41:26.4492344Z aten = torch.ops.aten 2023-01-11T21:41:26.4492575Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4492735Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4492744Z 2023-01-11T21:41:26.4492749Z 2023-01-11T21:41:26.4492973Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4493310Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4493510Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.4493689Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4493858Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4493968Z { 2023-01-11T21:41:26.4494126Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4494223Z { 2023-01-11T21:41:26.4494364Z #pragma omp for 2023-01-11T21:41:26.4494510Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.4494624Z { 2023-01-11T21:41:26.4494742Z { 2023-01-11T21:41:26.4494858Z { 2023-01-11T21:41:26.4495009Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4495183Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4495367Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:41:26.4495549Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.4495711Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.4495843Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4496000Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.4496119Z } 2023-01-11T21:41:26.4496218Z } 2023-01-11T21:41:26.4496334Z } 2023-01-11T21:41:26.4496444Z } 2023-01-11T21:41:26.4496550Z } 2023-01-11T21:41:26.4496696Z ''') 2023-01-11T21:41:26.4496708Z 2023-01-11T21:41:26.4496713Z 2023-01-11T21:41:26.4496873Z async_compile.wait(globals()) 2023-01-11T21:41:26.4497006Z del async_compile 2023-01-11T21:41:26.4497013Z 2023-01-11T21:41:26.4497119Z def call(args): 2023-01-11T21:41:26.4497243Z arg0_1, = args 2023-01-11T21:41:26.4497369Z args.clear() 2023-01-11T21:41:26.4497697Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4498040Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4498323Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4498560Z del arg0_1 2023-01-11T21:41:26.4498710Z return (buf0, buf1, ) 2023-01-11T21:41:26.4498725Z 2023-01-11T21:41:26.4498730Z 2023-01-11T21:41:26.4498844Z if __name__ == "__main__": 2023-01-11T21:41:26.4499036Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4499254Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4499589Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.4499776Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4499784Z 2023-01-11T21:41:26.4500240Z [2023-01-11 21:33:56,792] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 207 2023-01-11T21:41:26.4501033Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4501259Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4501714Z [2023-01-11 21:33:56,809] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 208 2023-01-11T21:41:26.4502149Z [2023-01-11 21:33:58,300] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 208 2023-01-11T21:41:26.4502179Z 2023-01-11T21:41:26.4502325Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4502458Z import torch 2023-01-11T21:41:26.4502592Z import random 2023-01-11T21:41:26.4502800Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4503009Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4503017Z 2023-01-11T21:41:26.4503231Z aten = torch.ops.aten 2023-01-11T21:41:26.4503458Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4503606Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4503614Z 2023-01-11T21:41:26.4503636Z 2023-01-11T21:41:26.4503852Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4504196Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4504401Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4504572Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4504735Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4504852Z { 2023-01-11T21:41:26.4505029Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4505124Z { 2023-01-11T21:41:26.4505269Z #pragma omp for 2023-01-11T21:41:26.4505414Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4505526Z { 2023-01-11T21:41:26.4505641Z { 2023-01-11T21:41:26.4505769Z { 2023-01-11T21:41:26.4505907Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4506094Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4506285Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:41:26.4506468Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.4506629Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.4506782Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4506932Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.4507046Z } 2023-01-11T21:41:26.4507140Z } 2023-01-11T21:41:26.4507256Z } 2023-01-11T21:41:26.4507372Z } 2023-01-11T21:41:26.4507476Z } 2023-01-11T21:41:26.4507633Z ''') 2023-01-11T21:41:26.4507647Z 2023-01-11T21:41:26.4507652Z 2023-01-11T21:41:26.4507806Z async_compile.wait(globals()) 2023-01-11T21:41:26.4507932Z del async_compile 2023-01-11T21:41:26.4507944Z 2023-01-11T21:41:26.4508054Z def call(args): 2023-01-11T21:41:26.4508181Z arg0_1, = args 2023-01-11T21:41:26.4508308Z args.clear() 2023-01-11T21:41:26.4508764Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4509086Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4509357Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4509480Z del arg0_1 2023-01-11T21:41:26.4509594Z return (buf0, buf1, ) 2023-01-11T21:41:26.4509602Z 2023-01-11T21:41:26.4509623Z 2023-01-11T21:41:26.4509739Z if __name__ == "__main__": 2023-01-11T21:41:26.4509939Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4510156Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4510487Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4510678Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4510763Z 2023-01-11T21:41:26.4510772Z 2023-01-11T21:41:26.4510941Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4511066Z import torch 2023-01-11T21:41:26.4511177Z import random 2023-01-11T21:41:26.4511370Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4511590Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4511598Z 2023-01-11T21:41:26.4511742Z aten = torch.ops.aten 2023-01-11T21:41:26.4511975Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4512134Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4512142Z 2023-01-11T21:41:26.4512148Z 2023-01-11T21:41:26.4512384Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4512718Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4512906Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4513070Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4513251Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4513368Z { 2023-01-11T21:41:26.4513540Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4513656Z { 2023-01-11T21:41:26.4513792Z #pragma omp for 2023-01-11T21:41:26.4513920Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.4514035Z { 2023-01-11T21:41:26.4514153Z { 2023-01-11T21:41:26.4514268Z { 2023-01-11T21:41:26.4514429Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4514619Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.4514801Z auto tmp2 = std::expm1(tmp1); 2023-01-11T21:41:26.4514963Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.4515120Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.4515266Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4515416Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.4515539Z } 2023-01-11T21:41:26.4515650Z } 2023-01-11T21:41:26.4515760Z } 2023-01-11T21:41:26.4515854Z } 2023-01-11T21:41:26.4515963Z } 2023-01-11T21:41:26.4516123Z ''') 2023-01-11T21:41:26.4516134Z 2023-01-11T21:41:26.4516139Z 2023-01-11T21:41:26.4516300Z async_compile.wait(globals()) 2023-01-11T21:41:26.4516427Z del async_compile 2023-01-11T21:41:26.4516434Z 2023-01-11T21:41:26.4516561Z def call(args): 2023-01-11T21:41:26.4516684Z arg0_1, = args 2023-01-11T21:41:26.4516794Z args.clear() 2023-01-11T21:41:26.4517138Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4517476Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4517749Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4517877Z del arg0_1 2023-01-11T21:41:26.4518015Z return (buf0, buf1, ) 2023-01-11T21:41:26.4518023Z 2023-01-11T21:41:26.4518028Z 2023-01-11T21:41:26.4518162Z if __name__ == "__main__": 2023-01-11T21:41:26.4518362Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4518650Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4518986Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4519174Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4519182Z 2023-01-11T21:41:26.4519308Z ok (15.707s) 2023-01-11T21:41:26.4520072Z test_fill1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4520282Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4520817Z [2023-01-11 21:33:58,343] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 209 2023-01-11T21:41:26.4521278Z [2023-01-11 21:33:59,935] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 209 2023-01-11T21:41:26.4521289Z 2023-01-11T21:41:26.4521444Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4521553Z import torch 2023-01-11T21:41:26.4521677Z import random 2023-01-11T21:41:26.4521880Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4522093Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4522101Z 2023-01-11T21:41:26.4522241Z aten = torch.ops.aten 2023-01-11T21:41:26.4522462Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4522621Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4522635Z 2023-01-11T21:41:26.4522641Z 2023-01-11T21:41:26.4522887Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4523210Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4523410Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4523589Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4523701Z { 2023-01-11T21:41:26.4523876Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4523977Z { 2023-01-11T21:41:26.4524120Z #pragma omp for 2023-01-11T21:41:26.4524251Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.4524366Z { 2023-01-11T21:41:26.4524610Z auto tmp0 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4524780Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4524894Z } 2023-01-11T21:41:26.4525065Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4525213Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.4525313Z { 2023-01-11T21:41:26.4525478Z auto tmp0 = static_cast(1); 2023-01-11T21:41:26.4525627Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.4525737Z } 2023-01-11T21:41:26.4525879Z #pragma omp for 2023-01-11T21:41:26.4526034Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.4526146Z { 2023-01-11T21:41:26.4526374Z auto tmp0 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.4526532Z tmp0.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4526646Z } 2023-01-11T21:41:26.4526820Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4526973Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.4527091Z { 2023-01-11T21:41:26.4527268Z auto tmp0 = static_cast(2); 2023-01-11T21:41:26.4527383Z out_ptr1[i0] = tmp0; 2023-01-11T21:41:26.4527497Z } 2023-01-11T21:41:26.4527623Z } 2023-01-11T21:41:26.4527736Z } 2023-01-11T21:41:26.4527898Z ''') 2023-01-11T21:41:26.4527909Z 2023-01-11T21:41:26.4527914Z 2023-01-11T21:41:26.4528073Z async_compile.wait(globals()) 2023-01-11T21:41:26.4528209Z del async_compile 2023-01-11T21:41:26.4528218Z 2023-01-11T21:41:26.4528326Z def call(args): 2023-01-11T21:41:26.4528451Z arg0_1, = args 2023-01-11T21:41:26.4528678Z args.clear() 2023-01-11T21:41:26.4529157Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4529503Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4529732Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4529869Z return (buf0, buf1, ) 2023-01-11T21:41:26.4529880Z 2023-01-11T21:41:26.4529889Z 2023-01-11T21:41:26.4530016Z if __name__ == "__main__": 2023-01-11T21:41:26.4530193Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4530408Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4530763Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4531069Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4531080Z 2023-01-11T21:41:26.4531208Z ok (1.635s) 2023-01-11T21:41:26.4531963Z test_fill2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4532195Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4532656Z [2023-01-11 21:33:59,982] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 210 2023-01-11T21:41:26.4533124Z [2023-01-11 21:34:01,500] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 210 2023-01-11T21:41:26.4533138Z 2023-01-11T21:41:26.4533276Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4533407Z import torch 2023-01-11T21:41:26.4533529Z import random 2023-01-11T21:41:26.4533734Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4533950Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4533958Z 2023-01-11T21:41:26.4534096Z aten = torch.ops.aten 2023-01-11T21:41:26.4534319Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4534481Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4534495Z 2023-01-11T21:41:26.4534501Z 2023-01-11T21:41:26.4534729Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4535060Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4535261Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4535439Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4535546Z { 2023-01-11T21:41:26.4535719Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4535827Z { 2023-01-11T21:41:26.4535954Z #pragma omp for 2023-01-11T21:41:26.4536101Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.4536220Z { 2023-01-11T21:41:26.4536468Z auto tmp0 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4536626Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4536742Z } 2023-01-11T21:41:26.4536914Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4537042Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.4537156Z { 2023-01-11T21:41:26.4537331Z auto tmp0 = static_cast(1); 2023-01-11T21:41:26.4537469Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.4537583Z } 2023-01-11T21:41:26.4537724Z #pragma omp for 2023-01-11T21:41:26.4537873Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.4537972Z { 2023-01-11T21:41:26.4538221Z auto tmp0 = at::vec::Vectorized(static_cast(3.0)); 2023-01-11T21:41:26.4538391Z tmp0.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4538512Z } 2023-01-11T21:41:26.4538676Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4538954Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.4539066Z { 2023-01-11T21:41:26.4539222Z auto tmp0 = static_cast(3.0); 2023-01-11T21:41:26.4539372Z out_ptr1[i0] = tmp0; 2023-01-11T21:41:26.4539487Z } 2023-01-11T21:41:26.4539597Z } 2023-01-11T21:41:26.4539716Z } 2023-01-11T21:41:26.4539882Z ''') 2023-01-11T21:41:26.4539894Z 2023-01-11T21:41:26.4539901Z 2023-01-11T21:41:26.4540051Z async_compile.wait(globals()) 2023-01-11T21:41:26.4540163Z del async_compile 2023-01-11T21:41:26.4540171Z 2023-01-11T21:41:26.4540299Z def call(args): 2023-01-11T21:41:26.4540431Z arg0_1, = args 2023-01-11T21:41:26.4540559Z args.clear() 2023-01-11T21:41:26.4540903Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4541349Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4541579Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4541707Z return (buf0, buf1, ) 2023-01-11T21:41:26.4541739Z 2023-01-11T21:41:26.4541745Z 2023-01-11T21:41:26.4541860Z if __name__ == "__main__": 2023-01-11T21:41:26.4542059Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4542280Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4542622Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4542811Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4542824Z 2023-01-11T21:41:26.4542947Z ok (1.565s) 2023-01-11T21:41:26.4543805Z test_flip_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4544036Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4544492Z [2023-01-11 21:34:01,542] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 211 2023-01-11T21:41:26.4544868Z [2023-01-11 21:34:03,108] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 211 2023-01-11T21:41:26.4544890Z 2023-01-11T21:41:26.4544999Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4545092Z import torch 2023-01-11T21:41:26.4545187Z import random 2023-01-11T21:41:26.4545340Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4545501Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4545508Z 2023-01-11T21:41:26.4545612Z aten = torch.ops.aten 2023-01-11T21:41:26.4545786Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4545896Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4545903Z 2023-01-11T21:41:26.4545908Z 2023-01-11T21:41:26.4546096Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4546357Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4546513Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4546645Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4546777Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4546859Z { 2023-01-11T21:41:26.4546974Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4547055Z { 2023-01-11T21:41:26.4547157Z #pragma omp for 2023-01-11T21:41:26.4547267Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.4547351Z { 2023-01-11T21:41:26.4547458Z #pragma GCC ivdep 2023-01-11T21:41:26.4547569Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:41:26.4547639Z { 2023-01-11T21:41:26.4547730Z { 2023-01-11T21:41:26.4547820Z { 2023-01-11T21:41:26.4548053Z auto tmp0 = in_ptr0[5 + ((-1)*i1) + (6*i0)]; 2023-01-11T21:41:26.4548249Z out_ptr0[i1 + (6*i0)] = tmp0; 2023-01-11T21:41:26.4548338Z } 2023-01-11T21:41:26.4548426Z } 2023-01-11T21:41:26.4548495Z } 2023-01-11T21:41:26.4548579Z } 2023-01-11T21:41:26.4548699Z #pragma omp for collapse(2) 2023-01-11T21:41:26.4548809Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.4548893Z { 2023-01-11T21:41:26.4549002Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:41:26.4549089Z { 2023-01-11T21:41:26.4549185Z #pragma GCC ivdep 2023-01-11T21:41:26.4549301Z for(long i2=0; i2<6; i2+=1) 2023-01-11T21:41:26.4549388Z { 2023-01-11T21:41:26.4549476Z { 2023-01-11T21:41:26.4549608Z { 2023-01-11T21:41:26.4549864Z auto tmp0 = in_ptr0[30 + i2 + ((-6)*i1) + (36*i0)]; 2023-01-11T21:41:26.4550012Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.4550199Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.4550333Z out_ptr1[i2 + (6*i1) + (36*i0)] = tmp2; 2023-01-11T21:41:26.4550424Z } 2023-01-11T21:41:26.4550512Z } 2023-01-11T21:41:26.4550598Z } 2023-01-11T21:41:26.4550684Z } 2023-01-11T21:41:26.4550753Z } 2023-01-11T21:41:26.4550836Z } 2023-01-11T21:41:26.4550916Z } 2023-01-11T21:41:26.4551023Z ''') 2023-01-11T21:41:26.4551030Z 2023-01-11T21:41:26.4551035Z 2023-01-11T21:41:26.4551154Z async_compile.wait(globals()) 2023-01-11T21:41:26.4551251Z del async_compile 2023-01-11T21:41:26.4551257Z 2023-01-11T21:41:26.4551350Z def call(args): 2023-01-11T21:41:26.4551442Z arg0_1, = args 2023-01-11T21:41:26.4551524Z args.clear() 2023-01-11T21:41:26.4551809Z buf0 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4552104Z buf1 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4552319Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4552409Z del arg0_1 2023-01-11T21:41:26.4552512Z return (buf0, buf1, ) 2023-01-11T21:41:26.4552518Z 2023-01-11T21:41:26.4552523Z 2023-01-11T21:41:26.4552623Z if __name__ == "__main__": 2023-01-11T21:41:26.4552772Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4552921Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4553209Z arg0_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4553354Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4553361Z 2023-01-11T21:41:26.4553451Z ok (1.608s) 2023-01-11T21:41:26.4554059Z test_fmod_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4554230Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4554585Z [2023-01-11 21:34:03,132] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 212 2023-01-11T21:41:26.4554948Z [2023-01-11 21:34:04,818] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 212 2023-01-11T21:41:26.4554955Z 2023-01-11T21:41:26.4555080Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4555158Z import torch 2023-01-11T21:41:26.4555251Z import random 2023-01-11T21:41:26.4555407Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4555566Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4555611Z 2023-01-11T21:41:26.4555716Z aten = torch.ops.aten 2023-01-11T21:41:26.4555892Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4556014Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4556021Z 2023-01-11T21:41:26.4556026Z 2023-01-11T21:41:26.4556208Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4556454Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4556610Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4556748Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4556880Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4557007Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4557088Z { 2023-01-11T21:41:26.4557251Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4557320Z { 2023-01-11T21:41:26.4557427Z #pragma omp for 2023-01-11T21:41:26.4557542Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:41:26.4557625Z { 2023-01-11T21:41:26.4557809Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4557984Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4558105Z auto tmp2 = tmp0.fmod(tmp1); 2023-01-11T21:41:26.4558284Z auto tmp3 = at::vec::Vectorized(static_cast(3.0)); 2023-01-11T21:41:26.4558382Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4558502Z auto tmp5 = tmp4.fmod(tmp1); 2023-01-11T21:41:26.4558683Z auto tmp6 = at::vec::Vectorized(static_cast(2.0)); 2023-01-11T21:41:26.4558856Z auto tmp7 = tmp5 - tmp6; 2023-01-11T21:41:26.4558975Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4559098Z tmp7.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4559185Z } 2023-01-11T21:41:26.4559293Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4559408Z for(long i0=72; i0<72; i0+=1) 2023-01-11T21:41:26.4559494Z { 2023-01-11T21:41:26.4559606Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4559719Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4559854Z auto tmp2 = std::fmod(tmp0, tmp1); 2023-01-11T21:41:26.4559989Z auto tmp3 = static_cast(3.0); 2023-01-11T21:41:26.4560087Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4560222Z auto tmp5 = std::fmod(tmp4, tmp1); 2023-01-11T21:41:26.4560356Z auto tmp6 = static_cast(2.0); 2023-01-11T21:41:26.4560527Z auto tmp7 = tmp5 - tmp6; 2023-01-11T21:41:26.4560636Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4560742Z out_ptr1[i0] = tmp7; 2023-01-11T21:41:26.4560827Z } 2023-01-11T21:41:26.4560896Z } 2023-01-11T21:41:26.4560976Z } 2023-01-11T21:41:26.4561088Z ''') 2023-01-11T21:41:26.4561095Z 2023-01-11T21:41:26.4561100Z 2023-01-11T21:41:26.4561222Z async_compile.wait(globals()) 2023-01-11T21:41:26.4561319Z del async_compile 2023-01-11T21:41:26.4561326Z 2023-01-11T21:41:26.4561418Z def call(args): 2023-01-11T21:41:26.4561520Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4561599Z args.clear() 2023-01-11T21:41:26.4561890Z buf0 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4562175Z buf1 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4562425Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4562516Z del arg0_1 2023-01-11T21:41:26.4562606Z del arg1_1 2023-01-11T21:41:26.4562708Z return (buf0, buf1, ) 2023-01-11T21:41:26.4562714Z 2023-01-11T21:41:26.4562719Z 2023-01-11T21:41:26.4562824Z if __name__ == "__main__": 2023-01-11T21:41:26.4562959Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4563159Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4563446Z arg0_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4563733Z arg1_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4563884Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4563891Z 2023-01-11T21:41:26.4563977Z ok (1.712s) 2023-01-11T21:41:26.4564632Z test_fmod_zero_dim_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4564807Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4565163Z [2023-01-11 21:34:04,844] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 213 2023-01-11T21:41:26.4565508Z [2023-01-11 21:34:06,373] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 213 2023-01-11T21:41:26.4566072Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4566235Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4566583Z [2023-01-11 21:34:06,389] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 214 2023-01-11T21:41:26.4566949Z [2023-01-11 21:34:07,946] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 214 2023-01-11T21:41:26.4566959Z 2023-01-11T21:41:26.4567082Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4567176Z import torch 2023-01-11T21:41:26.4567269Z import random 2023-01-11T21:41:26.4567422Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4567567Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4567590Z 2023-01-11T21:41:26.4567680Z aten = torch.ops.aten 2023-01-11T21:41:26.4567855Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4567978Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4567985Z 2023-01-11T21:41:26.4567990Z 2023-01-11T21:41:26.4568174Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4568436Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4568595Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4568734Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4568869Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4568937Z { 2023-01-11T21:41:26.4569186Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4569271Z { 2023-01-11T21:41:26.4569376Z #pragma omp for 2023-01-11T21:41:26.4569484Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.4569568Z { 2023-01-11T21:41:26.4569731Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4569895Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.4570016Z auto tmp2 = tmp0.fmod(tmp1); 2023-01-11T21:41:26.4570135Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4570222Z } 2023-01-11T21:41:26.4570347Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4570457Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.4570529Z { 2023-01-11T21:41:26.4570644Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4570756Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.4570956Z auto tmp2 = std::fmod(tmp0, tmp1); 2023-01-11T21:41:26.4571063Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4571146Z } 2023-01-11T21:41:26.4571227Z } 2023-01-11T21:41:26.4571293Z } 2023-01-11T21:41:26.4571402Z ''') 2023-01-11T21:41:26.4571412Z 2023-01-11T21:41:26.4571417Z 2023-01-11T21:41:26.4571535Z async_compile.wait(globals()) 2023-01-11T21:41:26.4571632Z del async_compile 2023-01-11T21:41:26.4571638Z 2023-01-11T21:41:26.4571731Z def call(args): 2023-01-11T21:41:26.4571834Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4571931Z args.clear() 2023-01-11T21:41:26.4572196Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4572397Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4572532Z del arg0_1 2023-01-11T21:41:26.4572626Z del arg1_1 2023-01-11T21:41:26.4572723Z return (buf0, ) 2023-01-11T21:41:26.4572734Z 2023-01-11T21:41:26.4572739Z 2023-01-11T21:41:26.4572839Z if __name__ == "__main__": 2023-01-11T21:41:26.4572993Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4573155Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4573404Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4573657Z arg1_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4573809Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4573816Z 2023-01-11T21:41:26.4573821Z 2023-01-11T21:41:26.4573947Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4574041Z import torch 2023-01-11T21:41:26.4574136Z import random 2023-01-11T21:41:26.4574288Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4574452Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4574459Z 2023-01-11T21:41:26.4574546Z aten = torch.ops.aten 2023-01-11T21:41:26.4574724Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4574845Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4574852Z 2023-01-11T21:41:26.4574857Z 2023-01-11T21:41:26.4575043Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4575304Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4575462Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4575600Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4575730Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4575794Z { 2023-01-11T21:41:26.4575922Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4576005Z { 2023-01-11T21:41:26.4576110Z #pragma omp for 2023-01-11T21:41:26.4576222Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.4576309Z { 2023-01-11T21:41:26.4576470Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:41:26.4576632Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4576754Z auto tmp2 = tmp0.fmod(tmp1); 2023-01-11T21:41:26.4576875Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4576962Z } 2023-01-11T21:41:26.4577088Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4577197Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.4577281Z { 2023-01-11T21:41:26.4577376Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.4577485Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4577621Z auto tmp2 = std::fmod(tmp0, tmp1); 2023-01-11T21:41:26.4577730Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4577814Z } 2023-01-11T21:41:26.4577897Z } 2023-01-11T21:41:26.4577976Z } 2023-01-11T21:41:26.4578068Z ''') 2023-01-11T21:41:26.4578078Z 2023-01-11T21:41:26.4578083Z 2023-01-11T21:41:26.4578201Z async_compile.wait(globals()) 2023-01-11T21:41:26.4578301Z del async_compile 2023-01-11T21:41:26.4578343Z 2023-01-11T21:41:26.4578439Z def call(args): 2023-01-11T21:41:26.4578540Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4578634Z args.clear() 2023-01-11T21:41:26.4578900Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4579115Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4579194Z del arg0_1 2023-01-11T21:41:26.4579283Z del arg1_1 2023-01-11T21:41:26.4579378Z return (buf0, ) 2023-01-11T21:41:26.4579384Z 2023-01-11T21:41:26.4579389Z 2023-01-11T21:41:26.4579494Z if __name__ == "__main__": 2023-01-11T21:41:26.4579644Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4579805Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4580096Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4580346Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4580507Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4580514Z 2023-01-11T21:41:26.4580601Z ok (3.126s) 2023-01-11T21:41:26.4581316Z test_forced_buffer_realize_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4581632Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4582200Z [2023-01-11 21:34:07,972] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 215 2023-01-11T21:41:26.4582742Z [2023-01-11 21:34:09,805] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 215 2023-01-11T21:41:26.4582758Z 2023-01-11T21:41:26.4582956Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4583097Z import torch 2023-01-11T21:41:26.4583341Z import random 2023-01-11T21:41:26.4583544Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4583794Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4583805Z 2023-01-11T21:41:26.4583965Z aten = torch.ops.aten 2023-01-11T21:41:26.4584236Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4584424Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4584433Z 2023-01-11T21:41:26.4584439Z 2023-01-11T21:41:26.4584725Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4585123Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4585361Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.4585553Z const float* __restrict__ in_ptr0) 2023-01-11T21:41:26.4585681Z { 2023-01-11T21:41:26.4596175Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4596355Z { 2023-01-11T21:41:26.4596538Z #pragma omp for 2023-01-11T21:41:26.4596714Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.4596830Z { 2023-01-11T21:41:26.4597114Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4597377Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.4597555Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.4597725Z auto tmp3 = tmp2 * tmp1; 2023-01-11T21:41:26.4597917Z tmp3.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.4598047Z } 2023-01-11T21:41:26.4598239Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4598389Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.4598521Z { 2023-01-11T21:41:26.4598700Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4598904Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.4599207Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.4599382Z auto tmp3 = tmp2 * tmp1; 2023-01-11T21:41:26.4599557Z in_out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.4599669Z } 2023-01-11T21:41:26.4599802Z } 2023-01-11T21:41:26.4599917Z } 2023-01-11T21:41:26.4600117Z ''') 2023-01-11T21:41:26.4600131Z 2023-01-11T21:41:26.4600139Z 2023-01-11T21:41:26.4600324Z async_compile.wait(globals()) 2023-01-11T21:41:26.4600476Z del async_compile 2023-01-11T21:41:26.4600487Z 2023-01-11T21:41:26.4600635Z def call(args): 2023-01-11T21:41:26.4600760Z arg0_1, = args 2023-01-11T21:41:26.4600898Z args.clear() 2023-01-11T21:41:26.4601317Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4601499Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.4601847Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.4601991Z del arg0_1 2023-01-11T21:41:26.4602143Z return (buf1, ) 2023-01-11T21:41:26.4602164Z 2023-01-11T21:41:26.4602171Z 2023-01-11T21:41:26.4602308Z if __name__ == "__main__": 2023-01-11T21:41:26.4602541Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4602791Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4603205Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4603433Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4603444Z 2023-01-11T21:41:26.4603577Z ok (1.860s) 2023-01-11T21:41:26.4604523Z test_full_like_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4604778Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4605321Z [2023-01-11 21:34:09,849] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 216 2023-01-11T21:41:26.4605844Z [2023-01-11 21:34:11,535] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 216 2023-01-11T21:41:26.4605876Z 2023-01-11T21:41:26.4606048Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4606191Z import torch 2023-01-11T21:41:26.4606329Z import random 2023-01-11T21:41:26.4606568Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4606812Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4606827Z 2023-01-11T21:41:26.4606983Z aten = torch.ops.aten 2023-01-11T21:41:26.4607247Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4607418Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4607428Z 2023-01-11T21:41:26.4607457Z 2023-01-11T21:41:26.4607720Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4608119Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4608357Z extern "C" void kernel(float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4608483Z { 2023-01-11T21:41:26.4608684Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4608819Z { 2023-01-11T21:41:26.4608982Z #pragma omp for 2023-01-11T21:41:26.4609294Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.4609430Z { 2023-01-11T21:41:26.4609722Z auto tmp0 = at::vec::Vectorized(static_cast(7.777)); 2023-01-11T21:41:26.4610000Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4610284Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.4610473Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4610607Z } 2023-01-11T21:41:26.4610785Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4610954Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.4611224Z { 2023-01-11T21:41:26.4611431Z auto tmp0 = static_cast(7.777); 2023-01-11T21:41:26.4611641Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4611901Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.4612057Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4612167Z } 2023-01-11T21:41:26.4612297Z } 2023-01-11T21:41:26.4612423Z } 2023-01-11T21:41:26.4612588Z ''') 2023-01-11T21:41:26.4612602Z 2023-01-11T21:41:26.4612612Z 2023-01-11T21:41:26.4612793Z async_compile.wait(globals()) 2023-01-11T21:41:26.4612941Z del async_compile 2023-01-11T21:41:26.4612950Z 2023-01-11T21:41:26.4613099Z def call(args): 2023-01-11T21:41:26.4613224Z arg0_1, = args 2023-01-11T21:41:26.4613366Z args.clear() 2023-01-11T21:41:26.4613897Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4614097Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4614253Z return (buf0, ) 2023-01-11T21:41:26.4614270Z 2023-01-11T21:41:26.4614277Z 2023-01-11T21:41:26.4614437Z if __name__ == "__main__": 2023-01-11T21:41:26.4614666Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4614908Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4615294Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4615521Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4615529Z 2023-01-11T21:41:26.4615666Z ok (1.729s) 2023-01-11T21:41:26.4616603Z test_fuse_tiled_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4616852Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4617399Z [2023-01-11 21:34:11,554] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 217 2023-01-11T21:41:26.4617944Z [2023-01-11 21:34:13,137] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 217 2023-01-11T21:41:26.4617954Z 2023-01-11T21:41:26.4618145Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4618298Z import torch 2023-01-11T21:41:26.4618429Z import random 2023-01-11T21:41:26.4618655Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4618898Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4618913Z 2023-01-11T21:41:26.4619072Z aten = torch.ops.aten 2023-01-11T21:41:26.4619350Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4619546Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4619562Z 2023-01-11T21:41:26.4619572Z 2023-01-11T21:41:26.4619855Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4620266Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4620492Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4620697Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4620899Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4621102Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4621307Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4621431Z { 2023-01-11T21:41:26.4621623Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4621736Z { 2023-01-11T21:41:26.4621899Z #pragma omp for 2023-01-11T21:41:26.4622076Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.4622206Z { 2023-01-11T21:41:26.4622385Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.4622520Z { 2023-01-11T21:41:26.4622787Z auto tmp0 = at::vec::Vectorized(in_ptr0[i0]); 2023-01-11T21:41:26.4623255Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i1); 2023-01-11T21:41:26.4623440Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4623642Z tmp2.store(out_ptr0 + (8*i1) + (128*i0)); 2023-01-11T21:41:26.4623773Z } 2023-01-11T21:41:26.4623965Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.4624145Z for(long i1=128; i1<128; i1+=1) 2023-01-11T21:41:26.4624280Z { 2023-01-11T21:41:26.4624432Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4624595Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.4624778Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4624965Z out_ptr0[i1 + (128*i0)] = tmp2; 2023-01-11T21:41:26.4625098Z } 2023-01-11T21:41:26.4625227Z } 2023-01-11T21:41:26.4625481Z #pragma omp for 2023-01-11T21:41:26.4625623Z for(long i0=0; i0<2048; i0+=1) 2023-01-11T21:41:26.4625760Z { 2023-01-11T21:41:26.4626038Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + 8*i0); 2023-01-11T21:41:26.4626308Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4626478Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4626666Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4626801Z } 2023-01-11T21:41:26.4626980Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4627156Z for(long i0=16384; i0<16384; i0+=1) 2023-01-11T21:41:26.4627291Z { 2023-01-11T21:41:26.4627458Z auto tmp0 = in_ptr2[i0]; 2023-01-11T21:41:26.4627661Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4627837Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4628000Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.4628116Z } 2023-01-11T21:41:26.4628243Z } 2023-01-11T21:41:26.4628376Z } 2023-01-11T21:41:26.4628561Z ''') 2023-01-11T21:41:26.4628572Z 2023-01-11T21:41:26.4628589Z 2023-01-11T21:41:26.4628776Z async_compile.wait(globals()) 2023-01-11T21:41:26.4628930Z del async_compile 2023-01-11T21:41:26.4628945Z 2023-01-11T21:41:26.4629096Z def call(args): 2023-01-11T21:41:26.4629242Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4629387Z args.clear() 2023-01-11T21:41:26.4629830Z buf0 = empty_strided((128, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4630245Z buf1 = empty_strided((128, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4630678Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4630829Z del arg0_1 2023-01-11T21:41:26.4630973Z del arg1_1 2023-01-11T21:41:26.4631117Z del arg2_1 2023-01-11T21:41:26.4631261Z return (buf0, buf1, ) 2023-01-11T21:41:26.4631273Z 2023-01-11T21:41:26.4631280Z 2023-01-11T21:41:26.4631439Z if __name__ == "__main__": 2023-01-11T21:41:26.4631676Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4631936Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4632345Z arg0_1 = rand_strided((128, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4632755Z arg1_1 = rand_strided((1, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4633173Z arg2_1 = rand_strided((128, 128), (128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4633427Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4633437Z 2023-01-11T21:41:26.4633554Z ok (1.603s) 2023-01-11T21:41:26.4634495Z test_gather1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4634844Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4635392Z [2023-01-11 21:34:13,167] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 218 2023-01-11T21:41:26.4635935Z [2023-01-11 21:34:14,704] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 218 2023-01-11T21:41:26.4635945Z 2023-01-11T21:41:26.4636141Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4636292Z import torch 2023-01-11T21:41:26.4636436Z import random 2023-01-11T21:41:26.4636672Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4636900Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4636916Z 2023-01-11T21:41:26.4637077Z aten = torch.ops.aten 2023-01-11T21:41:26.4637448Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4637645Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4637665Z 2023-01-11T21:41:26.4637673Z 2023-01-11T21:41:26.4637954Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4638363Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4638610Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4638822Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4638998Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4639196Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4639321Z { 2023-01-11T21:41:26.4639523Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4639650Z { 2023-01-11T21:41:26.4639805Z #pragma omp for 2023-01-11T21:41:26.4639976Z for(long i0=0; i0<20; i0+=1) 2023-01-11T21:41:26.4640091Z { 2023-01-11T21:41:26.4640260Z #pragma GCC ivdep 2023-01-11T21:41:26.4640436Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.4640580Z { 2023-01-11T21:41:26.4640711Z { 2023-01-11T21:41:26.4640850Z { 2023-01-11T21:41:26.4641059Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.4641248Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4641441Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4641644Z auto tmp3 = in_ptr1[tmp2 + (6*i1)]; 2023-01-11T21:41:26.4641841Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.4642038Z out_ptr1[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.4642184Z } 2023-01-11T21:41:26.4642319Z } 2023-01-11T21:41:26.4642431Z } 2023-01-11T21:41:26.4642557Z } 2023-01-11T21:41:26.4642690Z } 2023-01-11T21:41:26.4642816Z } 2023-01-11T21:41:26.4643003Z ''') 2023-01-11T21:41:26.4643014Z 2023-01-11T21:41:26.4643020Z 2023-01-11T21:41:26.4643214Z async_compile.wait(globals()) 2023-01-11T21:41:26.4643376Z del async_compile 2023-01-11T21:41:26.4643388Z 2023-01-11T21:41:26.4643508Z def call(args): 2023-01-11T21:41:26.4643673Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4643824Z args.clear() 2023-01-11T21:41:26.4644263Z buf0 = empty_strided((4, 5, 10, 1), (50, 10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4644697Z buf1 = empty_strided((4, 5, 10, 1), (50, 10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4645063Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4645208Z del arg0_1 2023-01-11T21:41:26.4645348Z del arg1_1 2023-01-11T21:41:26.4645494Z return (buf0, buf1, ) 2023-01-11T21:41:26.4645508Z 2023-01-11T21:41:26.4645516Z 2023-01-11T21:41:26.4645681Z if __name__ == "__main__": 2023-01-11T21:41:26.4645917Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4646162Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4646708Z arg0_1 = rand_strided((1, 1, 10, 6), (60, 60, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4647131Z arg1_1 = rand_strided((4, 5, 10, 1), (50, 10, 1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4647354Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4647365Z 2023-01-11T21:41:26.4647503Z ok (1.567s) 2023-01-11T21:41:26.4647712Z test_gather2_cpu (__main__.CpuTests) ... ok (0.002s) 2023-01-11T21:41:26.4648733Z test_gather_scatter_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4649141Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4649701Z [2023-01-11 21:34:14,837] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 219 2023-01-11T21:41:26.4650247Z [2023-01-11 21:34:16,409] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 219 2023-01-11T21:41:26.4650259Z 2023-01-11T21:41:26.4650456Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4650612Z import torch 2023-01-11T21:41:26.4650766Z import random 2023-01-11T21:41:26.4650998Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4651228Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4651237Z 2023-01-11T21:41:26.4651400Z aten = torch.ops.aten 2023-01-11T21:41:26.4651676Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4651866Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4651887Z 2023-01-11T21:41:26.4651894Z 2023-01-11T21:41:26.4652180Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4652594Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4652835Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4653047Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4653231Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4653362Z { 2023-01-11T21:41:26.4653573Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4653704Z { 2023-01-11T21:41:26.4653861Z #pragma omp for 2023-01-11T21:41:26.4654035Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.4654172Z { 2023-01-11T21:41:26.4654438Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:41:26.4654622Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4654756Z } 2023-01-11T21:41:26.4654954Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4655124Z for(long i0=512; i0<512; i0+=1) 2023-01-11T21:41:26.4655266Z { 2023-01-11T21:41:26.4655470Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.4655622Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.4655752Z } 2023-01-11T21:41:26.4655916Z #pragma omp for 2023-01-11T21:41:26.4656087Z for(long i0=0; i0<80; i0+=1) 2023-01-11T21:41:26.4656227Z { 2023-01-11T21:41:26.4656397Z #pragma GCC ivdep 2023-01-11T21:41:26.4656551Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.4656687Z { 2023-01-11T21:41:26.4656820Z { 2023-01-11T21:41:26.4656957Z { 2023-01-11T21:41:26.4657170Z auto tmp0 = in_ptr0[80 + i0]; 2023-01-11T21:41:26.4657360Z auto tmp1 = in_ptr0[i0]; 2023-01-11T21:41:26.4657573Z auto tmp2 = in_ptr1[i1 + (32*tmp1)]; 2023-01-11T21:41:26.4657758Z auto tmp3 = in_ptr1[i1 + (32*tmp0)]; 2023-01-11T21:41:26.4658084Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.4658451Z auto tmp5 = static_cast(1); 2023-01-11T21:41:26.4658655Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.4658883Z atomic_add(&out_ptr0[i1 + (32*tmp0)], tmp6); 2023-01-11T21:41:26.4659026Z } 2023-01-11T21:41:26.4659165Z } 2023-01-11T21:41:26.4659282Z } 2023-01-11T21:41:26.4659413Z } 2023-01-11T21:41:26.4659549Z } 2023-01-11T21:41:26.4659670Z } 2023-01-11T21:41:26.4659855Z ''') 2023-01-11T21:41:26.4659868Z 2023-01-11T21:41:26.4659877Z 2023-01-11T21:41:26.4660066Z async_compile.wait(globals()) 2023-01-11T21:41:26.4660216Z del async_compile 2023-01-11T21:41:26.4660226Z 2023-01-11T21:41:26.4660371Z def call(args): 2023-01-11T21:41:26.4660511Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4660739Z args.clear() 2023-01-11T21:41:26.4661173Z buf0 = empty_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4661509Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4661648Z del arg0_1 2023-01-11T21:41:26.4661790Z del arg1_1 2023-01-11T21:41:26.4661940Z return (buf0, ) 2023-01-11T21:41:26.4661950Z 2023-01-11T21:41:26.4661958Z 2023-01-11T21:41:26.4662098Z if __name__ == "__main__": 2023-01-11T21:41:26.4662331Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4662584Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4663011Z arg0_1 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4663516Z arg1_1 = rand_strided((2, 80), (80, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4663747Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4663758Z 2023-01-11T21:41:26.4663906Z ok (1.708s) 2023-01-11T21:41:26.4664826Z test_gelu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4665088Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4665614Z [2023-01-11 21:34:16,461] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 220 2023-01-11T21:41:26.4666170Z [2023-01-11 21:34:18,190] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 220 2023-01-11T21:41:26.4666183Z 2023-01-11T21:41:26.4666375Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4666525Z import torch 2023-01-11T21:41:26.4666688Z import random 2023-01-11T21:41:26.4666930Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4667177Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4667196Z 2023-01-11T21:41:26.4667352Z aten = torch.ops.aten 2023-01-11T21:41:26.4667591Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4667783Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4667796Z 2023-01-11T21:41:26.4667803Z 2023-01-11T21:41:26.4668098Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4668493Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4668746Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4668954Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4669151Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4669269Z { 2023-01-11T21:41:26.4669453Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4669588Z { 2023-01-11T21:41:26.4669752Z #pragma omp for 2023-01-11T21:41:26.4669924Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.4670172Z { 2023-01-11T21:41:26.4670443Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4670718Z auto tmp1 = at::vec::Vectorized(static_cast(0.5)); 2023-01-11T21:41:26.4670881Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.4671169Z auto tmp3 = at::vec::Vectorized(static_cast(0.7071067811865476)); 2023-01-11T21:41:26.4671342Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4671517Z auto tmp5 = tmp4.erf(); 2023-01-11T21:41:26.4671794Z auto tmp6 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4671974Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.4672145Z auto tmp8 = tmp2 * tmp7; 2023-01-11T21:41:26.4672487Z auto tmp9 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.4672663Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.4672841Z auto tmp11 = tmp0 + tmp6; 2023-01-11T21:41:26.4673030Z auto tmp12 = tmp11 * tmp1; 2023-01-11T21:41:26.4673196Z auto tmp13 = tmp11 * tmp3; 2023-01-11T21:41:26.4673374Z auto tmp14 = tmp13.erf(); 2023-01-11T21:41:26.4673554Z auto tmp15 = tmp14 + tmp6; 2023-01-11T21:41:26.4673732Z auto tmp16 = tmp12 * tmp15; 2023-01-11T21:41:26.4673903Z tmp10.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4674077Z tmp16.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4674212Z } 2023-01-11T21:41:26.4674414Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4674592Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.4674723Z { 2023-01-11T21:41:26.4674910Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4675097Z auto tmp1 = static_cast(0.5); 2023-01-11T21:41:26.4675288Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.4675520Z auto tmp3 = static_cast(0.7071067811865476); 2023-01-11T21:41:26.4675698Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4675888Z auto tmp5 = std::erf(tmp4); 2023-01-11T21:41:26.4676089Z auto tmp6 = static_cast(1); 2023-01-11T21:41:26.4676268Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.4676423Z auto tmp8 = tmp2 * tmp7; 2023-01-11T21:41:26.4676627Z auto tmp9 = static_cast(2); 2023-01-11T21:41:26.4676807Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.4676973Z auto tmp11 = tmp0 + tmp6; 2023-01-11T21:41:26.4677153Z auto tmp12 = tmp11 * tmp1; 2023-01-11T21:41:26.4677335Z auto tmp13 = tmp11 * tmp3; 2023-01-11T21:41:26.4677534Z auto tmp14 = std::erf(tmp13); 2023-01-11T21:41:26.4677693Z auto tmp15 = tmp14 + tmp6; 2023-01-11T21:41:26.4677869Z auto tmp16 = tmp12 * tmp15; 2023-01-11T21:41:26.4678035Z out_ptr0[i0] = tmp10; 2023-01-11T21:41:26.4678203Z out_ptr1[i0] = tmp16; 2023-01-11T21:41:26.4678344Z } 2023-01-11T21:41:26.4678476Z } 2023-01-11T21:41:26.4678603Z } 2023-01-11T21:41:26.4678781Z ''') 2023-01-11T21:41:26.4678791Z 2023-01-11T21:41:26.4678799Z 2023-01-11T21:41:26.4678978Z async_compile.wait(globals()) 2023-01-11T21:41:26.4679134Z del async_compile 2023-01-11T21:41:26.4679149Z 2023-01-11T21:41:26.4679302Z def call(args): 2023-01-11T21:41:26.4679447Z arg0_1, = args 2023-01-11T21:41:26.4679593Z args.clear() 2023-01-11T21:41:26.4680013Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4680407Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4680731Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4680869Z del arg0_1 2023-01-11T21:41:26.4681034Z return (buf0, buf1, ) 2023-01-11T21:41:26.4681046Z 2023-01-11T21:41:26.4681054Z 2023-01-11T21:41:26.4681209Z if __name__ == "__main__": 2023-01-11T21:41:26.4681557Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4681799Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4682212Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4682410Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4682420Z 2023-01-11T21:41:26.4682563Z ok (1.775s) 2023-01-11T21:41:26.4683476Z test_glu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4683802Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4684342Z [2023-01-11 21:34:18,231] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 221 2023-01-11T21:41:26.4684878Z [2023-01-11 21:34:19,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 221 2023-01-11T21:41:26.4684891Z 2023-01-11T21:41:26.4685092Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4685239Z import torch 2023-01-11T21:41:26.4685393Z import random 2023-01-11T21:41:26.4685606Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4685846Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4685857Z 2023-01-11T21:41:26.4686017Z aten = torch.ops.aten 2023-01-11T21:41:26.4686299Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4686489Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4686498Z 2023-01-11T21:41:26.4686505Z 2023-01-11T21:41:26.4686787Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4687197Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4687444Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4687619Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4687834Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4688032Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4688160Z { 2023-01-11T21:41:26.4688366Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4688493Z { 2023-01-11T21:41:26.4688655Z #pragma omp for 2023-01-11T21:41:26.4688811Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.4688949Z { 2023-01-11T21:41:26.4689249Z #pragma GCC ivdep 2023-01-11T21:41:26.4689428Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.4689565Z { 2023-01-11T21:41:26.4689690Z { 2023-01-11T21:41:26.4689838Z { 2023-01-11T21:41:26.4690031Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.4690249Z auto tmp1 = in_ptr0[4 + i1 + (8*i0)]; 2023-01-11T21:41:26.4690594Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:41:26.4690772Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:41:26.4690971Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4691171Z out_ptr0[i1 + (4*i0)] = tmp4; 2023-01-11T21:41:26.4691315Z } 2023-01-11T21:41:26.4691437Z } 2023-01-11T21:41:26.4691560Z } 2023-01-11T21:41:26.4691697Z } 2023-01-11T21:41:26.4691867Z #pragma omp for 2023-01-11T21:41:26.4692040Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4692175Z { 2023-01-11T21:41:26.4692352Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:41:26.4692468Z { 2023-01-11T21:41:26.4692764Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.4693058Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 512 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.4693470Z auto tmp2 = decltype(tmp1)(1)/(decltype(tmp1)(1) + tmp1.neg().exp()); 2023-01-11T21:41:26.4693647Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:41:26.4693871Z tmp3.store(out_ptr1 + (8*i1) + (512*i0)); 2023-01-11T21:41:26.4693993Z } 2023-01-11T21:41:26.4694190Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.4694367Z for(long i1=512; i1<512; i1+=1) 2023-01-11T21:41:26.4694493Z { 2023-01-11T21:41:26.4694699Z auto tmp0 = in_ptr0[i1 + (1024*i0)]; 2023-01-11T21:41:26.4694907Z auto tmp1 = in_ptr0[512 + i1 + (1024*i0)]; 2023-01-11T21:41:26.4695233Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:41:26.4695415Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:41:26.4695708Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4695877Z out_ptr1[i1 + (512*i0)] = tmp4; 2023-01-11T21:41:26.4696016Z } 2023-01-11T21:41:26.4696152Z } 2023-01-11T21:41:26.4696325Z #pragma omp for 2023-01-11T21:41:26.4696489Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.4696626Z { 2023-01-11T21:41:26.4696777Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.4696909Z { 2023-01-11T21:41:26.4697198Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (64*i0)); 2023-01-11T21:41:26.4697481Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 32 + (8*i1) + (64*i0)); 2023-01-11T21:41:26.4697767Z auto tmp2 = decltype(tmp1)(1)/(decltype(tmp1)(1) + tmp1.neg().exp()); 2023-01-11T21:41:26.4697955Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:41:26.4698166Z tmp3.store(out_ptr2 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.4698302Z } 2023-01-11T21:41:26.4698474Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.4698650Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.4698796Z { 2023-01-11T21:41:26.4698998Z auto tmp0 = in_ptr0[i1 + (64*i0)]; 2023-01-11T21:41:26.4699200Z auto tmp1 = in_ptr0[32 + i1 + (64*i0)]; 2023-01-11T21:41:26.4699512Z auto tmp2 = std::exp(-tmp1); 2023-01-11T21:41:26.4699700Z auto tmp3 = 1 / (1 + tmp2); 2023-01-11T21:41:26.4699863Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.4700052Z out_ptr2[i1 + (32*i0)] = tmp4; 2023-01-11T21:41:26.4700178Z } 2023-01-11T21:41:26.4700309Z } 2023-01-11T21:41:26.4700443Z } 2023-01-11T21:41:26.4700569Z } 2023-01-11T21:41:26.4700741Z ''') 2023-01-11T21:41:26.4700753Z 2023-01-11T21:41:26.4700764Z 2023-01-11T21:41:26.4700929Z async_compile.wait(globals()) 2023-01-11T21:41:26.4701091Z del async_compile 2023-01-11T21:41:26.4701104Z 2023-01-11T21:41:26.4701243Z def call(args): 2023-01-11T21:41:26.4701389Z arg0_1, = args 2023-01-11T21:41:26.4701542Z args.clear() 2023-01-11T21:41:26.4702005Z buf0 = empty_strided((8, 16, 8, 4), (512, 32, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4702444Z buf1 = empty_strided((8, 8, 8, 8), (512, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4702883Z buf2 = empty_strided((8, 16, 4, 8), (512, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4703303Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4703455Z del arg0_1 2023-01-11T21:41:26.4703633Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4703644Z 2023-01-11T21:41:26.4703653Z 2023-01-11T21:41:26.4703811Z if __name__ == "__main__": 2023-01-11T21:41:26.4704055Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4704305Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4704753Z arg0_1 = rand_strided((8, 16, 8, 8), (1024, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4705066Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4705077Z 2023-01-11T21:41:26.4705195Z ok (1.624s) 2023-01-11T21:41:26.4706140Z test_grid_sampler_2d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4706401Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4706931Z [2023-01-11 21:34:21,311] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 222 2023-01-11T21:41:26.4707431Z [2023-01-11 21:34:21,901] torch._inductor.scheduler: [DEBUG] remove_buffer('buf5') 2023-01-11T21:41:26.4707866Z [2023-01-11 21:34:21,901] torch._inductor.scheduler: [DEBUG] remove_buffer('buf3') 2023-01-11T21:41:26.4708261Z [2023-01-11 21:34:21,901] torch._inductor.scheduler: [DEBUG] remove_buffer('buf7') 2023-01-11T21:41:26.4708269Z 2023-01-11T21:41:26.4708413Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4708520Z import torch 2023-01-11T21:41:26.4708612Z import random 2023-01-11T21:41:26.4708787Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4708969Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4708977Z 2023-01-11T21:41:26.4709098Z aten = torch.ops.aten 2023-01-11T21:41:26.4709302Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4709442Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4709450Z 2023-01-11T21:41:26.4709455Z 2023-01-11T21:41:26.4709671Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4709974Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4710135Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.4710296Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.4710454Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4710612Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4710761Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4710909Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4711054Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.4711195Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.4711326Z long* __restrict__ out_ptr4, 2023-01-11T21:41:26.4711466Z long* __restrict__ out_ptr5, 2023-01-11T21:41:26.4711613Z float* __restrict__ out_ptr6, 2023-01-11T21:41:26.4711759Z long* __restrict__ out_ptr7, 2023-01-11T21:41:26.4711901Z long* __restrict__ out_ptr8, 2023-01-11T21:41:26.4712052Z float* __restrict__ out_ptr9, 2023-01-11T21:41:26.4712196Z long* __restrict__ out_ptr10, 2023-01-11T21:41:26.4712325Z long* __restrict__ out_ptr11, 2023-01-11T21:41:26.4712477Z float* __restrict__ out_ptr12, 2023-01-11T21:41:26.4712620Z long* __restrict__ out_ptr13, 2023-01-11T21:41:26.4712763Z long* __restrict__ out_ptr14, 2023-01-11T21:41:26.4712911Z float* __restrict__ out_ptr15) 2023-01-11T21:41:26.4713005Z { 2023-01-11T21:41:26.4713158Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4713234Z { 2023-01-11T21:41:26.4713352Z #pragma omp for 2023-01-11T21:41:26.4713481Z for(long i0=0; i0<495616; i0+=1) 2023-01-11T21:41:26.4713577Z { 2023-01-11T21:41:26.4713678Z { 2023-01-11T21:41:26.4713777Z { 2023-01-11T21:41:26.4713921Z auto tmp0 = in_ptr0[2*i0]; 2023-01-11T21:41:26.4714102Z auto tmp9 = in_ptr0[1 + (2*i0)]; 2023-01-11T21:41:26.4714265Z auto tmp1 = static_cast(175.5); 2023-01-11T21:41:26.4714404Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.4714541Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:41:26.4714703Z auto tmp4 = std::floor(tmp3); 2023-01-11T21:41:26.4714860Z auto tmp5 = static_cast(0); 2023-01-11T21:41:26.4715088Z auto tmp6 = tmp4 >= tmp5; 2023-01-11T21:41:26.4715219Z auto tmp7 = static_cast(352); 2023-01-11T21:41:26.4715340Z auto tmp8 = tmp4 < tmp7; 2023-01-11T21:41:26.4715459Z auto tmp10 = tmp9 * tmp1; 2023-01-11T21:41:26.4715582Z auto tmp11 = tmp10 + tmp1; 2023-01-11T21:41:26.4715752Z auto tmp12 = std::floor(tmp11); 2023-01-11T21:41:26.4715881Z auto tmp13 = tmp12 >= tmp5; 2023-01-11T21:41:26.4716008Z auto tmp14 = tmp12 < tmp7; 2023-01-11T21:41:26.4716117Z auto tmp15 = tmp13 && tmp14; 2023-01-11T21:41:26.4716237Z auto tmp16 = tmp8 && tmp15; 2023-01-11T21:41:26.4716359Z auto tmp17 = tmp6 && tmp16; 2023-01-11T21:41:26.4716498Z auto tmp18 = static_cast(1); 2023-01-11T21:41:26.4716620Z auto tmp19 = tmp4 + tmp18; 2023-01-11T21:41:26.4716813Z auto tmp20 = tmp19 - tmp3; 2023-01-11T21:41:26.4716934Z auto tmp21 = tmp12 + tmp18; 2023-01-11T21:41:26.4717126Z auto tmp22 = tmp21 - tmp11; 2023-01-11T21:41:26.4717231Z auto tmp23 = tmp20 * tmp22; 2023-01-11T21:41:26.4717362Z auto tmp24 = tmp17 ? tmp23 : tmp5; 2023-01-11T21:41:26.4717489Z auto tmp25 = tmp19 >= tmp5; 2023-01-11T21:41:26.4717610Z auto tmp26 = tmp19 < tmp7; 2023-01-11T21:41:26.4717739Z auto tmp27 = tmp26 && tmp15; 2023-01-11T21:41:26.4717861Z auto tmp28 = tmp25 && tmp27; 2023-01-11T21:41:26.4718051Z auto tmp29 = tmp3 - tmp4; 2023-01-11T21:41:26.4718157Z auto tmp30 = tmp29 * tmp22; 2023-01-11T21:41:26.4718287Z auto tmp31 = tmp28 ? tmp30 : tmp5; 2023-01-11T21:41:26.4718406Z auto tmp32 = tmp21 >= tmp5; 2023-01-11T21:41:26.4718526Z auto tmp33 = tmp21 < tmp7; 2023-01-11T21:41:26.4718650Z auto tmp34 = tmp32 && tmp33; 2023-01-11T21:41:26.4718771Z auto tmp35 = tmp8 && tmp34; 2023-01-11T21:41:26.4718890Z auto tmp36 = tmp6 && tmp35; 2023-01-11T21:41:26.4719064Z auto tmp37 = tmp11 - tmp12; 2023-01-11T21:41:26.4719187Z auto tmp38 = tmp20 * tmp37; 2023-01-11T21:41:26.4719323Z auto tmp39 = tmp36 ? tmp38 : tmp5; 2023-01-11T21:41:26.4719448Z auto tmp40 = tmp26 && tmp34; 2023-01-11T21:41:26.4719571Z auto tmp41 = tmp25 && tmp40; 2023-01-11T21:41:26.4719693Z auto tmp42 = tmp29 * tmp37; 2023-01-11T21:41:26.4719824Z auto tmp43 = tmp41 ? tmp42 : tmp5; 2023-01-11T21:41:26.4719952Z auto tmp44 = static_cast(176.0); 2023-01-11T21:41:26.4720074Z auto tmp45 = tmp0 * tmp44; 2023-01-11T21:41:26.4720194Z auto tmp46 = tmp45 + tmp1; 2023-01-11T21:41:26.4720336Z auto tmp47 = static_cast(0.0); 2023-01-11T21:41:26.4720507Z auto tmp48 = (tmp47 != tmp47) ? tmp47 : std::max(tmp46, tmp47); 2023-01-11T21:41:26.4720649Z auto tmp49 = static_cast(351.0); 2023-01-11T21:41:26.4720825Z auto tmp50 = (tmp49 != tmp49) ? tmp49 : std::min(tmp48, tmp49); 2023-01-11T21:41:26.4720960Z auto tmp51 = std::floor(tmp50); 2023-01-11T21:41:26.4721103Z auto tmp52 = tmp51 >= tmp5; 2023-01-11T21:41:26.4721224Z auto tmp53 = tmp51 < tmp7; 2023-01-11T21:41:26.4721344Z auto tmp54 = tmp9 * tmp44; 2023-01-11T21:41:26.4721467Z auto tmp55 = tmp54 + tmp1; 2023-01-11T21:41:26.4721640Z auto tmp56 = (tmp47 != tmp47) ? tmp47 : std::max(tmp55, tmp47); 2023-01-11T21:41:26.4721808Z auto tmp57 = (tmp49 != tmp49) ? tmp49 : std::min(tmp56, tmp49); 2023-01-11T21:41:26.4721942Z auto tmp58 = std::floor(tmp57); 2023-01-11T21:41:26.4722063Z auto tmp59 = tmp58 >= tmp5; 2023-01-11T21:41:26.4722170Z auto tmp60 = tmp58 < tmp7; 2023-01-11T21:41:26.4722292Z auto tmp61 = tmp59 && tmp60; 2023-01-11T21:41:26.4722446Z auto tmp62 = tmp53 && tmp61; 2023-01-11T21:41:26.4722571Z auto tmp63 = tmp52 && tmp62; 2023-01-11T21:41:26.4722717Z auto tmp64 = static_cast(tmp51); 2023-01-11T21:41:26.4722853Z auto tmp65 = static_cast(0); 2023-01-11T21:41:26.4722987Z auto tmp66 = tmp63 ? tmp64 : tmp65; 2023-01-11T21:41:26.4723112Z auto tmp67 = static_cast(tmp58); 2023-01-11T21:41:26.4723243Z auto tmp68 = tmp63 ? tmp67 : tmp65; 2023-01-11T21:41:26.4723363Z auto tmp69 = tmp51 + tmp18; 2023-01-11T21:41:26.4723555Z auto tmp70 = tmp69 - tmp50; 2023-01-11T21:41:26.4723677Z auto tmp71 = tmp58 + tmp18; 2023-01-11T21:41:26.4723865Z auto tmp72 = tmp71 - tmp57; 2023-01-11T21:41:26.4723983Z auto tmp73 = tmp70 * tmp72; 2023-01-11T21:41:26.4724120Z auto tmp74 = tmp63 ? tmp73 : tmp5; 2023-01-11T21:41:26.4724227Z auto tmp75 = tmp69 >= tmp5; 2023-01-11T21:41:26.4724347Z auto tmp76 = tmp69 < tmp7; 2023-01-11T21:41:26.4724474Z auto tmp77 = tmp76 && tmp61; 2023-01-11T21:41:26.4724598Z auto tmp78 = tmp75 && tmp77; 2023-01-11T21:41:26.4724738Z auto tmp79 = static_cast(tmp69); 2023-01-11T21:41:26.4724870Z auto tmp80 = tmp78 ? tmp79 : tmp65; 2023-01-11T21:41:26.4725000Z auto tmp81 = tmp78 ? tmp67 : tmp65; 2023-01-11T21:41:26.4725174Z auto tmp82 = tmp50 - tmp51; 2023-01-11T21:41:26.4725294Z auto tmp83 = tmp82 * tmp72; 2023-01-11T21:41:26.4725427Z auto tmp84 = tmp78 ? tmp83 : tmp5; 2023-01-11T21:41:26.4725548Z auto tmp85 = tmp71 >= tmp5; 2023-01-11T21:41:26.4725670Z auto tmp86 = tmp71 < tmp7; 2023-01-11T21:41:26.4725796Z auto tmp87 = tmp85 && tmp86; 2023-01-11T21:41:26.4725920Z auto tmp88 = tmp53 && tmp87; 2023-01-11T21:41:26.4726027Z auto tmp89 = tmp52 && tmp88; 2023-01-11T21:41:26.4726160Z auto tmp90 = tmp89 ? tmp64 : tmp65; 2023-01-11T21:41:26.4726300Z auto tmp91 = static_cast(tmp71); 2023-01-11T21:41:26.4726430Z auto tmp92 = tmp89 ? tmp91 : tmp65; 2023-01-11T21:41:26.4726621Z auto tmp93 = tmp57 - tmp58; 2023-01-11T21:41:26.4726741Z auto tmp94 = tmp70 * tmp93; 2023-01-11T21:41:26.4726873Z auto tmp95 = tmp89 ? tmp94 : tmp5; 2023-01-11T21:41:26.4726981Z auto tmp96 = tmp76 && tmp87; 2023-01-11T21:41:26.4727102Z auto tmp97 = tmp75 && tmp96; 2023-01-11T21:41:26.4727233Z auto tmp98 = tmp97 ? tmp79 : tmp65; 2023-01-11T21:41:26.4727365Z auto tmp99 = tmp97 ? tmp91 : tmp65; 2023-01-11T21:41:26.4727490Z auto tmp100 = tmp82 * tmp93; 2023-01-11T21:41:26.4727626Z auto tmp101 = tmp97 ? tmp100 : tmp5; 2023-01-11T21:41:26.4727775Z out_ptr0[i0] = tmp24; 2023-01-11T21:41:26.4727887Z out_ptr1[i0] = tmp31; 2023-01-11T21:41:26.4727983Z out_ptr2[i0] = tmp39; 2023-01-11T21:41:26.4728091Z out_ptr3[i0] = tmp43; 2023-01-11T21:41:26.4728199Z out_ptr4[i0] = tmp66; 2023-01-11T21:41:26.4728308Z out_ptr5[i0] = tmp68; 2023-01-11T21:41:26.4728416Z out_ptr6[i0] = tmp74; 2023-01-11T21:41:26.4728526Z out_ptr7[i0] = tmp80; 2023-01-11T21:41:26.4728635Z out_ptr8[i0] = tmp81; 2023-01-11T21:41:26.4728729Z out_ptr9[i0] = tmp84; 2023-01-11T21:41:26.4728840Z out_ptr10[i0] = tmp90; 2023-01-11T21:41:26.4728953Z out_ptr11[i0] = tmp92; 2023-01-11T21:41:26.4729247Z out_ptr12[i0] = tmp95; 2023-01-11T21:41:26.4729364Z out_ptr13[i0] = tmp98; 2023-01-11T21:41:26.4729478Z out_ptr14[i0] = tmp99; 2023-01-11T21:41:26.4729595Z out_ptr15[i0] = tmp101; 2023-01-11T21:41:26.4729668Z } 2023-01-11T21:41:26.4729753Z } 2023-01-11T21:41:26.4729835Z } 2023-01-11T21:41:26.4729937Z #pragma omp for 2023-01-11T21:41:26.4730048Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.4730134Z { 2023-01-11T21:41:26.4730226Z #pragma GCC ivdep 2023-01-11T21:41:26.4730337Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.4730420Z { 2023-01-11T21:41:26.4730528Z #pragma GCC ivdep 2023-01-11T21:41:26.4730650Z for(long i2=0; i2<123904; i2+=1) 2023-01-11T21:41:26.4730736Z { 2023-01-11T21:41:26.4730828Z { 2023-01-11T21:41:26.4730906Z { 2023-01-11T21:41:26.4731051Z auto tmp2 = in_ptr0[(2*i2) + (247808*i0)]; 2023-01-11T21:41:26.4731195Z auto tmp11 = in_ptr0[1 + (2*i2) + (247808*i0)]; 2023-01-11T21:41:26.4731345Z auto tmp51 = out_ptr0[i2 + (123904*i0)]; 2023-01-11T21:41:26.4731484Z auto tmp53 = out_ptr1[i2 + (123904*i0)]; 2023-01-11T21:41:26.4731625Z auto tmp56 = out_ptr2[i2 + (123904*i0)]; 2023-01-11T21:41:26.4731762Z auto tmp59 = out_ptr3[i2 + (123904*i0)]; 2023-01-11T21:41:26.4731906Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.4732032Z auto tmp1 = static_cast(i1); 2023-01-11T21:41:26.4732181Z auto tmp3 = static_cast(175.5); 2023-01-11T21:41:26.4732306Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.4732431Z auto tmp5 = tmp4 + tmp3; 2023-01-11T21:41:26.4732576Z auto tmp6 = std::floor(tmp5); 2023-01-11T21:41:26.4732717Z auto tmp7 = static_cast(0); 2023-01-11T21:41:26.4732846Z auto tmp8 = tmp6 >= tmp7; 2023-01-11T21:41:26.4732975Z auto tmp9 = static_cast(352); 2023-01-11T21:41:26.4733105Z auto tmp10 = tmp6 < tmp9; 2023-01-11T21:41:26.4733232Z auto tmp12 = tmp11 * tmp3; 2023-01-11T21:41:26.4733361Z auto tmp13 = tmp12 + tmp3; 2023-01-11T21:41:26.4733503Z auto tmp14 = std::floor(tmp13); 2023-01-11T21:41:26.4733630Z auto tmp15 = tmp14 >= tmp7; 2023-01-11T21:41:26.4733759Z auto tmp16 = tmp14 < tmp9; 2023-01-11T21:41:26.4733888Z auto tmp17 = tmp15 && tmp16; 2023-01-11T21:41:26.4734006Z auto tmp18 = tmp10 && tmp17; 2023-01-11T21:41:26.4734129Z auto tmp19 = tmp8 && tmp18; 2023-01-11T21:41:26.4734275Z auto tmp20 = static_cast(tmp14); 2023-01-11T21:41:26.4734462Z auto tmp21 = static_cast(0); 2023-01-11T21:41:26.4734601Z auto tmp22 = tmp19 ? tmp20 : tmp21; 2023-01-11T21:41:26.4734745Z auto tmp23 = static_cast(tmp6); 2023-01-11T21:41:26.4734883Z auto tmp24 = tmp19 ? tmp23 : tmp21; 2023-01-11T21:41:26.4735055Z auto tmp25 = in_ptr1[tmp24 + (352*tmp22) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4735183Z auto tmp26 = static_cast(1); 2023-01-11T21:41:26.4735308Z auto tmp27 = tmp6 + tmp26; 2023-01-11T21:41:26.4735432Z auto tmp28 = tmp27 >= tmp7; 2023-01-11T21:41:26.4735590Z auto tmp29 = tmp27 < tmp9; 2023-01-11T21:41:26.4735721Z auto tmp30 = tmp29 && tmp17; 2023-01-11T21:41:26.4735847Z auto tmp31 = tmp28 && tmp30; 2023-01-11T21:41:26.4735990Z auto tmp32 = tmp31 ? tmp20 : tmp21; 2023-01-11T21:41:26.4736119Z auto tmp33 = static_cast(tmp27); 2023-01-11T21:41:26.4736257Z auto tmp34 = tmp31 ? tmp33 : tmp21; 2023-01-11T21:41:26.4736429Z auto tmp35 = in_ptr1[tmp34 + (352*tmp32) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4736559Z auto tmp36 = tmp14 + tmp26; 2023-01-11T21:41:26.4736686Z auto tmp37 = tmp36 >= tmp7; 2023-01-11T21:41:26.4736812Z auto tmp38 = tmp36 < tmp9; 2023-01-11T21:41:26.4736943Z auto tmp39 = tmp37 && tmp38; 2023-01-11T21:41:26.4737074Z auto tmp40 = tmp10 && tmp39; 2023-01-11T21:41:26.4737185Z auto tmp41 = tmp8 && tmp40; 2023-01-11T21:41:26.4737330Z auto tmp42 = static_cast(tmp36); 2023-01-11T21:41:26.4737469Z auto tmp43 = tmp41 ? tmp42 : tmp21; 2023-01-11T21:41:26.4737608Z auto tmp44 = tmp41 ? tmp23 : tmp21; 2023-01-11T21:41:26.4737777Z auto tmp45 = in_ptr1[tmp44 + (352*tmp43) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4737905Z auto tmp46 = tmp29 && tmp39; 2023-01-11T21:41:26.4738033Z auto tmp47 = tmp28 && tmp46; 2023-01-11T21:41:26.4738153Z auto tmp48 = tmp47 ? tmp42 : tmp21; 2023-01-11T21:41:26.4738288Z auto tmp49 = tmp47 ? tmp33 : tmp21; 2023-01-11T21:41:26.4738456Z auto tmp50 = in_ptr1[tmp49 + (352*tmp48) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4738585Z auto tmp52 = tmp25 * tmp51; 2023-01-11T21:41:26.4738711Z auto tmp54 = tmp35 * tmp53; 2023-01-11T21:41:26.4738841Z auto tmp55 = tmp52 + tmp54; 2023-01-11T21:41:26.4738968Z auto tmp57 = tmp45 * tmp56; 2023-01-11T21:41:26.4739095Z auto tmp58 = tmp55 + tmp57; 2023-01-11T21:41:26.4739203Z auto tmp60 = tmp50 * tmp59; 2023-01-11T21:41:26.4739329Z auto tmp61 = tmp58 + tmp60; 2023-01-11T21:41:26.4739476Z in_out_ptr0[i2 + (123904*i1) + (371712*i0)] = tmp61; 2023-01-11T21:41:26.4739569Z } 2023-01-11T21:41:26.4739660Z } 2023-01-11T21:41:26.4739746Z } 2023-01-11T21:41:26.4739830Z } 2023-01-11T21:41:26.4739899Z } 2023-01-11T21:41:26.4740001Z #pragma omp for 2023-01-11T21:41:26.4740113Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.4740197Z { 2023-01-11T21:41:26.4740304Z #pragma GCC ivdep 2023-01-11T21:41:26.4740415Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.4740540Z { 2023-01-11T21:41:26.4740634Z #pragma GCC ivdep 2023-01-11T21:41:26.4740754Z for(long i2=0; i2<123904; i2+=1) 2023-01-11T21:41:26.4740840Z { 2023-01-11T21:41:26.4740929Z { 2023-01-11T21:41:26.4741021Z { 2023-01-11T21:41:26.4741164Z auto tmp2 = out_ptr5[i2 + (123904*i0)]; 2023-01-11T21:41:26.4741300Z auto tmp3 = out_ptr4[i2 + (123904*i0)]; 2023-01-11T21:41:26.4741420Z auto tmp5 = out_ptr6[i2 + (123904*i0)]; 2023-01-11T21:41:26.4741559Z auto tmp7 = out_ptr8[i2 + (123904*i0)]; 2023-01-11T21:41:26.4741694Z auto tmp8 = out_ptr7[i2 + (123904*i0)]; 2023-01-11T21:41:26.4741869Z auto tmp10 = out_ptr9[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742016Z auto tmp13 = out_ptr11[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742157Z auto tmp14 = out_ptr10[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742293Z auto tmp16 = out_ptr12[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742414Z auto tmp19 = out_ptr14[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742554Z auto tmp20 = out_ptr13[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742693Z auto tmp22 = out_ptr15[i2 + (123904*i0)]; 2023-01-11T21:41:26.4742835Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.4742976Z auto tmp1 = static_cast(i1); 2023-01-11T21:41:26.4743210Z auto tmp4 = in_ptr1[tmp3 + (352*tmp2) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4743344Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.4743514Z auto tmp9 = in_ptr1[tmp8 + (352*tmp7) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4743632Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:41:26.4743759Z auto tmp12 = tmp6 + tmp11; 2023-01-11T21:41:26.4743931Z auto tmp15 = in_ptr1[tmp14 + (352*tmp13) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4744061Z auto tmp17 = tmp15 * tmp16; 2023-01-11T21:41:26.4744189Z auto tmp18 = tmp12 + tmp17; 2023-01-11T21:41:26.4744361Z auto tmp21 = in_ptr1[tmp20 + (352*tmp19) + (123904*tmp1) + (371712*tmp0)]; 2023-01-11T21:41:26.4744491Z auto tmp23 = tmp21 * tmp22; 2023-01-11T21:41:26.4744622Z auto tmp24 = tmp18 + tmp23; 2023-01-11T21:41:26.4744763Z in_out_ptr1[i2 + (123904*i1) + (371712*i0)] = tmp24; 2023-01-11T21:41:26.4744859Z } 2023-01-11T21:41:26.4744953Z } 2023-01-11T21:41:26.4745050Z } 2023-01-11T21:41:26.4745139Z } 2023-01-11T21:41:26.4745227Z } 2023-01-11T21:41:26.4745315Z } 2023-01-11T21:41:26.4745385Z } 2023-01-11T21:41:26.4745512Z ''') 2023-01-11T21:41:26.4745522Z 2023-01-11T21:41:26.4745527Z 2023-01-11T21:41:26.4745649Z async_compile.wait(globals()) 2023-01-11T21:41:26.4745753Z del async_compile 2023-01-11T21:41:26.4745760Z 2023-01-11T21:41:26.4745858Z def call(args): 2023-01-11T21:41:26.4745962Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4746061Z args.clear() 2023-01-11T21:41:26.4746533Z buf0 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4746954Z buf2 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4747545Z buf4 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4748062Z buf6 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4748657Z buf9 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4749168Z buf10 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4749696Z buf11 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4750220Z buf12 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4750737Z buf13 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4751254Z buf14 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4751769Z buf15 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4752360Z buf16 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4752832Z buf17 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4753220Z buf19 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4753607Z buf20 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4753993Z buf21 = empty_strided((4, 352, 352), (123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4754417Z buf1 = empty_strided((4, 3, 352, 352), (371712, 123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4754575Z buf8 = buf1; del buf1 # reuse 2023-01-11T21:41:26.4754991Z buf18 = empty_strided((4, 3, 352, 352), (371712, 123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4755147Z buf22 = buf18; del buf18 # reuse 2023-01-11T21:41:26.4756048Z kernel_cpp_0(c_void_p(buf8.data_ptr()), c_void_p(buf22.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(buf12.data_ptr()), c_void_p(buf13.data_ptr()), c_void_p(buf14.data_ptr()), c_void_p(buf15.data_ptr()), c_void_p(buf16.data_ptr()), c_void_p(buf17.data_ptr()), c_void_p(buf19.data_ptr()), c_void_p(buf20.data_ptr()), c_void_p(buf21.data_ptr())) 2023-01-11T21:41:26.4756152Z del arg0_1 2023-01-11T21:41:26.4756251Z del arg1_1 2023-01-11T21:41:26.4756361Z return (buf8, buf22, ) 2023-01-11T21:41:26.4756369Z 2023-01-11T21:41:26.4756374Z 2023-01-11T21:41:26.4756476Z if __name__ == "__main__": 2023-01-11T21:41:26.4756635Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4756805Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4757112Z arg0_1 = rand_strided((4, 3, 352, 352), (371712, 123904, 352, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4757432Z arg1_1 = rand_strided((4, 352, 352, 2), (247808, 704, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4757667Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4758320Z [2023-01-11 21:34:23,534] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 222 2023-01-11T21:41:26.4758332Z 2023-01-11T21:41:26.4758581Z ok (3.807s) 2023-01-11T21:41:26.4759694Z test_hardsigmoid_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4760002Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4760650Z [2023-01-11 21:34:23,675] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 223 2023-01-11T21:41:26.4761392Z [2023-01-11 21:34:25,392] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 223 2023-01-11T21:41:26.4761405Z 2023-01-11T21:41:26.4761630Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4761783Z import torch 2023-01-11T21:41:26.4761949Z import random 2023-01-11T21:41:26.4762222Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4762514Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4762526Z 2023-01-11T21:41:26.4762711Z aten = torch.ops.aten 2023-01-11T21:41:26.4763042Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4763257Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4763270Z 2023-01-11T21:41:26.4763279Z 2023-01-11T21:41:26.4763609Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4763959Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4764176Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4764354Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4764531Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4764701Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4764811Z { 2023-01-11T21:41:26.4764990Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4765085Z { 2023-01-11T21:41:26.4765225Z #pragma omp for 2023-01-11T21:41:26.4765376Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4765495Z { 2023-01-11T21:41:26.4765745Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4765984Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.4766201Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4766489Z auto tmp3 = at::vec::Vectorized(static_cast(0.0)); 2023-01-11T21:41:26.4766643Z auto tmp4 = at::vec::maximum(tmp2, tmp3); 2023-01-11T21:41:26.4766827Z auto tmp5 = at::vec::Vectorized(static_cast(6.0)); 2023-01-11T21:41:26.4766980Z auto tmp6 = at::vec::minimum(tmp4, tmp5); 2023-01-11T21:41:26.4767164Z auto tmp7 = at::vec::Vectorized(static_cast(6)); 2023-01-11T21:41:26.4767281Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:41:26.4767399Z auto tmp9 = tmp2 + tmp1; 2023-01-11T21:41:26.4767550Z auto tmp10 = at::vec::maximum(tmp9, tmp3); 2023-01-11T21:41:26.4767687Z auto tmp11 = at::vec::minimum(tmp10, tmp5); 2023-01-11T21:41:26.4767807Z auto tmp12 = tmp11 / tmp7; 2023-01-11T21:41:26.4767985Z auto tmp13 = tmp0 - tmp1; 2023-01-11T21:41:26.4768105Z auto tmp14 = tmp13 + tmp1; 2023-01-11T21:41:26.4768262Z auto tmp15 = at::vec::maximum(tmp14, tmp3); 2023-01-11T21:41:26.4768411Z auto tmp16 = at::vec::minimum(tmp15, tmp5); 2023-01-11T21:41:26.4768582Z auto tmp17 = tmp16 / tmp7; 2023-01-11T21:41:26.4768743Z tmp8.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4768893Z tmp12.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4769306Z tmp17.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4769422Z } 2023-01-11T21:41:26.4769693Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4769975Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.4770122Z { 2023-01-11T21:41:26.4770298Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4770538Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.4770731Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4770974Z auto tmp3 = static_cast(0.0); 2023-01-11T21:41:26.4771272Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::max(tmp2, tmp3); 2023-01-11T21:41:26.4771516Z auto tmp5 = static_cast(6.0); 2023-01-11T21:41:26.4771802Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::min(tmp4, tmp5); 2023-01-11T21:41:26.4772133Z auto tmp7 = static_cast(6); 2023-01-11T21:41:26.4772318Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:41:26.4772522Z auto tmp9 = tmp2 + tmp1; 2023-01-11T21:41:26.4772813Z auto tmp10 = (tmp3 != tmp3) ? tmp3 : std::max(tmp9, tmp3); 2023-01-11T21:41:26.4773100Z auto tmp11 = (tmp5 != tmp5) ? tmp5 : std::min(tmp10, tmp5); 2023-01-11T21:41:26.4773301Z auto tmp12 = tmp11 / tmp7; 2023-01-11T21:41:26.4773619Z auto tmp13 = tmp0 - tmp1; 2023-01-11T21:41:26.4773824Z auto tmp14 = tmp13 + tmp1; 2023-01-11T21:41:26.4774110Z auto tmp15 = (tmp3 != tmp3) ? tmp3 : std::max(tmp14, tmp3); 2023-01-11T21:41:26.4774378Z auto tmp16 = (tmp5 != tmp5) ? tmp5 : std::min(tmp15, tmp5); 2023-01-11T21:41:26.4774643Z auto tmp17 = tmp16 / tmp7; 2023-01-11T21:41:26.4774796Z out_ptr0[i0] = tmp8; 2023-01-11T21:41:26.4774944Z out_ptr1[i0] = tmp12; 2023-01-11T21:41:26.4775093Z out_ptr2[i0] = tmp17; 2023-01-11T21:41:26.4775209Z } 2023-01-11T21:41:26.4775317Z } 2023-01-11T21:41:26.4775409Z } 2023-01-11T21:41:26.4775559Z ''') 2023-01-11T21:41:26.4775569Z 2023-01-11T21:41:26.4775576Z 2023-01-11T21:41:26.4775735Z async_compile.wait(globals()) 2023-01-11T21:41:26.4775870Z del async_compile 2023-01-11T21:41:26.4775879Z 2023-01-11T21:41:26.4776004Z def call(args): 2023-01-11T21:41:26.4776132Z arg0_1, = args 2023-01-11T21:41:26.4776252Z args.clear() 2023-01-11T21:41:26.4776604Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4776961Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4777315Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4777728Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4777826Z del arg0_1 2023-01-11T21:41:26.4777938Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4777945Z 2023-01-11T21:41:26.4777950Z 2023-01-11T21:41:26.4778054Z if __name__ == "__main__": 2023-01-11T21:41:26.4778213Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4778365Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4778636Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4778787Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4778794Z 2023-01-11T21:41:26.4778884Z ok (1.771s) 2023-01-11T21:41:26.4779541Z test_hardswish_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4779797Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4780392Z [2023-01-11 21:34:25,453] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 224 2023-01-11T21:41:26.4781209Z [2023-01-11 21:34:27,260] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 224 2023-01-11T21:41:26.4781224Z 2023-01-11T21:41:26.4781448Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4781616Z import torch 2023-01-11T21:41:26.4781761Z import random 2023-01-11T21:41:26.4782037Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4782323Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4782335Z 2023-01-11T21:41:26.4782520Z aten = torch.ops.aten 2023-01-11T21:41:26.4782845Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4783073Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4783231Z 2023-01-11T21:41:26.4783241Z 2023-01-11T21:41:26.4783575Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4784052Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4784335Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4784573Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4784805Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4785037Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4785185Z { 2023-01-11T21:41:26.4785424Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4785578Z { 2023-01-11T21:41:26.4785748Z #pragma omp for 2023-01-11T21:41:26.4785901Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4786014Z { 2023-01-11T21:41:26.4786306Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4786551Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.4786709Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4786955Z auto tmp3 = at::vec::Vectorized(static_cast(0.0)); 2023-01-11T21:41:26.4787128Z auto tmp4 = at::vec::maximum(tmp2, tmp3); 2023-01-11T21:41:26.4787371Z auto tmp5 = at::vec::Vectorized(static_cast(6.0)); 2023-01-11T21:41:26.4787567Z auto tmp6 = at::vec::minimum(tmp4, tmp5); 2023-01-11T21:41:26.4787720Z auto tmp7 = tmp0 * tmp6; 2023-01-11T21:41:26.4787959Z auto tmp8 = at::vec::Vectorized(static_cast(6)); 2023-01-11T21:41:26.4788113Z auto tmp9 = tmp7 / tmp8; 2023-01-11T21:41:26.4788265Z auto tmp10 = tmp2 + tmp1; 2023-01-11T21:41:26.4788590Z auto tmp11 = at::vec::maximum(tmp10, tmp3); 2023-01-11T21:41:26.4788893Z auto tmp12 = at::vec::minimum(tmp11, tmp5); 2023-01-11T21:41:26.4789073Z auto tmp13 = tmp2 * tmp12; 2023-01-11T21:41:26.4789238Z auto tmp14 = tmp13 / tmp8; 2023-01-11T21:41:26.4789646Z auto tmp15 = tmp0 - tmp1; 2023-01-11T21:41:26.4789843Z auto tmp16 = tmp15 + tmp1; 2023-01-11T21:41:26.4790098Z auto tmp17 = at::vec::maximum(tmp16, tmp3); 2023-01-11T21:41:26.4790352Z auto tmp18 = at::vec::minimum(tmp17, tmp5); 2023-01-11T21:41:26.4790546Z auto tmp19 = tmp15 * tmp18; 2023-01-11T21:41:26.4790749Z auto tmp20 = tmp19 / tmp8; 2023-01-11T21:41:26.4790962Z tmp9.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4791182Z tmp14.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4791397Z tmp20.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4791552Z } 2023-01-11T21:41:26.4791780Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4791962Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.4792112Z { 2023-01-11T21:41:26.4792317Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4792558Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.4792753Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4792992Z auto tmp3 = static_cast(0.0); 2023-01-11T21:41:26.4793282Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::max(tmp2, tmp3); 2023-01-11T21:41:26.4793504Z auto tmp5 = static_cast(6.0); 2023-01-11T21:41:26.4793792Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::min(tmp4, tmp5); 2023-01-11T21:41:26.4793992Z auto tmp7 = tmp0 * tmp6; 2023-01-11T21:41:26.4794221Z auto tmp8 = static_cast(6); 2023-01-11T21:41:26.4794408Z auto tmp9 = tmp7 / tmp8; 2023-01-11T21:41:26.4794562Z auto tmp10 = tmp2 + tmp1; 2023-01-11T21:41:26.4794785Z auto tmp11 = (tmp3 != tmp3) ? tmp3 : std::max(tmp10, tmp3); 2023-01-11T21:41:26.4795011Z auto tmp12 = (tmp5 != tmp5) ? tmp5 : std::min(tmp11, tmp5); 2023-01-11T21:41:26.4795153Z auto tmp13 = tmp2 * tmp12; 2023-01-11T21:41:26.4795397Z auto tmp14 = tmp13 / tmp8; 2023-01-11T21:41:26.4795665Z auto tmp15 = tmp0 - tmp1; 2023-01-11T21:41:26.4795865Z auto tmp16 = tmp15 + tmp1; 2023-01-11T21:41:26.4796142Z auto tmp17 = (tmp3 != tmp3) ? tmp3 : std::max(tmp16, tmp3); 2023-01-11T21:41:26.4796423Z auto tmp18 = (tmp5 != tmp5) ? tmp5 : std::min(tmp17, tmp5); 2023-01-11T21:41:26.4796620Z auto tmp19 = tmp15 * tmp18; 2023-01-11T21:41:26.4796824Z auto tmp20 = tmp19 / tmp8; 2023-01-11T21:41:26.4796995Z out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.4797177Z out_ptr1[i0] = tmp14; 2023-01-11T21:41:26.4797365Z out_ptr2[i0] = tmp20; 2023-01-11T21:41:26.4797521Z } 2023-01-11T21:41:26.4797674Z } 2023-01-11T21:41:26.4797823Z } 2023-01-11T21:41:26.4798003Z ''') 2023-01-11T21:41:26.4798093Z 2023-01-11T21:41:26.4798108Z 2023-01-11T21:41:26.4798310Z async_compile.wait(globals()) 2023-01-11T21:41:26.4798482Z del async_compile 2023-01-11T21:41:26.4798499Z 2023-01-11T21:41:26.4798670Z def call(args): 2023-01-11T21:41:26.4798831Z arg0_1, = args 2023-01-11T21:41:26.4798997Z args.clear() 2023-01-11T21:41:26.4799473Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4799948Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4800389Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4800828Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4800998Z del arg0_1 2023-01-11T21:41:26.4801195Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4801206Z 2023-01-11T21:41:26.4801216Z 2023-01-11T21:41:26.4801389Z if __name__ == "__main__": 2023-01-11T21:41:26.4801603Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4801828Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4802196Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4802375Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4802385Z 2023-01-11T21:41:26.4802502Z ok (1.867s) 2023-01-11T21:41:26.4803566Z test_hardtanh_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4803859Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4804498Z [2023-01-11 21:34:27,301] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 225 2023-01-11T21:41:26.4805174Z [2023-01-11 21:34:29,001] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 225 2023-01-11T21:41:26.4805191Z 2023-01-11T21:41:26.4805416Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4805592Z import torch 2023-01-11T21:41:26.4805763Z import random 2023-01-11T21:41:26.4806024Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4806318Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4806330Z 2023-01-11T21:41:26.4806519Z aten = torch.ops.aten 2023-01-11T21:41:26.4806829Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4807048Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4807059Z 2023-01-11T21:41:26.4807068Z 2023-01-11T21:41:26.4807403Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4807902Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4808192Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4808388Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4808633Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4808805Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4808916Z { 2023-01-11T21:41:26.4809234Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4809347Z { 2023-01-11T21:41:26.4809485Z #pragma omp for 2023-01-11T21:41:26.4809613Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4809745Z { 2023-01-11T21:41:26.4810055Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4810543Z auto tmp1 = at::vec::Vectorized(static_cast(-1.0)); 2023-01-11T21:41:26.4810803Z auto tmp2 = at::vec::maximum(tmp0, tmp1); 2023-01-11T21:41:26.4811126Z auto tmp3 = at::vec::Vectorized(static_cast(1.0)); 2023-01-11T21:41:26.4811480Z auto tmp4 = at::vec::minimum(tmp2, tmp3); 2023-01-11T21:41:26.4811806Z auto tmp5 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4812004Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:41:26.4812260Z auto tmp7 = at::vec::maximum(tmp6, tmp1); 2023-01-11T21:41:26.4812509Z auto tmp8 = at::vec::minimum(tmp7, tmp3); 2023-01-11T21:41:26.4812818Z auto tmp9 = tmp0 - tmp5; 2023-01-11T21:41:26.4813079Z auto tmp10 = at::vec::maximum(tmp9, tmp1); 2023-01-11T21:41:26.4813331Z auto tmp11 = at::vec::minimum(tmp10, tmp3); 2023-01-11T21:41:26.4813555Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4813764Z tmp8.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4813968Z tmp11.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4814124Z } 2023-01-11T21:41:26.4814348Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4814547Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.4814698Z { 2023-01-11T21:41:26.4814898Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4815266Z auto tmp1 = static_cast(-1.0); 2023-01-11T21:41:26.4815526Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:41:26.4815711Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.4815935Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::min(tmp2, tmp3); 2023-01-11T21:41:26.4816114Z auto tmp5 = static_cast(1); 2023-01-11T21:41:26.4816268Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:41:26.4816486Z auto tmp7 = (tmp1 != tmp1) ? tmp1 : std::max(tmp6, tmp1); 2023-01-11T21:41:26.4816708Z auto tmp8 = (tmp3 != tmp3) ? tmp3 : std::min(tmp7, tmp3); 2023-01-11T21:41:26.4817015Z auto tmp9 = tmp0 - tmp5; 2023-01-11T21:41:26.4817286Z auto tmp10 = (tmp1 != tmp1) ? tmp1 : std::max(tmp9, tmp1); 2023-01-11T21:41:26.4817580Z auto tmp11 = (tmp3 != tmp3) ? tmp3 : std::min(tmp10, tmp3); 2023-01-11T21:41:26.4817777Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.4817969Z out_ptr1[i0] = tmp8; 2023-01-11T21:41:26.4818160Z out_ptr2[i0] = tmp11; 2023-01-11T21:41:26.4818309Z } 2023-01-11T21:41:26.4818460Z } 2023-01-11T21:41:26.4818594Z } 2023-01-11T21:41:26.4818784Z ''') 2023-01-11T21:41:26.4818797Z 2023-01-11T21:41:26.4818807Z 2023-01-11T21:41:26.4819021Z async_compile.wait(globals()) 2023-01-11T21:41:26.4819200Z del async_compile 2023-01-11T21:41:26.4819212Z 2023-01-11T21:41:26.4819374Z def call(args): 2023-01-11T21:41:26.4819537Z arg0_1, = args 2023-01-11T21:41:26.4819694Z args.clear() 2023-01-11T21:41:26.4820159Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4820631Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4821098Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4821552Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4821812Z del arg0_1 2023-01-11T21:41:26.4822011Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4822024Z 2023-01-11T21:41:26.4822033Z 2023-01-11T21:41:26.4822215Z if __name__ == "__main__": 2023-01-11T21:41:26.4822485Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4822693Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4823051Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4823341Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.4823352Z 2023-01-11T21:41:26.4823473Z ok (1.743s) 2023-01-11T21:41:26.4824573Z test_horizonal_fusion1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4824889Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4825510Z [2023-01-11 21:34:29,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 226 2023-01-11T21:41:26.4826173Z [2023-01-11 21:34:30,698] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 226 2023-01-11T21:41:26.4826185Z 2023-01-11T21:41:26.4826407Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4826563Z import torch 2023-01-11T21:41:26.4826721Z import random 2023-01-11T21:41:26.4827003Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4827295Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4827307Z 2023-01-11T21:41:26.4827492Z aten = torch.ops.aten 2023-01-11T21:41:26.4827820Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4828043Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4828060Z 2023-01-11T21:41:26.4828069Z 2023-01-11T21:41:26.4828398Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4828887Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4829160Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4829407Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4829625Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4829810Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4829985Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4830156Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4830271Z { 2023-01-11T21:41:26.4830431Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4830548Z { 2023-01-11T21:41:26.4830688Z #pragma omp for 2023-01-11T21:41:26.4830870Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.4831028Z { 2023-01-11T21:41:26.4831357Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4831667Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4831844Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4832057Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4832205Z } 2023-01-11T21:41:26.4832428Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4832640Z for(long i0=2048; i0<2048; i0+=1) 2023-01-11T21:41:26.4832793Z { 2023-01-11T21:41:26.4832996Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4833183Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4833389Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4833577Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4833740Z } 2023-01-11T21:41:26.4833923Z #pragma omp for 2023-01-11T21:41:26.4834114Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4834338Z { 2023-01-11T21:41:26.4834515Z #pragma GCC ivdep 2023-01-11T21:41:26.4834719Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.4834869Z { 2023-01-11T21:41:26.4835078Z for(long i2=0; i2<2; i2+=1) 2023-01-11T21:41:26.4835239Z { 2023-01-11T21:41:26.4835595Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i2) + (16*i1) + (256*i0)); 2023-01-11T21:41:26.4835899Z auto tmp1 = at::vec::Vectorized(in_ptr2[i1]); 2023-01-11T21:41:26.4836227Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + (8*i2) + (16*i1) + (256*i0)); 2023-01-11T21:41:26.4836551Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.4836717Z auto tmp4 = tmp3 * tmp1; 2023-01-11T21:41:26.4836979Z tmp2.store(out_ptr1 + (8*i2) + (16*i1) + (256*i0)); 2023-01-11T21:41:26.4837181Z tmp4.store(out_ptr2 + (8*i2) + (16*i1) + (256*i0)); 2023-01-11T21:41:26.4837303Z } 2023-01-11T21:41:26.4837474Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.4837653Z for(long i2=16; i2<16; i2+=1) 2023-01-11T21:41:26.4837791Z { 2023-01-11T21:41:26.4838036Z auto tmp0 = in_ptr0[i2 + (16*i1) + (256*i0)]; 2023-01-11T21:41:26.4838248Z auto tmp1 = in_ptr2[i1]; 2023-01-11T21:41:26.4838494Z auto tmp3 = in_ptr1[i2 + (16*i1) + (256*i0)]; 2023-01-11T21:41:26.4838815Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.4839027Z auto tmp4 = tmp3 * tmp1; 2023-01-11T21:41:26.4839258Z out_ptr1[i2 + (16*i1) + (256*i0)] = tmp2; 2023-01-11T21:41:26.4839480Z out_ptr2[i2 + (16*i1) + (256*i0)] = tmp4; 2023-01-11T21:41:26.4839648Z } 2023-01-11T21:41:26.4839805Z } 2023-01-11T21:41:26.4839953Z } 2023-01-11T21:41:26.4840100Z } 2023-01-11T21:41:26.4840255Z } 2023-01-11T21:41:26.4840453Z ''') 2023-01-11T21:41:26.4840465Z 2023-01-11T21:41:26.4840475Z 2023-01-11T21:41:26.4840669Z async_compile.wait(globals()) 2023-01-11T21:41:26.4840837Z del async_compile 2023-01-11T21:41:26.4840849Z 2023-01-11T21:41:26.4841024Z def call(args): 2023-01-11T21:41:26.4841227Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4841392Z args.clear() 2023-01-11T21:41:26.4841909Z buf0 = empty_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4842410Z buf1 = empty_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4842910Z buf2 = empty_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4843434Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4843559Z del arg0_1 2023-01-11T21:41:26.4843685Z del arg1_1 2023-01-11T21:41:26.4843804Z del arg2_1 2023-01-11T21:41:26.4843952Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4843961Z 2023-01-11T21:41:26.4843968Z 2023-01-11T21:41:26.4844105Z if __name__ == "__main__": 2023-01-11T21:41:26.4844311Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4844512Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4844988Z arg0_1 = rand_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4845481Z arg1_1 = rand_strided((8, 16, 16), (256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4845963Z arg2_1 = rand_strided((1, 16, 1), (16, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4846246Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4846267Z 2023-01-11T21:41:26.4846430Z ok (1.697s) 2023-01-11T21:41:26.4847644Z test_horizonal_fusion2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4848017Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4848677Z [2023-01-11 21:34:30,729] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 227 2023-01-11T21:41:26.4849484Z [2023-01-11 21:34:32,375] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 227 2023-01-11T21:41:26.4849497Z 2023-01-11T21:41:26.4849707Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4849864Z import torch 2023-01-11T21:41:26.4850114Z import random 2023-01-11T21:41:26.4850399Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4850629Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4850643Z 2023-01-11T21:41:26.4850782Z aten = torch.ops.aten 2023-01-11T21:41:26.4851017Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4851183Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4851194Z 2023-01-11T21:41:26.4851201Z 2023-01-11T21:41:26.4851437Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4851876Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4852162Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4852407Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4852642Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4852880Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4853110Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4853335Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4853475Z { 2023-01-11T21:41:26.4853711Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4853861Z { 2023-01-11T21:41:26.4854051Z #pragma omp for 2023-01-11T21:41:26.4854249Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.4854403Z { 2023-01-11T21:41:26.4854704Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4855025Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4855232Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4855451Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4855608Z } 2023-01-11T21:41:26.4855836Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4856037Z for(long i0=1024; i0<1024; i0+=1) 2023-01-11T21:41:26.4856193Z { 2023-01-11T21:41:26.4856385Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4856615Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4856824Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4857015Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.4857171Z } 2023-01-11T21:41:26.4857336Z #pragma omp for 2023-01-11T21:41:26.4857471Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.4857582Z { 2023-01-11T21:41:26.4857817Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.4858056Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.4858209Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4858375Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4858521Z } 2023-01-11T21:41:26.4858744Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4858921Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.4859073Z { 2023-01-11T21:41:26.4859276Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.4859506Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.4859811Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4859996Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.4860141Z } 2023-01-11T21:41:26.4860311Z #pragma omp for 2023-01-11T21:41:26.4860504Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.4860650Z { 2023-01-11T21:41:26.4860955Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr2 + 8*i0); 2023-01-11T21:41:26.4861271Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.4861474Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4861684Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4861817Z } 2023-01-11T21:41:26.4862043Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4862235Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.4862388Z { 2023-01-11T21:41:26.4862645Z auto tmp0 = in_ptr2[i0]; 2023-01-11T21:41:26.4862887Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.4863096Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4863348Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.4863506Z } 2023-01-11T21:41:26.4863655Z } 2023-01-11T21:41:26.4863801Z } 2023-01-11T21:41:26.4864010Z ''') 2023-01-11T21:41:26.4864023Z 2023-01-11T21:41:26.4864032Z 2023-01-11T21:41:26.4864233Z async_compile.wait(globals()) 2023-01-11T21:41:26.4864365Z del async_compile 2023-01-11T21:41:26.4864376Z 2023-01-11T21:41:26.4864482Z def call(args): 2023-01-11T21:41:26.4864626Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4864753Z args.clear() 2023-01-11T21:41:26.4865146Z buf0 = empty_strided((8, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4865579Z buf1 = empty_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4866039Z buf2 = empty_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4866592Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.4866760Z del arg0_1 2023-01-11T21:41:26.4866901Z del arg1_1 2023-01-11T21:41:26.4867058Z del arg2_1 2023-01-11T21:41:26.4867257Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.4867268Z 2023-01-11T21:41:26.4867277Z 2023-01-11T21:41:26.4867450Z if __name__ == "__main__": 2023-01-11T21:41:26.4867724Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4868012Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4868520Z arg0_1 = rand_strided((8, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4868986Z arg1_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4869467Z arg2_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4869757Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4869774Z 2023-01-11T21:41:26.4869930Z ok (1.677s) 2023-01-11T21:41:26.4871097Z test_index1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4871328Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4871821Z [2023-01-11 21:34:32,429] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 228 2023-01-11T21:41:26.4872339Z [2023-01-11 21:34:34,014] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 228 2023-01-11T21:41:26.4873343Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4873732Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4874360Z [2023-01-11 21:34:34,056] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 229 2023-01-11T21:41:26.4875006Z [2023-01-11 21:34:35,614] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 229 2023-01-11T21:41:26.4875036Z 2023-01-11T21:41:26.4875238Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4875406Z import torch 2023-01-11T21:41:26.4875572Z import random 2023-01-11T21:41:26.4875913Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4876207Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4876219Z 2023-01-11T21:41:26.4876416Z aten = torch.ops.aten 2023-01-11T21:41:26.4876739Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4876940Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4876952Z 2023-01-11T21:41:26.4876961Z 2023-01-11T21:41:26.4877293Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4877787Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4878040Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4878226Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4878412Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4878590Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4878700Z { 2023-01-11T21:41:26.4878866Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4878983Z { 2023-01-11T21:41:26.4879149Z #pragma omp for 2023-01-11T21:41:26.4879340Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.4879500Z { 2023-01-11T21:41:26.4879699Z #pragma GCC ivdep 2023-01-11T21:41:26.4879874Z for(long i1=0; i1<12; i1+=1) 2023-01-11T21:41:26.4880029Z { 2023-01-11T21:41:26.4880175Z { 2023-01-11T21:41:26.4880331Z { 2023-01-11T21:41:26.4880551Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4880766Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4881029Z auto tmp2 = in_ptr2[i1 + (12*tmp1) + (96*tmp0)]; 2023-01-11T21:41:26.4881234Z out_ptr0[i1 + (12*i0)] = tmp2; 2023-01-11T21:41:26.4881393Z } 2023-01-11T21:41:26.4881544Z } 2023-01-11T21:41:26.4881700Z } 2023-01-11T21:41:26.4881850Z } 2023-01-11T21:41:26.4881996Z } 2023-01-11T21:41:26.4882140Z } 2023-01-11T21:41:26.4882314Z ''') 2023-01-11T21:41:26.4882325Z 2023-01-11T21:41:26.4882333Z 2023-01-11T21:41:26.4882548Z async_compile.wait(globals()) 2023-01-11T21:41:26.4882722Z del async_compile 2023-01-11T21:41:26.4882734Z 2023-01-11T21:41:26.4882905Z def call(args): 2023-01-11T21:41:26.4883103Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4883273Z args.clear() 2023-01-11T21:41:26.4883752Z buf0 = empty_strided((4, 12), (12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4884179Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4884344Z del arg0_1 2023-01-11T21:41:26.4884500Z del arg1_1 2023-01-11T21:41:26.4884654Z del arg2_1 2023-01-11T21:41:26.4884830Z return (buf0, ) 2023-01-11T21:41:26.4884840Z 2023-01-11T21:41:26.4884846Z 2023-01-11T21:41:26.4884977Z if __name__ == "__main__": 2023-01-11T21:41:26.4885187Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4885403Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4885773Z arg0_1 = rand_strided((8, 8, 12), (96, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4886197Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4886674Z arg2_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4886953Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4886964Z 2023-01-11T21:41:26.4886972Z 2023-01-11T21:41:26.4887198Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4887367Z import torch 2023-01-11T21:41:26.4887533Z import random 2023-01-11T21:41:26.4887795Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4888058Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4888070Z 2023-01-11T21:41:26.4888249Z aten = torch.ops.aten 2023-01-11T21:41:26.4888629Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4888860Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4888874Z 2023-01-11T21:41:26.4888889Z 2023-01-11T21:41:26.4889360Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4889851Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4890136Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4890380Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4890610Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4890837Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4890984Z { 2023-01-11T21:41:26.4891221Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4891375Z { 2023-01-11T21:41:26.4891555Z #pragma omp for 2023-01-11T21:41:26.4891756Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.4891895Z { 2023-01-11T21:41:26.4892096Z #pragma GCC ivdep 2023-01-11T21:41:26.4892294Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.4892427Z { 2023-01-11T21:41:26.4892579Z #pragma GCC ivdep 2023-01-11T21:41:26.4892741Z for(long i2=0; i2<12; i2+=1) 2023-01-11T21:41:26.4892860Z { 2023-01-11T21:41:26.4892962Z { 2023-01-11T21:41:26.4893082Z { 2023-01-11T21:41:26.4893255Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.4893423Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.4893621Z auto tmp2 = in_ptr2[i2 + (12*tmp1) + (96*tmp0)]; 2023-01-11T21:41:26.4893838Z out_ptr0[i2 + (12*i1) + (48*i0)] = tmp2; 2023-01-11T21:41:26.4894002Z } 2023-01-11T21:41:26.4894139Z } 2023-01-11T21:41:26.4894299Z } 2023-01-11T21:41:26.4894453Z } 2023-01-11T21:41:26.4894595Z } 2023-01-11T21:41:26.4894750Z } 2023-01-11T21:41:26.4894888Z } 2023-01-11T21:41:26.4895070Z ''') 2023-01-11T21:41:26.4895083Z 2023-01-11T21:41:26.4895122Z 2023-01-11T21:41:26.4895312Z async_compile.wait(globals()) 2023-01-11T21:41:26.4895476Z del async_compile 2023-01-11T21:41:26.4895488Z 2023-01-11T21:41:26.4895656Z def call(args): 2023-01-11T21:41:26.4895847Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4896014Z args.clear() 2023-01-11T21:41:26.4896534Z buf0 = empty_strided((4, 4, 12), (48, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4896978Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4897119Z del arg0_1 2023-01-11T21:41:26.4897280Z del arg1_1 2023-01-11T21:41:26.4897440Z del arg2_1 2023-01-11T21:41:26.4897615Z return (buf0, ) 2023-01-11T21:41:26.4897627Z 2023-01-11T21:41:26.4897636Z 2023-01-11T21:41:26.4897817Z if __name__ == "__main__": 2023-01-11T21:41:26.4898092Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4898392Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4899010Z arg0_1 = rand_strided((8, 8, 12), (96, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4899469Z arg1_1 = rand_strided((1, 4), (4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4899832Z arg2_1 = rand_strided((4, 1), (1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4900054Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4900063Z 2023-01-11T21:41:26.4900178Z ok (3.238s) 2023-01-11T21:41:26.4901183Z test_index2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4901485Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4902123Z [2023-01-11 21:34:35,686] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 230 2023-01-11T21:41:26.4902771Z [2023-01-11 21:34:37,440] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 230 2023-01-11T21:41:26.4902784Z 2023-01-11T21:41:26.4903008Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4903243Z import torch 2023-01-11T21:41:26.4903419Z import random 2023-01-11T21:41:26.4903697Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4903980Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4903992Z 2023-01-11T21:41:26.4904179Z aten = torch.ops.aten 2023-01-11T21:41:26.4904497Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4904717Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4904734Z 2023-01-11T21:41:26.4904744Z 2023-01-11T21:41:26.4905076Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4905547Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4905826Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4906067Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4906296Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4906527Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4906663Z { 2023-01-11T21:41:26.4906842Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4906939Z { 2023-01-11T21:41:26.4907073Z #pragma omp for 2023-01-11T21:41:26.4907218Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.4907333Z { 2023-01-11T21:41:26.4907477Z #pragma GCC ivdep 2023-01-11T21:41:26.4907632Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:41:26.4907752Z { 2023-01-11T21:41:26.4907859Z { 2023-01-11T21:41:26.4908023Z { 2023-01-11T21:41:26.4908243Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4908495Z auto tmp1 = in_ptr1[i1 + (64*tmp0)]; 2023-01-11T21:41:26.4908720Z out_ptr0[i1 + (64*i0)] = tmp1; 2023-01-11T21:41:26.4908882Z } 2023-01-11T21:41:26.4909030Z } 2023-01-11T21:41:26.4909154Z } 2023-01-11T21:41:26.4909305Z } 2023-01-11T21:41:26.4909486Z #pragma omp for 2023-01-11T21:41:26.4909681Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.4909835Z { 2023-01-11T21:41:26.4910016Z #pragma GCC ivdep 2023-01-11T21:41:26.4910197Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.4910346Z { 2023-01-11T21:41:26.4910535Z #pragma GCC ivdep 2023-01-11T21:41:26.4910743Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:41:26.4910910Z { 2023-01-11T21:41:26.4911069Z { 2023-01-11T21:41:26.4911235Z { 2023-01-11T21:41:26.4911523Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.4911783Z auto tmp1 = in_ptr1[i2 + (8*tmp0) + (64*i0)]; 2023-01-11T21:41:26.4912022Z out_ptr1[i2 + (8*i1) + (32*i0)] = tmp1; 2023-01-11T21:41:26.4912189Z } 2023-01-11T21:41:26.4912344Z } 2023-01-11T21:41:26.4912492Z } 2023-01-11T21:41:26.4912643Z } 2023-01-11T21:41:26.4912782Z } 2023-01-11T21:41:26.4912917Z } 2023-01-11T21:41:26.4913065Z } 2023-01-11T21:41:26.4913263Z ''') 2023-01-11T21:41:26.4913275Z 2023-01-11T21:41:26.4913284Z 2023-01-11T21:41:26.4913503Z async_compile.wait(globals()) 2023-01-11T21:41:26.4913655Z del async_compile 2023-01-11T21:41:26.4913665Z 2023-01-11T21:41:26.4913790Z def call(args): 2023-01-11T21:41:26.4913951Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.4914087Z args.clear() 2023-01-11T21:41:26.4914483Z buf0 = empty_strided((1, 4, 8, 8), (256, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4914903Z buf1 = empty_strided((8, 1, 4, 8), (32, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4915340Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.4915509Z del arg0_1 2023-01-11T21:41:26.4915668Z del arg1_1 2023-01-11T21:41:26.4915849Z return (buf0, buf1, ) 2023-01-11T21:41:26.4915861Z 2023-01-11T21:41:26.4915871Z 2023-01-11T21:41:26.4916028Z if __name__ == "__main__": 2023-01-11T21:41:26.4916291Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4916584Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4917086Z arg0_1 = rand_strided((8, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4917558Z arg1_1 = rand_strided((1, 4), (4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4917834Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.4917852Z 2023-01-11T21:41:26.4918018Z ok (1.826s) 2023-01-11T21:41:26.4919170Z test_index3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4919465Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4920100Z [2023-01-11 21:34:37,484] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 231 2023-01-11T21:41:26.4920642Z [2023-01-11 21:34:37,507] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.index 2023-01-11T21:41:26.4921145Z [2023-01-11 21:34:37,509] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 231 2023-01-11T21:41:26.4921160Z 2023-01-11T21:41:26.4921334Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4921463Z import torch 2023-01-11T21:41:26.4921593Z import random 2023-01-11T21:41:26.4921800Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4922036Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4922050Z 2023-01-11T21:41:26.4922213Z aten = torch.ops.aten 2023-01-11T21:41:26.4922516Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4922731Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4922747Z 2023-01-11T21:41:26.4922755Z 2023-01-11T21:41:26.4922957Z async_compile.wait(globals()) 2023-01-11T21:41:26.4923126Z del async_compile 2023-01-11T21:41:26.4923142Z 2023-01-11T21:41:26.4923302Z def call(args): 2023-01-11T21:41:26.4923495Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4923675Z args.clear() 2023-01-11T21:41:26.4924003Z buf0 = aten.index(as_strided(arg0_1, (3, 4, 1, 4, 3), (192, 48, 0, 12, 1)), [None, arg1_1, None, arg2_1]) 2023-01-11T21:41:26.4924243Z del arg0_1 2023-01-11T21:41:26.4924408Z del arg1_1 2023-01-11T21:41:26.4924564Z del arg2_1 2023-01-11T21:41:26.4924727Z buf1 = buf0 2023-01-11T21:41:26.4924972Z assert_size_stride(buf1, (3, 3, 1, 3), (9, 3, 3, 1)) 2023-01-11T21:41:26.4925124Z del buf0 2023-01-11T21:41:26.4925268Z return (buf1, ) 2023-01-11T21:41:26.4925281Z 2023-01-11T21:41:26.4925290Z 2023-01-11T21:41:26.4925474Z if __name__ == "__main__": 2023-01-11T21:41:26.4925739Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4926033Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4926594Z arg0_1 = rand_strided((3, 4, 4, 4, 3), (192, 48, 12, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4927135Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4927598Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4927867Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4927877Z 2023-01-11T21:41:26.4927972Z ok (0.068s) 2023-01-11T21:41:26.4928826Z test_index_put1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4929200Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4929812Z [2023-01-11 21:34:37,763] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 232 2023-01-11T21:41:26.4930452Z [2023-01-11 21:34:39,650] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 232 2023-01-11T21:41:26.4931479Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4931783Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4932433Z [2023-01-11 21:34:40,546] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 233 2023-01-11T21:41:26.4933108Z [2023-01-11 21:34:42,142] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 233 2023-01-11T21:41:26.4933121Z 2023-01-11T21:41:26.4933346Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4933511Z import torch 2023-01-11T21:41:26.4933671Z import random 2023-01-11T21:41:26.4933951Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4934239Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4934257Z 2023-01-11T21:41:26.4934443Z aten = torch.ops.aten 2023-01-11T21:41:26.4934762Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4934992Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4935003Z 2023-01-11T21:41:26.4935012Z 2023-01-11T21:41:26.4935269Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4935629Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4935828Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4936014Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4936203Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4936432Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4936656Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4936878Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4937137Z { 2023-01-11T21:41:26.4937358Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4937501Z { 2023-01-11T21:41:26.4937685Z #pragma omp for 2023-01-11T21:41:26.4937887Z for(long i0=0; i0<1254400; i0+=1) 2023-01-11T21:41:26.4938030Z { 2023-01-11T21:41:26.4938362Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4938682Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4938873Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4939091Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4939303Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4939458Z } 2023-01-11T21:41:26.4939684Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4939973Z for(long i0=10035200; i0<10035200; i0+=1) 2023-01-11T21:41:26.4940132Z { 2023-01-11T21:41:26.4940322Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4940569Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4940773Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4940968Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.4941153Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.4941307Z } 2023-01-11T21:41:26.4941493Z #pragma omp for 2023-01-11T21:41:26.4941677Z for(long i0=0; i0<601; i0+=1) 2023-01-11T21:41:26.4941834Z { 2023-01-11T21:41:26.4942026Z #pragma GCC ivdep 2023-01-11T21:41:26.4942194Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.4942313Z { 2023-01-11T21:41:26.4942431Z { 2023-01-11T21:41:26.4942542Z { 2023-01-11T21:41:26.4942695Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.4942883Z auto tmp1 = in_ptr2[i1 + (12544*i0)]; 2023-01-11T21:41:26.4943076Z auto tmp2 = static_cast(1); 2023-01-11T21:41:26.4943330Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.4943585Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.4943808Z auto tmp5 = tmp1 + tmp4; 2023-01-11T21:41:26.4944046Z out_ptr0[i1 + (12544*tmp0)] = tmp1; 2023-01-11T21:41:26.4944259Z out_ptr1[i1 + (12544*tmp3)] = tmp5; 2023-01-11T21:41:26.4944413Z } 2023-01-11T21:41:26.4944561Z } 2023-01-11T21:41:26.4944714Z } 2023-01-11T21:41:26.4944866Z } 2023-01-11T21:41:26.4945050Z #pragma omp for 2023-01-11T21:41:26.4945256Z for(long i0=0; i0<1254400; i0+=1) 2023-01-11T21:41:26.4945395Z { 2023-01-11T21:41:26.4945711Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4946029Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4946226Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4946444Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4946603Z } 2023-01-11T21:41:26.4946834Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4947026Z for(long i0=10035200; i0<10035200; i0+=1) 2023-01-11T21:41:26.4947174Z { 2023-01-11T21:41:26.4947380Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.4947615Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4947822Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4948005Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.4948160Z } 2023-01-11T21:41:26.4948297Z } 2023-01-11T21:41:26.4948440Z } 2023-01-11T21:41:26.4948640Z ''') 2023-01-11T21:41:26.4948653Z 2023-01-11T21:41:26.4948662Z 2023-01-11T21:41:26.4948872Z async_compile.wait(globals()) 2023-01-11T21:41:26.4949043Z del async_compile 2023-01-11T21:41:26.4949055Z 2023-01-11T21:41:26.4949185Z def call(args): 2023-01-11T21:41:26.4949338Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4949450Z args.clear() 2023-01-11T21:41:26.4949944Z buf0 = empty_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4950359Z buf2 = empty_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4950891Z buf4 = empty_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4951414Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4951580Z del arg0_1 2023-01-11T21:41:26.4951733Z del arg1_1 2023-01-11T21:41:26.4951896Z del arg2_1 2023-01-11T21:41:26.4952060Z return (buf0, buf4, ) 2023-01-11T21:41:26.4952071Z 2023-01-11T21:41:26.4952104Z 2023-01-11T21:41:26.4952338Z if __name__ == "__main__": 2023-01-11T21:41:26.4952618Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4952914Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4953467Z arg0_1 = rand_strided((800, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4953938Z arg1_1 = rand_strided((601, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4954474Z arg2_1 = rand_strided((601, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4954773Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4954785Z 2023-01-11T21:41:26.4954794Z 2023-01-11T21:41:26.4955020Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4955175Z import torch 2023-01-11T21:41:26.4955350Z import random 2023-01-11T21:41:26.4955626Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4955918Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4955929Z 2023-01-11T21:41:26.4956125Z aten = torch.ops.aten 2023-01-11T21:41:26.4956360Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4956528Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4956537Z 2023-01-11T21:41:26.4956545Z 2023-01-11T21:41:26.4956776Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4957128Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4957364Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4957600Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4957839Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4958065Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4958295Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.4958531Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.4958656Z { 2023-01-11T21:41:26.4958894Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4959040Z { 2023-01-11T21:41:26.4959230Z #pragma omp for 2023-01-11T21:41:26.4959425Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.4959568Z { 2023-01-11T21:41:26.4959884Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4960191Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4960397Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4960617Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4960829Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4960982Z } 2023-01-11T21:41:26.4961207Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4961407Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:41:26.4961547Z { 2023-01-11T21:41:26.4961748Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4961976Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4962184Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4962380Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.4962638Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.4962790Z } 2023-01-11T21:41:26.4962960Z #pragma omp for 2023-01-11T21:41:26.4963123Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.4963245Z { 2023-01-11T21:41:26.4963390Z #pragma GCC ivdep 2023-01-11T21:41:26.4963542Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.4963660Z { 2023-01-11T21:41:26.4963762Z { 2023-01-11T21:41:26.4963882Z { 2023-01-11T21:41:26.4964049Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.4964219Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:41:26.4964455Z auto tmp2 = static_cast(1); 2023-01-11T21:41:26.4964658Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.4964969Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.4965187Z auto tmp5 = tmp1 + tmp4; 2023-01-11T21:41:26.4965395Z out_ptr0[i1 + (8*tmp0)] = tmp1; 2023-01-11T21:41:26.4965625Z out_ptr1[i1 + (8*tmp3)] = tmp5; 2023-01-11T21:41:26.4965777Z } 2023-01-11T21:41:26.4965926Z } 2023-01-11T21:41:26.4966081Z } 2023-01-11T21:41:26.4966236Z } 2023-01-11T21:41:26.4966400Z #pragma omp for 2023-01-11T21:41:26.4966601Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.4966752Z { 2023-01-11T21:41:26.4967066Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.4967393Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.4967597Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4967816Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.4967967Z } 2023-01-11T21:41:26.4968180Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4968386Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:41:26.4968540Z { 2023-01-11T21:41:26.4968744Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.4968975Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.4969342Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.4969521Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.4969670Z } 2023-01-11T21:41:26.4969813Z } 2023-01-11T21:41:26.4969959Z } 2023-01-11T21:41:26.4970166Z ''') 2023-01-11T21:41:26.4970176Z 2023-01-11T21:41:26.4970183Z 2023-01-11T21:41:26.4970348Z async_compile.wait(globals()) 2023-01-11T21:41:26.4970480Z del async_compile 2023-01-11T21:41:26.4970489Z 2023-01-11T21:41:26.4970615Z def call(args): 2023-01-11T21:41:26.4970748Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4970876Z args.clear() 2023-01-11T21:41:26.4971267Z buf0 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4971719Z buf2 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4972214Z buf4 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4972747Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.4972915Z del arg0_1 2023-01-11T21:41:26.4973058Z del arg1_1 2023-01-11T21:41:26.4973216Z del arg2_1 2023-01-11T21:41:26.4973400Z return (buf0, buf4, ) 2023-01-11T21:41:26.4973413Z 2023-01-11T21:41:26.4973422Z 2023-01-11T21:41:26.4973591Z if __name__ == "__main__": 2023-01-11T21:41:26.4973862Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4974161Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4974666Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4975126Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4975594Z arg2_1 = rand_strided((4, 1, 1), (1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4976001Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4976013Z 2023-01-11T21:41:26.4976169Z ok (4.634s) 2023-01-11T21:41:26.4977308Z test_index_put2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4977537Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4978079Z [2023-01-11 21:34:42,261] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 234 2023-01-11T21:41:26.4978587Z [2023-01-11 21:34:43,901] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 234 2023-01-11T21:41:26.4978602Z 2023-01-11T21:41:26.4978771Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4978948Z import torch 2023-01-11T21:41:26.4979075Z import random 2023-01-11T21:41:26.4979271Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4979486Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4979496Z 2023-01-11T21:41:26.4979635Z aten = torch.ops.aten 2023-01-11T21:41:26.4979897Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4980177Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4980190Z 2023-01-11T21:41:26.4980204Z 2023-01-11T21:41:26.4980596Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4981201Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4981488Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.4981716Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.4981961Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.4982199Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.4982343Z { 2023-01-11T21:41:26.4982578Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4982731Z { 2023-01-11T21:41:26.4982908Z #pragma omp for 2023-01-11T21:41:26.4983096Z for(long i0=0; i0<156800; i0+=1) 2023-01-11T21:41:26.4983323Z { 2023-01-11T21:41:26.4983647Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.4983865Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.4984017Z } 2023-01-11T21:41:26.4984238Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.4984453Z for(long i0=1254400; i0<1254400; i0+=1) 2023-01-11T21:41:26.4984591Z { 2023-01-11T21:41:26.4984798Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.4984983Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.4985137Z } 2023-01-11T21:41:26.4985322Z #pragma omp for 2023-01-11T21:41:26.4985521Z for(long i0=0; i0<600; i0+=1) 2023-01-11T21:41:26.4985656Z { 2023-01-11T21:41:26.4985844Z #pragma GCC ivdep 2023-01-11T21:41:26.4986015Z for(long i1=0; i1<12544; i1+=1) 2023-01-11T21:41:26.4986132Z { 2023-01-11T21:41:26.4986249Z { 2023-01-11T21:41:26.4986371Z { 2023-01-11T21:41:26.4986540Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.4986708Z auto tmp1 = in_ptr2[i1 + (12544*i0)]; 2023-01-11T21:41:26.4986915Z atomic_add(&out_ptr0[i1 + (12544*tmp0)], tmp1); 2023-01-11T21:41:26.4987034Z } 2023-01-11T21:41:26.4987153Z } 2023-01-11T21:41:26.4987268Z } 2023-01-11T21:41:26.4987379Z } 2023-01-11T21:41:26.4987490Z } 2023-01-11T21:41:26.4987574Z } 2023-01-11T21:41:26.4987723Z ''') 2023-01-11T21:41:26.4987807Z 2023-01-11T21:41:26.4987814Z 2023-01-11T21:41:26.4987977Z async_compile.wait(globals()) 2023-01-11T21:41:26.4988109Z del async_compile 2023-01-11T21:41:26.4988118Z 2023-01-11T21:41:26.4988248Z def call(args): 2023-01-11T21:41:26.4988397Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.4988523Z args.clear() 2023-01-11T21:41:26.4989035Z buf0 = empty_strided((100, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4989505Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.4989683Z del arg0_1 2023-01-11T21:41:26.4989929Z del arg1_1 2023-01-11T21:41:26.4990089Z del arg2_1 2023-01-11T21:41:26.4990257Z return (buf0, ) 2023-01-11T21:41:26.4990268Z 2023-01-11T21:41:26.4990277Z 2023-01-11T21:41:26.4990566Z if __name__ == "__main__": 2023-01-11T21:41:26.4990843Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.4991121Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.4991677Z arg0_1 = rand_strided((100, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4992154Z arg1_1 = rand_strided((600, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.4992693Z arg2_1 = rand_strided((600, 256, 7, 7), (12544, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.4992985Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.4992996Z 2023-01-11T21:41:26.4993145Z ok (1.970s) 2023-01-11T21:41:26.4994326Z test_index_put3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.4994621Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.4995178Z [2023-01-11 21:34:44,202] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 235 2023-01-11T21:41:26.4995675Z [2023-01-11 21:34:45,746] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 235 2023-01-11T21:41:26.4995687Z 2023-01-11T21:41:26.4995839Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.4995963Z import torch 2023-01-11T21:41:26.4996089Z import random 2023-01-11T21:41:26.4996295Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.4996510Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.4996519Z 2023-01-11T21:41:26.4996659Z aten = torch.ops.aten 2023-01-11T21:41:26.4996900Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.4997053Z async_compile = AsyncCompile() 2023-01-11T21:41:26.4997079Z 2023-01-11T21:41:26.4997087Z 2023-01-11T21:41:26.4997320Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.4997749Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.4998020Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.4998320Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.4998529Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.4998754Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.4998896Z { 2023-01-11T21:41:26.4999112Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.4999258Z { 2023-01-11T21:41:26.4999429Z #pragma omp for 2023-01-11T21:41:26.4999631Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.4999777Z { 2023-01-11T21:41:26.4999966Z #pragma GCC ivdep 2023-01-11T21:41:26.5000172Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.5000308Z { 2023-01-11T21:41:26.5000502Z #pragma GCC ivdep 2023-01-11T21:41:26.5000781Z for(long i2=0; i2<2; i2+=1) 2023-01-11T21:41:26.5000935Z { 2023-01-11T21:41:26.5001093Z { 2023-01-11T21:41:26.5001257Z { 2023-01-11T21:41:26.5001489Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.5001716Z auto tmp1 = in_ptr1[i2 + (2*i0)]; 2023-01-11T21:41:26.5001957Z out_ptr0[i2 + (2*tmp0) + (8*i0)] = tmp1; 2023-01-11T21:41:26.5002125Z } 2023-01-11T21:41:26.5002287Z } 2023-01-11T21:41:26.5002443Z } 2023-01-11T21:41:26.5002593Z } 2023-01-11T21:41:26.5002713Z } 2023-01-11T21:41:26.5002893Z #pragma omp for 2023-01-11T21:41:26.5003094Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.5003291Z { 2023-01-11T21:41:26.5003552Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5003802Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.5003955Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5004122Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.5004221Z } 2023-01-11T21:41:26.5004391Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5004546Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:41:26.5004662Z { 2023-01-11T21:41:26.5004814Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5004992Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.5005145Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5005267Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.5005377Z } 2023-01-11T21:41:26.5005517Z #pragma omp for 2023-01-11T21:41:26.5005711Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.5005900Z { 2023-01-11T21:41:26.5006070Z #pragma GCC ivdep 2023-01-11T21:41:26.5006246Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.5006399Z { 2023-01-11T21:41:26.5006622Z #pragma GCC ivdep 2023-01-11T21:41:26.5006817Z for(long i2=0; i2<2; i2+=1) 2023-01-11T21:41:26.5006969Z { 2023-01-11T21:41:26.5007114Z { 2023-01-11T21:41:26.5007273Z { 2023-01-11T21:41:26.5007477Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.5007716Z auto tmp3 = in_ptr1[i2 + (2*i0)]; 2023-01-11T21:41:26.5007970Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.5008193Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5008442Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.5008660Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.5008912Z out_ptr1[i2 + (2*tmp2) + (8*i0)] = tmp5; 2023-01-11T21:41:26.5009194Z } 2023-01-11T21:41:26.5009364Z } 2023-01-11T21:41:26.5009506Z } 2023-01-11T21:41:26.5009660Z } 2023-01-11T21:41:26.5009807Z } 2023-01-11T21:41:26.5009954Z } 2023-01-11T21:41:26.5010101Z } 2023-01-11T21:41:26.5010290Z ''') 2023-01-11T21:41:26.5010301Z 2023-01-11T21:41:26.5010310Z 2023-01-11T21:41:26.5010529Z async_compile.wait(globals()) 2023-01-11T21:41:26.5010699Z del async_compile 2023-01-11T21:41:26.5010712Z 2023-01-11T21:41:26.5010870Z def call(args): 2023-01-11T21:41:26.5011062Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5011226Z args.clear() 2023-01-11T21:41:26.5011737Z buf1 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5012086Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5012198Z del arg0_1 2023-01-11T21:41:26.5012318Z del arg1_1 2023-01-11T21:41:26.5012442Z del arg2_1 2023-01-11T21:41:26.5012671Z return (buf1, ) 2023-01-11T21:41:26.5012681Z 2023-01-11T21:41:26.5012687Z 2023-01-11T21:41:26.5012823Z if __name__ == "__main__": 2023-01-11T21:41:26.5013031Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5013256Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5013622Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5013974Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5014493Z arg2_1 = rand_strided((1024, 1, 2), (2, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5014840Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5014856Z 2023-01-11T21:41:26.5014999Z ok (1.634s) 2023-01-11T21:41:26.5016372Z test_index_put_as_masked_fill_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5016684Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5017340Z [2023-01-11 21:34:45,797] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 236 2023-01-11T21:41:26.5018005Z [2023-01-11 21:34:47,421] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 236 2023-01-11T21:41:26.5019071Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5019376Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5019994Z [2023-01-11 21:34:47,471] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 237 2023-01-11T21:41:26.5020580Z [2023-01-11 21:34:49,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 237 2023-01-11T21:41:26.5020589Z 2023-01-11T21:41:26.5020760Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5020887Z import torch 2023-01-11T21:41:26.5021020Z import random 2023-01-11T21:41:26.5021230Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5021440Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5021450Z 2023-01-11T21:41:26.5021593Z aten = torch.ops.aten 2023-01-11T21:41:26.5021816Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5021979Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5021988Z 2023-01-11T21:41:26.5021995Z 2023-01-11T21:41:26.5022252Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5022611Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5022819Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.5023009Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5023377Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.5023585Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5023777Z { 2023-01-11T21:41:26.5023984Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5024184Z { 2023-01-11T21:41:26.5024460Z #pragma omp for 2023-01-11T21:41:26.5024658Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.5024809Z { 2023-01-11T21:41:26.5025048Z float g_tmp_buffer_in_ptr0[8] = {0}; 2023-01-11T21:41:26.5025318Z flag_to_float(in_ptr0 + 8*i0, g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.5025656Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:41:26.5026026Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.5026333Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr2 + 8*i0); 2023-01-11T21:41:26.5026631Z auto tmp3 = decltype(tmp1)::blendv(tmp2, tmp1, tmp0); 2023-01-11T21:41:26.5026853Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5027010Z } 2023-01-11T21:41:26.5027222Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5027426Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:41:26.5027570Z { 2023-01-11T21:41:26.5027771Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5027969Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.5028170Z auto tmp2 = in_ptr2[i0]; 2023-01-11T21:41:26.5028445Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:41:26.5028622Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.5028768Z } 2023-01-11T21:41:26.5028918Z } 2023-01-11T21:41:26.5029061Z } 2023-01-11T21:41:26.5029237Z ''') 2023-01-11T21:41:26.5029246Z 2023-01-11T21:41:26.5029253Z 2023-01-11T21:41:26.5029411Z async_compile.wait(globals()) 2023-01-11T21:41:26.5029543Z del async_compile 2023-01-11T21:41:26.5029552Z 2023-01-11T21:41:26.5029675Z def call(args): 2023-01-11T21:41:26.5029799Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5029925Z args.clear() 2023-01-11T21:41:26.5030307Z buf0 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5030641Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5030766Z del arg0_1 2023-01-11T21:41:26.5030888Z del arg1_1 2023-01-11T21:41:26.5031043Z del arg2_1 2023-01-11T21:41:26.5031159Z return (buf0, ) 2023-01-11T21:41:26.5031168Z 2023-01-11T21:41:26.5031175Z 2023-01-11T21:41:26.5031314Z if __name__ == "__main__": 2023-01-11T21:41:26.5031581Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5031807Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5032270Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5032752Z arg1_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5033224Z arg2_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5033593Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5033606Z 2023-01-11T21:41:26.5033614Z 2023-01-11T21:41:26.5033819Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5033969Z import torch 2023-01-11T21:41:26.5034137Z import random 2023-01-11T21:41:26.5034406Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5034701Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5034712Z 2023-01-11T21:41:26.5034903Z aten = torch.ops.aten 2023-01-11T21:41:26.5035221Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5035436Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5035448Z 2023-01-11T21:41:26.5035457Z 2023-01-11T21:41:26.5035775Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5036264Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5036540Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.5036788Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5037032Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.5037265Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5037418Z { 2023-01-11T21:41:26.5037633Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5037781Z { 2023-01-11T21:41:26.5037960Z #pragma omp for 2023-01-11T21:41:26.5038159Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.5038347Z { 2023-01-11T21:41:26.5038525Z float g_tmp_buffer_in_ptr0[8] = {0}; 2023-01-11T21:41:26.5038744Z flag_to_float(in_ptr0 + 8*i0, g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.5038986Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:41:26.5039227Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.5039445Z auto tmp2 = at::vec::Vectorized(in_ptr2[0]); 2023-01-11T21:41:26.5039597Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.5039815Z auto tmp4 = decltype(tmp3)::blendv(tmp1, tmp3, tmp0); 2023-01-11T21:41:26.5039978Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5040090Z } 2023-01-11T21:41:26.5040301Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5040570Z for(long i0=8192; i0<8192; i0+=1) 2023-01-11T21:41:26.5040755Z { 2023-01-11T21:41:26.5040929Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5041197Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.5041376Z auto tmp2 = in_ptr2[0]; 2023-01-11T21:41:26.5041543Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.5041769Z auto tmp4 = tmp0 ? tmp3 : tmp1; 2023-01-11T21:41:26.5041945Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.5042097Z } 2023-01-11T21:41:26.5042240Z } 2023-01-11T21:41:26.5042382Z } 2023-01-11T21:41:26.5042585Z ''') 2023-01-11T21:41:26.5042596Z 2023-01-11T21:41:26.5042605Z 2023-01-11T21:41:26.5042813Z async_compile.wait(globals()) 2023-01-11T21:41:26.5042985Z del async_compile 2023-01-11T21:41:26.5042997Z 2023-01-11T21:41:26.5043137Z def call(args): 2023-01-11T21:41:26.5043329Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5043500Z args.clear() 2023-01-11T21:41:26.5044019Z buf0 = empty_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5044466Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5044637Z del arg0_1 2023-01-11T21:41:26.5044798Z del arg1_1 2023-01-11T21:41:26.5044945Z del arg2_1 2023-01-11T21:41:26.5045119Z return (buf0, ) 2023-01-11T21:41:26.5045130Z 2023-01-11T21:41:26.5045140Z 2023-01-11T21:41:26.5045316Z if __name__ == "__main__": 2023-01-11T21:41:26.5045587Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5045884Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5046362Z arg0_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5046738Z arg1_1 = rand_strided((1024, 4, 2), (8, 2, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5047077Z arg2_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5047285Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5047313Z 2023-01-11T21:41:26.5047427Z ok (3.288s) 2023-01-11T21:41:26.5048529Z test_index_put_fallback1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5048822Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5049712Z [2023-01-11 21:34:49,097] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 238 2023-01-11T21:41:26.5050390Z [2023-01-11 21:34:50,771] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 238 2023-01-11T21:41:26.5051458Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5051869Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5052514Z [2023-01-11 21:34:50,820] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 239 2023-01-11T21:41:26.5053179Z [2023-01-11 21:34:50,828] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 239 2023-01-11T21:41:26.5053192Z 2023-01-11T21:41:26.5053421Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5053543Z import torch 2023-01-11T21:41:26.5053664Z import random 2023-01-11T21:41:26.5053867Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5054139Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5054150Z 2023-01-11T21:41:26.5054295Z aten = torch.ops.aten 2023-01-11T21:41:26.5054541Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5054727Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5054743Z 2023-01-11T21:41:26.5054751Z 2023-01-11T21:41:26.5055114Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5055580Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5055923Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5056151Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5056298Z { 2023-01-11T21:41:26.5056484Z #pragma GCC ivdep 2023-01-11T21:41:26.5056667Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.5056809Z { 2023-01-11T21:41:26.5056946Z { 2023-01-11T21:41:26.5057101Z { 2023-01-11T21:41:26.5057311Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5057511Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.5057662Z } 2023-01-11T21:41:26.5057815Z } 2023-01-11T21:41:26.5057964Z } 2023-01-11T21:41:26.5058086Z } 2023-01-11T21:41:26.5058280Z ''') 2023-01-11T21:41:26.5058292Z 2023-01-11T21:41:26.5058302Z 2023-01-11T21:41:26.5058518Z async_compile.wait(globals()) 2023-01-11T21:41:26.5058691Z del async_compile 2023-01-11T21:41:26.5058703Z 2023-01-11T21:41:26.5058877Z def call(args): 2023-01-11T21:41:26.5059067Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5059236Z args.clear() 2023-01-11T21:41:26.5059699Z buf0 = empty_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5060012Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5060174Z del arg0_1 2023-01-11T21:41:26.5060417Z aten.index_put_(buf0, [arg1_1], arg2_1, False) 2023-01-11T21:41:26.5060571Z del arg1_1 2023-01-11T21:41:26.5060691Z del arg2_1 2023-01-11T21:41:26.5060823Z return (buf0, ) 2023-01-11T21:41:26.5060832Z 2023-01-11T21:41:26.5060838Z 2023-01-11T21:41:26.5060956Z if __name__ == "__main__": 2023-01-11T21:41:26.5061162Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5061378Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5061726Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5062163Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5062621Z arg2_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5062906Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5062924Z 2023-01-11T21:41:26.5062933Z 2023-01-11T21:41:26.5063209Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5063373Z import torch 2023-01-11T21:41:26.5063520Z import random 2023-01-11T21:41:26.5063799Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5064099Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5064111Z 2023-01-11T21:41:26.5064290Z aten = torch.ops.aten 2023-01-11T21:41:26.5064696Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5064916Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5064928Z 2023-01-11T21:41:26.5064937Z 2023-01-11T21:41:26.5065262Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5065733Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5066006Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5066236Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5066376Z { 2023-01-11T21:41:26.5066547Z #pragma GCC ivdep 2023-01-11T21:41:26.5066732Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.5066870Z { 2023-01-11T21:41:26.5066997Z { 2023-01-11T21:41:26.5067155Z { 2023-01-11T21:41:26.5067414Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5067614Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.5067737Z } 2023-01-11T21:41:26.5067856Z } 2023-01-11T21:41:26.5067966Z } 2023-01-11T21:41:26.5068056Z } 2023-01-11T21:41:26.5068206Z ''') 2023-01-11T21:41:26.5068215Z 2023-01-11T21:41:26.5068222Z 2023-01-11T21:41:26.5068386Z async_compile.wait(globals()) 2023-01-11T21:41:26.5068517Z del async_compile 2023-01-11T21:41:26.5068526Z 2023-01-11T21:41:26.5068652Z def call(args): 2023-01-11T21:41:26.5068813Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5068973Z args.clear() 2023-01-11T21:41:26.5069414Z buf0 = empty_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5069727Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5069877Z del arg0_1 2023-01-11T21:41:26.5070119Z aten.index_put_(buf0, [arg1_1], arg2_1, True) 2023-01-11T21:41:26.5070286Z del arg1_1 2023-01-11T21:41:26.5070452Z del arg2_1 2023-01-11T21:41:26.5070619Z return (buf0, ) 2023-01-11T21:41:26.5070631Z 2023-01-11T21:41:26.5070639Z 2023-01-11T21:41:26.5070825Z if __name__ == "__main__": 2023-01-11T21:41:26.5071084Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5071376Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5071844Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5072300Z arg1_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5072765Z arg2_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5073054Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5073067Z 2023-01-11T21:41:26.5073227Z ok (1.793s) 2023-01-11T21:41:26.5074397Z test_index_put_fallback2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5074689Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5075158Z [2023-01-11 21:34:50,878] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 240 2023-01-11T21:41:26.5075647Z [2023-01-11 21:34:52,942] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 240 2023-01-11T21:41:26.5076556Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5076859Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5077469Z [2023-01-11 21:34:53,003] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 241 2023-01-11T21:41:26.5078225Z [2023-01-11 21:34:53,012] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 241 2023-01-11T21:41:26.5078238Z 2023-01-11T21:41:26.5078463Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5078628Z import torch 2023-01-11T21:41:26.5078797Z import random 2023-01-11T21:41:26.5079057Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5079349Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5079361Z 2023-01-11T21:41:26.5079547Z aten = torch.ops.aten 2023-01-11T21:41:26.5079872Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5080096Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5080108Z 2023-01-11T21:41:26.5080118Z 2023-01-11T21:41:26.5080503Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5080997Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5081283Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5081506Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5081660Z { 2023-01-11T21:41:26.5081847Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5081958Z { 2023-01-11T21:41:26.5082099Z #pragma omp for 2023-01-11T21:41:26.5082248Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.5082363Z { 2023-01-11T21:41:26.5082460Z { 2023-01-11T21:41:26.5082577Z { 2023-01-11T21:41:26.5082743Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5082896Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.5083028Z } 2023-01-11T21:41:26.5083183Z } 2023-01-11T21:41:26.5083331Z } 2023-01-11T21:41:26.5083447Z } 2023-01-11T21:41:26.5083598Z } 2023-01-11T21:41:26.5083792Z ''') 2023-01-11T21:41:26.5083803Z 2023-01-11T21:41:26.5083814Z 2023-01-11T21:41:26.5084030Z async_compile.wait(globals()) 2023-01-11T21:41:26.5084202Z del async_compile 2023-01-11T21:41:26.5084214Z 2023-01-11T21:41:26.5084377Z def call(args): 2023-01-11T21:41:26.5084586Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5084733Z args.clear() 2023-01-11T21:41:26.5085234Z buf0 = empty_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5085554Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5085722Z del arg0_1 2023-01-11T21:41:26.5086003Z aten.index_put_(buf0, [None,arg1_1,arg2_1], arg3_1, False) 2023-01-11T21:41:26.5086169Z del arg1_1 2023-01-11T21:41:26.5086333Z del arg2_1 2023-01-11T21:41:26.5086482Z del arg3_1 2023-01-11T21:41:26.5086662Z return (buf0, ) 2023-01-11T21:41:26.5086674Z 2023-01-11T21:41:26.5086684Z 2023-01-11T21:41:26.5086868Z if __name__ == "__main__": 2023-01-11T21:41:26.5087140Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5087441Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5087937Z arg0_1 = rand_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5088400Z arg1_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5088850Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5089320Z arg3_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5089542Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5089552Z 2023-01-11T21:41:26.5089558Z 2023-01-11T21:41:26.5089732Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5089857Z import torch 2023-01-11T21:41:26.5089981Z import random 2023-01-11T21:41:26.5090193Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5090465Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5090480Z 2023-01-11T21:41:26.5090659Z aten = torch.ops.aten 2023-01-11T21:41:26.5091083Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5091298Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5091316Z 2023-01-11T21:41:26.5091326Z 2023-01-11T21:41:26.5091657Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5092127Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5092421Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5092657Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5092801Z { 2023-01-11T21:41:26.5093021Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5093171Z { 2023-01-11T21:41:26.5093358Z #pragma omp for 2023-01-11T21:41:26.5093550Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.5093695Z { 2023-01-11T21:41:26.5093929Z { 2023-01-11T21:41:26.5094091Z { 2023-01-11T21:41:26.5094293Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5094497Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.5094649Z } 2023-01-11T21:41:26.5094807Z } 2023-01-11T21:41:26.5094953Z } 2023-01-11T21:41:26.5095102Z } 2023-01-11T21:41:26.5095240Z } 2023-01-11T21:41:26.5095413Z ''') 2023-01-11T21:41:26.5095424Z 2023-01-11T21:41:26.5095433Z 2023-01-11T21:41:26.5095652Z async_compile.wait(globals()) 2023-01-11T21:41:26.5095823Z del async_compile 2023-01-11T21:41:26.5095834Z 2023-01-11T21:41:26.5095991Z def call(args): 2023-01-11T21:41:26.5096156Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5096286Z args.clear() 2023-01-11T21:41:26.5096669Z buf0 = empty_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5096893Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5097024Z del arg0_1 2023-01-11T21:41:26.5097255Z aten.index_put_(buf0, [None,arg1_1,arg2_1], arg3_1, True) 2023-01-11T21:41:26.5097421Z del arg1_1 2023-01-11T21:41:26.5097582Z del arg2_1 2023-01-11T21:41:26.5097754Z del arg3_1 2023-01-11T21:41:26.5097921Z return (buf0, ) 2023-01-11T21:41:26.5097932Z 2023-01-11T21:41:26.5097940Z 2023-01-11T21:41:26.5098127Z if __name__ == "__main__": 2023-01-11T21:41:26.5098369Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5098658Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5099149Z arg0_1 = rand_strided((1, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5099612Z arg1_1 = rand_strided((2, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5100060Z arg2_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5100507Z arg3_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5100814Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5100826Z 2023-01-11T21:41:26.5100971Z ok (2.185s) 2023-01-11T21:41:26.5102148Z test_index_select_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5102445Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5103101Z [2023-01-11 21:34:53,058] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 242 2023-01-11T21:41:26.5103677Z [2023-01-11 21:34:54,727] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 242 2023-01-11T21:41:26.5104486Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5104866Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5105474Z [2023-01-11 21:34:54,783] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 243 2023-01-11T21:41:26.5106104Z [2023-01-11 21:34:56,425] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 243 2023-01-11T21:41:26.5106116Z 2023-01-11T21:41:26.5106344Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5106517Z import torch 2023-01-11T21:41:26.5106664Z import random 2023-01-11T21:41:26.5106941Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5107315Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5107328Z 2023-01-11T21:41:26.5107525Z aten = torch.ops.aten 2023-01-11T21:41:26.5107852Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5108084Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5108096Z 2023-01-11T21:41:26.5108106Z 2023-01-11T21:41:26.5108440Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5108932Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5109193Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.5109439Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5109667Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5109895Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.5110118Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.5110246Z { 2023-01-11T21:41:26.5110434Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5110532Z { 2023-01-11T21:41:26.5110669Z #pragma omp for 2023-01-11T21:41:26.5110817Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.5110937Z { 2023-01-11T21:41:26.5111083Z #pragma GCC ivdep 2023-01-11T21:41:26.5111239Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:41:26.5111350Z { 2023-01-11T21:41:26.5111477Z { 2023-01-11T21:41:26.5111634Z { 2023-01-11T21:41:26.5111835Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5112083Z auto tmp1 = in_ptr1[i1 + (64*tmp0)]; 2023-01-11T21:41:26.5112307Z out_ptr0[i1 + (64*i0)] = tmp1; 2023-01-11T21:41:26.5112467Z } 2023-01-11T21:41:26.5112620Z } 2023-01-11T21:41:26.5112751Z } 2023-01-11T21:41:26.5112900Z } 2023-01-11T21:41:26.5113086Z #pragma omp for 2023-01-11T21:41:26.5113287Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5113441Z { 2023-01-11T21:41:26.5113629Z #pragma GCC ivdep 2023-01-11T21:41:26.5113808Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5113961Z { 2023-01-11T21:41:26.5114151Z #pragma GCC ivdep 2023-01-11T21:41:26.5114356Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:41:26.5114507Z { 2023-01-11T21:41:26.5114666Z { 2023-01-11T21:41:26.5114830Z { 2023-01-11T21:41:26.5115034Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.5115295Z auto tmp1 = in_ptr1[i2 + (8*tmp0) + (64*i0)]; 2023-01-11T21:41:26.5115534Z out_ptr1[i2 + (8*i1) + (32*i0)] = tmp1; 2023-01-11T21:41:26.5115692Z } 2023-01-11T21:41:26.5115856Z } 2023-01-11T21:41:26.5116014Z } 2023-01-11T21:41:26.5116165Z } 2023-01-11T21:41:26.5116304Z } 2023-01-11T21:41:26.5116498Z #pragma omp for 2023-01-11T21:41:26.5116692Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5116847Z { 2023-01-11T21:41:26.5117114Z #pragma GCC ivdep 2023-01-11T21:41:26.5117279Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5117395Z { 2023-01-11T21:41:26.5117526Z #pragma GCC ivdep 2023-01-11T21:41:26.5117685Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:41:26.5117799Z { 2023-01-11T21:41:26.5117920Z { 2023-01-11T21:41:26.5118045Z { 2023-01-11T21:41:26.5118217Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.5118387Z auto tmp1 = in_ptr0[i2]; 2023-01-11T21:41:26.5118573Z auto tmp2 = in_ptr1[tmp1 + (8*tmp0) + (64*i0)]; 2023-01-11T21:41:26.5118779Z out_ptr2[i2 + (4*i1) + (16*i0)] = tmp2; 2023-01-11T21:41:26.5118926Z } 2023-01-11T21:41:26.5119144Z } 2023-01-11T21:41:26.5119298Z } 2023-01-11T21:41:26.5119455Z } 2023-01-11T21:41:26.5119650Z } 2023-01-11T21:41:26.5119770Z } 2023-01-11T21:41:26.5119911Z } 2023-01-11T21:41:26.5120128Z ''') 2023-01-11T21:41:26.5120142Z 2023-01-11T21:41:26.5120150Z 2023-01-11T21:41:26.5120353Z async_compile.wait(globals()) 2023-01-11T21:41:26.5120529Z del async_compile 2023-01-11T21:41:26.5120540Z 2023-01-11T21:41:26.5120701Z def call(args): 2023-01-11T21:41:26.5120884Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5121032Z args.clear() 2023-01-11T21:41:26.5121530Z buf0 = empty_strided((4, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5122026Z buf1 = empty_strided((8, 4, 8), (32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5122520Z buf2 = empty_strided((8, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5123036Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.5123203Z del arg0_1 2023-01-11T21:41:26.5123359Z del arg1_1 2023-01-11T21:41:26.5123530Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.5123560Z 2023-01-11T21:41:26.5123569Z 2023-01-11T21:41:26.5123733Z if __name__ == "__main__": 2023-01-11T21:41:26.5124010Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5124305Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5124759Z arg0_1 = rand_strided((8, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5125118Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.5125325Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5125334Z 2023-01-11T21:41:26.5125341Z 2023-01-11T21:41:26.5125510Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5125639Z import torch 2023-01-11T21:41:26.5125753Z import random 2023-01-11T21:41:26.5125962Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5126184Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5126193Z 2023-01-11T21:41:26.5126335Z aten = torch.ops.aten 2023-01-11T21:41:26.5126578Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5126782Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5126795Z 2023-01-11T21:41:26.5126803Z 2023-01-11T21:41:26.5127109Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5127552Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5127806Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.5128065Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5128284Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5128509Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.5128740Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.5128888Z { 2023-01-11T21:41:26.5129247Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5129489Z { 2023-01-11T21:41:26.5129666Z #pragma omp for 2023-01-11T21:41:26.5129859Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.5130002Z { 2023-01-11T21:41:26.5130191Z #pragma GCC ivdep 2023-01-11T21:41:26.5130394Z for(long i1=0; i1<64; i1+=1) 2023-01-11T21:41:26.5130548Z { 2023-01-11T21:41:26.5130681Z { 2023-01-11T21:41:26.5130836Z { 2023-01-11T21:41:26.5131060Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5131305Z auto tmp1 = in_ptr1[i1 + (64*tmp0)]; 2023-01-11T21:41:26.5131532Z out_ptr0[i1 + (64*i0)] = tmp1; 2023-01-11T21:41:26.5131687Z } 2023-01-11T21:41:26.5131843Z } 2023-01-11T21:41:26.5132037Z } 2023-01-11T21:41:26.5132191Z } 2023-01-11T21:41:26.5132344Z #pragma omp for 2023-01-11T21:41:26.5132492Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5132610Z { 2023-01-11T21:41:26.5132744Z #pragma GCC ivdep 2023-01-11T21:41:26.5132878Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5132992Z { 2023-01-11T21:41:26.5133136Z #pragma GCC ivdep 2023-01-11T21:41:26.5133296Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:41:26.5133413Z { 2023-01-11T21:41:26.5133533Z { 2023-01-11T21:41:26.5133685Z { 2023-01-11T21:41:26.5133873Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.5134126Z auto tmp1 = in_ptr1[i2 + (8*tmp0) + (64*i0)]; 2023-01-11T21:41:26.5134361Z out_ptr1[i2 + (8*i1) + (32*i0)] = tmp1; 2023-01-11T21:41:26.5134530Z } 2023-01-11T21:41:26.5134696Z } 2023-01-11T21:41:26.5134844Z } 2023-01-11T21:41:26.5134992Z } 2023-01-11T21:41:26.5135122Z } 2023-01-11T21:41:26.5135315Z #pragma omp for 2023-01-11T21:41:26.5135484Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5135632Z { 2023-01-11T21:41:26.5135827Z #pragma GCC ivdep 2023-01-11T21:41:26.5136019Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5136173Z { 2023-01-11T21:41:26.5136352Z #pragma GCC ivdep 2023-01-11T21:41:26.5136558Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:41:26.5136708Z { 2023-01-11T21:41:26.5136866Z { 2023-01-11T21:41:26.5137028Z { 2023-01-11T21:41:26.5137251Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.5137453Z auto tmp1 = in_ptr0[i2]; 2023-01-11T21:41:26.5137724Z auto tmp2 = in_ptr1[tmp1 + (8*tmp0) + (64*i0)]; 2023-01-11T21:41:26.5137959Z out_ptr2[i2 + (4*i1) + (16*i0)] = tmp2; 2023-01-11T21:41:26.5138131Z } 2023-01-11T21:41:26.5138289Z } 2023-01-11T21:41:26.5138440Z } 2023-01-11T21:41:26.5138593Z } 2023-01-11T21:41:26.5138724Z } 2023-01-11T21:41:26.5138873Z } 2023-01-11T21:41:26.5139012Z } 2023-01-11T21:41:26.5139225Z ''') 2023-01-11T21:41:26.5139238Z 2023-01-11T21:41:26.5139247Z 2023-01-11T21:41:26.5139457Z async_compile.wait(globals()) 2023-01-11T21:41:26.5139632Z del async_compile 2023-01-11T21:41:26.5139642Z 2023-01-11T21:41:26.5139761Z def call(args): 2023-01-11T21:41:26.5139894Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5140002Z args.clear() 2023-01-11T21:41:26.5140391Z buf0 = empty_strided((4, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5140773Z buf1 = empty_strided((8, 4, 8), (32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5141195Z buf2 = empty_strided((8, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5141689Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.5141949Z del arg0_1 2023-01-11T21:41:26.5142105Z del arg1_1 2023-01-11T21:41:26.5142267Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.5142298Z 2023-01-11T21:41:26.5142308Z 2023-01-11T21:41:26.5142463Z if __name__ == "__main__": 2023-01-11T21:41:26.5142736Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5143036Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5143643Z arg0_1 = rand_strided((8, 8, 8), (64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5144106Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5144381Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5144461Z 2023-01-11T21:41:26.5144616Z ok (3.415s) 2023-01-11T21:41:26.5145849Z test_indirect_load_broadcast_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5146151Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5146789Z [2023-01-11 21:34:56,489] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 244 2023-01-11T21:41:26.5147320Z [2023-01-11 21:34:58,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 244 2023-01-11T21:41:26.5147331Z 2023-01-11T21:41:26.5147505Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5147641Z import torch 2023-01-11T21:41:26.5147770Z import random 2023-01-11T21:41:26.5147980Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5148212Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5148228Z 2023-01-11T21:41:26.5148409Z aten = torch.ops.aten 2023-01-11T21:41:26.5148698Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5148899Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5148911Z 2023-01-11T21:41:26.5148921Z 2023-01-11T21:41:26.5149247Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5149721Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5149992Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.5150242Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5150483Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.5150718Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5150851Z { 2023-01-11T21:41:26.5151086Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5151246Z { 2023-01-11T21:41:26.5151436Z #pragma omp for 2023-01-11T21:41:26.5151638Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.5151788Z { 2023-01-11T21:41:26.5151963Z #pragma GCC ivdep 2023-01-11T21:41:26.5152161Z for(long i1=0; i1<21; i1+=1) 2023-01-11T21:41:26.5152319Z { 2023-01-11T21:41:26.5152474Z { 2023-01-11T21:41:26.5152631Z { 2023-01-11T21:41:26.5152866Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.5153083Z auto tmp2 = in_ptr2[i0]; 2023-01-11T21:41:26.5153309Z auto tmp1 = in_ptr1[i1 + (512*tmp0)]; 2023-01-11T21:41:26.5153532Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.5153753Z out_ptr0[i1 + (21*i0)] = tmp3; 2023-01-11T21:41:26.5153923Z } 2023-01-11T21:41:26.5154049Z } 2023-01-11T21:41:26.5154167Z } 2023-01-11T21:41:26.5154350Z } 2023-01-11T21:41:26.5154441Z } 2023-01-11T21:41:26.5154550Z } 2023-01-11T21:41:26.5154707Z ''') 2023-01-11T21:41:26.5154717Z 2023-01-11T21:41:26.5154724Z 2023-01-11T21:41:26.5154882Z async_compile.wait(globals()) 2023-01-11T21:41:26.5155016Z del async_compile 2023-01-11T21:41:26.5155029Z 2023-01-11T21:41:26.5155183Z def call(args): 2023-01-11T21:41:26.5155380Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5155515Z args.clear() 2023-01-11T21:41:26.5155995Z buf0 = empty_strided((32, 21), (21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5156428Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5156595Z del arg0_1 2023-01-11T21:41:26.5156752Z del arg1_1 2023-01-11T21:41:26.5156910Z del arg2_1 2023-01-11T21:41:26.5157139Z return (buf0, ) 2023-01-11T21:41:26.5157154Z 2023-01-11T21:41:26.5157163Z 2023-01-11T21:41:26.5157355Z if __name__ == "__main__": 2023-01-11T21:41:26.5157622Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5157918Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5158411Z arg0_1 = rand_strided((32, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5158913Z arg1_1 = rand_strided((9521, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5159385Z arg2_1 = rand_strided((32, 21), (1, 32), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5159675Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5159687Z 2023-01-11T21:41:26.5159846Z ok (1.703s) 2023-01-11T21:41:26.5160982Z test_inf_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5161217Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5161687Z [2023-01-11 21:34:58,149] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 245 2023-01-11T21:41:26.5162236Z [2023-01-11 21:34:59,788] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 245 2023-01-11T21:41:26.5162252Z 2023-01-11T21:41:26.5162478Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5162653Z import torch 2023-01-11T21:41:26.5162823Z import random 2023-01-11T21:41:26.5163095Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5163378Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5163393Z 2023-01-11T21:41:26.5163567Z aten = torch.ops.aten 2023-01-11T21:41:26.5163868Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5164091Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5164109Z 2023-01-11T21:41:26.5164118Z 2023-01-11T21:41:26.5164452Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5164946Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5165229Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5165453Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5165685Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.5165910Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.5166048Z { 2023-01-11T21:41:26.5166285Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5166433Z { 2023-01-11T21:41:26.5166619Z #pragma omp for 2023-01-11T21:41:26.5166818Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.5166966Z { 2023-01-11T21:41:26.5167293Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5167649Z auto tmp1 = at::vec::Vectorized(std::numeric_limits::infinity()); 2023-01-11T21:41:26.5167877Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5168308Z auto tmp3 = at::vec::Vectorized(-std::numeric_limits::infinity()); 2023-01-11T21:41:26.5168462Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.5168613Z auto tmp5 = tmp0 * tmp3; 2023-01-11T21:41:26.5168779Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5168986Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.5169312Z tmp5.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.5169470Z } 2023-01-11T21:41:26.5169701Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5169890Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.5170035Z { 2023-01-11T21:41:26.5170221Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5170615Z auto tmp1 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.5170800Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5171344Z auto tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.5171549Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.5171739Z auto tmp5 = tmp0 * tmp3; 2023-01-11T21:41:26.5171927Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5172116Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.5172301Z out_ptr2[i0] = tmp5; 2023-01-11T21:41:26.5172432Z } 2023-01-11T21:41:26.5172582Z } 2023-01-11T21:41:26.5172726Z } 2023-01-11T21:41:26.5172914Z ''') 2023-01-11T21:41:26.5172926Z 2023-01-11T21:41:26.5172935Z 2023-01-11T21:41:26.5173149Z async_compile.wait(globals()) 2023-01-11T21:41:26.5173323Z del async_compile 2023-01-11T21:41:26.5173334Z 2023-01-11T21:41:26.5173506Z def call(args): 2023-01-11T21:41:26.5173669Z arg0_1, = args 2023-01-11T21:41:26.5173817Z args.clear() 2023-01-11T21:41:26.5174283Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5174762Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5175104Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5175446Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.5175563Z del arg0_1 2023-01-11T21:41:26.5175712Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.5175721Z 2023-01-11T21:41:26.5175728Z 2023-01-11T21:41:26.5175863Z if __name__ == "__main__": 2023-01-11T21:41:26.5176071Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5176349Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5176788Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5177045Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5177058Z 2023-01-11T21:41:26.5177220Z ok (1.659s) 2023-01-11T21:41:26.5178400Z test_inplace_activations_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5178704Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5179339Z [2023-01-11 21:34:59,947] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 246 2023-01-11T21:41:26.5179992Z [2023-01-11 21:35:01,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 246 2023-01-11T21:41:26.5180005Z 2023-01-11T21:41:26.5180214Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5180385Z import torch 2023-01-11T21:41:26.5180554Z import random 2023-01-11T21:41:26.5180832Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5181224Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5181236Z 2023-01-11T21:41:26.5181424Z aten = torch.ops.aten 2023-01-11T21:41:26.5181739Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5181898Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5181924Z 2023-01-11T21:41:26.5181931Z 2023-01-11T21:41:26.5182160Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5182521Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5182730Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5182909Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5183085Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.5183404Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.5183608Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.5183803Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.5184008Z float* __restrict__ out_ptr5, 2023-01-11T21:41:26.5184269Z float* __restrict__ out_ptr6) 2023-01-11T21:41:26.5184415Z { 2023-01-11T21:41:26.5184644Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5184792Z { 2023-01-11T21:41:26.5184974Z #pragma omp for 2023-01-11T21:41:26.5185144Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.5185292Z { 2023-01-11T21:41:26.5185445Z { 2023-01-11T21:41:26.5185604Z { 2023-01-11T21:41:26.5185827Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5186079Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.5186290Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5186520Z auto tmp3 = static_cast(3); 2023-01-11T21:41:26.5186732Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.5186984Z auto tmp5 = static_cast(0.0); 2023-01-11T21:41:26.5187301Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp4, tmp5); 2023-01-11T21:41:26.5187548Z auto tmp7 = static_cast(6.0); 2023-01-11T21:41:26.5187839Z auto tmp8 = (tmp7 != tmp7) ? tmp7 : std::min(tmp6, tmp7); 2023-01-11T21:41:26.5188053Z auto tmp9 = tmp2 * tmp8; 2023-01-11T21:41:26.5188301Z auto tmp10 = static_cast(6); 2023-01-11T21:41:26.5188504Z auto tmp11 = tmp9 / tmp10; 2023-01-11T21:41:26.5188913Z auto tmp12 = static_cast(-1.0); 2023-01-11T21:41:26.5189220Z auto tmp13 = (tmp12 != tmp12) ? tmp12 : std::max(tmp2, tmp12); 2023-01-11T21:41:26.5189447Z auto tmp14 = static_cast(1.0); 2023-01-11T21:41:26.5189687Z auto tmp15 = (tmp14 != tmp14) ? tmp14 : std::min(tmp13, tmp14); 2023-01-11T21:41:26.5189871Z auto tmp16 = static_cast(0); 2023-01-11T21:41:26.5190042Z auto tmp17 = tmp2 > tmp16; 2023-01-11T21:41:26.5190234Z auto tmp18 = static_cast(0.01); 2023-01-11T21:41:26.5190379Z auto tmp19 = tmp2 * tmp18; 2023-01-11T21:41:26.5190553Z auto tmp20 = tmp17 ? tmp2 : tmp19; 2023-01-11T21:41:26.5190887Z auto tmp21 = std::exp(-tmp2); 2023-01-11T21:41:26.5191114Z auto tmp22 = 1 / (1 + tmp21); 2023-01-11T21:41:26.5191321Z auto tmp23 = tmp2 * tmp22; 2023-01-11T21:41:26.5191556Z auto tmp24 = std::log1p(tmp2); 2023-01-11T21:41:26.5191787Z auto tmp25 = static_cast(0); 2023-01-11T21:41:26.5192019Z auto tmp26 = static_cast(99.0); 2023-01-11T21:41:26.5192239Z auto tmp27 = tmp25 ? tmp26 : tmp2; 2023-01-11T21:41:26.5192473Z auto tmp28 = static_cast(1); 2023-01-11T21:41:26.5192833Z auto tmp29 = tmp28 ? tmp26 : tmp2; 2023-01-11T21:41:26.5193028Z out_ptr0[i0] = tmp11; 2023-01-11T21:41:26.5193230Z out_ptr1[i0] = tmp15; 2023-01-11T21:41:26.5193429Z out_ptr2[i0] = tmp20; 2023-01-11T21:41:26.5193608Z out_ptr3[i0] = tmp23; 2023-01-11T21:41:26.5193806Z out_ptr4[i0] = tmp24; 2023-01-11T21:41:26.5193998Z out_ptr5[i0] = tmp27; 2023-01-11T21:41:26.5194199Z out_ptr6[i0] = tmp29; 2023-01-11T21:41:26.5194352Z } 2023-01-11T21:41:26.5194503Z } 2023-01-11T21:41:26.5194658Z } 2023-01-11T21:41:26.5194790Z } 2023-01-11T21:41:26.5194937Z } 2023-01-11T21:41:26.5195132Z ''') 2023-01-11T21:41:26.5195146Z 2023-01-11T21:41:26.5195155Z 2023-01-11T21:41:26.5195436Z async_compile.wait(globals()) 2023-01-11T21:41:26.5195617Z del async_compile 2023-01-11T21:41:26.5195628Z 2023-01-11T21:41:26.5195797Z def call(args): 2023-01-11T21:41:26.5195963Z arg0_1, = args 2023-01-11T21:41:26.5196112Z args.clear() 2023-01-11T21:41:26.5196536Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5196897Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5197251Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5197598Z buf3 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5198030Z buf4 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5198486Z buf5 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5198929Z buf6 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5199595Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr())) 2023-01-11T21:41:26.5199754Z del arg0_1 2023-01-11T21:41:26.5200008Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, ) 2023-01-11T21:41:26.5200020Z 2023-01-11T21:41:26.5200030Z 2023-01-11T21:41:26.5200209Z if __name__ == "__main__": 2023-01-11T21:41:26.5200480Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5200766Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5201248Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5201507Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5201520Z 2023-01-11T21:41:26.5201684Z ok (2.025s) 2023-01-11T21:41:26.5202503Z test_inplace_add_cpu (__main__.CpuTests) ... [2023-01-11 21:35:01,828] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 247 2023-01-11T21:41:26.5203175Z [2023-01-11 21:35:03,421] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 247 2023-01-11T21:41:26.5203194Z 2023-01-11T21:41:26.5203416Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5203544Z import torch 2023-01-11T21:41:26.5203676Z import random 2023-01-11T21:41:26.5203884Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5204105Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5204115Z 2023-01-11T21:41:26.5204252Z aten = torch.ops.aten 2023-01-11T21:41:26.5204476Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5204642Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5204652Z 2023-01-11T21:41:26.5204659Z 2023-01-11T21:41:26.5204970Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5205427Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5205695Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5205937Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5206251Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5206400Z { 2023-01-11T21:41:26.5206611Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5206764Z { 2023-01-11T21:41:26.5206951Z #pragma omp for 2023-01-11T21:41:26.5217329Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.5217525Z { 2023-01-11T21:41:26.5217818Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5218063Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.5218203Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5218370Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5218486Z } 2023-01-11T21:41:26.5218657Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5218969Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.5219113Z { 2023-01-11T21:41:26.5219329Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5219514Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.5219717Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5219906Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5220057Z } 2023-01-11T21:41:26.5220209Z } 2023-01-11T21:41:26.5220349Z } 2023-01-11T21:41:26.5220548Z ''') 2023-01-11T21:41:26.5220592Z 2023-01-11T21:41:26.5220601Z 2023-01-11T21:41:26.5220805Z async_compile.wait(globals()) 2023-01-11T21:41:26.5220968Z del async_compile 2023-01-11T21:41:26.5220980Z 2023-01-11T21:41:26.5221150Z def call(args): 2023-01-11T21:41:26.5221331Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5221504Z args.clear() 2023-01-11T21:41:26.5221887Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.5222044Z del arg1_1 2023-01-11T21:41:26.5222212Z return (arg0_1, ) 2023-01-11T21:41:26.5222224Z 2023-01-11T21:41:26.5222250Z 2023-01-11T21:41:26.5222405Z if __name__ == "__main__": 2023-01-11T21:41:26.5222688Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5222989Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5223594Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5224077Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5224351Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5224363Z 2023-01-11T21:41:26.5224525Z ok (1.607s) 2023-01-11T21:41:26.5225235Z test_inplace_mixed_dtype_ops_cpu (__main__.CpuTests) ... [2023-01-11 21:35:03,471] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 248 2023-01-11T21:41:26.5225742Z [2023-01-11 21:35:05,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 248 2023-01-11T21:41:26.5225752Z 2023-01-11T21:41:26.5225920Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5226049Z import torch 2023-01-11T21:41:26.5226214Z import random 2023-01-11T21:41:26.5226532Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5226796Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5226814Z 2023-01-11T21:41:26.5226997Z aten = torch.ops.aten 2023-01-11T21:41:26.5227307Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5227521Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5227534Z 2023-01-11T21:41:26.5227543Z 2023-01-11T21:41:26.5227876Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5228367Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5228643Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.5228892Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5229150Z const double* __restrict__ in_ptr1) 2023-01-11T21:41:26.5229296Z { 2023-01-11T21:41:26.5229502Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5229764Z { 2023-01-11T21:41:26.5229957Z #pragma omp for 2023-01-11T21:41:26.5230155Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.5230301Z { 2023-01-11T21:41:26.5230458Z { 2023-01-11T21:41:26.5230615Z { 2023-01-11T21:41:26.5230812Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5231019Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.5231276Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.5231491Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.5231744Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.5231953Z auto tmp5 = tmp4 + tmp1; 2023-01-11T21:41:26.5232153Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:41:26.5232377Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.5232545Z auto tmp8 = tmp7 * tmp1; 2023-01-11T21:41:26.5232738Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.5232901Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.5233015Z } 2023-01-11T21:41:26.5233130Z } 2023-01-11T21:41:26.5233240Z } 2023-01-11T21:41:26.5233357Z } 2023-01-11T21:41:26.5233499Z } 2023-01-11T21:41:26.5233700Z ''') 2023-01-11T21:41:26.5233715Z 2023-01-11T21:41:26.5233723Z 2023-01-11T21:41:26.5233925Z async_compile.wait(globals()) 2023-01-11T21:41:26.5234103Z del async_compile 2023-01-11T21:41:26.5234114Z 2023-01-11T21:41:26.5234283Z def call(args): 2023-01-11T21:41:26.5234467Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5234613Z args.clear() 2023-01-11T21:41:26.5235088Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5235302Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.5235685Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr())) 2023-01-11T21:41:26.5235851Z del arg0_1 2023-01-11T21:41:26.5236015Z del arg1_1 2023-01-11T21:41:26.5236183Z return (buf1, ) 2023-01-11T21:41:26.5236196Z 2023-01-11T21:41:26.5236205Z 2023-01-11T21:41:26.5236383Z if __name__ == "__main__": 2023-01-11T21:41:26.5236637Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5236922Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5237401Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5237874Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.5238147Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5238159Z 2023-01-11T21:41:26.5238323Z ok (1.745s) 2023-01-11T21:41:26.5239162Z test_input_mutation1_cpu (__main__.CpuTests) ... [2023-01-11 21:35:05,196] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 249 2023-01-11T21:41:26.5239554Z [2023-01-11 21:35:05,210] torch._inductor.scheduler: [DEBUG] remove_buffer('buf0') 2023-01-11T21:41:26.5239919Z [2023-01-11 21:35:05,211] torch._inductor.scheduler: [DEBUG] remove_buffer('buf0') 2023-01-11T21:41:26.5240408Z [2023-01-11 21:35:06,832] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 249 2023-01-11T21:41:26.5240419Z 2023-01-11T21:41:26.5240640Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5240791Z import torch 2023-01-11T21:41:26.5240962Z import random 2023-01-11T21:41:26.5241236Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5241526Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5241538Z 2023-01-11T21:41:26.5241726Z aten = torch.ops.aten 2023-01-11T21:41:26.5242016Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5242230Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5242243Z 2023-01-11T21:41:26.5242252Z 2023-01-11T21:41:26.5242577Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5243138Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5243426Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5243659Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.5243885Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.5244040Z { 2023-01-11T21:41:26.5244265Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5244406Z { 2023-01-11T21:41:26.5244593Z #pragma omp for 2023-01-11T21:41:26.5244788Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5244943Z { 2023-01-11T21:41:26.5245262Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5245634Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.5245822Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5246020Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:41:26.5246310Z auto tmp4 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.5246465Z auto tmp5 = tmp2 + tmp4; 2023-01-11T21:41:26.5246614Z auto tmp6 = tmp3 / tmp5; 2023-01-11T21:41:26.5246779Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.5246945Z tmp6.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.5247044Z } 2023-01-11T21:41:26.5247216Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5247366Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5247493Z { 2023-01-11T21:41:26.5247689Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.5247921Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.5248122Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5248298Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:41:26.5248538Z auto tmp4 = static_cast(2); 2023-01-11T21:41:26.5248743Z auto tmp5 = tmp2 + tmp4; 2023-01-11T21:41:26.5248927Z auto tmp6 = tmp3 / tmp5; 2023-01-11T21:41:26.5249280Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.5249472Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.5249629Z } 2023-01-11T21:41:26.5249762Z } 2023-01-11T21:41:26.5249906Z } 2023-01-11T21:41:26.5250114Z ''') 2023-01-11T21:41:26.5250127Z 2023-01-11T21:41:26.5250136Z 2023-01-11T21:41:26.5250353Z async_compile.wait(globals()) 2023-01-11T21:41:26.5250531Z del async_compile 2023-01-11T21:41:26.5250542Z 2023-01-11T21:41:26.5250701Z def call(args): 2023-01-11T21:41:26.5250867Z arg0_1, = args 2023-01-11T21:41:26.5251022Z args.clear() 2023-01-11T21:41:26.5251504Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5251894Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.5252059Z del arg0_1 2023-01-11T21:41:26.5252228Z return (buf2, ) 2023-01-11T21:41:26.5252239Z 2023-01-11T21:41:26.5252253Z 2023-01-11T21:41:26.5252436Z if __name__ == "__main__": 2023-01-11T21:41:26.5252710Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5253000Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5253444Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5253637Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5253646Z 2023-01-11T21:41:26.5253766Z ok (1.665s) 2023-01-11T21:41:26.5254379Z test_input_mutation2_cpu (__main__.CpuTests) ... [2023-01-11 21:35:06,901] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 250 2023-01-11T21:41:26.5254792Z [2023-01-11 21:35:06,905] torch._inductor.graph: [WARNING] Creating implicit fallback for: 2023-01-11T21:41:26.5254966Z target: aten.expand_copy.default 2023-01-11T21:41:26.5255178Z args[0]: TensorBox(StorageBox( 2023-01-11T21:41:26.5255348Z Pointwise( 2023-01-11T21:41:26.5255522Z 'cpu', 2023-01-11T21:41:26.5255824Z torch.float32, 2023-01-11T21:41:26.5256117Z tmp0 = constant(66.0, torch.float32) 2023-01-11T21:41:26.5256289Z return tmp0 2023-01-11T21:41:26.5256435Z , 2023-01-11T21:41:26.5256627Z ranges=[1], 2023-01-11T21:41:26.5256868Z origins={_tensor_constant0, lift_fresh_copy} 2023-01-11T21:41:26.5257018Z ) 2023-01-11T21:41:26.5257162Z )) 2023-01-11T21:41:26.5257325Z args[1]: [64] 2023-01-11T21:41:26.5257999Z [2023-01-11 21:35:06,913] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.aten.expand_copy.default 2023-01-11T21:41:26.5258667Z [2023-01-11 21:35:08,949] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 250 2023-01-11T21:41:26.5258680Z 2023-01-11T21:41:26.5258899Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5259060Z import torch 2023-01-11T21:41:26.5259290Z import random 2023-01-11T21:41:26.5259575Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5259872Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5259891Z 2023-01-11T21:41:26.5260075Z aten = torch.ops.aten 2023-01-11T21:41:26.5260397Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5260621Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5260633Z 2023-01-11T21:41:26.5260643Z 2023-01-11T21:41:26.5260980Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5261336Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5261549Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5261722Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5261896Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.5262006Z { 2023-01-11T21:41:26.5262185Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5262299Z { 2023-01-11T21:41:26.5262416Z #pragma omp for 2023-01-11T21:41:26.5262559Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5262684Z { 2023-01-11T21:41:26.5263003Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5263395Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.5263600Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5263817Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5263972Z } 2023-01-11T21:41:26.5264179Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5264366Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5264508Z { 2023-01-11T21:41:26.5264707Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5264942Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.5265136Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5265328Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5265470Z } 2023-01-11T21:41:26.5265656Z #pragma omp single 2023-01-11T21:41:26.5265806Z { 2023-01-11T21:41:26.5265966Z { 2023-01-11T21:41:26.5266109Z { 2023-01-11T21:41:26.5266358Z auto tmp0 = static_cast(66.0); 2023-01-11T21:41:26.5266536Z out_ptr1[0] = tmp0; 2023-01-11T21:41:26.5266695Z } 2023-01-11T21:41:26.5266851Z } 2023-01-11T21:41:26.5266996Z } 2023-01-11T21:41:26.5267138Z } 2023-01-11T21:41:26.5267279Z } 2023-01-11T21:41:26.5267482Z ''') 2023-01-11T21:41:26.5267494Z 2023-01-11T21:41:26.5267504Z 2023-01-11T21:41:26.5267817Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.5268315Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5268555Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5268735Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5268851Z { 2023-01-11T21:41:26.5269028Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5269141Z { 2023-01-11T21:41:26.5269335Z #pragma omp for 2023-01-11T21:41:26.5269482Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5269593Z { 2023-01-11T21:41:26.5269838Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5270084Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.5270270Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5270470Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5270608Z } 2023-01-11T21:41:26.5270826Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5271089Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5271235Z { 2023-01-11T21:41:26.5271443Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5271673Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.5271936Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5272111Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5272265Z } 2023-01-11T21:41:26.5272420Z } 2023-01-11T21:41:26.5272565Z } 2023-01-11T21:41:26.5272759Z ''') 2023-01-11T21:41:26.5272771Z 2023-01-11T21:41:26.5272780Z 2023-01-11T21:41:26.5272995Z async_compile.wait(globals()) 2023-01-11T21:41:26.5273163Z del async_compile 2023-01-11T21:41:26.5273174Z 2023-01-11T21:41:26.5273347Z def call(args): 2023-01-11T21:41:26.5273519Z primals_1, = args 2023-01-11T21:41:26.5273684Z args.clear() 2023-01-11T21:41:26.5274181Z buf0 = empty_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5274651Z buf1 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5275054Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5275231Z del primals_1 2023-01-11T21:41:26.5275543Z buf2 = torch.ops.aten.expand_copy.default(buf1, [64]) 2023-01-11T21:41:26.5275690Z del buf1 2023-01-11T21:41:26.5275856Z buf3 = buf2 2023-01-11T21:41:26.5276083Z assert_size_stride(buf3, (64, ), (1, )) 2023-01-11T21:41:26.5276209Z del buf2 2023-01-11T21:41:26.5276565Z buf4 = empty_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5276803Z kernel_cpp_1(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.5276996Z return (as_strided(buf3, (1, 64), (64, 1)), buf0, buf4, ) 2023-01-11T21:41:26.5277006Z 2023-01-11T21:41:26.5277012Z 2023-01-11T21:41:26.5277145Z if __name__ == "__main__": 2023-01-11T21:41:26.5277334Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5277545Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5277993Z primals_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5278249Z print_performance(lambda: call([primals_1])) 2023-01-11T21:41:26.5278263Z 2023-01-11T21:41:26.5278430Z ok (2.118s) 2023-01-11T21:41:26.5279224Z test_input_mutation3_cpu (__main__.CpuTests) ... [2023-01-11 21:35:08,988] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 251 2023-01-11T21:41:26.5279884Z [2023-01-11 21:35:10,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 251 2023-01-11T21:41:26.5279897Z 2023-01-11T21:41:26.5280128Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5280273Z import torch 2023-01-11T21:41:26.5280445Z import random 2023-01-11T21:41:26.5280726Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5281011Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5281023Z 2023-01-11T21:41:26.5281211Z aten = torch.ops.aten 2023-01-11T21:41:26.5281529Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5281750Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5281762Z 2023-01-11T21:41:26.5281771Z 2023-01-11T21:41:26.5282105Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5282582Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5282938Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5283170Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5283320Z { 2023-01-11T21:41:26.5283552Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5283664Z { 2023-01-11T21:41:26.5283803Z #pragma omp for 2023-01-11T21:41:26.5283935Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5284042Z { 2023-01-11T21:41:26.5284290Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5284532Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.5284686Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5284853Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5284968Z } 2023-01-11T21:41:26.5285211Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5285481Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5285638Z { 2023-01-11T21:41:26.5285859Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5286078Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.5286281Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5286473Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5286602Z } 2023-01-11T21:41:26.5286787Z #pragma omp for 2023-01-11T21:41:26.5286980Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5287128Z { 2023-01-11T21:41:26.5287447Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5287761Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.5287969Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.5288160Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5288317Z } 2023-01-11T21:41:26.5288544Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5288741Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5288897Z { 2023-01-11T21:41:26.5289243Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5289475Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.5289659Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.5289855Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5290006Z } 2023-01-11T21:41:26.5290200Z #pragma omp for 2023-01-11T21:41:26.5290389Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5290536Z { 2023-01-11T21:41:26.5290846Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5291114Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:41:26.5291279Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5291394Z } 2023-01-11T21:41:26.5291566Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5291715Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5291829Z { 2023-01-11T21:41:26.5291985Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5292240Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:41:26.5292386Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:41:26.5292530Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5292642Z } 2023-01-11T21:41:26.5292813Z #pragma omp for 2023-01-11T21:41:26.5292998Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5293156Z { 2023-01-11T21:41:26.5293418Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5293734Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.5293938Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5294149Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5294298Z } 2023-01-11T21:41:26.5294526Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5294719Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5294839Z { 2023-01-11T21:41:26.5295150Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5295386Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.5295582Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.5295770Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5295924Z } 2023-01-11T21:41:26.5296113Z #pragma omp for 2023-01-11T21:41:26.5296291Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5296430Z { 2023-01-11T21:41:26.5296745Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5297058Z auto tmp1 = at::vec::Vectorized(static_cast(4)); 2023-01-11T21:41:26.5297261Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.5297476Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5297617Z } 2023-01-11T21:41:26.5297905Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5298102Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5298242Z { 2023-01-11T21:41:26.5298440Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5298617Z auto tmp1 = static_cast(4); 2023-01-11T21:41:26.5298766Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.5298909Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5299006Z } 2023-01-11T21:41:26.5299142Z #pragma omp for 2023-01-11T21:41:26.5299285Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5299399Z { 2023-01-11T21:41:26.5299636Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5299869Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.5300032Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5300146Z } 2023-01-11T21:41:26.5300346Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5300577Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5300741Z { 2023-01-11T21:41:26.5300923Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5301135Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.5301320Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5301444Z } 2023-01-11T21:41:26.5301587Z } 2023-01-11T21:41:26.5301726Z } 2023-01-11T21:41:26.5301933Z ''') 2023-01-11T21:41:26.5301947Z 2023-01-11T21:41:26.5301955Z 2023-01-11T21:41:26.5302160Z async_compile.wait(globals()) 2023-01-11T21:41:26.5302329Z del async_compile 2023-01-11T21:41:26.5302341Z 2023-01-11T21:41:26.5302511Z def call(args): 2023-01-11T21:41:26.5302666Z arg0_1, = args 2023-01-11T21:41:26.5302837Z args.clear() 2023-01-11T21:41:26.5303231Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.5303462Z return (as_strided(arg0_1, (64, ), (1, )), ) 2023-01-11T21:41:26.5303475Z 2023-01-11T21:41:26.5303485Z 2023-01-11T21:41:26.5303657Z if __name__ == "__main__": 2023-01-11T21:41:26.5303927Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5304225Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5304725Z arg0_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5304963Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5304974Z 2023-01-11T21:41:26.5305142Z ok (1.920s) 2023-01-11T21:41:26.5305982Z test_input_mutation4_cpu (__main__.CpuTests) ... [2023-01-11 21:35:10,886] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 252 2023-01-11T21:41:26.5306530Z [2023-01-11 21:35:12,539] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 252 2023-01-11T21:41:26.5306541Z 2023-01-11T21:41:26.5306709Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5306833Z import torch 2023-01-11T21:41:26.5306962Z import random 2023-01-11T21:41:26.5307169Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5307374Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5307384Z 2023-01-11T21:41:26.5307525Z aten = torch.ops.aten 2023-01-11T21:41:26.5307876Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5308078Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5308091Z 2023-01-11T21:41:26.5308099Z 2023-01-11T21:41:26.5308404Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5308944Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5309218Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5309440Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5309563Z { 2023-01-11T21:41:26.5309792Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5309944Z { 2023-01-11T21:41:26.5310125Z #pragma omp for 2023-01-11T21:41:26.5310312Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5310466Z { 2023-01-11T21:41:26.5310843Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5311136Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.5311353Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5311503Z } 2023-01-11T21:41:26.5311731Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5311929Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.5312079Z { 2023-01-11T21:41:26.5312276Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.5312469Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.5312657Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5312798Z } 2023-01-11T21:41:26.5312951Z } 2023-01-11T21:41:26.5313091Z } 2023-01-11T21:41:26.5313289Z ''') 2023-01-11T21:41:26.5313301Z 2023-01-11T21:41:26.5313310Z 2023-01-11T21:41:26.5313529Z async_compile.wait(globals()) 2023-01-11T21:41:26.5313684Z del async_compile 2023-01-11T21:41:26.5313694Z 2023-01-11T21:41:26.5313828Z def call(args): 2023-01-11T21:41:26.5313953Z arg0_1, = args 2023-01-11T21:41:26.5314080Z args.clear() 2023-01-11T21:41:26.5314322Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg0_1.data_ptr())) 2023-01-11T21:41:26.5314456Z return (arg0_1, ) 2023-01-11T21:41:26.5314466Z 2023-01-11T21:41:26.5314473Z 2023-01-11T21:41:26.5314608Z if __name__ == "__main__": 2023-01-11T21:41:26.5314814Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5315020Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5315443Z arg0_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5315696Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5315708Z 2023-01-11T21:41:26.5315874Z ok (1.669s) 2023-01-11T21:41:26.5317005Z test_invalid_operand_issue1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5317317Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5317960Z [2023-01-11 21:35:12,953] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 253 2023-01-11T21:41:26.5318625Z [2023-01-11 21:35:14,710] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 253 2023-01-11T21:41:26.5318638Z 2023-01-11T21:41:26.5318866Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5319020Z import torch 2023-01-11T21:41:26.5319196Z import random 2023-01-11T21:41:26.5319472Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5319755Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5319767Z 2023-01-11T21:41:26.5319955Z aten = torch.ops.aten 2023-01-11T21:41:26.5320273Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5320563Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5320575Z 2023-01-11T21:41:26.5320584Z 2023-01-11T21:41:26.5320919Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5321291Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5321502Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.5321688Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.5321869Z const long* __restrict__ in_ptr2, 2023-01-11T21:41:26.5322058Z const float* __restrict__ in_ptr3, 2023-01-11T21:41:26.5322237Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5322347Z { 2023-01-11T21:41:26.5322506Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5322623Z { 2023-01-11T21:41:26.5322857Z #pragma omp for 2023-01-11T21:41:26.5323125Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.5323263Z { 2023-01-11T21:41:26.5323465Z #pragma GCC ivdep 2023-01-11T21:41:26.5323726Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.5323854Z { 2023-01-11T21:41:26.5324045Z #pragma GCC ivdep 2023-01-11T21:41:26.5324256Z for(long i2=0; i2<768; i2+=1) 2023-01-11T21:41:26.5324418Z { 2023-01-11T21:41:26.5324579Z { 2023-01-11T21:41:26.5324744Z { 2023-01-11T21:41:26.5324970Z auto tmp3 = in_ptr0[i0]; 2023-01-11T21:41:26.5325193Z auto tmp8 = in_ptr2[i1 + (128*i0)]; 2023-01-11T21:41:26.5325438Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.5325685Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.5325916Z auto tmp2 = tmp0 == tmp1; 2023-01-11T21:41:26.5326160Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.5326384Z auto tmp5 = tmp0 >= tmp4; 2023-01-11T21:41:26.5326589Z auto tmp6 = 0; 2023-01-11T21:41:26.5326755Z if(tmp5) 2023-01-11T21:41:26.5326923Z { 2023-01-11T21:41:26.5327360Z auto tmp7 = in_ptr1[(-1) + i1 + (127*i0)]; 2023-01-11T21:41:26.5327565Z tmp6 = tmp7; 2023-01-11T21:41:26.5327734Z } 2023-01-11T21:41:26.5327977Z auto tmp9 = tmp5 ? tmp6 : tmp8; 2023-01-11T21:41:26.5328217Z auto tmp10 = tmp2 ? tmp3 : tmp9; 2023-01-11T21:41:26.5328464Z auto tmp11 = in_ptr3[i2 + (768*tmp10)]; 2023-01-11T21:41:26.5328653Z out_ptr0[i2 + (768*i1) + (98304*i0)] = tmp11; 2023-01-11T21:41:26.5328781Z } 2023-01-11T21:41:26.5328901Z } 2023-01-11T21:41:26.5329163Z } 2023-01-11T21:41:26.5329289Z } 2023-01-11T21:41:26.5329397Z } 2023-01-11T21:41:26.5329492Z } 2023-01-11T21:41:26.5329591Z } 2023-01-11T21:41:26.5329734Z ''') 2023-01-11T21:41:26.5329744Z 2023-01-11T21:41:26.5329751Z 2023-01-11T21:41:26.5329909Z async_compile.wait(globals()) 2023-01-11T21:41:26.5330042Z del async_compile 2023-01-11T21:41:26.5330051Z 2023-01-11T21:41:26.5330171Z def call(args): 2023-01-11T21:41:26.5330373Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args 2023-01-11T21:41:26.5330540Z args.clear() 2023-01-11T21:41:26.5331013Z buf0 = empty_strided((8, 128, 768), (98304, 768, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5331513Z kernel_cpp_0(c_void_p(arg3_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg4_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5331676Z del arg0_1 2023-01-11T21:41:26.5331842Z del arg2_1 2023-01-11T21:41:26.5332001Z del arg3_1 2023-01-11T21:41:26.5332147Z del arg4_1 2023-01-11T21:41:26.5332442Z return (buf0, ) 2023-01-11T21:41:26.5332455Z 2023-01-11T21:41:26.5332464Z 2023-01-11T21:41:26.5332632Z if __name__ == "__main__": 2023-01-11T21:41:26.5332902Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5333204Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5333726Z arg0_1 = rand_strided((50005, 768), (768, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5334211Z arg1_1 = rand_strided((8, 128), (128, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5334696Z arg2_1 = rand_strided((8, 127), (127, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5335158Z arg3_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5335638Z arg4_1 = rand_strided((8, 128), (128, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.5336006Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])) 2023-01-11T21:41:26.5336039Z 2023-01-11T21:41:26.5336165Z ok (3.032s) 2023-01-11T21:41:26.5337022Z test_isinf2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5337252Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5337763Z [2023-01-11 21:35:15,588] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 254 2023-01-11T21:41:26.5338367Z [2023-01-11 21:35:17,182] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 254 2023-01-11T21:41:26.5338387Z 2023-01-11T21:41:26.5338649Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5338814Z import torch 2023-01-11T21:41:26.5338980Z import random 2023-01-11T21:41:26.5339238Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5339506Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5339521Z 2023-01-11T21:41:26.5339707Z aten = torch.ops.aten 2023-01-11T21:41:26.5340018Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5340238Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5340250Z 2023-01-11T21:41:26.5340260Z 2023-01-11T21:41:26.5340591Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5341068Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5341347Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5341572Z bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.5341700Z { 2023-01-11T21:41:26.5341941Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5342094Z { 2023-01-11T21:41:26.5342278Z #pragma omp for 2023-01-11T21:41:26.5342472Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:41:26.5342633Z { 2023-01-11T21:41:26.5342769Z { 2023-01-11T21:41:26.5342924Z { 2023-01-11T21:41:26.5343213Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5343460Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.5343696Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.5343860Z auto tmp3 = tmp1 < tmp2; 2023-01-11T21:41:26.5344050Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.5344195Z auto tmp5 = tmp1 < tmp4; 2023-01-11T21:41:26.5344381Z auto tmp6 = static_cast(1.0); 2023-01-11T21:41:26.5344616Z auto tmp7 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.5344798Z auto tmp8 = tmp5 ? tmp6 : tmp7; 2023-01-11T21:41:26.5344982Z auto tmp9 = static_cast(3); 2023-01-11T21:41:26.5345143Z auto tmp10 = tmp1 < tmp9; 2023-01-11T21:41:26.5345458Z auto tmp11 = static_cast(2.0); 2023-01-11T21:41:26.5345705Z auto tmp12 = static_cast(4); 2023-01-11T21:41:26.5345896Z auto tmp13 = tmp1 < tmp12; 2023-01-11T21:41:26.5346491Z auto tmp14 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.5346788Z auto tmp15 = std::numeric_limits::quiet_NaN(); 2023-01-11T21:41:26.5347020Z auto tmp16 = tmp13 ? tmp14 : tmp15; 2023-01-11T21:41:26.5347249Z auto tmp17 = tmp10 ? tmp11 : tmp16; 2023-01-11T21:41:26.5347485Z auto tmp18 = tmp3 ? tmp8 : tmp17; 2023-01-11T21:41:26.5347704Z auto tmp19 = tmp0 == tmp18; 2023-01-11T21:41:26.5347894Z out_ptr0[i0] = tmp19; 2023-01-11T21:41:26.5348106Z } 2023-01-11T21:41:26.5348258Z } 2023-01-11T21:41:26.5348411Z } 2023-01-11T21:41:26.5348566Z } 2023-01-11T21:41:26.5348708Z } 2023-01-11T21:41:26.5348900Z ''') 2023-01-11T21:41:26.5348914Z 2023-01-11T21:41:26.5348924Z 2023-01-11T21:41:26.5349143Z async_compile.wait(globals()) 2023-01-11T21:41:26.5349299Z del async_compile 2023-01-11T21:41:26.5349311Z 2023-01-11T21:41:26.5349484Z def call(args): 2023-01-11T21:41:26.5349646Z arg0_1, = args 2023-01-11T21:41:26.5349811Z args.clear() 2023-01-11T21:41:26.5350266Z buf0 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5350579Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5350738Z del arg0_1 2023-01-11T21:41:26.5350889Z return (buf0, ) 2023-01-11T21:41:26.5350900Z 2023-01-11T21:41:26.5350910Z 2023-01-11T21:41:26.5351089Z if __name__ == "__main__": 2023-01-11T21:41:26.5351330Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5351554Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5351920Z arg0_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5352114Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5352124Z 2023-01-11T21:41:26.5352245Z ok (1.612s) 2023-01-11T21:41:26.5353180Z test_isinf_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5353473Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5354085Z [2023-01-11 21:35:17,199] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 255 2023-01-11T21:41:26.5354737Z [2023-01-11 21:35:18,833] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 255 2023-01-11T21:41:26.5355826Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5356120Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5356766Z [2023-01-11 21:35:18,850] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 256 2023-01-11T21:41:26.5357433Z [2023-01-11 21:35:20,510] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 256 2023-01-11T21:41:26.5357445Z 2023-01-11T21:41:26.5357671Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5357844Z import torch 2023-01-11T21:41:26.5358019Z import random 2023-01-11T21:41:26.5358283Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5358635Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5358645Z 2023-01-11T21:41:26.5358784Z aten = torch.ops.aten 2023-01-11T21:41:26.5359023Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5359184Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5359194Z 2023-01-11T21:41:26.5359203Z 2023-01-11T21:41:26.5359450Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5359815Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5360027Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5360204Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.5360459Z bool* __restrict__ out_ptr1) 2023-01-11T21:41:26.5360673Z { 2023-01-11T21:41:26.5360970Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5361126Z { 2023-01-11T21:41:26.5361316Z #pragma omp for 2023-01-11T21:41:26.5361512Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:41:26.5361640Z { 2023-01-11T21:41:26.5361791Z { 2023-01-11T21:41:26.5361931Z { 2023-01-11T21:41:26.5362155Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5362394Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:41:26.5362631Z auto tmp2 = std::isnan(tmp0); 2023-01-11T21:41:26.5362831Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5363018Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.5363174Z } 2023-01-11T21:41:26.5363329Z } 2023-01-11T21:41:26.5363478Z } 2023-01-11T21:41:26.5363627Z } 2023-01-11T21:41:26.5363772Z } 2023-01-11T21:41:26.5363977Z ''') 2023-01-11T21:41:26.5363990Z 2023-01-11T21:41:26.5363999Z 2023-01-11T21:41:26.5364201Z async_compile.wait(globals()) 2023-01-11T21:41:26.5364381Z del async_compile 2023-01-11T21:41:26.5364393Z 2023-01-11T21:41:26.5364560Z def call(args): 2023-01-11T21:41:26.5364724Z arg0_1, = args 2023-01-11T21:41:26.5364881Z args.clear() 2023-01-11T21:41:26.5365338Z buf0 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5365792Z buf1 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5366104Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5366230Z del arg0_1 2023-01-11T21:41:26.5366371Z return (buf0, buf1, ) 2023-01-11T21:41:26.5366381Z 2023-01-11T21:41:26.5366388Z 2023-01-11T21:41:26.5366525Z if __name__ == "__main__": 2023-01-11T21:41:26.5366728Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5366949Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5367299Z arg0_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5367493Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5367502Z 2023-01-11T21:41:26.5367514Z 2023-01-11T21:41:26.5367722Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5367857Z import torch 2023-01-11T21:41:26.5368018Z import random 2023-01-11T21:41:26.5368259Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5368573Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5368585Z 2023-01-11T21:41:26.5368834Z aten = torch.ops.aten 2023-01-11T21:41:26.5369276Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5369492Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5369504Z 2023-01-11T21:41:26.5369513Z 2023-01-11T21:41:26.5369829Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5370308Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5370602Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.5370824Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.5371044Z bool* __restrict__ out_ptr1) 2023-01-11T21:41:26.5371301Z { 2023-01-11T21:41:26.5371542Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5371687Z { 2023-01-11T21:41:26.5371855Z #pragma omp for 2023-01-11T21:41:26.5372043Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:41:26.5372200Z { 2023-01-11T21:41:26.5372351Z { 2023-01-11T21:41:26.5372507Z { 2023-01-11T21:41:26.5372723Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5372947Z auto tmp1 = std::isinf(tmp0); 2023-01-11T21:41:26.5373180Z auto tmp2 = std::isnan(tmp0); 2023-01-11T21:41:26.5373379Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5373570Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.5373723Z } 2023-01-11T21:41:26.5373897Z } 2023-01-11T21:41:26.5374018Z } 2023-01-11T21:41:26.5374115Z } 2023-01-11T21:41:26.5374221Z } 2023-01-11T21:41:26.5374375Z ''') 2023-01-11T21:41:26.5374385Z 2023-01-11T21:41:26.5374392Z 2023-01-11T21:41:26.5374554Z async_compile.wait(globals()) 2023-01-11T21:41:26.5374676Z del async_compile 2023-01-11T21:41:26.5374685Z 2023-01-11T21:41:26.5374810Z def call(args): 2023-01-11T21:41:26.5374938Z arg0_1, = args 2023-01-11T21:41:26.5375068Z args.clear() 2023-01-11T21:41:26.5375399Z buf0 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5375806Z buf1 = empty_strided((5, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5376151Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5376312Z del arg0_1 2023-01-11T21:41:26.5376535Z return (buf0, buf1, ) 2023-01-11T21:41:26.5376547Z 2023-01-11T21:41:26.5376555Z 2023-01-11T21:41:26.5376783Z if __name__ == "__main__": 2023-01-11T21:41:26.5377058Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5377327Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5377809Z arg0_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.5378064Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5378076Z 2023-01-11T21:41:26.5378237Z ok (3.328s) 2023-01-11T21:41:26.5379085Z test_kernel_names_cpu (__main__.CpuTests) ... [2023-01-11 21:35:20,523] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 257 2023-01-11T21:41:26.5379743Z [2023-01-11 21:35:22,062] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 257 2023-01-11T21:41:26.5379755Z 2023-01-11T21:41:26.5379978Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5380134Z import torch 2023-01-11T21:41:26.5380304Z import random 2023-01-11T21:41:26.5380557Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5380846Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5380858Z 2023-01-11T21:41:26.5381044Z aten = torch.ops.aten 2023-01-11T21:41:26.5381363Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5381579Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5381589Z 2023-01-11T21:41:26.5381596Z 2023-01-11T21:41:26.5381843Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5382202Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5382418Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5382582Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.5382692Z { 2023-01-11T21:41:26.5382868Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5382979Z { 2023-01-11T21:41:26.5383229Z #pragma omp for 2023-01-11T21:41:26.5383435Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.5383570Z { 2023-01-11T21:41:26.5383875Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5384194Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.5384487Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.5384709Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5384861Z } 2023-01-11T21:41:26.5385088Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5385288Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.5385425Z { 2023-01-11T21:41:26.5385619Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5385851Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.5386048Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.5386233Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5386377Z } 2023-01-11T21:41:26.5386511Z } 2023-01-11T21:41:26.5386653Z } 2023-01-11T21:41:26.5386856Z ''') 2023-01-11T21:41:26.5386869Z 2023-01-11T21:41:26.5386878Z 2023-01-11T21:41:26.5387170Z async_compile.wait(globals()) 2023-01-11T21:41:26.5387343Z del async_compile 2023-01-11T21:41:26.5387355Z 2023-01-11T21:41:26.5387532Z def call(args): 2023-01-11T21:41:26.5387691Z arg0_1, = args 2023-01-11T21:41:26.5387867Z args.clear() 2023-01-11T21:41:26.5388324Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5388632Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.5388796Z del arg0_1 2023-01-11T21:41:26.5388949Z return (buf0, ) 2023-01-11T21:41:26.5388959Z 2023-01-11T21:41:26.5388966Z 2023-01-11T21:41:26.5389103Z if __name__ == "__main__": 2023-01-11T21:41:26.5389304Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5389527Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5389862Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5390054Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5390067Z 2023-01-11T21:41:26.5390185Z ok (1.551s) 2023-01-11T21:41:26.5391153Z test_kwargs_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5391483Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5392103Z [2023-01-11 21:35:22,101] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 258 2023-01-11T21:41:26.5392652Z [2023-01-11 21:35:22,103] torch._inductor.graph: [WARNING] Creating implicit fallback for: 2023-01-11T21:41:26.5392914Z target: aten._histogramdd_bin_edges.default 2023-01-11T21:41:26.5393133Z args[0]: TensorBox(StorageBox( 2023-01-11T21:41:26.5393739Z InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.float32, size=[4, 2], stride=[2, 1])) 2023-01-11T21:41:26.5393878Z )) 2023-01-11T21:41:26.5394044Z args[1]: [3, 3] 2023-01-11T21:41:26.5394393Z kwargs: {'weight': TensorBox(StorageBox( 2023-01-11T21:41:26.5394962Z InputBuffer(name='arg1_1', layout=FixedLayout('cpu', torch.float32, size=[4], stride=[1])) 2023-01-11T21:41:26.5395110Z ))} 2023-01-11T21:41:26.5395807Z [2023-01-11 21:35:22,120] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.aten._histogramdd_bin_edges.default 2023-01-11T21:41:26.5396351Z [2023-01-11 21:35:22,122] torch._inductor.graph: [WARNING] Creating implicit fallback for: 2023-01-11T21:41:26.5396537Z target: aten._histogramdd_from_bin_cts.default 2023-01-11T21:41:26.5396695Z args[0]: TensorBox(StorageBox( 2023-01-11T21:41:26.5397146Z InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.float32, size=[4, 2], stride=[2, 1])) 2023-01-11T21:41:26.5397256Z )) 2023-01-11T21:41:26.5397388Z args[1]: [3, 3] 2023-01-11T21:41:26.5397659Z kwargs: {'weight': TensorBox(StorageBox( 2023-01-11T21:41:26.5398134Z InputBuffer(name='arg1_1', layout=FixedLayout('cpu', torch.float32, size=[4], stride=[1])) 2023-01-11T21:41:26.5398343Z ))} 2023-01-11T21:41:26.5399014Z [2023-01-11 21:35:22,139] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.aten._histogramdd_from_bin_cts.default 2023-01-11T21:41:26.5399636Z [2023-01-11 21:35:22,142] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 258 2023-01-11T21:41:26.5399648Z 2023-01-11T21:41:26.5399870Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5400030Z import torch 2023-01-11T21:41:26.5400201Z import random 2023-01-11T21:41:26.5400476Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5400766Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5400778Z 2023-01-11T21:41:26.5400947Z aten = torch.ops.aten 2023-01-11T21:41:26.5401362Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5401592Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5401604Z 2023-01-11T21:41:26.5401619Z 2023-01-11T21:41:26.5401833Z async_compile.wait(globals()) 2023-01-11T21:41:26.5402007Z del async_compile 2023-01-11T21:41:26.5402020Z 2023-01-11T21:41:26.5402188Z def call(args): 2023-01-11T21:41:26.5402373Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5402540Z args.clear() 2023-01-11T21:41:26.5402883Z buf0 = torch.ops.aten._histogramdd_bin_edges.default(arg0_1, [3, 3], weight=arg1_1) 2023-01-11T21:41:26.5403052Z buf1 = buf0[0] 2023-01-11T21:41:26.5403277Z assert_size_stride(buf1, (4, ), (1, )) 2023-01-11T21:41:26.5403443Z buf2 = buf0[1] 2023-01-11T21:41:26.5403665Z assert_size_stride(buf2, (4, ), (1, )) 2023-01-11T21:41:26.5403801Z del buf0 2023-01-11T21:41:26.5404077Z buf3 = torch.ops.aten._histogramdd_from_bin_cts.default(arg0_1, [3, 3], weight=arg1_1) 2023-01-11T21:41:26.5404188Z del arg0_1 2023-01-11T21:41:26.5404310Z del arg1_1 2023-01-11T21:41:26.5404436Z buf4 = buf3 2023-01-11T21:41:26.5404612Z assert_size_stride(buf4, (3, 3), (3, 1)) 2023-01-11T21:41:26.5404739Z del buf3 2023-01-11T21:41:26.5404890Z return (buf4, buf1, buf2, ) 2023-01-11T21:41:26.5404899Z 2023-01-11T21:41:26.5404907Z 2023-01-11T21:41:26.5405044Z if __name__ == "__main__": 2023-01-11T21:41:26.5405230Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5405475Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5405944Z arg0_1 = rand_strided((4, 2), (2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5406438Z arg1_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5406701Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5406719Z 2023-01-11T21:41:26.5406873Z ok (0.081s) 2023-01-11T21:41:26.5408019Z test_l1_loss_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5408322Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5408991Z [2023-01-11 21:35:22,169] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 259 2023-01-11T21:41:26.5409841Z [2023-01-11 21:35:24,048] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 259 2023-01-11T21:41:26.5409874Z 2023-01-11T21:41:26.5410086Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5410258Z import torch 2023-01-11T21:41:26.5410427Z import random 2023-01-11T21:41:26.5410703Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5410988Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5411008Z 2023-01-11T21:41:26.5411197Z aten = torch.ops.aten 2023-01-11T21:41:26.5411513Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5411782Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5411792Z 2023-01-11T21:41:26.5411818Z 2023-01-11T21:41:26.5412051Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5412408Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5412631Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.5412859Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.5413107Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5413346Z const float* __restrict__ in_ptr1) 2023-01-11T21:41:26.5413492Z { 2023-01-11T21:41:26.5413674Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.5413867Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:41:26.5414012Z { 2023-01-11T21:41:26.5414533Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.5414723Z float tmp4 = 0; 2023-01-11T21:41:26.5415002Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:41:26.5415182Z float tmp6 = 0; 2023-01-11T21:41:26.5415435Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.5415681Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5415830Z { 2023-01-11T21:41:26.5416152Z #pragma omp for reduction(+:tmp4_vec) reduction(+:tmp6_vec) 2023-01-11T21:41:26.5416356Z for(long i0=0; i0<192; i0+=1) 2023-01-11T21:41:26.5416510Z { 2023-01-11T21:41:26.5416832Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5417146Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.5417460Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.5417672Z auto tmp3 = tmp2.abs(); 2023-01-11T21:41:26.5417877Z auto tmp5 = tmp2 * tmp2; 2023-01-11T21:41:26.5418070Z tmp4_vec += tmp3; 2023-01-11T21:41:26.5418249Z tmp6_vec += tmp5; 2023-01-11T21:41:26.5418400Z } 2023-01-11T21:41:26.5418763Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp4_vec); 2023-01-11T21:41:26.5419117Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.5419348Z #pragma omp for simd simdlen(4) reduction(+:tmp4) reduction(+:tmp6) 2023-01-11T21:41:26.5419508Z for(long i0=1536; i0<1536; i0+=1) 2023-01-11T21:41:26.5419638Z { 2023-01-11T21:41:26.5419845Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5420034Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.5420356Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.5420581Z auto tmp3 = std::abs(tmp2); 2023-01-11T21:41:26.5420779Z auto tmp5 = tmp2 * tmp2; 2023-01-11T21:41:26.5420953Z tmp4 += tmp3; 2023-01-11T21:41:26.5421129Z tmp6 += tmp5; 2023-01-11T21:41:26.5421287Z } 2023-01-11T21:41:26.5421433Z } 2023-01-11T21:41:26.5421618Z out_ptr0[0] = tmp4; 2023-01-11T21:41:26.5421800Z out_ptr1[0] = tmp6; 2023-01-11T21:41:26.5421934Z } 2023-01-11T21:41:26.5422084Z { 2023-01-11T21:41:26.5422238Z { 2023-01-11T21:41:26.5422439Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.5422684Z auto tmp1 = static_cast(1536); 2023-01-11T21:41:26.5422888Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.5423084Z in_out_ptr0[0] = tmp2; 2023-01-11T21:41:26.5423288Z } 2023-01-11T21:41:26.5423433Z } 2023-01-11T21:41:26.5423577Z { 2023-01-11T21:41:26.5423732Z { 2023-01-11T21:41:26.5423929Z auto tmp0 = out_ptr1[0]; 2023-01-11T21:41:26.5424165Z auto tmp1 = static_cast(1536); 2023-01-11T21:41:26.5424424Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.5424617Z in_out_ptr1[0] = tmp2; 2023-01-11T21:41:26.5424777Z } 2023-01-11T21:41:26.5424928Z } 2023-01-11T21:41:26.5425071Z } 2023-01-11T21:41:26.5425271Z ''') 2023-01-11T21:41:26.5425285Z 2023-01-11T21:41:26.5425295Z 2023-01-11T21:41:26.5425483Z async_compile.wait(globals()) 2023-01-11T21:41:26.5425596Z del async_compile 2023-01-11T21:41:26.5425605Z 2023-01-11T21:41:26.5425731Z def call(args): 2023-01-11T21:41:26.5425864Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5425995Z args.clear() 2023-01-11T21:41:26.5426344Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5426687Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5426892Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:41:26.5427056Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.5427447Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr())) 2023-01-11T21:41:26.5427619Z del arg0_1 2023-01-11T21:41:26.5427815Z del arg1_1 2023-01-11T21:41:26.5427998Z return (buf2, buf3, ) 2023-01-11T21:41:26.5428010Z 2023-01-11T21:41:26.5428019Z 2023-01-11T21:41:26.5428198Z if __name__ == "__main__": 2023-01-11T21:41:26.5428461Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5428742Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5429262Z arg0_1 = rand_strided((2, 3, 16, 16), (768, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5429793Z arg1_1 = rand_strided((2, 3, 16, 16), (768, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5430071Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5430087Z 2023-01-11T21:41:26.5430246Z ok (1.907s) 2023-01-11T21:41:26.5431429Z test_layer_norm_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5431733Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5432382Z [2023-01-11 21:35:24,161] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 260 2023-01-11T21:41:26.5433046Z [2023-01-11 21:35:25,987] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 260 2023-01-11T21:41:26.5433057Z 2023-01-11T21:41:26.5433228Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5433354Z import torch 2023-01-11T21:41:26.5433470Z import random 2023-01-11T21:41:26.5433678Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5433894Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5433910Z 2023-01-11T21:41:26.5434055Z aten = torch.ops.aten 2023-01-11T21:41:26.5434294Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5434459Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5434469Z 2023-01-11T21:41:26.5434475Z 2023-01-11T21:41:26.5434728Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5435175Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5435401Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.5435652Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.5435891Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5436156Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.5436444Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.5436674Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5436995Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.5437119Z { 2023-01-11T21:41:26.5437323Z auto out_ptr2 = in_out_ptr0; 2023-01-11T21:41:26.5437522Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:41:26.5437761Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5437902Z { 2023-01-11T21:41:26.5438078Z #pragma omp for 2023-01-11T21:41:26.5438276Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.5438403Z { 2023-01-11T21:41:26.5438544Z { 2023-01-11T21:41:26.5438993Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.5439178Z float tmp1 = 0; 2023-01-11T21:41:26.5439468Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.5439756Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5439921Z { 2023-01-11T21:41:26.5440265Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.5440454Z tmp1_vec += tmp0; 2023-01-11T21:41:26.5440617Z } 2023-01-11T21:41:26.5441001Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.5441218Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.5441381Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.5441503Z { 2023-01-11T21:41:26.5441683Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.5441805Z tmp1 += tmp0; 2023-01-11T21:41:26.5441924Z } 2023-01-11T21:41:26.5442071Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5442190Z } 2023-01-11T21:41:26.5442311Z } 2023-01-11T21:41:26.5442451Z #pragma omp for 2023-01-11T21:41:26.5442601Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.5442698Z { 2023-01-11T21:41:26.5442816Z { 2023-01-11T21:41:26.5443306Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.5443498Z float tmp6 = 0; 2023-01-11T21:41:26.5443875Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.5444060Z float tmp7 = 0; 2023-01-11T21:41:26.5444329Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.5444534Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5444667Z { 2023-01-11T21:41:26.5445009Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.5445317Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.5445647Z auto tmp2 = at::vec::Vectorized(static_cast(32)); 2023-01-11T21:41:26.5445865Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.5446214Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.5446433Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.5446609Z tmp6_vec += tmp5; 2023-01-11T21:41:26.5446805Z tmp7_vec += tmp0; 2023-01-11T21:41:26.5446950Z } 2023-01-11T21:41:26.5447410Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.5447878Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.5448209Z #pragma omp simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.5448425Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.5448584Z { 2023-01-11T21:41:26.5448806Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.5449176Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:41:26.5449365Z auto tmp2 = static_cast(32); 2023-01-11T21:41:26.5449531Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.5449794Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.5449958Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.5450099Z tmp6 += tmp5; 2023-01-11T21:41:26.5450237Z tmp7 += tmp0; 2023-01-11T21:41:26.5450338Z } 2023-01-11T21:41:26.5450483Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.5450634Z out_ptr2[i0] = tmp7; 2023-01-11T21:41:26.5450777Z } 2023-01-11T21:41:26.5450914Z } 2023-01-11T21:41:26.5451084Z #pragma omp for 2023-01-11T21:41:26.5451375Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.5451598Z { 2023-01-11T21:41:26.5451931Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + 8*i0); 2023-01-11T21:41:26.5452254Z auto tmp1 = at::vec::Vectorized(static_cast(32)); 2023-01-11T21:41:26.5452456Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.5452672Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5452828Z } 2023-01-11T21:41:26.5453056Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5453235Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.5453381Z { 2023-01-11T21:41:26.5453584Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:41:26.5453821Z auto tmp1 = static_cast(32); 2023-01-11T21:41:26.5454021Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.5454216Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5454372Z } 2023-01-11T21:41:26.5454542Z #pragma omp for 2023-01-11T21:41:26.5454737Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.5454891Z { 2023-01-11T21:41:26.5455202Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.5455527Z auto tmp1 = at::vec::Vectorized(static_cast(32)); 2023-01-11T21:41:26.5455729Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.5456239Z auto tmp3 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:41:26.5456422Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.5456630Z auto tmp5 = tmp4.rsqrt(); 2023-01-11T21:41:26.5456812Z tmp5.store(in_out_ptr1 + 8*i0); 2023-01-11T21:41:26.5456922Z } 2023-01-11T21:41:26.5457093Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5457240Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.5457353Z { 2023-01-11T21:41:26.5457489Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.5457671Z auto tmp1 = static_cast(32); 2023-01-11T21:41:26.5457822Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.5458147Z auto tmp3 = static_cast(1e-05); 2023-01-11T21:41:26.5458356Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.5458583Z auto tmp5 = 1 / std::sqrt(tmp4); 2023-01-11T21:41:26.5458786Z in_out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.5458915Z } 2023-01-11T21:41:26.5459093Z #pragma omp for 2023-01-11T21:41:26.5459280Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.5459424Z { 2023-01-11T21:41:26.5459621Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.5459765Z { 2023-01-11T21:41:26.5460099Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.5460390Z auto tmp1 = at::vec::Vectorized(in_out_ptr0[i0]); 2023-01-11T21:41:26.5460686Z auto tmp3 = at::vec::Vectorized(in_out_ptr1[i0]); 2023-01-11T21:41:26.5461011Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr1 + 8*i1); 2023-01-11T21:41:26.5461324Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr2 + 8*i1); 2023-01-11T21:41:26.5461743Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.5461946Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.5462153Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.5462362Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.5462656Z auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0)); 2023-01-11T21:41:26.5462895Z tmp9.store(out_ptr3 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.5463047Z } 2023-01-11T21:41:26.5463349Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.5463553Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.5463712Z { 2023-01-11T21:41:26.5463899Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.5464102Z auto tmp1 = in_out_ptr0[i0]; 2023-01-11T21:41:26.5464274Z auto tmp3 = in_out_ptr1[i0]; 2023-01-11T21:41:26.5464429Z auto tmp5 = in_ptr1[i1]; 2023-01-11T21:41:26.5464591Z auto tmp7 = in_ptr2[i1]; 2023-01-11T21:41:26.5464830Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.5464983Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.5465163Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.5465353Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.5465569Z auto tmp9 = tmp8 * (tmp8>0); 2023-01-11T21:41:26.5465771Z out_ptr3[i1 + (32*i0)] = tmp9; 2023-01-11T21:41:26.5465922Z } 2023-01-11T21:41:26.5466070Z } 2023-01-11T21:41:26.5466217Z } 2023-01-11T21:41:26.5466359Z } 2023-01-11T21:41:26.5466539Z ''') 2023-01-11T21:41:26.5466553Z 2023-01-11T21:41:26.5466561Z 2023-01-11T21:41:26.5466783Z async_compile.wait(globals()) 2023-01-11T21:41:26.5466953Z del async_compile 2023-01-11T21:41:26.5466971Z 2023-01-11T21:41:26.5467135Z def call(args): 2023-01-11T21:41:26.5467378Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.5467557Z args.clear() 2023-01-11T21:41:26.5468041Z buf0 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5468498Z buf1 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5468974Z buf2 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5469231Z buf3 = as_strided(buf2, (16, 1), (1, 1)); del buf2 # reuse 2023-01-11T21:41:26.5469495Z buf4 = as_strided(buf1, (16, 1), (1, 1)); del buf1 # reuse 2023-01-11T21:41:26.5469969Z buf5 = empty_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5470630Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(primals_3.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:41:26.5470945Z return (buf5, primals_1, primals_2, primals_3, buf3, buf4, ) 2023-01-11T21:41:26.5470962Z 2023-01-11T21:41:26.5470970Z 2023-01-11T21:41:26.5471109Z if __name__ == "__main__": 2023-01-11T21:41:26.5471318Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5471526Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5471898Z primals_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5472272Z primals_2 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5472743Z primals_3 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5473064Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.5473075Z 2023-01-11T21:41:26.5473233Z ok (1.937s) 2023-01-11T21:41:26.5474368Z test_leaky_relu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5474743Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5475398Z [2023-01-11 21:35:26,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 261 2023-01-11T21:41:26.5476074Z [2023-01-11 21:35:27,633] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 261 2023-01-11T21:41:26.5476087Z 2023-01-11T21:41:26.5476294Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5476461Z import torch 2023-01-11T21:41:26.5476623Z import random 2023-01-11T21:41:26.5476896Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5477260Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5477274Z 2023-01-11T21:41:26.5477469Z aten = torch.ops.aten 2023-01-11T21:41:26.5477791Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5478003Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5478030Z 2023-01-11T21:41:26.5478037Z 2023-01-11T21:41:26.5478272Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5478640Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5478855Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5479034Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5479206Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.5479342Z { 2023-01-11T21:41:26.5479564Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5479693Z { 2023-01-11T21:41:26.5479880Z #pragma omp for 2023-01-11T21:41:26.5480074Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.5480227Z { 2023-01-11T21:41:26.5480380Z { 2023-01-11T21:41:26.5480532Z { 2023-01-11T21:41:26.5480753Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5480958Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.5481173Z auto tmp2 = tmp0 > tmp1; 2023-01-11T21:41:26.5481424Z auto tmp3 = static_cast(0.2); 2023-01-11T21:41:26.5481644Z auto tmp4 = tmp0 * tmp3; 2023-01-11T21:41:26.5481873Z auto tmp5 = tmp2 ? tmp0 : tmp4; 2023-01-11T21:41:26.5482115Z auto tmp6 = static_cast(2); 2023-01-11T21:41:26.5482326Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.5482548Z auto tmp8 = static_cast(1); 2023-01-11T21:41:26.5482756Z auto tmp9 = tmp0 + tmp8; 2023-01-11T21:41:26.5482975Z auto tmp10 = tmp9 > tmp1; 2023-01-11T21:41:26.5483231Z auto tmp11 = static_cast(0.01); 2023-01-11T21:41:26.5483452Z auto tmp12 = tmp9 * tmp11; 2023-01-11T21:41:26.5483692Z auto tmp13 = tmp10 ? tmp9 : tmp12; 2023-01-11T21:41:26.5483891Z out_ptr0[i0] = tmp7; 2023-01-11T21:41:26.5484073Z out_ptr1[i0] = tmp13; 2023-01-11T21:41:26.5484236Z } 2023-01-11T21:41:26.5484390Z } 2023-01-11T21:41:26.5484535Z } 2023-01-11T21:41:26.5484680Z } 2023-01-11T21:41:26.5484824Z } 2023-01-11T21:41:26.5485023Z ''') 2023-01-11T21:41:26.5485037Z 2023-01-11T21:41:26.5485044Z 2023-01-11T21:41:26.5485188Z async_compile.wait(globals()) 2023-01-11T21:41:26.5485319Z del async_compile 2023-01-11T21:41:26.5485328Z 2023-01-11T21:41:26.5485452Z def call(args): 2023-01-11T21:41:26.5485577Z arg0_1, = args 2023-01-11T21:41:26.5485709Z args.clear() 2023-01-11T21:41:26.5486074Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5486495Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5486869Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5487096Z del arg0_1 2023-01-11T21:41:26.5487278Z return (buf0, buf1, ) 2023-01-11T21:41:26.5487289Z 2023-01-11T21:41:26.5487300Z 2023-01-11T21:41:26.5487464Z if __name__ == "__main__": 2023-01-11T21:41:26.5487738Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5488024Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5488514Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5488772Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5488783Z 2023-01-11T21:41:26.5488947Z ok (1.647s) 2023-01-11T21:41:26.5490314Z test_lgamma_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5490620Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5491276Z [2023-01-11 21:35:27,676] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 262 2023-01-11T21:41:26.5491939Z [2023-01-11 21:35:29,482] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 262 2023-01-11T21:41:26.5491951Z 2023-01-11T21:41:26.5492166Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5492310Z import torch 2023-01-11T21:41:26.5492438Z import random 2023-01-11T21:41:26.5492647Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5492865Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5492876Z 2023-01-11T21:41:26.5493005Z aten = torch.ops.aten 2023-01-11T21:41:26.5493237Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5493406Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5493415Z 2023-01-11T21:41:26.5493423Z 2023-01-11T21:41:26.5493734Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5494193Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5494451Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.5494685Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.5494918Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.5495043Z { 2023-01-11T21:41:26.5495275Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5495419Z { 2023-01-11T21:41:26.5495607Z #pragma omp for 2023-01-11T21:41:26.5495805Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.5495958Z { 2023-01-11T21:41:26.5496285Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.5496480Z auto tmp1 = tmp0.lgamma(); 2023-01-11T21:41:26.5496797Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.5497000Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.5497309Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.5497503Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.5497701Z auto tmp6 = tmp5.cos(); 2023-01-11T21:41:26.5497918Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.5498115Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.5498272Z } 2023-01-11T21:41:26.5498502Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5498696Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.5498850Z { 2023-01-11T21:41:26.5499049Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.5499285Z auto tmp1 = std::lgamma(tmp0); 2023-01-11T21:41:26.5499449Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.5499600Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.5499866Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.5500019Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.5500182Z auto tmp6 = std::cos(tmp5); 2023-01-11T21:41:26.5500328Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.5500460Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.5500566Z } 2023-01-11T21:41:26.5500713Z } 2023-01-11T21:41:26.5500855Z } 2023-01-11T21:41:26.5501052Z ''') 2023-01-11T21:41:26.5501070Z 2023-01-11T21:41:26.5501081Z 2023-01-11T21:41:26.5501284Z async_compile.wait(globals()) 2023-01-11T21:41:26.5501449Z del async_compile 2023-01-11T21:41:26.5501462Z 2023-01-11T21:41:26.5501623Z def call(args): 2023-01-11T21:41:26.5501763Z arg0_1, = args 2023-01-11T21:41:26.5501921Z args.clear() 2023-01-11T21:41:26.5502498Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5502989Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5503468Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5503636Z del arg0_1 2023-01-11T21:41:26.5503812Z return (buf0, buf1, ) 2023-01-11T21:41:26.5503825Z 2023-01-11T21:41:26.5503834Z 2023-01-11T21:41:26.5504017Z if __name__ == "__main__": 2023-01-11T21:41:26.5504267Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5504563Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5505048Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5505308Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.5505321Z 2023-01-11T21:41:26.5505482Z ok (1.849s) 2023-01-11T21:41:26.5506419Z test_linear1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5506652Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5507135Z [2023-01-11 21:35:29,547] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 263 2023-01-11T21:41:26.5507699Z [2023-01-11 21:35:29,556] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 263 2023-01-11T21:41:26.5507712Z 2023-01-11T21:41:26.5507934Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5508073Z import torch 2023-01-11T21:41:26.5508240Z import random 2023-01-11T21:41:26.5508511Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5508792Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5508805Z 2023-01-11T21:41:26.5508987Z aten = torch.ops.aten 2023-01-11T21:41:26.5509310Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5509531Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5509544Z 2023-01-11T21:41:26.5509554Z 2023-01-11T21:41:26.5509870Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5510360Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5510635Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.5510783Z { 2023-01-11T21:41:26.5511017Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5511169Z { 2023-01-11T21:41:26.5511342Z #pragma omp for 2023-01-11T21:41:26.5511521Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.5511673Z { 2023-01-11T21:41:26.5512010Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5512331Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:41:26.5512562Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5512788Z } 2023-01-11T21:41:26.5513018Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5513198Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.5513335Z { 2023-01-11T21:41:26.5513494Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.5513744Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:41:26.5513894Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:41:26.5514043Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.5514152Z } 2023-01-11T21:41:26.5514246Z } 2023-01-11T21:41:26.5514353Z } 2023-01-11T21:41:26.5514500Z ''') 2023-01-11T21:41:26.5514510Z 2023-01-11T21:41:26.5514517Z 2023-01-11T21:41:26.5514671Z async_compile.wait(globals()) 2023-01-11T21:41:26.5514806Z del async_compile 2023-01-11T21:41:26.5514815Z 2023-01-11T21:41:26.5514985Z def call(args): 2023-01-11T21:41:26.5515183Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.5515354Z args.clear() 2023-01-11T21:41:26.5515763Z buf0 = empty_strided((2, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5516137Z aten.addmm.out(primals_2, primals_3, as_strided(primals_1, (8, 16), (1, 8)), beta=1, alpha=1, out=buf0) 2023-01-11T21:41:26.5516345Z del primals_1 2023-01-11T21:41:26.5516513Z del primals_2 2023-01-11T21:41:26.5516715Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.5516955Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5517162Z return (buf1, primals_3, buf1, ) 2023-01-11T21:41:26.5517176Z 2023-01-11T21:41:26.5517185Z 2023-01-11T21:41:26.5517337Z if __name__ == "__main__": 2023-01-11T21:41:26.5517605Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5517901Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5518411Z primals_1 = rand_strided((16, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5518918Z primals_2 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5519414Z primals_3 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5519748Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.5519760Z 2023-01-11T21:41:26.5519918Z ok (0.073s) 2023-01-11T21:41:26.5521065Z test_linear2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5521289Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5521774Z [2023-01-11 21:35:29,751] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 264 2023-01-11T21:41:26.5522256Z [2023-01-11 21:35:29,781] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 264 2023-01-11T21:41:26.5522270Z 2023-01-11T21:41:26.5522443Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5522571Z import torch 2023-01-11T21:41:26.5522694Z import random 2023-01-11T21:41:26.5522902Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5523175Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5523249Z 2023-01-11T21:41:26.5523413Z aten = torch.ops.aten 2023-01-11T21:41:26.5523704Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5523893Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5523911Z 2023-01-11T21:41:26.5523921Z 2023-01-11T21:41:26.5524246Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.5524716Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5524996Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.5525142Z { 2023-01-11T21:41:26.5525459Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5525595Z { 2023-01-11T21:41:26.5525775Z #pragma omp for 2023-01-11T21:41:26.5525967Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.5526110Z { 2023-01-11T21:41:26.5526439Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5526739Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.5526962Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5527102Z } 2023-01-11T21:41:26.5527336Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5527528Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.5527679Z { 2023-01-11T21:41:26.5527920Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.5528124Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.5528372Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5528506Z } 2023-01-11T21:41:26.5528656Z } 2023-01-11T21:41:26.5528808Z } 2023-01-11T21:41:26.5528967Z ''') 2023-01-11T21:41:26.5528976Z 2023-01-11T21:41:26.5528983Z 2023-01-11T21:41:26.5529377Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.5529743Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5529954Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.5530074Z { 2023-01-11T21:41:26.5530235Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5530377Z { 2023-01-11T21:41:26.5530550Z #pragma omp for 2023-01-11T21:41:26.5530744Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.5530893Z { 2023-01-11T21:41:26.5531217Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5531520Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.5531725Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5531877Z } 2023-01-11T21:41:26.5532091Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5532284Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.5532436Z { 2023-01-11T21:41:26.5532641Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.5532835Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.5533033Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5533185Z } 2023-01-11T21:41:26.5533326Z } 2023-01-11T21:41:26.5533469Z } 2023-01-11T21:41:26.5533665Z ''') 2023-01-11T21:41:26.5533677Z 2023-01-11T21:41:26.5533686Z 2023-01-11T21:41:26.5534013Z kernel_cpp_2 = async_compile.cpp(''' 2023-01-11T21:41:26.5534494Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5534756Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.5534903Z { 2023-01-11T21:41:26.5535141Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5535290Z { 2023-01-11T21:41:26.5535475Z #pragma omp for 2023-01-11T21:41:26.5535677Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.5535809Z { 2023-01-11T21:41:26.5536114Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5536344Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.5536514Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.5536626Z } 2023-01-11T21:41:26.5536799Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.5536944Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.5537056Z { 2023-01-11T21:41:26.5537200Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.5537396Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.5537597Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5537749Z } 2023-01-11T21:41:26.5537901Z } 2023-01-11T21:41:26.5538045Z } 2023-01-11T21:41:26.5538223Z ''') 2023-01-11T21:41:26.5538255Z 2023-01-11T21:41:26.5538266Z 2023-01-11T21:41:26.5538681Z kernel_cpp_3 = async_compile.cpp(''' 2023-01-11T21:41:26.5539159Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.5539436Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.5539663Z bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.5539814Z { 2023-01-11T21:41:26.5540048Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.5540204Z { 2023-01-11T21:41:26.5540368Z #pragma omp for 2023-01-11T21:41:26.5540562Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.5540714Z { 2023-01-11T21:41:26.5540866Z { 2023-01-11T21:41:26.5541020Z { 2023-01-11T21:41:26.5541241Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.5541459Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.5541759Z auto tmp2 = static_cast(0); 2023-01-11T21:41:26.5541983Z auto tmp3 = tmp1 <= tmp2; 2023-01-11T21:41:26.5542199Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.5542400Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.5542553Z } 2023-01-11T21:41:26.5542711Z } 2023-01-11T21:41:26.5542836Z } 2023-01-11T21:41:26.5542984Z } 2023-01-11T21:41:26.5543107Z } 2023-01-11T21:41:26.5543338Z ''') 2023-01-11T21:41:26.5543348Z 2023-01-11T21:41:26.5543356Z 2023-01-11T21:41:26.5543520Z async_compile.wait(globals()) 2023-01-11T21:41:26.5543654Z del async_compile 2023-01-11T21:41:26.5543663Z 2023-01-11T21:41:26.5543789Z def call(args): 2023-01-11T21:41:26.5544100Z primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args 2023-01-11T21:41:26.5544212Z args.clear() 2023-01-11T21:41:26.5544642Z buf0 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5545020Z aten.addmm.out(primals_2, primals_9, as_strided(primals_1, (8, 8), (1, 8)), beta=1, alpha=1, out=buf0) 2023-01-11T21:41:26.5545182Z del primals_1 2023-01-11T21:41:26.5545348Z del primals_2 2023-01-11T21:41:26.5545538Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.5545775Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.5546222Z buf2 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5546596Z aten.addmm.out(primals_4, buf1, as_strided(primals_3, (8, 8), (1, 8)), beta=1, alpha=1, out=buf2) 2023-01-11T21:41:26.5546757Z del primals_4 2023-01-11T21:41:26.5546956Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:41:26.5547192Z kernel_cpp_1(c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.5547663Z buf4 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5548028Z aten.addmm.out(primals_6, buf3, as_strided(primals_5, (8, 8), (1, 8)), beta=1, alpha=1, out=buf4) 2023-01-11T21:41:26.5548202Z del primals_6 2023-01-11T21:41:26.5548379Z buf5 = buf4; del buf4 # reuse 2023-01-11T21:41:26.5548622Z kernel_cpp_2(c_void_p(buf5.data_ptr())) 2023-01-11T21:41:26.5549093Z buf6 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5549461Z aten.addmm.out(primals_8, buf5, as_strided(primals_7, (8, 8), (1, 8)), beta=1, alpha=1, out=buf6) 2023-01-11T21:41:26.5549638Z del primals_8 2023-01-11T21:41:26.5549838Z buf7 = buf6; del buf6 # reuse 2023-01-11T21:41:26.5550274Z buf8 = empty_strided((2, 8), (8, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.5550495Z kernel_cpp_3(c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:41:26.5550855Z return (buf7, primals_9, buf1, buf3, buf5, buf8, as_strided(primals_7, (8, 8), (8, 1)), as_strided(primals_5, (8, 8), (8, 1)), as_strided(primals_3, (8, 8), (8, 1)), ) 2023-01-11T21:41:26.5550865Z 2023-01-11T21:41:26.5550876Z 2023-01-11T21:41:26.5551015Z if __name__ == "__main__": 2023-01-11T21:41:26.5551225Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5551541Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5552016Z primals_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5552485Z primals_2 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5552968Z primals_3 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5553451Z primals_4 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5553923Z primals_5 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5554402Z primals_6 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5554888Z primals_7 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5555427Z primals_8 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5555919Z primals_9 = rand_strided((2, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5556426Z print_performance(lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])) 2023-01-11T21:41:26.5556439Z 2023-01-11T21:41:26.5556602Z ok (0.225s) 2023-01-11T21:41:26.5557645Z test_linear_binary_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5557878Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5558344Z [2023-01-11 21:35:29,877] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 265 2023-01-11T21:41:26.5558901Z [2023-01-11 21:35:29,880] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 265 2023-01-11T21:41:26.5559923Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5560207Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5560851Z [2023-01-11 21:35:29,912] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 266 2023-01-11T21:41:26.5561514Z [2023-01-11 21:35:29,914] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 266 2023-01-11T21:41:26.5562574Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5562878Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5563526Z [2023-01-11 21:35:29,999] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 267 2023-01-11T21:41:26.5564202Z [2023-01-11 21:35:30,002] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 267 2023-01-11T21:41:26.5565047Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5565270Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5565856Z [2023-01-11 21:35:30,032] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 268 2023-01-11T21:41:26.5566456Z [2023-01-11 21:35:30,035] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 268 2023-01-11T21:41:26.5567447Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5567745Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5568475Z [2023-01-11 21:35:30,122] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 269 2023-01-11T21:41:26.5569279Z [2023-01-11 21:35:30,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 269 2023-01-11T21:41:26.5570348Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5570642Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5571290Z [2023-01-11 21:35:30,156] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 270 2023-01-11T21:41:26.5571878Z [2023-01-11 21:35:30,159] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 270 2023-01-11T21:41:26.5572662Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5572888Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5573510Z [2023-01-11 21:35:30,243] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 271 2023-01-11T21:41:26.5574132Z [2023-01-11 21:35:30,245] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 271 2023-01-11T21:41:26.5575167Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5575461Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5576091Z [2023-01-11 21:35:30,275] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 272 2023-01-11T21:41:26.5576104Z 2023-01-11T21:41:26.5576327Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5576497Z import torch 2023-01-11T21:41:26.5576673Z import random 2023-01-11T21:41:26.5576948Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5577238Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5577251Z 2023-01-11T21:41:26.5577412Z aten = torch.ops.aten 2023-01-11T21:41:26.5577730Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5577946Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5577960Z 2023-01-11T21:41:26.5577970Z 2023-01-11T21:41:26.5578186Z async_compile.wait(globals()) 2023-01-11T21:41:26.5578373Z del async_compile 2023-01-11T21:41:26.5578384Z 2023-01-11T21:41:26.5578550Z def call(args): 2023-01-11T21:41:26.5578863Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5578993Z args.clear() 2023-01-11T21:41:26.5579398Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5579519Z del arg0_1 2023-01-11T21:41:26.5579641Z del arg1_1 2023-01-11T21:41:26.5579761Z del arg2_1 2023-01-11T21:41:26.5579882Z del arg3_1 2023-01-11T21:41:26.5580010Z return (buf0, ) 2023-01-11T21:41:26.5580020Z 2023-01-11T21:41:26.5580026Z 2023-01-11T21:41:26.5580160Z if __name__ == "__main__": 2023-01-11T21:41:26.5580348Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5580572Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5581025Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5581593Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5582091Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5582584Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5582888Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5582902Z 2023-01-11T21:41:26.5582912Z 2023-01-11T21:41:26.5583209Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5583363Z import torch 2023-01-11T21:41:26.5583537Z import random 2023-01-11T21:41:26.5583815Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5584102Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5584114Z 2023-01-11T21:41:26.5584305Z aten = torch.ops.aten 2023-01-11T21:41:26.5584625Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5584848Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5584860Z 2023-01-11T21:41:26.5584875Z 2023-01-11T21:41:26.5585093Z async_compile.wait(globals()) 2023-01-11T21:41:26.5585250Z del async_compile 2023-01-11T21:41:26.5585268Z 2023-01-11T21:41:26.5585445Z def call(args): 2023-01-11T21:41:26.5585642Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5585807Z args.clear() 2023-01-11T21:41:26.5586372Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5586538Z del arg0_1 2023-01-11T21:41:26.5586653Z del arg1_1 2023-01-11T21:41:26.5586759Z del arg2_1 2023-01-11T21:41:26.5586886Z return (buf0, ) 2023-01-11T21:41:26.5586897Z 2023-01-11T21:41:26.5586904Z 2023-01-11T21:41:26.5587045Z if __name__ == "__main__": 2023-01-11T21:41:26.5587254Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5587475Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5587855Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5588246Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5588693Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5589014Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5589031Z 2023-01-11T21:41:26.5589064Z 2023-01-11T21:41:26.5589315Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5589509Z import torch 2023-01-11T21:41:26.5589675Z import random 2023-01-11T21:41:26.5589944Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5590216Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5590229Z 2023-01-11T21:41:26.5590414Z aten = torch.ops.aten 2023-01-11T21:41:26.5590733Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5590935Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5590946Z 2023-01-11T21:41:26.5590956Z 2023-01-11T21:41:26.5591178Z async_compile.wait(globals()) 2023-01-11T21:41:26.5591348Z del async_compile 2023-01-11T21:41:26.5591360Z 2023-01-11T21:41:26.5591518Z def call(args): 2023-01-11T21:41:26.5591823Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5591991Z args.clear() 2023-01-11T21:41:26.5592563Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5592724Z del arg0_1 2023-01-11T21:41:26.5592866Z del arg1_1 2023-01-11T21:41:26.5593031Z del arg2_1 2023-01-11T21:41:26.5593189Z del arg3_1 2023-01-11T21:41:26.5593354Z return (buf0, ) 2023-01-11T21:41:26.5593365Z 2023-01-11T21:41:26.5593373Z 2023-01-11T21:41:26.5593550Z if __name__ == "__main__": 2023-01-11T21:41:26.5593820Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5594115Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5594510Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5594916Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5595294Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5595670Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5595903Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5595913Z 2023-01-11T21:41:26.5595920Z 2023-01-11T21:41:26.5596122Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5596291Z import torch 2023-01-11T21:41:26.5596508Z import random 2023-01-11T21:41:26.5596755Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5597094Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5597106Z 2023-01-11T21:41:26.5597284Z aten = torch.ops.aten 2023-01-11T21:41:26.5597588Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5597801Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5597813Z 2023-01-11T21:41:26.5597832Z 2023-01-11T21:41:26.5598038Z async_compile.wait(globals()) 2023-01-11T21:41:26.5598212Z del async_compile 2023-01-11T21:41:26.5598230Z 2023-01-11T21:41:26.5598395Z def call(args): 2023-01-11T21:41:26.5598573Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5598742Z args.clear() 2023-01-11T21:41:26.5599301Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5599472Z del arg0_1 2023-01-11T21:41:26.5599636Z del arg1_1 2023-01-11T21:41:26.5599797Z del arg2_1 2023-01-11T21:41:26.5599960Z return (buf0, ) 2023-01-11T21:41:26.5599971Z 2023-01-11T21:41:26.5599980Z 2023-01-11T21:41:26.5600142Z if __name__ == "__main__": 2023-01-11T21:41:26.5600411Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5600708Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5601205Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5601695Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5602127Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5602357Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5602366Z 2023-01-11T21:41:26.5602373Z 2023-01-11T21:41:26.5602540Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5602651Z import torch 2023-01-11T21:41:26.5602778Z import random 2023-01-11T21:41:26.5602990Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5603204Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5603214Z 2023-01-11T21:41:26.5603349Z aten = torch.ops.aten 2023-01-11T21:41:26.5603589Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5603799Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5603811Z 2023-01-11T21:41:26.5603818Z 2023-01-11T21:41:26.5604033Z async_compile.wait(globals()) 2023-01-11T21:41:26.5604192Z del async_compile 2023-01-11T21:41:26.5604203Z 2023-01-11T21:41:26.5604372Z def call(args): 2023-01-11T21:41:26.5604573Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5604866Z args.clear() 2023-01-11T21:41:26.5605411Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5605577Z del arg0_1 2023-01-11T21:41:26.5605735Z del arg1_1 2023-01-11T21:41:26.5605884Z del arg2_1 2023-01-11T21:41:26.5606041Z del arg3_1 2023-01-11T21:41:26.5606208Z return (buf0, ) 2023-01-11T21:41:26.5606219Z 2023-01-11T21:41:26.5606229Z 2023-01-11T21:41:26.5606410Z if __name__ == "__main__": 2023-01-11T21:41:26.5606681Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5606973Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5607471Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5608003Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5608498Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5609152Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5609459Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5609473Z 2023-01-11T21:41:26.5609482Z 2023-01-11T21:41:26.5609680Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5609809Z import torch 2023-01-11T21:41:26.5609937Z import random 2023-01-11T21:41:26.5610146Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5610359Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5610368Z 2023-01-11T21:41:26.5610492Z aten = torch.ops.aten 2023-01-11T21:41:26.5610736Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5610901Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5610911Z 2023-01-11T21:41:26.5610922Z 2023-01-11T21:41:26.5611082Z async_compile.wait(globals()) 2023-01-11T21:41:26.5611213Z del async_compile 2023-01-11T21:41:26.5611227Z 2023-01-11T21:41:26.5611380Z def call(args): 2023-01-11T21:41:26.5611544Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5611709Z args.clear() 2023-01-11T21:41:26.5612374Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5612537Z del arg0_1 2023-01-11T21:41:26.5612746Z del arg1_1 2023-01-11T21:41:26.5612901Z del arg2_1 2023-01-11T21:41:26.5613068Z return (buf0, ) 2023-01-11T21:41:26.5613086Z 2023-01-11T21:41:26.5613095Z 2023-01-11T21:41:26.5613275Z if __name__ == "__main__": 2023-01-11T21:41:26.5613545Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5613816Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5614308Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5614805Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5615319Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5615617Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5615629Z 2023-01-11T21:41:26.5615639Z 2023-01-11T21:41:26.5615862Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5616026Z import torch 2023-01-11T21:41:26.5616194Z import random 2023-01-11T21:41:26.5616445Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5616740Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5616751Z 2023-01-11T21:41:26.5616935Z aten = torch.ops.aten 2023-01-11T21:41:26.5617247Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5617460Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5617469Z 2023-01-11T21:41:26.5617476Z 2023-01-11T21:41:26.5617634Z async_compile.wait(globals()) 2023-01-11T21:41:26.5617774Z del async_compile 2023-01-11T21:41:26.5617783Z 2023-01-11T21:41:26.5617910Z def call(args): 2023-01-11T21:41:26.5618154Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5618282Z args.clear() 2023-01-11T21:41:26.5618707Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5618831Z del arg0_1 2023-01-11T21:41:26.5618951Z del arg1_1 2023-01-11T21:41:26.5619075Z del arg2_1 2023-01-11T21:41:26.5619233Z del arg3_1 2023-01-11T21:41:26.5619370Z return (buf0, ) 2023-01-11T21:41:26.5619384Z 2023-01-11T21:41:26.5619415Z 2023-01-11T21:41:26.5619604Z if __name__ == "__main__": 2023-01-11T21:41:26.5619858Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5620172Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5620652Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5621185Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5621678Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5622172Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5622458Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5622487Z 2023-01-11T21:41:26.5623219Z [2023-01-11 21:35:30,277] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 272 2023-01-11T21:41:26.5624312Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5624617Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5625264Z [2023-01-11 21:35:30,404] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 273 2023-01-11T21:41:26.5625769Z [2023-01-11 21:35:30,407] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 273 2023-01-11T21:41:26.5626551Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5626781Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5627336Z [2023-01-11 21:35:30,452] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 274 2023-01-11T21:41:26.5627976Z [2023-01-11 21:35:30,454] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 274 2023-01-11T21:41:26.5628976Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5629272Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5629895Z [2023-01-11 21:35:30,539] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 275 2023-01-11T21:41:26.5630565Z [2023-01-11 21:35:30,541] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 275 2023-01-11T21:41:26.5631616Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5631993Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5632641Z [2023-01-11 21:35:30,571] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 276 2023-01-11T21:41:26.5633225Z [2023-01-11 21:35:30,573] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 276 2023-01-11T21:41:26.5634005Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5634274Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5634779Z [2023-01-11 21:35:30,659] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 277 2023-01-11T21:41:26.5635391Z [2023-01-11 21:35:30,661] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 277 2023-01-11T21:41:26.5636456Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5636752Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5637366Z [2023-01-11 21:35:30,692] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 278 2023-01-11T21:41:26.5638044Z [2023-01-11 21:35:30,694] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 278 2023-01-11T21:41:26.5639090Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5639388Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5640023Z [2023-01-11 21:35:30,778] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 279 2023-01-11T21:41:26.5640036Z 2023-01-11T21:41:26.5640252Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5640426Z import torch 2023-01-11T21:41:26.5640595Z import random 2023-01-11T21:41:26.5640805Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5640994Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5641024Z 2023-01-11T21:41:26.5641145Z aten = torch.ops.aten 2023-01-11T21:41:26.5641386Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5641557Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5641567Z 2023-01-11T21:41:26.5641574Z 2023-01-11T21:41:26.5641738Z async_compile.wait(globals()) 2023-01-11T21:41:26.5641868Z del async_compile 2023-01-11T21:41:26.5641877Z 2023-01-11T21:41:26.5642003Z def call(args): 2023-01-11T21:41:26.5642150Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5642268Z args.clear() 2023-01-11T21:41:26.5642788Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5642958Z del arg0_1 2023-01-11T21:41:26.5643163Z del arg1_1 2023-01-11T21:41:26.5643321Z del arg2_1 2023-01-11T21:41:26.5643488Z return (buf0, ) 2023-01-11T21:41:26.5643506Z 2023-01-11T21:41:26.5643516Z 2023-01-11T21:41:26.5643693Z if __name__ == "__main__": 2023-01-11T21:41:26.5643968Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5644245Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5644805Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5645294Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5645786Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5646076Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5646089Z 2023-01-11T21:41:26.5646098Z 2023-01-11T21:41:26.5646323Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5646487Z import torch 2023-01-11T21:41:26.5646653Z import random 2023-01-11T21:41:26.5646913Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5647201Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5647213Z 2023-01-11T21:41:26.5647390Z aten = torch.ops.aten 2023-01-11T21:41:26.5647760Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5647980Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5647998Z 2023-01-11T21:41:26.5648006Z 2023-01-11T21:41:26.5648193Z async_compile.wait(globals()) 2023-01-11T21:41:26.5648325Z del async_compile 2023-01-11T21:41:26.5648334Z 2023-01-11T21:41:26.5648463Z def call(args): 2023-01-11T21:41:26.5648606Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5648735Z args.clear() 2023-01-11T21:41:26.5649297Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5649421Z del arg0_1 2023-01-11T21:41:26.5649537Z del arg1_1 2023-01-11T21:41:26.5649657Z del arg2_1 2023-01-11T21:41:26.5649774Z del arg3_1 2023-01-11T21:41:26.5649880Z return (buf0, ) 2023-01-11T21:41:26.5649889Z 2023-01-11T21:41:26.5649895Z 2023-01-11T21:41:26.5650082Z if __name__ == "__main__": 2023-01-11T21:41:26.5650337Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5650641Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5651180Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5651651Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5652135Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5652644Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5652937Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5652950Z 2023-01-11T21:41:26.5652975Z 2023-01-11T21:41:26.5653176Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5653347Z import torch 2023-01-11T21:41:26.5653515Z import random 2023-01-11T21:41:26.5653790Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5654075Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5654092Z 2023-01-11T21:41:26.5654284Z aten = torch.ops.aten 2023-01-11T21:41:26.5654599Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5654808Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5654819Z 2023-01-11T21:41:26.5654828Z 2023-01-11T21:41:26.5655041Z async_compile.wait(globals()) 2023-01-11T21:41:26.5655222Z del async_compile 2023-01-11T21:41:26.5655233Z 2023-01-11T21:41:26.5655401Z def call(args): 2023-01-11T21:41:26.5655588Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5655763Z args.clear() 2023-01-11T21:41:26.5656251Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5656358Z del arg0_1 2023-01-11T21:41:26.5656479Z del arg1_1 2023-01-11T21:41:26.5656600Z del arg2_1 2023-01-11T21:41:26.5656731Z return (buf0, ) 2023-01-11T21:41:26.5656740Z 2023-01-11T21:41:26.5656747Z 2023-01-11T21:41:26.5656885Z if __name__ == "__main__": 2023-01-11T21:41:26.5657095Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5657317Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5657803Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5658273Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5658802Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5659088Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5659103Z 2023-01-11T21:41:26.5659114Z 2023-01-11T21:41:26.5659328Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5659493Z import torch 2023-01-11T21:41:26.5659667Z import random 2023-01-11T21:41:26.5659939Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5660227Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5660239Z 2023-01-11T21:41:26.5660411Z aten = torch.ops.aten 2023-01-11T21:41:26.5660831Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5661058Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5661078Z 2023-01-11T21:41:26.5661087Z 2023-01-11T21:41:26.5661305Z async_compile.wait(globals()) 2023-01-11T21:41:26.5661482Z del async_compile 2023-01-11T21:41:26.5661494Z 2023-01-11T21:41:26.5661661Z def call(args): 2023-01-11T21:41:26.5661871Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5662038Z args.clear() 2023-01-11T21:41:26.5662583Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5662743Z del arg0_1 2023-01-11T21:41:26.5662901Z del arg1_1 2023-01-11T21:41:26.5663063Z del arg2_1 2023-01-11T21:41:26.5663287Z del arg3_1 2023-01-11T21:41:26.5663466Z return (buf0, ) 2023-01-11T21:41:26.5663478Z 2023-01-11T21:41:26.5663487Z 2023-01-11T21:41:26.5663667Z if __name__ == "__main__": 2023-01-11T21:41:26.5663869Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5664090Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5664470Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5664846Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5665215Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5665622Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5665896Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5665924Z 2023-01-11T21:41:26.5665932Z 2023-01-11T21:41:26.5666140Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5666333Z import torch 2023-01-11T21:41:26.5666570Z import random 2023-01-11T21:41:26.5666851Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5667138Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5667150Z 2023-01-11T21:41:26.5667340Z aten = torch.ops.aten 2023-01-11T21:41:26.5667648Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5667875Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5667887Z 2023-01-11T21:41:26.5667897Z 2023-01-11T21:41:26.5668113Z async_compile.wait(globals()) 2023-01-11T21:41:26.5668275Z del async_compile 2023-01-11T21:41:26.5668286Z 2023-01-11T21:41:26.5668459Z def call(args): 2023-01-11T21:41:26.5668656Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5668819Z args.clear() 2023-01-11T21:41:26.5669374Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5669529Z del arg0_1 2023-01-11T21:41:26.5669687Z del arg1_1 2023-01-11T21:41:26.5669819Z del arg2_1 2023-01-11T21:41:26.5669995Z return (buf0, ) 2023-01-11T21:41:26.5670008Z 2023-01-11T21:41:26.5670016Z 2023-01-11T21:41:26.5670201Z if __name__ == "__main__": 2023-01-11T21:41:26.5670475Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5670769Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5671353Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5671760Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5672127Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5672330Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5672340Z 2023-01-11T21:41:26.5672364Z 2023-01-11T21:41:26.5672511Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5672632Z import torch 2023-01-11T21:41:26.5672760Z import random 2023-01-11T21:41:26.5672970Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5673185Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5673195Z 2023-01-11T21:41:26.5673363Z aten = torch.ops.aten 2023-01-11T21:41:26.5673732Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5673934Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5673957Z 2023-01-11T21:41:26.5673987Z 2023-01-11T21:41:26.5674233Z async_compile.wait(globals()) 2023-01-11T21:41:26.5674400Z del async_compile 2023-01-11T21:41:26.5674413Z 2023-01-11T21:41:26.5674579Z def call(args): 2023-01-11T21:41:26.5674793Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5674956Z args.clear() 2023-01-11T21:41:26.5675507Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5675672Z del arg0_1 2023-01-11T21:41:26.5675819Z del arg1_1 2023-01-11T21:41:26.5675978Z del arg2_1 2023-01-11T21:41:26.5676143Z del arg3_1 2023-01-11T21:41:26.5676314Z return (buf0, ) 2023-01-11T21:41:26.5676326Z 2023-01-11T21:41:26.5676335Z 2023-01-11T21:41:26.5676511Z if __name__ == "__main__": 2023-01-11T21:41:26.5676779Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5677078Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5677551Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5678044Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5678557Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5679069Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5679324Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5679334Z 2023-01-11T21:41:26.5679341Z 2023-01-11T21:41:26.5679511Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5679638Z import torch 2023-01-11T21:41:26.5679767Z import random 2023-01-11T21:41:26.5679959Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5680168Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5680177Z 2023-01-11T21:41:26.5680319Z aten = torch.ops.aten 2023-01-11T21:41:26.5680549Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5680719Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5680728Z 2023-01-11T21:41:26.5680735Z 2023-01-11T21:41:26.5680908Z async_compile.wait(globals()) 2023-01-11T21:41:26.5681096Z del async_compile 2023-01-11T21:41:26.5681106Z 2023-01-11T21:41:26.5681274Z def call(args): 2023-01-11T21:41:26.5681427Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5681632Z args.clear() 2023-01-11T21:41:26.5682205Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5682353Z del arg0_1 2023-01-11T21:41:26.5682514Z del arg1_1 2023-01-11T21:41:26.5682672Z del arg2_1 2023-01-11T21:41:26.5682847Z return (buf0, ) 2023-01-11T21:41:26.5682860Z 2023-01-11T21:41:26.5682869Z 2023-01-11T21:41:26.5683036Z if __name__ == "__main__": 2023-01-11T21:41:26.5683309Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5683606Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5684181Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5684682Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5685189Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5685482Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5685494Z 2023-01-11T21:41:26.5686162Z [2023-01-11 21:35:30,780] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 279 2023-01-11T21:41:26.5687202Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5687428Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5687903Z [2023-01-11 21:35:30,809] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 280 2023-01-11T21:41:26.5688393Z [2023-01-11 21:35:30,811] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 280 2023-01-11T21:41:26.5689469Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5689804Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5690426Z [2023-01-11 21:35:30,898] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 281 2023-01-11T21:41:26.5691068Z [2023-01-11 21:35:30,901] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 281 2023-01-11T21:41:26.5692136Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5692429Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5693068Z [2023-01-11 21:35:30,933] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 282 2023-01-11T21:41:26.5693745Z [2023-01-11 21:35:30,935] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 282 2023-01-11T21:41:26.5694813Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5695046Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5695514Z [2023-01-11 21:35:31,021] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 283 2023-01-11T21:41:26.5696003Z [2023-01-11 21:35:31,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 283 2023-01-11T21:41:26.5696846Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5697112Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5697854Z [2023-01-11 21:35:31,054] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 284 2023-01-11T21:41:26.5698482Z [2023-01-11 21:35:31,056] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 284 2023-01-11T21:41:26.5699562Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5699856Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5700568Z [2023-01-11 21:35:31,142] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 285 2023-01-11T21:41:26.5701236Z [2023-01-11 21:35:31,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 285 2023-01-11T21:41:26.5702330Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5702608Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5703054Z [2023-01-11 21:35:31,177] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 286 2023-01-11T21:41:26.5703064Z 2023-01-11T21:41:26.5703294Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5703422Z import torch 2023-01-11T21:41:26.5703546Z import random 2023-01-11T21:41:26.5703762Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5703980Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5703996Z 2023-01-11T21:41:26.5704139Z aten = torch.ops.aten 2023-01-11T21:41:26.5704420Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5704606Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5704622Z 2023-01-11T21:41:26.5704631Z 2023-01-11T21:41:26.5704847Z async_compile.wait(globals()) 2023-01-11T21:41:26.5705048Z del async_compile 2023-01-11T21:41:26.5705064Z 2023-01-11T21:41:26.5705230Z def call(args): 2023-01-11T21:41:26.5705510Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5705678Z args.clear() 2023-01-11T21:41:26.5706219Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'add') 2023-01-11T21:41:26.5706372Z del arg0_1 2023-01-11T21:41:26.5706524Z del arg1_1 2023-01-11T21:41:26.5706685Z del arg2_1 2023-01-11T21:41:26.5706859Z del arg3_1 2023-01-11T21:41:26.5707037Z return (buf0, ) 2023-01-11T21:41:26.5707049Z 2023-01-11T21:41:26.5707058Z 2023-01-11T21:41:26.5707239Z if __name__ == "__main__": 2023-01-11T21:41:26.5707512Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5707798Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5708287Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5708784Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5709271Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5709756Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5710061Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5710073Z 2023-01-11T21:41:26.5710083Z 2023-01-11T21:41:26.5710261Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5710393Z import torch 2023-01-11T21:41:26.5710524Z import random 2023-01-11T21:41:26.5710716Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5710991Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5711000Z 2023-01-11T21:41:26.5711139Z aten = torch.ops.aten 2023-01-11T21:41:26.5711376Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5711541Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5711551Z 2023-01-11T21:41:26.5711558Z 2023-01-11T21:41:26.5711715Z async_compile.wait(globals()) 2023-01-11T21:41:26.5711854Z del async_compile 2023-01-11T21:41:26.5711865Z 2023-01-11T21:41:26.5712031Z def call(args): 2023-01-11T21:41:26.5712212Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5712365Z args.clear() 2023-01-11T21:41:26.5712905Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'add') 2023-01-11T21:41:26.5713061Z del arg0_1 2023-01-11T21:41:26.5713188Z del arg1_1 2023-01-11T21:41:26.5713411Z del arg2_1 2023-01-11T21:41:26.5713583Z return (buf0, ) 2023-01-11T21:41:26.5713597Z 2023-01-11T21:41:26.5713615Z 2023-01-11T21:41:26.5713779Z if __name__ == "__main__": 2023-01-11T21:41:26.5714057Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5714355Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5714861Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5715339Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5715826Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5716119Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5716131Z 2023-01-11T21:41:26.5716140Z 2023-01-11T21:41:26.5716366Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5716510Z import torch 2023-01-11T21:41:26.5716676Z import random 2023-01-11T21:41:26.5716953Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5717242Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5717259Z 2023-01-11T21:41:26.5717447Z aten = torch.ops.aten 2023-01-11T21:41:26.5717757Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5717943Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5717952Z 2023-01-11T21:41:26.5717959Z 2023-01-11T21:41:26.5718119Z async_compile.wait(globals()) 2023-01-11T21:41:26.5718237Z del async_compile 2023-01-11T21:41:26.5718245Z 2023-01-11T21:41:26.5718371Z def call(args): 2023-01-11T21:41:26.5718532Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5718660Z args.clear() 2023-01-11T21:41:26.5719082Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'sub') 2023-01-11T21:41:26.5719209Z del arg0_1 2023-01-11T21:41:26.5719330Z del arg1_1 2023-01-11T21:41:26.5719433Z del arg2_1 2023-01-11T21:41:26.5719574Z del arg3_1 2023-01-11T21:41:26.5719744Z return (buf0, ) 2023-01-11T21:41:26.5719753Z 2023-01-11T21:41:26.5719760Z 2023-01-11T21:41:26.5719945Z if __name__ == "__main__": 2023-01-11T21:41:26.5720210Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5720472Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5720950Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5721411Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5721910Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5722408Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5722713Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5722725Z 2023-01-11T21:41:26.5722734Z 2023-01-11T21:41:26.5722954Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5723121Z import torch 2023-01-11T21:41:26.5723291Z import random 2023-01-11T21:41:26.5723567Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5723931Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5723943Z 2023-01-11T21:41:26.5724108Z aten = torch.ops.aten 2023-01-11T21:41:26.5724425Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5724647Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5724659Z 2023-01-11T21:41:26.5724668Z 2023-01-11T21:41:26.5724880Z async_compile.wait(globals()) 2023-01-11T21:41:26.5725054Z del async_compile 2023-01-11T21:41:26.5725065Z 2023-01-11T21:41:26.5725235Z def call(args): 2023-01-11T21:41:26.5725412Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5725537Z args.clear() 2023-01-11T21:41:26.5725940Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'sub') 2023-01-11T21:41:26.5726060Z del arg0_1 2023-01-11T21:41:26.5726181Z del arg1_1 2023-01-11T21:41:26.5726344Z del arg2_1 2023-01-11T21:41:26.5726479Z return (buf0, ) 2023-01-11T21:41:26.5726488Z 2023-01-11T21:41:26.5726500Z 2023-01-11T21:41:26.5726634Z if __name__ == "__main__": 2023-01-11T21:41:26.5726844Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5727043Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5727517Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5727998Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5728482Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5728767Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5728779Z 2023-01-11T21:41:26.5728789Z 2023-01-11T21:41:26.5729156Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5729329Z import torch 2023-01-11T21:41:26.5729503Z import random 2023-01-11T21:41:26.5729770Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5730062Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5730081Z 2023-01-11T21:41:26.5730270Z aten = torch.ops.aten 2023-01-11T21:41:26.5730585Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5730803Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5730814Z 2023-01-11T21:41:26.5730823Z 2023-01-11T21:41:26.5731033Z async_compile.wait(globals()) 2023-01-11T21:41:26.5731195Z del async_compile 2023-01-11T21:41:26.5731206Z 2023-01-11T21:41:26.5731375Z def call(args): 2023-01-11T21:41:26.5731563Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5731733Z args.clear() 2023-01-11T21:41:26.5732301Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'sub') 2023-01-11T21:41:26.5732465Z del arg0_1 2023-01-11T21:41:26.5732624Z del arg1_1 2023-01-11T21:41:26.5732777Z del arg2_1 2023-01-11T21:41:26.5732943Z del arg3_1 2023-01-11T21:41:26.5733057Z return (buf0, ) 2023-01-11T21:41:26.5733066Z 2023-01-11T21:41:26.5733073Z 2023-01-11T21:41:26.5733214Z if __name__ == "__main__": 2023-01-11T21:41:26.5733413Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5733631Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5734001Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5734369Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5734784Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5735215Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5735487Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5735497Z 2023-01-11T21:41:26.5735568Z 2023-01-11T21:41:26.5735832Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5735995Z import torch 2023-01-11T21:41:26.5736148Z import random 2023-01-11T21:41:26.5736416Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5736815Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5736828Z 2023-01-11T21:41:26.5737012Z aten = torch.ops.aten 2023-01-11T21:41:26.5737327Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5737531Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5737542Z 2023-01-11T21:41:26.5737552Z 2023-01-11T21:41:26.5737767Z async_compile.wait(globals()) 2023-01-11T21:41:26.5737946Z del async_compile 2023-01-11T21:41:26.5737957Z 2023-01-11T21:41:26.5738129Z def call(args): 2023-01-11T21:41:26.5738321Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5738492Z args.clear() 2023-01-11T21:41:26.5739065Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'sub') 2023-01-11T21:41:26.5739229Z del arg0_1 2023-01-11T21:41:26.5739380Z del arg1_1 2023-01-11T21:41:26.5739608Z del arg2_1 2023-01-11T21:41:26.5739783Z return (buf0, ) 2023-01-11T21:41:26.5739795Z 2023-01-11T21:41:26.5739809Z 2023-01-11T21:41:26.5739991Z if __name__ == "__main__": 2023-01-11T21:41:26.5740265Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5740565Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5740957Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5741304Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5741668Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5741887Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5741897Z 2023-01-11T21:41:26.5741903Z 2023-01-11T21:41:26.5742066Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5742194Z import torch 2023-01-11T21:41:26.5742330Z import random 2023-01-11T21:41:26.5742589Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5742871Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5742891Z 2023-01-11T21:41:26.5743056Z aten = torch.ops.aten 2023-01-11T21:41:26.5743438Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5743655Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5743667Z 2023-01-11T21:41:26.5743675Z 2023-01-11T21:41:26.5743883Z async_compile.wait(globals()) 2023-01-11T21:41:26.5744058Z del async_compile 2023-01-11T21:41:26.5744070Z 2023-01-11T21:41:26.5744239Z def call(args): 2023-01-11T21:41:26.5744450Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5744621Z args.clear() 2023-01-11T21:41:26.5745176Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'sub') 2023-01-11T21:41:26.5745337Z del arg0_1 2023-01-11T21:41:26.5745500Z del arg1_1 2023-01-11T21:41:26.5745661Z del arg2_1 2023-01-11T21:41:26.5745815Z del arg3_1 2023-01-11T21:41:26.5745996Z return (buf0, ) 2023-01-11T21:41:26.5746007Z 2023-01-11T21:41:26.5746015Z 2023-01-11T21:41:26.5746193Z if __name__ == "__main__": 2023-01-11T21:41:26.5746452Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5746737Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5747229Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5747713Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5748216Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5748601Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5748834Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5748844Z 2023-01-11T21:41:26.5749354Z [2023-01-11 21:35:31,179] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 286 2023-01-11T21:41:26.5750205Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5750594Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5751182Z [2023-01-11 21:35:31,264] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 287 2023-01-11T21:41:26.5751821Z [2023-01-11 21:35:31,266] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 287 2023-01-11T21:41:26.5752968Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5753283Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5753923Z [2023-01-11 21:35:31,297] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 288 2023-01-11T21:41:26.5754570Z [2023-01-11 21:35:31,299] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 288 2023-01-11T21:41:26.5755627Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5755900Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5756386Z [2023-01-11 21:35:31,386] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 289 2023-01-11T21:41:26.5756884Z [2023-01-11 21:35:31,388] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 289 2023-01-11T21:41:26.5757719Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5758059Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5758682Z [2023-01-11 21:35:31,418] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 290 2023-01-11T21:41:26.5759357Z [2023-01-11 21:35:31,420] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 290 2023-01-11T21:41:26.5760424Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5760726Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5761371Z [2023-01-11 21:35:31,504] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 291 2023-01-11T21:41:26.5762027Z [2023-01-11 21:35:31,507] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 291 2023-01-11T21:41:26.5763092Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5763449Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5763965Z [2023-01-11 21:35:31,536] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 292 2023-01-11T21:41:26.5764454Z [2023-01-11 21:35:31,538] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 292 2023-01-11T21:41:26.5764465Z 2023-01-11T21:41:26.5764629Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5764742Z import torch 2023-01-11T21:41:26.5764869Z import random 2023-01-11T21:41:26.5765080Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5765318Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5765335Z 2023-01-11T21:41:26.5765494Z aten = torch.ops.aten 2023-01-11T21:41:26.5765873Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5766150Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5766162Z 2023-01-11T21:41:26.5766178Z 2023-01-11T21:41:26.5766355Z async_compile.wait(globals()) 2023-01-11T21:41:26.5766511Z del async_compile 2023-01-11T21:41:26.5766524Z 2023-01-11T21:41:26.5766696Z def call(args): 2023-01-11T21:41:26.5766889Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5767047Z args.clear() 2023-01-11T21:41:26.5767618Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'sub') 2023-01-11T21:41:26.5767780Z del arg0_1 2023-01-11T21:41:26.5767942Z del arg1_1 2023-01-11T21:41:26.5768087Z del arg2_1 2023-01-11T21:41:26.5768258Z return (buf0, ) 2023-01-11T21:41:26.5768269Z 2023-01-11T21:41:26.5768278Z 2023-01-11T21:41:26.5768453Z if __name__ == "__main__": 2023-01-11T21:41:26.5768720Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5769149Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5769660Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5770177Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5770682Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5770975Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5770988Z 2023-01-11T21:41:26.5770997Z 2023-01-11T21:41:26.5771225Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5771374Z import torch 2023-01-11T21:41:26.5771501Z import random 2023-01-11T21:41:26.5771710Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5771932Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5771941Z 2023-01-11T21:41:26.5772085Z aten = torch.ops.aten 2023-01-11T21:41:26.5772310Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5772483Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5772492Z 2023-01-11T21:41:26.5772499Z 2023-01-11T21:41:26.5772658Z async_compile.wait(globals()) 2023-01-11T21:41:26.5772795Z del async_compile 2023-01-11T21:41:26.5772804Z 2023-01-11T21:41:26.5772931Z def call(args): 2023-01-11T21:41:26.5773117Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5773291Z args.clear() 2023-01-11T21:41:26.5773793Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'sub') 2023-01-11T21:41:26.5773969Z del arg0_1 2023-01-11T21:41:26.5774186Z del arg1_1 2023-01-11T21:41:26.5774330Z del arg2_1 2023-01-11T21:41:26.5774486Z del arg3_1 2023-01-11T21:41:26.5774655Z return (buf0, ) 2023-01-11T21:41:26.5774667Z 2023-01-11T21:41:26.5774676Z 2023-01-11T21:41:26.5774850Z if __name__ == "__main__": 2023-01-11T21:41:26.5775122Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5775393Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5775891Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5776369Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5776980Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5777461Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5777767Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5777779Z 2023-01-11T21:41:26.5777788Z 2023-01-11T21:41:26.5778014Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5778186Z import torch 2023-01-11T21:41:26.5778358Z import random 2023-01-11T21:41:26.5778620Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5778912Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5778924Z 2023-01-11T21:41:26.5779078Z aten = torch.ops.aten 2023-01-11T21:41:26.5779373Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5779537Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5779550Z 2023-01-11T21:41:26.5779560Z 2023-01-11T21:41:26.5779719Z async_compile.wait(globals()) 2023-01-11T21:41:26.5779850Z del async_compile 2023-01-11T21:41:26.5779859Z 2023-01-11T21:41:26.5779982Z def call(args): 2023-01-11T21:41:26.5780114Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5780239Z args.clear() 2023-01-11T21:41:26.5780671Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'sub') 2023-01-11T21:41:26.5780828Z del arg0_1 2023-01-11T21:41:26.5780974Z del arg1_1 2023-01-11T21:41:26.5781132Z del arg2_1 2023-01-11T21:41:26.5781263Z return (buf0, ) 2023-01-11T21:41:26.5781301Z 2023-01-11T21:41:26.5781309Z 2023-01-11T21:41:26.5781482Z if __name__ == "__main__": 2023-01-11T21:41:26.5781795Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5782084Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5782568Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5783056Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5783665Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5783948Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5783960Z 2023-01-11T21:41:26.5783969Z 2023-01-11T21:41:26.5784192Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5784340Z import torch 2023-01-11T21:41:26.5784500Z import random 2023-01-11T21:41:26.5784778Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5785070Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5785082Z 2023-01-11T21:41:26.5785269Z aten = torch.ops.aten 2023-01-11T21:41:26.5785586Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5785810Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5785827Z 2023-01-11T21:41:26.5785836Z 2023-01-11T21:41:26.5786053Z async_compile.wait(globals()) 2023-01-11T21:41:26.5786216Z del async_compile 2023-01-11T21:41:26.5786227Z 2023-01-11T21:41:26.5786395Z def call(args): 2023-01-11T21:41:26.5786606Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5786745Z args.clear() 2023-01-11T21:41:26.5787171Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'sub') 2023-01-11T21:41:26.5787294Z del arg0_1 2023-01-11T21:41:26.5787409Z del arg1_1 2023-01-11T21:41:26.5787515Z del arg2_1 2023-01-11T21:41:26.5787635Z del arg3_1 2023-01-11T21:41:26.5787770Z return (buf0, ) 2023-01-11T21:41:26.5787778Z 2023-01-11T21:41:26.5787785Z 2023-01-11T21:41:26.5787921Z if __name__ == "__main__": 2023-01-11T21:41:26.5788126Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5788356Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5788814Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5789261Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5789856Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5790351Z arg3_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5790658Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5790670Z 2023-01-11T21:41:26.5790680Z 2023-01-11T21:41:26.5790904Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5791077Z import torch 2023-01-11T21:41:26.5791253Z import random 2023-01-11T21:41:26.5791527Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5791797Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5791827Z 2023-01-11T21:41:26.5791994Z aten = torch.ops.aten 2023-01-11T21:41:26.5792362Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5792580Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5792591Z 2023-01-11T21:41:26.5792605Z 2023-01-11T21:41:26.5792819Z async_compile.wait(globals()) 2023-01-11T21:41:26.5792999Z del async_compile 2023-01-11T21:41:26.5793011Z 2023-01-11T21:41:26.5793181Z def call(args): 2023-01-11T21:41:26.5793375Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5793530Z args.clear() 2023-01-11T21:41:26.5794091Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'sub') 2023-01-11T21:41:26.5794259Z del arg0_1 2023-01-11T21:41:26.5794396Z del arg1_1 2023-01-11T21:41:26.5794514Z del arg2_1 2023-01-11T21:41:26.5794647Z return (buf0, ) 2023-01-11T21:41:26.5794656Z 2023-01-11T21:41:26.5794663Z 2023-01-11T21:41:26.5794797Z if __name__ == "__main__": 2023-01-11T21:41:26.5795006Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5795211Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5795591Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5795977Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5796438Z arg2_1 = rand_strided((2, 3, 30), (90, 30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5796716Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5796728Z 2023-01-11T21:41:26.5796737Z 2023-01-11T21:41:26.5796963Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5797128Z import torch 2023-01-11T21:41:26.5797302Z import random 2023-01-11T21:41:26.5797553Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5797826Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5797838Z 2023-01-11T21:41:26.5798025Z aten = torch.ops.aten 2023-01-11T21:41:26.5798340Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5798555Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5798571Z 2023-01-11T21:41:26.5798580Z 2023-01-11T21:41:26.5798790Z async_compile.wait(globals()) 2023-01-11T21:41:26.5798979Z del async_compile 2023-01-11T21:41:26.5798991Z 2023-01-11T21:41:26.5799162Z def call(args): 2023-01-11T21:41:26.5799354Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5799528Z args.clear() 2023-01-11T21:41:26.5800087Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg2_1, arg3_1, arg0_1, arg1_1, 'sub') 2023-01-11T21:41:26.5800250Z del arg0_1 2023-01-11T21:41:26.5800413Z del arg1_1 2023-01-11T21:41:26.5800575Z del arg2_1 2023-01-11T21:41:26.5800738Z del arg3_1 2023-01-11T21:41:26.5800890Z return (buf0, ) 2023-01-11T21:41:26.5800902Z 2023-01-11T21:41:26.5800911Z 2023-01-11T21:41:26.5801094Z if __name__ == "__main__": 2023-01-11T21:41:26.5801369Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5801655Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5802079Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5802436Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5802868Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5803237Z arg3_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5803451Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5803461Z 2023-01-11T21:41:26.5803467Z 2023-01-11T21:41:26.5803666Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5803811Z import torch 2023-01-11T21:41:26.5803980Z import random 2023-01-11T21:41:26.5804226Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5804541Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5804553Z 2023-01-11T21:41:26.5804736Z aten = torch.ops.aten 2023-01-11T21:41:26.5805147Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5805356Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5805368Z 2023-01-11T21:41:26.5805376Z 2023-01-11T21:41:26.5805591Z async_compile.wait(globals()) 2023-01-11T21:41:26.5805763Z del async_compile 2023-01-11T21:41:26.5805775Z 2023-01-11T21:41:26.5805932Z def call(args): 2023-01-11T21:41:26.5806123Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5806289Z args.clear() 2023-01-11T21:41:26.5806864Z buf0 = torch.ops.mkldnn._linear_pointwise.binary(arg1_1, arg2_1, arg0_1, None, 'sub') 2023-01-11T21:41:26.5807011Z del arg0_1 2023-01-11T21:41:26.5807176Z del arg1_1 2023-01-11T21:41:26.5807335Z del arg2_1 2023-01-11T21:41:26.5807508Z return (buf0, ) 2023-01-11T21:41:26.5807519Z 2023-01-11T21:41:26.5807529Z 2023-01-11T21:41:26.5807704Z if __name__ == "__main__": 2023-01-11T21:41:26.5807976Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5808264Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5808772Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5809375Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5809819Z arg2_1 = rand_strided((2, 30), (30, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5810033Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5810042Z 2023-01-11T21:41:26.5810164Z ok (1.757s) 2023-01-11T21:41:26.5811038Z test_linear_packed_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5811269Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5811832Z [2023-01-11 21:35:31,575] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 293 2023-01-11T21:41:26.5812452Z [2023-01-11 21:35:31,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 293 2023-01-11T21:41:26.5813472Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5813768Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5814413Z [2023-01-11 21:35:31,623] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 294 2023-01-11T21:41:26.5815068Z [2023-01-11 21:35:31,635] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 294 2023-01-11T21:41:26.5816136Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5816535Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5817180Z [2023-01-11 21:35:31,669] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 295 2023-01-11T21:41:26.5817748Z [2023-01-11 21:35:31,687] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 295 2023-01-11T21:41:26.5818573Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5818803Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5819334Z [2023-01-11 21:35:31,715] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 296 2023-01-11T21:41:26.5819935Z [2023-01-11 21:35:31,727] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 296 2023-01-11T21:41:26.5819954Z 2023-01-11T21:41:26.5820240Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5820408Z import torch 2023-01-11T21:41:26.5820558Z import random 2023-01-11T21:41:26.5820833Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5821116Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5821129Z 2023-01-11T21:41:26.5821317Z aten = torch.ops.aten 2023-01-11T21:41:26.5821640Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5821864Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5821877Z 2023-01-11T21:41:26.5821891Z 2023-01-11T21:41:26.5822104Z async_compile.wait(globals()) 2023-01-11T21:41:26.5822267Z del async_compile 2023-01-11T21:41:26.5822296Z 2023-01-11T21:41:26.5822451Z def call(args): 2023-01-11T21:41:26.5822659Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5822833Z args.clear() 2023-01-11T21:41:26.5823218Z buf0 = torch.ops.mkl._mkl_linear(arg3_1, arg2_1, arg0_1, arg1_1, 6) 2023-01-11T21:41:26.5823384Z del arg0_1 2023-01-11T21:41:26.5823533Z del arg1_1 2023-01-11T21:41:26.5823671Z del arg2_1 2023-01-11T21:41:26.5823825Z del arg3_1 2023-01-11T21:41:26.5824000Z return (buf0, ) 2023-01-11T21:41:26.5824012Z 2023-01-11T21:41:26.5824021Z 2023-01-11T21:41:26.5824195Z if __name__ == "__main__": 2023-01-11T21:41:26.5824464Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5824760Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5825243Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5825609Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5825970Z arg2_1 = rand_strided((1982689, 1), (1, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5826354Z arg3_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5826587Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5826597Z 2023-01-11T21:41:26.5826604Z 2023-01-11T21:41:26.5826775Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5826926Z import torch 2023-01-11T21:41:26.5827086Z import random 2023-01-11T21:41:26.5827355Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5827640Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5827652Z 2023-01-11T21:41:26.5827817Z aten = torch.ops.aten 2023-01-11T21:41:26.5828139Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5828352Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5828452Z 2023-01-11T21:41:26.5828462Z 2023-01-11T21:41:26.5828669Z async_compile.wait(globals()) 2023-01-11T21:41:26.5828843Z del async_compile 2023-01-11T21:41:26.5828855Z 2023-01-11T21:41:26.5829022Z def call(args): 2023-01-11T21:41:26.5829215Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5829377Z args.clear() 2023-01-11T21:41:26.5829656Z buf0 = torch.ops.mkl._mkl_linear(arg2_1, arg1_1, arg0_1, None, 6) 2023-01-11T21:41:26.5829819Z del arg0_1 2023-01-11T21:41:26.5829980Z del arg1_1 2023-01-11T21:41:26.5830140Z del arg2_1 2023-01-11T21:41:26.5830309Z return (buf0, ) 2023-01-11T21:41:26.5830321Z 2023-01-11T21:41:26.5830330Z 2023-01-11T21:41:26.5830510Z if __name__ == "__main__": 2023-01-11T21:41:26.5830775Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5831102Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5831596Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5832099Z arg1_1 = rand_strided((1982689, 1), (1, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5832603Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5832828Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5832838Z 2023-01-11T21:41:26.5832845Z 2023-01-11T21:41:26.5833016Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5833141Z import torch 2023-01-11T21:41:26.5833267Z import random 2023-01-11T21:41:26.5833460Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5833674Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5833683Z 2023-01-11T21:41:26.5833822Z aten = torch.ops.aten 2023-01-11T21:41:26.5834056Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5834262Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5834271Z 2023-01-11T21:41:26.5834278Z 2023-01-11T21:41:26.5834481Z async_compile.wait(globals()) 2023-01-11T21:41:26.5834698Z del async_compile 2023-01-11T21:41:26.5834711Z 2023-01-11T21:41:26.5834860Z def call(args): 2023-01-11T21:41:26.5835044Z arg0_1, arg1_1, arg2_1, arg3_1 = args 2023-01-11T21:41:26.5835263Z args.clear() 2023-01-11T21:41:26.5835558Z buf0 = torch.ops.mkl._mkl_linear(arg3_1, arg2_1, arg0_1, arg1_1, 2) 2023-01-11T21:41:26.5835718Z del arg0_1 2023-01-11T21:41:26.5835875Z del arg1_1 2023-01-11T21:41:26.5836037Z del arg2_1 2023-01-11T21:41:26.5836197Z del arg3_1 2023-01-11T21:41:26.5836354Z return (buf0, ) 2023-01-11T21:41:26.5836365Z 2023-01-11T21:41:26.5836391Z 2023-01-11T21:41:26.5836556Z if __name__ == "__main__": 2023-01-11T21:41:26.5836821Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5837124Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5837629Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5838101Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5838597Z arg2_1 = rand_strided((1982689, 1), (1, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5839080Z arg3_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5839364Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])) 2023-01-11T21:41:26.5839394Z 2023-01-11T21:41:26.5839404Z 2023-01-11T21:41:26.5839614Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5839782Z import torch 2023-01-11T21:41:26.5839957Z import random 2023-01-11T21:41:26.5840228Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5840443Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5840453Z 2023-01-11T21:41:26.5840591Z aten = torch.ops.aten 2023-01-11T21:41:26.5840829Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5840975Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5840984Z 2023-01-11T21:41:26.5841077Z 2023-01-11T21:41:26.5841220Z async_compile.wait(globals()) 2023-01-11T21:41:26.5841348Z del async_compile 2023-01-11T21:41:26.5841357Z 2023-01-11T21:41:26.5841483Z def call(args): 2023-01-11T21:41:26.5841632Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5841795Z args.clear() 2023-01-11T21:41:26.5842084Z buf0 = torch.ops.mkl._mkl_linear(arg2_1, arg1_1, arg0_1, None, 2) 2023-01-11T21:41:26.5842247Z del arg0_1 2023-01-11T21:41:26.5842394Z del arg1_1 2023-01-11T21:41:26.5842551Z del arg2_1 2023-01-11T21:41:26.5842724Z return (buf0, ) 2023-01-11T21:41:26.5842741Z 2023-01-11T21:41:26.5842751Z 2023-01-11T21:41:26.5842933Z if __name__ == "__main__": 2023-01-11T21:41:26.5843196Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5843491Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5844067Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5844554Z arg1_1 = rand_strided((1982689, 1), (1, 0), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5845037Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.5845326Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5845338Z 2023-01-11T21:41:26.5845495Z ok (0.189s) 2023-01-11T21:41:26.5846663Z test_linear_unary_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5846955Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5847592Z [2023-01-11 21:35:31,893] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 297 2023-01-11T21:41:26.5848085Z [2023-01-11 21:35:31,896] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 297 2023-01-11T21:41:26.5848873Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5849244Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5849848Z [2023-01-11 21:35:31,925] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 298 2023-01-11T21:41:26.5850452Z [2023-01-11 21:35:31,927] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 298 2023-01-11T21:41:26.5851478Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5851788Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5852442Z [2023-01-11 21:35:32,010] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 299 2023-01-11T21:41:26.5853096Z [2023-01-11 21:35:32,013] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 299 2023-01-11T21:41:26.5854152Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5854546Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5855171Z [2023-01-11 21:35:32,041] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 300 2023-01-11T21:41:26.5855671Z [2023-01-11 21:35:32,043] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 300 2023-01-11T21:41:26.5856446Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5856694Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5857380Z [2023-01-11 21:35:32,126] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 301 2023-01-11T21:41:26.5857981Z [2023-01-11 21:35:32,129] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 301 2023-01-11T21:41:26.5859045Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5859333Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5859978Z [2023-01-11 21:35:32,158] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 302 2023-01-11T21:41:26.5860644Z [2023-01-11 21:35:32,160] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 302 2023-01-11T21:41:26.5861708Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5862008Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5862590Z [2023-01-11 21:35:32,242] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 303 2023-01-11T21:41:26.5863082Z [2023-01-11 21:35:32,245] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 303 2023-01-11T21:41:26.5863937Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5864223Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5864793Z [2023-01-11 21:35:32,274] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 304 2023-01-11T21:41:26.5865399Z [2023-01-11 21:35:32,276] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 304 2023-01-11T21:41:26.5866429Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5866722Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5867374Z [2023-01-11 21:35:32,362] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 305 2023-01-11T21:41:26.5867458Z 2023-01-11T21:41:26.5867691Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5867860Z import torch 2023-01-11T21:41:26.5868031Z import random 2023-01-11T21:41:26.5868310Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5868599Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5868611Z 2023-01-11T21:41:26.5868784Z aten = torch.ops.aten 2023-01-11T21:41:26.5869098Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5869319Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5869331Z 2023-01-11T21:41:26.5869340Z 2023-01-11T21:41:26.5869548Z async_compile.wait(globals()) 2023-01-11T21:41:26.5869732Z del async_compile 2023-01-11T21:41:26.5869744Z 2023-01-11T21:41:26.5869907Z def call(args): 2023-01-11T21:41:26.5870056Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5870231Z args.clear() 2023-01-11T21:41:26.5870621Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'relu', [], '') 2023-01-11T21:41:26.5870743Z del arg0_1 2023-01-11T21:41:26.5870864Z del arg1_1 2023-01-11T21:41:26.5870983Z del arg2_1 2023-01-11T21:41:26.5871111Z return (buf0, ) 2023-01-11T21:41:26.5871120Z 2023-01-11T21:41:26.5871127Z 2023-01-11T21:41:26.5871265Z if __name__ == "__main__": 2023-01-11T21:41:26.5871522Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5871782Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5872257Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5872728Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5873223Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5873511Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5873528Z 2023-01-11T21:41:26.5873538Z 2023-01-11T21:41:26.5873760Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5873940Z import torch 2023-01-11T21:41:26.5874113Z import random 2023-01-11T21:41:26.5874365Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5874655Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5874667Z 2023-01-11T21:41:26.5874848Z aten = torch.ops.aten 2023-01-11T21:41:26.5875165Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5875387Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5875398Z 2023-01-11T21:41:26.5875408Z 2023-01-11T21:41:26.5875622Z async_compile.wait(globals()) 2023-01-11T21:41:26.5875799Z del async_compile 2023-01-11T21:41:26.5875810Z 2023-01-11T21:41:26.5875968Z def call(args): 2023-01-11T21:41:26.5876120Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5876289Z args.clear() 2023-01-11T21:41:26.5876826Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'relu', [], '') 2023-01-11T21:41:26.5876995Z del arg0_1 2023-01-11T21:41:26.5877139Z del arg1_1 2023-01-11T21:41:26.5877277Z return (buf0, ) 2023-01-11T21:41:26.5877285Z 2023-01-11T21:41:26.5877292Z 2023-01-11T21:41:26.5877427Z if __name__ == "__main__": 2023-01-11T21:41:26.5877630Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5877832Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5878212Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5878627Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5878896Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5878910Z 2023-01-11T21:41:26.5878921Z 2023-01-11T21:41:26.5879126Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5879286Z import torch 2023-01-11T21:41:26.5879507Z import random 2023-01-11T21:41:26.5879737Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5880025Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5880112Z 2023-01-11T21:41:26.5880298Z aten = torch.ops.aten 2023-01-11T21:41:26.5880609Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5880834Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5880847Z 2023-01-11T21:41:26.5880857Z 2023-01-11T21:41:26.5881067Z async_compile.wait(globals()) 2023-01-11T21:41:26.5881240Z del async_compile 2023-01-11T21:41:26.5881251Z 2023-01-11T21:41:26.5881410Z def call(args): 2023-01-11T21:41:26.5881603Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5881753Z args.clear() 2023-01-11T21:41:26.5882287Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'relu', [], '') 2023-01-11T21:41:26.5882455Z del arg0_1 2023-01-11T21:41:26.5882614Z del arg1_1 2023-01-11T21:41:26.5882772Z del arg2_1 2023-01-11T21:41:26.5882944Z return (buf0, ) 2023-01-11T21:41:26.5882956Z 2023-01-11T21:41:26.5883022Z 2023-01-11T21:41:26.5883210Z if __name__ == "__main__": 2023-01-11T21:41:26.5883457Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5883747Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5884245Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5884670Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5885040Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5885260Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5885269Z 2023-01-11T21:41:26.5885276Z 2023-01-11T21:41:26.5885446Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5885570Z import torch 2023-01-11T21:41:26.5885680Z import random 2023-01-11T21:41:26.5885884Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5886139Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5886152Z 2023-01-11T21:41:26.5886330Z aten = torch.ops.aten 2023-01-11T21:41:26.5886631Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5886845Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5886858Z 2023-01-11T21:41:26.5886869Z 2023-01-11T21:41:26.5887072Z async_compile.wait(globals()) 2023-01-11T21:41:26.5887229Z del async_compile 2023-01-11T21:41:26.5887241Z 2023-01-11T21:41:26.5887392Z def call(args): 2023-01-11T21:41:26.5887562Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5887729Z args.clear() 2023-01-11T21:41:26.5888254Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'relu', [], '') 2023-01-11T21:41:26.5888417Z del arg0_1 2023-01-11T21:41:26.5888575Z del arg1_1 2023-01-11T21:41:26.5888746Z return (buf0, ) 2023-01-11T21:41:26.5888758Z 2023-01-11T21:41:26.5888767Z 2023-01-11T21:41:26.5888923Z if __name__ == "__main__": 2023-01-11T21:41:26.5889334Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5889628Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5890128Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5890621Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5890899Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5890911Z 2023-01-11T21:41:26.5890919Z 2023-01-11T21:41:26.5891138Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5891309Z import torch 2023-01-11T21:41:26.5891421Z import random 2023-01-11T21:41:26.5891627Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5891840Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5891849Z 2023-01-11T21:41:26.5891986Z aten = torch.ops.aten 2023-01-11T21:41:26.5892220Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5892382Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5892396Z 2023-01-11T21:41:26.5892403Z 2023-01-11T21:41:26.5892561Z async_compile.wait(globals()) 2023-01-11T21:41:26.5892692Z del async_compile 2023-01-11T21:41:26.5892796Z 2023-01-11T21:41:26.5892915Z def call(args): 2023-01-11T21:41:26.5893106Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5893273Z args.clear() 2023-01-11T21:41:26.5893787Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'sigmoid', [], '') 2023-01-11T21:41:26.5893946Z del arg0_1 2023-01-11T21:41:26.5894106Z del arg1_1 2023-01-11T21:41:26.5894266Z del arg2_1 2023-01-11T21:41:26.5894421Z return (buf0, ) 2023-01-11T21:41:26.5894435Z 2023-01-11T21:41:26.5894445Z 2023-01-11T21:41:26.5894620Z if __name__ == "__main__": 2023-01-11T21:41:26.5894892Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5895178Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5895673Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5896233Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5896742Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5897035Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5897047Z 2023-01-11T21:41:26.5897056Z 2023-01-11T21:41:26.5897281Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5897433Z import torch 2023-01-11T21:41:26.5897606Z import random 2023-01-11T21:41:26.5897879Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5898170Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5898182Z 2023-01-11T21:41:26.5898364Z aten = torch.ops.aten 2023-01-11T21:41:26.5898680Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5898898Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5898908Z 2023-01-11T21:41:26.5898915Z 2023-01-11T21:41:26.5899060Z async_compile.wait(globals()) 2023-01-11T21:41:26.5899190Z del async_compile 2023-01-11T21:41:26.5899200Z 2023-01-11T21:41:26.5899324Z def call(args): 2023-01-11T21:41:26.5899462Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5899590Z args.clear() 2023-01-11T21:41:26.5899996Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'sigmoid', [], '') 2023-01-11T21:41:26.5900121Z del arg0_1 2023-01-11T21:41:26.5900225Z del arg1_1 2023-01-11T21:41:26.5900352Z return (buf0, ) 2023-01-11T21:41:26.5900361Z 2023-01-11T21:41:26.5900368Z 2023-01-11T21:41:26.5900527Z if __name__ == "__main__": 2023-01-11T21:41:26.5900792Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5901091Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5901561Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5902038Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5902316Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5902328Z 2023-01-11T21:41:26.5902337Z 2023-01-11T21:41:26.5902555Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5902700Z import torch 2023-01-11T21:41:26.5902873Z import random 2023-01-11T21:41:26.5903231Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5903518Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5903529Z 2023-01-11T21:41:26.5903712Z aten = torch.ops.aten 2023-01-11T21:41:26.5904024Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5904249Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5904260Z 2023-01-11T21:41:26.5904269Z 2023-01-11T21:41:26.5904481Z async_compile.wait(globals()) 2023-01-11T21:41:26.5904626Z del async_compile 2023-01-11T21:41:26.5904637Z 2023-01-11T21:41:26.5904806Z def call(args): 2023-01-11T21:41:26.5905285Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5905724Z args.clear() 2023-01-11T21:41:26.5906432Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'sigmoid', [], '') 2023-01-11T21:41:26.5906863Z del arg0_1 2023-01-11T21:41:26.5907232Z del arg1_1 2023-01-11T21:41:26.5907512Z del arg2_1 2023-01-11T21:41:26.5907810Z return (buf0, ) 2023-01-11T21:41:26.5908081Z 2023-01-11T21:41:26.5908090Z 2023-01-11T21:41:26.5908254Z if __name__ == "__main__": 2023-01-11T21:41:26.5908761Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5909367Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5910201Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5911242Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5912093Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5912750Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5913102Z 2023-01-11T21:41:26.5913194Z 2023-01-11T21:41:26.5913426Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5913887Z import torch 2023-01-11T21:41:26.5914296Z import random 2023-01-11T21:41:26.5926671Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5927369Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5927741Z 2023-01-11T21:41:26.5927940Z aten = torch.ops.aten 2023-01-11T21:41:26.5928509Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5929304Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5929606Z 2023-01-11T21:41:26.5929617Z 2023-01-11T21:41:26.5929834Z async_compile.wait(globals()) 2023-01-11T21:41:26.5930287Z del async_compile 2023-01-11T21:41:26.5930494Z 2023-01-11T21:41:26.5930625Z def call(args): 2023-01-11T21:41:26.5930937Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5931243Z args.clear() 2023-01-11T21:41:26.5931883Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'sigmoid', [], '') 2023-01-11T21:41:26.5932448Z del arg0_1 2023-01-11T21:41:26.5932818Z del arg1_1 2023-01-11T21:41:26.5933217Z return (buf0, ) 2023-01-11T21:41:26.5933477Z 2023-01-11T21:41:26.5933488Z 2023-01-11T21:41:26.5933664Z if __name__ == "__main__": 2023-01-11T21:41:26.5934180Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5934784Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5935659Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5936530Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5937161Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5937512Z 2023-01-11T21:41:26.5938127Z [2023-01-11 21:35:32,365] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 305 2023-01-11T21:41:26.5939271Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5940530Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5941508Z [2023-01-11 21:35:32,394] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 306 2023-01-11T21:41:26.5942614Z [2023-01-11 21:35:32,397] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 306 2023-01-11T21:41:26.5944226Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5945556Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5946312Z [2023-01-11 21:35:32,478] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 307 2023-01-11T21:41:26.5947324Z [2023-01-11 21:35:32,481] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 307 2023-01-11T21:41:26.5948738Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5950055Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5951046Z [2023-01-11 21:35:32,506] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 308 2023-01-11T21:41:26.5952250Z [2023-01-11 21:35:32,508] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 308 2023-01-11T21:41:26.5953633Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5954642Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5955572Z [2023-01-11 21:35:32,648] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 309 2023-01-11T21:41:26.5956666Z [2023-01-11 21:35:32,651] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 309 2023-01-11T21:41:26.5958173Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5959526Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5960526Z [2023-01-11 21:35:32,766] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 310 2023-01-11T21:41:26.5961452Z [2023-01-11 21:35:32,768] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 310 2023-01-11T21:41:26.5962626Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5963912Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5964927Z [2023-01-11 21:35:32,913] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 311 2023-01-11T21:41:26.5966054Z [2023-01-11 21:35:32,916] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 311 2023-01-11T21:41:26.5967573Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5968738Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5969645Z [2023-01-11 21:35:32,974] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 312 2023-01-11T21:41:26.5970582Z [2023-01-11 21:35:32,977] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 312 2023-01-11T21:41:26.5972286Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.5973644Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.5974632Z [2023-01-11 21:35:33,061] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 313 2023-01-11T21:41:26.5975101Z 2023-01-11T21:41:26.5975325Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5975794Z import torch 2023-01-11T21:41:26.5976168Z import random 2023-01-11T21:41:26.5976560Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5977132Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5977414Z 2023-01-11T21:41:26.5977542Z aten = torch.ops.aten 2023-01-11T21:41:26.5978050Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5978611Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5978933Z 2023-01-11T21:41:26.5978943Z 2023-01-11T21:41:26.5979155Z async_compile.wait(globals()) 2023-01-11T21:41:26.5979594Z del async_compile 2023-01-11T21:41:26.5979852Z 2023-01-11T21:41:26.5980024Z def call(args): 2023-01-11T21:41:26.5980455Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.5980875Z args.clear() 2023-01-11T21:41:26.5981655Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'tanh', [], '') 2023-01-11T21:41:26.5982212Z del arg0_1 2023-01-11T21:41:26.5982595Z del arg1_1 2023-01-11T21:41:26.5982983Z del arg2_1 2023-01-11T21:41:26.5983466Z return (buf0, ) 2023-01-11T21:41:26.5983729Z 2023-01-11T21:41:26.5983739Z 2023-01-11T21:41:26.5983874Z if __name__ == "__main__": 2023-01-11T21:41:26.5984272Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5984755Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5985506Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5986317Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5987191Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5987871Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.5988226Z 2023-01-11T21:41:26.5988236Z 2023-01-11T21:41:26.5988452Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.5988913Z import torch 2023-01-11T21:41:26.5989327Z import random 2023-01-11T21:41:26.5989827Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.5990450Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.5990819Z 2023-01-11T21:41:26.5990971Z aten = torch.ops.aten 2023-01-11T21:41:26.5991412Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.5991854Z async_compile = AsyncCompile() 2023-01-11T21:41:26.5992079Z 2023-01-11T21:41:26.5992087Z 2023-01-11T21:41:26.5992253Z async_compile.wait(globals()) 2023-01-11T21:41:26.5992693Z del async_compile 2023-01-11T21:41:26.5992949Z 2023-01-11T21:41:26.5993098Z def call(args): 2023-01-11T21:41:26.5993511Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.5993912Z args.clear() 2023-01-11T21:41:26.5994669Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'tanh', [], '') 2023-01-11T21:41:26.5995241Z del arg0_1 2023-01-11T21:41:26.5995636Z del arg1_1 2023-01-11T21:41:26.5996031Z return (buf0, ) 2023-01-11T21:41:26.5996293Z 2023-01-11T21:41:26.5996303Z 2023-01-11T21:41:26.5996488Z if __name__ == "__main__": 2023-01-11T21:41:26.5997004Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.5997638Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.5998384Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5999128Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.5999610Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.5999918Z 2023-01-11T21:41:26.5999928Z 2023-01-11T21:41:26.6000195Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6000650Z import torch 2023-01-11T21:41:26.6001094Z import random 2023-01-11T21:41:26.6001586Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6002219Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6002592Z 2023-01-11T21:41:26.6002779Z aten = torch.ops.aten 2023-01-11T21:41:26.6003364Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6003938Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6004236Z 2023-01-11T21:41:26.6004312Z 2023-01-11T21:41:26.6004540Z async_compile.wait(globals()) 2023-01-11T21:41:26.6004990Z del async_compile 2023-01-11T21:41:26.6005260Z 2023-01-11T21:41:26.6005409Z def call(args): 2023-01-11T21:41:26.6005801Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6006136Z args.clear() 2023-01-11T21:41:26.6006703Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'tanh', [], '') 2023-01-11T21:41:26.6007128Z del arg0_1 2023-01-11T21:41:26.6007498Z del arg1_1 2023-01-11T21:41:26.6007885Z del arg2_1 2023-01-11T21:41:26.6008283Z return (buf0, ) 2023-01-11T21:41:26.6008535Z 2023-01-11T21:41:26.6008547Z 2023-01-11T21:41:26.6008726Z if __name__ == "__main__": 2023-01-11T21:41:26.6009405Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6010010Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6010877Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6011728Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6012571Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6013211Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6013477Z 2023-01-11T21:41:26.6013485Z 2023-01-11T21:41:26.6013654Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6014005Z import torch 2023-01-11T21:41:26.6014291Z import random 2023-01-11T21:41:26.6014678Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6015234Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6015526Z 2023-01-11T21:41:26.6015720Z aten = torch.ops.aten 2023-01-11T21:41:26.6016310Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6016893Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6017197Z 2023-01-11T21:41:26.6017206Z 2023-01-11T21:41:26.6017410Z async_compile.wait(globals()) 2023-01-11T21:41:26.6017868Z del async_compile 2023-01-11T21:41:26.6018122Z 2023-01-11T21:41:26.6018293Z def call(args): 2023-01-11T21:41:26.6018698Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6019109Z args.clear() 2023-01-11T21:41:26.6019886Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'tanh', [], '') 2023-01-11T21:41:26.6020443Z del arg0_1 2023-01-11T21:41:26.6020823Z del arg1_1 2023-01-11T21:41:26.6021128Z return (buf0, ) 2023-01-11T21:41:26.6021323Z 2023-01-11T21:41:26.6021330Z 2023-01-11T21:41:26.6021470Z if __name__ == "__main__": 2023-01-11T21:41:26.6021849Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6022311Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6023089Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6024020Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6024651Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6025008Z 2023-01-11T21:41:26.6025017Z 2023-01-11T21:41:26.6025247Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6025830Z import torch 2023-01-11T21:41:26.6026229Z import random 2023-01-11T21:41:26.6026736Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6027359Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6027711Z 2023-01-11T21:41:26.6027898Z aten = torch.ops.aten 2023-01-11T21:41:26.6028453Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6028902Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6029132Z 2023-01-11T21:41:26.6029140Z 2023-01-11T21:41:26.6029285Z async_compile.wait(globals()) 2023-01-11T21:41:26.6029632Z del async_compile 2023-01-11T21:41:26.6029829Z 2023-01-11T21:41:26.6029969Z def call(args): 2023-01-11T21:41:26.6030405Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6030816Z args.clear() 2023-01-11T21:41:26.6031695Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'hardswish', [], '') 2023-01-11T21:41:26.6032273Z del arg0_1 2023-01-11T21:41:26.6032632Z del arg1_1 2023-01-11T21:41:26.6033023Z del arg2_1 2023-01-11T21:41:26.6033424Z return (buf0, ) 2023-01-11T21:41:26.6033663Z 2023-01-11T21:41:26.6033691Z 2023-01-11T21:41:26.6033847Z if __name__ == "__main__": 2023-01-11T21:41:26.6034372Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6035001Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6035813Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6036458Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6037117Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6037713Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6038022Z 2023-01-11T21:41:26.6038031Z 2023-01-11T21:41:26.6038267Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6038718Z import torch 2023-01-11T21:41:26.6039127Z import random 2023-01-11T21:41:26.6039632Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6040248Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6040611Z 2023-01-11T21:41:26.6040797Z aten = torch.ops.aten 2023-01-11T21:41:26.6041355Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6041949Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6042255Z 2023-01-11T21:41:26.6042265Z 2023-01-11T21:41:26.6042479Z async_compile.wait(globals()) 2023-01-11T21:41:26.6042938Z del async_compile 2023-01-11T21:41:26.6043177Z 2023-01-11T21:41:26.6043303Z def call(args): 2023-01-11T21:41:26.6043619Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6043934Z args.clear() 2023-01-11T21:41:26.6044510Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'hardswish', [], '') 2023-01-11T21:41:26.6045066Z del arg0_1 2023-01-11T21:41:26.6045454Z del arg1_1 2023-01-11T21:41:26.6045857Z return (buf0, ) 2023-01-11T21:41:26.6046112Z 2023-01-11T21:41:26.6046130Z 2023-01-11T21:41:26.6046314Z if __name__ == "__main__": 2023-01-11T21:41:26.6046831Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6047443Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6048313Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6049326Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6049980Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6050308Z 2023-01-11T21:41:26.6050339Z 2023-01-11T21:41:26.6050546Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6050950Z import torch 2023-01-11T21:41:26.6051252Z import random 2023-01-11T21:41:26.6051620Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6052081Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6052379Z 2023-01-11T21:41:26.6052561Z aten = torch.ops.aten 2023-01-11T21:41:26.6053163Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6053905Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6054204Z 2023-01-11T21:41:26.6054214Z 2023-01-11T21:41:26.6054435Z async_compile.wait(globals()) 2023-01-11T21:41:26.6054896Z del async_compile 2023-01-11T21:41:26.6055132Z 2023-01-11T21:41:26.6055308Z def call(args): 2023-01-11T21:41:26.6055729Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6056162Z args.clear() 2023-01-11T21:41:26.6056964Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'hardswish', [], '') 2023-01-11T21:41:26.6057529Z del arg0_1 2023-01-11T21:41:26.6057920Z del arg1_1 2023-01-11T21:41:26.6058297Z del arg2_1 2023-01-11T21:41:26.6058608Z return (buf0, ) 2023-01-11T21:41:26.6058804Z 2023-01-11T21:41:26.6058811Z 2023-01-11T21:41:26.6058949Z if __name__ == "__main__": 2023-01-11T21:41:26.6059394Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6059980Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6060825Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6061676Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6062519Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6063235Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6063600Z 2023-01-11T21:41:26.6063609Z 2023-01-11T21:41:26.6063841Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6064269Z import torch 2023-01-11T21:41:26.6064666Z import random 2023-01-11T21:41:26.6065171Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6065720Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6065979Z 2023-01-11T21:41:26.6066126Z aten = torch.ops.aten 2023-01-11T21:41:26.6066562Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6067108Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6067377Z 2023-01-11T21:41:26.6067413Z 2023-01-11T21:41:26.6067611Z async_compile.wait(globals()) 2023-01-11T21:41:26.6068066Z del async_compile 2023-01-11T21:41:26.6068328Z 2023-01-11T21:41:26.6068500Z def call(args): 2023-01-11T21:41:26.6068907Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6069329Z args.clear() 2023-01-11T21:41:26.6070130Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'hardswish', [], '') 2023-01-11T21:41:26.6070696Z del arg0_1 2023-01-11T21:41:26.6071090Z del arg1_1 2023-01-11T21:41:26.6071486Z return (buf0, ) 2023-01-11T21:41:26.6071742Z 2023-01-11T21:41:26.6071752Z 2023-01-11T21:41:26.6071941Z if __name__ == "__main__": 2023-01-11T21:41:26.6072460Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6072948Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6073598Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6074367Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6074988Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6075328Z 2023-01-11T21:41:26.6075992Z [2023-01-11 21:35:33,063] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 313 2023-01-11T21:41:26.6077507Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6078881Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6079832Z [2023-01-11 21:35:33,093] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 314 2023-01-11T21:41:26.6080680Z [2023-01-11 21:35:33,096] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 314 2023-01-11T21:41:26.6082203Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6083553Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6084526Z [2023-01-11 21:35:33,180] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 315 2023-01-11T21:41:26.6085639Z [2023-01-11 21:35:33,183] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 315 2023-01-11T21:41:26.6087116Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6088192Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6089251Z [2023-01-11 21:35:33,212] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 316 2023-01-11T21:41:26.6090366Z [2023-01-11 21:35:33,214] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 316 2023-01-11T21:41:26.6091907Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6093293Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6094173Z [2023-01-11 21:35:33,300] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 317 2023-01-11T21:41:26.6094995Z [2023-01-11 21:35:33,303] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 317 2023-01-11T21:41:26.6096248Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6097500Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6098513Z [2023-01-11 21:35:33,333] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 318 2023-01-11T21:41:26.6099629Z [2023-01-11 21:35:33,336] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 318 2023-01-11T21:41:26.6101155Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6102280Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6103078Z [2023-01-11 21:35:33,422] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 319 2023-01-11T21:41:26.6104201Z [2023-01-11 21:35:33,425] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 319 2023-01-11T21:41:26.6105729Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6107203Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6108208Z [2023-01-11 21:35:33,455] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 320 2023-01-11T21:41:26.6109171Z [2023-01-11 21:35:33,457] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 320 2023-01-11T21:41:26.6110448Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6111742Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6112747Z [2023-01-11 21:35:33,543] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 321 2023-01-11T21:41:26.6113220Z 2023-01-11T21:41:26.6113449Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6113894Z import torch 2023-01-11T21:41:26.6114291Z import random 2023-01-11T21:41:26.6114806Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6115422Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6115796Z 2023-01-11T21:41:26.6115967Z aten = torch.ops.aten 2023-01-11T21:41:26.6116405Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6116843Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6117072Z 2023-01-11T21:41:26.6117079Z 2023-01-11T21:41:26.6117286Z async_compile.wait(globals()) 2023-01-11T21:41:26.6117738Z del async_compile 2023-01-11T21:41:26.6117999Z 2023-01-11T21:41:26.6118169Z def call(args): 2023-01-11T21:41:26.6118590Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6119030Z args.clear() 2023-01-11T21:41:26.6119849Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'leaky_relu', [0.1], '') 2023-01-11T21:41:26.6120394Z del arg0_1 2023-01-11T21:41:26.6120783Z del arg1_1 2023-01-11T21:41:26.6121170Z del arg2_1 2023-01-11T21:41:26.6121561Z return (buf0, ) 2023-01-11T21:41:26.6121817Z 2023-01-11T21:41:26.6121827Z 2023-01-11T21:41:26.6122005Z if __name__ == "__main__": 2023-01-11T21:41:26.6122521Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6123068Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6123722Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6124441Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6125284Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6125922Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6126285Z 2023-01-11T21:41:26.6126294Z 2023-01-11T21:41:26.6126528Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6126990Z import torch 2023-01-11T21:41:26.6127384Z import random 2023-01-11T21:41:26.6127901Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6128523Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6128893Z 2023-01-11T21:41:26.6129191Z aten = torch.ops.aten 2023-01-11T21:41:26.6129775Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6130331Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6130565Z 2023-01-11T21:41:26.6130573Z 2023-01-11T21:41:26.6130736Z async_compile.wait(globals()) 2023-01-11T21:41:26.6131064Z del async_compile 2023-01-11T21:41:26.6131260Z 2023-01-11T21:41:26.6131387Z def call(args): 2023-01-11T21:41:26.6131741Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6132353Z args.clear() 2023-01-11T21:41:26.6133214Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'leaky_relu', [0.1], '') 2023-01-11T21:41:26.6133785Z del arg0_1 2023-01-11T21:41:26.6134163Z del arg1_1 2023-01-11T21:41:26.6134566Z return (buf0, ) 2023-01-11T21:41:26.6134832Z 2023-01-11T21:41:26.6134841Z 2023-01-11T21:41:26.6135026Z if __name__ == "__main__": 2023-01-11T21:41:26.6135528Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6136149Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6136999Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6137778Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6138254Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6138583Z 2023-01-11T21:41:26.6138594Z 2023-01-11T21:41:26.6138770Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6139220Z import torch 2023-01-11T21:41:26.6139596Z import random 2023-01-11T21:41:26.6140092Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6140710Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6141078Z 2023-01-11T21:41:26.6141268Z aten = torch.ops.aten 2023-01-11T21:41:26.6141826Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6142424Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6142724Z 2023-01-11T21:41:26.6142733Z 2023-01-11T21:41:26.6142949Z async_compile.wait(globals()) 2023-01-11T21:41:26.6143473Z del async_compile 2023-01-11T21:41:26.6143732Z 2023-01-11T21:41:26.6143904Z def call(args): 2023-01-11T21:41:26.6144326Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6144745Z args.clear() 2023-01-11T21:41:26.6145392Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'leaky_relu', [0.1], '') 2023-01-11T21:41:26.6145824Z del arg0_1 2023-01-11T21:41:26.6146105Z del arg1_1 2023-01-11T21:41:26.6146480Z del arg2_1 2023-01-11T21:41:26.6146915Z return (buf0, ) 2023-01-11T21:41:26.6147239Z 2023-01-11T21:41:26.6147250Z 2023-01-11T21:41:26.6147425Z if __name__ == "__main__": 2023-01-11T21:41:26.6147923Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6148542Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6149406Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6150236Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6151098Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6151753Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6152117Z 2023-01-11T21:41:26.6152126Z 2023-01-11T21:41:26.6152307Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6152641Z import torch 2023-01-11T21:41:26.6152944Z import random 2023-01-11T21:41:26.6153330Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6153855Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6154213Z 2023-01-11T21:41:26.6154399Z aten = torch.ops.aten 2023-01-11T21:41:26.6154976Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6155540Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6155844Z 2023-01-11T21:41:26.6155853Z 2023-01-11T21:41:26.6156073Z async_compile.wait(globals()) 2023-01-11T21:41:26.6156536Z del async_compile 2023-01-11T21:41:26.6156800Z 2023-01-11T21:41:26.6156948Z def call(args): 2023-01-11T21:41:26.6157360Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6157783Z args.clear() 2023-01-11T21:41:26.6158579Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'leaky_relu', [0.1], '') 2023-01-11T21:41:26.6159146Z del arg0_1 2023-01-11T21:41:26.6159494Z del arg1_1 2023-01-11T21:41:26.6159797Z return (buf0, ) 2023-01-11T21:41:26.6159975Z 2023-01-11T21:41:26.6160063Z 2023-01-11T21:41:26.6160206Z if __name__ == "__main__": 2023-01-11T21:41:26.6160601Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6161194Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6162014Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6162881Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6163517Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6163859Z 2023-01-11T21:41:26.6163868Z 2023-01-11T21:41:26.6164099Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6164541Z import torch 2023-01-11T21:41:26.6164939Z import random 2023-01-11T21:41:26.6165444Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6166136Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6166502Z 2023-01-11T21:41:26.6166649Z aten = torch.ops.aten 2023-01-11T21:41:26.6167076Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6167515Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6167741Z 2023-01-11T21:41:26.6167748Z 2023-01-11T21:41:26.6167936Z async_compile.wait(globals()) 2023-01-11T21:41:26.6168401Z del async_compile 2023-01-11T21:41:26.6168666Z 2023-01-11T21:41:26.6168804Z def call(args): 2023-01-11T21:41:26.6169394Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6169820Z args.clear() 2023-01-11T21:41:26.6170653Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'hardtanh', [-0.5, 4], '') 2023-01-11T21:41:26.6171202Z del arg0_1 2023-01-11T21:41:26.6171589Z del arg1_1 2023-01-11T21:41:26.6171979Z del arg2_1 2023-01-11T21:41:26.6172358Z return (buf0, ) 2023-01-11T21:41:26.6172611Z 2023-01-11T21:41:26.6172621Z 2023-01-11T21:41:26.6172802Z if __name__ == "__main__": 2023-01-11T21:41:26.6173341Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6173906Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6174549Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6175204Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6176063Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6176783Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6177138Z 2023-01-11T21:41:26.6177148Z 2023-01-11T21:41:26.6177375Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6177839Z import torch 2023-01-11T21:41:26.6178229Z import random 2023-01-11T21:41:26.6178741Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6179359Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6179725Z 2023-01-11T21:41:26.6179904Z aten = torch.ops.aten 2023-01-11T21:41:26.6180475Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6181067Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6181319Z 2023-01-11T21:41:26.6181327Z 2023-01-11T21:41:26.6181487Z async_compile.wait(globals()) 2023-01-11T21:41:26.6181818Z del async_compile 2023-01-11T21:41:26.6182012Z 2023-01-11T21:41:26.6182143Z def call(args): 2023-01-11T21:41:26.6182458Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6182826Z args.clear() 2023-01-11T21:41:26.6183694Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'hardtanh', [-0.5, 4], '') 2023-01-11T21:41:26.6184259Z del arg0_1 2023-01-11T21:41:26.6184639Z del arg1_1 2023-01-11T21:41:26.6185040Z return (buf0, ) 2023-01-11T21:41:26.6185297Z 2023-01-11T21:41:26.6185307Z 2023-01-11T21:41:26.6185487Z if __name__ == "__main__": 2023-01-11T21:41:26.6185997Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6186623Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6187484Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6188464Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6188931Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6189194Z 2023-01-11T21:41:26.6189201Z 2023-01-11T21:41:26.6189374Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6189716Z import torch 2023-01-11T21:41:26.6190078Z import random 2023-01-11T21:41:26.6190597Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6191222Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6191584Z 2023-01-11T21:41:26.6191756Z aten = torch.ops.aten 2023-01-11T21:41:26.6192334Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6192920Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6193226Z 2023-01-11T21:41:26.6193235Z 2023-01-11T21:41:26.6193537Z async_compile.wait(globals()) 2023-01-11T21:41:26.6193982Z del async_compile 2023-01-11T21:41:26.6194242Z 2023-01-11T21:41:26.6194411Z def call(args): 2023-01-11T21:41:26.6194842Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6195262Z args.clear() 2023-01-11T21:41:26.6195947Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'hardtanh', [-0.5, 4], '') 2023-01-11T21:41:26.6196383Z del arg0_1 2023-01-11T21:41:26.6196660Z del arg1_1 2023-01-11T21:41:26.6196961Z del arg2_1 2023-01-11T21:41:26.6197361Z return (buf0, ) 2023-01-11T21:41:26.6197618Z 2023-01-11T21:41:26.6197626Z 2023-01-11T21:41:26.6197780Z if __name__ == "__main__": 2023-01-11T21:41:26.6198295Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6198920Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6199775Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6200612Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6201458Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6202118Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6202476Z 2023-01-11T21:41:26.6202486Z 2023-01-11T21:41:26.6202696Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6203056Z import torch 2023-01-11T21:41:26.6203359Z import random 2023-01-11T21:41:26.6203723Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6204209Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6204551Z 2023-01-11T21:41:26.6204742Z aten = torch.ops.aten 2023-01-11T21:41:26.6205261Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6205869Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6206170Z 2023-01-11T21:41:26.6206179Z 2023-01-11T21:41:26.6206399Z async_compile.wait(globals()) 2023-01-11T21:41:26.6206870Z del async_compile 2023-01-11T21:41:26.6207130Z 2023-01-11T21:41:26.6207275Z def call(args): 2023-01-11T21:41:26.6207691Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6208123Z args.clear() 2023-01-11T21:41:26.6208923Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'hardtanh', [-0.5, 4], '') 2023-01-11T21:41:26.6209652Z del arg0_1 2023-01-11T21:41:26.6210050Z del arg1_1 2023-01-11T21:41:26.6210402Z return (buf0, ) 2023-01-11T21:41:26.6210603Z 2023-01-11T21:41:26.6210609Z 2023-01-11T21:41:26.6210741Z if __name__ == "__main__": 2023-01-11T21:41:26.6211137Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6211591Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6212386Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6213214Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6213851Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6214210Z 2023-01-11T21:41:26.6214867Z [2023-01-11 21:35:33,546] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 321 2023-01-11T21:41:26.6216508Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6217809Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6218553Z [2023-01-11 21:35:33,577] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 322 2023-01-11T21:41:26.6219568Z [2023-01-11 21:35:33,579] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 322 2023-01-11T21:41:26.6221126Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6222498Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6223590Z [2023-01-11 21:35:33,664] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 323 2023-01-11T21:41:26.6224721Z [2023-01-11 21:35:33,666] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 323 2023-01-11T21:41:26.6225927Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6227093Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6228056Z [2023-01-11 21:35:33,695] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 324 2023-01-11T21:41:26.6229194Z [2023-01-11 21:35:33,697] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 324 2023-01-11T21:41:26.6230717Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6232079Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6232891Z [2023-01-11 21:35:33,781] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 325 2023-01-11T21:41:26.6233390Z [2023-01-11 21:35:33,784] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 325 2023-01-11T21:41:26.6234335Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6234633Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6235239Z [2023-01-11 21:35:33,814] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 326 2023-01-11T21:41:26.6235893Z [2023-01-11 21:35:33,816] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 326 2023-01-11T21:41:26.6236977Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6237355Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6237979Z [2023-01-11 21:35:33,899] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 327 2023-01-11T21:41:26.6238642Z [2023-01-11 21:35:33,901] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 327 2023-01-11T21:41:26.6239674Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6239907Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6240395Z [2023-01-11 21:35:33,930] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 328 2023-01-11T21:41:26.6240922Z [2023-01-11 21:35:33,933] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 328 2023-01-11T21:41:26.6241971Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6242268Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6242891Z [2023-01-11 21:35:34,141] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 329 2023-01-11T21:41:26.6242906Z 2023-01-11T21:41:26.6243132Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6243307Z import torch 2023-01-11T21:41:26.6243461Z import random 2023-01-11T21:41:26.6243743Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6244033Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6244045Z 2023-01-11T21:41:26.6244239Z aten = torch.ops.aten 2023-01-11T21:41:26.6244557Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6244774Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6244787Z 2023-01-11T21:41:26.6244795Z 2023-01-11T21:41:26.6245013Z async_compile.wait(globals()) 2023-01-11T21:41:26.6245194Z del async_compile 2023-01-11T21:41:26.6245206Z 2023-01-11T21:41:26.6245358Z def call(args): 2023-01-11T21:41:26.6245556Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6245730Z args.clear() 2023-01-11T21:41:26.6246285Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'gelu', [], 'none') 2023-01-11T21:41:26.6246445Z del arg0_1 2023-01-11T21:41:26.6246612Z del arg1_1 2023-01-11T21:41:26.6246748Z del arg2_1 2023-01-11T21:41:26.6246863Z return (buf0, ) 2023-01-11T21:41:26.6246872Z 2023-01-11T21:41:26.6246879Z 2023-01-11T21:41:26.6247015Z if __name__ == "__main__": 2023-01-11T21:41:26.6247222Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6247446Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6247823Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6248226Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6248721Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6249141Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6249156Z 2023-01-11T21:41:26.6249166Z 2023-01-11T21:41:26.6249372Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6249541Z import torch 2023-01-11T21:41:26.6249699Z import random 2023-01-11T21:41:26.6250100Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6250392Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6250404Z 2023-01-11T21:41:26.6250587Z aten = torch.ops.aten 2023-01-11T21:41:26.6250902Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6251123Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6251135Z 2023-01-11T21:41:26.6251145Z 2023-01-11T21:41:26.6251346Z async_compile.wait(globals()) 2023-01-11T21:41:26.6251517Z del async_compile 2023-01-11T21:41:26.6251528Z 2023-01-11T21:41:26.6251699Z def call(args): 2023-01-11T21:41:26.6251879Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6252051Z args.clear() 2023-01-11T21:41:26.6252592Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'gelu', [], 'none') 2023-01-11T21:41:26.6252755Z del arg0_1 2023-01-11T21:41:26.6252965Z del arg1_1 2023-01-11T21:41:26.6253148Z return (buf0, ) 2023-01-11T21:41:26.6253159Z 2023-01-11T21:41:26.6253173Z 2023-01-11T21:41:26.6253352Z if __name__ == "__main__": 2023-01-11T21:41:26.6253617Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6253911Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6254312Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6254696Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6254908Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6254917Z 2023-01-11T21:41:26.6254924Z 2023-01-11T21:41:26.6255088Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6255198Z import torch 2023-01-11T21:41:26.6255336Z import random 2023-01-11T21:41:26.6255624Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6255987Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6256000Z 2023-01-11T21:41:26.6256280Z aten = torch.ops.aten 2023-01-11T21:41:26.6256585Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6256806Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6256817Z 2023-01-11T21:41:26.6256826Z 2023-01-11T21:41:26.6257017Z async_compile.wait(globals()) 2023-01-11T21:41:26.6257193Z del async_compile 2023-01-11T21:41:26.6257205Z 2023-01-11T21:41:26.6257366Z def call(args): 2023-01-11T21:41:26.6257561Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6257733Z args.clear() 2023-01-11T21:41:26.6258279Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'gelu', [], 'none') 2023-01-11T21:41:26.6258441Z del arg0_1 2023-01-11T21:41:26.6258586Z del arg1_1 2023-01-11T21:41:26.6258751Z del arg2_1 2023-01-11T21:41:26.6258919Z return (buf0, ) 2023-01-11T21:41:26.6258931Z 2023-01-11T21:41:26.6258941Z 2023-01-11T21:41:26.6259110Z if __name__ == "__main__": 2023-01-11T21:41:26.6259387Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6259682Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6260180Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6260664Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6261132Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6261401Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6261410Z 2023-01-11T21:41:26.6261417Z 2023-01-11T21:41:26.6261586Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6261707Z import torch 2023-01-11T21:41:26.6261840Z import random 2023-01-11T21:41:26.6262051Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6262267Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6262277Z 2023-01-11T21:41:26.6262420Z aten = torch.ops.aten 2023-01-11T21:41:26.6262645Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6262845Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6262944Z 2023-01-11T21:41:26.6262952Z 2023-01-11T21:41:26.6263239Z async_compile.wait(globals()) 2023-01-11T21:41:26.6263413Z del async_compile 2023-01-11T21:41:26.6263425Z 2023-01-11T21:41:26.6263590Z def call(args): 2023-01-11T21:41:26.6263760Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6263920Z args.clear() 2023-01-11T21:41:26.6264486Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'gelu', [], 'none') 2023-01-11T21:41:26.6264638Z del arg0_1 2023-01-11T21:41:26.6264795Z del arg1_1 2023-01-11T21:41:26.6264965Z return (buf0, ) 2023-01-11T21:41:26.6264976Z 2023-01-11T21:41:26.6264985Z 2023-01-11T21:41:26.6265164Z if __name__ == "__main__": 2023-01-11T21:41:26.6265439Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6265810Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6266336Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6266817Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6267100Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6267112Z 2023-01-11T21:41:26.6267122Z 2023-01-11T21:41:26.6267353Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6267525Z import torch 2023-01-11T21:41:26.6267690Z import random 2023-01-11T21:41:26.6267964Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6268175Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6268184Z 2023-01-11T21:41:26.6268317Z aten = torch.ops.aten 2023-01-11T21:41:26.6268532Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6268688Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6268697Z 2023-01-11T21:41:26.6268704Z 2023-01-11T21:41:26.6268859Z async_compile.wait(globals()) 2023-01-11T21:41:26.6269017Z del async_compile 2023-01-11T21:41:26.6269029Z 2023-01-11T21:41:26.6269186Z def call(args): 2023-01-11T21:41:26.6269390Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6269557Z args.clear() 2023-01-11T21:41:26.6270066Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'gelu', [], 'tanh') 2023-01-11T21:41:26.6270213Z del arg0_1 2023-01-11T21:41:26.6270371Z del arg1_1 2023-01-11T21:41:26.6270509Z del arg2_1 2023-01-11T21:41:26.6270677Z return (buf0, ) 2023-01-11T21:41:26.6270688Z 2023-01-11T21:41:26.6270757Z 2023-01-11T21:41:26.6271030Z if __name__ == "__main__": 2023-01-11T21:41:26.6271231Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6271447Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6271802Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6272136Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6272497Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6272719Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6272730Z 2023-01-11T21:41:26.6272736Z 2023-01-11T21:41:26.6272898Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6273019Z import torch 2023-01-11T21:41:26.6273150Z import random 2023-01-11T21:41:26.6273349Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6273533Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6273562Z 2023-01-11T21:41:26.6273674Z aten = torch.ops.aten 2023-01-11T21:41:26.6273908Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6274073Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6274081Z 2023-01-11T21:41:26.6274088Z 2023-01-11T21:41:26.6274250Z async_compile.wait(globals()) 2023-01-11T21:41:26.6274378Z del async_compile 2023-01-11T21:41:26.6274386Z 2023-01-11T21:41:26.6274512Z def call(args): 2023-01-11T21:41:26.6274652Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6274761Z args.clear() 2023-01-11T21:41:26.6275255Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'gelu', [], 'tanh') 2023-01-11T21:41:26.6275378Z del arg0_1 2023-01-11T21:41:26.6275505Z del arg1_1 2023-01-11T21:41:26.6275641Z return (buf0, ) 2023-01-11T21:41:26.6275651Z 2023-01-11T21:41:26.6275657Z 2023-01-11T21:41:26.6275802Z if __name__ == "__main__": 2023-01-11T21:41:26.6275994Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6276196Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6276544Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6276903Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6277095Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6277104Z 2023-01-11T21:41:26.6277182Z 2023-01-11T21:41:26.6277356Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6277494Z import torch 2023-01-11T21:41:26.6277629Z import random 2023-01-11T21:41:26.6277828Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6278020Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6278037Z 2023-01-11T21:41:26.6278158Z aten = torch.ops.aten 2023-01-11T21:41:26.6278379Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6278544Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6278552Z 2023-01-11T21:41:26.6278558Z 2023-01-11T21:41:26.6278711Z async_compile.wait(globals()) 2023-01-11T21:41:26.6278839Z del async_compile 2023-01-11T21:41:26.6278849Z 2023-01-11T21:41:26.6278981Z def call(args): 2023-01-11T21:41:26.6279138Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6279271Z args.clear() 2023-01-11T21:41:26.6279655Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'gelu', [], 'tanh') 2023-01-11T21:41:26.6279779Z del arg0_1 2023-01-11T21:41:26.6279904Z del arg1_1 2023-01-11T21:41:26.6280032Z del arg2_1 2023-01-11T21:41:26.6280171Z return (buf0, ) 2023-01-11T21:41:26.6280178Z 2023-01-11T21:41:26.6280183Z 2023-01-11T21:41:26.6280322Z if __name__ == "__main__": 2023-01-11T21:41:26.6280521Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6280718Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6281073Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6281418Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6281765Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6281981Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6281991Z 2023-01-11T21:41:26.6281999Z 2023-01-11T21:41:26.6282164Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6282303Z import torch 2023-01-11T21:41:26.6282440Z import random 2023-01-11T21:41:26.6282619Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6282832Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6282842Z 2023-01-11T21:41:26.6282974Z aten = torch.ops.aten 2023-01-11T21:41:26.6283204Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6283370Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6283379Z 2023-01-11T21:41:26.6283385Z 2023-01-11T21:41:26.6283551Z async_compile.wait(globals()) 2023-01-11T21:41:26.6283687Z del async_compile 2023-01-11T21:41:26.6283695Z 2023-01-11T21:41:26.6283816Z def call(args): 2023-01-11T21:41:26.6283927Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6284053Z args.clear() 2023-01-11T21:41:26.6284445Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'gelu', [], 'tanh') 2023-01-11T21:41:26.6284578Z del arg0_1 2023-01-11T21:41:26.6284694Z del arg1_1 2023-01-11T21:41:26.6284835Z return (buf0, ) 2023-01-11T21:41:26.6284843Z 2023-01-11T21:41:26.6284848Z 2023-01-11T21:41:26.6284985Z if __name__ == "__main__": 2023-01-11T21:41:26.6285255Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6285473Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6285838Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6286191Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6286388Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6286395Z 2023-01-11T21:41:26.6286865Z [2023-01-11 21:35:34,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 329 2023-01-11T21:41:26.6287671Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6287904Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6288349Z [2023-01-11 21:35:34,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 330 2023-01-11T21:41:26.6288804Z [2023-01-11 21:35:34,176] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 330 2023-01-11T21:41:26.6289638Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6289857Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6290312Z [2023-01-11 21:35:34,258] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 331 2023-01-11T21:41:26.6290773Z [2023-01-11 21:35:34,260] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 331 2023-01-11T21:41:26.6291465Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6291687Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6292129Z [2023-01-11 21:35:34,299] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 332 2023-01-11T21:41:26.6292579Z [2023-01-11 21:35:34,302] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 332 2023-01-11T21:41:26.6293286Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6293515Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6293950Z [2023-01-11 21:35:34,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 333 2023-01-11T21:41:26.6294402Z [2023-01-11 21:35:34,434] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 333 2023-01-11T21:41:26.6295118Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6295446Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6295906Z [2023-01-11 21:35:34,487] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 334 2023-01-11T21:41:26.6296365Z [2023-01-11 21:35:34,489] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 334 2023-01-11T21:41:26.6297070Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6297388Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6297836Z [2023-01-11 21:35:34,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 335 2023-01-11T21:41:26.6298298Z [2023-01-11 21:35:34,596] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 335 2023-01-11T21:41:26.6298996Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6299213Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6299661Z [2023-01-11 21:35:34,647] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 336 2023-01-11T21:41:26.6300119Z [2023-01-11 21:35:34,650] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 336 2023-01-11T21:41:26.6300132Z 2023-01-11T21:41:26.6300275Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6300411Z import torch 2023-01-11T21:41:26.6300534Z import random 2023-01-11T21:41:26.6300739Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6300960Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6300970Z 2023-01-11T21:41:26.6301109Z aten = torch.ops.aten 2023-01-11T21:41:26.6301331Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6301494Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6301508Z 2023-01-11T21:41:26.6301514Z 2023-01-11T21:41:26.6301656Z async_compile.wait(globals()) 2023-01-11T21:41:26.6301794Z del async_compile 2023-01-11T21:41:26.6301804Z 2023-01-11T21:41:26.6301932Z def call(args): 2023-01-11T21:41:26.6302088Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6302215Z args.clear() 2023-01-11T21:41:26.6302635Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'hardtanh', [0, 6], '') 2023-01-11T21:41:26.6302770Z del arg0_1 2023-01-11T21:41:26.6302877Z del arg1_1 2023-01-11T21:41:26.6302998Z del arg2_1 2023-01-11T21:41:26.6303193Z return (buf0, ) 2023-01-11T21:41:26.6303202Z 2023-01-11T21:41:26.6303208Z 2023-01-11T21:41:26.6303350Z if __name__ == "__main__": 2023-01-11T21:41:26.6303552Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6303770Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6304117Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6304476Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6304812Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6305031Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6305040Z 2023-01-11T21:41:26.6305046Z 2023-01-11T21:41:26.6305212Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6305345Z import torch 2023-01-11T21:41:26.6305497Z import random 2023-01-11T21:41:26.6305801Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6306012Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6306021Z 2023-01-11T21:41:26.6306163Z aten = torch.ops.aten 2023-01-11T21:41:26.6306374Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6306539Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6306546Z 2023-01-11T21:41:26.6306553Z 2023-01-11T21:41:26.6306704Z async_compile.wait(globals()) 2023-01-11T21:41:26.6306841Z del async_compile 2023-01-11T21:41:26.6306854Z 2023-01-11T21:41:26.6306983Z def call(args): 2023-01-11T21:41:26.6307133Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6307266Z args.clear() 2023-01-11T21:41:26.6307662Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'hardtanh', [0, 6], '') 2023-01-11T21:41:26.6307838Z del arg0_1 2023-01-11T21:41:26.6307969Z del arg1_1 2023-01-11T21:41:26.6308097Z return (buf0, ) 2023-01-11T21:41:26.6308112Z 2023-01-11T21:41:26.6308119Z 2023-01-11T21:41:26.6308255Z if __name__ == "__main__": 2023-01-11T21:41:26.6308456Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6308670Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6309032Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6309366Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6309570Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6309581Z 2023-01-11T21:41:26.6309588Z 2023-01-11T21:41:26.6309757Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6309886Z import torch 2023-01-11T21:41:26.6310018Z import random 2023-01-11T21:41:26.6310218Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6310430Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6310439Z 2023-01-11T21:41:26.6310578Z aten = torch.ops.aten 2023-01-11T21:41:26.6310785Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6310944Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6310955Z 2023-01-11T21:41:26.6310963Z 2023-01-11T21:41:26.6311120Z async_compile.wait(globals()) 2023-01-11T21:41:26.6311249Z del async_compile 2023-01-11T21:41:26.6311259Z 2023-01-11T21:41:26.6311392Z def call(args): 2023-01-11T21:41:26.6311535Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6311665Z args.clear() 2023-01-11T21:41:26.6312076Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'hardtanh', [0, 6], '') 2023-01-11T21:41:26.6312183Z del arg0_1 2023-01-11T21:41:26.6312304Z del arg1_1 2023-01-11T21:41:26.6312423Z del arg2_1 2023-01-11T21:41:26.6312544Z return (buf0, ) 2023-01-11T21:41:26.6312554Z 2023-01-11T21:41:26.6312560Z 2023-01-11T21:41:26.6312709Z if __name__ == "__main__": 2023-01-11T21:41:26.6312904Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6313117Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6313476Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6313804Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6314146Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6314363Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6314371Z 2023-01-11T21:41:26.6314376Z 2023-01-11T21:41:26.6314545Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6314678Z import torch 2023-01-11T21:41:26.6314808Z import random 2023-01-11T21:41:26.6315009Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6315207Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6315240Z 2023-01-11T21:41:26.6315368Z aten = torch.ops.aten 2023-01-11T21:41:26.6315594Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6315848Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6315857Z 2023-01-11T21:41:26.6315864Z 2023-01-11T21:41:26.6316023Z async_compile.wait(globals()) 2023-01-11T21:41:26.6316167Z del async_compile 2023-01-11T21:41:26.6316178Z 2023-01-11T21:41:26.6316312Z def call(args): 2023-01-11T21:41:26.6316454Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6316561Z args.clear() 2023-01-11T21:41:26.6316967Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'hardtanh', [0, 6], '') 2023-01-11T21:41:26.6317097Z del arg0_1 2023-01-11T21:41:26.6317223Z del arg1_1 2023-01-11T21:41:26.6317350Z return (buf0, ) 2023-01-11T21:41:26.6317360Z 2023-01-11T21:41:26.6317367Z 2023-01-11T21:41:26.6317502Z if __name__ == "__main__": 2023-01-11T21:41:26.6317684Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6317976Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6318319Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6318673Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6318873Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6318886Z 2023-01-11T21:41:26.6318894Z 2023-01-11T21:41:26.6319064Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6319185Z import torch 2023-01-11T21:41:26.6319319Z import random 2023-01-11T21:41:26.6319519Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6319729Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6319740Z 2023-01-11T21:41:26.6319866Z aten = torch.ops.aten 2023-01-11T21:41:26.6320093Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6320252Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6320263Z 2023-01-11T21:41:26.6320270Z 2023-01-11T21:41:26.6320439Z async_compile.wait(globals()) 2023-01-11T21:41:26.6320576Z del async_compile 2023-01-11T21:41:26.6320586Z 2023-01-11T21:41:26.6320713Z def call(args): 2023-01-11T21:41:26.6320863Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6320984Z args.clear() 2023-01-11T21:41:26.6321353Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'swish', [], '') 2023-01-11T21:41:26.6321478Z del arg0_1 2023-01-11T21:41:26.6321601Z del arg1_1 2023-01-11T21:41:26.6321718Z del arg2_1 2023-01-11T21:41:26.6321848Z return (buf0, ) 2023-01-11T21:41:26.6321860Z 2023-01-11T21:41:26.6321864Z 2023-01-11T21:41:26.6321997Z if __name__ == "__main__": 2023-01-11T21:41:26.6322204Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6322395Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6322749Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6323095Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6323453Z arg2_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6323674Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6323687Z 2023-01-11T21:41:26.6323692Z 2023-01-11T21:41:26.6323863Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6323994Z import torch 2023-01-11T21:41:26.6324127Z import random 2023-01-11T21:41:26.6324306Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6324508Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6324521Z 2023-01-11T21:41:26.6324656Z aten = torch.ops.aten 2023-01-11T21:41:26.6324881Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6325044Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6325055Z 2023-01-11T21:41:26.6325061Z 2023-01-11T21:41:26.6325204Z async_compile.wait(globals()) 2023-01-11T21:41:26.6325348Z del async_compile 2023-01-11T21:41:26.6325357Z 2023-01-11T21:41:26.6325492Z def call(args): 2023-01-11T21:41:26.6325611Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6325838Z args.clear() 2023-01-11T21:41:26.6326224Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'swish', [], '') 2023-01-11T21:41:26.6326352Z del arg0_1 2023-01-11T21:41:26.6326477Z del arg1_1 2023-01-11T21:41:26.6326607Z return (buf0, ) 2023-01-11T21:41:26.6326618Z 2023-01-11T21:41:26.6326623Z 2023-01-11T21:41:26.6326752Z if __name__ == "__main__": 2023-01-11T21:41:26.6326925Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6327147Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6327499Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6327864Z arg1_1 = rand_strided((2, 3, 10), (30, 10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6328073Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6328151Z 2023-01-11T21:41:26.6328163Z 2023-01-11T21:41:26.6328336Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6328470Z import torch 2023-01-11T21:41:26.6328590Z import random 2023-01-11T21:41:26.6328780Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6328983Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6328991Z 2023-01-11T21:41:26.6329501Z aten = torch.ops.aten 2023-01-11T21:41:26.6329726Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6329886Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6329899Z 2023-01-11T21:41:26.6329905Z 2023-01-11T21:41:26.6330068Z async_compile.wait(globals()) 2023-01-11T21:41:26.6330198Z del async_compile 2023-01-11T21:41:26.6330208Z 2023-01-11T21:41:26.6330344Z def call(args): 2023-01-11T21:41:26.6330459Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6330579Z args.clear() 2023-01-11T21:41:26.6330991Z buf0 = torch.ops.mkldnn._linear_pointwise(arg2_1, arg0_1, arg1_1, 'swish', [], '') 2023-01-11T21:41:26.6331120Z del arg0_1 2023-01-11T21:41:26.6331237Z del arg1_1 2023-01-11T21:41:26.6331364Z del arg2_1 2023-01-11T21:41:26.6331496Z return (buf0, ) 2023-01-11T21:41:26.6331504Z 2023-01-11T21:41:26.6331510Z 2023-01-11T21:41:26.6331648Z if __name__ == "__main__": 2023-01-11T21:41:26.6331827Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6332043Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6332394Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6332741Z arg1_1 = rand_strided((30, ), (1, ), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6333083Z arg2_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6333288Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6333300Z 2023-01-11T21:41:26.6333306Z 2023-01-11T21:41:26.6333480Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6333605Z import torch 2023-01-11T21:41:26.6333711Z import random 2023-01-11T21:41:26.6333907Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6334122Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6334131Z 2023-01-11T21:41:26.6334274Z aten = torch.ops.aten 2023-01-11T21:41:26.6334496Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6334658Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6334666Z 2023-01-11T21:41:26.6334672Z 2023-01-11T21:41:26.6334825Z async_compile.wait(globals()) 2023-01-11T21:41:26.6334943Z del async_compile 2023-01-11T21:41:26.6334976Z 2023-01-11T21:41:26.6335080Z def call(args): 2023-01-11T21:41:26.6335219Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6335350Z args.clear() 2023-01-11T21:41:26.6335723Z buf0 = torch.ops.mkldnn._linear_pointwise(arg1_1, arg0_1, None, 'swish', [], '') 2023-01-11T21:41:26.6335850Z del arg0_1 2023-01-11T21:41:26.6335976Z del arg1_1 2023-01-11T21:41:26.6336090Z return (buf0, ) 2023-01-11T21:41:26.6336122Z 2023-01-11T21:41:26.6336128Z 2023-01-11T21:41:26.6336377Z if __name__ == "__main__": 2023-01-11T21:41:26.6336581Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6336794Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6337168Z arg0_1 = rand_strided((30, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6337510Z arg1_1 = rand_strided((2, 10), (10, 1), device='cpu', dtype=torch.bfloat16) 2023-01-11T21:41:26.6337711Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6337721Z 2023-01-11T21:41:26.6337843Z ok (2.922s) 2023-01-11T21:41:26.6338715Z test_linspace1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6338950Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6339384Z [2023-01-11 21:35:34,683] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 337 2023-01-11T21:41:26.6339844Z [2023-01-11 21:35:36,207] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 337 2023-01-11T21:41:26.6339857Z 2023-01-11T21:41:26.6340027Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6340163Z import torch 2023-01-11T21:41:26.6340293Z import random 2023-01-11T21:41:26.6340497Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6340701Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6340710Z 2023-01-11T21:41:26.6340850Z aten = torch.ops.aten 2023-01-11T21:41:26.6341069Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6341234Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6341244Z 2023-01-11T21:41:26.6341250Z 2023-01-11T21:41:26.6341493Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6341831Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6342039Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6342209Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6342314Z { 2023-01-11T21:41:26.6342492Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6342593Z { 2023-01-11T21:41:26.6342742Z #pragma omp for 2023-01-11T21:41:26.6342896Z for(long i0=0; i0<7; i0+=1) 2023-01-11T21:41:26.6343013Z { 2023-01-11T21:41:26.6343210Z { 2023-01-11T21:41:26.6343336Z { 2023-01-11T21:41:26.6343479Z auto tmp4 = in_ptr0[i0]; 2023-01-11T21:41:26.6343676Z auto tmp0 = static_cast(0.125); 2023-01-11T21:41:26.6343861Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.6344030Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.6344192Z auto tmp3 = tmp2 + tmp0; 2023-01-11T21:41:26.6344357Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.6344511Z out_ptr0[i0] = tmp5; 2023-01-11T21:41:26.6344603Z } 2023-01-11T21:41:26.6344724Z } 2023-01-11T21:41:26.6344841Z } 2023-01-11T21:41:26.6344945Z } 2023-01-11T21:41:26.6345058Z } 2023-01-11T21:41:26.6345216Z ''') 2023-01-11T21:41:26.6345224Z 2023-01-11T21:41:26.6345232Z 2023-01-11T21:41:26.6345388Z async_compile.wait(globals()) 2023-01-11T21:41:26.6345501Z del async_compile 2023-01-11T21:41:26.6345534Z 2023-01-11T21:41:26.6345638Z def call(args): 2023-01-11T21:41:26.6345758Z arg0_1, = args 2023-01-11T21:41:26.6345885Z args.clear() 2023-01-11T21:41:26.6346241Z buf0 = empty_strided((1, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6346470Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6346691Z del arg0_1 2023-01-11T21:41:26.6346797Z return (buf0, ) 2023-01-11T21:41:26.6346832Z 2023-01-11T21:41:26.6346838Z 2023-01-11T21:41:26.6346959Z if __name__ == "__main__": 2023-01-11T21:41:26.6347163Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6347374Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6347716Z arg0_1 = rand_strided((1, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6347907Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6347916Z 2023-01-11T21:41:26.6348038Z ok (1.558s) 2023-01-11T21:41:26.6348884Z test_linspace2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6349107Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6349574Z [2023-01-11 21:35:36,239] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 338 2023-01-11T21:41:26.6350021Z [2023-01-11 21:35:37,720] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 338 2023-01-11T21:41:26.6350053Z 2023-01-11T21:41:26.6350202Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6350341Z import torch 2023-01-11T21:41:26.6350473Z import random 2023-01-11T21:41:26.6350666Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6350867Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6350875Z 2023-01-11T21:41:26.6351022Z aten = torch.ops.aten 2023-01-11T21:41:26.6351260Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6351407Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6351417Z 2023-01-11T21:41:26.6351428Z 2023-01-11T21:41:26.6351661Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6351993Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6352198Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6352375Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6352477Z { 2023-01-11T21:41:26.6352587Z { 2023-01-11T21:41:26.6352680Z { 2023-01-11T21:41:26.6352826Z auto tmp4 = in_ptr0[0]; 2023-01-11T21:41:26.6353004Z auto tmp0 = static_cast(0.0); 2023-01-11T21:41:26.6353180Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.6353320Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.6353473Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:41:26.6353626Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.6353747Z out_ptr0[0] = tmp5; 2023-01-11T21:41:26.6353857Z } 2023-01-11T21:41:26.6353979Z } 2023-01-11T21:41:26.6354088Z } 2023-01-11T21:41:26.6354224Z ''') 2023-01-11T21:41:26.6354232Z 2023-01-11T21:41:26.6354238Z 2023-01-11T21:41:26.6354399Z async_compile.wait(globals()) 2023-01-11T21:41:26.6354531Z del async_compile 2023-01-11T21:41:26.6354543Z 2023-01-11T21:41:26.6354650Z def call(args): 2023-01-11T21:41:26.6354783Z arg0_1, = args 2023-01-11T21:41:26.6354909Z args.clear() 2023-01-11T21:41:26.6355251Z buf0 = empty_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6355495Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6355624Z del arg0_1 2023-01-11T21:41:26.6355755Z return (buf0, ) 2023-01-11T21:41:26.6355763Z 2023-01-11T21:41:26.6355771Z 2023-01-11T21:41:26.6355897Z if __name__ == "__main__": 2023-01-11T21:41:26.6356076Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6356286Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6356724Z arg0_1 = rand_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6356914Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6356922Z 2023-01-11T21:41:26.6357046Z ok (1.513s) 2023-01-11T21:41:26.6357814Z test_linspace3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6358040Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6358611Z [2023-01-11 21:35:37,750] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 339 2023-01-11T21:41:26.6359080Z [2023-01-11 21:35:37,752] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 339 2023-01-11T21:41:26.6359096Z 2023-01-11T21:41:26.6359238Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6359369Z import torch 2023-01-11T21:41:26.6359506Z import random 2023-01-11T21:41:26.6359712Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6359922Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6359933Z 2023-01-11T21:41:26.6360063Z aten = torch.ops.aten 2023-01-11T21:41:26.6360284Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6360448Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6360457Z 2023-01-11T21:41:26.6360463Z 2023-01-11T21:41:26.6360596Z async_compile.wait(globals()) 2023-01-11T21:41:26.6360728Z del async_compile 2023-01-11T21:41:26.6360736Z 2023-01-11T21:41:26.6360859Z def call(args): 2023-01-11T21:41:26.6361197Z buf0 = empty_strided((0, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6361332Z return (buf0, ) 2023-01-11T21:41:26.6361342Z 2023-01-11T21:41:26.6361354Z 2023-01-11T21:41:26.6361483Z if __name__ == "__main__": 2023-01-11T21:41:26.6361684Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6361894Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6362045Z print_performance(lambda: call([])) 2023-01-11T21:41:26.6362053Z 2023-01-11T21:41:26.6362176Z ok (0.031s) 2023-01-11T21:41:26.6362761Z test_list_clearing_cpu (__main__.CpuTests) ... [2023-01-11 21:35:37,780] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph None 2023-01-11T21:41:26.6363224Z [2023-01-11 21:35:39,329] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph None 2023-01-11T21:41:26.6363236Z 2023-01-11T21:41:26.6363404Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6363530Z import torch 2023-01-11T21:41:26.6363667Z import random 2023-01-11T21:41:26.6363867Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6364060Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6364099Z 2023-01-11T21:41:26.6364223Z aten = torch.ops.aten 2023-01-11T21:41:26.6364440Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6364613Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6364622Z 2023-01-11T21:41:26.6364627Z 2023-01-11T21:41:26.6364869Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6365201Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6365413Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6365591Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6365749Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6365868Z { 2023-01-11T21:41:26.6366045Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6366171Z { 2023-01-11T21:41:26.6366312Z #pragma omp for 2023-01-11T21:41:26.6366453Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.6366664Z { 2023-01-11T21:41:26.6366913Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6367146Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.6367306Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6367470Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6367592Z } 2023-01-11T21:41:26.6367758Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6367903Z for(long i0=24; i0<25; i0+=1) 2023-01-11T21:41:26.6368001Z { 2023-01-11T21:41:26.6368157Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6368304Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.6368453Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6368595Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6368781Z } 2023-01-11T21:41:26.6368902Z } 2023-01-11T21:41:26.6368994Z } 2023-01-11T21:41:26.6369386Z ''') 2023-01-11T21:41:26.6369403Z 2023-01-11T21:41:26.6369411Z 2023-01-11T21:41:26.6369567Z async_compile.wait(globals()) 2023-01-11T21:41:26.6369702Z del async_compile 2023-01-11T21:41:26.6369711Z 2023-01-11T21:41:26.6369904Z def call(args): 2023-01-11T21:41:26.6370032Z x_1, y_1 = args 2023-01-11T21:41:26.6370162Z args.clear() 2023-01-11T21:41:26.6370485Z buf0 = empty_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6370750Z kernel_cpp_0(c_void_p(x_1.data_ptr()), c_void_p(y_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6370873Z del x_1 2023-01-11T21:41:26.6370992Z del y_1 2023-01-11T21:41:26.6371332Z buf1 = empty_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6371501Z aten.mm.out(buf0, buf0, out=buf1) 2023-01-11T21:41:26.6371629Z return (buf1, ) 2023-01-11T21:41:26.6371639Z 2023-01-11T21:41:26.6371651Z 2023-01-11T21:41:26.6371786Z if __name__ == "__main__": 2023-01-11T21:41:26.6371965Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6372177Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6372499Z x_1 = rand_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6372831Z y_1 = rand_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6373008Z print_performance(lambda: call([x_1, y_1])) 2023-01-11T21:41:26.6373017Z 2023-01-11T21:41:26.6373135Z ok (1.576s) 2023-01-11T21:41:26.6373889Z test_log1p_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6374115Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6374562Z [2023-01-11 21:35:39,346] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 340 2023-01-11T21:41:26.6375015Z [2023-01-11 21:35:40,936] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 340 2023-01-11T21:41:26.6375726Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6375948Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6376394Z [2023-01-11 21:35:40,954] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 341 2023-01-11T21:41:26.6376852Z [2023-01-11 21:35:42,530] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 341 2023-01-11T21:41:26.6377687Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6377907Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6378353Z [2023-01-11 21:35:42,547] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 342 2023-01-11T21:41:26.6378802Z [2023-01-11 21:35:44,202] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 342 2023-01-11T21:41:26.6379578Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6379813Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6380258Z [2023-01-11 21:35:44,220] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 343 2023-01-11T21:41:26.6380699Z [2023-01-11 21:35:45,892] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 343 2023-01-11T21:41:26.6381400Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6381620Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6382061Z [2023-01-11 21:35:45,910] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 344 2023-01-11T21:41:26.6382080Z 2023-01-11T21:41:26.6382250Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6382377Z import torch 2023-01-11T21:41:26.6382475Z import random 2023-01-11T21:41:26.6382628Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6382788Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6382796Z 2023-01-11T21:41:26.6382884Z aten = torch.ops.aten 2023-01-11T21:41:26.6383060Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6383308Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6383315Z 2023-01-11T21:41:26.6383321Z 2023-01-11T21:41:26.6383511Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6383779Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6383941Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:41:26.6384075Z half* __restrict__ out_ptr0, 2023-01-11T21:41:26.6384202Z half* __restrict__ out_ptr1) 2023-01-11T21:41:26.6384269Z { 2023-01-11T21:41:26.6384401Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6384484Z { 2023-01-11T21:41:26.6384590Z #pragma omp for 2023-01-11T21:41:26.6384702Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.6384789Z { 2023-01-11T21:41:26.6384876Z { 2023-01-11T21:41:26.6384947Z { 2023-01-11T21:41:26.6385100Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:41:26.6385244Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:41:26.6385382Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.6385505Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6385627Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6385742Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6385899Z } 2023-01-11T21:41:26.6385984Z } 2023-01-11T21:41:26.6386068Z } 2023-01-11T21:41:26.6386153Z } 2023-01-11T21:41:26.6386233Z } 2023-01-11T21:41:26.6386345Z ''') 2023-01-11T21:41:26.6386352Z 2023-01-11T21:41:26.6386357Z 2023-01-11T21:41:26.6386475Z async_compile.wait(globals()) 2023-01-11T21:41:26.6386558Z del async_compile 2023-01-11T21:41:26.6386565Z 2023-01-11T21:41:26.6386658Z def call(args): 2023-01-11T21:41:26.6386750Z arg0_1, = args 2023-01-11T21:41:26.6386846Z args.clear() 2023-01-11T21:41:26.6387113Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.6387379Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.6387599Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6387710Z del arg0_1 2023-01-11T21:41:26.6387819Z return (buf0, buf1, ) 2023-01-11T21:41:26.6387825Z 2023-01-11T21:41:26.6387834Z 2023-01-11T21:41:26.6387936Z if __name__ == "__main__": 2023-01-11T21:41:26.6388086Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6388252Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6388516Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.6388659Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6388666Z 2023-01-11T21:41:26.6388671Z 2023-01-11T21:41:26.6388794Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6388886Z import torch 2023-01-11T21:41:26.6388966Z import random 2023-01-11T21:41:26.6389119Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6389277Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6389283Z 2023-01-11T21:41:26.6389386Z aten = torch.ops.aten 2023-01-11T21:41:26.6389565Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6389688Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6389697Z 2023-01-11T21:41:26.6389702Z 2023-01-11T21:41:26.6389886Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6390136Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6390295Z extern "C" void kernel(const half* __restrict__ in_ptr0, 2023-01-11T21:41:26.6390423Z half* __restrict__ out_ptr0, 2023-01-11T21:41:26.6390549Z half* __restrict__ out_ptr1) 2023-01-11T21:41:26.6390630Z { 2023-01-11T21:41:26.6390758Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6390843Z { 2023-01-11T21:41:26.6390930Z #pragma omp for 2023-01-11T21:41:26.6391040Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.6391123Z { 2023-01-11T21:41:26.6391208Z { 2023-01-11T21:41:26.6391293Z { 2023-01-11T21:41:26.6391451Z auto tmp0 = static_cast(in_ptr0[i0]); 2023-01-11T21:41:26.6391590Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:41:26.6391715Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.6391838Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6391950Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6392062Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6392147Z } 2023-01-11T21:41:26.6392232Z } 2023-01-11T21:41:26.6392313Z } 2023-01-11T21:41:26.6392380Z } 2023-01-11T21:41:26.6392458Z } 2023-01-11T21:41:26.6392564Z ''') 2023-01-11T21:41:26.6392571Z 2023-01-11T21:41:26.6392575Z 2023-01-11T21:41:26.6392695Z async_compile.wait(globals()) 2023-01-11T21:41:26.6392794Z del async_compile 2023-01-11T21:41:26.6392800Z 2023-01-11T21:41:26.6392897Z def call(args): 2023-01-11T21:41:26.6392991Z arg0_1, = args 2023-01-11T21:41:26.6393074Z args.clear() 2023-01-11T21:41:26.6393342Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.6393644Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.6393857Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6393949Z del arg0_1 2023-01-11T21:41:26.6394054Z return (buf0, buf1, ) 2023-01-11T21:41:26.6394061Z 2023-01-11T21:41:26.6394066Z 2023-01-11T21:41:26.6394170Z if __name__ == "__main__": 2023-01-11T21:41:26.6394325Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6394473Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6394738Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.6394881Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6394888Z 2023-01-11T21:41:26.6394893Z 2023-01-11T21:41:26.6395051Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6395147Z import torch 2023-01-11T21:41:26.6395240Z import random 2023-01-11T21:41:26.6395393Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6395554Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6395561Z 2023-01-11T21:41:26.6395648Z aten = torch.ops.aten 2023-01-11T21:41:26.6395826Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6395948Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6395955Z 2023-01-11T21:41:26.6395959Z 2023-01-11T21:41:26.6396145Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6396406Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6396564Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6396697Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6396824Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6396890Z { 2023-01-11T21:41:26.6397024Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6397108Z { 2023-01-11T21:41:26.6397211Z #pragma omp for 2023-01-11T21:41:26.6397323Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6397408Z { 2023-01-11T21:41:26.6397589Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6397688Z auto tmp1 = tmp0.log1p(); 2023-01-11T21:41:26.6397864Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.6397978Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6398100Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6398220Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.6398305Z } 2023-01-11T21:41:26.6398430Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6398526Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.6398608Z { 2023-01-11T21:41:26.6398718Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6398848Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:41:26.6398981Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.6399096Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6399204Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6399295Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6399377Z } 2023-01-11T21:41:26.6399458Z } 2023-01-11T21:41:26.6399539Z } 2023-01-11T21:41:26.6399648Z ''') 2023-01-11T21:41:26.6399655Z 2023-01-11T21:41:26.6399659Z 2023-01-11T21:41:26.6399781Z async_compile.wait(globals()) 2023-01-11T21:41:26.6399877Z del async_compile 2023-01-11T21:41:26.6399883Z 2023-01-11T21:41:26.6399962Z def call(args): 2023-01-11T21:41:26.6400056Z arg0_1, = args 2023-01-11T21:41:26.6400149Z args.clear() 2023-01-11T21:41:26.6400413Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6400676Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6400897Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6401028Z del arg0_1 2023-01-11T21:41:26.6401118Z return (buf0, buf1, ) 2023-01-11T21:41:26.6401142Z 2023-01-11T21:41:26.6401146Z 2023-01-11T21:41:26.6401232Z if __name__ == "__main__": 2023-01-11T21:41:26.6401382Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6401545Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6401813Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6401962Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6401969Z 2023-01-11T21:41:26.6401974Z 2023-01-11T21:41:26.6402098Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6402191Z import torch 2023-01-11T21:41:26.6402284Z import random 2023-01-11T21:41:26.6402420Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6402608Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6402615Z 2023-01-11T21:41:26.6402720Z aten = torch.ops.aten 2023-01-11T21:41:26.6402901Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6403021Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6403028Z 2023-01-11T21:41:26.6403033Z 2023-01-11T21:41:26.6403216Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6403475Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6403633Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6403750Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6403876Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6403957Z { 2023-01-11T21:41:26.6404086Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6404167Z { 2023-01-11T21:41:26.6404270Z #pragma omp for 2023-01-11T21:41:26.6404379Z for(long i0=0; i0<25; i0+=1) 2023-01-11T21:41:26.6404451Z { 2023-01-11T21:41:26.6404626Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6404745Z auto tmp1 = tmp0.log1p(); 2023-01-11T21:41:26.6404922Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.6405035Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6405155Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6405276Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.6405346Z } 2023-01-11T21:41:26.6405469Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6405579Z for(long i0=200; i0<201; i0+=1) 2023-01-11T21:41:26.6405661Z { 2023-01-11T21:41:26.6405774Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6405900Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:41:26.6406031Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.6406128Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6406235Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6406340Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6406427Z } 2023-01-11T21:41:26.6406509Z } 2023-01-11T21:41:26.6406588Z } 2023-01-11T21:41:26.6406680Z ''') 2023-01-11T21:41:26.6406702Z 2023-01-11T21:41:26.6406707Z 2023-01-11T21:41:26.6406811Z async_compile.wait(globals()) 2023-01-11T21:41:26.6406907Z del async_compile 2023-01-11T21:41:26.6406914Z 2023-01-11T21:41:26.6407007Z def call(args): 2023-01-11T21:41:26.6407100Z arg0_1, = args 2023-01-11T21:41:26.6407196Z args.clear() 2023-01-11T21:41:26.6407465Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6407726Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6407923Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6408016Z del arg0_1 2023-01-11T21:41:26.6408122Z return (buf0, buf1, ) 2023-01-11T21:41:26.6408132Z 2023-01-11T21:41:26.6408137Z 2023-01-11T21:41:26.6408239Z if __name__ == "__main__": 2023-01-11T21:41:26.6408425Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6408589Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6408857Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6408999Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6409126Z 2023-01-11T21:41:26.6409479Z [2023-01-11 21:35:47,571] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 344 2023-01-11T21:41:26.6410045Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6410275Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6410638Z [2023-01-11 21:35:47,604] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 345 2023-01-11T21:41:26.6411004Z [2023-01-11 21:35:49,150] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 345 2023-01-11T21:41:26.6411568Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6411737Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6412092Z [2023-01-11 21:35:49,175] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 346 2023-01-11T21:41:26.6412454Z [2023-01-11 21:35:50,672] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 346 2023-01-11T21:41:26.6413015Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6413181Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6413530Z [2023-01-11 21:35:50,690] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 347 2023-01-11T21:41:26.6413889Z [2023-01-11 21:35:52,298] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 347 2023-01-11T21:41:26.6414437Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6414605Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6414956Z [2023-01-11 21:35:52,316] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 348 2023-01-11T21:41:26.6414962Z 2023-01-11T21:41:26.6415086Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6415181Z import torch 2023-01-11T21:41:26.6415276Z import random 2023-01-11T21:41:26.6415433Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6415591Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6415598Z 2023-01-11T21:41:26.6415699Z aten = torch.ops.aten 2023-01-11T21:41:26.6415861Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6415985Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6415992Z 2023-01-11T21:41:26.6415997Z 2023-01-11T21:41:26.6416186Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6416500Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6416658Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.6416792Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.6416922Z double* __restrict__ out_ptr1) 2023-01-11T21:41:26.6416991Z { 2023-01-11T21:41:26.6417121Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6417204Z { 2023-01-11T21:41:26.6417309Z #pragma omp for 2023-01-11T21:41:26.6417422Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.6417507Z { 2023-01-11T21:41:26.6417593Z { 2023-01-11T21:41:26.6417666Z { 2023-01-11T21:41:26.6417790Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6417981Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:41:26.6418124Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.6418250Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6418365Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6418479Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6418551Z } 2023-01-11T21:41:26.6418638Z } 2023-01-11T21:41:26.6418722Z } 2023-01-11T21:41:26.6418805Z } 2023-01-11T21:41:26.6418885Z } 2023-01-11T21:41:26.6418994Z ''') 2023-01-11T21:41:26.6419001Z 2023-01-11T21:41:26.6419006Z 2023-01-11T21:41:26.6419127Z async_compile.wait(globals()) 2023-01-11T21:41:26.6419209Z del async_compile 2023-01-11T21:41:26.6419215Z 2023-01-11T21:41:26.6419315Z def call(args): 2023-01-11T21:41:26.6419410Z arg0_1, = args 2023-01-11T21:41:26.6419504Z args.clear() 2023-01-11T21:41:26.6419775Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6420044Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6420321Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6420414Z del arg0_1 2023-01-11T21:41:26.6420550Z return (buf0, buf1, ) 2023-01-11T21:41:26.6420560Z 2023-01-11T21:41:26.6420568Z 2023-01-11T21:41:26.6420700Z if __name__ == "__main__": 2023-01-11T21:41:26.6420900Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6421111Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6421436Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6421619Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6421629Z 2023-01-11T21:41:26.6421636Z 2023-01-11T21:41:26.6421798Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6421923Z import torch 2023-01-11T21:41:26.6422033Z import random 2023-01-11T21:41:26.6422224Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6422428Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6422445Z 2023-01-11T21:41:26.6422583Z aten = torch.ops.aten 2023-01-11T21:41:26.6422815Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6422979Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6422986Z 2023-01-11T21:41:26.6422993Z 2023-01-11T21:41:26.6423285Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6423632Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6423829Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.6424003Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.6424174Z double* __restrict__ out_ptr1) 2023-01-11T21:41:26.6424293Z { 2023-01-11T21:41:26.6424466Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6424578Z { 2023-01-11T21:41:26.6424724Z #pragma omp for 2023-01-11T21:41:26.6424850Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.6425036Z { 2023-01-11T21:41:26.6425156Z { 2023-01-11T21:41:26.6425271Z { 2023-01-11T21:41:26.6425435Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6425611Z auto tmp1 = std::log1p(tmp0); 2023-01-11T21:41:26.6425879Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.6426065Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6426231Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6426397Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6426533Z } 2023-01-11T21:41:26.6426666Z } 2023-01-11T21:41:26.6426794Z } 2023-01-11T21:41:26.6426893Z } 2023-01-11T21:41:26.6427015Z } 2023-01-11T21:41:26.6427183Z ''') 2023-01-11T21:41:26.6427198Z 2023-01-11T21:41:26.6427203Z 2023-01-11T21:41:26.6427447Z async_compile.wait(globals()) 2023-01-11T21:41:26.6427596Z del async_compile 2023-01-11T21:41:26.6427609Z 2023-01-11T21:41:26.6427756Z def call(args): 2023-01-11T21:41:26.6427909Z arg0_1, = args 2023-01-11T21:41:26.6428030Z args.clear() 2023-01-11T21:41:26.6428434Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6428824Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6429127Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6429271Z del arg0_1 2023-01-11T21:41:26.6429432Z return (buf0, buf1, ) 2023-01-11T21:41:26.6429444Z 2023-01-11T21:41:26.6429450Z 2023-01-11T21:41:26.6429604Z if __name__ == "__main__": 2023-01-11T21:41:26.6429832Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6430052Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6430430Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6430641Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6430657Z 2023-01-11T21:41:26.6430666Z 2023-01-11T21:41:26.6430858Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6430998Z import torch 2023-01-11T21:41:26.6431140Z import random 2023-01-11T21:41:26.6431361Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6431600Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6431610Z 2023-01-11T21:41:26.6431748Z aten = torch.ops.aten 2023-01-11T21:41:26.6431995Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6432177Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6432189Z 2023-01-11T21:41:26.6432198Z 2023-01-11T21:41:26.6432537Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6432875Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6433076Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.6433258Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6433431Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6433523Z { 2023-01-11T21:41:26.6433699Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6433815Z { 2023-01-11T21:41:26.6433954Z #pragma omp for 2023-01-11T21:41:26.6434099Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.6434210Z { 2023-01-11T21:41:26.6434323Z { 2023-01-11T21:41:26.6434422Z { 2023-01-11T21:41:26.6434584Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6434775Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.6434954Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:41:26.6435130Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.6435290Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.6435439Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6435567Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.6435693Z } 2023-01-11T21:41:26.6435903Z } 2023-01-11T21:41:26.6436015Z } 2023-01-11T21:41:26.6436126Z } 2023-01-11T21:41:26.6436236Z } 2023-01-11T21:41:26.6436373Z ''') 2023-01-11T21:41:26.6436406Z 2023-01-11T21:41:26.6436411Z 2023-01-11T21:41:26.6436550Z async_compile.wait(globals()) 2023-01-11T21:41:26.6436674Z del async_compile 2023-01-11T21:41:26.6436682Z 2023-01-11T21:41:26.6436805Z def call(args): 2023-01-11T21:41:26.6436935Z arg0_1, = args 2023-01-11T21:41:26.6437065Z args.clear() 2023-01-11T21:41:26.6437545Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6437914Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6438204Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6438417Z del arg0_1 2023-01-11T21:41:26.6438579Z return (buf0, buf1, ) 2023-01-11T21:41:26.6438588Z 2023-01-11T21:41:26.6438594Z 2023-01-11T21:41:26.6438748Z if __name__ == "__main__": 2023-01-11T21:41:26.6438978Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6439221Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6439607Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.6439806Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6439820Z 2023-01-11T21:41:26.6439827Z 2023-01-11T21:41:26.6440015Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6440140Z import torch 2023-01-11T21:41:26.6440327Z import random 2023-01-11T21:41:26.6440559Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6440798Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6440807Z 2023-01-11T21:41:26.6440959Z aten = torch.ops.aten 2023-01-11T21:41:26.6441230Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6441414Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6441431Z 2023-01-11T21:41:26.6441439Z 2023-01-11T21:41:26.6441684Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6442067Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6442299Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.6442498Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6442698Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6442826Z { 2023-01-11T21:41:26.6443013Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6443118Z { 2023-01-11T21:41:26.6443284Z #pragma omp for 2023-01-11T21:41:26.6443460Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.6443590Z { 2023-01-11T21:41:26.6443720Z { 2023-01-11T21:41:26.6443938Z { 2023-01-11T21:41:26.6444102Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6444272Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.6444470Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:41:26.6444653Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.6444811Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.6444954Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6445107Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.6445226Z } 2023-01-11T21:41:26.6445321Z } 2023-01-11T21:41:26.6445439Z } 2023-01-11T21:41:26.6445548Z } 2023-01-11T21:41:26.6445660Z } 2023-01-11T21:41:26.6445922Z ''') 2023-01-11T21:41:26.6445932Z 2023-01-11T21:41:26.6445939Z 2023-01-11T21:41:26.6446116Z async_compile.wait(globals()) 2023-01-11T21:41:26.6446274Z del async_compile 2023-01-11T21:41:26.6446285Z 2023-01-11T21:41:26.6446408Z def call(args): 2023-01-11T21:41:26.6446555Z arg0_1, = args 2023-01-11T21:41:26.6446703Z args.clear() 2023-01-11T21:41:26.6447092Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6447580Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6447899Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6448036Z del arg0_1 2023-01-11T21:41:26.6448190Z return (buf0, buf1, ) 2023-01-11T21:41:26.6448204Z 2023-01-11T21:41:26.6448211Z 2023-01-11T21:41:26.6448343Z if __name__ == "__main__": 2023-01-11T21:41:26.6448578Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6448812Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6449320Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.6449550Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6449560Z 2023-01-11T21:41:26.6450208Z [2023-01-11 21:35:53,985] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 348 2023-01-11T21:41:26.6451053Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6451308Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6451845Z [2023-01-11 21:35:54,002] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 349 2023-01-11T21:41:26.6452470Z [2023-01-11 21:35:55,491] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 349 2023-01-11T21:41:26.6452486Z 2023-01-11T21:41:26.6452633Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6452756Z import torch 2023-01-11T21:41:26.6452896Z import random 2023-01-11T21:41:26.6453095Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6453299Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6453316Z 2023-01-11T21:41:26.6453456Z aten = torch.ops.aten 2023-01-11T21:41:26.6453681Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6453823Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6453832Z 2023-01-11T21:41:26.6453859Z 2023-01-11T21:41:26.6454077Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6454403Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6454611Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6454790Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6454967Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6455067Z { 2023-01-11T21:41:26.6455241Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6455337Z { 2023-01-11T21:41:26.6455469Z #pragma omp for 2023-01-11T21:41:26.6455614Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.6455740Z { 2023-01-11T21:41:26.6455862Z { 2023-01-11T21:41:26.6455970Z { 2023-01-11T21:41:26.6456114Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6456300Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.6456486Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:41:26.6456664Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.6456816Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.6456967Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6457115Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.6457234Z } 2023-01-11T21:41:26.6457330Z } 2023-01-11T21:41:26.6457551Z } 2023-01-11T21:41:26.6457675Z } 2023-01-11T21:41:26.6457796Z } 2023-01-11T21:41:26.6457976Z ''') 2023-01-11T21:41:26.6457986Z 2023-01-11T21:41:26.6457993Z 2023-01-11T21:41:26.6458182Z async_compile.wait(globals()) 2023-01-11T21:41:26.6458452Z del async_compile 2023-01-11T21:41:26.6458464Z 2023-01-11T21:41:26.6458592Z def call(args): 2023-01-11T21:41:26.6458745Z arg0_1, = args 2023-01-11T21:41:26.6458879Z args.clear() 2023-01-11T21:41:26.6459285Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6459675Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6459988Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6460132Z del arg0_1 2023-01-11T21:41:26.6460275Z return (buf0, buf1, ) 2023-01-11T21:41:26.6460285Z 2023-01-11T21:41:26.6460318Z 2023-01-11T21:41:26.6460454Z if __name__ == "__main__": 2023-01-11T21:41:26.6460685Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6461000Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6461402Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6461632Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6461643Z 2023-01-11T21:41:26.6461651Z 2023-01-11T21:41:26.6461845Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6461983Z import torch 2023-01-11T21:41:26.6462106Z import random 2023-01-11T21:41:26.6462336Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6462576Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6462585Z 2023-01-11T21:41:26.6462746Z aten = torch.ops.aten 2023-01-11T21:41:26.6463002Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6463277Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6463288Z 2023-01-11T21:41:26.6463296Z 2023-01-11T21:41:26.6463589Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6464080Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6464284Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6464467Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6464639Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6464748Z { 2023-01-11T21:41:26.6464922Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6465014Z { 2023-01-11T21:41:26.6465150Z #pragma omp for 2023-01-11T21:41:26.6465280Z for(long i0=0; i0<201; i0+=1) 2023-01-11T21:41:26.6465396Z { 2023-01-11T21:41:26.6465514Z { 2023-01-11T21:41:26.6465628Z { 2023-01-11T21:41:26.6465788Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6465956Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.6466127Z auto tmp2 = std::log1p(tmp1); 2023-01-11T21:41:26.6466288Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.6466459Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.6466608Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6466761Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.6466881Z } 2023-01-11T21:41:26.6466981Z } 2023-01-11T21:41:26.6467090Z } 2023-01-11T21:41:26.6467178Z } 2023-01-11T21:41:26.6467281Z } 2023-01-11T21:41:26.6467433Z ''') 2023-01-11T21:41:26.6467443Z 2023-01-11T21:41:26.6467448Z 2023-01-11T21:41:26.6467606Z async_compile.wait(globals()) 2023-01-11T21:41:26.6467743Z del async_compile 2023-01-11T21:41:26.6467753Z 2023-01-11T21:41:26.6467873Z def call(args): 2023-01-11T21:41:26.6467991Z arg0_1, = args 2023-01-11T21:41:26.6468101Z args.clear() 2023-01-11T21:41:26.6468452Z buf0 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6468778Z buf1 = empty_strided((201, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6469055Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6469185Z del arg0_1 2023-01-11T21:41:26.6469414Z return (buf0, buf1, ) 2023-01-11T21:41:26.6469426Z 2023-01-11T21:41:26.6469432Z 2023-01-11T21:41:26.6469569Z if __name__ == "__main__": 2023-01-11T21:41:26.6469763Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6469954Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6470259Z arg0_1 = rand_strided((201, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6470432Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6470442Z 2023-01-11T21:41:26.6470557Z ok (16.164s) 2023-01-11T21:41:26.6471365Z test_log2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6471590Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6472011Z [2023-01-11 21:35:55,514] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 350 2023-01-11T21:41:26.6472467Z [2023-01-11 21:35:57,009] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 350 2023-01-11T21:41:26.6472480Z 2023-01-11T21:41:26.6472647Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6472750Z import torch 2023-01-11T21:41:26.6472866Z import random 2023-01-11T21:41:26.6473059Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6473361Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6473373Z 2023-01-11T21:41:26.6473534Z aten = torch.ops.aten 2023-01-11T21:41:26.6473799Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6473969Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6473984Z 2023-01-11T21:41:26.6473991Z 2023-01-11T21:41:26.6474271Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6474639Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6474865Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6475050Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6475249Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6475376Z { 2023-01-11T21:41:26.6475574Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6475704Z { 2023-01-11T21:41:26.6475816Z #pragma omp for 2023-01-11T21:41:26.6475944Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6476075Z { 2023-01-11T21:41:26.6476336Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6476510Z auto tmp1 = tmp0.log(); 2023-01-11T21:41:26.6476802Z auto tmp2 = at::vec::Vectorized(static_cast(1.4426950408889634)); 2023-01-11T21:41:26.6476979Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6477228Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.6477382Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.6477555Z auto tmp6 = tmp5.log(); 2023-01-11T21:41:26.6477731Z auto tmp7 = tmp6 * tmp2; 2023-01-11T21:41:26.6478001Z auto tmp8 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.6478262Z auto tmp9 = tmp7 - tmp8; 2023-01-11T21:41:26.6478409Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6478577Z tmp9.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.6478685Z } 2023-01-11T21:41:26.6478879Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6479048Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.6479184Z { 2023-01-11T21:41:26.6479356Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6479531Z auto tmp1 = std::log(tmp0); 2023-01-11T21:41:26.6479945Z auto tmp2 = static_cast(1.4426950408889634); 2023-01-11T21:41:26.6480076Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6480251Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.6480406Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.6480557Z auto tmp6 = std::log(tmp5); 2023-01-11T21:41:26.6480707Z auto tmp7 = tmp6 * tmp2; 2023-01-11T21:41:26.6480859Z auto tmp8 = static_cast(2); 2023-01-11T21:41:26.6481095Z auto tmp9 = tmp7 - tmp8; 2023-01-11T21:41:26.6481213Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.6481356Z out_ptr1[i0] = tmp9; 2023-01-11T21:41:26.6481468Z } 2023-01-11T21:41:26.6481581Z } 2023-01-11T21:41:26.6481693Z } 2023-01-11T21:41:26.6481838Z ''') 2023-01-11T21:41:26.6481848Z 2023-01-11T21:41:26.6481854Z 2023-01-11T21:41:26.6482078Z async_compile.wait(globals()) 2023-01-11T21:41:26.6482182Z del async_compile 2023-01-11T21:41:26.6482216Z 2023-01-11T21:41:26.6482331Z def call(args): 2023-01-11T21:41:26.6482443Z arg0_1, = args 2023-01-11T21:41:26.6482572Z args.clear() 2023-01-11T21:41:26.6482913Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6483252Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6483533Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6483658Z del arg0_1 2023-01-11T21:41:26.6483777Z return (buf0, buf1, ) 2023-01-11T21:41:26.6483788Z 2023-01-11T21:41:26.6483795Z 2023-01-11T21:41:26.6483930Z if __name__ == "__main__": 2023-01-11T21:41:26.6484131Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6484350Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6484691Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6484883Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6484900Z 2023-01-11T21:41:26.6485017Z ok (1.519s) 2023-01-11T21:41:26.6485769Z test_log_fp64_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6485987Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6486413Z [2023-01-11 21:35:57,027] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 351 2023-01-11T21:41:26.6486882Z [2023-01-11 21:35:58,543] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 351 2023-01-11T21:41:26.6486891Z 2023-01-11T21:41:26.6487050Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6487177Z import torch 2023-01-11T21:41:26.6487311Z import random 2023-01-11T21:41:26.6487515Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6487730Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6487740Z 2023-01-11T21:41:26.6487867Z aten = torch.ops.aten 2023-01-11T21:41:26.6488079Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6488246Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6488254Z 2023-01-11T21:41:26.6488261Z 2023-01-11T21:41:26.6488505Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6488837Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6489172Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.6489358Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.6489539Z double* __restrict__ out_ptr1) 2023-01-11T21:41:26.6489650Z { 2023-01-11T21:41:26.6489802Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6490031Z { 2023-01-11T21:41:26.6490170Z #pragma omp for 2023-01-11T21:41:26.6490327Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.6490446Z { 2023-01-11T21:41:26.6490563Z { 2023-01-11T21:41:26.6490659Z { 2023-01-11T21:41:26.6490820Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6490999Z auto tmp1 = std::log(tmp0); 2023-01-11T21:41:26.6491197Z auto tmp2 = static_cast(1.4426950408889634); 2023-01-11T21:41:26.6491359Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.6491615Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6491787Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6491897Z } 2023-01-11T21:41:26.6492026Z } 2023-01-11T21:41:26.6492253Z } 2023-01-11T21:41:26.6492389Z } 2023-01-11T21:41:26.6492515Z } 2023-01-11T21:41:26.6492694Z ''') 2023-01-11T21:41:26.6492712Z 2023-01-11T21:41:26.6492720Z 2023-01-11T21:41:26.6492899Z async_compile.wait(globals()) 2023-01-11T21:41:26.6493024Z del async_compile 2023-01-11T21:41:26.6493058Z 2023-01-11T21:41:26.6493178Z def call(args): 2023-01-11T21:41:26.6493313Z arg0_1, = args 2023-01-11T21:41:26.6493455Z args.clear() 2023-01-11T21:41:26.6493856Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6494245Z buf1 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6494565Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6494710Z del arg0_1 2023-01-11T21:41:26.6494846Z return (buf0, buf1, ) 2023-01-11T21:41:26.6494861Z 2023-01-11T21:41:26.6494868Z 2023-01-11T21:41:26.6495020Z if __name__ == "__main__": 2023-01-11T21:41:26.6495249Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6495487Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6495888Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.6496107Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6496121Z 2023-01-11T21:41:26.6496255Z ok (1.534s) 2023-01-11T21:41:26.6497166Z test_log_softmax_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6497419Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6497907Z [2023-01-11 21:35:58,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 352 2023-01-11T21:41:26.6497943Z 2023-01-11T21:41:26.6498197Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6498336Z import torch 2023-01-11T21:41:26.6498435Z import random 2023-01-11T21:41:26.6498620Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6498829Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6498839Z 2023-01-11T21:41:26.6498975Z aten = torch.ops.aten 2023-01-11T21:41:26.6499190Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6499331Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6499343Z 2023-01-11T21:41:26.6499349Z 2023-01-11T21:41:26.6499589Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6499926Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6500112Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6500297Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6500467Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6500639Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.6500895Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.6501028Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.6501200Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.6501368Z float* __restrict__ out_ptr5, 2023-01-11T21:41:26.6501545Z float* __restrict__ out_ptr6, 2023-01-11T21:41:26.6501710Z float* __restrict__ out_ptr7, 2023-01-11T21:41:26.6501875Z float* __restrict__ out_ptr8) 2023-01-11T21:41:26.6501964Z { 2023-01-11T21:41:26.6502117Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6502229Z { 2023-01-11T21:41:26.6502367Z #pragma omp for 2023-01-11T21:41:26.6502520Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6502702Z { 2023-01-11T21:41:26.6502821Z { 2023-01-11T21:41:26.6503551Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.6503928Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6504091Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.6504246Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.6504367Z { 2023-01-11T21:41:26.6504613Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6504867Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6505028Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6505235Z tmp3_vec = at::vec::maximum(tmp3_vec, tmp2); 2023-01-11T21:41:26.6505360Z } 2023-01-11T21:41:26.6505700Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp3_vec); 2023-01-11T21:41:26.6505909Z #pragma omp simd simdlen(4) reduction(max:tmp3) 2023-01-11T21:41:26.6506050Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.6506167Z { 2023-01-11T21:41:26.6506342Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.6506502Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.6506656Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6506815Z tmp3 = std::max(tmp3, tmp2); 2023-01-11T21:41:26.6506928Z } 2023-01-11T21:41:26.6507056Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.6507175Z } 2023-01-11T21:41:26.6507289Z } 2023-01-11T21:41:26.6507428Z #pragma omp for 2023-01-11T21:41:26.6507579Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6507673Z { 2023-01-11T21:41:26.6507791Z { 2023-01-11T21:41:26.6508242Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.6508409Z float tmp6 = 0; 2023-01-11T21:41:26.6508657Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.6509416Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.6509858Z float tmp7 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6510093Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.6510265Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.6510379Z { 2023-01-11T21:41:26.6510658Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6510934Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6511310Z auto tmp3 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.6511501Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6511786Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.6511970Z auto tmp5 = tmp4.exp(); 2023-01-11T21:41:26.6512139Z tmp6_vec += tmp5; 2023-01-11T21:41:26.6512325Z tmp7_vec = at::vec::maximum(tmp7_vec, tmp1); 2023-01-11T21:41:26.6512456Z } 2023-01-11T21:41:26.6512824Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.6513290Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp7_vec); 2023-01-11T21:41:26.6513577Z #pragma omp simd simdlen(4) reduction(+:tmp6) reduction(max:tmp7) 2023-01-11T21:41:26.6513744Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.6513882Z { 2023-01-11T21:41:26.6514077Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.6514248Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.6514509Z auto tmp3 = out_ptr0[i0]; 2023-01-11T21:41:26.6514673Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6514923Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.6515095Z auto tmp5 = std::exp(tmp4); 2023-01-11T21:41:26.6515213Z tmp6 += tmp5; 2023-01-11T21:41:26.6515387Z tmp7 = std::max(tmp7, tmp1); 2023-01-11T21:41:26.6515492Z } 2023-01-11T21:41:26.6515618Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.6515761Z out_ptr2[i0] = tmp7; 2023-01-11T21:41:26.6515878Z } 2023-01-11T21:41:26.6516003Z } 2023-01-11T21:41:26.6516147Z #pragma omp for 2023-01-11T21:41:26.6516288Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6516382Z { 2023-01-11T21:41:26.6516472Z { 2023-01-11T21:41:26.6516585Z { 2023-01-11T21:41:26.6516976Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6517144Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.6517275Z { 2023-01-11T21:41:26.6517395Z { 2023-01-11T21:41:26.6517546Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.6517740Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:41:26.6517868Z } 2023-01-11T21:41:26.6517987Z } 2023-01-11T21:41:26.6518147Z out_ptr3[i0] = tmp1; 2023-01-11T21:41:26.6518265Z } 2023-01-11T21:41:26.6518374Z } 2023-01-11T21:41:26.6518458Z } 2023-01-11T21:41:26.6518603Z #pragma omp for 2023-01-11T21:41:26.6518739Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6518852Z { 2023-01-11T21:41:26.6518973Z { 2023-01-11T21:41:26.6519088Z { 2023-01-11T21:41:26.6519234Z float tmp4 = 0; 2023-01-11T21:41:26.6519354Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.6519479Z { 2023-01-11T21:41:26.6519590Z { 2023-01-11T21:41:26.6519774Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.6519948Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:41:26.6520215Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6520383Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:41:26.6520514Z tmp4 += tmp3; 2023-01-11T21:41:26.6520639Z } 2023-01-11T21:41:26.6520765Z } 2023-01-11T21:41:26.6520973Z out_ptr4[i0] = tmp4; 2023-01-11T21:41:26.6521098Z } 2023-01-11T21:41:26.6521215Z } 2023-01-11T21:41:26.6521332Z } 2023-01-11T21:41:26.6521432Z #pragma omp for 2023-01-11T21:41:26.6521575Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6521690Z { 2023-01-11T21:41:26.6521812Z { 2023-01-11T21:41:26.6522131Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.6522274Z float tmp4 = 0; 2023-01-11T21:41:26.6522477Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:41:26.6522606Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.6522719Z { 2023-01-11T21:41:26.6523017Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6523231Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:41:26.6523494Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6523658Z auto tmp3 = tmp2.exp(); 2023-01-11T21:41:26.6523810Z tmp4_vec += tmp3; 2023-01-11T21:41:26.6523908Z } 2023-01-11T21:41:26.6524238Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp4_vec); 2023-01-11T21:41:26.6524444Z #pragma omp simd simdlen(4) reduction(+:tmp4) 2023-01-11T21:41:26.6524607Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.6524722Z { 2023-01-11T21:41:26.6524898Z auto tmp0 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.6525057Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:41:26.6525306Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6525464Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:41:26.6525597Z tmp4 += tmp3; 2023-01-11T21:41:26.6525723Z } 2023-01-11T21:41:26.6525866Z out_ptr5[i0] = tmp4; 2023-01-11T21:41:26.6525970Z } 2023-01-11T21:41:26.6526084Z } 2023-01-11T21:41:26.6526227Z #pragma omp for 2023-01-11T21:41:26.6526355Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6526471Z { 2023-01-11T21:41:26.6526623Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.6526742Z { 2023-01-11T21:41:26.6526979Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6527206Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6527422Z auto tmp3 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.6527651Z auto tmp5 = at::vec::Vectorized(out_ptr1[i0]); 2023-01-11T21:41:26.6527862Z auto tmp8 = at::vec::Vectorized::loadu(out_ptr3 + 8*i1); 2023-01-11T21:41:26.6528105Z auto tmp10 = at::vec::Vectorized::loadu(out_ptr4 + 8*i1); 2023-01-11T21:41:26.6528322Z auto tmp13 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:41:26.6528536Z auto tmp15 = at::vec::Vectorized(out_ptr5[i0]); 2023-01-11T21:41:26.6528693Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6528933Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.6529217Z auto tmp6 = tmp5.log(); 2023-01-11T21:41:26.6529450Z auto tmp7 = tmp4 - tmp6; 2023-01-11T21:41:26.6529656Z auto tmp9 = tmp0 - tmp8; 2023-01-11T21:41:26.6529812Z auto tmp11 = tmp10.log(); 2023-01-11T21:41:26.6530049Z auto tmp12 = tmp9 - tmp11; 2023-01-11T21:41:26.6530281Z auto tmp14 = tmp1 - tmp13; 2023-01-11T21:41:26.6530451Z auto tmp16 = tmp15.log(); 2023-01-11T21:41:26.6530688Z auto tmp17 = tmp14 - tmp16; 2023-01-11T21:41:26.6530980Z tmp7.store(out_ptr6 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6531142Z tmp12.store(out_ptr7 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6531317Z tmp17.store(out_ptr8 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6531438Z } 2023-01-11T21:41:26.6531598Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.6531749Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.6531865Z { 2023-01-11T21:41:26.6532033Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.6532173Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.6532310Z auto tmp3 = out_ptr0[i0]; 2023-01-11T21:41:26.6532463Z auto tmp5 = out_ptr1[i0]; 2023-01-11T21:41:26.6532604Z auto tmp8 = out_ptr3[i1]; 2023-01-11T21:41:26.6532842Z auto tmp10 = out_ptr4[i1]; 2023-01-11T21:41:26.6533012Z auto tmp13 = out_ptr2[i0]; 2023-01-11T21:41:26.6533162Z auto tmp15 = out_ptr5[i0]; 2023-01-11T21:41:26.6533263Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.6533501Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.6533668Z auto tmp6 = std::log(tmp5); 2023-01-11T21:41:26.6533899Z auto tmp7 = tmp4 - tmp6; 2023-01-11T21:41:26.6534132Z auto tmp9 = tmp0 - tmp8; 2023-01-11T21:41:26.6534310Z auto tmp11 = std::log(tmp10); 2023-01-11T21:41:26.6534533Z auto tmp12 = tmp9 - tmp11; 2023-01-11T21:41:26.6534748Z auto tmp14 = tmp1 - tmp13; 2023-01-11T21:41:26.6534922Z auto tmp16 = std::log(tmp15); 2023-01-11T21:41:26.6535170Z auto tmp17 = tmp14 - tmp16; 2023-01-11T21:41:26.6535329Z out_ptr6[i1 + (8*i0)] = tmp7; 2023-01-11T21:41:26.6535465Z out_ptr7[i1 + (8*i0)] = tmp12; 2023-01-11T21:41:26.6535610Z out_ptr8[i1 + (8*i0)] = tmp17; 2023-01-11T21:41:26.6535731Z } 2023-01-11T21:41:26.6535835Z } 2023-01-11T21:41:26.6535949Z } 2023-01-11T21:41:26.6536060Z } 2023-01-11T21:41:26.6536204Z ''') 2023-01-11T21:41:26.6536219Z 2023-01-11T21:41:26.6536226Z 2023-01-11T21:41:26.6536352Z async_compile.wait(globals()) 2023-01-11T21:41:26.6536476Z del async_compile 2023-01-11T21:41:26.6536484Z 2023-01-11T21:41:26.6536594Z def call(args): 2023-01-11T21:41:26.6536730Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6536838Z args.clear() 2023-01-11T21:41:26.6537180Z buf0 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6537508Z buf1 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6537842Z buf6 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6538179Z buf3 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6538490Z buf4 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6538817Z buf7 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6539120Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6539443Z buf5 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6539776Z buf8 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6540332Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf8.data_ptr())) 2023-01-11T21:41:26.6540458Z del arg0_1 2023-01-11T21:41:26.6540688Z del arg1_1 2023-01-11T21:41:26.6540865Z return (buf2, buf5, buf8, ) 2023-01-11T21:41:26.6540878Z 2023-01-11T21:41:26.6540884Z 2023-01-11T21:41:26.6541037Z if __name__ == "__main__": 2023-01-11T21:41:26.6541368Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6541581Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6541949Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6542350Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6542565Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6543094Z [2023-01-11 21:36:00,328] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 352 2023-01-11T21:41:26.6543105Z 2023-01-11T21:41:26.6543318Z ok (1.785s) 2023-01-11T21:41:26.6544288Z test_logsumexp_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6544553Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6545075Z [2023-01-11 21:36:00,379] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 353 2023-01-11T21:41:26.6545580Z [2023-01-11 21:36:02,009] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 353 2023-01-11T21:41:26.6545616Z 2023-01-11T21:41:26.6545775Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6545924Z import torch 2023-01-11T21:41:26.6546067Z import random 2023-01-11T21:41:26.6546299Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6546538Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6546548Z 2023-01-11T21:41:26.6546701Z aten = torch.ops.aten 2023-01-11T21:41:26.6546963Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6547214Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6547233Z 2023-01-11T21:41:26.6547266Z 2023-01-11T21:41:26.6547486Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6547812Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6548008Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.6548182Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.6548365Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6548541Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.6548707Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.6548778Z { 2023-01-11T21:41:26.6548916Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.6549068Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:41:26.6549254Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6549365Z { 2023-01-11T21:41:26.6549506Z #pragma omp for 2023-01-11T21:41:26.6549660Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6549752Z { 2023-01-11T21:41:26.6549861Z { 2023-01-11T21:41:26.6550498Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.6550842Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6551158Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.6551341Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.6551475Z { 2023-01-11T21:41:26.6551750Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6551955Z tmp1_vec = at::vec::maximum(tmp1_vec, tmp0); 2023-01-11T21:41:26.6552098Z } 2023-01-11T21:41:26.6552508Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp1_vec); 2023-01-11T21:41:26.6552833Z #pragma omp simd simdlen(4) reduction(max:tmp1) 2023-01-11T21:41:26.6553010Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.6553153Z { 2023-01-11T21:41:26.6553343Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.6553548Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:41:26.6553656Z } 2023-01-11T21:41:26.6553829Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.6553954Z } 2023-01-11T21:41:26.6554083Z } 2023-01-11T21:41:26.6554250Z #pragma omp for 2023-01-11T21:41:26.6554418Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6554550Z { 2023-01-11T21:41:26.6554659Z { 2023-01-11T21:41:26.6555094Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.6555267Z float tmp4 = 0; 2023-01-11T21:41:26.6555509Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:41:26.6555686Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.6555823Z { 2023-01-11T21:41:26.6556097Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.6556351Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.6556630Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6556819Z auto tmp3 = tmp2.exp(); 2023-01-11T21:41:26.6556987Z tmp4_vec += tmp3; 2023-01-11T21:41:26.6557126Z } 2023-01-11T21:41:26.6557505Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp4_vec); 2023-01-11T21:41:26.6557856Z #pragma omp simd simdlen(4) reduction(+:tmp4) 2023-01-11T21:41:26.6558028Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.6558119Z { 2023-01-11T21:41:26.6558287Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.6558449Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:41:26.6558706Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6558879Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:41:26.6559016Z tmp4 += tmp3; 2023-01-11T21:41:26.6559133Z } 2023-01-11T21:41:26.6559262Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.6559373Z } 2023-01-11T21:41:26.6559491Z } 2023-01-11T21:41:26.6559637Z #pragma omp for 2023-01-11T21:41:26.6559779Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6559893Z { 2023-01-11T21:41:26.6560011Z { 2023-01-11T21:41:26.6560112Z { 2023-01-11T21:41:26.6560271Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.6560435Z auto tmp2 = out_ptr0[i0]; 2023-01-11T21:41:26.6560610Z auto tmp1 = std::log(tmp0); 2023-01-11T21:41:26.6560778Z auto tmp3 = std::abs(tmp2); 2023-01-11T21:41:26.6561004Z auto tmp4 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.6561166Z auto tmp5 = tmp3 == tmp4; 2023-01-11T21:41:26.6561330Z auto tmp6 = static_cast(0.0); 2023-01-11T21:41:26.6561473Z auto tmp7 = tmp5 ? tmp6 : tmp2; 2023-01-11T21:41:26.6561627Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:41:26.6561775Z in_out_ptr0[i0] = tmp8; 2023-01-11T21:41:26.6561891Z } 2023-01-11T21:41:26.6562015Z } 2023-01-11T21:41:26.6562130Z } 2023-01-11T21:41:26.6562253Z #pragma omp for 2023-01-11T21:41:26.6562407Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6562518Z { 2023-01-11T21:41:26.6562637Z { 2023-01-11T21:41:26.6562840Z { 2023-01-11T21:41:26.6563241Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6563398Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.6563501Z { 2023-01-11T21:41:26.6563626Z { 2023-01-11T21:41:26.6563791Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.6563974Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:41:26.6564097Z } 2023-01-11T21:41:26.6564218Z } 2023-01-11T21:41:26.6564369Z out_ptr2[i0] = tmp1; 2023-01-11T21:41:26.6564463Z } 2023-01-11T21:41:26.6564579Z } 2023-01-11T21:41:26.6564685Z } 2023-01-11T21:41:26.6564832Z #pragma omp for 2023-01-11T21:41:26.6565061Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6565184Z { 2023-01-11T21:41:26.6565297Z { 2023-01-11T21:41:26.6565399Z { 2023-01-11T21:41:26.6565534Z float tmp4 = 0; 2023-01-11T21:41:26.6565683Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.6565805Z { 2023-01-11T21:41:26.6565931Z { 2023-01-11T21:41:26.6566111Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.6566286Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:41:26.6566518Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6566702Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:41:26.6566851Z tmp4 += tmp3; 2023-01-11T21:41:26.6566972Z } 2023-01-11T21:41:26.6567069Z } 2023-01-11T21:41:26.6567212Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.6567338Z } 2023-01-11T21:41:26.6567432Z } 2023-01-11T21:41:26.6567532Z } 2023-01-11T21:41:26.6567669Z #pragma omp for 2023-01-11T21:41:26.6567810Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6567929Z { 2023-01-11T21:41:26.6568034Z { 2023-01-11T21:41:26.6568131Z { 2023-01-11T21:41:26.6568294Z auto tmp0 = out_ptr3[i0]; 2023-01-11T21:41:26.6568456Z auto tmp2 = out_ptr2[i0]; 2023-01-11T21:41:26.6568610Z auto tmp1 = std::log(tmp0); 2023-01-11T21:41:26.6568785Z auto tmp3 = std::abs(tmp2); 2023-01-11T21:41:26.6569122Z auto tmp4 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.6569292Z auto tmp5 = tmp3 == tmp4; 2023-01-11T21:41:26.6569473Z auto tmp6 = static_cast(0.0); 2023-01-11T21:41:26.6569611Z auto tmp7 = tmp5 ? tmp6 : tmp2; 2023-01-11T21:41:26.6569777Z auto tmp8 = tmp1 + tmp7; 2023-01-11T21:41:26.6569968Z auto tmp9 = static_cast(2); 2023-01-11T21:41:26.6570244Z auto tmp10 = tmp8 - tmp9; 2023-01-11T21:41:26.6570389Z in_out_ptr1[i0] = tmp10; 2023-01-11T21:41:26.6570515Z } 2023-01-11T21:41:26.6570620Z } 2023-01-11T21:41:26.6570720Z } 2023-01-11T21:41:26.6570828Z } 2023-01-11T21:41:26.6570941Z } 2023-01-11T21:41:26.6571086Z ''') 2023-01-11T21:41:26.6571099Z 2023-01-11T21:41:26.6571106Z 2023-01-11T21:41:26.6571263Z async_compile.wait(globals()) 2023-01-11T21:41:26.6571398Z del async_compile 2023-01-11T21:41:26.6571412Z 2023-01-11T21:41:26.6571530Z def call(args): 2023-01-11T21:41:26.6571618Z arg0_1, = args 2023-01-11T21:41:26.6571741Z args.clear() 2023-01-11T21:41:26.6572093Z buf0 = empty_strided((8, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6572432Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6572616Z buf2 = as_strided(buf0, (8, ), (1, )); del buf0 # reuse 2023-01-11T21:41:26.6573064Z buf3 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6573514Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6573700Z buf5 = as_strided(buf3, (8, ), (1, )); del buf3 # reuse 2023-01-11T21:41:26.6574120Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.6574263Z del arg0_1 2023-01-11T21:41:26.6574422Z return (buf2, buf5, ) 2023-01-11T21:41:26.6574431Z 2023-01-11T21:41:26.6574440Z 2023-01-11T21:41:26.6574644Z if __name__ == "__main__": 2023-01-11T21:41:26.6574904Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6575202Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6575714Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6575918Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6576014Z 2023-01-11T21:41:26.6576129Z ok (1.681s) 2023-01-11T21:41:26.6590943Z test_long_tensor_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6591298Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6591885Z [2023-01-11 21:36:02,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 354 2023-01-11T21:41:26.6592437Z [2023-01-11 21:36:03,583] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 354 2023-01-11T21:41:26.6592452Z 2023-01-11T21:41:26.6592639Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6592791Z import torch 2023-01-11T21:41:26.6592944Z import random 2023-01-11T21:41:26.6593178Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6593399Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6593409Z 2023-01-11T21:41:26.6593564Z aten = torch.ops.aten 2023-01-11T21:41:26.6593815Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6594010Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6594019Z 2023-01-11T21:41:26.6594027Z 2023-01-11T21:41:26.6594307Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6594692Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6594931Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6595135Z long* __restrict__ out_ptr0, 2023-01-11T21:41:26.6595319Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.6595451Z { 2023-01-11T21:41:26.6595649Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6595784Z { 2023-01-11T21:41:26.6595945Z #pragma omp for 2023-01-11T21:41:26.6596112Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.6596223Z { 2023-01-11T21:41:26.6596354Z { 2023-01-11T21:41:26.6596489Z { 2023-01-11T21:41:26.6596672Z auto tmp1 = in_ptr0[i0]; 2023-01-11T21:41:26.6596888Z auto tmp0 = static_cast(294); 2023-01-11T21:41:26.6597177Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.6597382Z auto tmp3 = static_cast(295); 2023-01-11T21:41:26.6597543Z auto tmp4 = tmp3 + tmp1; 2023-01-11T21:41:26.6597720Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6597893Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.6598041Z } 2023-01-11T21:41:26.6598179Z } 2023-01-11T21:41:26.6598310Z } 2023-01-11T21:41:26.6598443Z } 2023-01-11T21:41:26.6598675Z } 2023-01-11T21:41:26.6598843Z ''') 2023-01-11T21:41:26.6598853Z 2023-01-11T21:41:26.6598862Z 2023-01-11T21:41:26.6599050Z async_compile.wait(globals()) 2023-01-11T21:41:26.6599203Z del async_compile 2023-01-11T21:41:26.6599213Z 2023-01-11T21:41:26.6599353Z def call(args): 2023-01-11T21:41:26.6599498Z arg0_1, = args 2023-01-11T21:41:26.6599632Z args.clear() 2023-01-11T21:41:26.6600004Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6600380Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6600688Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6600836Z del arg0_1 2023-01-11T21:41:26.6600997Z return (buf0, buf1, ) 2023-01-11T21:41:26.6601010Z 2023-01-11T21:41:26.6601017Z 2023-01-11T21:41:26.6601267Z if __name__ == "__main__": 2023-01-11T21:41:26.6601506Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6601750Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6602105Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6602328Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6602340Z 2023-01-11T21:41:26.6602482Z ok (1.573s) 2023-01-11T21:41:26.6603152Z test_lowmem_dropout1_cpu (__main__.CpuTests) ... [2023-01-11 21:36:03,605] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 355 2023-01-11T21:41:26.6603679Z [2023-01-11 21:36:03,612] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 355 2023-01-11T21:41:26.6604204Z [2023-01-11 21:36:03,614] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 355 2023-01-11T21:41:26.6604741Z [2023-01-11 21:36:03,620] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 355 2023-01-11T21:41:26.6605253Z [2023-01-11 21:36:03,738] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 356 2023-01-11T21:41:26.6605763Z [2023-01-11 21:36:03,739] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.6606411Z [2023-01-11 21:36:03,749] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 356 2023-01-11T21:41:26.6606851Z [2023-01-11 21:36:03,751] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 356 2023-01-11T21:41:26.6606862Z 2023-01-11T21:41:26.6607019Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6607149Z import torch 2023-01-11T21:41:26.6607279Z import random 2023-01-11T21:41:26.6607581Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6607816Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6607825Z 2023-01-11T21:41:26.6607991Z aten = torch.ops.aten 2023-01-11T21:41:26.6608232Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6608432Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6608444Z 2023-01-11T21:41:26.6608452Z 2023-01-11T21:41:26.6608729Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6609273Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6609521Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6609725Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6609913Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6610041Z { 2023-01-11T21:41:26.6610220Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6610343Z { 2023-01-11T21:41:26.6610505Z #pragma omp for 2023-01-11T21:41:26.6610675Z for(long i0=0; i0<12500; i0+=1) 2023-01-11T21:41:26.6610808Z { 2023-01-11T21:41:26.6611081Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6611340Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.6611632Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.6611814Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6611945Z } 2023-01-11T21:41:26.6612138Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6612322Z for(long i0=100000; i0<100000; i0+=1) 2023-01-11T21:41:26.6612449Z { 2023-01-11T21:41:26.6612621Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6612778Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.6612941Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.6613099Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6613230Z } 2023-01-11T21:41:26.6613355Z } 2023-01-11T21:41:26.6613477Z } 2023-01-11T21:41:26.6613659Z ''') 2023-01-11T21:41:26.6613669Z 2023-01-11T21:41:26.6613676Z 2023-01-11T21:41:26.6613912Z async_compile.wait(globals()) 2023-01-11T21:41:26.6614171Z del async_compile 2023-01-11T21:41:26.6614179Z 2023-01-11T21:41:26.6614320Z def call(args): 2023-01-11T21:41:26.6614485Z primals_1, primals_2 = args 2023-01-11T21:41:26.6614618Z args.clear() 2023-01-11T21:41:26.6614967Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6615263Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6615396Z del primals_2 2023-01-11T21:41:26.6615527Z return (buf0, primals_1, ) 2023-01-11T21:41:26.6615536Z 2023-01-11T21:41:26.6615543Z 2023-01-11T21:41:26.6615678Z if __name__ == "__main__": 2023-01-11T21:41:26.6615857Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6616056Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6616545Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6616950Z primals_2 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6617204Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:41:26.6617222Z 2023-01-11T21:41:26.6617229Z 2023-01-11T21:41:26.6617419Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6617540Z import torch 2023-01-11T21:41:26.6617687Z import random 2023-01-11T21:41:26.6617918Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6618144Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6618155Z 2023-01-11T21:41:26.6618312Z aten = torch.ops.aten 2023-01-11T21:41:26.6618574Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6618756Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6618766Z 2023-01-11T21:41:26.6618772Z 2023-01-11T21:41:26.6619035Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6619412Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6619642Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6619856Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6620054Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6620184Z { 2023-01-11T21:41:26.6620383Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6620514Z { 2023-01-11T21:41:26.6620650Z #pragma omp for 2023-01-11T21:41:26.6620816Z for(long i0=0; i0<12500; i0+=1) 2023-01-11T21:41:26.6620947Z { 2023-01-11T21:41:26.6621208Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6621471Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.6621648Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.6621829Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6621937Z } 2023-01-11T21:41:26.6622131Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6622324Z for(long i0=100000; i0<100000; i0+=1) 2023-01-11T21:41:26.6622456Z { 2023-01-11T21:41:26.6622722Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6622981Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.6623197Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.6623330Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6623447Z } 2023-01-11T21:41:26.6623560Z } 2023-01-11T21:41:26.6623671Z } 2023-01-11T21:41:26.6623832Z ''') 2023-01-11T21:41:26.6623841Z 2023-01-11T21:41:26.6623847Z 2023-01-11T21:41:26.6624002Z async_compile.wait(globals()) 2023-01-11T21:41:26.6624137Z del async_compile 2023-01-11T21:41:26.6624146Z 2023-01-11T21:41:26.6624252Z def call(args): 2023-01-11T21:41:26.6624415Z primals_1, tangents_1 = args 2023-01-11T21:41:26.6624550Z args.clear() 2023-01-11T21:41:26.6624896Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6625270Z kernel_cpp_0(c_void_p(tangents_1.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6625410Z del primals_1 2023-01-11T21:41:26.6625550Z del tangents_1 2023-01-11T21:41:26.6625673Z return (None, buf0, ) 2023-01-11T21:41:26.6625701Z 2023-01-11T21:41:26.6625709Z 2023-01-11T21:41:26.6625821Z if __name__ == "__main__": 2023-01-11T21:41:26.6626015Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6626228Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6626587Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6627074Z tangents_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6627334Z print_performance(lambda: call([primals_1, tangents_1])) 2023-01-11T21:41:26.6627346Z 2023-01-11T21:41:26.6627353Z 2023-01-11T21:41:26.6627541Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6627689Z import torch 2023-01-11T21:41:26.6627815Z import random 2023-01-11T21:41:26.6628049Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6628287Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6628305Z 2023-01-11T21:41:26.6628468Z aten = torch.ops.aten 2023-01-11T21:41:26.6628733Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6628921Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6629232Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.6629248Z 2023-01-11T21:41:26.6629254Z 2023-01-11T21:41:26.6629531Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6629889Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6630117Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.6630329Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6630544Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.6630730Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6630856Z { 2023-01-11T21:41:26.6631058Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6631167Z { 2023-01-11T21:41:26.6631324Z #pragma omp for 2023-01-11T21:41:26.6631499Z for(long i0=0; i0<100000; i0+=1) 2023-01-11T21:41:26.6631635Z { 2023-01-11T21:41:26.6631745Z { 2023-01-11T21:41:26.6631885Z { 2023-01-11T21:41:26.6632065Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.6632231Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.6632421Z auto tmp7 = in_ptr2[i0]; 2023-01-11T21:41:26.6632631Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.6632895Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.6633114Z auto tmp3 = static_cast(0.33); 2023-01-11T21:41:26.6633305Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.6633595Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.6633805Z auto tmp8 = tmp6 * tmp7; 2023-01-11T21:41:26.6633966Z auto tmp9 = tmp5 * tmp8; 2023-01-11T21:41:26.6634164Z auto tmp10 = static_cast(1.492537313432836); 2023-01-11T21:41:26.6634331Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:41:26.6634486Z out_ptr0[i0] = tmp11; 2023-01-11T21:41:26.6634605Z } 2023-01-11T21:41:26.6634713Z } 2023-01-11T21:41:26.6634810Z } 2023-01-11T21:41:26.6634921Z } 2023-01-11T21:41:26.6635030Z } 2023-01-11T21:41:26.6635189Z ''') 2023-01-11T21:41:26.6635200Z 2023-01-11T21:41:26.6635206Z 2023-01-11T21:41:26.6635368Z async_compile.wait(globals()) 2023-01-11T21:41:26.6635505Z del async_compile 2023-01-11T21:41:26.6635514Z 2023-01-11T21:41:26.6635630Z def call(args): 2023-01-11T21:41:26.6635881Z primals_1, primals_2 = args 2023-01-11T21:41:26.6636020Z args.clear() 2023-01-11T21:41:26.6636257Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.6636600Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6636957Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6637096Z del primals_2 2023-01-11T21:41:26.6637303Z return (buf0, primals_1, seed_cpu_None.clone(), ) 2023-01-11T21:41:26.6637314Z 2023-01-11T21:41:26.6637320Z 2023-01-11T21:41:26.6637449Z if __name__ == "__main__": 2023-01-11T21:41:26.6637606Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6637778Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6638119Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6638477Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6638817Z primals_2 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6639038Z print_performance(lambda: call([primals_1, primals_2])) 2023-01-11T21:41:26.6639052Z 2023-01-11T21:41:26.6639497Z [2023-01-11 21:36:03,760] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 356 2023-01-11T21:41:26.6639510Z 2023-01-11T21:41:26.6639667Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6639797Z import torch 2023-01-11T21:41:26.6639909Z import random 2023-01-11T21:41:26.6640111Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6640315Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6640323Z 2023-01-11T21:41:26.6640466Z aten = torch.ops.aten 2023-01-11T21:41:26.6640678Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6640846Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6640861Z 2023-01-11T21:41:26.6640870Z 2023-01-11T21:41:26.6641103Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6641432Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6641583Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6641793Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6641975Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.6642155Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6642265Z { 2023-01-11T21:41:26.6642440Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6642538Z { 2023-01-11T21:41:26.6642658Z #pragma omp for 2023-01-11T21:41:26.6642810Z for(long i0=0; i0<100000; i0+=1) 2023-01-11T21:41:26.6642927Z { 2023-01-11T21:41:26.6643042Z { 2023-01-11T21:41:26.6643168Z { 2023-01-11T21:41:26.6643342Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.6643495Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.6643639Z auto tmp10 = in_ptr2[i0]; 2023-01-11T21:41:26.6643902Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.6644143Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.6644326Z auto tmp3 = static_cast(0.33); 2023-01-11T21:41:26.6644483Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.6644683Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.6644845Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.6645023Z auto tmp8 = static_cast(1.492537313432836); 2023-01-11T21:41:26.6645188Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.6645334Z auto tmp11 = tmp9 * tmp10; 2023-01-11T21:41:26.6645493Z out_ptr0[i0] = tmp11; 2023-01-11T21:41:26.6645685Z } 2023-01-11T21:41:26.6645804Z } 2023-01-11T21:41:26.6645919Z } 2023-01-11T21:41:26.6646015Z } 2023-01-11T21:41:26.6646123Z } 2023-01-11T21:41:26.6646288Z ''') 2023-01-11T21:41:26.6646296Z 2023-01-11T21:41:26.6646303Z 2023-01-11T21:41:26.6646457Z async_compile.wait(globals()) 2023-01-11T21:41:26.6646589Z del async_compile 2023-01-11T21:41:26.6646599Z 2023-01-11T21:41:26.6646728Z def call(args): 2023-01-11T21:41:26.6646927Z primals_1, philox_seed_like, tangents_1 = args 2023-01-11T21:41:26.6647035Z args.clear() 2023-01-11T21:41:26.6647381Z buf0 = empty_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6647738Z kernel_cpp_0(c_void_p(philox_seed_like.data_ptr()), c_void_p(tangents_1.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6647878Z del philox_seed_like 2023-01-11T21:41:26.6647999Z del primals_1 2023-01-11T21:41:26.6648120Z del tangents_1 2023-01-11T21:41:26.6648264Z return (None, buf0, ) 2023-01-11T21:41:26.6648274Z 2023-01-11T21:41:26.6648280Z 2023-01-11T21:41:26.6648414Z if __name__ == "__main__": 2023-01-11T21:41:26.6648591Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6648800Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6649288Z primals_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6649636Z philox_seed_like = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6649988Z tangents_1 = rand_strided((100000, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6650241Z print_performance(lambda: call([primals_1, philox_seed_like, tangents_1])) 2023-01-11T21:41:26.6650249Z 2023-01-11T21:41:26.6650374Z ok (0.183s) 2023-01-11T21:41:26.6650955Z test_lowmem_dropout2_cpu (__main__.CpuTests) ... [2023-01-11 21:36:04,000] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 357 2023-01-11T21:41:26.6651389Z [2023-01-11 21:36:04,001] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.6651853Z [2023-01-11 21:36:05,969] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 357 2023-01-11T21:41:26.6652299Z [2023-01-11 21:36:05,972] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling BACKWARDS graph 357 2023-01-11T21:41:26.6652756Z [2023-01-11 21:36:08,682] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling BACKWARDS graph 357 2023-01-11T21:41:26.6652765Z 2023-01-11T21:41:26.6652936Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6653069Z import torch 2023-01-11T21:41:26.6653197Z import random 2023-01-11T21:41:26.6653397Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6653582Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6653613Z 2023-01-11T21:41:26.6653733Z aten = torch.ops.aten 2023-01-11T21:41:26.6653972Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6654123Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6654520Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.6654530Z 2023-01-11T21:41:26.6654537Z 2023-01-11T21:41:26.6654788Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6655126Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6655328Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.6655510Z const long* __restrict__ seed0) 2023-01-11T21:41:26.6655602Z { 2023-01-11T21:41:26.6655787Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6655905Z { 2023-01-11T21:41:26.6656050Z #pragma omp for 2023-01-11T21:41:26.6656203Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.6656323Z { 2023-01-11T21:41:26.6656425Z { 2023-01-11T21:41:26.6656627Z { 2023-01-11T21:41:26.6656783Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.6656960Z auto tmp6 = in_out_ptr0[i0]; 2023-01-11T21:41:26.6657146Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.6657395Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.6657583Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.6657751Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.6657916Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.6658082Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.6658268Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.6658433Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.6658599Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.6658714Z } 2023-01-11T21:41:26.6658825Z } 2023-01-11T21:41:26.6658924Z } 2023-01-11T21:41:26.6659040Z } 2023-01-11T21:41:26.6659151Z } 2023-01-11T21:41:26.6659314Z ''') 2023-01-11T21:41:26.6659327Z 2023-01-11T21:41:26.6659332Z 2023-01-11T21:41:26.6659568Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.6659909Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6660116Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.6660272Z const long* __restrict__ seed0) 2023-01-11T21:41:26.6660389Z { 2023-01-11T21:41:26.6660559Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6660676Z { 2023-01-11T21:41:26.6660932Z #pragma omp for 2023-01-11T21:41:26.6661106Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.6661232Z { 2023-01-11T21:41:26.6661348Z { 2023-01-11T21:41:26.6661475Z { 2023-01-11T21:41:26.6661651Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.6661854Z auto tmp6 = in_out_ptr0[i0]; 2023-01-11T21:41:26.6662072Z auto tmp1 = static_cast(256 + i0); 2023-01-11T21:41:26.6662351Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.6662566Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.6662732Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.6662946Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.6663217Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.6663435Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.6663619Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.6663799Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.6663935Z } 2023-01-11T21:41:26.6664049Z } 2023-01-11T21:41:26.6664178Z } 2023-01-11T21:41:26.6664308Z } 2023-01-11T21:41:26.6664430Z } 2023-01-11T21:41:26.6664610Z ''') 2023-01-11T21:41:26.6664621Z 2023-01-11T21:41:26.6664630Z 2023-01-11T21:41:26.6664815Z async_compile.wait(globals()) 2023-01-11T21:41:26.6665066Z del async_compile 2023-01-11T21:41:26.6665076Z 2023-01-11T21:41:26.6665201Z def call(args): 2023-01-11T21:41:26.6665406Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.6665551Z args.clear() 2023-01-11T21:41:26.6665821Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.6666235Z buf0 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6666494Z aten.mm.out(primals_3, as_strided(primals_1, (32, 32), (1, 32)), out=buf0) 2023-01-11T21:41:26.6666644Z del primals_1 2023-01-11T21:41:26.6666799Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.6667091Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(seed_cpu_None.data_ptr())) 2023-01-11T21:41:26.6667575Z buf2 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6667880Z aten.mm.out(buf1, as_strided(primals_2, (32, 32), (1, 32)), out=buf2) 2023-01-11T21:41:26.6668040Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:41:26.6668296Z kernel_cpp_1(c_void_p(buf3.data_ptr()), c_void_p(seed_cpu_None.data_ptr())) 2023-01-11T21:41:26.6668557Z return (buf3, primals_3, seed_cpu_None.clone(), buf1, as_strided(primals_2, (32, 32), (32, 1)), ) 2023-01-11T21:41:26.6668567Z 2023-01-11T21:41:26.6668574Z 2023-01-11T21:41:26.6668710Z if __name__ == "__main__": 2023-01-11T21:41:26.6668914Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6669108Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6669454Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6669816Z primals_1 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6670161Z primals_2 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6670527Z primals_3 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6670760Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.6670775Z 2023-01-11T21:41:26.6670782Z 2023-01-11T21:41:26.6670950Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6671073Z import torch 2023-01-11T21:41:26.6671181Z import random 2023-01-11T21:41:26.6671377Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6671597Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6671610Z 2023-01-11T21:41:26.6671750Z aten = torch.ops.aten 2023-01-11T21:41:26.6671980Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6672143Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6672153Z 2023-01-11T21:41:26.6672159Z 2023-01-11T21:41:26.6672403Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6672745Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6672927Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6673116Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6673291Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6673404Z { 2023-01-11T21:41:26.6673573Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6673681Z { 2023-01-11T21:41:26.6673825Z #pragma omp for 2023-01-11T21:41:26.6673954Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.6674072Z { 2023-01-11T21:41:26.6674190Z { 2023-01-11T21:41:26.6674309Z { 2023-01-11T21:41:26.6674466Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.6674632Z auto tmp6 = in_ptr1[i0]; 2023-01-11T21:41:26.6674819Z auto tmp1 = static_cast(256 + i0); 2023-01-11T21:41:26.6675042Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.6675232Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.6675385Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.6675665Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.6675829Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.6676017Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.6676180Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.6676307Z out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.6676430Z } 2023-01-11T21:41:26.6676550Z } 2023-01-11T21:41:26.6676668Z } 2023-01-11T21:41:26.6676783Z } 2023-01-11T21:41:26.6676893Z } 2023-01-11T21:41:26.6677033Z ''') 2023-01-11T21:41:26.6677058Z 2023-01-11T21:41:26.6677063Z 2023-01-11T21:41:26.6677285Z kernel_cpp_1 = async_compile.cpp(''' 2023-01-11T21:41:26.6677717Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6677927Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.6678105Z const long* __restrict__ in_ptr0) 2023-01-11T21:41:26.6678228Z { 2023-01-11T21:41:26.6678405Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6678516Z { 2023-01-11T21:41:26.6678639Z #pragma omp for 2023-01-11T21:41:26.6678793Z for(long i0=0; i0<256; i0+=1) 2023-01-11T21:41:26.6678898Z { 2023-01-11T21:41:26.6679022Z { 2023-01-11T21:41:26.6679148Z { 2023-01-11T21:41:26.6679313Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.6679481Z auto tmp6 = in_out_ptr0[i0]; 2023-01-11T21:41:26.6679642Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.6679874Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.6680060Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.6680231Z auto tmp4 = tmp2 > tmp3; 2023-01-11T21:41:26.6680417Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.6680581Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.6680762Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.6680904Z auto tmp9 = tmp7 * tmp8; 2023-01-11T21:41:26.6681065Z in_out_ptr0[i0] = tmp9; 2023-01-11T21:41:26.6681187Z } 2023-01-11T21:41:26.6681307Z } 2023-01-11T21:41:26.6681422Z } 2023-01-11T21:41:26.6681529Z } 2023-01-11T21:41:26.6681641Z } 2023-01-11T21:41:26.6681785Z ''') 2023-01-11T21:41:26.6681793Z 2023-01-11T21:41:26.6681799Z 2023-01-11T21:41:26.6681959Z async_compile.wait(globals()) 2023-01-11T21:41:26.6682098Z del async_compile 2023-01-11T21:41:26.6682107Z 2023-01-11T21:41:26.6682237Z def call(args): 2023-01-11T21:41:26.6682451Z primals_3, philox_seed_like, mul_1, permute_4, tangents_1 = args 2023-01-11T21:41:26.6682566Z args.clear() 2023-01-11T21:41:26.6682844Z buf0 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6683091Z kernel_cpp_0(c_void_p(philox_seed_like.data_ptr()), c_void_p(tangents_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6683176Z del tangents_1 2023-01-11T21:41:26.6683479Z buf1 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6683689Z aten.mm.out(as_strided(buf0, (32, 8), (1, 32)), mul_1, out=buf1) 2023-01-11T21:41:26.6683818Z del mul_1 2023-01-11T21:41:26.6684156Z buf2 = empty_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6684321Z aten.mm.out(buf0, permute_4, out=buf2) 2023-01-11T21:41:26.6684444Z del buf0 2023-01-11T21:41:26.6684554Z del permute_4 2023-01-11T21:41:26.6684705Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:41:26.6684976Z kernel_cpp_1(c_void_p(buf3.data_ptr()), c_void_p(philox_seed_like.data_ptr())) 2023-01-11T21:41:26.6685108Z del philox_seed_like 2023-01-11T21:41:26.6685439Z buf4 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6685732Z aten.mm.out(as_strided(buf3, (32, 8), (1, 32)), primals_3, out=buf4) 2023-01-11T21:41:26.6685854Z del buf3 2023-01-11T21:41:26.6685961Z del primals_3 2023-01-11T21:41:26.6686175Z return (as_strided(buf4, (32, 32), (32, 1)), as_strided(buf1, (32, 32), (32, 1)), None, ) 2023-01-11T21:41:26.6686184Z 2023-01-11T21:41:26.6686191Z 2023-01-11T21:41:26.6686323Z if __name__ == "__main__": 2023-01-11T21:41:26.6686520Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6686738Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6687084Z primals_3 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6687425Z philox_seed_like = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6687827Z mul_1 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6688163Z permute_4 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6688529Z tangents_1 = rand_strided((8, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6688800Z print_performance(lambda: call([primals_3, philox_seed_like, mul_1, permute_4, tangents_1])) 2023-01-11T21:41:26.6688809Z 2023-01-11T21:41:26.6688929Z ok (4.927s) 2023-01-11T21:41:26.6690045Z test_masked_fill_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6690290Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6690820Z [2023-01-11 21:36:08,750] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 358 2023-01-11T21:41:26.6691344Z [2023-01-11 21:36:11,066] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 358 2023-01-11T21:41:26.6701110Z 2023-01-11T21:41:26.6701456Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6701602Z import torch 2023-01-11T21:41:26.6701717Z import random 2023-01-11T21:41:26.6701948Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6702181Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6702190Z 2023-01-11T21:41:26.6702352Z aten = torch.ops.aten 2023-01-11T21:41:26.6702614Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6702803Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6702813Z 2023-01-11T21:41:26.6702823Z 2023-01-11T21:41:26.6703111Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6703595Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6703810Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.6704022Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6704217Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6704403Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6704529Z { 2023-01-11T21:41:26.6704727Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6704857Z { 2023-01-11T21:41:26.6704998Z #pragma omp for 2023-01-11T21:41:26.6705155Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.6705287Z { 2023-01-11T21:41:26.6705450Z #pragma GCC ivdep 2023-01-11T21:41:26.6705626Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.6705760Z { 2023-01-11T21:41:26.6705898Z { 2023-01-11T21:41:26.6706012Z { 2023-01-11T21:41:26.6706205Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.6706404Z auto tmp2 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:41:26.6706907Z auto tmp1 = static_cast(-10000.0); 2023-01-11T21:41:26.6707112Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:41:26.6707329Z auto tmp4 = static_cast(2); 2023-01-11T21:41:26.6707524Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.6707688Z auto tmp6 = tmp0 == 0; 2023-01-11T21:41:26.6707907Z auto tmp7 = static_cast(667.0); 2023-01-11T21:41:26.6708114Z auto tmp8 = static_cast(2.0); 2023-01-11T21:41:26.6708299Z auto tmp9 = tmp2 / tmp8; 2023-01-11T21:41:26.6708503Z auto tmp10 = tmp6 ? tmp7 : tmp9; 2023-01-11T21:41:26.6708688Z out_ptr0[i1 + (16*i0)] = tmp5; 2023-01-11T21:41:26.6709054Z out_ptr1[i1 + (16*i0)] = tmp10; 2023-01-11T21:41:26.6709180Z } 2023-01-11T21:41:26.6709279Z } 2023-01-11T21:41:26.6709403Z } 2023-01-11T21:41:26.6709525Z } 2023-01-11T21:41:26.6709639Z } 2023-01-11T21:41:26.6709750Z } 2023-01-11T21:41:26.6709905Z ''') 2023-01-11T21:41:26.6709915Z 2023-01-11T21:41:26.6709921Z 2023-01-11T21:41:26.6710058Z async_compile.wait(globals()) 2023-01-11T21:41:26.6710191Z del async_compile 2023-01-11T21:41:26.6710200Z 2023-01-11T21:41:26.6710323Z def call(args): 2023-01-11T21:41:26.6710460Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6710586Z args.clear() 2023-01-11T21:41:26.6710937Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6711275Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6711602Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6711709Z del arg0_1 2023-01-11T21:41:26.6711826Z del arg1_1 2023-01-11T21:41:26.6711966Z return (buf0, buf1, ) 2023-01-11T21:41:26.6711979Z 2023-01-11T21:41:26.6711987Z 2023-01-11T21:41:26.6712129Z if __name__ == "__main__": 2023-01-11T21:41:26.6712322Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6712536Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6712871Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.6713221Z arg1_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6713407Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6713416Z 2023-01-11T21:41:26.6713536Z ok (2.373s) 2023-01-11T21:41:26.6714133Z test_masked_fill_promotion_cpu (__main__.CpuTests) ... [2023-01-11 21:36:11,092] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 359 2023-01-11T21:41:26.6714597Z [2023-01-11 21:36:12,762] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 359 2023-01-11T21:41:26.6715051Z [2023-01-11 21:36:12,785] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 360 2023-01-11T21:41:26.6715498Z [2023-01-11 21:36:14,388] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 360 2023-01-11T21:41:26.6715508Z 2023-01-11T21:41:26.6715676Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6715802Z import torch 2023-01-11T21:41:26.6715908Z import random 2023-01-11T21:41:26.6716111Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6716316Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6716324Z 2023-01-11T21:41:26.6716459Z aten = torch.ops.aten 2023-01-11T21:41:26.6716695Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6716856Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6716869Z 2023-01-11T21:41:26.6716879Z 2023-01-11T21:41:26.6717108Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6717448Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6717728Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.6717917Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6718088Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6718202Z { 2023-01-11T21:41:26.6718383Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6718492Z { 2023-01-11T21:41:26.6718631Z #pragma omp for 2023-01-11T21:41:26.6718756Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.6718870Z { 2023-01-11T21:41:26.6719010Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.6719125Z { 2023-01-11T21:41:26.6719308Z float g_tmp_buffer_in_ptr0[8] = {0}; 2023-01-11T21:41:26.6719590Z flag_to_float(in_ptr0 + 8*i1, g_tmp_buffer_in_ptr0, 8); 2023-01-11T21:41:26.6719849Z auto tmp0 = at::vec::Vectorized::loadu(g_tmp_buffer_in_ptr0); 2023-01-11T21:41:26.6720105Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (16*i0)); 2023-01-11T21:41:26.6720324Z auto tmp1 = at::vec::Vectorized(static_cast(3.5)); 2023-01-11T21:41:26.6720550Z auto tmp3 = decltype(tmp1)::blendv(tmp2, tmp1, tmp0); 2023-01-11T21:41:26.6720725Z tmp3.store(out_ptr0 + (8*i1) + (16*i0)); 2023-01-11T21:41:26.6720838Z } 2023-01-11T21:41:26.6721008Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.6721162Z for(long i1=16; i1<16; i1+=1) 2023-01-11T21:41:26.6721279Z { 2023-01-11T21:41:26.6721412Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.6721579Z auto tmp2 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:41:26.6721750Z auto tmp1 = static_cast(3.5); 2023-01-11T21:41:26.6721927Z auto tmp3 = tmp0 ? tmp1 : tmp2; 2023-01-11T21:41:26.6722094Z out_ptr0[i1 + (16*i0)] = tmp3; 2023-01-11T21:41:26.6722214Z } 2023-01-11T21:41:26.6722337Z } 2023-01-11T21:41:26.6722431Z } 2023-01-11T21:41:26.6722537Z } 2023-01-11T21:41:26.6722700Z ''') 2023-01-11T21:41:26.6722712Z 2023-01-11T21:41:26.6722718Z 2023-01-11T21:41:26.6722875Z async_compile.wait(globals()) 2023-01-11T21:41:26.6723017Z del async_compile 2023-01-11T21:41:26.6723027Z 2023-01-11T21:41:26.6723155Z def call(args): 2023-01-11T21:41:26.6723289Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6723394Z args.clear() 2023-01-11T21:41:26.6723743Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6724015Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6724137Z del arg0_1 2023-01-11T21:41:26.6724260Z del arg1_1 2023-01-11T21:41:26.6724385Z return (buf0, ) 2023-01-11T21:41:26.6724395Z 2023-01-11T21:41:26.6724403Z 2023-01-11T21:41:26.6724538Z if __name__ == "__main__": 2023-01-11T21:41:26.6724749Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6724949Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6725277Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.6725619Z arg1_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6725822Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6725831Z 2023-01-11T21:41:26.6725837Z 2023-01-11T21:41:26.6726005Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6726121Z import torch 2023-01-11T21:41:26.6726248Z import random 2023-01-11T21:41:26.6726449Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6726636Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6726645Z 2023-01-11T21:41:26.6726787Z aten = torch.ops.aten 2023-01-11T21:41:26.6727018Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6727269Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6727278Z 2023-01-11T21:41:26.6727284Z 2023-01-11T21:41:26.6727521Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6727860Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6728056Z extern "C" void kernel(const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.6728239Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.6728394Z long* __restrict__ out_ptr0) 2023-01-11T21:41:26.6728507Z { 2023-01-11T21:41:26.6728687Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6728800Z { 2023-01-11T21:41:26.6728927Z #pragma omp for 2023-01-11T21:41:26.6729192Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.6729314Z { 2023-01-11T21:41:26.6729542Z #pragma GCC ivdep 2023-01-11T21:41:26.6729696Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.6729813Z { 2023-01-11T21:41:26.6729930Z { 2023-01-11T21:41:26.6730047Z { 2023-01-11T21:41:26.6730212Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.6730393Z auto tmp3 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:41:26.6730562Z auto tmp1 = static_cast(3.5); 2023-01-11T21:41:26.6730752Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.6730928Z auto tmp4 = tmp0 ? tmp2 : tmp3; 2023-01-11T21:41:26.6731096Z out_ptr0[i1 + (16*i0)] = tmp4; 2023-01-11T21:41:26.6731219Z } 2023-01-11T21:41:26.6731339Z } 2023-01-11T21:41:26.6731456Z } 2023-01-11T21:41:26.6731552Z } 2023-01-11T21:41:26.6731666Z } 2023-01-11T21:41:26.6731774Z } 2023-01-11T21:41:26.6731942Z ''') 2023-01-11T21:41:26.6731958Z 2023-01-11T21:41:26.6731964Z 2023-01-11T21:41:26.6732129Z async_compile.wait(globals()) 2023-01-11T21:41:26.6732267Z del async_compile 2023-01-11T21:41:26.6732274Z 2023-01-11T21:41:26.6732398Z def call(args): 2023-01-11T21:41:26.6732516Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6732649Z args.clear() 2023-01-11T21:41:26.6732991Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6733263Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6733385Z del arg0_1 2023-01-11T21:41:26.6733510Z del arg1_1 2023-01-11T21:41:26.6733638Z return (buf0, ) 2023-01-11T21:41:26.6733645Z 2023-01-11T21:41:26.6733651Z 2023-01-11T21:41:26.6733766Z if __name__ == "__main__": 2023-01-11T21:41:26.6733962Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6734170Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6734508Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.6734835Z arg1_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6735047Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6735055Z 2023-01-11T21:41:26.6735175Z ok (3.321s) 2023-01-11T21:41:26.6735937Z test_max_min_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6736151Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6736578Z [2023-01-11 21:36:14,405] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 361 2023-01-11T21:41:26.6737050Z [2023-01-11 21:36:16,106] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 361 2023-01-11T21:41:26.6737874Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6738092Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6738539Z [2023-01-11 21:36:16,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 362 2023-01-11T21:41:26.6739030Z [2023-01-11 21:36:16,135] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 362 2023-01-11T21:41:26.6739041Z 2023-01-11T21:41:26.6739198Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6739331Z import torch 2023-01-11T21:41:26.6739528Z import random 2023-01-11T21:41:26.6739733Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6739935Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6739944Z 2023-01-11T21:41:26.6740075Z aten = torch.ops.aten 2023-01-11T21:41:26.6740303Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6740472Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6740481Z 2023-01-11T21:41:26.6740487Z 2023-01-11T21:41:26.6740733Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6741064Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6741275Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6741454Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6741607Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6741782Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6741890Z { 2023-01-11T21:41:26.6742060Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6742176Z { 2023-01-11T21:41:26.6742319Z #pragma omp for 2023-01-11T21:41:26.6742461Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.6742557Z { 2023-01-11T21:41:26.6742784Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6743021Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.6743282Z auto tmp2 = at::vec::maximum(tmp0, tmp1); 2023-01-11T21:41:26.6743475Z auto tmp3 = at::vec::minimum(tmp0, tmp1); 2023-01-11T21:41:26.6743639Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6743792Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.6743892Z } 2023-01-11T21:41:26.6744055Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6744209Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.6744323Z { 2023-01-11T21:41:26.6744585Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6744753Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.6745003Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:41:26.6745245Z auto tmp3 = (tmp1 != tmp1) ? tmp1 : std::min(tmp0, tmp1); 2023-01-11T21:41:26.6745385Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6745550Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6745683Z } 2023-01-11T21:41:26.6745806Z } 2023-01-11T21:41:26.6745931Z } 2023-01-11T21:41:26.6746116Z ''') 2023-01-11T21:41:26.6746125Z 2023-01-11T21:41:26.6746131Z 2023-01-11T21:41:26.6746307Z async_compile.wait(globals()) 2023-01-11T21:41:26.6746431Z del async_compile 2023-01-11T21:41:26.6746441Z 2023-01-11T21:41:26.6746588Z def call(args): 2023-01-11T21:41:26.6746736Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6746877Z args.clear() 2023-01-11T21:41:26.6747267Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6747644Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6748101Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6748223Z del arg0_1 2023-01-11T21:41:26.6748364Z del arg1_1 2023-01-11T21:41:26.6748523Z return (buf0, buf1, ) 2023-01-11T21:41:26.6748537Z 2023-01-11T21:41:26.6748544Z 2023-01-11T21:41:26.6748699Z if __name__ == "__main__": 2023-01-11T21:41:26.6748916Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6749158Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6749547Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6749920Z arg1_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6750123Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6750133Z 2023-01-11T21:41:26.6750238Z 2023-01-11T21:41:26.6750412Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6750548Z import torch 2023-01-11T21:41:26.6750698Z import random 2023-01-11T21:41:26.6750928Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6751260Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6751269Z 2023-01-11T21:41:26.6751408Z aten = torch.ops.aten 2023-01-11T21:41:26.6751637Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6751776Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6751784Z 2023-01-11T21:41:26.6751792Z 2023-01-11T21:41:26.6752038Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6752368Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6752569Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6752747Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6752937Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6753110Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.6753225Z { 2023-01-11T21:41:26.6753376Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6753488Z { 2023-01-11T21:41:26.6753621Z #pragma omp for 2023-01-11T21:41:26.6753767Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.6753891Z { 2023-01-11T21:41:26.6754132Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.6754364Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.6754527Z auto tmp2 = at::vec::maximum(tmp0, tmp1); 2023-01-11T21:41:26.6754711Z auto tmp3 = at::vec::minimum(tmp0, tmp1); 2023-01-11T21:41:26.6754882Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.6755044Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.6755154Z } 2023-01-11T21:41:26.6755322Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.6755457Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.6755551Z { 2023-01-11T21:41:26.6755712Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.6755860Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.6756079Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:41:26.6756285Z auto tmp3 = (tmp1 != tmp1) ? tmp1 : std::min(tmp0, tmp1); 2023-01-11T21:41:26.6756418Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.6756566Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.6756660Z } 2023-01-11T21:41:26.6756773Z } 2023-01-11T21:41:26.6756875Z } 2023-01-11T21:41:26.6757036Z ''') 2023-01-11T21:41:26.6757049Z 2023-01-11T21:41:26.6757057Z 2023-01-11T21:41:26.6757213Z async_compile.wait(globals()) 2023-01-11T21:41:26.6757339Z del async_compile 2023-01-11T21:41:26.6757349Z 2023-01-11T21:41:26.6757477Z def call(args): 2023-01-11T21:41:26.6757595Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.6757721Z args.clear() 2023-01-11T21:41:26.6758063Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6758481Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6758920Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6759061Z del arg0_1 2023-01-11T21:41:26.6759192Z del arg1_1 2023-01-11T21:41:26.6759351Z return (buf0, buf1, ) 2023-01-11T21:41:26.6759362Z 2023-01-11T21:41:26.6759373Z 2023-01-11T21:41:26.6759506Z if __name__ == "__main__": 2023-01-11T21:41:26.6759735Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6759974Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6760352Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6760844Z arg1_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6761082Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.6761093Z 2023-01-11T21:41:26.6761233Z ok (1.747s) 2023-01-11T21:41:26.6762142Z test_max_pool2d1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6762390Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6762889Z [2023-01-11 21:36:16,156] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 363 2023-01-11T21:41:26.6763405Z [2023-01-11 21:36:18,245] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 363 2023-01-11T21:41:26.6763415Z 2023-01-11T21:41:26.6763611Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6763760Z import torch 2023-01-11T21:41:26.6763907Z import random 2023-01-11T21:41:26.6764143Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6764377Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6764386Z 2023-01-11T21:41:26.6764539Z aten = torch.ops.aten 2023-01-11T21:41:26.6764778Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6764958Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6764970Z 2023-01-11T21:41:26.6764977Z 2023-01-11T21:41:26.6765348Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6765680Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6765890Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6766066Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6766229Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.6766344Z { 2023-01-11T21:41:26.6766495Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6766611Z { 2023-01-11T21:41:26.6766754Z #pragma omp for 2023-01-11T21:41:26.6766902Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6767022Z { 2023-01-11T21:41:26.6767159Z #pragma GCC ivdep 2023-01-11T21:41:26.6767304Z for(long i1=0; i1<7; i1+=1) 2023-01-11T21:41:26.6767404Z { 2023-01-11T21:41:26.6767557Z #pragma GCC ivdep 2023-01-11T21:41:26.6767708Z for(long i2=0; i2<7; i2+=1) 2023-01-11T21:41:26.6767828Z { 2023-01-11T21:41:26.6767951Z { 2023-01-11T21:41:26.6768073Z { 2023-01-11T21:41:26.6768246Z auto tmp0 = in_ptr0[(2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6768446Z auto tmp1 = in_ptr0[1 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6768638Z auto tmp3 = in_ptr0[2 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6768825Z auto tmp5 = in_ptr0[16 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6769224Z auto tmp7 = in_ptr0[17 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6769422Z auto tmp9 = in_ptr0[18 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6769623Z auto tmp11 = in_ptr0[32 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6769829Z auto tmp13 = in_ptr0[33 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6770028Z auto tmp15 = in_ptr0[34 + (2*i2) + (32*i1) + (256*i0)]; 2023-01-11T21:41:26.6770242Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:41:26.6770460Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:41:26.6770774Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:41:26.6770988Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:41:26.6771223Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:41:26.6771463Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:41:26.6771687Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:41:26.6771897Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:41:26.6772094Z auto tmp17 = static_cast((2*i2) + (32*i1)); 2023-01-11T21:41:26.6772279Z auto tmp18 = static_cast(1 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6772448Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:41:26.6772630Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:41:26.6772829Z auto tmp21 = static_cast(2 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6773004Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:41:26.6773182Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:41:26.6773392Z auto tmp24 = static_cast(16 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6773556Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:41:26.6773713Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:41:26.6773919Z auto tmp27 = static_cast(17 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6774096Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:41:26.6774281Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:41:26.6774483Z auto tmp30 = static_cast(18 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6774663Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:41:26.6774853Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:41:26.6775064Z auto tmp33 = static_cast(32 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6775214Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:41:26.6775394Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:41:26.6775592Z auto tmp36 = static_cast(33 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6775758Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:41:26.6775951Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:41:26.6776156Z auto tmp39 = static_cast(34 + (2*i2) + (32*i1)); 2023-01-11T21:41:26.6776315Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:41:26.6776479Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:41:26.6776657Z out_ptr0[i2 + (7*i1) + (49*i0)] = tmp16; 2023-01-11T21:41:26.6776835Z out_ptr1[i2 + (7*i1) + (49*i0)] = tmp41; 2023-01-11T21:41:26.6777065Z } 2023-01-11T21:41:26.6777179Z } 2023-01-11T21:41:26.6777301Z } 2023-01-11T21:41:26.6777517Z } 2023-01-11T21:41:26.6777625Z } 2023-01-11T21:41:26.6777755Z } 2023-01-11T21:41:26.6777880Z } 2023-01-11T21:41:26.6778064Z ''') 2023-01-11T21:41:26.6778078Z 2023-01-11T21:41:26.6778085Z 2023-01-11T21:41:26.6778263Z async_compile.wait(globals()) 2023-01-11T21:41:26.6778420Z del async_compile 2023-01-11T21:41:26.6778429Z 2023-01-11T21:41:26.6778577Z def call(args): 2023-01-11T21:41:26.6778722Z arg0_1, = args 2023-01-11T21:41:26.6778847Z args.clear() 2023-01-11T21:41:26.6779270Z buf0 = empty_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6779768Z buf1 = empty_strided((2, 4, 7, 7), (196, 49, 7, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6780096Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6780244Z del arg0_1 2023-01-11T21:41:26.6780400Z return (buf0, buf1, ) 2023-01-11T21:41:26.6780410Z 2023-01-11T21:41:26.6780420Z 2023-01-11T21:41:26.6780575Z if __name__ == "__main__": 2023-01-11T21:41:26.6780780Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6781028Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6781520Z arg0_1 = rand_strided((2, 4, 16, 16), (1024, 256, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6781737Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6781752Z 2023-01-11T21:41:26.6781889Z ok (2.112s) 2023-01-11T21:41:26.6782799Z test_max_pool2d2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6783054Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6783664Z [2023-01-11 21:36:18,307] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 364 2023-01-11T21:41:26.6784321Z [2023-01-11 21:36:21,030] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 364 2023-01-11T21:41:26.6784331Z 2023-01-11T21:41:26.6784493Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6784602Z import torch 2023-01-11T21:41:26.6784735Z import random 2023-01-11T21:41:26.6784932Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6785145Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6785160Z 2023-01-11T21:41:26.6785309Z aten = torch.ops.aten 2023-01-11T21:41:26.6785535Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6785712Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6785720Z 2023-01-11T21:41:26.6785726Z 2023-01-11T21:41:26.6785973Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6786283Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6786489Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6786666Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6786836Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.6786953Z { 2023-01-11T21:41:26.6787131Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6787231Z { 2023-01-11T21:41:26.6787351Z #pragma omp for 2023-01-11T21:41:26.6787502Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.6787617Z { 2023-01-11T21:41:26.6787765Z #pragma GCC ivdep 2023-01-11T21:41:26.6788033Z for(long i1=0; i1<27; i1+=1) 2023-01-11T21:41:26.6788251Z { 2023-01-11T21:41:26.6788425Z #pragma GCC ivdep 2023-01-11T21:41:26.6788583Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:41:26.6788716Z { 2023-01-11T21:41:26.6788853Z { 2023-01-11T21:41:26.6788998Z { 2023-01-11T21:41:26.6789219Z auto tmp0 = in_ptr0[(2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6789432Z auto tmp1 = in_ptr0[1 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6789662Z auto tmp3 = in_ptr0[2 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6789876Z auto tmp5 = in_ptr0[55 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6790104Z auto tmp7 = in_ptr0[56 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6790396Z auto tmp9 = in_ptr0[57 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6790626Z auto tmp11 = in_ptr0[110 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6790853Z auto tmp13 = in_ptr0[111 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6791082Z auto tmp15 = in_ptr0[112 + (2*i2) + (110*i1) + (3025*i0)]; 2023-01-11T21:41:26.6791342Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:41:26.6791592Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:41:26.6791829Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:41:26.6792051Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:41:26.6792301Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:41:26.6792562Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:41:26.6792832Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:41:26.6793099Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:41:26.6793324Z auto tmp17 = static_cast((2*i2) + (110*i1)); 2023-01-11T21:41:26.6793565Z auto tmp18 = static_cast(1 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6793758Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:41:26.6793968Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:41:26.6794184Z auto tmp21 = static_cast(2 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6794364Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:41:26.6794692Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:41:26.6794909Z auto tmp24 = static_cast(55 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6795079Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:41:26.6795268Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:41:26.6795469Z auto tmp27 = static_cast(56 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6795617Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:41:26.6795806Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:41:26.6796008Z auto tmp30 = static_cast(57 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6796177Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:41:26.6796353Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:41:26.6796687Z auto tmp33 = static_cast(110 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6796887Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:41:26.6797092Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:41:26.6797388Z auto tmp36 = static_cast(111 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6797584Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:41:26.6797785Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:41:26.6798024Z auto tmp39 = static_cast(112 + (2*i2) + (110*i1)); 2023-01-11T21:41:26.6798213Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:41:26.6798408Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:41:26.6798615Z out_ptr0[i2 + (27*i1) + (729*i0)] = tmp16; 2023-01-11T21:41:26.6798819Z out_ptr1[i2 + (27*i1) + (729*i0)] = tmp41; 2023-01-11T21:41:26.6798987Z } 2023-01-11T21:41:26.6799198Z } 2023-01-11T21:41:26.6799338Z } 2023-01-11T21:41:26.6799461Z } 2023-01-11T21:41:26.6799601Z } 2023-01-11T21:41:26.6799724Z } 2023-01-11T21:41:26.6799825Z } 2023-01-11T21:41:26.6800009Z ''') 2023-01-11T21:41:26.6800021Z 2023-01-11T21:41:26.6800028Z 2023-01-11T21:41:26.6800214Z async_compile.wait(globals()) 2023-01-11T21:41:26.6800359Z del async_compile 2023-01-11T21:41:26.6800368Z 2023-01-11T21:41:26.6800510Z def call(args): 2023-01-11T21:41:26.6800650Z arg0_1, = args 2023-01-11T21:41:26.6800800Z args.clear() 2023-01-11T21:41:26.6801261Z buf0 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6801664Z buf1 = empty_strided((16, 64, 27, 27), (46656, 729, 27, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6801979Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6802125Z del arg0_1 2023-01-11T21:41:26.6802293Z return (buf0, buf1, ) 2023-01-11T21:41:26.6802303Z 2023-01-11T21:41:26.6802310Z 2023-01-11T21:41:26.6802450Z if __name__ == "__main__": 2023-01-11T21:41:26.6802685Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6802941Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6803427Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6803593Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6803603Z 2023-01-11T21:41:26.6803719Z ok (2.856s) 2023-01-11T21:41:26.6804501Z test_max_pool2d3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6804724Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6805163Z [2023-01-11 21:36:21,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 365 2023-01-11T21:41:26.6805179Z 2023-01-11T21:41:26.6805333Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6805463Z import torch 2023-01-11T21:41:26.6805593Z import random 2023-01-11T21:41:26.6805794Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6805985Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6805995Z 2023-01-11T21:41:26.6806124Z aten = torch.ops.aten 2023-01-11T21:41:26.6806352Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6806519Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6806527Z 2023-01-11T21:41:26.6806533Z 2023-01-11T21:41:26.6806768Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6807100Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6807312Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6807610Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6807763Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.6807882Z { 2023-01-11T21:41:26.6808050Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6808166Z { 2023-01-11T21:41:26.6808303Z #pragma omp for 2023-01-11T21:41:26.6808450Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.6808567Z { 2023-01-11T21:41:26.6808689Z #pragma GCC ivdep 2023-01-11T21:41:26.6808836Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.6808953Z { 2023-01-11T21:41:26.6809193Z { 2023-01-11T21:41:26.6809322Z { 2023-01-11T21:41:26.6809638Z auto tmp0 = static_cast((-1) + (2*i0)); 2023-01-11T21:41:26.6809915Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.6810080Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.6810264Z auto tmp3 = static_cast(8); 2023-01-11T21:41:26.6810442Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.6810614Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.6810913Z auto tmp6 = static_cast((-1) + (2*i1)); 2023-01-11T21:41:26.6811080Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:41:26.6811243Z auto tmp8 = tmp6 < tmp3; 2023-01-11T21:41:26.6811387Z auto tmp9 = tmp7 & tmp8; 2023-01-11T21:41:26.6811562Z auto tmp10 = tmp5 & tmp9; 2023-01-11T21:41:26.6811984Z float tmp11 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6812120Z if(tmp10) 2023-01-11T21:41:26.6812251Z { 2023-01-11T21:41:26.6812557Z auto tmp12 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6812702Z tmp11 = tmp12; 2023-01-11T21:41:26.6812815Z } 2023-01-11T21:41:26.6813002Z auto tmp13 = static_cast(2*i1); 2023-01-11T21:41:26.6813175Z auto tmp14 = tmp13 >= tmp1; 2023-01-11T21:41:26.6813343Z auto tmp15 = tmp13 < tmp3; 2023-01-11T21:41:26.6813510Z auto tmp16 = tmp14 & tmp15; 2023-01-11T21:41:26.6813669Z auto tmp17 = tmp5 & tmp16; 2023-01-11T21:41:26.6814053Z float tmp18 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6814192Z if(tmp17) 2023-01-11T21:41:26.6814300Z { 2023-01-11T21:41:26.6814604Z auto tmp19 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6814757Z tmp18 = tmp19; 2023-01-11T21:41:26.6814886Z } 2023-01-11T21:41:26.6815114Z auto tmp20 = (tmp11 != tmp11) ? tmp11 : std::max(tmp18, tmp11); 2023-01-11T21:41:26.6815315Z auto tmp21 = static_cast(1 + (2*i1)); 2023-01-11T21:41:26.6815469Z auto tmp22 = tmp21 >= tmp1; 2023-01-11T21:41:26.6815613Z auto tmp23 = tmp21 < tmp3; 2023-01-11T21:41:26.6815782Z auto tmp24 = tmp22 & tmp23; 2023-01-11T21:41:26.6815949Z auto tmp25 = tmp5 & tmp24; 2023-01-11T21:41:26.6816331Z float tmp26 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6816472Z if(tmp25) 2023-01-11T21:41:26.6816600Z { 2023-01-11T21:41:26.6816907Z auto tmp27 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6817061Z tmp26 = tmp27; 2023-01-11T21:41:26.6817173Z } 2023-01-11T21:41:26.6817389Z auto tmp28 = (tmp20 != tmp20) ? tmp20 : std::max(tmp26, tmp20); 2023-01-11T21:41:26.6817694Z auto tmp29 = static_cast(2*i0); 2023-01-11T21:41:26.6817862Z auto tmp30 = tmp29 >= tmp1; 2023-01-11T21:41:26.6818032Z auto tmp31 = tmp29 < tmp3; 2023-01-11T21:41:26.6818191Z auto tmp32 = tmp30 & tmp31; 2023-01-11T21:41:26.6818354Z auto tmp33 = tmp32 & tmp9; 2023-01-11T21:41:26.6818800Z float tmp34 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6818917Z if(tmp33) 2023-01-11T21:41:26.6819040Z { 2023-01-11T21:41:26.6819335Z auto tmp35 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6819481Z tmp34 = tmp35; 2023-01-11T21:41:26.6819603Z } 2023-01-11T21:41:26.6819902Z auto tmp36 = (tmp28 != tmp28) ? tmp28 : std::max(tmp34, tmp28); 2023-01-11T21:41:26.6820067Z auto tmp37 = tmp32 & tmp16; 2023-01-11T21:41:26.6820440Z float tmp38 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6820577Z if(tmp37) 2023-01-11T21:41:26.6820704Z { 2023-01-11T21:41:26.6820915Z auto tmp39 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:41:26.6821047Z tmp38 = tmp39; 2023-01-11T21:41:26.6821171Z } 2023-01-11T21:41:26.6821394Z auto tmp40 = (tmp36 != tmp36) ? tmp36 : std::max(tmp38, tmp36); 2023-01-11T21:41:26.6821556Z auto tmp41 = tmp32 & tmp24; 2023-01-11T21:41:26.6822057Z float tmp42 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6822215Z if(tmp41) 2023-01-11T21:41:26.6822372Z { 2023-01-11T21:41:26.6822594Z auto tmp43 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6822769Z tmp42 = tmp43; 2023-01-11T21:41:26.6822915Z } 2023-01-11T21:41:26.6823249Z auto tmp44 = (tmp40 != tmp40) ? tmp40 : std::max(tmp42, tmp40); 2023-01-11T21:41:26.6823452Z auto tmp45 = static_cast(1 + (2*i0)); 2023-01-11T21:41:26.6823647Z auto tmp46 = tmp45 >= tmp1; 2023-01-11T21:41:26.6823844Z auto tmp47 = tmp45 < tmp3; 2023-01-11T21:41:26.6824037Z auto tmp48 = tmp46 & tmp47; 2023-01-11T21:41:26.6824215Z auto tmp49 = tmp48 & tmp9; 2023-01-11T21:41:26.6824673Z float tmp50 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6824834Z if(tmp49) 2023-01-11T21:41:26.6824971Z { 2023-01-11T21:41:26.6825164Z auto tmp51 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6825329Z tmp50 = tmp51; 2023-01-11T21:41:26.6825480Z } 2023-01-11T21:41:26.6825741Z auto tmp52 = (tmp44 != tmp44) ? tmp44 : std::max(tmp50, tmp44); 2023-01-11T21:41:26.6825924Z auto tmp53 = tmp48 & tmp16; 2023-01-11T21:41:26.6826363Z float tmp54 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6826522Z if(tmp53) 2023-01-11T21:41:26.6826646Z { 2023-01-11T21:41:26.6826861Z auto tmp55 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6827035Z tmp54 = tmp55; 2023-01-11T21:41:26.6827164Z } 2023-01-11T21:41:26.6827426Z auto tmp56 = (tmp52 != tmp52) ? tmp52 : std::max(tmp54, tmp52); 2023-01-11T21:41:26.6827621Z auto tmp57 = tmp48 & tmp24; 2023-01-11T21:41:26.6828053Z float tmp58 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6828299Z if(tmp57) 2023-01-11T21:41:26.6828421Z { 2023-01-11T21:41:26.6828638Z auto tmp59 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6828817Z tmp58 = tmp59; 2023-01-11T21:41:26.6828966Z } 2023-01-11T21:41:26.6829215Z auto tmp60 = (tmp56 != tmp56) ? tmp56 : std::max(tmp58, tmp56); 2023-01-11T21:41:26.6829657Z float tmp61 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6829817Z if(tmp10) 2023-01-11T21:41:26.6829937Z { 2023-01-11T21:41:26.6830283Z auto tmp62 = in_ptr0[(-9) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6830449Z tmp61 = tmp62; 2023-01-11T21:41:26.6830680Z } 2023-01-11T21:41:26.6831057Z auto tmp63 = static_cast((-9) + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6831491Z float tmp64 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6831645Z if(tmp17) 2023-01-11T21:41:26.6831782Z { 2023-01-11T21:41:26.6832099Z auto tmp65 = in_ptr0[(-8) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6832265Z tmp64 = tmp65; 2023-01-11T21:41:26.6832406Z } 2023-01-11T21:41:26.6832785Z auto tmp66 = static_cast((-8) + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6832975Z auto tmp67 = tmp64 > tmp61; 2023-01-11T21:41:26.6833180Z auto tmp68 = tmp67 ? tmp66 : tmp63; 2023-01-11T21:41:26.6833441Z auto tmp69 = (tmp61 != tmp61) ? tmp61 : std::max(tmp64, tmp61); 2023-01-11T21:41:26.6833885Z float tmp70 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6834021Z if(tmp25) 2023-01-11T21:41:26.6834159Z { 2023-01-11T21:41:26.6834512Z auto tmp71 = in_ptr0[(-7) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6834683Z tmp70 = tmp71; 2023-01-11T21:41:26.6834827Z } 2023-01-11T21:41:26.6835195Z auto tmp72 = static_cast((-7) + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6835387Z auto tmp73 = tmp70 > tmp69; 2023-01-11T21:41:26.6835578Z auto tmp74 = tmp73 ? tmp72 : tmp68; 2023-01-11T21:41:26.6835835Z auto tmp75 = (tmp69 != tmp69) ? tmp69 : std::max(tmp70, tmp69); 2023-01-11T21:41:26.6836274Z float tmp76 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6836427Z if(tmp33) 2023-01-11T21:41:26.6836576Z { 2023-01-11T21:41:26.6836921Z auto tmp77 = in_ptr0[(-1) + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6837091Z tmp76 = tmp77; 2023-01-11T21:41:26.6837228Z } 2023-01-11T21:41:26.6837581Z auto tmp78 = static_cast((-1) + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6837770Z auto tmp79 = tmp76 > tmp75; 2023-01-11T21:41:26.6837973Z auto tmp80 = tmp79 ? tmp78 : tmp74; 2023-01-11T21:41:26.6838228Z auto tmp81 = (tmp75 != tmp75) ? tmp75 : std::max(tmp76, tmp75); 2023-01-11T21:41:26.6838670Z float tmp82 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6838828Z if(tmp37) 2023-01-11T21:41:26.6838965Z { 2023-01-11T21:41:26.6839143Z auto tmp83 = in_ptr0[(2*i1) + (16*i0)]; 2023-01-11T21:41:26.6839311Z tmp82 = tmp83; 2023-01-11T21:41:26.6839504Z } 2023-01-11T21:41:26.6839732Z auto tmp84 = static_cast((2*i1) + (16*i0)); 2023-01-11T21:41:26.6840026Z auto tmp85 = tmp82 > tmp81; 2023-01-11T21:41:26.6840225Z auto tmp86 = tmp85 ? tmp84 : tmp80; 2023-01-11T21:41:26.6840483Z auto tmp87 = (tmp81 != tmp81) ? tmp81 : std::max(tmp82, tmp81); 2023-01-11T21:41:26.6840932Z float tmp88 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6841060Z if(tmp41) 2023-01-11T21:41:26.6841202Z { 2023-01-11T21:41:26.6841410Z auto tmp89 = in_ptr0[1 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6841580Z tmp88 = tmp89; 2023-01-11T21:41:26.6841715Z } 2023-01-11T21:41:26.6842018Z auto tmp90 = static_cast(1 + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6842209Z auto tmp91 = tmp88 > tmp87; 2023-01-11T21:41:26.6842391Z auto tmp92 = tmp91 ? tmp90 : tmp86; 2023-01-11T21:41:26.6842664Z auto tmp93 = (tmp87 != tmp87) ? tmp87 : std::max(tmp88, tmp87); 2023-01-11T21:41:26.6843112Z float tmp94 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6843265Z if(tmp49) 2023-01-11T21:41:26.6843410Z { 2023-01-11T21:41:26.6843625Z auto tmp95 = in_ptr0[7 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6843798Z tmp94 = tmp95; 2023-01-11T21:41:26.6843941Z } 2023-01-11T21:41:26.6844149Z auto tmp96 = static_cast(7 + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6844339Z auto tmp97 = tmp94 > tmp93; 2023-01-11T21:41:26.6844544Z auto tmp98 = tmp97 ? tmp96 : tmp92; 2023-01-11T21:41:26.6844802Z auto tmp99 = (tmp93 != tmp93) ? tmp93 : std::max(tmp94, tmp93); 2023-01-11T21:41:26.6845251Z float tmp100 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6845411Z if(tmp53) 2023-01-11T21:41:26.6845554Z { 2023-01-11T21:41:26.6845778Z auto tmp101 = in_ptr0[8 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6845934Z tmp100 = tmp101; 2023-01-11T21:41:26.6846059Z } 2023-01-11T21:41:26.6846290Z auto tmp102 = static_cast(8 + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6846482Z auto tmp103 = tmp100 > tmp99; 2023-01-11T21:41:26.6846694Z auto tmp104 = tmp103 ? tmp102 : tmp98; 2023-01-11T21:41:26.6846950Z auto tmp105 = (tmp99 != tmp99) ? tmp99 : std::max(tmp100, tmp99); 2023-01-11T21:41:26.6847394Z float tmp106 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.6847549Z if(tmp57) 2023-01-11T21:41:26.6847673Z { 2023-01-11T21:41:26.6847889Z auto tmp107 = in_ptr0[9 + (2*i1) + (16*i0)]; 2023-01-11T21:41:26.6848059Z tmp106 = tmp107; 2023-01-11T21:41:26.6848194Z } 2023-01-11T21:41:26.6848428Z auto tmp108 = static_cast(9 + (2*i1) + (16*i0)); 2023-01-11T21:41:26.6848626Z auto tmp109 = tmp106 > tmp105; 2023-01-11T21:41:26.6848834Z auto tmp110 = tmp109 ? tmp108 : tmp104; 2023-01-11T21:41:26.6849196Z auto tmp111 = (tmp105 != tmp105) ? tmp105 : std::max(tmp106, tmp105); 2023-01-11T21:41:26.6849391Z out_ptr0[i1 + (4*i0)] = tmp60; 2023-01-11T21:41:26.6849580Z out_ptr1[i1 + (4*i0)] = tmp110; 2023-01-11T21:41:26.6849727Z } 2023-01-11T21:41:26.6849863Z } 2023-01-11T21:41:26.6849997Z } 2023-01-11T21:41:26.6850243Z } 2023-01-11T21:41:26.6850349Z } 2023-01-11T21:41:26.6850464Z } 2023-01-11T21:41:26.6850641Z ''') 2023-01-11T21:41:26.6850656Z 2023-01-11T21:41:26.6850663Z 2023-01-11T21:41:26.6850849Z async_compile.wait(globals()) 2023-01-11T21:41:26.6851003Z del async_compile 2023-01-11T21:41:26.6851012Z 2023-01-11T21:41:26.6851162Z def call(args): 2023-01-11T21:41:26.6851299Z arg0_1, = args 2023-01-11T21:41:26.6851427Z args.clear() 2023-01-11T21:41:26.6851855Z buf0 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6852265Z buf1 = empty_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6852586Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6852734Z del arg0_1 2023-01-11T21:41:26.6852981Z return (buf0, buf1, ) 2023-01-11T21:41:26.6852992Z 2023-01-11T21:41:26.6852999Z 2023-01-11T21:41:26.6853154Z if __name__ == "__main__": 2023-01-11T21:41:26.6853381Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6853601Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6854023Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6854229Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6854853Z [2023-01-11 21:36:24,739] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 365 2023-01-11T21:41:26.6854863Z 2023-01-11T21:41:26.6854988Z ok (3.645s) 2023-01-11T21:41:26.6855765Z test_max_pool2d4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6855989Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6856437Z [2023-01-11 21:36:24,845] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 366 2023-01-11T21:41:26.6856891Z [2023-01-11 21:36:26,534] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 366 2023-01-11T21:41:26.6856901Z 2023-01-11T21:41:26.6857067Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6857168Z import torch 2023-01-11T21:41:26.6857298Z import random 2023-01-11T21:41:26.6857509Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6857729Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6857738Z 2023-01-11T21:41:26.6857882Z aten = torch.ops.aten 2023-01-11T21:41:26.6858108Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6858269Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6858279Z 2023-01-11T21:41:26.6858285Z 2023-01-11T21:41:26.6858532Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6858853Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6859046Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6859219Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6859395Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.6859508Z { 2023-01-11T21:41:26.6859680Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6859791Z { 2023-01-11T21:41:26.6859903Z #pragma omp for 2023-01-11T21:41:26.6860042Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.6860163Z { 2023-01-11T21:41:26.6860310Z #pragma GCC ivdep 2023-01-11T21:41:26.6860459Z for(long i1=0; i1<55; i1+=1) 2023-01-11T21:41:26.6860584Z { 2023-01-11T21:41:26.6860732Z #pragma GCC ivdep 2023-01-11T21:41:26.6860865Z for(long i2=0; i2<55; i2+=1) 2023-01-11T21:41:26.6861071Z { 2023-01-11T21:41:26.6861196Z { 2023-01-11T21:41:26.6861321Z { 2023-01-11T21:41:26.6861520Z auto tmp0 = in_ptr0[(2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6861704Z auto tmp1 = in_ptr0[1 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6861897Z auto tmp3 = in_ptr0[2 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6862074Z auto tmp5 = in_ptr0[111 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6862270Z auto tmp7 = in_ptr0[112 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6862469Z auto tmp9 = in_ptr0[113 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6862732Z auto tmp11 = in_ptr0[222 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6862926Z auto tmp13 = in_ptr0[223 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6863200Z auto tmp15 = in_ptr0[224 + (2*i2) + (222*i1) + (12321*i0)]; 2023-01-11T21:41:26.6863430Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:41:26.6863653Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:41:26.6863867Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:41:26.6864063Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:41:26.6864285Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:41:26.6864513Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:41:26.6864739Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:41:26.6864962Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:41:26.6865170Z auto tmp17 = static_cast((2*i2) + (222*i1)); 2023-01-11T21:41:26.6865369Z auto tmp18 = static_cast(1 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6865533Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:41:26.6865715Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:41:26.6865911Z auto tmp21 = static_cast(2 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6866079Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:41:26.6866255Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:41:26.6866458Z auto tmp24 = static_cast(111 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6866625Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:41:26.6866806Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:41:26.6867019Z auto tmp27 = static_cast(112 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6867172Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:41:26.6867345Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:41:26.6867552Z auto tmp30 = static_cast(113 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6867721Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:41:26.6867894Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:41:26.6868096Z auto tmp33 = static_cast(222 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6868261Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:41:26.6868448Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:41:26.6868626Z auto tmp36 = static_cast(223 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6868893Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:41:26.6869063Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:41:26.6869260Z auto tmp39 = static_cast(224 + (2*i2) + (222*i1)); 2023-01-11T21:41:26.6869433Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:41:26.6869617Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:41:26.6869798Z out_ptr0[i2 + (55*i1) + (3025*i0)] = tmp16; 2023-01-11T21:41:26.6869974Z out_ptr1[i2 + (55*i1) + (3025*i0)] = tmp41; 2023-01-11T21:41:26.6870076Z } 2023-01-11T21:41:26.6870201Z } 2023-01-11T21:41:26.6870315Z } 2023-01-11T21:41:26.6870434Z } 2023-01-11T21:41:26.6870610Z } 2023-01-11T21:41:26.6870726Z } 2023-01-11T21:41:26.6870809Z } 2023-01-11T21:41:26.6870986Z ''') 2023-01-11T21:41:26.6871002Z 2023-01-11T21:41:26.6871008Z 2023-01-11T21:41:26.6871169Z async_compile.wait(globals()) 2023-01-11T21:41:26.6871296Z del async_compile 2023-01-11T21:41:26.6871305Z 2023-01-11T21:41:26.6871431Z def call(args): 2023-01-11T21:41:26.6871560Z arg0_1, = args 2023-01-11T21:41:26.6871687Z args.clear() 2023-01-11T21:41:26.6872075Z buf0 = empty_strided((2, 8, 55, 55), (24200, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6872423Z buf1 = empty_strided((2, 8, 55, 55), (24200, 3025, 55, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6872692Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6872811Z del arg0_1 2023-01-11T21:41:26.6872957Z return (buf0, buf1, ) 2023-01-11T21:41:26.6872966Z 2023-01-11T21:41:26.6872972Z 2023-01-11T21:41:26.6873109Z if __name__ == "__main__": 2023-01-11T21:41:26.6873313Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6873531Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6873930Z arg0_1 = rand_strided((2, 8, 111, 111), (98568, 12321, 111, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6874099Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6874113Z 2023-01-11T21:41:26.6874233Z ok (1.798s) 2023-01-11T21:41:26.6875010Z test_max_pool2d5_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6875226Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6875674Z [2023-01-11 21:36:26,593] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 367 2023-01-11T21:41:26.6876135Z [2023-01-11 21:36:28,247] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 367 2023-01-11T21:41:26.6876145Z 2023-01-11T21:41:26.6876303Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6876436Z import torch 2023-01-11T21:41:26.6876572Z import random 2023-01-11T21:41:26.6876754Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6876960Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6876971Z 2023-01-11T21:41:26.6877116Z aten = torch.ops.aten 2023-01-11T21:41:26.6877332Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6877495Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6877505Z 2023-01-11T21:41:26.6877513Z 2023-01-11T21:41:26.6877753Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6878085Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6878298Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.6878538Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.6878718Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.6878832Z { 2023-01-11T21:41:26.6878997Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6879110Z { 2023-01-11T21:41:26.6879255Z #pragma omp for 2023-01-11T21:41:26.6879404Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.6879498Z { 2023-01-11T21:41:26.6879643Z #pragma GCC ivdep 2023-01-11T21:41:26.6879795Z for(long i1=0; i1<18; i1+=1) 2023-01-11T21:41:26.6879907Z { 2023-01-11T21:41:26.6880056Z #pragma GCC ivdep 2023-01-11T21:41:26.6880217Z for(long i2=0; i2<18; i2+=1) 2023-01-11T21:41:26.6880339Z { 2023-01-11T21:41:26.6880440Z { 2023-01-11T21:41:26.6880634Z { 2023-01-11T21:41:26.6880832Z auto tmp0 = in_ptr0[(3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6881031Z auto tmp1 = in_ptr0[1 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6881227Z auto tmp3 = in_ptr0[2 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6881421Z auto tmp5 = in_ptr0[55 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6881622Z auto tmp7 = in_ptr0[56 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6881808Z auto tmp9 = in_ptr0[57 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6881996Z auto tmp11 = in_ptr0[110 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6882196Z auto tmp13 = in_ptr0[111 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6882391Z auto tmp15 = in_ptr0[112 + (3*i2) + (165*i1) + (3025*i0)]; 2023-01-11T21:41:26.6882608Z auto tmp2 = (tmp0 != tmp0) ? tmp0 : std::max(tmp1, tmp0); 2023-01-11T21:41:26.6882831Z auto tmp4 = (tmp2 != tmp2) ? tmp2 : std::max(tmp3, tmp2); 2023-01-11T21:41:26.6883047Z auto tmp6 = (tmp4 != tmp4) ? tmp4 : std::max(tmp5, tmp4); 2023-01-11T21:41:26.6883266Z auto tmp8 = (tmp6 != tmp6) ? tmp6 : std::max(tmp7, tmp6); 2023-01-11T21:41:26.6883483Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::max(tmp9, tmp8); 2023-01-11T21:41:26.6883717Z auto tmp12 = (tmp10 != tmp10) ? tmp10 : std::max(tmp11, tmp10); 2023-01-11T21:41:26.6883929Z auto tmp14 = (tmp12 != tmp12) ? tmp12 : std::max(tmp13, tmp12); 2023-01-11T21:41:26.6884156Z auto tmp16 = (tmp14 != tmp14) ? tmp14 : std::max(tmp15, tmp14); 2023-01-11T21:41:26.6884360Z auto tmp17 = static_cast((3*i2) + (165*i1)); 2023-01-11T21:41:26.6884563Z auto tmp18 = static_cast(1 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6884745Z auto tmp19 = tmp1 > tmp0; 2023-01-11T21:41:26.6884933Z auto tmp20 = tmp19 ? tmp18 : tmp17; 2023-01-11T21:41:26.6885144Z auto tmp21 = static_cast(2 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6885310Z auto tmp22 = tmp3 > tmp2; 2023-01-11T21:41:26.6885473Z auto tmp23 = tmp22 ? tmp21 : tmp20; 2023-01-11T21:41:26.6885677Z auto tmp24 = static_cast(55 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6885848Z auto tmp25 = tmp5 > tmp4; 2023-01-11T21:41:26.6886031Z auto tmp26 = tmp25 ? tmp24 : tmp23; 2023-01-11T21:41:26.6886230Z auto tmp27 = static_cast(56 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6886398Z auto tmp28 = tmp7 > tmp6; 2023-01-11T21:41:26.6886661Z auto tmp29 = tmp28 ? tmp27 : tmp26; 2023-01-11T21:41:26.6886864Z auto tmp30 = static_cast(57 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6887016Z auto tmp31 = tmp9 > tmp8; 2023-01-11T21:41:26.6887187Z auto tmp32 = tmp31 ? tmp30 : tmp29; 2023-01-11T21:41:26.6887395Z auto tmp33 = static_cast(110 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6887565Z auto tmp34 = tmp11 > tmp10; 2023-01-11T21:41:26.6887755Z auto tmp35 = tmp34 ? tmp33 : tmp32; 2023-01-11T21:41:26.6887952Z auto tmp36 = static_cast(111 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6888117Z auto tmp37 = tmp13 > tmp12; 2023-01-11T21:41:26.6888364Z auto tmp38 = tmp37 ? tmp36 : tmp35; 2023-01-11T21:41:26.6888548Z auto tmp39 = static_cast(112 + (3*i2) + (165*i1)); 2023-01-11T21:41:26.6888723Z auto tmp40 = tmp15 > tmp14; 2023-01-11T21:41:26.6888896Z auto tmp41 = tmp40 ? tmp39 : tmp38; 2023-01-11T21:41:26.6889190Z out_ptr0[i2 + (18*i1) + (324*i0)] = tmp16; 2023-01-11T21:41:26.6889372Z out_ptr1[i2 + (18*i1) + (324*i0)] = tmp41; 2023-01-11T21:41:26.6889496Z } 2023-01-11T21:41:26.6889626Z } 2023-01-11T21:41:26.6889727Z } 2023-01-11T21:41:26.6889836Z } 2023-01-11T21:41:26.6889949Z } 2023-01-11T21:41:26.6890060Z } 2023-01-11T21:41:26.6890176Z } 2023-01-11T21:41:26.6890345Z ''') 2023-01-11T21:41:26.6890355Z 2023-01-11T21:41:26.6890361Z 2023-01-11T21:41:26.6890526Z async_compile.wait(globals()) 2023-01-11T21:41:26.6890643Z del async_compile 2023-01-11T21:41:26.6890656Z 2023-01-11T21:41:26.6890782Z def call(args): 2023-01-11T21:41:26.6890906Z arg0_1, = args 2023-01-11T21:41:26.6891048Z args.clear() 2023-01-11T21:41:26.6891442Z buf0 = empty_strided((16, 64, 18, 18), (20736, 324, 18, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6891809Z buf1 = empty_strided((16, 64, 18, 18), (20736, 324, 18, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6892088Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.6892217Z del arg0_1 2023-01-11T21:41:26.6892334Z return (buf0, buf1, ) 2023-01-11T21:41:26.6892345Z 2023-01-11T21:41:26.6892351Z 2023-01-11T21:41:26.6892483Z if __name__ == "__main__": 2023-01-11T21:41:26.6892670Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6892881Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6893282Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6893463Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6893475Z 2023-01-11T21:41:26.6893593Z ok (1.763s) 2023-01-11T21:41:26.6894360Z test_max_pool2d6_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6894577Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6895011Z [2023-01-11 21:36:28,352] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 368 2023-01-11T21:41:26.6895432Z [2023-01-11 21:36:28,358] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.max_pool2d_with_indices 2023-01-11T21:41:26.6895898Z [2023-01-11 21:36:28,360] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 368 2023-01-11T21:41:26.6896028Z 2023-01-11T21:41:26.6896191Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6896325Z import torch 2023-01-11T21:41:26.6896461Z import random 2023-01-11T21:41:26.6896662Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6896869Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6896878Z 2023-01-11T21:41:26.6896987Z aten = torch.ops.aten 2023-01-11T21:41:26.6897222Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6897386Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6897399Z 2023-01-11T21:41:26.6897406Z 2023-01-11T21:41:26.6897560Z async_compile.wait(globals()) 2023-01-11T21:41:26.6897696Z del async_compile 2023-01-11T21:41:26.6897707Z 2023-01-11T21:41:26.6897836Z def call(args): 2023-01-11T21:41:26.6897957Z arg0_1, = args 2023-01-11T21:41:26.6898184Z args.clear() 2023-01-11T21:41:26.6898385Z buf0 = aten.max_pool2d_with_indices(arg0_1, [13, 13], [13, 13], [0, 0], 1, False) 2023-01-11T21:41:26.6898519Z del arg0_1 2023-01-11T21:41:26.6898647Z buf1 = buf0[0] 2023-01-11T21:41:26.6898828Z assert_size_stride(buf1, (16, 64, 4, 4), (1024, 16, 4, 1)) 2023-01-11T21:41:26.6898957Z buf2 = buf0[1] 2023-01-11T21:41:26.6899143Z assert_size_stride(buf2, (16, 64, 4, 4), (1024, 16, 4, 1)) 2023-01-11T21:41:26.6899259Z del buf0 2023-01-11T21:41:26.6899382Z return (buf1, buf2, ) 2023-01-11T21:41:26.6899392Z 2023-01-11T21:41:26.6899400Z 2023-01-11T21:41:26.6899532Z if __name__ == "__main__": 2023-01-11T21:41:26.6899725Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6899938Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6900351Z arg0_1 = rand_strided((16, 64, 55, 55), (193600, 3025, 55, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6900542Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.6900558Z 2023-01-11T21:41:26.6900682Z ok (0.088s) 2023-01-11T21:41:26.6901482Z test_max_pool2d_with_indices_backward2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6901717Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6902158Z [2023-01-11 21:36:28,423] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 369 2023-01-11T21:41:26.6902609Z [2023-01-11 21:36:30,025] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 369 2023-01-11T21:41:26.6902618Z 2023-01-11T21:41:26.6902785Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6902923Z import torch 2023-01-11T21:41:26.6903054Z import random 2023-01-11T21:41:26.6903338Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6903553Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6903563Z 2023-01-11T21:41:26.6903703Z aten = torch.ops.aten 2023-01-11T21:41:26.6903914Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6904083Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6904091Z 2023-01-11T21:41:26.6904097Z 2023-01-11T21:41:26.6904336Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6904686Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6904886Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6905062Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6905235Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6905349Z { 2023-01-11T21:41:26.6905506Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6905620Z { 2023-01-11T21:41:26.6905762Z #pragma omp for 2023-01-11T21:41:26.6905996Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.6906113Z { 2023-01-11T21:41:26.6906255Z #pragma GCC ivdep 2023-01-11T21:41:26.6906409Z for(long i1=0; i1<40; i1+=1) 2023-01-11T21:41:26.6906509Z { 2023-01-11T21:41:26.6906650Z #pragma GCC ivdep 2023-01-11T21:41:26.6906809Z for(long i2=0; i2<56; i2+=1) 2023-01-11T21:41:26.6906923Z { 2023-01-11T21:41:26.6907045Z { 2023-01-11T21:41:26.6907169Z { 2023-01-11T21:41:26.6907344Z auto tmp0 = static_cast(i2 + (56*i1)); 2023-01-11T21:41:26.6907531Z auto tmp1 = static_cast((i1 / 2)); 2023-01-11T21:41:26.6907718Z auto tmp2 = static_cast((i2 / 2)); 2023-01-11T21:41:26.6907979Z auto tmp3 = static_cast(1 + (((1 + i1) / 2))); 2023-01-11T21:41:26.6908184Z auto tmp4 = static_cast(1 + (((1 + i2) / 2))); 2023-01-11T21:41:26.6908376Z auto tmp5 = static_cast(0); 2023-01-11T21:41:26.6908610Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:41:26.6908827Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:41:26.6909015Z auto tmp8 = static_cast(21); 2023-01-11T21:41:26.6909220Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:41:26.6909404Z auto tmp10 = static_cast(29); 2023-01-11T21:41:26.6909623Z auto tmp11 = (tmp10 != tmp10) ? tmp10 : std::min(tmp4, tmp10); 2023-01-11T21:41:26.6909805Z auto tmp12 = tmp6 + tmp5; 2023-01-11T21:41:26.6909972Z auto tmp13 = tmp7 + tmp5; 2023-01-11T21:41:26.6910155Z auto tmp14 = static_cast(1); 2023-01-11T21:41:26.6910442Z auto tmp15 = tmp9 - tmp14; 2023-01-11T21:41:26.6910670Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp12, tmp15); 2023-01-11T21:41:26.6910923Z auto tmp17 = tmp11 - tmp14; 2023-01-11T21:41:26.6911143Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp13, tmp17); 2023-01-11T21:41:26.6911337Z auto tmp19 = in_ptr0[tmp18 + (29*tmp16) + (609*i0)]; 2023-01-11T21:41:26.6911540Z auto tmp20 = in_ptr1[tmp18 + (29*tmp16) + (609*i0)]; 2023-01-11T21:41:26.6911715Z auto tmp21 = tmp19 == tmp0; 2023-01-11T21:41:26.6911907Z auto tmp22 = static_cast(0.0); 2023-01-11T21:41:26.6912095Z auto tmp23 = tmp21 ? tmp20 : tmp22; 2023-01-11T21:41:26.6912264Z auto tmp24 = tmp7 + tmp14; 2023-01-11T21:41:26.6912479Z auto tmp25 = (tmp17 != tmp17) ? tmp17 : std::min(tmp24, tmp17); 2023-01-11T21:41:26.6912680Z auto tmp26 = in_ptr0[tmp25 + (29*tmp16) + (609*i0)]; 2023-01-11T21:41:26.6912879Z auto tmp27 = in_ptr1[tmp25 + (29*tmp16) + (609*i0)]; 2023-01-11T21:41:26.6913052Z auto tmp28 = tmp26 == tmp0; 2023-01-11T21:41:26.6913216Z auto tmp29 = tmp12 < tmp9; 2023-01-11T21:41:26.6913386Z auto tmp30 = tmp24 < tmp11; 2023-01-11T21:41:26.6913559Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:41:26.6913727Z auto tmp32 = tmp31 & tmp28; 2023-01-11T21:41:26.6913872Z auto tmp33 = tmp23 + tmp27; 2023-01-11T21:41:26.6914057Z auto tmp34 = tmp32 ? tmp33 : tmp23; 2023-01-11T21:41:26.6914329Z auto tmp35 = tmp6 + tmp14; 2023-01-11T21:41:26.6914682Z auto tmp36 = (tmp15 != tmp15) ? tmp15 : std::min(tmp35, tmp15); 2023-01-11T21:41:26.6914913Z auto tmp37 = in_ptr0[tmp18 + (29*tmp36) + (609*i0)]; 2023-01-11T21:41:26.6915147Z auto tmp38 = in_ptr1[tmp18 + (29*tmp36) + (609*i0)]; 2023-01-11T21:41:26.6915344Z auto tmp39 = tmp37 == tmp0; 2023-01-11T21:41:26.6915534Z auto tmp40 = tmp35 < tmp9; 2023-01-11T21:41:26.6915706Z auto tmp41 = tmp13 < tmp11; 2023-01-11T21:41:26.6915893Z auto tmp42 = tmp40 & tmp41; 2023-01-11T21:41:26.6916079Z auto tmp43 = tmp42 & tmp39; 2023-01-11T21:41:26.6916277Z auto tmp44 = tmp34 + tmp38; 2023-01-11T21:41:26.6916566Z auto tmp45 = tmp43 ? tmp44 : tmp34; 2023-01-11T21:41:26.6916804Z auto tmp46 = in_ptr0[tmp25 + (29*tmp36) + (609*i0)]; 2023-01-11T21:41:26.6917036Z auto tmp47 = in_ptr1[tmp25 + (29*tmp36) + (609*i0)]; 2023-01-11T21:41:26.6917207Z auto tmp48 = tmp46 == tmp0; 2023-01-11T21:41:26.6917401Z auto tmp49 = tmp40 & tmp30; 2023-01-11T21:41:26.6917591Z auto tmp50 = tmp49 & tmp48; 2023-01-11T21:41:26.6917774Z auto tmp51 = tmp45 + tmp47; 2023-01-11T21:41:26.6917980Z auto tmp52 = tmp50 ? tmp51 : tmp45; 2023-01-11T21:41:26.6918189Z out_ptr0[i2 + (56*i1) + (2240*i0)] = tmp52; 2023-01-11T21:41:26.6918339Z } 2023-01-11T21:41:26.6918460Z } 2023-01-11T21:41:26.6918592Z } 2023-01-11T21:41:26.6918727Z } 2023-01-11T21:41:26.6918870Z } 2023-01-11T21:41:26.6918993Z } 2023-01-11T21:41:26.6919120Z } 2023-01-11T21:41:26.6919308Z ''') 2023-01-11T21:41:26.6919329Z 2023-01-11T21:41:26.6919336Z 2023-01-11T21:41:26.6919501Z async_compile.wait(globals()) 2023-01-11T21:41:26.6919650Z del async_compile 2023-01-11T21:41:26.6919663Z 2023-01-11T21:41:26.6919813Z def call(args): 2023-01-11T21:41:26.6919974Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6920127Z args.clear() 2023-01-11T21:41:26.6920581Z buf0 = empty_strided((2, 4, 40, 56), (8960, 2240, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6920904Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6921044Z del arg0_1 2023-01-11T21:41:26.6921166Z del arg2_1 2023-01-11T21:41:26.6921307Z return (buf0, ) 2023-01-11T21:41:26.6921322Z 2023-01-11T21:41:26.6921329Z 2023-01-11T21:41:26.6921484Z if __name__ == "__main__": 2023-01-11T21:41:26.6921717Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6921960Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6922402Z arg0_1 = rand_strided((2, 4, 21, 29), (2436, 609, 29, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6922838Z arg1_1 = rand_strided((2, 4, 40, 56), (8960, 2240, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6923273Z arg2_1 = rand_strided((2, 4, 21, 29), (2436, 609, 29, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6923494Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6923504Z 2023-01-11T21:41:26.6923642Z ok (1.629s) 2023-01-11T21:41:26.6924580Z test_max_pool2d_with_indices_backward3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6924855Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6925484Z [2023-01-11 21:36:30,150] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 370 2023-01-11T21:41:26.6926016Z [2023-01-11 21:36:31,706] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 370 2023-01-11T21:41:26.6926032Z 2023-01-11T21:41:26.6926216Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6926360Z import torch 2023-01-11T21:41:26.6926510Z import random 2023-01-11T21:41:26.6926724Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6926965Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6926979Z 2023-01-11T21:41:26.6927131Z aten = torch.ops.aten 2023-01-11T21:41:26.6927402Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6927664Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6927677Z 2023-01-11T21:41:26.6927684Z 2023-01-11T21:41:26.6927959Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6928359Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6928598Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6928787Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6928977Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6929235Z { 2023-01-11T21:41:26.6929444Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6929575Z { 2023-01-11T21:41:26.6929734Z #pragma omp for 2023-01-11T21:41:26.6929900Z for(long i0=0; i0<8192; i0+=1) 2023-01-11T21:41:26.6930004Z { 2023-01-11T21:41:26.6930172Z #pragma GCC ivdep 2023-01-11T21:41:26.6930351Z for(long i1=0; i1<37; i1+=1) 2023-01-11T21:41:26.6930484Z { 2023-01-11T21:41:26.6930659Z #pragma GCC ivdep 2023-01-11T21:41:26.6930839Z for(long i2=0; i2<38; i2+=1) 2023-01-11T21:41:26.6930973Z { 2023-01-11T21:41:26.6931087Z { 2023-01-11T21:41:26.6931226Z { 2023-01-11T21:41:26.6931508Z auto tmp0 = static_cast(i2 + (38*i1)); 2023-01-11T21:41:26.6931745Z auto tmp1 = static_cast(((1 + i1) / 2)); 2023-01-11T21:41:26.6931973Z auto tmp2 = static_cast(((1 + i2) / 2)); 2023-01-11T21:41:26.6932194Z auto tmp3 = static_cast(1 + (i1 / 2)); 2023-01-11T21:41:26.6932414Z auto tmp4 = static_cast(1 + (i2 / 2)); 2023-01-11T21:41:26.6932599Z auto tmp5 = static_cast(0); 2023-01-11T21:41:26.6932866Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:41:26.6933113Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:41:26.6933334Z auto tmp8 = static_cast(19); 2023-01-11T21:41:26.6933596Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:41:26.6933848Z auto tmp10 = (tmp8 != tmp8) ? tmp8 : std::min(tmp4, tmp8); 2023-01-11T21:41:26.6934123Z auto tmp11 = tmp6 + tmp5; 2023-01-11T21:41:26.6934302Z auto tmp12 = tmp7 + tmp5; 2023-01-11T21:41:26.6934490Z auto tmp13 = static_cast(1); 2023-01-11T21:41:26.6934756Z auto tmp14 = tmp9 - tmp13; 2023-01-11T21:41:26.6934992Z auto tmp15 = (tmp14 != tmp14) ? tmp14 : std::min(tmp11, tmp14); 2023-01-11T21:41:26.6935262Z auto tmp16 = tmp10 - tmp13; 2023-01-11T21:41:26.6935499Z auto tmp17 = (tmp16 != tmp16) ? tmp16 : std::min(tmp12, tmp16); 2023-01-11T21:41:26.6935714Z auto tmp18 = in_ptr0[tmp17 + (19*tmp15) + (361*i0)]; 2023-01-11T21:41:26.6936030Z auto tmp19 = in_ptr1[tmp17 + (19*tmp15) + (361*i0)]; 2023-01-11T21:41:26.6936208Z auto tmp20 = tmp18 == tmp0; 2023-01-11T21:41:26.6936403Z auto tmp21 = static_cast(0.0); 2023-01-11T21:41:26.6936566Z auto tmp22 = tmp20 ? tmp19 : tmp21; 2023-01-11T21:41:26.6936747Z out_ptr0[i2 + (38*i1) + (1406*i0)] = tmp22; 2023-01-11T21:41:26.6936873Z } 2023-01-11T21:41:26.6936994Z } 2023-01-11T21:41:26.6937118Z } 2023-01-11T21:41:26.6937338Z } 2023-01-11T21:41:26.6937467Z } 2023-01-11T21:41:26.6937573Z } 2023-01-11T21:41:26.6937700Z } 2023-01-11T21:41:26.6937871Z ''') 2023-01-11T21:41:26.6937887Z 2023-01-11T21:41:26.6937979Z 2023-01-11T21:41:26.6938162Z async_compile.wait(globals()) 2023-01-11T21:41:26.6938293Z del async_compile 2023-01-11T21:41:26.6938306Z 2023-01-11T21:41:26.6938415Z def call(args): 2023-01-11T21:41:26.6938545Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6938640Z args.clear() 2023-01-11T21:41:26.6939014Z buf0 = empty_strided((32, 256, 37, 38), (359936, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6939300Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6939428Z del arg0_1 2023-01-11T21:41:26.6939552Z del arg2_1 2023-01-11T21:41:26.6939684Z return (buf0, ) 2023-01-11T21:41:26.6939694Z 2023-01-11T21:41:26.6939700Z 2023-01-11T21:41:26.6939838Z if __name__ == "__main__": 2023-01-11T21:41:26.6940048Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6940258Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6940708Z arg0_1 = rand_strided((32, 256, 19, 19), (92416, 361, 19, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6941149Z arg1_1 = rand_strided((32, 256, 37, 38), (359936, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6941581Z arg2_1 = rand_strided((32, 256, 19, 19), (92416, 361, 19, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6941802Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6941815Z 2023-01-11T21:41:26.6941936Z ok (2.128s) 2023-01-11T21:41:26.6942863Z test_max_pool2d_with_indices_backward4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6943113Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6943722Z [2023-01-11 21:36:32,178] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 371 2023-01-11T21:41:26.6943744Z 2023-01-11T21:41:26.6943995Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6944095Z import torch 2023-01-11T21:41:26.6944207Z import random 2023-01-11T21:41:26.6944392Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6944587Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6944595Z 2023-01-11T21:41:26.6944718Z aten = torch.ops.aten 2023-01-11T21:41:26.6944933Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6945078Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6945087Z 2023-01-11T21:41:26.6945093Z 2023-01-11T21:41:26.6945326Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.6945652Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.6945844Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.6946013Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.6946298Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.6946400Z { 2023-01-11T21:41:26.6946557Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.6946660Z { 2023-01-11T21:41:26.6946767Z #pragma omp for 2023-01-11T21:41:26.6946903Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.6947004Z { 2023-01-11T21:41:26.6947133Z #pragma GCC ivdep 2023-01-11T21:41:26.6947266Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.6947373Z { 2023-01-11T21:41:26.6947486Z #pragma GCC ivdep 2023-01-11T21:41:26.6947630Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:41:26.6947732Z { 2023-01-11T21:41:26.6947843Z { 2023-01-11T21:41:26.6947952Z { 2023-01-11T21:41:26.6948213Z auto tmp0 = static_cast(i2 + (4*i1)); 2023-01-11T21:41:26.6948540Z auto tmp1 = static_cast((-2) + i1); 2023-01-11T21:41:26.6948813Z auto tmp2 = static_cast((-2) + i2); 2023-01-11T21:41:26.6948987Z auto tmp3 = static_cast(3 + i1); 2023-01-11T21:41:26.6949155Z auto tmp4 = static_cast(3 + i2); 2023-01-11T21:41:26.6949322Z auto tmp5 = static_cast(0); 2023-01-11T21:41:26.6949542Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:41:26.6949741Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:41:26.6949913Z auto tmp8 = static_cast(3); 2023-01-11T21:41:26.6950126Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:41:26.6950305Z auto tmp10 = static_cast(4); 2023-01-11T21:41:26.6950507Z auto tmp11 = (tmp10 != tmp10) ? tmp10 : std::min(tmp4, tmp10); 2023-01-11T21:41:26.6950666Z auto tmp12 = tmp6 + tmp5; 2023-01-11T21:41:26.6950813Z auto tmp13 = tmp7 + tmp5; 2023-01-11T21:41:26.6950981Z auto tmp14 = static_cast(1); 2023-01-11T21:41:26.6951256Z auto tmp15 = tmp9 - tmp14; 2023-01-11T21:41:26.6951470Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp12, tmp15); 2023-01-11T21:41:26.6951728Z auto tmp17 = tmp11 - tmp14; 2023-01-11T21:41:26.6951935Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp13, tmp17); 2023-01-11T21:41:26.6952103Z auto tmp19 = in_ptr0[tmp18 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6952293Z auto tmp20 = in_ptr1[tmp18 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6952446Z auto tmp21 = tmp19 == tmp0; 2023-01-11T21:41:26.6952617Z auto tmp22 = static_cast(0.0); 2023-01-11T21:41:26.6952791Z auto tmp23 = tmp21 ? tmp20 : tmp22; 2023-01-11T21:41:26.6952944Z auto tmp24 = tmp7 + tmp14; 2023-01-11T21:41:26.6953158Z auto tmp25 = (tmp17 != tmp17) ? tmp17 : std::min(tmp24, tmp17); 2023-01-11T21:41:26.6953346Z auto tmp26 = in_ptr0[tmp25 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6953513Z auto tmp27 = in_ptr1[tmp25 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6953666Z auto tmp28 = tmp26 == tmp0; 2023-01-11T21:41:26.6953819Z auto tmp29 = tmp12 < tmp9; 2023-01-11T21:41:26.6953972Z auto tmp30 = tmp24 < tmp11; 2023-01-11T21:41:26.6954133Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:41:26.6954289Z auto tmp32 = tmp31 & tmp28; 2023-01-11T21:41:26.6954557Z auto tmp33 = tmp23 + tmp27; 2023-01-11T21:41:26.6954704Z auto tmp34 = tmp32 ? tmp33 : tmp23; 2023-01-11T21:41:26.6954877Z auto tmp35 = static_cast(2); 2023-01-11T21:41:26.6955028Z auto tmp36 = tmp7 + tmp35; 2023-01-11T21:41:26.6955248Z auto tmp37 = (tmp17 != tmp17) ? tmp17 : std::min(tmp36, tmp17); 2023-01-11T21:41:26.6955431Z auto tmp38 = in_ptr0[tmp37 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6955613Z auto tmp39 = in_ptr1[tmp37 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6955769Z auto tmp40 = tmp38 == tmp0; 2023-01-11T21:41:26.6955919Z auto tmp41 = tmp36 < tmp11; 2023-01-11T21:41:26.6956161Z auto tmp42 = tmp29 & tmp41; 2023-01-11T21:41:26.6956340Z auto tmp43 = tmp42 & tmp40; 2023-01-11T21:41:26.6956502Z auto tmp44 = tmp34 + tmp39; 2023-01-11T21:41:26.6956668Z auto tmp45 = tmp43 ? tmp44 : tmp34; 2023-01-11T21:41:26.6956815Z auto tmp46 = tmp7 + tmp8; 2023-01-11T21:41:26.6957038Z auto tmp47 = (tmp17 != tmp17) ? tmp17 : std::min(tmp46, tmp17); 2023-01-11T21:41:26.6957221Z auto tmp48 = in_ptr0[tmp47 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6957401Z auto tmp49 = in_ptr1[tmp47 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6957539Z auto tmp50 = tmp48 == tmp0; 2023-01-11T21:41:26.6957692Z auto tmp51 = tmp46 < tmp11; 2023-01-11T21:41:26.6957845Z auto tmp52 = tmp29 & tmp51; 2023-01-11T21:41:26.6958003Z auto tmp53 = tmp52 & tmp50; 2023-01-11T21:41:26.6958153Z auto tmp54 = tmp45 + tmp49; 2023-01-11T21:41:26.6958326Z auto tmp55 = tmp53 ? tmp54 : tmp45; 2023-01-11T21:41:26.6958479Z auto tmp56 = tmp7 + tmp10; 2023-01-11T21:41:26.6958695Z auto tmp57 = (tmp17 != tmp17) ? tmp17 : std::min(tmp56, tmp17); 2023-01-11T21:41:26.6958864Z auto tmp58 = in_ptr0[tmp57 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6959048Z auto tmp59 = in_ptr1[tmp57 + (4*tmp16) + (12*i0)]; 2023-01-11T21:41:26.6959199Z auto tmp60 = tmp58 == tmp0; 2023-01-11T21:41:26.6959352Z auto tmp61 = tmp56 < tmp11; 2023-01-11T21:41:26.6959495Z auto tmp62 = tmp29 & tmp61; 2023-01-11T21:41:26.6959647Z auto tmp63 = tmp62 & tmp60; 2023-01-11T21:41:26.6959801Z auto tmp64 = tmp55 + tmp59; 2023-01-11T21:41:26.6959955Z auto tmp65 = tmp63 ? tmp64 : tmp55; 2023-01-11T21:41:26.6960117Z auto tmp66 = tmp6 + tmp14; 2023-01-11T21:41:26.6960328Z auto tmp67 = (tmp15 != tmp15) ? tmp15 : std::min(tmp66, tmp15); 2023-01-11T21:41:26.6960511Z auto tmp68 = in_ptr0[tmp18 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6960693Z auto tmp69 = in_ptr1[tmp18 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6960843Z auto tmp70 = tmp68 == tmp0; 2023-01-11T21:41:26.6960995Z auto tmp71 = tmp66 < tmp9; 2023-01-11T21:41:26.6961144Z auto tmp72 = tmp13 < tmp11; 2023-01-11T21:41:26.6961280Z auto tmp73 = tmp71 & tmp72; 2023-01-11T21:41:26.6961432Z auto tmp74 = tmp73 & tmp70; 2023-01-11T21:41:26.6961588Z auto tmp75 = tmp65 + tmp69; 2023-01-11T21:41:26.6961756Z auto tmp76 = tmp74 ? tmp75 : tmp65; 2023-01-11T21:41:26.6962048Z auto tmp77 = in_ptr0[tmp25 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6962231Z auto tmp78 = in_ptr1[tmp25 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6962385Z auto tmp79 = tmp77 == tmp0; 2023-01-11T21:41:26.6962535Z auto tmp80 = tmp71 & tmp30; 2023-01-11T21:41:26.6962666Z auto tmp81 = tmp80 & tmp79; 2023-01-11T21:41:26.6962815Z auto tmp82 = tmp76 + tmp78; 2023-01-11T21:41:26.6962975Z auto tmp83 = tmp81 ? tmp82 : tmp76; 2023-01-11T21:41:26.6963159Z auto tmp84 = in_ptr0[tmp37 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6963340Z auto tmp85 = in_ptr1[tmp37 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6963597Z auto tmp86 = tmp84 == tmp0; 2023-01-11T21:41:26.6963773Z auto tmp87 = tmp71 & tmp41; 2023-01-11T21:41:26.6963935Z auto tmp88 = tmp87 & tmp86; 2023-01-11T21:41:26.6964071Z auto tmp89 = tmp83 + tmp85; 2023-01-11T21:41:26.6964230Z auto tmp90 = tmp88 ? tmp89 : tmp83; 2023-01-11T21:41:26.6964408Z auto tmp91 = in_ptr0[tmp47 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6964589Z auto tmp92 = in_ptr1[tmp47 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6964738Z auto tmp93 = tmp91 == tmp0; 2023-01-11T21:41:26.6964891Z auto tmp94 = tmp71 & tmp51; 2023-01-11T21:41:26.6965036Z auto tmp95 = tmp94 & tmp93; 2023-01-11T21:41:26.6965171Z auto tmp96 = tmp90 + tmp92; 2023-01-11T21:41:26.6965337Z auto tmp97 = tmp95 ? tmp96 : tmp90; 2023-01-11T21:41:26.6965518Z auto tmp98 = in_ptr0[tmp57 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6965708Z auto tmp99 = in_ptr1[tmp57 + (4*tmp67) + (12*i0)]; 2023-01-11T21:41:26.6965864Z auto tmp100 = tmp98 == tmp0; 2023-01-11T21:41:26.6966021Z auto tmp101 = tmp71 & tmp61; 2023-01-11T21:41:26.6966178Z auto tmp102 = tmp101 & tmp100; 2023-01-11T21:41:26.6966326Z auto tmp103 = tmp97 + tmp99; 2023-01-11T21:41:26.6966479Z auto tmp104 = tmp102 ? tmp103 : tmp97; 2023-01-11T21:41:26.6966636Z auto tmp105 = tmp6 + tmp35; 2023-01-11T21:41:26.6966861Z auto tmp106 = (tmp15 != tmp15) ? tmp15 : std::min(tmp105, tmp15); 2023-01-11T21:41:26.6967055Z auto tmp107 = in_ptr0[tmp18 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6967247Z auto tmp108 = in_ptr1[tmp18 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6967406Z auto tmp109 = tmp107 == tmp0; 2023-01-11T21:41:26.6967569Z auto tmp110 = tmp105 < tmp9; 2023-01-11T21:41:26.6967720Z auto tmp111 = tmp110 & tmp72; 2023-01-11T21:41:26.6967865Z auto tmp112 = tmp111 & tmp109; 2023-01-11T21:41:26.6968024Z auto tmp113 = tmp104 + tmp108; 2023-01-11T21:41:26.6968193Z auto tmp114 = tmp112 ? tmp113 : tmp104; 2023-01-11T21:41:26.6968376Z auto tmp115 = in_ptr0[tmp25 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6968560Z auto tmp116 = in_ptr1[tmp25 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6968717Z auto tmp117 = tmp115 == tmp0; 2023-01-11T21:41:26.6968874Z auto tmp118 = tmp110 & tmp30; 2023-01-11T21:41:26.6969252Z auto tmp119 = tmp118 & tmp117; 2023-01-11T21:41:26.6969429Z auto tmp120 = tmp114 + tmp116; 2023-01-11T21:41:26.6969732Z auto tmp121 = tmp119 ? tmp120 : tmp114; 2023-01-11T21:41:26.6969920Z auto tmp122 = in_ptr0[tmp37 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6970103Z auto tmp123 = in_ptr1[tmp37 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6970260Z auto tmp124 = tmp122 == tmp0; 2023-01-11T21:41:26.6970418Z auto tmp125 = tmp110 & tmp41; 2023-01-11T21:41:26.6970575Z auto tmp126 = tmp125 & tmp124; 2023-01-11T21:41:26.6970716Z auto tmp127 = tmp121 + tmp123; 2023-01-11T21:41:26.6970884Z auto tmp128 = tmp126 ? tmp127 : tmp121; 2023-01-11T21:41:26.6971164Z auto tmp129 = in_ptr0[tmp47 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6971375Z auto tmp130 = in_ptr1[tmp47 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6971538Z auto tmp131 = tmp129 == tmp0; 2023-01-11T21:41:26.6971693Z auto tmp132 = tmp110 & tmp51; 2023-01-11T21:41:26.6971853Z auto tmp133 = tmp132 & tmp131; 2023-01-11T21:41:26.6972005Z auto tmp134 = tmp128 + tmp130; 2023-01-11T21:41:26.6972158Z auto tmp135 = tmp133 ? tmp134 : tmp128; 2023-01-11T21:41:26.6972349Z auto tmp136 = in_ptr0[tmp57 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6972534Z auto tmp137 = in_ptr1[tmp57 + (4*tmp106) + (12*i0)]; 2023-01-11T21:41:26.6972688Z auto tmp138 = tmp136 == tmp0; 2023-01-11T21:41:26.6972840Z auto tmp139 = tmp110 & tmp61; 2023-01-11T21:41:26.6972999Z auto tmp140 = tmp139 & tmp138; 2023-01-11T21:41:26.6973156Z auto tmp141 = tmp135 + tmp137; 2023-01-11T21:41:26.6973317Z auto tmp142 = tmp140 ? tmp141 : tmp135; 2023-01-11T21:41:26.6973474Z auto tmp143 = tmp6 + tmp8; 2023-01-11T21:41:26.6973695Z auto tmp144 = (tmp15 != tmp15) ? tmp15 : std::min(tmp143, tmp15); 2023-01-11T21:41:26.6973880Z auto tmp145 = in_ptr0[tmp18 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6974063Z auto tmp146 = in_ptr1[tmp18 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6974217Z auto tmp147 = tmp145 == tmp0; 2023-01-11T21:41:26.6974367Z auto tmp148 = tmp143 < tmp9; 2023-01-11T21:41:26.6974519Z auto tmp149 = tmp148 & tmp72; 2023-01-11T21:41:26.6974657Z auto tmp150 = tmp149 & tmp147; 2023-01-11T21:41:26.6974817Z auto tmp151 = tmp142 + tmp146; 2023-01-11T21:41:26.6974984Z auto tmp152 = tmp150 ? tmp151 : tmp142; 2023-01-11T21:41:26.6975177Z auto tmp153 = in_ptr0[tmp25 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6975354Z auto tmp154 = in_ptr1[tmp25 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6975507Z auto tmp155 = tmp153 == tmp0; 2023-01-11T21:41:26.6975660Z auto tmp156 = tmp148 & tmp30; 2023-01-11T21:41:26.6975819Z auto tmp157 = tmp156 & tmp155; 2023-01-11T21:41:26.6975957Z auto tmp158 = tmp152 + tmp154; 2023-01-11T21:41:26.6976126Z auto tmp159 = tmp157 ? tmp158 : tmp152; 2023-01-11T21:41:26.6976311Z auto tmp160 = in_ptr0[tmp37 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6976501Z auto tmp161 = in_ptr1[tmp37 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6976657Z auto tmp162 = tmp160 == tmp0; 2023-01-11T21:41:26.6976809Z auto tmp163 = tmp148 & tmp41; 2023-01-11T21:41:26.6977081Z auto tmp164 = tmp163 & tmp162; 2023-01-11T21:41:26.6977232Z auto tmp165 = tmp159 + tmp161; 2023-01-11T21:41:26.6977386Z auto tmp166 = tmp164 ? tmp165 : tmp159; 2023-01-11T21:41:26.6977566Z auto tmp167 = in_ptr0[tmp47 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6977749Z auto tmp168 = in_ptr1[tmp47 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6977906Z auto tmp169 = tmp167 == tmp0; 2023-01-11T21:41:26.6978057Z auto tmp170 = tmp148 & tmp51; 2023-01-11T21:41:26.6978211Z auto tmp171 = tmp170 & tmp169; 2023-01-11T21:41:26.6978445Z auto tmp172 = tmp166 + tmp168; 2023-01-11T21:41:26.6978613Z auto tmp173 = tmp171 ? tmp172 : tmp166; 2023-01-11T21:41:26.6978805Z auto tmp174 = in_ptr0[tmp57 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6978995Z auto tmp175 = in_ptr1[tmp57 + (4*tmp144) + (12*i0)]; 2023-01-11T21:41:26.6979152Z auto tmp176 = tmp174 == tmp0; 2023-01-11T21:41:26.6979304Z auto tmp177 = tmp148 & tmp61; 2023-01-11T21:41:26.6979459Z auto tmp178 = tmp177 & tmp176; 2023-01-11T21:41:26.6979613Z auto tmp179 = tmp173 + tmp175; 2023-01-11T21:41:26.6979782Z auto tmp180 = tmp178 ? tmp179 : tmp173; 2023-01-11T21:41:26.6979919Z auto tmp181 = tmp6 + tmp10; 2023-01-11T21:41:26.6980144Z auto tmp182 = (tmp15 != tmp15) ? tmp15 : std::min(tmp181, tmp15); 2023-01-11T21:41:26.6980333Z auto tmp183 = in_ptr0[tmp18 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6980518Z auto tmp184 = in_ptr1[tmp18 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6980682Z auto tmp185 = tmp183 == tmp0; 2023-01-11T21:41:26.6980837Z auto tmp186 = tmp181 < tmp9; 2023-01-11T21:41:26.6980990Z auto tmp187 = tmp186 & tmp72; 2023-01-11T21:41:26.6981145Z auto tmp188 = tmp187 & tmp185; 2023-01-11T21:41:26.6981281Z auto tmp189 = tmp180 + tmp184; 2023-01-11T21:41:26.6981446Z auto tmp190 = tmp188 ? tmp189 : tmp180; 2023-01-11T21:41:26.6981625Z auto tmp191 = in_ptr0[tmp25 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6981805Z auto tmp192 = in_ptr1[tmp25 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6981955Z auto tmp193 = tmp191 == tmp0; 2023-01-11T21:41:26.6982113Z auto tmp194 = tmp186 & tmp30; 2023-01-11T21:41:26.6982268Z auto tmp195 = tmp194 & tmp193; 2023-01-11T21:41:26.6982431Z auto tmp196 = tmp190 + tmp192; 2023-01-11T21:41:26.6982581Z auto tmp197 = tmp195 ? tmp196 : tmp190; 2023-01-11T21:41:26.6982764Z auto tmp198 = in_ptr0[tmp37 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6982946Z auto tmp199 = in_ptr1[tmp37 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6983100Z auto tmp200 = tmp198 == tmp0; 2023-01-11T21:41:26.6983377Z auto tmp201 = tmp186 & tmp41; 2023-01-11T21:41:26.6983540Z auto tmp202 = tmp201 & tmp200; 2023-01-11T21:41:26.6983696Z auto tmp203 = tmp197 + tmp199; 2023-01-11T21:41:26.6983845Z auto tmp204 = tmp202 ? tmp203 : tmp197; 2023-01-11T21:41:26.6984036Z auto tmp205 = in_ptr0[tmp47 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6984218Z auto tmp206 = in_ptr1[tmp47 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6984485Z auto tmp207 = tmp205 == tmp0; 2023-01-11T21:41:26.6984635Z auto tmp208 = tmp186 & tmp51; 2023-01-11T21:41:26.6984792Z auto tmp209 = tmp208 & tmp207; 2023-01-11T21:41:26.6984945Z auto tmp210 = tmp204 + tmp206; 2023-01-11T21:41:26.6985111Z auto tmp211 = tmp209 ? tmp210 : tmp204; 2023-01-11T21:41:26.6985278Z auto tmp212 = in_ptr0[tmp57 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6985460Z auto tmp213 = in_ptr1[tmp57 + (4*tmp182) + (12*i0)]; 2023-01-11T21:41:26.6985615Z auto tmp214 = tmp212 == tmp0; 2023-01-11T21:41:26.6985842Z auto tmp215 = tmp186 & tmp61; 2023-01-11T21:41:26.6986020Z auto tmp216 = tmp215 & tmp214; 2023-01-11T21:41:26.6986181Z auto tmp217 = tmp211 + tmp213; 2023-01-11T21:41:26.6986347Z auto tmp218 = tmp216 ? tmp217 : tmp211; 2023-01-11T21:41:26.6986514Z out_ptr0[i2 + (4*i1) + (12*i0)] = tmp218; 2023-01-11T21:41:26.6986609Z } 2023-01-11T21:41:26.6986713Z } 2023-01-11T21:41:26.6986816Z } 2023-01-11T21:41:26.6986922Z } 2023-01-11T21:41:26.6987024Z } 2023-01-11T21:41:26.6987124Z } 2023-01-11T21:41:26.6987201Z } 2023-01-11T21:41:26.6987374Z ''') 2023-01-11T21:41:26.6987385Z 2023-01-11T21:41:26.6987391Z 2023-01-11T21:41:26.6987545Z async_compile.wait(globals()) 2023-01-11T21:41:26.6987660Z del async_compile 2023-01-11T21:41:26.6987669Z 2023-01-11T21:41:26.6987783Z def call(args): 2023-01-11T21:41:26.6987919Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6988034Z args.clear() 2023-01-11T21:41:26.6988415Z buf0 = empty_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6988660Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.6988777Z del arg0_1 2023-01-11T21:41:26.6988887Z del arg2_1 2023-01-11T21:41:26.6989005Z return (buf0, ) 2023-01-11T21:41:26.6989014Z 2023-01-11T21:41:26.6989020Z 2023-01-11T21:41:26.6989142Z if __name__ == "__main__": 2023-01-11T21:41:26.6989328Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6989524Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6989897Z arg0_1 = rand_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6990243Z arg1_1 = rand_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6990605Z arg2_1 = rand_strided((2, 64, 3, 4), (768, 12, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6990802Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6991268Z [2023-01-11 21:36:34,015] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 371 2023-01-11T21:41:26.6991279Z 2023-01-11T21:41:26.6991388Z ok (1.880s) 2023-01-11T21:41:26.6992183Z test_max_pool2d_with_indices_backward5_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6992396Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.6992857Z [2023-01-11 21:36:34,061] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 372 2023-01-11T21:41:26.6993292Z [2023-01-11 21:36:34,076] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.max_pool2d_with_indices_backward 2023-01-11T21:41:26.6993843Z [2023-01-11 21:36:34,079] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 372 2023-01-11T21:41:26.6993857Z 2023-01-11T21:41:26.6993990Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.6994102Z import torch 2023-01-11T21:41:26.6994214Z import random 2023-01-11T21:41:26.6994403Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.6994593Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.6994601Z 2023-01-11T21:41:26.6994723Z aten = torch.ops.aten 2023-01-11T21:41:26.6994931Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.6995060Z async_compile = AsyncCompile() 2023-01-11T21:41:26.6995084Z 2023-01-11T21:41:26.6995092Z 2023-01-11T21:41:26.6995307Z async_compile.wait(globals()) 2023-01-11T21:41:26.6995450Z del async_compile 2023-01-11T21:41:26.6995459Z 2023-01-11T21:41:26.6995573Z def call(args): 2023-01-11T21:41:26.6995712Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.6995830Z args.clear() 2023-01-11T21:41:26.6996084Z buf0 = aten.max_pool2d_with_indices_backward(arg0_1, arg1_1, [13, 13], [1, 1], [2, 2], [1, 1], False, arg2_1) 2023-01-11T21:41:26.6996197Z del arg0_1 2023-01-11T21:41:26.6996289Z del arg1_1 2023-01-11T21:41:26.6996398Z del arg2_1 2023-01-11T21:41:26.6996507Z buf1 = buf0 2023-01-11T21:41:26.6996679Z assert_size_stride(buf1, (2, 64, 20, 20), (25600, 400, 20, 1)) 2023-01-11T21:41:26.6996790Z del buf0 2023-01-11T21:41:26.6996906Z return (buf1, ) 2023-01-11T21:41:26.6996915Z 2023-01-11T21:41:26.6996920Z 2023-01-11T21:41:26.6997042Z if __name__ == "__main__": 2023-01-11T21:41:26.6997207Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.6997404Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.6997798Z arg0_1 = rand_strided((2, 64, 12, 12), (9216, 144, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6998188Z arg1_1 = rand_strided((2, 64, 20, 20), (25600, 400, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.6998546Z arg2_1 = rand_strided((2, 64, 12, 12), (9216, 144, 12, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.6998738Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.6998747Z 2023-01-11T21:41:26.6998854Z ok (0.046s) 2023-01-11T21:41:26.6999646Z test_max_pool2d_with_indices_backward_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.6999868Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7000331Z [2023-01-11 21:36:34,104] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 373 2023-01-11T21:41:26.7000786Z [2023-01-11 21:36:35,830] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 373 2023-01-11T21:41:26.7000816Z 2023-01-11T21:41:26.7000952Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7001065Z import torch 2023-01-11T21:41:26.7001180Z import random 2023-01-11T21:41:26.7001362Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7001552Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7001562Z 2023-01-11T21:41:26.7001690Z aten = torch.ops.aten 2023-01-11T21:41:26.7001904Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7002035Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7002042Z 2023-01-11T21:41:26.7002048Z 2023-01-11T21:41:26.7002302Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7002636Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7002943Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.7003109Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7003265Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7003368Z { 2023-01-11T21:41:26.7003508Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7003612Z { 2023-01-11T21:41:26.7003734Z #pragma omp for 2023-01-11T21:41:26.7003867Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7003968Z { 2023-01-11T21:41:26.7004099Z #pragma GCC ivdep 2023-01-11T21:41:26.7004233Z for(long i1=0; i1<18; i1+=1) 2023-01-11T21:41:26.7004319Z { 2023-01-11T21:41:26.7004455Z #pragma GCC ivdep 2023-01-11T21:41:26.7004594Z for(long i2=0; i2<14; i2+=1) 2023-01-11T21:41:26.7004781Z { 2023-01-11T21:41:26.7004908Z { 2023-01-11T21:41:26.7005017Z { 2023-01-11T21:41:26.7005206Z auto tmp0 = static_cast(i2 + (14*i1)); 2023-01-11T21:41:26.7005367Z auto tmp1 = static_cast((i1 / 2)); 2023-01-11T21:41:26.7005542Z auto tmp2 = static_cast((i2 / 2)); 2023-01-11T21:41:26.7005716Z auto tmp3 = static_cast(1 + (i1 / 2)); 2023-01-11T21:41:26.7005887Z auto tmp4 = static_cast(1 + (i2 / 2)); 2023-01-11T21:41:26.7006051Z auto tmp5 = static_cast(0); 2023-01-11T21:41:26.7006271Z auto tmp6 = (tmp5 != tmp5) ? tmp5 : std::max(tmp1, tmp5); 2023-01-11T21:41:26.7006482Z auto tmp7 = (tmp5 != tmp5) ? tmp5 : std::max(tmp2, tmp5); 2023-01-11T21:41:26.7006656Z auto tmp8 = static_cast(9); 2023-01-11T21:41:26.7006844Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::min(tmp3, tmp8); 2023-01-11T21:41:26.7007023Z auto tmp10 = static_cast(7); 2023-01-11T21:41:26.7007231Z auto tmp11 = (tmp10 != tmp10) ? tmp10 : std::min(tmp4, tmp10); 2023-01-11T21:41:26.7007385Z auto tmp12 = tmp6 + tmp5; 2023-01-11T21:41:26.7007531Z auto tmp13 = tmp7 + tmp5; 2023-01-11T21:41:26.7007695Z auto tmp14 = static_cast(1); 2023-01-11T21:41:26.7007978Z auto tmp15 = tmp9 - tmp14; 2023-01-11T21:41:26.7008193Z auto tmp16 = (tmp15 != tmp15) ? tmp15 : std::min(tmp12, tmp15); 2023-01-11T21:41:26.7008441Z auto tmp17 = tmp11 - tmp14; 2023-01-11T21:41:26.7008663Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp13, tmp17); 2023-01-11T21:41:26.7008845Z auto tmp19 = in_ptr0[tmp18 + (7*tmp16) + (63*i0)]; 2023-01-11T21:41:26.7009168Z auto tmp20 = in_ptr1[tmp18 + (7*tmp16) + (63*i0)]; 2023-01-11T21:41:26.7009325Z auto tmp21 = tmp19 == tmp0; 2023-01-11T21:41:26.7009497Z auto tmp22 = static_cast(0.0); 2023-01-11T21:41:26.7009665Z auto tmp23 = tmp21 ? tmp20 : tmp22; 2023-01-11T21:41:26.7009827Z out_ptr0[i2 + (14*i1) + (252*i0)] = tmp23; 2023-01-11T21:41:26.7009920Z } 2023-01-11T21:41:26.7010030Z } 2023-01-11T21:41:26.7010131Z } 2023-01-11T21:41:26.7010233Z } 2023-01-11T21:41:26.7010332Z } 2023-01-11T21:41:26.7010434Z } 2023-01-11T21:41:26.7010533Z } 2023-01-11T21:41:26.7010669Z ''') 2023-01-11T21:41:26.7010680Z 2023-01-11T21:41:26.7010686Z 2023-01-11T21:41:26.7010850Z async_compile.wait(globals()) 2023-01-11T21:41:26.7010971Z del async_compile 2023-01-11T21:41:26.7010979Z 2023-01-11T21:41:26.7011094Z def call(args): 2023-01-11T21:41:26.7011365Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7011480Z args.clear() 2023-01-11T21:41:26.7011870Z buf0 = empty_strided((2, 4, 18, 14), (1008, 252, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7012107Z kernel_cpp_0(c_void_p(arg2_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7012222Z del arg0_1 2023-01-11T21:41:26.7012330Z del arg2_1 2023-01-11T21:41:26.7012446Z return (buf0, ) 2023-01-11T21:41:26.7012455Z 2023-01-11T21:41:26.7012460Z 2023-01-11T21:41:26.7012581Z if __name__ == "__main__": 2023-01-11T21:41:26.7012756Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7012951Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7013426Z arg0_1 = rand_strided((2, 4, 9, 7), (252, 63, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7013795Z arg1_1 = rand_strided((2, 4, 18, 14), (1008, 252, 14, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7014161Z arg2_1 = rand_strided((2, 4, 9, 7), (252, 63, 7, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7014357Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7014368Z 2023-01-11T21:41:26.7014476Z ok (1.752s) 2023-01-11T21:41:26.7015219Z test_mean_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7015428Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7015899Z [2023-01-11 21:36:35,864] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 374 2023-01-11T21:41:26.7016361Z [2023-01-11 21:36:37,554] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 374 2023-01-11T21:41:26.7016378Z 2023-01-11T21:41:26.7016534Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7016652Z import torch 2023-01-11T21:41:26.7016751Z import random 2023-01-11T21:41:26.7016935Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7017125Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7017134Z 2023-01-11T21:41:26.7017257Z aten = torch.ops.aten 2023-01-11T21:41:26.7017468Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7017615Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7017623Z 2023-01-11T21:41:26.7017629Z 2023-01-11T21:41:26.7017879Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7018207Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7018375Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.7018532Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.7018704Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7018860Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7019015Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.7019111Z { 2023-01-11T21:41:26.7019251Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.7019370Z auto out_ptr0 = in_out_ptr1; 2023-01-11T21:41:26.7019471Z { 2023-01-11T21:41:26.7019791Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.7019918Z float tmp1 = 0; 2023-01-11T21:41:26.7020115Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.7020279Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7020384Z { 2023-01-11T21:41:26.7020546Z #pragma omp for reduction(+:tmp1_vec) 2023-01-11T21:41:26.7020685Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7020899Z { 2023-01-11T21:41:26.7021118Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7021245Z tmp1_vec += tmp0; 2023-01-11T21:41:26.7021335Z } 2023-01-11T21:41:26.7021606Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.7021789Z #pragma omp for simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.7021904Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7022013Z { 2023-01-11T21:41:26.7022145Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7022264Z tmp1 += tmp0; 2023-01-11T21:41:26.7022362Z } 2023-01-11T21:41:26.7022463Z } 2023-01-11T21:41:26.7022671Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.7022763Z } 2023-01-11T21:41:26.7022916Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7023018Z { 2023-01-11T21:41:26.7023210Z #pragma omp for 2023-01-11T21:41:26.7023338Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7023434Z { 2023-01-11T21:41:26.7023516Z { 2023-01-11T21:41:26.7023821Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.7023942Z float tmp1 = 0; 2023-01-11T21:41:26.7024135Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.7024276Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.7024380Z { 2023-01-11T21:41:26.7024600Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7024728Z tmp1_vec += tmp0; 2023-01-11T21:41:26.7024821Z } 2023-01-11T21:41:26.7025134Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.7025327Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.7025462Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.7025564Z { 2023-01-11T21:41:26.7025720Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.7025845Z tmp1 += tmp0; 2023-01-11T21:41:26.7025946Z } 2023-01-11T21:41:26.7026057Z out_ptr1[i0] = tmp1; 2023-01-11T21:41:26.7026157Z } 2023-01-11T21:41:26.7026256Z } 2023-01-11T21:41:26.7026377Z #pragma omp for 2023-01-11T21:41:26.7026504Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.7026605Z { 2023-01-11T21:41:26.7026818Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7027022Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.7027159Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7027313Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7027412Z } 2023-01-11T21:41:26.7027564Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7027693Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.7027792Z { 2023-01-11T21:41:26.7027909Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.7028064Z auto tmp1 = static_cast(8); 2023-01-11T21:41:26.7028197Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7028326Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7028425Z } 2023-01-11T21:41:26.7028548Z #pragma omp for 2023-01-11T21:41:26.7028674Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7028758Z { 2023-01-11T21:41:26.7028890Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.7028989Z { 2023-01-11T21:41:26.7029221Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.7029550Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 8 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.7029772Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr0 + 16 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.7029994Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr0 + 24 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.7030133Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7030253Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7030389Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7030605Z auto tmp7 = at::vec::Vectorized(static_cast(4)); 2023-01-11T21:41:26.7030742Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:41:26.7030903Z tmp8.store(out_ptr2 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7031004Z } 2023-01-11T21:41:26.7031219Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7031349Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.7031458Z { 2023-01-11T21:41:26.7031610Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.7031766Z auto tmp1 = in_ptr0[8 + i1 + (32*i0)]; 2023-01-11T21:41:26.7031920Z auto tmp3 = in_ptr0[16 + i1 + (32*i0)]; 2023-01-11T21:41:26.7032078Z auto tmp5 = in_ptr0[24 + i1 + (32*i0)]; 2023-01-11T21:41:26.7032216Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7032337Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7032473Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7032631Z auto tmp7 = static_cast(4); 2023-01-11T21:41:26.7032767Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:41:26.7032910Z out_ptr2[i1 + (8*i0)] = tmp8; 2023-01-11T21:41:26.7033011Z } 2023-01-11T21:41:26.7033112Z } 2023-01-11T21:41:26.7033224Z #pragma omp for 2023-01-11T21:41:26.7033350Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7033450Z { 2023-01-11T21:41:26.7033671Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7033888Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 32 + (8*i0)); 2023-01-11T21:41:26.7034020Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7034229Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.7034362Z auto tmp4 = tmp2 / tmp3; 2023-01-11T21:41:26.7034495Z tmp4.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.7034594Z } 2023-01-11T21:41:26.7034744Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7034874Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.7034973Z { 2023-01-11T21:41:26.7035107Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7035230Z auto tmp1 = in_ptr0[32 + i0]; 2023-01-11T21:41:26.7035372Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7035525Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.7035666Z auto tmp4 = tmp2 / tmp3; 2023-01-11T21:41:26.7035794Z out_ptr3[i0] = tmp4; 2023-01-11T21:41:26.7035895Z } 2023-01-11T21:41:26.7036023Z #pragma omp single 2023-01-11T21:41:26.7036107Z { 2023-01-11T21:41:26.7036209Z { 2023-01-11T21:41:26.7036313Z { 2023-01-11T21:41:26.7036461Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.7036625Z auto tmp1 = static_cast(64); 2023-01-11T21:41:26.7036766Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7036906Z in_out_ptr1[0] = tmp2; 2023-01-11T21:41:26.7036994Z } 2023-01-11T21:41:26.7037094Z } 2023-01-11T21:41:26.7037193Z } 2023-01-11T21:41:26.7037290Z } 2023-01-11T21:41:26.7037384Z } 2023-01-11T21:41:26.7037544Z ''') 2023-01-11T21:41:26.7037561Z 2023-01-11T21:41:26.7037568Z 2023-01-11T21:41:26.7037717Z async_compile.wait(globals()) 2023-01-11T21:41:26.7037919Z del async_compile 2023-01-11T21:41:26.7037927Z 2023-01-11T21:41:26.7038038Z def call(args): 2023-01-11T21:41:26.7038147Z arg0_1, = args 2023-01-11T21:41:26.7038258Z args.clear() 2023-01-11T21:41:26.7038581Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7038915Z buf1 = empty_strided((1, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7039047Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:41:26.7039369Z buf3 = empty_strided((1, 2, 1, 8), (16, 8, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7039687Z buf4 = empty_strided((4, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7039819Z buf5 = buf0; del buf0 # reuse 2023-01-11T21:41:26.7040222Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.7040342Z del arg0_1 2023-01-11T21:41:26.7040484Z return (buf5, buf2, buf3, buf4, ) 2023-01-11T21:41:26.7040499Z 2023-01-11T21:41:26.7040505Z 2023-01-11T21:41:26.7040622Z if __name__ == "__main__": 2023-01-11T21:41:26.7040804Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7040983Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7041336Z arg0_1 = rand_strided((1, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7041503Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7041512Z 2023-01-11T21:41:26.7041617Z ok (1.733s) 2023-01-11T21:41:26.7042388Z test_min_max_reduction_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7042590Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7043030Z [2023-01-11 21:36:37,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 375 2023-01-11T21:41:26.7043464Z [2023-01-11 21:36:39,115] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 375 2023-01-11T21:41:26.7043473Z 2023-01-11T21:41:26.7043624Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7043737Z import torch 2023-01-11T21:41:26.7043833Z import random 2023-01-11T21:41:26.7044018Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7044208Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7044216Z 2023-01-11T21:41:26.7044342Z aten = torch.ops.aten 2023-01-11T21:41:26.7044555Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7044708Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7044716Z 2023-01-11T21:41:26.7044722Z 2023-01-11T21:41:26.7044960Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7045283Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7045457Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7045615Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7045771Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7045927Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7046079Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.7046176Z { 2023-01-11T21:41:26.7046271Z { 2023-01-11T21:41:26.7046918Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.7047271Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7047457Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.7047937Z #pragma omp declare reduction(min:at::vec::Vectorized:omp_out = at::vec::minimum(omp_out, omp_in)) initializer(omp_priv={{std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.7048133Z float tmp4 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.7048317Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:41:26.7048661Z float tmp7 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7048849Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.7049140Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7049244Z { 2023-01-11T21:41:26.7049486Z #pragma omp for reduction(max:tmp3_vec) reduction(min:tmp4_vec) reduction(max:tmp7_vec) 2023-01-11T21:41:26.7049715Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7049821Z { 2023-01-11T21:41:26.7050034Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7050252Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7050392Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7050608Z auto tmp5 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7050731Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:41:26.7050913Z tmp3_vec = at::vec::maximum(tmp3_vec, tmp2); 2023-01-11T21:41:26.7051091Z tmp4_vec = at::vec::minimum(tmp4_vec, tmp2); 2023-01-11T21:41:26.7051268Z tmp7_vec = at::vec::maximum(tmp7_vec, tmp6); 2023-01-11T21:41:26.7051367Z } 2023-01-11T21:41:26.7051700Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp3_vec); 2023-01-11T21:41:26.7052031Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::minimum(x, y);}, tmp4_vec); 2023-01-11T21:41:26.7052368Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp7_vec); 2023-01-11T21:41:26.7052634Z #pragma omp for simd simdlen(4) reduction(max:tmp3) reduction(min:tmp4) reduction(max:tmp7) 2023-01-11T21:41:26.7052774Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7052858Z { 2023-01-11T21:41:26.7052995Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7053131Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.7053269Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7053430Z auto tmp5 = static_cast(1); 2023-01-11T21:41:26.7053565Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:41:26.7053725Z tmp3 = std::max(tmp3, tmp2); 2023-01-11T21:41:26.7053859Z tmp4 = std::min(tmp4, tmp2); 2023-01-11T21:41:26.7054013Z tmp7 = std::max(tmp7, tmp6); 2023-01-11T21:41:26.7054118Z } 2023-01-11T21:41:26.7054219Z } 2023-01-11T21:41:26.7054343Z out_ptr0[0] = tmp3; 2023-01-11T21:41:26.7054464Z out_ptr1[0] = tmp4; 2023-01-11T21:41:26.7054585Z out_ptr2[0] = tmp7; 2023-01-11T21:41:26.7054669Z } 2023-01-11T21:41:26.7054767Z } 2023-01-11T21:41:26.7054921Z ''') 2023-01-11T21:41:26.7054931Z 2023-01-11T21:41:26.7054937Z 2023-01-11T21:41:26.7055082Z async_compile.wait(globals()) 2023-01-11T21:41:26.7055199Z del async_compile 2023-01-11T21:41:26.7055206Z 2023-01-11T21:41:26.7055319Z def call(args): 2023-01-11T21:41:26.7055438Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7055535Z args.clear() 2023-01-11T21:41:26.7055855Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7056162Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7056481Z buf2 = empty_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7056932Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.7057044Z del arg0_1 2023-01-11T21:41:26.7057152Z del arg1_1 2023-01-11T21:41:26.7057285Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.7057295Z 2023-01-11T21:41:26.7057301Z 2023-01-11T21:41:26.7057403Z if __name__ == "__main__": 2023-01-11T21:41:26.7057586Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7057778Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7058114Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7058434Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7058691Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7058702Z 2023-01-11T21:41:26.7058815Z ok (1.549s) 2023-01-11T21:41:26.7059595Z test_misaligned_address_issue1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7059796Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7060221Z [2023-01-11 21:36:39,138] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 376 2023-01-11T21:41:26.7060667Z [2023-01-11 21:36:40,604] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 376 2023-01-11T21:41:26.7060680Z 2023-01-11T21:41:26.7060831Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7060944Z import torch 2023-01-11T21:41:26.7061055Z import random 2023-01-11T21:41:26.7061240Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7061432Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7061441Z 2023-01-11T21:41:26.7061563Z aten = torch.ops.aten 2023-01-11T21:41:26.7061757Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7061900Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7061908Z 2023-01-11T21:41:26.7061914Z 2023-01-11T21:41:26.7062141Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7062463Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7062651Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.7062818Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7062974Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7063071Z { 2023-01-11T21:41:26.7063235Z { 2023-01-11T21:41:26.7063343Z { 2023-01-11T21:41:26.7063477Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.7063618Z auto tmp1 = in_ptr1[tmp0]; 2023-01-11T21:41:26.7063744Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.7063843Z } 2023-01-11T21:41:26.7063938Z } 2023-01-11T21:41:26.7064018Z } 2023-01-11T21:41:26.7064158Z ''') 2023-01-11T21:41:26.7064167Z 2023-01-11T21:41:26.7064173Z 2023-01-11T21:41:26.7064316Z async_compile.wait(globals()) 2023-01-11T21:41:26.7064430Z del async_compile 2023-01-11T21:41:26.7064438Z 2023-01-11T21:41:26.7064548Z def call(args): 2023-01-11T21:41:26.7064667Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7064778Z args.clear() 2023-01-11T21:41:26.7065091Z buf0 = empty_strided((1, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7065348Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7065458Z del arg0_1 2023-01-11T21:41:26.7065571Z del arg1_1 2023-01-11T21:41:26.7065685Z return (buf0, ) 2023-01-11T21:41:26.7065695Z 2023-01-11T21:41:26.7065785Z 2023-01-11T21:41:26.7065915Z if __name__ == "__main__": 2023-01-11T21:41:26.7066092Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7066290Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7066617Z arg0_1 = rand_strided((1, 1000), (1000, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7066934Z arg1_1 = rand_strided((1, 1), (1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7067112Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7067122Z 2023-01-11T21:41:26.7067229Z ok (1.489s) 2023-01-11T21:41:26.7068060Z test_mm_views_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7068285Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7068729Z [2023-01-11 21:36:40,625] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 377 2023-01-11T21:41:26.7069173Z [2023-01-11 21:36:40,628] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 377 2023-01-11T21:41:26.7069183Z 2023-01-11T21:41:26.7069332Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7069427Z import torch 2023-01-11T21:41:26.7069538Z import random 2023-01-11T21:41:26.7069723Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7069915Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7069922Z 2023-01-11T21:41:26.7070046Z aten = torch.ops.aten 2023-01-11T21:41:26.7070261Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7070409Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7070418Z 2023-01-11T21:41:26.7070429Z 2023-01-11T21:41:26.7070568Z async_compile.wait(globals()) 2023-01-11T21:41:26.7070665Z del async_compile 2023-01-11T21:41:26.7070674Z 2023-01-11T21:41:26.7070788Z def call(args): 2023-01-11T21:41:26.7070906Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7071017Z args.clear() 2023-01-11T21:41:26.7071367Z buf0 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7071556Z aten.mm.out(arg0_1, as_strided(arg1_1, (32, 32), (32, 1)), out=buf0) 2023-01-11T21:41:26.7071667Z del arg0_1 2023-01-11T21:41:26.7071758Z del arg1_1 2023-01-11T21:41:26.7071871Z return (buf0, ) 2023-01-11T21:41:26.7071880Z 2023-01-11T21:41:26.7071886Z 2023-01-11T21:41:26.7072002Z if __name__ == "__main__": 2023-01-11T21:41:26.7072181Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7072379Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7072726Z arg0_1 = rand_strided((32, 32), (1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7073083Z arg1_1 = rand_strided((32, 1, 32), (32, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7073269Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7073277Z 2023-01-11T21:41:26.7073363Z ok (0.023s) 2023-01-11T21:41:26.7074122Z test_move_arange_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7074323Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7074774Z [2023-01-11 21:36:40,659] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 378 2023-01-11T21:41:26.7075217Z [2023-01-11 21:36:42,276] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 378 2023-01-11T21:41:26.7075310Z 2023-01-11T21:41:26.7075465Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7075576Z import torch 2023-01-11T21:41:26.7075689Z import random 2023-01-11T21:41:26.7075876Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7076049Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7076075Z 2023-01-11T21:41:26.7076181Z aten = torch.ops.aten 2023-01-11T21:41:26.7076394Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7076540Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7076548Z 2023-01-11T21:41:26.7076554Z 2023-01-11T21:41:26.7076785Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7077173Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7077380Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7077537Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7077625Z { 2023-01-11T21:41:26.7077779Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7077873Z { 2023-01-11T21:41:26.7077996Z #pragma omp for 2023-01-11T21:41:26.7078127Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.7078230Z { 2023-01-11T21:41:26.7078332Z { 2023-01-11T21:41:26.7078417Z { 2023-01-11T21:41:26.7078563Z auto tmp2 = in_ptr0[i0]; 2023-01-11T21:41:26.7078723Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.7078893Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.7079038Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.7079176Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.7079278Z } 2023-01-11T21:41:26.7079366Z } 2023-01-11T21:41:26.7079464Z } 2023-01-11T21:41:26.7079563Z } 2023-01-11T21:41:26.7079658Z } 2023-01-11T21:41:26.7079809Z ''') 2023-01-11T21:41:26.7079819Z 2023-01-11T21:41:26.7079825Z 2023-01-11T21:41:26.7079970Z async_compile.wait(globals()) 2023-01-11T21:41:26.7080088Z del async_compile 2023-01-11T21:41:26.7080097Z 2023-01-11T21:41:26.7080190Z def call(args): 2023-01-11T21:41:26.7080302Z arg0_1, = args 2023-01-11T21:41:26.7080414Z args.clear() 2023-01-11T21:41:26.7080744Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7080956Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7081065Z del arg0_1 2023-01-11T21:41:26.7081179Z return (buf0, ) 2023-01-11T21:41:26.7081186Z 2023-01-11T21:41:26.7081192Z 2023-01-11T21:41:26.7081311Z if __name__ == "__main__": 2023-01-11T21:41:26.7081478Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7081678Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7082012Z arg0_1 = rand_strided((32, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7082188Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7082197Z 2023-01-11T21:41:26.7082304Z ok (1.649s) 2023-01-11T21:41:26.7082525Z test_multi_device_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:41:26.7082785Z test_multi_gpu_device_cpu (__main__.CpuTests) ... skip: requires multiple cuda devices (0.000s) 2023-01-11T21:41:26.7083018Z test_multilayer_low_prec_cpu (__main__.CpuTests) ... skip: requires CUDA (0.001s) 2023-01-11T21:41:26.7083235Z test_nan_to_num_cpu (__main__.CpuTests) ... skip: Skipping due to op bugs (0.001s) 2023-01-11T21:41:26.7083994Z test_narrow_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7084292Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7084737Z [2023-01-11 21:36:42,312] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 379 2023-01-11T21:41:26.7085174Z [2023-01-11 21:36:43,792] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 379 2023-01-11T21:41:26.7085184Z 2023-01-11T21:41:26.7085335Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7085446Z import torch 2023-01-11T21:41:26.7085560Z import random 2023-01-11T21:41:26.7085742Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7085919Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7085927Z 2023-01-11T21:41:26.7086048Z aten = torch.ops.aten 2023-01-11T21:41:26.7086345Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7086507Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7086515Z 2023-01-11T21:41:26.7086527Z 2023-01-11T21:41:26.7086761Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7087085Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7087274Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7087431Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7087509Z { 2023-01-11T21:41:26.7087664Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7087762Z { 2023-01-11T21:41:26.7087887Z #pragma omp for 2023-01-11T21:41:26.7088017Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.7088118Z { 2023-01-11T21:41:26.7088345Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 640 + (8*i0)); 2023-01-11T21:41:26.7088541Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.7088675Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7088891Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7089182Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7089329Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7089423Z } 2023-01-11T21:41:26.7089574Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7089691Z for(long i0=1024; i0<1024; i0+=1) 2023-01-11T21:41:26.7089791Z { 2023-01-11T21:41:26.7089933Z auto tmp0 = in_ptr0[640 + i0]; 2023-01-11T21:41:26.7090089Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.7090223Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7090365Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.7090485Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7090588Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.7090681Z } 2023-01-11T21:41:26.7090774Z } 2023-01-11T21:41:26.7090874Z } 2023-01-11T21:41:26.7091029Z ''') 2023-01-11T21:41:26.7091038Z 2023-01-11T21:41:26.7091044Z 2023-01-11T21:41:26.7091191Z async_compile.wait(globals()) 2023-01-11T21:41:26.7091310Z del async_compile 2023-01-11T21:41:26.7091318Z 2023-01-11T21:41:26.7091412Z def call(args): 2023-01-11T21:41:26.7091523Z arg0_1, = args 2023-01-11T21:41:26.7091634Z args.clear() 2023-01-11T21:41:26.7091974Z buf0 = empty_strided((16, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7092185Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7092355Z return (as_strided(arg0_1, (64, 16), (64, 1), 10), buf0, ) 2023-01-11T21:41:26.7092365Z 2023-01-11T21:41:26.7092371Z 2023-01-11T21:41:26.7092488Z if __name__ == "__main__": 2023-01-11T21:41:26.7092669Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7092848Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7093192Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7093361Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7093528Z 2023-01-11T21:41:26.7093642Z ok (1.514s) 2023-01-11T21:41:26.7094414Z test_new_empty_strided_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7094615Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7095056Z [2023-01-11 21:36:43,834] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 380 2023-01-11T21:41:26.7095503Z [2023-01-11 21:36:45,343] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 380 2023-01-11T21:41:26.7095600Z 2023-01-11T21:41:26.7095756Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7095866Z import torch 2023-01-11T21:41:26.7095970Z import random 2023-01-11T21:41:26.7096155Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7096348Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7096356Z 2023-01-11T21:41:26.7096482Z aten = torch.ops.aten 2023-01-11T21:41:26.7096692Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7096839Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7096847Z 2023-01-11T21:41:26.7096853Z 2023-01-11T21:41:26.7097088Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7097415Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7097575Z extern "C" void kernel(float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7097667Z { 2023-01-11T21:41:26.7097827Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7097930Z { 2023-01-11T21:41:26.7098053Z #pragma omp for 2023-01-11T21:41:26.7098185Z for(long i0=0; i0<2048; i0+=1) 2023-01-11T21:41:26.7098271Z { 2023-01-11T21:41:26.7098503Z auto tmp0 = at::vec::Vectorized(static_cast(123)); 2023-01-11T21:41:26.7098647Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7098748Z } 2023-01-11T21:41:26.7098900Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7099040Z for(long i0=16384; i0<16384; i0+=1) 2023-01-11T21:41:26.7099138Z { 2023-01-11T21:41:26.7099279Z auto tmp0 = static_cast(123); 2023-01-11T21:41:26.7099408Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7099505Z } 2023-01-11T21:41:26.7099602Z } 2023-01-11T21:41:26.7099696Z } 2023-01-11T21:41:26.7099839Z ''') 2023-01-11T21:41:26.7099848Z 2023-01-11T21:41:26.7099854Z 2023-01-11T21:41:26.7099998Z async_compile.wait(globals()) 2023-01-11T21:41:26.7100097Z del async_compile 2023-01-11T21:41:26.7100128Z 2023-01-11T21:41:26.7100224Z def call(args): 2023-01-11T21:41:26.7100334Z arg0_1, = args 2023-01-11T21:41:26.7100449Z args.clear() 2023-01-11T21:41:26.7100811Z buf0 = empty_strided((1, 128, 128), (16384, 128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7100972Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7101089Z return (buf0, ) 2023-01-11T21:41:26.7101097Z 2023-01-11T21:41:26.7101103Z 2023-01-11T21:41:26.7101224Z if __name__ == "__main__": 2023-01-11T21:41:26.7101385Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7101580Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7101908Z arg0_1 = rand_strided((55, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7102078Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7102088Z 2023-01-11T21:41:26.7102196Z ok (1.551s) 2023-01-11T21:41:26.7102954Z test_new_ones_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7103314Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7103755Z [2023-01-11 21:36:45,411] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 381 2023-01-11T21:41:26.7104188Z [2023-01-11 21:36:46,945] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 381 2023-01-11T21:41:26.7104197Z 2023-01-11T21:41:26.7104345Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7104442Z import torch 2023-01-11T21:41:26.7104554Z import random 2023-01-11T21:41:26.7104738Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7105008Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7105020Z 2023-01-11T21:41:26.7105148Z aten = torch.ops.aten 2023-01-11T21:41:26.7105364Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7105508Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7105518Z 2023-01-11T21:41:26.7105524Z 2023-01-11T21:41:26.7105739Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7106063Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7106239Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7106392Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7106491Z { 2023-01-11T21:41:26.7106586Z { 2023-01-11T21:41:26.7106689Z { 2023-01-11T21:41:26.7106829Z auto tmp0 = static_cast(1); 2023-01-11T21:41:26.7106953Z out_ptr0[0] = tmp0; 2023-01-11T21:41:26.7107059Z } 2023-01-11T21:41:26.7107153Z } 2023-01-11T21:41:26.7107256Z { 2023-01-11T21:41:26.7107353Z { 2023-01-11T21:41:26.7107507Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.7107620Z out_ptr1[0] = tmp0; 2023-01-11T21:41:26.7107718Z } 2023-01-11T21:41:26.7107817Z } 2023-01-11T21:41:26.7107909Z } 2023-01-11T21:41:26.7108056Z ''') 2023-01-11T21:41:26.7108065Z 2023-01-11T21:41:26.7108071Z 2023-01-11T21:41:26.7108214Z async_compile.wait(globals()) 2023-01-11T21:41:26.7108336Z del async_compile 2023-01-11T21:41:26.7108344Z 2023-01-11T21:41:26.7108436Z def call(args): 2023-01-11T21:41:26.7108548Z arg0_1, = args 2023-01-11T21:41:26.7108660Z args.clear() 2023-01-11T21:41:26.7108975Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7109276Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7109484Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7109605Z return (buf0, buf1, ) 2023-01-11T21:41:26.7109619Z 2023-01-11T21:41:26.7109626Z 2023-01-11T21:41:26.7109747Z if __name__ == "__main__": 2023-01-11T21:41:26.7109914Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7110107Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7110422Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7110592Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7110600Z 2023-01-11T21:41:26.7110707Z ok (1.601s) 2023-01-11T21:41:26.7111465Z test_nll_loss_forward_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7111667Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7112108Z [2023-01-11 21:36:46,999] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 382 2023-01-11T21:41:26.7112645Z [2023-01-11 21:36:48,497] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 382 2023-01-11T21:41:26.7112654Z 2023-01-11T21:41:26.7112781Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7112897Z import torch 2023-01-11T21:41:26.7113007Z import random 2023-01-11T21:41:26.7113188Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7113380Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7113388Z 2023-01-11T21:41:26.7113510Z aten = torch.ops.aten 2023-01-11T21:41:26.7113720Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7113869Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7113878Z 2023-01-11T21:41:26.7113884Z 2023-01-11T21:41:26.7114170Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7114506Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7114695Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.7114860Z const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.7115019Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7115172Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7115265Z { 2023-01-11T21:41:26.7115383Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.7115478Z { 2023-01-11T21:41:26.7115577Z { 2023-01-11T21:41:26.7115699Z float tmp3 = 0; 2023-01-11T21:41:26.7115865Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7115964Z { 2023-01-11T21:41:26.7116133Z #pragma omp for reduction(+:tmp3) 2023-01-11T21:41:26.7116256Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:41:26.7116357Z { 2023-01-11T21:41:26.7116471Z { 2023-01-11T21:41:26.7116619Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7116786Z auto tmp1 = in_ptr1[tmp0 + (5*i0)]; 2023-01-11T21:41:26.7117024Z auto tmp2 = -tmp1; 2023-01-11T21:41:26.7117150Z tmp3 += tmp2; 2023-01-11T21:41:26.7117237Z } 2023-01-11T21:41:26.7117340Z } 2023-01-11T21:41:26.7117438Z } 2023-01-11T21:41:26.7117568Z out_ptr0[0] = tmp3; 2023-01-11T21:41:26.7117665Z } 2023-01-11T21:41:26.7117764Z } 2023-01-11T21:41:26.7117859Z { 2023-01-11T21:41:26.7117939Z { 2023-01-11T21:41:26.7118068Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.7118225Z auto tmp1 = static_cast(5); 2023-01-11T21:41:26.7118357Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7118487Z in_out_ptr0[0] = tmp2; 2023-01-11T21:41:26.7118636Z } 2023-01-11T21:41:26.7118726Z } 2023-01-11T21:41:26.7119022Z { 2023-01-11T21:41:26.7119165Z { 2023-01-11T21:41:26.7119370Z auto tmp0 = static_cast(5.0); 2023-01-11T21:41:26.7129819Z out_ptr1[0] = tmp0; 2023-01-11T21:41:26.7130004Z } 2023-01-11T21:41:26.7130102Z } 2023-01-11T21:41:26.7130178Z } 2023-01-11T21:41:26.7130344Z ''') 2023-01-11T21:41:26.7130354Z 2023-01-11T21:41:26.7130360Z 2023-01-11T21:41:26.7130525Z async_compile.wait(globals()) 2023-01-11T21:41:26.7130643Z del async_compile 2023-01-11T21:41:26.7130651Z 2023-01-11T21:41:26.7130762Z def call(args): 2023-01-11T21:41:26.7130885Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7131000Z args.clear() 2023-01-11T21:41:26.7131305Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7131443Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.7131747Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7132055Z kernel_cpp_0(c_void_p(buf1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.7132163Z del arg0_1 2023-01-11T21:41:26.7132452Z del arg1_1 2023-01-11T21:41:26.7132574Z return (buf1, buf2, ) 2023-01-11T21:41:26.7132583Z 2023-01-11T21:41:26.7132589Z 2023-01-11T21:41:26.7132705Z if __name__ == "__main__": 2023-01-11T21:41:26.7132873Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7133072Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7133411Z arg0_1 = rand_strided((5, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7133723Z arg1_1 = rand_strided((5, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7133907Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7133917Z 2023-01-11T21:41:26.7134019Z ok (1.552s) 2023-01-11T21:41:26.7134897Z test_no_mega_fusion_during_lowering_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7135121Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7135566Z [2023-01-11 21:36:48,691] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 383 2023-01-11T21:41:26.7135575Z 2023-01-11T21:41:26.7135722Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7135818Z import torch 2023-01-11T21:41:26.7135926Z import random 2023-01-11T21:41:26.7136108Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7136298Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7136306Z 2023-01-11T21:41:26.7136432Z aten = torch.ops.aten 2023-01-11T21:41:26.7136653Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7136798Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7136811Z 2023-01-11T21:41:26.7136818Z 2023-01-11T21:41:26.7137035Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7137363Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7137549Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.7137715Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7137879Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7138040Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7138201Z const float* __restrict__ in_ptr3, 2023-01-11T21:41:26.7138362Z const float* __restrict__ in_ptr4, 2023-01-11T21:41:26.7138504Z const float* __restrict__ in_ptr5, 2023-01-11T21:41:26.7138668Z const float* __restrict__ in_ptr6, 2023-01-11T21:41:26.7138828Z const float* __restrict__ in_ptr7, 2023-01-11T21:41:26.7138993Z const float* __restrict__ in_ptr8, 2023-01-11T21:41:26.7139155Z const float* __restrict__ in_ptr9, 2023-01-11T21:41:26.7139323Z const float* __restrict__ in_ptr10, 2023-01-11T21:41:26.7139486Z const float* __restrict__ in_ptr11, 2023-01-11T21:41:26.7139653Z const float* __restrict__ in_ptr12, 2023-01-11T21:41:26.7139804Z const float* __restrict__ in_ptr13, 2023-01-11T21:41:26.7139966Z const float* __restrict__ in_ptr14, 2023-01-11T21:41:26.7140128Z const float* __restrict__ in_ptr15, 2023-01-11T21:41:26.7140291Z const float* __restrict__ in_ptr16, 2023-01-11T21:41:26.7140452Z const float* __restrict__ in_ptr17, 2023-01-11T21:41:26.7140619Z const float* __restrict__ in_ptr18, 2023-01-11T21:41:26.7140781Z const float* __restrict__ in_ptr19, 2023-01-11T21:41:26.7141023Z const float* __restrict__ in_ptr20, 2023-01-11T21:41:26.7141186Z const float* __restrict__ in_ptr21, 2023-01-11T21:41:26.7141350Z const float* __restrict__ in_ptr22, 2023-01-11T21:41:26.7141511Z const float* __restrict__ in_ptr23, 2023-01-11T21:41:26.7141673Z const float* __restrict__ in_ptr24, 2023-01-11T21:41:26.7141834Z const float* __restrict__ in_ptr25, 2023-01-11T21:41:26.7141995Z const float* __restrict__ in_ptr26, 2023-01-11T21:41:26.7142157Z const float* __restrict__ in_ptr27, 2023-01-11T21:41:26.7142303Z const float* __restrict__ in_ptr28, 2023-01-11T21:41:26.7142463Z const float* __restrict__ in_ptr29, 2023-01-11T21:41:26.7142693Z const float* __restrict__ in_ptr30, 2023-01-11T21:41:26.7142870Z const float* __restrict__ in_ptr31, 2023-01-11T21:41:26.7143040Z const float* __restrict__ in_ptr32, 2023-01-11T21:41:26.7143272Z const float* __restrict__ in_ptr33, 2023-01-11T21:41:26.7143435Z const float* __restrict__ in_ptr34, 2023-01-11T21:41:26.7143582Z const float* __restrict__ in_ptr35, 2023-01-11T21:41:26.7143743Z const float* __restrict__ in_ptr36, 2023-01-11T21:41:26.7143902Z const float* __restrict__ in_ptr37, 2023-01-11T21:41:26.7144060Z const float* __restrict__ in_ptr38, 2023-01-11T21:41:26.7144220Z const float* __restrict__ in_ptr39, 2023-01-11T21:41:26.7144384Z const float* __restrict__ in_ptr40, 2023-01-11T21:41:26.7144550Z const float* __restrict__ in_ptr41, 2023-01-11T21:41:26.7144710Z const float* __restrict__ in_ptr42, 2023-01-11T21:41:26.7144859Z const float* __restrict__ in_ptr43, 2023-01-11T21:41:26.7145017Z const float* __restrict__ in_ptr44, 2023-01-11T21:41:26.7145181Z const float* __restrict__ in_ptr45, 2023-01-11T21:41:26.7145339Z const float* __restrict__ in_ptr46, 2023-01-11T21:41:26.7145502Z const float* __restrict__ in_ptr47, 2023-01-11T21:41:26.7145665Z const float* __restrict__ in_ptr48, 2023-01-11T21:41:26.7145824Z const float* __restrict__ in_ptr49) 2023-01-11T21:41:26.7145903Z { 2023-01-11T21:41:26.7146038Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.7146196Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7146294Z { 2023-01-11T21:41:26.7146418Z #pragma omp for 2023-01-11T21:41:26.7146552Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7146651Z { 2023-01-11T21:41:26.7146864Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7147085Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7147293Z auto tmp4 = at::vec::Vectorized::loadu(in_ptr2 + 8*i0); 2023-01-11T21:41:26.7147499Z auto tmp6 = at::vec::Vectorized::loadu(in_ptr3 + 8*i0); 2023-01-11T21:41:26.7147704Z auto tmp8 = at::vec::Vectorized::loadu(in_ptr4 + 8*i0); 2023-01-11T21:41:26.7147912Z auto tmp10 = at::vec::Vectorized::loadu(in_ptr5 + 8*i0); 2023-01-11T21:41:26.7148117Z auto tmp12 = at::vec::Vectorized::loadu(in_ptr6 + 8*i0); 2023-01-11T21:41:26.7148324Z auto tmp14 = at::vec::Vectorized::loadu(in_ptr7 + 8*i0); 2023-01-11T21:41:26.7148528Z auto tmp16 = at::vec::Vectorized::loadu(in_ptr8 + 8*i0); 2023-01-11T21:41:26.7148653Z auto tmp1 = tmp0 + tmp0; 2023-01-11T21:41:26.7148790Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.7149019Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.7149152Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.7149280Z auto tmp9 = tmp7 + tmp8; 2023-01-11T21:41:26.7149414Z auto tmp11 = tmp9 + tmp10; 2023-01-11T21:41:26.7149551Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:41:26.7149667Z auto tmp15 = tmp13 + tmp14; 2023-01-11T21:41:26.7149800Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:41:26.7149946Z tmp17.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7150048Z } 2023-01-11T21:41:26.7150203Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7150334Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7150436Z { 2023-01-11T21:41:26.7150554Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7150683Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.7150883Z auto tmp4 = in_ptr2[i0]; 2023-01-11T21:41:26.7151033Z auto tmp6 = in_ptr3[i0]; 2023-01-11T21:41:26.7151169Z auto tmp8 = in_ptr4[i0]; 2023-01-11T21:41:26.7151302Z auto tmp10 = in_ptr5[i0]; 2023-01-11T21:41:26.7151436Z auto tmp12 = in_ptr6[i0]; 2023-01-11T21:41:26.7151551Z auto tmp14 = in_ptr7[i0]; 2023-01-11T21:41:26.7151680Z auto tmp16 = in_ptr8[i0]; 2023-01-11T21:41:26.7151817Z auto tmp1 = tmp0 + tmp0; 2023-01-11T21:41:26.7151949Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.7152080Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.7152212Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.7152340Z auto tmp9 = tmp7 + tmp8; 2023-01-11T21:41:26.7152457Z auto tmp11 = tmp9 + tmp10; 2023-01-11T21:41:26.7152591Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:41:26.7152726Z auto tmp15 = tmp13 + tmp14; 2023-01-11T21:41:26.7152866Z auto tmp17 = tmp15 + tmp16; 2023-01-11T21:41:26.7152996Z out_ptr0[i0] = tmp17; 2023-01-11T21:41:26.7153097Z } 2023-01-11T21:41:26.7153208Z #pragma omp for 2023-01-11T21:41:26.7153336Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7153436Z { 2023-01-11T21:41:26.7153652Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7153860Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr9 + 8*i0); 2023-01-11T21:41:26.7154069Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr10 + 8*i0); 2023-01-11T21:41:26.7154276Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr11 + 8*i0); 2023-01-11T21:41:26.7154477Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr12 + 8*i0); 2023-01-11T21:41:26.7154679Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr13 + 8*i0); 2023-01-11T21:41:26.7154876Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr14 + 8*i0); 2023-01-11T21:41:26.7155091Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr15 + 8*i0); 2023-01-11T21:41:26.7155309Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr16 + 8*i0); 2023-01-11T21:41:26.7155445Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7155577Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7155705Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7155836Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7155954Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7156091Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7156223Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7156358Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7156509Z tmp16.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7156610Z } 2023-01-11T21:41:26.7156761Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7156873Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7156977Z { 2023-01-11T21:41:26.7157112Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.7157250Z auto tmp1 = in_ptr9[i0]; 2023-01-11T21:41:26.7157483Z auto tmp3 = in_ptr10[i0]; 2023-01-11T21:41:26.7157615Z auto tmp5 = in_ptr11[i0]; 2023-01-11T21:41:26.7157751Z auto tmp7 = in_ptr12[i0]; 2023-01-11T21:41:26.7157866Z auto tmp9 = in_ptr13[i0]; 2023-01-11T21:41:26.7158004Z auto tmp11 = in_ptr14[i0]; 2023-01-11T21:41:26.7158129Z auto tmp13 = in_ptr15[i0]; 2023-01-11T21:41:26.7158250Z auto tmp15 = in_ptr16[i0]; 2023-01-11T21:41:26.7158371Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7158489Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7158605Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7158705Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7158822Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7158943Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7159117Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7159243Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7159359Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:41:26.7159451Z } 2023-01-11T21:41:26.7159561Z #pragma omp for 2023-01-11T21:41:26.7159691Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7159794Z { 2023-01-11T21:41:26.7160019Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7160230Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr17 + 8*i0); 2023-01-11T21:41:26.7160438Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr18 + 8*i0); 2023-01-11T21:41:26.7160645Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr19 + 8*i0); 2023-01-11T21:41:26.7160854Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr20 + 8*i0); 2023-01-11T21:41:26.7161052Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr21 + 8*i0); 2023-01-11T21:41:26.7161268Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr22 + 8*i0); 2023-01-11T21:41:26.7161490Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr23 + 8*i0); 2023-01-11T21:41:26.7161701Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr24 + 8*i0); 2023-01-11T21:41:26.7161837Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7161973Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7162108Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7162245Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7162364Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7162501Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7162637Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7162771Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7162927Z tmp16.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7163031Z } 2023-01-11T21:41:26.7163191Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7163307Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7163409Z { 2023-01-11T21:41:26.7163555Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.7163694Z auto tmp1 = in_ptr17[i0]; 2023-01-11T21:41:26.7163831Z auto tmp3 = in_ptr18[i0]; 2023-01-11T21:41:26.7163964Z auto tmp5 = in_ptr19[i0]; 2023-01-11T21:41:26.7164103Z auto tmp7 = in_ptr20[i0]; 2023-01-11T21:41:26.7164223Z auto tmp9 = in_ptr21[i0]; 2023-01-11T21:41:26.7164362Z auto tmp11 = in_ptr22[i0]; 2023-01-11T21:41:26.7164500Z auto tmp13 = in_ptr23[i0]; 2023-01-11T21:41:26.7164638Z auto tmp15 = in_ptr24[i0]; 2023-01-11T21:41:26.7164774Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7164905Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7165039Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7165156Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7165293Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7165433Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7165646Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7165784Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7165914Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:41:26.7166020Z } 2023-01-11T21:41:26.7166127Z #pragma omp for 2023-01-11T21:41:26.7166260Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7166363Z { 2023-01-11T21:41:26.7166584Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7166796Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr25 + 8*i0); 2023-01-11T21:41:26.7167006Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr26 + 8*i0); 2023-01-11T21:41:26.7167213Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr27 + 8*i0); 2023-01-11T21:41:26.7167466Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr28 + 8*i0); 2023-01-11T21:41:26.7167664Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr29 + 8*i0); 2023-01-11T21:41:26.7167881Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr30 + 8*i0); 2023-01-11T21:41:26.7168094Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr31 + 8*i0); 2023-01-11T21:41:26.7168303Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr32 + 8*i0); 2023-01-11T21:41:26.7168437Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7168569Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7168700Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7168834Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7168953Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7169220Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7169358Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7169495Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7169656Z tmp16.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7169759Z } 2023-01-11T21:41:26.7169910Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7170028Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7170127Z { 2023-01-11T21:41:26.7170272Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.7170409Z auto tmp1 = in_ptr25[i0]; 2023-01-11T21:41:26.7170544Z auto tmp3 = in_ptr26[i0]; 2023-01-11T21:41:26.7170680Z auto tmp5 = in_ptr27[i0]; 2023-01-11T21:41:26.7170815Z auto tmp7 = in_ptr28[i0]; 2023-01-11T21:41:26.7170934Z auto tmp9 = in_ptr29[i0]; 2023-01-11T21:41:26.7171071Z auto tmp11 = in_ptr30[i0]; 2023-01-11T21:41:26.7171208Z auto tmp13 = in_ptr31[i0]; 2023-01-11T21:41:26.7171345Z auto tmp15 = in_ptr32[i0]; 2023-01-11T21:41:26.7171482Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7171614Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7171751Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7171869Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7172002Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7172146Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7172280Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7172416Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7172550Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:41:26.7172654Z } 2023-01-11T21:41:26.7172763Z #pragma omp for 2023-01-11T21:41:26.7172890Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7172992Z { 2023-01-11T21:41:26.7173217Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7173425Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr33 + 8*i0); 2023-01-11T21:41:26.7173637Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr34 + 8*i0); 2023-01-11T21:41:26.7173848Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr35 + 8*i0); 2023-01-11T21:41:26.7174058Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr36 + 8*i0); 2023-01-11T21:41:26.7174346Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr37 + 8*i0); 2023-01-11T21:41:26.7174556Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr38 + 8*i0); 2023-01-11T21:41:26.7174768Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr39 + 8*i0); 2023-01-11T21:41:26.7174976Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr40 + 8*i0); 2023-01-11T21:41:26.7175109Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7175244Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7175378Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7175510Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7175629Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7175764Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7175962Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7176101Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7176257Z tmp16.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7176361Z } 2023-01-11T21:41:26.7176499Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7176631Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7176731Z { 2023-01-11T21:41:26.7176874Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.7177013Z auto tmp1 = in_ptr33[i0]; 2023-01-11T21:41:26.7177149Z auto tmp3 = in_ptr34[i0]; 2023-01-11T21:41:26.7177286Z auto tmp5 = in_ptr35[i0]; 2023-01-11T21:41:26.7177402Z auto tmp7 = in_ptr36[i0]; 2023-01-11T21:41:26.7177537Z auto tmp9 = in_ptr37[i0]; 2023-01-11T21:41:26.7177679Z auto tmp11 = in_ptr38[i0]; 2023-01-11T21:41:26.7177814Z auto tmp13 = in_ptr39[i0]; 2023-01-11T21:41:26.7177949Z auto tmp15 = in_ptr40[i0]; 2023-01-11T21:41:26.7178089Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7178222Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7178341Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7178481Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7178616Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7178756Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7178894Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7179033Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7179168Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:41:26.7179250Z } 2023-01-11T21:41:26.7179370Z #pragma omp for 2023-01-11T21:41:26.7179499Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7179603Z { 2023-01-11T21:41:26.7179825Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7180036Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr41 + 8*i0); 2023-01-11T21:41:26.7180250Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr42 + 8*i0); 2023-01-11T21:41:26.7180457Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr43 + 8*i0); 2023-01-11T21:41:26.7180651Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr44 + 8*i0); 2023-01-11T21:41:26.7180859Z auto tmp9 = at::vec::Vectorized::loadu(in_ptr45 + 8*i0); 2023-01-11T21:41:26.7181070Z auto tmp11 = at::vec::Vectorized::loadu(in_ptr46 + 8*i0); 2023-01-11T21:41:26.7181283Z auto tmp13 = at::vec::Vectorized::loadu(in_ptr47 + 8*i0); 2023-01-11T21:41:26.7181491Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr48 + 8*i0); 2023-01-11T21:41:26.7181631Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7181766Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7181900Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7182018Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7182155Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7182299Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7182435Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7182650Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7182805Z tmp16.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7182907Z } 2023-01-11T21:41:26.7183048Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7183248Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7183352Z { 2023-01-11T21:41:26.7183498Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.7183637Z auto tmp1 = in_ptr41[i0]; 2023-01-11T21:41:26.7183775Z auto tmp3 = in_ptr42[i0]; 2023-01-11T21:41:26.7183911Z auto tmp5 = in_ptr43[i0]; 2023-01-11T21:41:26.7184030Z auto tmp7 = in_ptr44[i0]; 2023-01-11T21:41:26.7184166Z auto tmp9 = in_ptr45[i0]; 2023-01-11T21:41:26.7184303Z auto tmp11 = in_ptr46[i0]; 2023-01-11T21:41:26.7184442Z auto tmp13 = in_ptr47[i0]; 2023-01-11T21:41:26.7184638Z auto tmp15 = in_ptr48[i0]; 2023-01-11T21:41:26.7184780Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7184919Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7185037Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7185171Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.7185308Z auto tmp10 = tmp8 + tmp9; 2023-01-11T21:41:26.7185446Z auto tmp12 = tmp10 + tmp11; 2023-01-11T21:41:26.7185582Z auto tmp14 = tmp12 + tmp13; 2023-01-11T21:41:26.7185717Z auto tmp16 = tmp14 + tmp15; 2023-01-11T21:41:26.7185848Z in_out_ptr0[i0] = tmp16; 2023-01-11T21:41:26.7185934Z } 2023-01-11T21:41:26.7186060Z #pragma omp for 2023-01-11T21:41:26.7186191Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7186292Z { 2023-01-11T21:41:26.7186518Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7186734Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr49 + 8*i0); 2023-01-11T21:41:26.7186870Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7187012Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7187114Z } 2023-01-11T21:41:26.7187270Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7187404Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7187510Z { 2023-01-11T21:41:26.7187655Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.7187794Z auto tmp1 = in_ptr49[i0]; 2023-01-11T21:41:26.7187913Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7188043Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7188146Z } 2023-01-11T21:41:26.7188244Z } 2023-01-11T21:41:26.7188340Z } 2023-01-11T21:41:26.7188495Z ''') 2023-01-11T21:41:26.7188506Z 2023-01-11T21:41:26.7188512Z 2023-01-11T21:41:26.7188658Z async_compile.wait(globals()) 2023-01-11T21:41:26.7188759Z del async_compile 2023-01-11T21:41:26.7188768Z 2023-01-11T21:41:26.7188888Z def call(args): 2023-01-11T21:41:26.7189419Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1 = args 2023-01-11T21:41:26.7189539Z args.clear() 2023-01-11T21:41:26.7189870Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7190010Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.7190144Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:41:26.7190277Z buf3 = buf2; del buf2 # reuse 2023-01-11T21:41:26.7190409Z buf4 = buf3; del buf3 # reuse 2023-01-11T21:41:26.7190523Z buf5 = buf4; del buf4 # reuse 2023-01-11T21:41:26.7190660Z buf6 = buf5; del buf5 # reuse 2023-01-11T21:41:26.7192791Z kernel_cpp_0(c_void_p(buf6.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg3_1.data_ptr()), c_void_p(arg4_1.data_ptr()), c_void_p(arg5_1.data_ptr()), c_void_p(arg6_1.data_ptr()), c_void_p(arg7_1.data_ptr()), c_void_p(arg8_1.data_ptr()), c_void_p(arg9_1.data_ptr()), c_void_p(arg10_1.data_ptr()), c_void_p(arg11_1.data_ptr()), c_void_p(arg12_1.data_ptr()), c_void_p(arg13_1.data_ptr()), c_void_p(arg14_1.data_ptr()), c_void_p(arg15_1.data_ptr()), c_void_p(arg16_1.data_ptr()), c_void_p(arg17_1.data_ptr()), c_void_p(arg18_1.data_ptr()), c_void_p(arg19_1.data_ptr()), c_void_p(arg20_1.data_ptr()), c_void_p(arg21_1.data_ptr()), c_void_p(arg22_1.data_ptr()), c_void_p(arg23_1.data_ptr()), c_void_p(arg24_1.data_ptr()), c_void_p(arg25_1.data_ptr()), c_void_p(arg26_1.data_ptr()), c_void_p(arg27_1.data_ptr()), c_void_p(arg28_1.data_ptr()), c_void_p(arg29_1.data_ptr()), c_void_p(arg30_1.data_ptr()), c_void_p(arg31_1.data_ptr()), c_void_p(arg32_1.data_ptr()), c_void_p(arg33_1.data_ptr()), c_void_p(arg34_1.data_ptr()), c_void_p(arg35_1.data_ptr()), c_void_p(arg36_1.data_ptr()), c_void_p(arg37_1.data_ptr()), c_void_p(arg38_1.data_ptr()), c_void_p(arg39_1.data_ptr()), c_void_p(arg40_1.data_ptr()), c_void_p(arg41_1.data_ptr()), c_void_p(arg42_1.data_ptr()), c_void_p(arg43_1.data_ptr()), c_void_p(arg44_1.data_ptr()), c_void_p(arg45_1.data_ptr()), c_void_p(arg46_1.data_ptr()), c_void_p(arg47_1.data_ptr()), c_void_p(arg48_1.data_ptr()), c_void_p(arg49_1.data_ptr())) 2023-01-11T21:41:26.7192979Z del arg0_1 2023-01-11T21:41:26.7193088Z del arg10_1 2023-01-11T21:41:26.7193181Z del arg11_1 2023-01-11T21:41:26.7193285Z del arg12_1 2023-01-11T21:41:26.7193393Z del arg13_1 2023-01-11T21:41:26.7193500Z del arg14_1 2023-01-11T21:41:26.7193608Z del arg15_1 2023-01-11T21:41:26.7193718Z del arg16_1 2023-01-11T21:41:26.7193810Z del arg17_1 2023-01-11T21:41:26.7193916Z del arg18_1 2023-01-11T21:41:26.7194027Z del arg19_1 2023-01-11T21:41:26.7194140Z del arg1_1 2023-01-11T21:41:26.7194246Z del arg20_1 2023-01-11T21:41:26.7194363Z del arg21_1 2023-01-11T21:41:26.7194469Z del arg22_1 2023-01-11T21:41:26.7194559Z del arg23_1 2023-01-11T21:41:26.7194669Z del arg24_1 2023-01-11T21:41:26.7194779Z del arg25_1 2023-01-11T21:41:26.7194885Z del arg26_1 2023-01-11T21:41:26.7194995Z del arg27_1 2023-01-11T21:41:26.7195100Z del arg28_1 2023-01-11T21:41:26.7195191Z del arg29_1 2023-01-11T21:41:26.7195301Z del arg2_1 2023-01-11T21:41:26.7195407Z del arg30_1 2023-01-11T21:41:26.7195513Z del arg31_1 2023-01-11T21:41:26.7195620Z del arg32_1 2023-01-11T21:41:26.7195727Z del arg33_1 2023-01-11T21:41:26.7195815Z del arg34_1 2023-01-11T21:41:26.7195925Z del arg35_1 2023-01-11T21:41:26.7196037Z del arg36_1 2023-01-11T21:41:26.7196144Z del arg37_1 2023-01-11T21:41:26.7196251Z del arg38_1 2023-01-11T21:41:26.7196357Z del arg39_1 2023-01-11T21:41:26.7196470Z del arg3_1 2023-01-11T21:41:26.7196561Z del arg40_1 2023-01-11T21:41:26.7196667Z del arg41_1 2023-01-11T21:41:26.7196781Z del arg42_1 2023-01-11T21:41:26.7196886Z del arg43_1 2023-01-11T21:41:26.7196995Z del arg44_1 2023-01-11T21:41:26.7197106Z del arg45_1 2023-01-11T21:41:26.7197196Z del arg46_1 2023-01-11T21:41:26.7197302Z del arg47_1 2023-01-11T21:41:26.7197409Z del arg48_1 2023-01-11T21:41:26.7197517Z del arg49_1 2023-01-11T21:41:26.7197623Z del arg4_1 2023-01-11T21:41:26.7197732Z del arg5_1 2023-01-11T21:41:26.7197840Z del arg6_1 2023-01-11T21:41:26.7197933Z del arg7_1 2023-01-11T21:41:26.7198040Z del arg8_1 2023-01-11T21:41:26.7198144Z del arg9_1 2023-01-11T21:41:26.7198261Z return (buf6, ) 2023-01-11T21:41:26.7198271Z 2023-01-11T21:41:26.7198278Z 2023-01-11T21:41:26.7198403Z if __name__ == "__main__": 2023-01-11T21:41:26.7198594Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7198797Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7199135Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7199526Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7199838Z arg2_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7200151Z arg3_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7200459Z arg4_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7200776Z arg5_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7201088Z arg6_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7201399Z arg7_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7201694Z arg8_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7202069Z arg9_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7202395Z arg10_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7202721Z arg11_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7203041Z arg12_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7203360Z arg13_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7203678Z arg14_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7203992Z arg15_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7204289Z arg16_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7204608Z arg17_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7204936Z arg18_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7205251Z arg19_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7205573Z arg20_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7205887Z arg21_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7206205Z arg22_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7206521Z arg23_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7206820Z arg24_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7207137Z arg25_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7207451Z arg26_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7207765Z arg27_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7208080Z arg28_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7208398Z arg29_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7208717Z arg30_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7209162Z arg31_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7209467Z arg32_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7209775Z arg33_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7210087Z arg34_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7210402Z arg35_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7210716Z arg36_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7211028Z arg37_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7211344Z arg38_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7211656Z arg39_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7212082Z arg40_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7212391Z arg41_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7212704Z arg42_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7213019Z arg43_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7213332Z arg44_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7213643Z arg45_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7213956Z arg46_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7214329Z arg47_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7214636Z arg48_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7214948Z arg49_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7215532Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1])) 2023-01-11T21:41:26.7215986Z [2023-01-11 21:36:50,438] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 383 2023-01-11T21:41:26.7215997Z 2023-01-11T21:41:26.7216129Z --> 7 2023-01-11T21:41:26.7216237Z ok (1.949s) 2023-01-11T21:41:26.7217020Z test_no_op_reduction_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7217230Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7217663Z [2023-01-11 21:36:50,465] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 384 2023-01-11T21:41:26.7218107Z [2023-01-11 21:36:51,995] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 384 2023-01-11T21:41:26.7218116Z 2023-01-11T21:41:26.7218267Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7218364Z import torch 2023-01-11T21:41:26.7218476Z import random 2023-01-11T21:41:26.7218673Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7218872Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7218881Z 2023-01-11T21:41:26.7219012Z aten = torch.ops.aten 2023-01-11T21:41:26.7219230Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7219378Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7219386Z 2023-01-11T21:41:26.7219392Z 2023-01-11T21:41:26.7219617Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7219934Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7220100Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7220235Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7220368Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7220452Z { 2023-01-11T21:41:26.7220586Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7220673Z { 2023-01-11T21:41:26.7220764Z #pragma omp for 2023-01-11T21:41:26.7220875Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.7220961Z { 2023-01-11T21:41:26.7221151Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7221397Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7221513Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7221642Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7221747Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7221839Z } 2023-01-11T21:41:26.7221999Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7222140Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.7222248Z { 2023-01-11T21:41:26.7222393Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7222564Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7222694Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7222837Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7223027Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.7223216Z } 2023-01-11T21:41:26.7223321Z } 2023-01-11T21:41:26.7223429Z } 2023-01-11T21:41:26.7223574Z ''') 2023-01-11T21:41:26.7223583Z 2023-01-11T21:41:26.7223590Z 2023-01-11T21:41:26.7223731Z async_compile.wait(globals()) 2023-01-11T21:41:26.7223854Z del async_compile 2023-01-11T21:41:26.7223863Z 2023-01-11T21:41:26.7223982Z def call(args): 2023-01-11T21:41:26.7224101Z arg0_1, = args 2023-01-11T21:41:26.7224221Z args.clear() 2023-01-11T21:41:26.7224574Z buf0 = empty_strided((8, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7224937Z buf1 = empty_strided((8, 1, 1), (1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7225220Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7225323Z del arg0_1 2023-01-11T21:41:26.7225456Z return (buf0, buf1, ) 2023-01-11T21:41:26.7225465Z 2023-01-11T21:41:26.7225472Z 2023-01-11T21:41:26.7225608Z if __name__ == "__main__": 2023-01-11T21:41:26.7225806Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7226028Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7226396Z arg0_1 = rand_strided((8, 1, 1), (1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7226588Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7226597Z 2023-01-11T21:41:26.7226712Z ok (1.550s) 2023-01-11T21:41:26.7227303Z test_output_strides_cpu (__main__.CpuTests) ... [2023-01-11 21:36:52,017] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 385 2023-01-11T21:41:26.7227785Z [2023-01-11 21:36:53,548] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 385 2023-01-11T21:41:26.7228259Z [2023-01-11 21:36:53,561] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 386 2023-01-11T21:41:26.7228747Z [2023-01-11 21:36:53,562] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 386 2023-01-11T21:41:26.7229203Z [2023-01-11 21:36:53,580] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 387 2023-01-11T21:41:26.7229687Z [2023-01-11 21:36:53,583] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 387 2023-01-11T21:41:26.7230462Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:3148: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7230667Z self.assertEqual(inp.storage(), out.storage()) 2023-01-11T21:41:26.7231913Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7232155Z device=typed_storage.device, 2023-01-11T21:41:26.7232165Z 2023-01-11T21:41:26.7232333Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7232442Z import torch 2023-01-11T21:41:26.7232566Z import random 2023-01-11T21:41:26.7232766Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7232979Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7232988Z 2023-01-11T21:41:26.7233125Z aten = torch.ops.aten 2023-01-11T21:41:26.7233365Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7233530Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7233538Z 2023-01-11T21:41:26.7233545Z 2023-01-11T21:41:26.7233794Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7234195Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7234434Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7234616Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7234725Z { 2023-01-11T21:41:26.7234900Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7235008Z { 2023-01-11T21:41:26.7235146Z #pragma omp for 2023-01-11T21:41:26.7235270Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7235379Z { 2023-01-11T21:41:26.7235520Z #pragma GCC ivdep 2023-01-11T21:41:26.7235669Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.7235782Z { 2023-01-11T21:41:26.7235926Z #pragma GCC ivdep 2023-01-11T21:41:26.7236063Z for(long i2=0; i2<4; i2+=1) 2023-01-11T21:41:26.7236178Z { 2023-01-11T21:41:26.7236293Z { 2023-01-11T21:41:26.7236414Z { 2023-01-11T21:41:26.7236609Z auto tmp0 = in_ptr0[i1 + (16*i2) + (64*i0)]; 2023-01-11T21:41:26.7236796Z out_ptr0[i2 + (4*i1) + (64*i0)] = tmp0; 2023-01-11T21:41:26.7236921Z } 2023-01-11T21:41:26.7237021Z } 2023-01-11T21:41:26.7237130Z } 2023-01-11T21:41:26.7237240Z } 2023-01-11T21:41:26.7237349Z } 2023-01-11T21:41:26.7237456Z } 2023-01-11T21:41:26.7237564Z } 2023-01-11T21:41:26.7237717Z ''') 2023-01-11T21:41:26.7237726Z 2023-01-11T21:41:26.7237734Z 2023-01-11T21:41:26.7237876Z async_compile.wait(globals()) 2023-01-11T21:41:26.7238007Z del async_compile 2023-01-11T21:41:26.7238015Z 2023-01-11T21:41:26.7238136Z def call(args): 2023-01-11T21:41:26.7238254Z arg0_1, = args 2023-01-11T21:41:26.7238375Z args.clear() 2023-01-11T21:41:26.7238762Z buf0 = empty_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7238999Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7239118Z del arg0_1 2023-01-11T21:41:26.7239226Z return (buf0, ) 2023-01-11T21:41:26.7239239Z 2023-01-11T21:41:26.7239245Z 2023-01-11T21:41:26.7239375Z if __name__ == "__main__": 2023-01-11T21:41:26.7239572Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7239787Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7240173Z arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7240361Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7240370Z 2023-01-11T21:41:26.7240377Z 2023-01-11T21:41:26.7240547Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7240673Z import torch 2023-01-11T21:41:26.7240781Z import random 2023-01-11T21:41:26.7240980Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7241193Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7241202Z 2023-01-11T21:41:26.7241347Z aten = torch.ops.aten 2023-01-11T21:41:26.7241585Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7241818Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7241827Z 2023-01-11T21:41:26.7241833Z 2023-01-11T21:41:26.7241989Z async_compile.wait(globals()) 2023-01-11T21:41:26.7242121Z del async_compile 2023-01-11T21:41:26.7242130Z 2023-01-11T21:41:26.7242237Z def call(args): 2023-01-11T21:41:26.7242356Z arg0_1, = args 2023-01-11T21:41:26.7242481Z args.clear() 2023-01-11T21:41:26.7242653Z return (as_strided(arg0_1, (64, 4), (4, 1)), ) 2023-01-11T21:41:26.7242661Z 2023-01-11T21:41:26.7242668Z 2023-01-11T21:41:26.7242800Z if __name__ == "__main__": 2023-01-11T21:41:26.7242997Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7243212Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7243587Z arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7243828Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7243839Z 2023-01-11T21:41:26.7243845Z 2023-01-11T21:41:26.7244012Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7244141Z import torch 2023-01-11T21:41:26.7244268Z import random 2023-01-11T21:41:26.7244470Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7244682Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7244690Z 2023-01-11T21:41:26.7244827Z aten = torch.ops.aten 2023-01-11T21:41:26.7245045Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7245206Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7245216Z 2023-01-11T21:41:26.7245222Z 2023-01-11T21:41:26.7245379Z async_compile.wait(globals()) 2023-01-11T21:41:26.7245505Z del async_compile 2023-01-11T21:41:26.7245513Z 2023-01-11T21:41:26.7245638Z def call(args): 2023-01-11T21:41:26.7245760Z arg0_1, = args 2023-01-11T21:41:26.7245886Z args.clear() 2023-01-11T21:41:26.7246074Z return (as_strided(arg0_1, (4, 4, 1), (4, 16, 0), 3), ) 2023-01-11T21:41:26.7246083Z 2023-01-11T21:41:26.7246089Z 2023-01-11T21:41:26.7246204Z if __name__ == "__main__": 2023-01-11T21:41:26.7246406Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7246619Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7247008Z arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7247198Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7247207Z 2023-01-11T21:41:26.7247326Z ok (1.586s) 2023-01-11T21:41:26.7248169Z test_permute_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7248398Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7248874Z [2023-01-11 21:36:53,605] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 388 2023-01-11T21:41:26.7249496Z [2023-01-11 21:36:55,111] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 388 2023-01-11T21:41:26.7249507Z 2023-01-11T21:41:26.7249653Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7249775Z import torch 2023-01-11T21:41:26.7249896Z import random 2023-01-11T21:41:26.7250100Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7250315Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7250324Z 2023-01-11T21:41:26.7250458Z aten = torch.ops.aten 2023-01-11T21:41:26.7250695Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7250839Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7250865Z 2023-01-11T21:41:26.7250873Z 2023-01-11T21:41:26.7251105Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7251463Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7251769Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7251945Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7252115Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7252226Z { 2023-01-11T21:41:26.7252401Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7252492Z { 2023-01-11T21:41:26.7252627Z #pragma omp for 2023-01-11T21:41:26.7252770Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7252882Z { 2023-01-11T21:41:26.7253122Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7253360Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7253510Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7253792Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.7253946Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7254096Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.7254260Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7254419Z tmp5.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7254532Z } 2023-01-11T21:41:26.7254700Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7254829Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.7254940Z { 2023-01-11T21:41:26.7255085Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7255259Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7255407Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7255580Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.7255728Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7255857Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.7255999Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.7256138Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.7256248Z } 2023-01-11T21:41:26.7256362Z } 2023-01-11T21:41:26.7256467Z } 2023-01-11T21:41:26.7256617Z ''') 2023-01-11T21:41:26.7256627Z 2023-01-11T21:41:26.7256634Z 2023-01-11T21:41:26.7256776Z async_compile.wait(globals()) 2023-01-11T21:41:26.7256907Z del async_compile 2023-01-11T21:41:26.7256916Z 2023-01-11T21:41:26.7257039Z def call(args): 2023-01-11T21:41:26.7257161Z arg0_1, = args 2023-01-11T21:41:26.7257287Z args.clear() 2023-01-11T21:41:26.7257682Z buf0 = empty_strided((2, 2, 2, 2, 2), (4, 8, 1, 16, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7258068Z buf1 = empty_strided((2, 2, 2, 2, 2), (4, 8, 1, 16, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7258350Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7258456Z del arg0_1 2023-01-11T21:41:26.7258595Z return (buf0, buf1, ) 2023-01-11T21:41:26.7258604Z 2023-01-11T21:41:26.7258610Z 2023-01-11T21:41:26.7258741Z if __name__ == "__main__": 2023-01-11T21:41:26.7258947Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7259167Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7259562Z arg0_1 = rand_strided((2, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7259752Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7259761Z 2023-01-11T21:41:26.7259892Z ok (1.529s) 2023-01-11T21:41:26.7260711Z test_pow1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7260934Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7261404Z [2023-01-11 21:36:55,268] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 389 2023-01-11T21:41:26.7261986Z [2023-01-11 21:36:56,967] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 389 2023-01-11T21:41:26.7261996Z 2023-01-11T21:41:26.7262164Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7262289Z import torch 2023-01-11T21:41:26.7262414Z import random 2023-01-11T21:41:26.7262623Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7262834Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7262843Z 2023-01-11T21:41:26.7262964Z aten = torch.ops.aten 2023-01-11T21:41:26.7263270Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7263436Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7263444Z 2023-01-11T21:41:26.7263451Z 2023-01-11T21:41:26.7263758Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7264120Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7264338Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7264511Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7264683Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7264837Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7265007Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.7265179Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.7265345Z float* __restrict__ out_ptr5, 2023-01-11T21:41:26.7265510Z float* __restrict__ out_ptr6, 2023-01-11T21:41:26.7265675Z float* __restrict__ out_ptr7, 2023-01-11T21:41:26.7265840Z float* __restrict__ out_ptr8, 2023-01-11T21:41:26.7265992Z float* __restrict__ out_ptr9, 2023-01-11T21:41:26.7266166Z float* __restrict__ out_ptr10, 2023-01-11T21:41:26.7266346Z float* __restrict__ out_ptr11, 2023-01-11T21:41:26.7266516Z float* __restrict__ out_ptr12, 2023-01-11T21:41:26.7266687Z float* __restrict__ out_ptr13, 2023-01-11T21:41:26.7266856Z float* __restrict__ out_ptr14, 2023-01-11T21:41:26.7267024Z float* __restrict__ out_ptr15) 2023-01-11T21:41:26.7267130Z { 2023-01-11T21:41:26.7267286Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7267395Z { 2023-01-11T21:41:26.7267532Z #pragma omp for 2023-01-11T21:41:26.7267676Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.7267789Z { 2023-01-11T21:41:26.7268031Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7268186Z auto tmp1 = tmp0.reciprocal(); 2023-01-11T21:41:26.7268338Z auto tmp2 = tmp1 * tmp1; 2023-01-11T21:41:26.7268486Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:41:26.7268635Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.7268784Z auto tmp5 = tmp2 * tmp1; 2023-01-11T21:41:26.7268928Z auto tmp6 = tmp5 * tmp5; 2023-01-11T21:41:26.7269070Z auto tmp7 = tmp6 * tmp1; 2023-01-11T21:41:26.7269196Z auto tmp8 = tmp3 * tmp1; 2023-01-11T21:41:26.7269432Z auto tmp9 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7269581Z auto tmp10 = tmp0 * tmp0; 2023-01-11T21:41:26.7269730Z auto tmp11 = tmp10 * tmp0; 2023-01-11T21:41:26.7269883Z auto tmp12 = tmp10 * tmp10; 2023-01-11T21:41:26.7270031Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:41:26.7270180Z auto tmp14 = tmp11 * tmp11; 2023-01-11T21:41:26.7270329Z auto tmp15 = tmp14 * tmp0; 2023-01-11T21:41:26.7270460Z auto tmp16 = tmp12 * tmp12; 2023-01-11T21:41:26.7270625Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7270784Z tmp7.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7271020Z tmp6.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.7271174Z tmp8.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.7271327Z tmp3.store(out_ptr4 + 8*i0); 2023-01-11T21:41:26.7271449Z tmp5.store(out_ptr5 + 8*i0); 2023-01-11T21:41:26.7271554Z tmp2.store(out_ptr6 + 8*i0); 2023-01-11T21:41:26.7271673Z tmp1.store(out_ptr7 + 8*i0); 2023-01-11T21:41:26.7271796Z tmp9.store(out_ptr8 + 8*i0); 2023-01-11T21:41:26.7271921Z tmp10.store(out_ptr9 + 8*i0); 2023-01-11T21:41:26.7272049Z tmp11.store(out_ptr10 + 8*i0); 2023-01-11T21:41:26.7272175Z tmp12.store(out_ptr11 + 8*i0); 2023-01-11T21:41:26.7272303Z tmp13.store(out_ptr12 + 8*i0); 2023-01-11T21:41:26.7272413Z tmp14.store(out_ptr13 + 8*i0); 2023-01-11T21:41:26.7272582Z tmp15.store(out_ptr14 + 8*i0); 2023-01-11T21:41:26.7272712Z tmp16.store(out_ptr15 + 8*i0); 2023-01-11T21:41:26.7272800Z } 2023-01-11T21:41:26.7272934Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7273045Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.7273134Z { 2023-01-11T21:41:26.7273234Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7273375Z auto tmp1 = 1 / tmp0; 2023-01-11T21:41:26.7273536Z auto tmp2 = tmp1 * tmp1; 2023-01-11T21:41:26.7273674Z auto tmp3 = tmp2 * tmp2; 2023-01-11T21:41:26.7273917Z auto tmp4 = tmp3 * tmp3; 2023-01-11T21:41:26.7274095Z auto tmp5 = tmp2 * tmp1; 2023-01-11T21:41:26.7274301Z auto tmp6 = tmp5 * tmp5; 2023-01-11T21:41:26.7274474Z auto tmp7 = tmp6 * tmp1; 2023-01-11T21:41:26.7274643Z auto tmp8 = tmp3 * tmp1; 2023-01-11T21:41:26.7274828Z auto tmp9 = static_cast(1); 2023-01-11T21:41:26.7275012Z auto tmp10 = tmp0 * tmp0; 2023-01-11T21:41:26.7275188Z auto tmp11 = tmp10 * tmp0; 2023-01-11T21:41:26.7275360Z auto tmp12 = tmp10 * tmp10; 2023-01-11T21:41:26.7275521Z auto tmp13 = tmp12 * tmp0; 2023-01-11T21:41:26.7275688Z auto tmp14 = tmp11 * tmp11; 2023-01-11T21:41:26.7275852Z auto tmp15 = tmp14 * tmp0; 2023-01-11T21:41:26.7276037Z auto tmp16 = tmp12 * tmp12; 2023-01-11T21:41:26.7276210Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.7276381Z out_ptr1[i0] = tmp7; 2023-01-11T21:41:26.7276539Z out_ptr2[i0] = tmp6; 2023-01-11T21:41:26.7276684Z out_ptr3[i0] = tmp8; 2023-01-11T21:41:26.7276843Z out_ptr4[i0] = tmp3; 2023-01-11T21:41:26.7277008Z out_ptr5[i0] = tmp5; 2023-01-11T21:41:26.7277168Z out_ptr6[i0] = tmp2; 2023-01-11T21:41:26.7277332Z out_ptr7[i0] = tmp1; 2023-01-11T21:41:26.7277481Z out_ptr8[i0] = tmp9; 2023-01-11T21:41:26.7277651Z out_ptr9[i0] = tmp10; 2023-01-11T21:41:26.7277803Z out_ptr10[i0] = tmp11; 2023-01-11T21:41:26.7277965Z out_ptr11[i0] = tmp12; 2023-01-11T21:41:26.7278132Z out_ptr12[i0] = tmp13; 2023-01-11T21:41:26.7278279Z out_ptr13[i0] = tmp14; 2023-01-11T21:41:26.7278443Z out_ptr14[i0] = tmp15; 2023-01-11T21:41:26.7278606Z out_ptr15[i0] = tmp16; 2023-01-11T21:41:26.7278737Z } 2023-01-11T21:41:26.7278846Z } 2023-01-11T21:41:26.7278976Z } 2023-01-11T21:41:26.7279171Z ''') 2023-01-11T21:41:26.7279182Z 2023-01-11T21:41:26.7279188Z 2023-01-11T21:41:26.7279369Z async_compile.wait(globals()) 2023-01-11T21:41:26.7279527Z del async_compile 2023-01-11T21:41:26.7279539Z 2023-01-11T21:41:26.7279690Z def call(args): 2023-01-11T21:41:26.7279834Z arg0_1, = args 2023-01-11T21:41:26.7279958Z args.clear() 2023-01-11T21:41:26.7280384Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7280793Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7281192Z buf2 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7281709Z buf3 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7282101Z buf4 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7282504Z buf5 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7282897Z buf6 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7283269Z buf7 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7283650Z buf8 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7284056Z buf9 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7284530Z buf10 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7284939Z buf11 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7285335Z buf12 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7285724Z buf13 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7286110Z buf14 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7286486Z buf15 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7287434Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(buf12.data_ptr()), c_void_p(buf13.data_ptr()), c_void_p(buf14.data_ptr()), c_void_p(buf15.data_ptr())) 2023-01-11T21:41:26.7287761Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, arg0_1, buf9, buf10, buf11, buf12, buf13, buf14, buf15, ) 2023-01-11T21:41:26.7287787Z 2023-01-11T21:41:26.7287817Z 2023-01-11T21:41:26.7287945Z if __name__ == "__main__": 2023-01-11T21:41:26.7288174Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7288431Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7288829Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7289183Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7289194Z 2023-01-11T21:41:26.7289340Z ok (1.893s) 2023-01-11T21:41:26.7290247Z test_pow2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7290499Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7291032Z [2023-01-11 21:36:57,046] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 390 2023-01-11T21:41:26.7291555Z [2023-01-11 21:36:58,590] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 390 2023-01-11T21:41:26.7291566Z 2023-01-11T21:41:26.7291750Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7291907Z import torch 2023-01-11T21:41:26.7292073Z import random 2023-01-11T21:41:26.7292308Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7292551Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7292567Z 2023-01-11T21:41:26.7292732Z aten = torch.ops.aten 2023-01-11T21:41:26.7292984Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7293177Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7293187Z 2023-01-11T21:41:26.7293330Z 2023-01-11T21:41:26.7293624Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7294034Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7294271Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7294473Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7294673Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7294813Z { 2023-01-11T21:41:26.7294982Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7295114Z { 2023-01-11T21:41:26.7295284Z #pragma omp for 2023-01-11T21:41:26.7295452Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.7295586Z { 2023-01-11T21:41:26.7295845Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7296212Z auto tmp0 = at::vec::Vectorized(static_cast(1000)); 2023-01-11T21:41:26.7296389Z auto tmp2 = tmp0.pow(tmp1); 2023-01-11T21:41:26.7296582Z auto tmp3 = tmp1.pow(tmp0); 2023-01-11T21:41:26.7296755Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7296940Z tmp3.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7297085Z } 2023-01-11T21:41:26.7297282Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7297453Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.7297565Z { 2023-01-11T21:41:26.7297735Z auto tmp1 = in_ptr0[i0]; 2023-01-11T21:41:26.7297945Z auto tmp0 = static_cast(1000); 2023-01-11T21:41:26.7298161Z auto tmp2 = std::pow(tmp0, tmp1); 2023-01-11T21:41:26.7298371Z auto tmp3 = std::pow(tmp1, tmp0); 2023-01-11T21:41:26.7298529Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7298699Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.7298827Z } 2023-01-11T21:41:26.7298952Z } 2023-01-11T21:41:26.7299079Z } 2023-01-11T21:41:26.7299268Z ''') 2023-01-11T21:41:26.7299287Z 2023-01-11T21:41:26.7299296Z 2023-01-11T21:41:26.7299480Z async_compile.wait(globals()) 2023-01-11T21:41:26.7299635Z del async_compile 2023-01-11T21:41:26.7299648Z 2023-01-11T21:41:26.7299802Z def call(args): 2023-01-11T21:41:26.7299951Z arg0_1, = args 2023-01-11T21:41:26.7300078Z args.clear() 2023-01-11T21:41:26.7300491Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7300896Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7301218Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7301369Z del arg0_1 2023-01-11T21:41:26.7301543Z return (buf0, buf1, ) 2023-01-11T21:41:26.7301556Z 2023-01-11T21:41:26.7301563Z 2023-01-11T21:41:26.7301715Z if __name__ == "__main__": 2023-01-11T21:41:26.7301932Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7302176Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7302597Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7302817Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7302827Z 2023-01-11T21:41:26.7302960Z ok (1.585s) 2023-01-11T21:41:26.7303694Z test_pow3_cpu (__main__.CpuTests) ... [2023-01-11 21:36:58,609] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 391 2023-01-11T21:41:26.7304231Z [2023-01-11 21:37:00,201] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 391 2023-01-11T21:41:26.7304243Z 2023-01-11T21:41:26.7304438Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7304592Z import torch 2023-01-11T21:41:26.7304712Z import random 2023-01-11T21:41:26.7304939Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7305193Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7305204Z 2023-01-11T21:41:26.7305363Z aten = torch.ops.aten 2023-01-11T21:41:26.7305734Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7305929Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7305939Z 2023-01-11T21:41:26.7305947Z 2023-01-11T21:41:26.7306232Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7306623Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7306847Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7307043Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7307170Z { 2023-01-11T21:41:26.7307296Z { 2023-01-11T21:41:26.7307420Z { 2023-01-11T21:41:26.7307605Z auto tmp1 = in_ptr0[0]; 2023-01-11T21:41:26.7307826Z auto tmp0 = static_cast(0.12300000339746475); 2023-01-11T21:41:26.7308061Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7308253Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:41:26.7308415Z out_ptr0[0] = tmp3; 2023-01-11T21:41:26.7308559Z } 2023-01-11T21:41:26.7308688Z } 2023-01-11T21:41:26.7308819Z } 2023-01-11T21:41:26.7308985Z ''') 2023-01-11T21:41:26.7308994Z 2023-01-11T21:41:26.7309026Z 2023-01-11T21:41:26.7309183Z async_compile.wait(globals()) 2023-01-11T21:41:26.7309338Z del async_compile 2023-01-11T21:41:26.7309350Z 2023-01-11T21:41:26.7309494Z def call(args): 2023-01-11T21:41:26.7309644Z arg0_1, = args 2023-01-11T21:41:26.7309790Z args.clear() 2023-01-11T21:41:26.7310161Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7310433Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7310553Z del arg0_1 2023-01-11T21:41:26.7310707Z return (buf0, ) 2023-01-11T21:41:26.7310717Z 2023-01-11T21:41:26.7310724Z 2023-01-11T21:41:26.7310878Z if __name__ == "__main__": 2023-01-11T21:41:26.7311099Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7311357Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7311743Z arg0_1 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7311953Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7311963Z 2023-01-11T21:41:26.7312099Z ok (1.610s) 2023-01-11T21:41:26.7312750Z test_profiler_mark_wrapper_call_cpu (__main__.CpuTests) ... STAGE:2023-01-11 21:37:00 1448:1448 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:41:26.7313282Z [2023-01-11 21:37:00,214] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 392 2023-01-11T21:41:26.7313800Z [2023-01-11 21:37:00,220] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 392 2023-01-11T21:41:26.7314294Z STAGE:2023-01-11 21:37:00 1448:1448 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:41:26.7314821Z STAGE:2023-01-11 21:37:00 1448:1448 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:41:26.7314839Z 2023-01-11T21:41:26.7315032Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7315188Z import torch 2023-01-11T21:41:26.7315325Z import random 2023-01-11T21:41:26.7315544Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7315788Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7315801Z 2023-01-11T21:41:26.7315959Z aten = torch.ops.aten 2023-01-11T21:41:26.7316215Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7316407Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7316417Z 2023-01-11T21:41:26.7316427Z 2023-01-11T21:41:26.7316708Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7317103Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7317356Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7317536Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7317743Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7317967Z { 2023-01-11T21:41:26.7318179Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7318310Z { 2023-01-11T21:41:26.7318468Z #pragma omp for 2023-01-11T21:41:26.7318645Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.7318757Z { 2023-01-11T21:41:26.7319028Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7319292Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7319472Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7319650Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7319785Z } 2023-01-11T21:41:26.7319982Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7320126Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.7320340Z { 2023-01-11T21:41:26.7320520Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7320681Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.7320863Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7321035Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7321172Z } 2023-01-11T21:41:26.7321279Z } 2023-01-11T21:41:26.7321409Z } 2023-01-11T21:41:26.7321590Z ''') 2023-01-11T21:41:26.7321604Z 2023-01-11T21:41:26.7321611Z 2023-01-11T21:41:26.7321795Z async_compile.wait(globals()) 2023-01-11T21:41:26.7321952Z del async_compile 2023-01-11T21:41:26.7321962Z 2023-01-11T21:41:26.7322116Z def call(args): 2023-01-11T21:41:26.7322283Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7322407Z args.clear() 2023-01-11T21:41:26.7322629Z from torch.profiler import record_function 2023-01-11T21:41:26.7322968Z with record_function('inductor_wrapper_call'): 2023-01-11T21:41:26.7323371Z buf0 = empty_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7323701Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7323854Z del arg0_1 2023-01-11T21:41:26.7324002Z del arg1_1 2023-01-11T21:41:26.7324146Z return (buf0, ) 2023-01-11T21:41:26.7324160Z 2023-01-11T21:41:26.7324169Z 2023-01-11T21:41:26.7324304Z if __name__ == "__main__": 2023-01-11T21:41:26.7324538Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7324785Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7325183Z arg0_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7325579Z arg1_1 = rand_strided((100, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7325813Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7325826Z 2023-01-11T21:41:26.7325958Z ok (0.022s) 2023-01-11T21:41:26.7326676Z test_rand_like_deterministic_cpu (__main__.CpuTests) ... [2023-01-11 21:37:00,298] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 393 2023-01-11T21:41:26.7327188Z [2023-01-11 21:37:00,299] torch._inductor.lowering: [WARNING] using triton random, expect difference from eager 2023-01-11T21:41:26.7327744Z [2023-01-11 21:37:01,981] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 393 2023-01-11T21:41:26.7327755Z 2023-01-11T21:41:26.7327946Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7328101Z import torch 2023-01-11T21:41:26.7328258Z import random 2023-01-11T21:41:26.7328485Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7328733Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7328742Z 2023-01-11T21:41:26.7328905Z aten = torch.ops.aten 2023-01-11T21:41:26.7329302Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7329489Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7329816Z seed_cpu_None = None # 9130db9322feaa41c28986790b86d7dd047e77339ff46fce775dbaa5929b26ce 2023-01-11T21:41:26.7329828Z 2023-01-11T21:41:26.7329835Z 2023-01-11T21:41:26.7330269Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7330657Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7330893Z extern "C" void kernel(const long* __restrict__ seed0, 2023-01-11T21:41:26.7331103Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7331286Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7331392Z { 2023-01-11T21:41:26.7331593Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7331719Z { 2023-01-11T21:41:26.7331891Z #pragma omp for 2023-01-11T21:41:26.7332057Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.7332193Z { 2023-01-11T21:41:26.7332326Z { 2023-01-11T21:41:26.7332444Z { 2023-01-11T21:41:26.7332624Z auto tmp0 = seed0[0]; 2023-01-11T21:41:26.7332927Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.7333203Z auto tmp2 = static_cast(normalized_rand_cpu(tmp0, tmp1));; 2023-01-11T21:41:26.7333427Z auto tmp3 = static_cast(1024 + i0); 2023-01-11T21:41:26.7333706Z auto tmp4 = static_cast(normalized_rand_cpu(tmp0, tmp3));; 2023-01-11T21:41:26.7333872Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7334020Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.7334166Z } 2023-01-11T21:41:26.7334305Z } 2023-01-11T21:41:26.7334441Z } 2023-01-11T21:41:26.7334580Z } 2023-01-11T21:41:26.7334700Z } 2023-01-11T21:41:26.7334886Z ''') 2023-01-11T21:41:26.7334899Z 2023-01-11T21:41:26.7334907Z 2023-01-11T21:41:26.7335077Z async_compile.wait(globals()) 2023-01-11T21:41:26.7335225Z del async_compile 2023-01-11T21:41:26.7335236Z 2023-01-11T21:41:26.7335384Z def call(args): 2023-01-11T21:41:26.7335538Z arg0_1, = args 2023-01-11T21:41:26.7335669Z args.clear() 2023-01-11T21:41:26.7335930Z torch.randint(2**31, size=(), dtype=torch.int64, out=seed_cpu_None) 2023-01-11T21:41:26.7336342Z buf0 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7336717Z buf1 = empty_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7337062Z kernel_cpp_0(c_void_p(seed_cpu_None.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7337223Z return (buf0, buf1, ) 2023-01-11T21:41:26.7337236Z 2023-01-11T21:41:26.7337242Z 2023-01-11T21:41:26.7337401Z if __name__ == "__main__": 2023-01-11T21:41:26.7337628Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7337884Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7338265Z seed_cpu_None = rand_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7338680Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7338908Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7338928Z 2023-01-11T21:41:26.7339042Z ok (1.760s) 2023-01-11T21:41:26.7339943Z test_reduction1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7340203Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7340730Z [2023-01-11 21:37:02,020] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 394 2023-01-11T21:41:26.7341273Z [2023-01-11 21:37:03,584] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 394 2023-01-11T21:41:26.7341283Z 2023-01-11T21:41:26.7341476Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7341628Z import torch 2023-01-11T21:41:26.7341905Z import random 2023-01-11T21:41:26.7342144Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7342379Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7342389Z 2023-01-11T21:41:26.7342538Z aten = torch.ops.aten 2023-01-11T21:41:26.7342807Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7342995Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7343007Z 2023-01-11T21:41:26.7343014Z 2023-01-11T21:41:26.7343376Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7343765Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7344012Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7344213Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7344475Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7344684Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7344875Z long* __restrict__ out_ptr3, 2023-01-11T21:41:26.7345079Z long* __restrict__ out_ptr4) 2023-01-11T21:41:26.7345210Z { 2023-01-11T21:41:26.7345328Z { 2023-01-11T21:41:26.7345470Z { 2023-01-11T21:41:26.7345609Z float tmp1 = 0; 2023-01-11T21:41:26.7346086Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7346327Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.7346574Z struct IndexValue_9 {size_t index; float value;}; 2023-01-11T21:41:26.7347031Z IndexValue_9 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.7347302Z #pragma omp declare reduction(argmax : struct IndexValue_9 :\ 2023-01-11T21:41:26.7347602Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.7347871Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.7348334Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.7348572Z struct IndexValue_10 {size_t index; float value;}; 2023-01-11T21:41:26.7348839Z IndexValue_10 tmp5{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.7349114Z #pragma omp declare reduction(argmin : struct IndexValue_10 :\ 2023-01-11T21:41:26.7349408Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.7349685Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.7349978Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.7350164Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.7350284Z { 2023-01-11T21:41:26.7350427Z { 2023-01-11T21:41:26.7350608Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7350776Z tmp1 += tmp0; 2023-01-11T21:41:26.7350977Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:41:26.7351180Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:41:26.7351363Z if (tmp4.value < tmp0) { 2023-01-11T21:41:26.7351560Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:41:26.7351705Z } 2023-01-11T21:41:26.7351887Z if (tmp5.value > tmp0) { 2023-01-11T21:41:26.7352109Z tmp5.index = i0; tmp5.value = tmp0; 2023-01-11T21:41:26.7352246Z } 2023-01-11T21:41:26.7352382Z } 2023-01-11T21:41:26.7352524Z } 2023-01-11T21:41:26.7352670Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.7352838Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.7352997Z out_ptr2[0] = tmp3; 2023-01-11T21:41:26.7353165Z out_ptr3[0] = tmp4.index; 2023-01-11T21:41:26.7353334Z out_ptr4[0] = tmp5.index; 2023-01-11T21:41:26.7353585Z } 2023-01-11T21:41:26.7353724Z } 2023-01-11T21:41:26.7353835Z } 2023-01-11T21:41:26.7354017Z ''') 2023-01-11T21:41:26.7354027Z 2023-01-11T21:41:26.7354034Z 2023-01-11T21:41:26.7354221Z async_compile.wait(globals()) 2023-01-11T21:41:26.7354370Z del async_compile 2023-01-11T21:41:26.7354383Z 2023-01-11T21:41:26.7354529Z def call(args): 2023-01-11T21:41:26.7354678Z arg0_1, = args 2023-01-11T21:41:26.7354834Z args.clear() 2023-01-11T21:41:26.7355202Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7355580Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7355943Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7356317Z buf3 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7356763Z buf4 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7357236Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.7357385Z del arg0_1 2023-01-11T21:41:26.7357584Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.7357595Z 2023-01-11T21:41:26.7357602Z 2023-01-11T21:41:26.7357755Z if __name__ == "__main__": 2023-01-11T21:41:26.7357966Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7358211Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7358604Z arg0_1 = rand_strided((3, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7358825Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7358837Z 2023-01-11T21:41:26.7358977Z ok (1.602s) 2023-01-11T21:41:26.7359874Z test_reduction2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7360117Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7360658Z [2023-01-11 21:37:03,603] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 395 2023-01-11T21:41:26.7361182Z [2023-01-11 21:37:05,122] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 395 2023-01-11T21:41:26.7361195Z 2023-01-11T21:41:26.7361377Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7361531Z import torch 2023-01-11T21:41:26.7361675Z import random 2023-01-11T21:41:26.7361905Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7362162Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7362177Z 2023-01-11T21:41:26.7362336Z aten = torch.ops.aten 2023-01-11T21:41:26.7362605Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7362783Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7362796Z 2023-01-11T21:41:26.7362804Z 2023-01-11T21:41:26.7363071Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7363470Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7363703Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7363902Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7364098Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7364293Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7364484Z long* __restrict__ out_ptr3) 2023-01-11T21:41:26.7364596Z { 2023-01-11T21:41:26.7364736Z { 2023-01-11T21:41:26.7364880Z { 2023-01-11T21:41:26.7365048Z float tmp1 = 0; 2023-01-11T21:41:26.7365477Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7365837Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.7366075Z struct IndexValue_11 {size_t index; float value;}; 2023-01-11T21:41:26.7366334Z IndexValue_11 tmp4{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.7366586Z #pragma omp declare reduction(argmin : struct IndexValue_11 :\ 2023-01-11T21:41:26.7366882Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.7367167Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.7367456Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.7367669Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7367872Z { 2023-01-11T21:41:26.7368220Z #pragma omp for reduction(+:tmp1) reduction(max:tmp2) reduction(min:tmp3) reduction(argmin:tmp4) 2023-01-11T21:41:26.7368412Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7368531Z { 2023-01-11T21:41:26.7368671Z { 2023-01-11T21:41:26.7368864Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7369198Z tmp1 += tmp0; 2023-01-11T21:41:26.7369418Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:41:26.7369622Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:41:26.7369804Z if (tmp4.value > tmp0) { 2023-01-11T21:41:26.7370007Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:41:26.7370155Z } 2023-01-11T21:41:26.7370303Z } 2023-01-11T21:41:26.7370433Z } 2023-01-11T21:41:26.7370566Z } 2023-01-11T21:41:26.7370727Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.7370895Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.7371042Z out_ptr2[0] = tmp3; 2023-01-11T21:41:26.7371222Z out_ptr3[0] = tmp4.index; 2023-01-11T21:41:26.7371361Z } 2023-01-11T21:41:26.7371492Z } 2023-01-11T21:41:26.7371615Z } 2023-01-11T21:41:26.7371809Z ''') 2023-01-11T21:41:26.7371820Z 2023-01-11T21:41:26.7371829Z 2023-01-11T21:41:26.7372021Z async_compile.wait(globals()) 2023-01-11T21:41:26.7372152Z del async_compile 2023-01-11T21:41:26.7372162Z 2023-01-11T21:41:26.7372303Z def call(args): 2023-01-11T21:41:26.7372440Z arg0_1, = args 2023-01-11T21:41:26.7372594Z args.clear() 2023-01-11T21:41:26.7372992Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7373350Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7373722Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7374079Z buf3 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7374489Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.7374643Z del arg0_1 2023-01-11T21:41:26.7374825Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.7374838Z 2023-01-11T21:41:26.7374845Z 2023-01-11T21:41:26.7374989Z if __name__ == "__main__": 2023-01-11T21:41:26.7375211Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7375468Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7375870Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7376061Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7376095Z 2023-01-11T21:41:26.7376215Z ok (1.538s) 2023-01-11T21:41:26.7377128Z test_reduction3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7377530Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7378063Z [2023-01-11 21:37:05,141] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 396 2023-01-11T21:41:26.7378598Z [2023-01-11 21:37:06,975] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 396 2023-01-11T21:41:26.7378609Z 2023-01-11T21:41:26.7378796Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7378954Z import torch 2023-01-11T21:41:26.7379108Z import random 2023-01-11T21:41:26.7379318Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7379690Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7379707Z 2023-01-11T21:41:26.7379872Z aten = torch.ops.aten 2023-01-11T21:41:26.7380146Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7380335Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7380344Z 2023-01-11T21:41:26.7380351Z 2023-01-11T21:41:26.7380631Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7381029Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7381265Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7381473Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7381650Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7381846Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7382030Z long* __restrict__ out_ptr3) 2023-01-11T21:41:26.7382163Z { 2023-01-11T21:41:26.7382292Z { 2023-01-11T21:41:26.7382432Z { 2023-01-11T21:41:26.7382579Z float tmp1 = 0; 2023-01-11T21:41:26.7383012Z float tmp2 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7383364Z float tmp3 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.7383609Z struct IndexValue_12 {size_t index; float value;}; 2023-01-11T21:41:26.7384070Z IndexValue_12 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.7384356Z #pragma omp declare reduction(argmax : struct IndexValue_12 :\ 2023-01-11T21:41:26.7384647Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.7384935Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.7385430Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.7385618Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7385752Z { 2023-01-11T21:41:26.7386106Z #pragma omp for reduction(+:tmp1) reduction(max:tmp2) reduction(min:tmp3) reduction(argmax:tmp4) 2023-01-11T21:41:26.7386290Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7386433Z { 2023-01-11T21:41:26.7386566Z { 2023-01-11T21:41:26.7386762Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7386909Z tmp1 += tmp0; 2023-01-11T21:41:26.7387123Z tmp2 = std::max(tmp2, tmp0); 2023-01-11T21:41:26.7387325Z tmp3 = std::min(tmp3, tmp0); 2023-01-11T21:41:26.7387505Z if (tmp4.value < tmp0) { 2023-01-11T21:41:26.7387732Z tmp4.index = i0; tmp4.value = tmp0; 2023-01-11T21:41:26.7387882Z } 2023-01-11T21:41:26.7388026Z } 2023-01-11T21:41:26.7388143Z } 2023-01-11T21:41:26.7388270Z } 2023-01-11T21:41:26.7388440Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.7388617Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.7388778Z out_ptr2[0] = tmp3; 2023-01-11T21:41:26.7389067Z out_ptr3[0] = tmp4.index; 2023-01-11T21:41:26.7389194Z } 2023-01-11T21:41:26.7389301Z } 2023-01-11T21:41:26.7389434Z } 2023-01-11T21:41:26.7389615Z ''') 2023-01-11T21:41:26.7389628Z 2023-01-11T21:41:26.7389634Z 2023-01-11T21:41:26.7389824Z async_compile.wait(globals()) 2023-01-11T21:41:26.7389986Z del async_compile 2023-01-11T21:41:26.7389996Z 2023-01-11T21:41:26.7390134Z def call(args): 2023-01-11T21:41:26.7390285Z arg0_1, = args 2023-01-11T21:41:26.7390415Z args.clear() 2023-01-11T21:41:26.7390800Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7391166Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7391534Z buf2 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7392003Z buf3 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7392430Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.7392590Z del arg0_1 2023-01-11T21:41:26.7392760Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.7392770Z 2023-01-11T21:41:26.7392777Z 2023-01-11T21:41:26.7392916Z if __name__ == "__main__": 2023-01-11T21:41:26.7393149Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7393395Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7393785Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7394018Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7394028Z 2023-01-11T21:41:26.7394170Z ok (1.853s) 2023-01-11T21:41:26.7394641Z test_reduction4_cpu (__main__.CpuTests) ... skip: Non-deterministic CPU results (0.001s) 2023-01-11T21:41:26.7395583Z test_reflection_pad2d_backward_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7395854Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7396385Z [2023-01-11 21:37:07,004] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 397 2023-01-11T21:41:26.7396910Z [2023-01-11 21:37:08,548] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 397 2023-01-11T21:41:26.7397730Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7397981Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7398498Z [2023-01-11 21:37:08,568] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 398 2023-01-11T21:41:26.7399036Z [2023-01-11 21:37:10,629] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 398 2023-01-11T21:41:26.7399858Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7400110Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7400635Z [2023-01-11 21:37:10,650] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 399 2023-01-11T21:41:26.7400748Z 2023-01-11T21:41:26.7400941Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7401089Z import torch 2023-01-11T21:41:26.7401215Z import random 2023-01-11T21:41:26.7401437Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7401670Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7401685Z 2023-01-11T21:41:26.7401850Z aten = torch.ops.aten 2023-01-11T21:41:26.7402116Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7402300Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7402310Z 2023-01-11T21:41:26.7402317Z 2023-01-11T21:41:26.7402597Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7402989Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7403281Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7403490Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7403618Z { 2023-01-11T21:41:26.7403827Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7403947Z { 2023-01-11T21:41:26.7404119Z #pragma omp for 2023-01-11T21:41:26.7404299Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7404412Z { 2023-01-11T21:41:26.7404580Z #pragma GCC ivdep 2023-01-11T21:41:26.7404752Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7404874Z { 2023-01-11T21:41:26.7405019Z { 2023-01-11T21:41:26.7405161Z { 2023-01-11T21:41:26.7405378Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.7405571Z auto tmp1 = static_cast(i1); 2023-01-11T21:41:26.7405772Z auto tmp2 = in_ptr0[tmp1 + (8*tmp0)]; 2023-01-11T21:41:26.7405969Z out_ptr0[i1 + (8*i0)] = tmp2; 2023-01-11T21:41:26.7406119Z } 2023-01-11T21:41:26.7406258Z } 2023-01-11T21:41:26.7406394Z } 2023-01-11T21:41:26.7406531Z } 2023-01-11T21:41:26.7406632Z } 2023-01-11T21:41:26.7406756Z } 2023-01-11T21:41:26.7406934Z ''') 2023-01-11T21:41:26.7406945Z 2023-01-11T21:41:26.7406952Z 2023-01-11T21:41:26.7407139Z async_compile.wait(globals()) 2023-01-11T21:41:26.7407299Z del async_compile 2023-01-11T21:41:26.7407310Z 2023-01-11T21:41:26.7407450Z def call(args): 2023-01-11T21:41:26.7407611Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7407735Z args.clear() 2023-01-11T21:41:26.7408170Z buf0 = empty_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7408432Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7408584Z del arg0_1 2023-01-11T21:41:26.7408735Z return (buf0, ) 2023-01-11T21:41:26.7408747Z 2023-01-11T21:41:26.7408753Z 2023-01-11T21:41:26.7408913Z if __name__ == "__main__": 2023-01-11T21:41:26.7409285Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7409528Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7409952Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7410387Z arg1_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7410613Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7410622Z 2023-01-11T21:41:26.7410630Z 2023-01-11T21:41:26.7410832Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7410985Z import torch 2023-01-11T21:41:26.7411124Z import random 2023-01-11T21:41:26.7411365Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7411605Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7411617Z 2023-01-11T21:41:26.7411755Z aten = torch.ops.aten 2023-01-11T21:41:26.7412024Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7412223Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7412235Z 2023-01-11T21:41:26.7412372Z 2023-01-11T21:41:26.7412666Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7413063Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7413294Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7413489Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7413620Z { 2023-01-11T21:41:26.7413795Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7413919Z { 2023-01-11T21:41:26.7414086Z #pragma omp for 2023-01-11T21:41:26.7414257Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7414396Z { 2023-01-11T21:41:26.7414556Z #pragma GCC ivdep 2023-01-11T21:41:26.7414711Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7414855Z { 2023-01-11T21:41:26.7414988Z { 2023-01-11T21:41:26.7415230Z { 2023-01-11T21:41:26.7415445Z auto tmp0 = static_cast(1 + i0); 2023-01-11T21:41:26.7415668Z auto tmp1 = static_cast(1 + i1); 2023-01-11T21:41:26.7415883Z auto tmp2 = in_ptr0[tmp1 + (10*tmp0)]; 2023-01-11T21:41:26.7416076Z auto tmp3 = static_cast(i1); 2023-01-11T21:41:26.7416261Z auto tmp4 = tmp3 >= 1; 2023-01-11T21:41:26.7416442Z auto tmp5 = tmp3 <= 1; 2023-01-11T21:41:26.7416636Z auto tmp6 = tmp4 & tmp5; 2023-01-11T21:41:26.7416811Z float tmp7 = 0.0; 2023-01-11T21:41:26.7416975Z if(tmp6) 2023-01-11T21:41:26.7417116Z { 2023-01-11T21:41:26.7417321Z auto tmp8 = static_cast(1 + i0); 2023-01-11T21:41:26.7417690Z auto tmp9 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:41:26.7417914Z auto tmp10 = in_ptr0[tmp9 + (10*tmp8)]; 2023-01-11T21:41:26.7418073Z tmp7 = tmp10; 2023-01-11T21:41:26.7418222Z } 2023-01-11T21:41:26.7418419Z auto tmp11 = tmp2 + tmp7; 2023-01-11T21:41:26.7418609Z auto tmp12 = tmp3 >= 6; 2023-01-11T21:41:26.7418802Z auto tmp13 = tmp3 <= 6; 2023-01-11T21:41:26.7418968Z auto tmp14 = tmp12 & tmp13; 2023-01-11T21:41:26.7419146Z float tmp15 = 0.0; 2023-01-11T21:41:26.7419309Z if(tmp14) 2023-01-11T21:41:26.7419445Z { 2023-01-11T21:41:26.7419671Z auto tmp16 = static_cast(1 + i0); 2023-01-11T21:41:26.7420031Z auto tmp17 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:41:26.7420262Z auto tmp18 = in_ptr0[tmp17 + (10*tmp16)]; 2023-01-11T21:41:26.7420417Z tmp15 = tmp18; 2023-01-11T21:41:26.7420564Z } 2023-01-11T21:41:26.7420751Z auto tmp19 = tmp11 + tmp15; 2023-01-11T21:41:26.7420959Z auto tmp20 = static_cast(i0); 2023-01-11T21:41:26.7421149Z auto tmp21 = tmp20 >= 1; 2023-01-11T21:41:26.7421337Z auto tmp22 = tmp20 <= 1; 2023-01-11T21:41:26.7421534Z auto tmp23 = tmp21 & tmp22; 2023-01-11T21:41:26.7421680Z float tmp24 = 0.0; 2023-01-11T21:41:26.7421840Z if(tmp23) 2023-01-11T21:41:26.7421985Z { 2023-01-11T21:41:26.7422340Z auto tmp25 = static_cast(1 + ((-1)*i0)); 2023-01-11T21:41:26.7422563Z auto tmp26 = static_cast(1 + i1); 2023-01-11T21:41:26.7422787Z auto tmp27 = in_ptr0[tmp26 + (10*tmp25)]; 2023-01-11T21:41:26.7422970Z tmp24 = tmp27; 2023-01-11T21:41:26.7423115Z } 2023-01-11T21:41:26.7423495Z auto tmp28 = tmp19 + tmp24; 2023-01-11T21:41:26.7423681Z auto tmp29 = tmp20 >= 6; 2023-01-11T21:41:26.7423877Z auto tmp30 = tmp20 <= 6; 2023-01-11T21:41:26.7424075Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:41:26.7424253Z float tmp32 = 0.0; 2023-01-11T21:41:26.7424403Z if(tmp31) 2023-01-11T21:41:26.7424545Z { 2023-01-11T21:41:26.7424898Z auto tmp33 = static_cast(15 + ((-1)*i0)); 2023-01-11T21:41:26.7425125Z auto tmp34 = static_cast(1 + i1); 2023-01-11T21:41:26.7425336Z auto tmp35 = in_ptr0[tmp34 + (10*tmp33)]; 2023-01-11T21:41:26.7425509Z tmp32 = tmp35; 2023-01-11T21:41:26.7425733Z } 2023-01-11T21:41:26.7425936Z auto tmp36 = tmp28 + tmp32; 2023-01-11T21:41:26.7426115Z auto tmp37 = tmp23 & tmp6; 2023-01-11T21:41:26.7426266Z float tmp38 = 0.0; 2023-01-11T21:41:26.7426437Z if(tmp37) 2023-01-11T21:41:26.7426583Z { 2023-01-11T21:41:26.7426939Z auto tmp39 = static_cast(1 + ((-1)*i0)); 2023-01-11T21:41:26.7427288Z auto tmp40 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:41:26.7427522Z auto tmp41 = in_ptr0[tmp40 + (10*tmp39)]; 2023-01-11T21:41:26.7427688Z tmp38 = tmp41; 2023-01-11T21:41:26.7427808Z } 2023-01-11T21:41:26.7427993Z auto tmp42 = tmp36 + tmp38; 2023-01-11T21:41:26.7428179Z auto tmp43 = tmp23 & tmp14; 2023-01-11T21:41:26.7428365Z float tmp44 = 0.0; 2023-01-11T21:41:26.7428528Z if(tmp43) 2023-01-11T21:41:26.7428664Z { 2023-01-11T21:41:26.7429029Z auto tmp45 = static_cast(1 + ((-1)*i0)); 2023-01-11T21:41:26.7429396Z auto tmp46 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:41:26.7429589Z auto tmp47 = in_ptr0[tmp46 + (10*tmp45)]; 2023-01-11T21:41:26.7429758Z tmp44 = tmp47; 2023-01-11T21:41:26.7429900Z } 2023-01-11T21:41:26.7430098Z auto tmp48 = tmp42 + tmp44; 2023-01-11T21:41:26.7430299Z auto tmp49 = tmp31 & tmp6; 2023-01-11T21:41:26.7430460Z float tmp50 = 0.0; 2023-01-11T21:41:26.7430622Z if(tmp49) 2023-01-11T21:41:26.7430753Z { 2023-01-11T21:41:26.7431126Z auto tmp51 = static_cast(15 + ((-1)*i0)); 2023-01-11T21:41:26.7431471Z auto tmp52 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:41:26.7431708Z auto tmp53 = in_ptr0[tmp52 + (10*tmp51)]; 2023-01-11T21:41:26.7431879Z tmp50 = tmp53; 2023-01-11T21:41:26.7432022Z } 2023-01-11T21:41:26.7432211Z auto tmp54 = tmp48 + tmp50; 2023-01-11T21:41:26.7432375Z auto tmp55 = tmp31 & tmp14; 2023-01-11T21:41:26.7432554Z float tmp56 = 0.0; 2023-01-11T21:41:26.7432708Z if(tmp55) 2023-01-11T21:41:26.7432854Z { 2023-01-11T21:41:26.7433213Z auto tmp57 = static_cast(15 + ((-1)*i0)); 2023-01-11T21:41:26.7433569Z auto tmp58 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:41:26.7433791Z auto tmp59 = in_ptr0[tmp58 + (10*tmp57)]; 2023-01-11T21:41:26.7433941Z tmp56 = tmp59; 2023-01-11T21:41:26.7434078Z } 2023-01-11T21:41:26.7434277Z auto tmp60 = tmp54 + tmp56; 2023-01-11T21:41:26.7434571Z out_ptr0[i1 + (8*i0)] = tmp60; 2023-01-11T21:41:26.7434723Z } 2023-01-11T21:41:26.7434856Z } 2023-01-11T21:41:26.7434988Z } 2023-01-11T21:41:26.7435103Z } 2023-01-11T21:41:26.7435235Z } 2023-01-11T21:41:26.7435366Z } 2023-01-11T21:41:26.7435544Z ''') 2023-01-11T21:41:26.7435561Z 2023-01-11T21:41:26.7435569Z 2023-01-11T21:41:26.7435742Z async_compile.wait(globals()) 2023-01-11T21:41:26.7435898Z del async_compile 2023-01-11T21:41:26.7435914Z 2023-01-11T21:41:26.7436065Z def call(args): 2023-01-11T21:41:26.7436227Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7436359Z args.clear() 2023-01-11T21:41:26.7436797Z buf0 = empty_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7437135Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7437285Z del arg0_1 2023-01-11T21:41:26.7437441Z return (buf0, ) 2023-01-11T21:41:26.7437451Z 2023-01-11T21:41:26.7437457Z 2023-01-11T21:41:26.7437616Z if __name__ == "__main__": 2023-01-11T21:41:26.7437848Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7438075Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7438506Z arg0_1 = rand_strided((1, 1, 10, 10), (100, 100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7438930Z arg1_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7439158Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7439167Z 2023-01-11T21:41:26.7439704Z [2023-01-11 21:37:12,357] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 399 2023-01-11T21:41:26.7439716Z 2023-01-11T21:41:26.7439914Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7440059Z import torch 2023-01-11T21:41:26.7440211Z import random 2023-01-11T21:41:26.7440431Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7440679Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7440688Z 2023-01-11T21:41:26.7440845Z aten = torch.ops.aten 2023-01-11T21:41:26.7441111Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7441307Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7441317Z 2023-01-11T21:41:26.7441326Z 2023-01-11T21:41:26.7441605Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7442002Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7442239Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7442426Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7442556Z { 2023-01-11T21:41:26.7442756Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7442895Z { 2023-01-11T21:41:26.7443062Z #pragma omp for 2023-01-11T21:41:26.7443232Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7443376Z { 2023-01-11T21:41:26.7443518Z #pragma GCC ivdep 2023-01-11T21:41:26.7443676Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7443812Z { 2023-01-11T21:41:26.7443952Z { 2023-01-11T21:41:26.7444094Z { 2023-01-11T21:41:26.7444317Z auto tmp0 = static_cast(3 + i0); 2023-01-11T21:41:26.7444519Z auto tmp1 = static_cast(1 + i1); 2023-01-11T21:41:26.7444720Z auto tmp2 = in_ptr0[tmp1 + (11*tmp0)]; 2023-01-11T21:41:26.7444937Z auto tmp3 = static_cast(i1); 2023-01-11T21:41:26.7445124Z auto tmp4 = tmp3 >= 1; 2023-01-11T21:41:26.7445310Z auto tmp5 = tmp3 <= 1; 2023-01-11T21:41:26.7445504Z auto tmp6 = tmp4 & tmp5; 2023-01-11T21:41:26.7445686Z float tmp7 = 0.0; 2023-01-11T21:41:26.7445845Z if(tmp6) 2023-01-11T21:41:26.7446080Z { 2023-01-11T21:41:26.7446292Z auto tmp8 = static_cast(3 + i0); 2023-01-11T21:41:26.7446676Z auto tmp9 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:41:26.7446905Z auto tmp10 = in_ptr0[tmp9 + (11*tmp8)]; 2023-01-11T21:41:26.7447065Z tmp7 = tmp10; 2023-01-11T21:41:26.7447211Z } 2023-01-11T21:41:26.7447410Z auto tmp11 = tmp2 + tmp7; 2023-01-11T21:41:26.7447598Z auto tmp12 = tmp3 >= 5; 2023-01-11T21:41:26.7447774Z auto tmp13 = tmp3 <= 6; 2023-01-11T21:41:26.7447956Z auto tmp14 = tmp12 & tmp13; 2023-01-11T21:41:26.7448201Z float tmp15 = 0.0; 2023-01-11T21:41:26.7448369Z if(tmp14) 2023-01-11T21:41:26.7448519Z { 2023-01-11T21:41:26.7448742Z auto tmp16 = static_cast(3 + i0); 2023-01-11T21:41:26.7449242Z auto tmp17 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:41:26.7449447Z auto tmp18 = in_ptr0[tmp17 + (11*tmp16)]; 2023-01-11T21:41:26.7449616Z tmp15 = tmp18; 2023-01-11T21:41:26.7449767Z } 2023-01-11T21:41:26.7449953Z auto tmp19 = tmp11 + tmp15; 2023-01-11T21:41:26.7450172Z auto tmp20 = static_cast(i0); 2023-01-11T21:41:26.7450362Z auto tmp21 = tmp20 >= 1; 2023-01-11T21:41:26.7450561Z auto tmp22 = tmp20 <= 3; 2023-01-11T21:41:26.7450727Z auto tmp23 = tmp21 & tmp22; 2023-01-11T21:41:26.7450913Z float tmp24 = 0.0; 2023-01-11T21:41:26.7451070Z if(tmp23) 2023-01-11T21:41:26.7451211Z { 2023-01-11T21:41:26.7451586Z auto tmp25 = static_cast(3 + ((-1)*i0)); 2023-01-11T21:41:26.7451807Z auto tmp26 = static_cast(1 + i1); 2023-01-11T21:41:26.7452031Z auto tmp27 = in_ptr0[tmp26 + (11*tmp25)]; 2023-01-11T21:41:26.7452183Z tmp24 = tmp27; 2023-01-11T21:41:26.7452326Z } 2023-01-11T21:41:26.7452521Z auto tmp28 = tmp19 + tmp24; 2023-01-11T21:41:26.7452708Z auto tmp29 = tmp20 >= 3; 2023-01-11T21:41:26.7452908Z auto tmp30 = tmp20 <= 6; 2023-01-11T21:41:26.7453101Z auto tmp31 = tmp29 & tmp30; 2023-01-11T21:41:26.7453273Z float tmp32 = 0.0; 2023-01-11T21:41:26.7453408Z if(tmp31) 2023-01-11T21:41:26.7453560Z { 2023-01-11T21:41:26.7453938Z auto tmp33 = static_cast(17 + ((-1)*i0)); 2023-01-11T21:41:26.7454168Z auto tmp34 = static_cast(1 + i1); 2023-01-11T21:41:26.7454390Z auto tmp35 = in_ptr0[tmp34 + (11*tmp33)]; 2023-01-11T21:41:26.7454567Z tmp32 = tmp35; 2023-01-11T21:41:26.7454713Z } 2023-01-11T21:41:26.7454902Z auto tmp36 = tmp28 + tmp32; 2023-01-11T21:41:26.7455068Z auto tmp37 = tmp23 & tmp6; 2023-01-11T21:41:26.7455248Z float tmp38 = 0.0; 2023-01-11T21:41:26.7455400Z if(tmp37) 2023-01-11T21:41:26.7455545Z { 2023-01-11T21:41:26.7455903Z auto tmp39 = static_cast(3 + ((-1)*i0)); 2023-01-11T21:41:26.7456259Z auto tmp40 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:41:26.7456487Z auto tmp41 = in_ptr0[tmp40 + (11*tmp39)]; 2023-01-11T21:41:26.7456641Z tmp38 = tmp41; 2023-01-11T21:41:26.7456910Z } 2023-01-11T21:41:26.7457106Z auto tmp42 = tmp36 + tmp38; 2023-01-11T21:41:26.7457294Z auto tmp43 = tmp23 & tmp14; 2023-01-11T21:41:26.7457469Z float tmp44 = 0.0; 2023-01-11T21:41:26.7457632Z if(tmp43) 2023-01-11T21:41:26.7457763Z { 2023-01-11T21:41:26.7458104Z auto tmp45 = static_cast(3 + ((-1)*i0)); 2023-01-11T21:41:26.7458466Z auto tmp46 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:41:26.7458676Z auto tmp47 = in_ptr0[tmp46 + (11*tmp45)]; 2023-01-11T21:41:26.7458849Z tmp44 = tmp47; 2023-01-11T21:41:26.7458998Z } 2023-01-11T21:41:26.7459291Z auto tmp48 = tmp42 + tmp44; 2023-01-11T21:41:26.7459493Z auto tmp49 = tmp31 & tmp6; 2023-01-11T21:41:26.7459682Z float tmp50 = 0.0; 2023-01-11T21:41:26.7459825Z if(tmp49) 2023-01-11T21:41:26.7459967Z { 2023-01-11T21:41:26.7460325Z auto tmp51 = static_cast(17 + ((-1)*i0)); 2023-01-11T21:41:26.7460682Z auto tmp52 = static_cast(1 + ((-1)*i1)); 2023-01-11T21:41:26.7460899Z auto tmp53 = in_ptr0[tmp52 + (11*tmp51)]; 2023-01-11T21:41:26.7461072Z tmp50 = tmp53; 2023-01-11T21:41:26.7461207Z } 2023-01-11T21:41:26.7461370Z auto tmp54 = tmp48 + tmp50; 2023-01-11T21:41:26.7461555Z auto tmp55 = tmp31 & tmp14; 2023-01-11T21:41:26.7461739Z float tmp56 = 0.0; 2023-01-11T21:41:26.7461912Z if(tmp55) 2023-01-11T21:41:26.7462060Z { 2023-01-11T21:41:26.7462418Z auto tmp57 = static_cast(17 + ((-1)*i0)); 2023-01-11T21:41:26.7462791Z auto tmp58 = static_cast(15 + ((-1)*i1)); 2023-01-11T21:41:26.7462983Z auto tmp59 = in_ptr0[tmp58 + (11*tmp57)]; 2023-01-11T21:41:26.7463228Z tmp56 = tmp59; 2023-01-11T21:41:26.7463383Z } 2023-01-11T21:41:26.7463575Z auto tmp60 = tmp54 + tmp56; 2023-01-11T21:41:26.7463774Z out_ptr0[i1 + (8*i0)] = tmp60; 2023-01-11T21:41:26.7463912Z } 2023-01-11T21:41:26.7464037Z } 2023-01-11T21:41:26.7464155Z } 2023-01-11T21:41:26.7464297Z } 2023-01-11T21:41:26.7464433Z } 2023-01-11T21:41:26.7464566Z } 2023-01-11T21:41:26.7464739Z ''') 2023-01-11T21:41:26.7464752Z 2023-01-11T21:41:26.7464765Z 2023-01-11T21:41:26.7464938Z async_compile.wait(globals()) 2023-01-11T21:41:26.7465098Z del async_compile 2023-01-11T21:41:26.7465115Z 2023-01-11T21:41:26.7465245Z def call(args): 2023-01-11T21:41:26.7465415Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7465566Z args.clear() 2023-01-11T21:41:26.7465996Z buf0 = empty_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7466259Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7466408Z del arg0_1 2023-01-11T21:41:26.7466559Z return (buf0, ) 2023-01-11T21:41:26.7466571Z 2023-01-11T21:41:26.7466579Z 2023-01-11T21:41:26.7466726Z if __name__ == "__main__": 2023-01-11T21:41:26.7466942Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7467191Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7467629Z arg0_1 = rand_strided((1, 1, 15, 11), (165, 165, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7468072Z arg1_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7468302Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7468413Z 2023-01-11T21:41:26.7468562Z ok (5.381s) 2023-01-11T21:41:26.7469477Z test_reflection_pad2d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7469739Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7470266Z [2023-01-11 21:37:12,387] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 400 2023-01-11T21:41:26.7470860Z [2023-01-11 21:37:13,932] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 400 2023-01-11T21:41:26.7470893Z 2023-01-11T21:41:26.7471067Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7471224Z import torch 2023-01-11T21:41:26.7471373Z import random 2023-01-11T21:41:26.7471612Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7471852Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7471863Z 2023-01-11T21:41:26.7472027Z aten = torch.ops.aten 2023-01-11T21:41:26.7472293Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7472463Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7472472Z 2023-01-11T21:41:26.7472502Z 2023-01-11T21:41:26.7472753Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7473156Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7473404Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7473614Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7473818Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7473952Z { 2023-01-11T21:41:26.7474167Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7474282Z { 2023-01-11T21:41:26.7474439Z #pragma omp for 2023-01-11T21:41:26.7474615Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.7474755Z { 2023-01-11T21:41:26.7474926Z #pragma GCC ivdep 2023-01-11T21:41:26.7475111Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.7475218Z { 2023-01-11T21:41:26.7475351Z { 2023-01-11T21:41:26.7475495Z { 2023-01-11T21:41:26.7475716Z auto tmp0 = static_cast(7); 2023-01-11T21:41:26.7475920Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.7476124Z auto tmp2 = static_cast(1); 2023-01-11T21:41:26.7476428Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.7476625Z auto tmp4 = std::abs(tmp3); 2023-01-11T21:41:26.7476957Z auto tmp5 = tmp0 - tmp4; 2023-01-11T21:41:26.7477168Z auto tmp6 = std::abs(tmp5); 2023-01-11T21:41:26.7477458Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:41:26.7477682Z auto tmp8 = static_cast(i1); 2023-01-11T21:41:26.7477963Z auto tmp9 = tmp8 - tmp2; 2023-01-11T21:41:26.7478173Z auto tmp10 = std::abs(tmp9); 2023-01-11T21:41:26.7478468Z auto tmp11 = tmp0 - tmp10; 2023-01-11T21:41:26.7478654Z auto tmp12 = std::abs(tmp11); 2023-01-11T21:41:26.7478944Z auto tmp13 = tmp0 - tmp12; 2023-01-11T21:41:26.7479160Z auto tmp14 = in_ptr0[tmp13 + (8*tmp7)]; 2023-01-11T21:41:26.7479363Z out_ptr0[i1 + (10*i0)] = tmp14; 2023-01-11T21:41:26.7479504Z } 2023-01-11T21:41:26.7479640Z } 2023-01-11T21:41:26.7479772Z } 2023-01-11T21:41:26.7479887Z } 2023-01-11T21:41:26.7480154Z #pragma omp for 2023-01-11T21:41:26.7480325Z for(long i0=0; i0<15; i0+=1) 2023-01-11T21:41:26.7480456Z { 2023-01-11T21:41:26.7480626Z #pragma GCC ivdep 2023-01-11T21:41:26.7480801Z for(long i1=0; i1<11; i1+=1) 2023-01-11T21:41:26.7480939Z { 2023-01-11T21:41:26.7481060Z { 2023-01-11T21:41:26.7481205Z { 2023-01-11T21:41:26.7481410Z auto tmp0 = static_cast(7); 2023-01-11T21:41:26.7481622Z auto tmp1 = static_cast(i0); 2023-01-11T21:41:26.7481824Z auto tmp2 = static_cast(3); 2023-01-11T21:41:26.7482121Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.7482331Z auto tmp4 = std::abs(tmp3); 2023-01-11T21:41:26.7482689Z auto tmp5 = tmp0 - tmp4; 2023-01-11T21:41:26.7482908Z auto tmp6 = std::abs(tmp5); 2023-01-11T21:41:26.7483195Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:41:26.7483420Z auto tmp8 = static_cast(i1); 2023-01-11T21:41:26.7483637Z auto tmp9 = static_cast(1); 2023-01-11T21:41:26.7483915Z auto tmp10 = tmp8 - tmp9; 2023-01-11T21:41:26.7484127Z auto tmp11 = std::abs(tmp10); 2023-01-11T21:41:26.7484405Z auto tmp12 = tmp0 - tmp11; 2023-01-11T21:41:26.7484615Z auto tmp13 = std::abs(tmp12); 2023-01-11T21:41:26.7484902Z auto tmp14 = tmp0 - tmp13; 2023-01-11T21:41:26.7485117Z auto tmp15 = in_ptr0[tmp14 + (8*tmp7)]; 2023-01-11T21:41:26.7485323Z out_ptr1[i1 + (11*i0)] = tmp15; 2023-01-11T21:41:26.7485471Z } 2023-01-11T21:41:26.7485604Z } 2023-01-11T21:41:26.7485716Z } 2023-01-11T21:41:26.7485859Z } 2023-01-11T21:41:26.7485994Z } 2023-01-11T21:41:26.7486129Z } 2023-01-11T21:41:26.7486296Z ''') 2023-01-11T21:41:26.7486310Z 2023-01-11T21:41:26.7486318Z 2023-01-11T21:41:26.7486498Z async_compile.wait(globals()) 2023-01-11T21:41:26.7486650Z del async_compile 2023-01-11T21:41:26.7486665Z 2023-01-11T21:41:26.7486810Z def call(args): 2023-01-11T21:41:26.7486934Z arg0_1, = args 2023-01-11T21:41:26.7487093Z args.clear() 2023-01-11T21:41:26.7487542Z buf0 = empty_strided((1, 1, 10, 10), (100, 100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7487993Z buf1 = empty_strided((1, 1, 15, 11), (165, 165, 11, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7488318Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7488474Z del arg0_1 2023-01-11T21:41:26.7488640Z return (buf0, buf1, ) 2023-01-11T21:41:26.7488659Z 2023-01-11T21:41:26.7488667Z 2023-01-11T21:41:26.7488807Z if __name__ == "__main__": 2023-01-11T21:41:26.7489161Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7489427Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7489861Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7490076Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7490089Z 2023-01-11T21:41:26.7490232Z ok (1.574s) 2023-01-11T21:41:26.7491146Z test_relu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7491406Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7491957Z [2023-01-11 21:37:13,955] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 401 2023-01-11T21:41:26.7492636Z [2023-01-11 21:37:13,969] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 401 2023-01-11T21:41:26.7492652Z 2023-01-11T21:41:26.7492823Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7492974Z import torch 2023-01-11T21:41:26.7493122Z import random 2023-01-11T21:41:26.7493355Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7493603Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7493611Z 2023-01-11T21:41:26.7493772Z aten = torch.ops.aten 2023-01-11T21:41:26.7494043Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7494204Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7494234Z 2023-01-11T21:41:26.7494243Z 2023-01-11T21:41:26.7494504Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7495017Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7495268Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7495481Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7495691Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7495887Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7496007Z { 2023-01-11T21:41:26.7496187Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7496314Z { 2023-01-11T21:41:26.7496475Z #pragma omp for 2023-01-11T21:41:26.7496657Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7496790Z { 2023-01-11T21:41:26.7497054Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7497328Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7497574Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.7497752Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.7498009Z auto tmp4 = at::vec::clamp_min(tmp3, decltype(tmp3)(0)); 2023-01-11T21:41:26.7498289Z auto tmp5 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.7498469Z auto tmp6 = tmp4 / tmp5; 2023-01-11T21:41:26.7498641Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7498832Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7498970Z } 2023-01-11T21:41:26.7499145Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7499314Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7499438Z { 2023-01-11T21:41:26.7499615Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7499786Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.7499974Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.7500150Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.7500314Z auto tmp4 = tmp3 * (tmp3>0); 2023-01-11T21:41:26.7500514Z auto tmp5 = static_cast(10); 2023-01-11T21:41:26.7500697Z auto tmp6 = tmp4 / tmp5; 2023-01-11T21:41:26.7500868Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.7501029Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.7501152Z } 2023-01-11T21:41:26.7501282Z } 2023-01-11T21:41:26.7501390Z } 2023-01-11T21:41:26.7501588Z ''') 2023-01-11T21:41:26.7501600Z 2023-01-11T21:41:26.7501607Z 2023-01-11T21:41:26.7501803Z async_compile.wait(globals()) 2023-01-11T21:41:26.7501957Z del async_compile 2023-01-11T21:41:26.7501967Z 2023-01-11T21:41:26.7502110Z def call(args): 2023-01-11T21:41:26.7502272Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7502428Z args.clear() 2023-01-11T21:41:26.7502803Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7503281Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7503685Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7503956Z del arg0_1 2023-01-11T21:41:26.7504104Z del arg1_1 2023-01-11T21:41:26.7504275Z return (buf0, buf1, ) 2023-01-11T21:41:26.7504288Z 2023-01-11T21:41:26.7504295Z 2023-01-11T21:41:26.7504456Z if __name__ == "__main__": 2023-01-11T21:41:26.7504684Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7504910Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7505318Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7505710Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7505951Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7505960Z 2023-01-11T21:41:26.7506104Z ok (0.037s) 2023-01-11T21:41:26.7507096Z test_remainder_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7507364Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7507903Z [2023-01-11 21:37:13,996] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 402 2023-01-11T21:41:26.7508350Z [2023-01-11 21:37:15,533] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 402 2023-01-11T21:41:26.7508358Z 2023-01-11T21:41:26.7508490Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7508599Z import torch 2023-01-11T21:41:26.7508708Z import random 2023-01-11T21:41:26.7508887Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7509078Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7509087Z 2023-01-11T21:41:26.7509257Z aten = torch.ops.aten 2023-01-11T21:41:26.7509524Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7509722Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7509734Z 2023-01-11T21:41:26.7509744Z 2023-01-11T21:41:26.7509995Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7510394Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7510622Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7510837Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7511028Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7511233Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7511435Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.7511561Z { 2023-01-11T21:41:26.7511752Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7511883Z { 2023-01-11T21:41:26.7512048Z #pragma omp for 2023-01-11T21:41:26.7512227Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.7512370Z { 2023-01-11T21:41:26.7512502Z { 2023-01-11T21:41:26.7512608Z { 2023-01-11T21:41:26.7512798Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7512981Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.7513184Z auto tmp2 = mod(tmp0, tmp1); 2023-01-11T21:41:26.7513378Z auto tmp3 = tmp2 + tmp1; 2023-01-11T21:41:26.7513617Z auto tmp4 = ((tmp2 != 0) & ((tmp2 < 0) != (tmp1 < 0))) ? tmp3 : tmp2; 2023-01-11T21:41:26.7513833Z auto tmp5 = static_cast(1); 2023-01-11T21:41:26.7513999Z auto tmp6 = tmp0 + tmp5; 2023-01-11T21:41:26.7514293Z auto tmp7 = tmp1 - tmp5; 2023-01-11T21:41:26.7514484Z auto tmp8 = mod(tmp6, tmp7); 2023-01-11T21:41:26.7514680Z auto tmp9 = tmp8 + tmp7; 2023-01-11T21:41:26.7515039Z auto tmp10 = ((tmp8 != 0) & ((tmp8 < 0) != (tmp7 < 0))) ? tmp9 : tmp8; 2023-01-11T21:41:26.7515439Z auto tmp11 = tmp0 - tmp5; 2023-01-11T21:41:26.7515612Z auto tmp12 = tmp1 + tmp5; 2023-01-11T21:41:26.7515789Z auto tmp13 = mod(tmp11, tmp12); 2023-01-11T21:41:26.7515938Z auto tmp14 = tmp13 + tmp12; 2023-01-11T21:41:26.7516156Z auto tmp15 = ((tmp13 != 0) & ((tmp13 < 0) != (tmp12 < 0))) ? tmp14 : tmp13; 2023-01-11T21:41:26.7516311Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.7516475Z out_ptr1[i0] = tmp10; 2023-01-11T21:41:26.7516632Z out_ptr2[i0] = tmp15; 2023-01-11T21:41:26.7516755Z } 2023-01-11T21:41:26.7516878Z } 2023-01-11T21:41:26.7516973Z } 2023-01-11T21:41:26.7517082Z } 2023-01-11T21:41:26.7517276Z } 2023-01-11T21:41:26.7517440Z ''') 2023-01-11T21:41:26.7517452Z 2023-01-11T21:41:26.7517458Z 2023-01-11T21:41:26.7517625Z async_compile.wait(globals()) 2023-01-11T21:41:26.7517763Z del async_compile 2023-01-11T21:41:26.7517770Z 2023-01-11T21:41:26.7517897Z def call(args): 2023-01-11T21:41:26.7518020Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7518156Z args.clear() 2023-01-11T21:41:26.7518512Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7518847Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7519185Z buf2 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7519537Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.7519671Z del arg0_1 2023-01-11T21:41:26.7519806Z del arg1_1 2023-01-11T21:41:26.7519937Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.7519953Z 2023-01-11T21:41:26.7519960Z 2023-01-11T21:41:26.7520101Z if __name__ == "__main__": 2023-01-11T21:41:26.7520300Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7520530Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7520870Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7521221Z arg1_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7521431Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7521441Z 2023-01-11T21:41:26.7521565Z ok (1.565s) 2023-01-11T21:41:26.7522321Z test_repeat_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7522537Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7522989Z [2023-01-11 21:37:15,553] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 403 2023-01-11T21:41:26.7523452Z [2023-01-11 21:37:17,171] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 403 2023-01-11T21:41:26.7523464Z 2023-01-11T21:41:26.7523631Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7523769Z import torch 2023-01-11T21:41:26.7523903Z import random 2023-01-11T21:41:26.7524114Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7524325Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7524337Z 2023-01-11T21:41:26.7524462Z aten = torch.ops.aten 2023-01-11T21:41:26.7524694Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7524862Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7524878Z 2023-01-11T21:41:26.7524884Z 2023-01-11T21:41:26.7525133Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7525562Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7525758Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7525923Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7526102Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7526249Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.7526362Z { 2023-01-11T21:41:26.7526542Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7526648Z { 2023-01-11T21:41:26.7526818Z #pragma omp for collapse(2) 2023-01-11T21:41:26.7526967Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7527089Z { 2023-01-11T21:41:26.7527229Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.7527349Z { 2023-01-11T21:41:26.7527571Z #pragma GCC ivdep 2023-01-11T21:41:26.7527738Z for(long i2=0; i2<12; i2+=1) 2023-01-11T21:41:26.7527860Z { 2023-01-11T21:41:26.7528035Z for(long i3=0; i3<1; i3+=1) 2023-01-11T21:41:26.7528139Z { 2023-01-11T21:41:26.7528405Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i3) + (8*(i2 % 4)) + (32*(i1 % 2))); 2023-01-11T21:41:26.7528610Z tmp0.store(out_ptr0 + (8*i2) + (8*i3) + (96*i1) + (384*i0)); 2023-01-11T21:41:26.7528742Z } 2023-01-11T21:41:26.7528923Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7529197Z for(long i3=8; i3<8; i3+=1) 2023-01-11T21:41:26.7529327Z { 2023-01-11T21:41:26.7529524Z auto tmp0 = in_ptr0[i3 + (8*(i2 % 4)) + (32*(i1 % 2))]; 2023-01-11T21:41:26.7529696Z out_ptr0[i3 + (8*i2) + (96*i1) + (384*i0)] = tmp0; 2023-01-11T21:41:26.7529827Z } 2023-01-11T21:41:26.7529953Z } 2023-01-11T21:41:26.7530058Z } 2023-01-11T21:41:26.7530181Z } 2023-01-11T21:41:26.7530328Z #pragma omp for 2023-01-11T21:41:26.7530483Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7530579Z { 2023-01-11T21:41:26.7530731Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7530846Z { 2023-01-11T21:41:26.7531083Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i1); 2023-01-11T21:41:26.7531264Z tmp0.store(out_ptr1 + (8*i1) + (64*i0)); 2023-01-11T21:41:26.7531382Z } 2023-01-11T21:41:26.7531552Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7531682Z for(long i1=64; i1<64; i1+=1) 2023-01-11T21:41:26.7531803Z { 2023-01-11T21:41:26.7531964Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.7532132Z out_ptr1[i1 + (64*i0)] = tmp0; 2023-01-11T21:41:26.7532256Z } 2023-01-11T21:41:26.7532374Z } 2023-01-11T21:41:26.7532504Z #pragma omp for 2023-01-11T21:41:26.7532632Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7532747Z { 2023-01-11T21:41:26.7532891Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7533017Z { 2023-01-11T21:41:26.7533252Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i1); 2023-01-11T21:41:26.7533428Z tmp0.store(out_ptr2 + (8*i1) + (64*i0)); 2023-01-11T21:41:26.7533551Z } 2023-01-11T21:41:26.7533703Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7533866Z for(long i1=64; i1<64; i1+=1) 2023-01-11T21:41:26.7533984Z { 2023-01-11T21:41:26.7534135Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.7534302Z out_ptr2[i1 + (64*i0)] = tmp0; 2023-01-11T21:41:26.7534425Z } 2023-01-11T21:41:26.7534524Z } 2023-01-11T21:41:26.7534636Z } 2023-01-11T21:41:26.7534753Z } 2023-01-11T21:41:26.7534932Z ''') 2023-01-11T21:41:26.7534942Z 2023-01-11T21:41:26.7534947Z 2023-01-11T21:41:26.7535258Z async_compile.wait(globals()) 2023-01-11T21:41:26.7535396Z del async_compile 2023-01-11T21:41:26.7535408Z 2023-01-11T21:41:26.7535542Z def call(args): 2023-01-11T21:41:26.7535675Z arg0_1, = args 2023-01-11T21:41:26.7535782Z args.clear() 2023-01-11T21:41:26.7536183Z buf0 = empty_strided((2, 4, 12, 8), (384, 96, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7536548Z buf1 = empty_strided((8, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7536936Z buf2 = empty_strided((2, 1, 1, 2, 4, 8), (64, 64, 64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7537269Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.7537391Z del arg0_1 2023-01-11T21:41:26.7537552Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.7537652Z 2023-01-11T21:41:26.7537660Z 2023-01-11T21:41:26.7537802Z if __name__ == "__main__": 2023-01-11T21:41:26.7537998Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7538207Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7538585Z arg0_1 = rand_strided((1, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7538771Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7538779Z 2023-01-11T21:41:26.7538908Z ok (1.638s) 2023-01-11T21:41:26.7539677Z test_roi_align_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7539906Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7540371Z [2023-01-11 21:37:18,988] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 404 2023-01-11T21:41:26.7540822Z [2023-01-11 21:37:19,412] torch._inductor.ir: [WARNING] Using FallbackKernel: torch.ops.torchvision.roi_align 2023-01-11T21:41:26.7541270Z [2023-01-11 21:37:19,415] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 404 2023-01-11T21:41:26.7541298Z 2023-01-11T21:41:26.7541434Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7541565Z import torch 2023-01-11T21:41:26.7541699Z import random 2023-01-11T21:41:26.7541905Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7542124Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7542131Z 2023-01-11T21:41:26.7542271Z aten = torch.ops.aten 2023-01-11T21:41:26.7542512Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7542665Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7542673Z 2023-01-11T21:41:26.7542699Z 2023-01-11T21:41:26.7542837Z async_compile.wait(globals()) 2023-01-11T21:41:26.7542962Z del async_compile 2023-01-11T21:41:26.7542972Z 2023-01-11T21:41:26.7543100Z def call(args): 2023-01-11T21:41:26.7543318Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7543455Z args.clear() 2023-01-11T21:41:26.7543693Z buf0 = torch.ops.torchvision.roi_align(arg0_1, arg1_1, 0.25, 7, 7, 2, False) 2023-01-11T21:41:26.7543819Z del arg0_1 2023-01-11T21:41:26.7543920Z del arg1_1 2023-01-11T21:41:26.7544040Z buf1 = buf0 2023-01-11T21:41:26.7544233Z assert_size_stride(buf1, (2292, 256, 7, 7), (12544, 49, 7, 1)) 2023-01-11T21:41:26.7544363Z del buf0 2023-01-11T21:41:26.7544492Z return (buf1, ) 2023-01-11T21:41:26.7544503Z 2023-01-11T21:41:26.7544509Z 2023-01-11T21:41:26.7544645Z if __name__ == "__main__": 2023-01-11T21:41:26.7544836Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7545046Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7545472Z arg0_1 = rand_strided((4, 256, 296, 304), (23035904, 89984, 304, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7545936Z arg1_1 = rand_strided((2292, 5), (5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7546143Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7546152Z 2023-01-11T21:41:26.7546274Z ok (5.123s) 2023-01-11T21:41:26.7547034Z test_roll_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7547252Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7547768Z [2023-01-11 21:37:22,328] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 405 2023-01-11T21:41:26.7548236Z [2023-01-11 21:37:24,211] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 405 2023-01-11T21:41:26.7548252Z 2023-01-11T21:41:26.7548426Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7548531Z import torch 2023-01-11T21:41:26.7548651Z import random 2023-01-11T21:41:26.7548847Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7549058Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7549067Z 2023-01-11T21:41:26.7549212Z aten = torch.ops.aten 2023-01-11T21:41:26.7549441Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7549598Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7549609Z 2023-01-11T21:41:26.7549614Z 2023-01-11T21:41:26.7549846Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7550192Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7550389Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7550576Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7550752Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7550870Z { 2023-01-11T21:41:26.7551040Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7551144Z { 2023-01-11T21:41:26.7551286Z #pragma omp for collapse(2) 2023-01-11T21:41:26.7551437Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7551560Z { 2023-01-11T21:41:26.7551719Z for(long i1=0; i1<56; i1+=1) 2023-01-11T21:41:26.7551842Z { 2023-01-11T21:41:26.7551988Z #pragma GCC ivdep 2023-01-11T21:41:26.7552129Z for(long i2=0; i2<56; i2+=1) 2023-01-11T21:41:26.7552255Z { 2023-01-11T21:41:26.7552417Z for(long i3=0; i3<2; i3+=1) 2023-01-11T21:41:26.7552540Z { 2023-01-11T21:41:26.7552828Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i3) + (16*((46 + i2) % 56)) + (896*((3 + i1) % 56)) + (50176*i0)); 2023-01-11T21:41:26.7553050Z tmp0.store(out_ptr0 + (8*i3) + (16*i2) + (896*i1) + (50176*i0)); 2023-01-11T21:41:26.7553177Z } 2023-01-11T21:41:26.7553361Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7553499Z for(long i3=16; i3<16; i3+=1) 2023-01-11T21:41:26.7553617Z { 2023-01-11T21:41:26.7553844Z auto tmp0 = in_ptr0[i3 + (16*((46 + i2) % 56)) + (896*((3 + i1) % 56)) + (50176*i0)]; 2023-01-11T21:41:26.7554042Z out_ptr0[i3 + (16*i2) + (896*i1) + (50176*i0)] = tmp0; 2023-01-11T21:41:26.7554168Z } 2023-01-11T21:41:26.7554282Z } 2023-01-11T21:41:26.7554395Z } 2023-01-11T21:41:26.7554495Z } 2023-01-11T21:41:26.7554658Z #pragma omp for collapse(2) 2023-01-11T21:41:26.7554805Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7554936Z { 2023-01-11T21:41:26.7555219Z for(long i1=0; i1<56; i1+=1) 2023-01-11T21:41:26.7555343Z { 2023-01-11T21:41:26.7555496Z #pragma GCC ivdep 2023-01-11T21:41:26.7555635Z for(long i2=0; i2<56; i2+=1) 2023-01-11T21:41:26.7555765Z { 2023-01-11T21:41:26.7555917Z #pragma GCC ivdep 2023-01-11T21:41:26.7556083Z for(long i3=0; i3<16; i3+=1) 2023-01-11T21:41:26.7556210Z { 2023-01-11T21:41:26.7556346Z { 2023-01-11T21:41:26.7556475Z { 2023-01-11T21:41:26.7556675Z auto tmp0 = in_ptr0[(100347 + i3 + (16*i2) + (896*i1) + (50176*i0)) % 100352]; 2023-01-11T21:41:26.7556856Z out_ptr1[i3 + (16*i2) + (896*i1) + (50176*i0)] = tmp0; 2023-01-11T21:41:26.7557064Z } 2023-01-11T21:41:26.7557192Z } 2023-01-11T21:41:26.7557312Z } 2023-01-11T21:41:26.7557430Z } 2023-01-11T21:41:26.7557545Z } 2023-01-11T21:41:26.7557640Z } 2023-01-11T21:41:26.7557755Z } 2023-01-11T21:41:26.7557871Z } 2023-01-11T21:41:26.7558039Z ''') 2023-01-11T21:41:26.7558053Z 2023-01-11T21:41:26.7558059Z 2023-01-11T21:41:26.7558224Z async_compile.wait(globals()) 2023-01-11T21:41:26.7558349Z del async_compile 2023-01-11T21:41:26.7558362Z 2023-01-11T21:41:26.7558490Z def call(args): 2023-01-11T21:41:26.7558598Z arg0_1, = args 2023-01-11T21:41:26.7558733Z args.clear() 2023-01-11T21:41:26.7559129Z buf0 = empty_strided((2, 56, 56, 16), (50176, 896, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7559513Z buf1 = empty_strided((2, 56, 56, 16), (50176, 896, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7559802Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7559933Z del arg0_1 2023-01-11T21:41:26.7560071Z return (buf0, buf1, ) 2023-01-11T21:41:26.7560085Z 2023-01-11T21:41:26.7560091Z 2023-01-11T21:41:26.7560235Z if __name__ == "__main__": 2023-01-11T21:41:26.7560421Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7560645Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7561043Z arg0_1 = rand_strided((2, 56, 56, 16), (50176, 896, 16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7561242Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7561251Z 2023-01-11T21:41:26.7561377Z ok (1.920s) 2023-01-11T21:41:26.7562177Z test_round_correctness_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7562407Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7562871Z [2023-01-11 21:37:24,234] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 406 2023-01-11T21:41:26.7563326Z [2023-01-11 21:37:25,760] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 406 2023-01-11T21:41:26.7563339Z 2023-01-11T21:41:26.7563512Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7563627Z import torch 2023-01-11T21:41:26.7563760Z import random 2023-01-11T21:41:26.7563957Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7564173Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7564181Z 2023-01-11T21:41:26.7564325Z aten = torch.ops.aten 2023-01-11T21:41:26.7564562Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7564713Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7564727Z 2023-01-11T21:41:26.7564733Z 2023-01-11T21:41:26.7565070Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7565415Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7565621Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.7565805Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.7565916Z { 2023-01-11T21:41:26.7566099Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7566222Z { 2023-01-11T21:41:26.7566348Z #pragma omp for 2023-01-11T21:41:26.7566498Z for(long i0=0; i0<200; i0+=1) 2023-01-11T21:41:26.7566627Z { 2023-01-11T21:41:26.7566746Z { 2023-01-11T21:41:26.7566878Z { 2023-01-11T21:41:26.7567049Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7567243Z auto tmp1 = std::nearbyint(tmp0); 2023-01-11T21:41:26.7567444Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.7567579Z } 2023-01-11T21:41:26.7567700Z } 2023-01-11T21:41:26.7567820Z } 2023-01-11T21:41:26.7567942Z } 2023-01-11T21:41:26.7568048Z } 2023-01-11T21:41:26.7568206Z ''') 2023-01-11T21:41:26.7568220Z 2023-01-11T21:41:26.7568226Z 2023-01-11T21:41:26.7568370Z async_compile.wait(globals()) 2023-01-11T21:41:26.7568509Z del async_compile 2023-01-11T21:41:26.7568520Z 2023-01-11T21:41:26.7568651Z def call(args): 2023-01-11T21:41:26.7568782Z arg0_1, = args 2023-01-11T21:41:26.7568900Z args.clear() 2023-01-11T21:41:26.7569483Z buf0 = empty_strided((200, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.7569715Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7569815Z del arg0_1 2023-01-11T21:41:26.7569953Z return (buf0, ) 2023-01-11T21:41:26.7569962Z 2023-01-11T21:41:26.7569970Z 2023-01-11T21:41:26.7570124Z if __name__ == "__main__": 2023-01-11T21:41:26.7570331Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7570545Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7570913Z arg0_1 = rand_strided((200, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.7571106Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7571115Z 2023-01-11T21:41:26.7571243Z ok (1.546s) 2023-01-11T21:41:26.7571998Z test_round_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7572212Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7572648Z [2023-01-11 21:37:25,791] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 407 2023-01-11T21:41:26.7573105Z [2023-01-11 21:37:27,309] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 407 2023-01-11T21:41:26.7573121Z 2023-01-11T21:41:26.7573291Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7573421Z import torch 2023-01-11T21:41:26.7573568Z import random 2023-01-11T21:41:26.7573767Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7573973Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7573984Z 2023-01-11T21:41:26.7574129Z aten = torch.ops.aten 2023-01-11T21:41:26.7574339Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7574509Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7574519Z 2023-01-11T21:41:26.7574527Z 2023-01-11T21:41:26.7574758Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7575105Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7575313Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7575661Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7575835Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7576009Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7576163Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.7576270Z { 2023-01-11T21:41:26.7576454Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7576569Z { 2023-01-11T21:41:26.7576709Z #pragma omp for 2023-01-11T21:41:26.7576859Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7576959Z { 2023-01-11T21:41:26.7577191Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7577349Z auto tmp1 = tmp0.round(); 2023-01-11T21:41:26.7577595Z auto tmp2 = at::vec::Vectorized(static_cast(100.0)); 2023-01-11T21:41:26.7577836Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:41:26.7577995Z auto tmp4 = tmp3.round(); 2023-01-11T21:41:26.7578236Z auto tmp5 = at::vec::Vectorized(static_cast(0.01)); 2023-01-11T21:41:26.7578397Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.7578542Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7578699Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7578813Z } 2023-01-11T21:41:26.7578987Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7579146Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7579265Z { 2023-01-11T21:41:26.7579423Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7579582Z auto tmp1 = std::nearbyint(tmp0); 2023-01-11T21:41:26.7579763Z auto tmp2 = static_cast(100.0); 2023-01-11T21:41:26.7579921Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:41:26.7580111Z auto tmp4 = std::nearbyint(tmp3); 2023-01-11T21:41:26.7580301Z auto tmp5 = static_cast(0.01); 2023-01-11T21:41:26.7580458Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.7580611Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.7580740Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.7580863Z } 2023-01-11T21:41:26.7581010Z #pragma omp for 2023-01-11T21:41:26.7581151Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7581277Z { 2023-01-11T21:41:26.7581520Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7581749Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7581883Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7582029Z auto tmp3 = tmp2.round(); 2023-01-11T21:41:26.7582187Z tmp3.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.7582308Z } 2023-01-11T21:41:26.7582485Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7582643Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7582760Z { 2023-01-11T21:41:26.7582897Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.7583079Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7583344Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7583536Z auto tmp3 = std::nearbyint(tmp2); 2023-01-11T21:41:26.7583678Z out_ptr2[i0] = tmp3; 2023-01-11T21:41:26.7583794Z } 2023-01-11T21:41:26.7583920Z } 2023-01-11T21:41:26.7584010Z } 2023-01-11T21:41:26.7584192Z ''') 2023-01-11T21:41:26.7584205Z 2023-01-11T21:41:26.7584213Z 2023-01-11T21:41:26.7584382Z async_compile.wait(globals()) 2023-01-11T21:41:26.7584504Z del async_compile 2023-01-11T21:41:26.7584515Z 2023-01-11T21:41:26.7584648Z def call(args): 2023-01-11T21:41:26.7584790Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7584926Z args.clear() 2023-01-11T21:41:26.7585266Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7585603Z buf2 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7585934Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7586390Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7586530Z del arg0_1 2023-01-11T21:41:26.7586658Z del arg1_1 2023-01-11T21:41:26.7586818Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.7586827Z 2023-01-11T21:41:26.7586833Z 2023-01-11T21:41:26.7586964Z if __name__ == "__main__": 2023-01-11T21:41:26.7587146Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7587362Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7587711Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7588048Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7588321Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7588333Z 2023-01-11T21:41:26.7588464Z ok (1.549s) 2023-01-11T21:41:26.7589233Z test_rsqrt_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7589451Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7589918Z [2023-01-11 21:37:27,331] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 408 2023-01-11T21:41:26.7590388Z [2023-01-11 21:37:28,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 408 2023-01-11T21:41:26.7590403Z 2023-01-11T21:41:26.7590553Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7590687Z import torch 2023-01-11T21:41:26.7590820Z import random 2023-01-11T21:41:26.7591025Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7591250Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7591260Z 2023-01-11T21:41:26.7591404Z aten = torch.ops.aten 2023-01-11T21:41:26.7591637Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7591776Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7591804Z 2023-01-11T21:41:26.7591810Z 2023-01-11T21:41:26.7592030Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7592373Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7592573Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7592756Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7592948Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7593069Z { 2023-01-11T21:41:26.7593250Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7593340Z { 2023-01-11T21:41:26.7593485Z #pragma omp for 2023-01-11T21:41:26.7593631Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7593751Z { 2023-01-11T21:41:26.7593990Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7594148Z auto tmp1 = tmp0.rsqrt(); 2023-01-11T21:41:26.7594366Z auto tmp2 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7594501Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.7594653Z auto tmp4 = tmp3.rsqrt(); 2023-01-11T21:41:26.7594892Z auto tmp5 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.7595113Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:41:26.7595292Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7595456Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7595574Z } 2023-01-11T21:41:26.7595738Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7595885Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7596112Z { 2023-01-11T21:41:26.7596271Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7596445Z auto tmp1 = 1 / std::sqrt(tmp0); 2023-01-11T21:41:26.7596617Z auto tmp2 = static_cast(1); 2023-01-11T21:41:26.7596763Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.7596923Z auto tmp4 = 1 / std::sqrt(tmp3); 2023-01-11T21:41:26.7597109Z auto tmp5 = static_cast(2); 2023-01-11T21:41:26.7597342Z auto tmp6 = tmp4 - tmp5; 2023-01-11T21:41:26.7597487Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.7597627Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.7597749Z } 2023-01-11T21:41:26.7597869Z } 2023-01-11T21:41:26.7597965Z } 2023-01-11T21:41:26.7598117Z ''') 2023-01-11T21:41:26.7598127Z 2023-01-11T21:41:26.7598134Z 2023-01-11T21:41:26.7598356Z async_compile.wait(globals()) 2023-01-11T21:41:26.7598505Z del async_compile 2023-01-11T21:41:26.7598514Z 2023-01-11T21:41:26.7598652Z def call(args): 2023-01-11T21:41:26.7598785Z arg0_1, = args 2023-01-11T21:41:26.7598915Z args.clear() 2023-01-11T21:41:26.7599257Z buf0 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7599588Z buf1 = empty_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7599861Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7599985Z del arg0_1 2023-01-11T21:41:26.7600118Z return (buf0, buf1, ) 2023-01-11T21:41:26.7600126Z 2023-01-11T21:41:26.7600131Z 2023-01-11T21:41:26.7600269Z if __name__ == "__main__": 2023-01-11T21:41:26.7600477Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7600694Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7601032Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7601231Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7601247Z 2023-01-11T21:41:26.7601372Z ok (1.560s) 2023-01-11T21:41:26.7602150Z test_scatter1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7602369Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7602830Z [2023-01-11 21:37:28,892] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 409 2023-01-11T21:41:26.7603292Z [2023-01-11 21:37:30,515] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 409 2023-01-11T21:41:26.7603306Z 2023-01-11T21:41:26.7603477Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7603607Z import torch 2023-01-11T21:41:26.7603748Z import random 2023-01-11T21:41:26.7603932Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7604131Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7604144Z 2023-01-11T21:41:26.7604282Z aten = torch.ops.aten 2023-01-11T21:41:26.7604519Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7604680Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7604689Z 2023-01-11T21:41:26.7604697Z 2023-01-11T21:41:26.7604937Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7605281Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7605496Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7605656Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7605844Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7606025Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7606239Z { 2023-01-11T21:41:26.7606421Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7606527Z { 2023-01-11T21:41:26.7606675Z #pragma omp for 2023-01-11T21:41:26.7606806Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.7606930Z { 2023-01-11T21:41:26.7607051Z { 2023-01-11T21:41:26.7607173Z { 2023-01-11T21:41:26.7607331Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7607488Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7607597Z } 2023-01-11T21:41:26.7607716Z } 2023-01-11T21:41:26.7607839Z } 2023-01-11T21:41:26.7607992Z #pragma omp single 2023-01-11T21:41:26.7608106Z { 2023-01-11T21:41:26.7608215Z { 2023-01-11T21:41:26.7608337Z { 2023-01-11T21:41:26.7608559Z auto tmp0 = in_ptr1[0]; 2023-01-11T21:41:26.7608730Z auto tmp1 = in_ptr2[0]; 2023-01-11T21:41:26.7608892Z out_ptr0[tmp0] = tmp1; 2023-01-11T21:41:26.7609129Z } 2023-01-11T21:41:26.7609231Z } 2023-01-11T21:41:26.7609350Z } 2023-01-11T21:41:26.7609467Z } 2023-01-11T21:41:26.7609562Z } 2023-01-11T21:41:26.7609735Z ''') 2023-01-11T21:41:26.7609747Z 2023-01-11T21:41:26.7609752Z 2023-01-11T21:41:26.7609915Z async_compile.wait(globals()) 2023-01-11T21:41:26.7610056Z del async_compile 2023-01-11T21:41:26.7610064Z 2023-01-11T21:41:26.7610196Z def call(args): 2023-01-11T21:41:26.7610357Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7610490Z args.clear() 2023-01-11T21:41:26.7610813Z buf0 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7611138Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7611269Z del arg0_1 2023-01-11T21:41:26.7611405Z del arg1_1 2023-01-11T21:41:26.7611537Z del arg2_1 2023-01-11T21:41:26.7611664Z return (buf0, ) 2023-01-11T21:41:26.7611677Z 2023-01-11T21:41:26.7611683Z 2023-01-11T21:41:26.7611824Z if __name__ == "__main__": 2023-01-11T21:41:26.7612025Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7612228Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7612574Z arg0_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7612918Z arg1_1 = rand_strided((1, 1), (1, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7613240Z arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7613453Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7613467Z 2023-01-11T21:41:26.7613594Z ok (1.674s) 2023-01-11T21:41:26.7614368Z test_scatter2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7614595Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7615041Z [2023-01-11 21:37:30,578] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 410 2023-01-11T21:41:26.7615483Z [2023-01-11 21:37:32,133] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 410 2023-01-11T21:41:26.7615513Z 2023-01-11T21:41:26.7615649Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7615776Z import torch 2023-01-11T21:41:26.7615910Z import random 2023-01-11T21:41:26.7616125Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7616345Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7616354Z 2023-01-11T21:41:26.7616486Z aten = torch.ops.aten 2023-01-11T21:41:26.7616855Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7617003Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7617012Z 2023-01-11T21:41:26.7617018Z 2023-01-11T21:41:26.7617266Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7617606Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7617815Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7618011Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7618189Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7618363Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7618479Z { 2023-01-11T21:41:26.7618635Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7618759Z { 2023-01-11T21:41:26.7618980Z #pragma omp for 2023-01-11T21:41:26.7619149Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:41:26.7619277Z { 2023-01-11T21:41:26.7619525Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7619692Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7619785Z } 2023-01-11T21:41:26.7619958Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7620117Z for(long i0=32768; i0<32768; i0+=1) 2023-01-11T21:41:26.7620242Z { 2023-01-11T21:41:26.7620403Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7620551Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7620647Z } 2023-01-11T21:41:26.7620794Z #pragma omp for 2023-01-11T21:41:26.7620947Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.7621070Z { 2023-01-11T21:41:26.7621225Z #pragma GCC ivdep 2023-01-11T21:41:26.7621371Z for(long i1=0; i1<512; i1+=1) 2023-01-11T21:41:26.7621495Z { 2023-01-11T21:41:26.7621606Z { 2023-01-11T21:41:26.7621743Z { 2023-01-11T21:41:26.7621929Z auto tmp0 = in_ptr1[i1 + (512*i0)]; 2023-01-11T21:41:26.7622121Z auto tmp1 = in_ptr2[i1 + (512*i0)]; 2023-01-11T21:41:26.7622320Z atomic_add(&out_ptr0[i1 + (512*tmp0)], tmp1); 2023-01-11T21:41:26.7622452Z } 2023-01-11T21:41:26.7622583Z } 2023-01-11T21:41:26.7622681Z } 2023-01-11T21:41:26.7622801Z } 2023-01-11T21:41:26.7622918Z } 2023-01-11T21:41:26.7623026Z } 2023-01-11T21:41:26.7623269Z ''') 2023-01-11T21:41:26.7623281Z 2023-01-11T21:41:26.7623287Z 2023-01-11T21:41:26.7623457Z async_compile.wait(globals()) 2023-01-11T21:41:26.7623596Z del async_compile 2023-01-11T21:41:26.7623609Z 2023-01-11T21:41:26.7623717Z def call(args): 2023-01-11T21:41:26.7623872Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7624004Z args.clear() 2023-01-11T21:41:26.7624388Z buf0 = empty_strided((64, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7624715Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7624854Z del arg0_1 2023-01-11T21:41:26.7624982Z del arg1_1 2023-01-11T21:41:26.7625087Z del arg2_1 2023-01-11T21:41:26.7625222Z return (buf0, ) 2023-01-11T21:41:26.7625232Z 2023-01-11T21:41:26.7625239Z 2023-01-11T21:41:26.7625380Z if __name__ == "__main__": 2023-01-11T21:41:26.7625567Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7625789Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7626143Z arg0_1 = rand_strided((64, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7626493Z arg1_1 = rand_strided((64, 512), (512, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7626842Z arg2_1 = rand_strided((64, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7627040Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7627168Z 2023-01-11T21:41:26.7627272Z ok (1.592s) 2023-01-11T21:41:26.7628040Z test_scatter3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7628260Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7628722Z [2023-01-11 21:37:32,159] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 411 2023-01-11T21:41:26.7629187Z [2023-01-11 21:37:33,683] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 411 2023-01-11T21:41:26.7629200Z 2023-01-11T21:41:26.7629434Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7629568Z import torch 2023-01-11T21:41:26.7629692Z import random 2023-01-11T21:41:26.7629883Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7630097Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7630106Z 2023-01-11T21:41:26.7630253Z aten = torch.ops.aten 2023-01-11T21:41:26.7630476Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7630651Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7630665Z 2023-01-11T21:41:26.7630672Z 2023-01-11T21:41:26.7630910Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7631241Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7631450Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7631641Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7631801Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7631914Z { 2023-01-11T21:41:26.7632085Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7632207Z { 2023-01-11T21:41:26.7632352Z #pragma omp for 2023-01-11T21:41:26.7632507Z for(long i0=0; i0<235; i0+=1) 2023-01-11T21:41:26.7632604Z { 2023-01-11T21:41:26.7632839Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7632983Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7633101Z } 2023-01-11T21:41:26.7633289Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7633441Z for(long i0=1880; i0<1885; i0+=1) 2023-01-11T21:41:26.7633557Z { 2023-01-11T21:41:26.7633688Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7633818Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7633933Z } 2023-01-11T21:41:26.7634083Z #pragma omp for 2023-01-11T21:41:26.7634238Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7634357Z { 2023-01-11T21:41:26.7634476Z { 2023-01-11T21:41:26.7634569Z { 2023-01-11T21:41:26.7634733Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.7634935Z auto tmp1 = static_cast(0.8); 2023-01-11T21:41:26.7635115Z atomic_add(&out_ptr0[tmp0], tmp1); 2023-01-11T21:41:26.7635244Z } 2023-01-11T21:41:26.7635356Z } 2023-01-11T21:41:26.7635459Z } 2023-01-11T21:41:26.7635553Z } 2023-01-11T21:41:26.7635669Z } 2023-01-11T21:41:26.7635827Z ''') 2023-01-11T21:41:26.7635840Z 2023-01-11T21:41:26.7635845Z 2023-01-11T21:41:26.7636011Z async_compile.wait(globals()) 2023-01-11T21:41:26.7636146Z del async_compile 2023-01-11T21:41:26.7636154Z 2023-01-11T21:41:26.7636273Z def call(args): 2023-01-11T21:41:26.7636421Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7636535Z args.clear() 2023-01-11T21:41:26.7636924Z buf0 = empty_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7637203Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7637434Z del arg0_1 2023-01-11T21:41:26.7637557Z del arg1_1 2023-01-11T21:41:26.7637695Z return (buf0, ) 2023-01-11T21:41:26.7637703Z 2023-01-11T21:41:26.7637709Z 2023-01-11T21:41:26.7637851Z if __name__ == "__main__": 2023-01-11T21:41:26.7638048Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7638247Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7638624Z arg0_1 = rand_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7638972Z arg1_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7639179Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7639188Z 2023-01-11T21:41:26.7639317Z ok (1.547s) 2023-01-11T21:41:26.7640155Z test_scatter4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7640387Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7640856Z [2023-01-11 21:37:33,702] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 412 2023-01-11T21:41:26.7641315Z [2023-01-11 21:37:35,255] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 412 2023-01-11T21:41:26.7641325Z 2023-01-11T21:41:26.7641503Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7641616Z import torch 2023-01-11T21:41:26.7641757Z import random 2023-01-11T21:41:26.7641951Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7642171Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7642181Z 2023-01-11T21:41:26.7642320Z aten = torch.ops.aten 2023-01-11T21:41:26.7642556Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7642720Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7642728Z 2023-01-11T21:41:26.7642734Z 2023-01-11T21:41:26.7642962Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7643303Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7643515Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7643686Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7643868Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7644050Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7644159Z { 2023-01-11T21:41:26.7644336Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7644426Z { 2023-01-11T21:41:26.7644578Z #pragma omp for 2023-01-11T21:41:26.7644732Z for(long i0=0; i0<24304; i0+=1) 2023-01-11T21:41:26.7644859Z { 2023-01-11T21:41:26.7645095Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7645249Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7645365Z } 2023-01-11T21:41:26.7645522Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7645686Z for(long i0=194432; i0<194432; i0+=1) 2023-01-11T21:41:26.7645802Z { 2023-01-11T21:41:26.7645963Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7646098Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7646218Z } 2023-01-11T21:41:26.7646340Z #pragma omp for 2023-01-11T21:41:26.7646494Z for(long i0=0; i0<992; i0+=1) 2023-01-11T21:41:26.7646612Z { 2023-01-11T21:41:26.7646739Z { 2023-01-11T21:41:26.7646858Z { 2023-01-11T21:41:26.7647024Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.7647192Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:41:26.7647347Z out_ptr0[i0 + (992*tmp0)] = tmp1; 2023-01-11T21:41:26.7647598Z } 2023-01-11T21:41:26.7647714Z } 2023-01-11T21:41:26.7647834Z } 2023-01-11T21:41:26.7647949Z } 2023-01-11T21:41:26.7648066Z } 2023-01-11T21:41:26.7648218Z ''') 2023-01-11T21:41:26.7648246Z 2023-01-11T21:41:26.7648253Z 2023-01-11T21:41:26.7648391Z async_compile.wait(globals()) 2023-01-11T21:41:26.7648518Z del async_compile 2023-01-11T21:41:26.7648529Z 2023-01-11T21:41:26.7648653Z def call(args): 2023-01-11T21:41:26.7648806Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7648933Z args.clear() 2023-01-11T21:41:26.7649435Z buf0 = empty_strided((196, 992), (992, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7649763Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7649989Z del arg0_1 2023-01-11T21:41:26.7650122Z del arg1_1 2023-01-11T21:41:26.7650244Z del arg2_1 2023-01-11T21:41:26.7650376Z return (buf0, ) 2023-01-11T21:41:26.7650385Z 2023-01-11T21:41:26.7650391Z 2023-01-11T21:41:26.7650535Z if __name__ == "__main__": 2023-01-11T21:41:26.7650749Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7650965Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7651324Z arg0_1 = rand_strided((196, 992), (992, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7651654Z arg1_1 = rand_strided((1, 992), (992, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7651999Z arg2_1 = rand_strided((1, 992), (992, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7652215Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7652224Z 2023-01-11T21:41:26.7652350Z ok (1.575s) 2023-01-11T21:41:26.7652620Z test_scatter_add1_cpu (__main__.CpuTests) ... skip: Flaky test, needs debugging (0.001s) 2023-01-11T21:41:26.7653393Z test_scatter_add2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7653600Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7654053Z [2023-01-11 21:37:35,283] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 413 2023-01-11T21:41:26.7654522Z [2023-01-11 21:37:36,856] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 413 2023-01-11T21:41:26.7654533Z 2023-01-11T21:41:26.7654711Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7654823Z import torch 2023-01-11T21:41:26.7654952Z import random 2023-01-11T21:41:26.7655140Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7655362Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7655377Z 2023-01-11T21:41:26.7655528Z aten = torch.ops.aten 2023-01-11T21:41:26.7655759Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7655922Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7655931Z 2023-01-11T21:41:26.7655936Z 2023-01-11T21:41:26.7656188Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7656512Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7656715Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7656910Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7657141Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7657320Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7657443Z { 2023-01-11T21:41:26.7657617Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7657715Z { 2023-01-11T21:41:26.7657984Z #pragma omp for 2023-01-11T21:41:26.7658142Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.7658261Z { 2023-01-11T21:41:26.7658377Z { 2023-01-11T21:41:26.7658500Z { 2023-01-11T21:41:26.7658694Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7658852Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7658975Z } 2023-01-11T21:41:26.7659101Z } 2023-01-11T21:41:26.7659220Z } 2023-01-11T21:41:26.7659349Z #pragma omp for 2023-01-11T21:41:26.7659503Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7659602Z { 2023-01-11T21:41:26.7659750Z #pragma GCC ivdep 2023-01-11T21:41:26.7659901Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.7660029Z { 2023-01-11T21:41:26.7660145Z { 2023-01-11T21:41:26.7660348Z { 2023-01-11T21:41:26.7660541Z auto tmp0 = in_ptr1[i1 + (3*i0)]; 2023-01-11T21:41:26.7660704Z auto tmp1 = in_ptr2[i1 + (3*i0)]; 2023-01-11T21:41:26.7660899Z atomic_add(&out_ptr0[i1 + (3*tmp0)], tmp1); 2023-01-11T21:41:26.7661025Z } 2023-01-11T21:41:26.7661155Z } 2023-01-11T21:41:26.7661279Z } 2023-01-11T21:41:26.7661399Z } 2023-01-11T21:41:26.7661516Z } 2023-01-11T21:41:26.7661611Z } 2023-01-11T21:41:26.7661776Z ''') 2023-01-11T21:41:26.7661787Z 2023-01-11T21:41:26.7661793Z 2023-01-11T21:41:26.7661961Z async_compile.wait(globals()) 2023-01-11T21:41:26.7662095Z del async_compile 2023-01-11T21:41:26.7662103Z 2023-01-11T21:41:26.7662237Z def call(args): 2023-01-11T21:41:26.7662391Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7662514Z args.clear() 2023-01-11T21:41:26.7662844Z buf0 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7663255Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7663391Z del arg0_1 2023-01-11T21:41:26.7663512Z del arg1_1 2023-01-11T21:41:26.7663640Z del arg2_1 2023-01-11T21:41:26.7663775Z return (buf0, ) 2023-01-11T21:41:26.7663784Z 2023-01-11T21:41:26.7663791Z 2023-01-11T21:41:26.7663941Z if __name__ == "__main__": 2023-01-11T21:41:26.7664145Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7664333Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7664680Z arg0_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7665008Z arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7665351Z arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7665570Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7665580Z 2023-01-11T21:41:26.7665701Z ok (1.597s) 2023-01-11T21:41:26.7666479Z test_scatter_add3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7666697Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7667160Z [2023-01-11 21:37:36,878] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 414 2023-01-11T21:41:26.7667599Z [2023-01-11 21:37:38,581] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 414 2023-01-11T21:41:26.7667629Z 2023-01-11T21:41:26.7667775Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7667913Z import torch 2023-01-11T21:41:26.7668050Z import random 2023-01-11T21:41:26.7668245Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7668555Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7668563Z 2023-01-11T21:41:26.7668704Z aten = torch.ops.aten 2023-01-11T21:41:26.7668943Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7669078Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7669089Z 2023-01-11T21:41:26.7669096Z 2023-01-11T21:41:26.7669349Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7669692Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7669899Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7670080Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7670263Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7670503Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7670617Z { 2023-01-11T21:41:26.7670775Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7670893Z { 2023-01-11T21:41:26.7671040Z #pragma omp for 2023-01-11T21:41:26.7671183Z for(long i0=0; i0<235; i0+=1) 2023-01-11T21:41:26.7671303Z { 2023-01-11T21:41:26.7682716Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7682986Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7683087Z } 2023-01-11T21:41:26.7683256Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7683411Z for(long i0=1880; i0<1885; i0+=1) 2023-01-11T21:41:26.7683517Z { 2023-01-11T21:41:26.7683651Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7683791Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7683892Z } 2023-01-11T21:41:26.7684023Z #pragma omp for 2023-01-11T21:41:26.7684164Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7684288Z { 2023-01-11T21:41:26.7684405Z { 2023-01-11T21:41:26.7684517Z { 2023-01-11T21:41:26.7684693Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.7684835Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:41:26.7685016Z atomic_add(&out_ptr0[tmp0], tmp1); 2023-01-11T21:41:26.7685135Z } 2023-01-11T21:41:26.7685243Z } 2023-01-11T21:41:26.7685358Z } 2023-01-11T21:41:26.7685464Z } 2023-01-11T21:41:26.7685575Z } 2023-01-11T21:41:26.7685749Z ''') 2023-01-11T21:41:26.7685757Z 2023-01-11T21:41:26.7685766Z 2023-01-11T21:41:26.7685930Z async_compile.wait(globals()) 2023-01-11T21:41:26.7686057Z del async_compile 2023-01-11T21:41:26.7686064Z 2023-01-11T21:41:26.7686188Z def call(args): 2023-01-11T21:41:26.7686337Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7686472Z args.clear() 2023-01-11T21:41:26.7686857Z buf0 = empty_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7687153Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7687284Z del arg0_1 2023-01-11T21:41:26.7687409Z del arg1_1 2023-01-11T21:41:26.7687535Z del arg2_1 2023-01-11T21:41:26.7687662Z return (buf0, ) 2023-01-11T21:41:26.7687670Z 2023-01-11T21:41:26.7687675Z 2023-01-11T21:41:26.7687812Z if __name__ == "__main__": 2023-01-11T21:41:26.7688020Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7688247Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7688596Z arg0_1 = rand_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7688947Z arg1_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7689474Z arg2_1 = rand_strided((1, 1, 10), (10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7689699Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7689708Z 2023-01-11T21:41:26.7689830Z ok (1.725s) 2023-01-11T21:41:26.7690775Z test_scatter_reduce1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7691002Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7691360Z [W TensorAdvancedIndexing.cpp:1739] Warning: scatter_reduce() is in beta and the API may change at any time. (function operator()) 2023-01-11T21:41:26.7691822Z [2023-01-11 21:37:38,604] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 415 2023-01-11T21:41:26.7692384Z [2023-01-11 21:37:38,615] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 415 2023-01-11T21:41:26.7692398Z 2023-01-11T21:41:26.7692549Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7692678Z import torch 2023-01-11T21:41:26.7692814Z import random 2023-01-11T21:41:26.7693019Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7693228Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7693238Z 2023-01-11T21:41:26.7693378Z aten = torch.ops.aten 2023-01-11T21:41:26.7693602Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7693750Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7693777Z 2023-01-11T21:41:26.7693784Z 2023-01-11T21:41:26.7694016Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7694357Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7694568Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7694759Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7694943Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7695124Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7695236Z { 2023-01-11T21:41:26.7695393Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7695504Z { 2023-01-11T21:41:26.7695651Z #pragma omp for 2023-01-11T21:41:26.7695796Z for(long i0=0; i0<235; i0+=1) 2023-01-11T21:41:26.7695910Z { 2023-01-11T21:41:26.7696155Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7696319Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7696417Z } 2023-01-11T21:41:26.7696577Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7696730Z for(long i0=1880; i0<1885; i0+=1) 2023-01-11T21:41:26.7696850Z { 2023-01-11T21:41:26.7697008Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7697158Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7697274Z } 2023-01-11T21:41:26.7697388Z #pragma omp for 2023-01-11T21:41:26.7697531Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7697656Z { 2023-01-11T21:41:26.7697779Z { 2023-01-11T21:41:26.7697899Z { 2023-01-11T21:41:26.7698057Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.7698195Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:41:26.7698379Z atomic_add(&out_ptr0[tmp0], tmp1); 2023-01-11T21:41:26.7698496Z } 2023-01-11T21:41:26.7698616Z } 2023-01-11T21:41:26.7698722Z } 2023-01-11T21:41:26.7698839Z } 2023-01-11T21:41:26.7698946Z } 2023-01-11T21:41:26.7699088Z ''') 2023-01-11T21:41:26.7699097Z 2023-01-11T21:41:26.7699123Z 2023-01-11T21:41:26.7699267Z async_compile.wait(globals()) 2023-01-11T21:41:26.7699405Z del async_compile 2023-01-11T21:41:26.7699412Z 2023-01-11T21:41:26.7699544Z def call(args): 2023-01-11T21:41:26.7699696Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7699827Z args.clear() 2023-01-11T21:41:26.7700205Z buf0 = empty_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7700619Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7700733Z del arg0_1 2023-01-11T21:41:26.7700854Z del arg1_1 2023-01-11T21:41:26.7700980Z del arg2_1 2023-01-11T21:41:26.7701106Z return (buf0, ) 2023-01-11T21:41:26.7701114Z 2023-01-11T21:41:26.7701120Z 2023-01-11T21:41:26.7701250Z if __name__ == "__main__": 2023-01-11T21:41:26.7701443Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7701656Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7702018Z arg0_1 = rand_strided((5, 29, 13), (377, 13, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7702446Z arg1_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7702822Z arg2_1 = rand_strided((1, 1, 10), (10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7703033Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7703042Z 2023-01-11T21:41:26.7703258Z ok (0.033s) 2023-01-11T21:41:26.7704058Z test_scatter_reduce2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7704281Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7704734Z [2023-01-11 21:37:38,636] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 416 2023-01-11T21:41:26.7705219Z [2023-01-11 21:37:40,334] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 416 2023-01-11T21:41:26.7705232Z 2023-01-11T21:41:26.7705410Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7705513Z import torch 2023-01-11T21:41:26.7705644Z import random 2023-01-11T21:41:26.7705855Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7706071Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7706081Z 2023-01-11T21:41:26.7706217Z aten = torch.ops.aten 2023-01-11T21:41:26.7706451Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7706622Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7706631Z 2023-01-11T21:41:26.7706637Z 2023-01-11T21:41:26.7706882Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7707197Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7707401Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7707591Z const long* __restrict__ in_ptr1, 2023-01-11T21:41:26.7707777Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7707957Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7708069Z { 2023-01-11T21:41:26.7708246Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7708343Z { 2023-01-11T21:41:26.7708488Z #pragma omp for 2023-01-11T21:41:26.7708632Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.7708753Z { 2023-01-11T21:41:26.7708900Z { 2023-01-11T21:41:26.7709018Z { 2023-01-11T21:41:26.7709178Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7709317Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7709437Z } 2023-01-11T21:41:26.7709547Z } 2023-01-11T21:41:26.7709662Z } 2023-01-11T21:41:26.7709808Z #pragma omp for 2023-01-11T21:41:26.7709953Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7710049Z { 2023-01-11T21:41:26.7710200Z #pragma GCC ivdep 2023-01-11T21:41:26.7710339Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.7710576Z { 2023-01-11T21:41:26.7710690Z { 2023-01-11T21:41:26.7710814Z { 2023-01-11T21:41:26.7710988Z auto tmp0 = in_ptr1[i1 + (3*i0)]; 2023-01-11T21:41:26.7711148Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.7711321Z out_ptr0[i1 + (3*tmp0)] = tmp1; 2023-01-11T21:41:26.7711448Z } 2023-01-11T21:41:26.7711564Z } 2023-01-11T21:41:26.7711682Z } 2023-01-11T21:41:26.7711797Z } 2023-01-11T21:41:26.7711928Z #pragma omp for 2023-01-11T21:41:26.7712061Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7712174Z { 2023-01-11T21:41:26.7712323Z #pragma GCC ivdep 2023-01-11T21:41:26.7712538Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.7712658Z { 2023-01-11T21:41:26.7712774Z { 2023-01-11T21:41:26.7712894Z { 2023-01-11T21:41:26.7713060Z auto tmp0 = in_ptr1[i1 + (3*i0)]; 2023-01-11T21:41:26.7713234Z auto tmp1 = in_ptr2[i1 + (3*i0)]; 2023-01-11T21:41:26.7713434Z atomic_add(&out_ptr0[i1 + (3*tmp0)], tmp1); 2023-01-11T21:41:26.7713548Z } 2023-01-11T21:41:26.7713663Z } 2023-01-11T21:41:26.7713785Z } 2023-01-11T21:41:26.7713906Z } 2023-01-11T21:41:26.7713998Z } 2023-01-11T21:41:26.7714110Z } 2023-01-11T21:41:26.7714283Z ''') 2023-01-11T21:41:26.7714297Z 2023-01-11T21:41:26.7714302Z 2023-01-11T21:41:26.7714461Z async_compile.wait(globals()) 2023-01-11T21:41:26.7714596Z del async_compile 2023-01-11T21:41:26.7714606Z 2023-01-11T21:41:26.7714730Z def call(args): 2023-01-11T21:41:26.7714880Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7714994Z args.clear() 2023-01-11T21:41:26.7715339Z buf0 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7715675Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7715800Z del arg0_1 2023-01-11T21:41:26.7715923Z del arg1_1 2023-01-11T21:41:26.7716041Z del arg2_1 2023-01-11T21:41:26.7716170Z return (buf0, ) 2023-01-11T21:41:26.7716183Z 2023-01-11T21:41:26.7716189Z 2023-01-11T21:41:26.7716315Z if __name__ == "__main__": 2023-01-11T21:41:26.7716513Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7716722Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7717079Z arg0_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7717425Z arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7717764Z arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7717982Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7717998Z 2023-01-11T21:41:26.7718116Z ok (1.719s) 2023-01-11T21:41:26.7718918Z test_scheduler_vertical_fusion1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7719127Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7719571Z [2023-01-11 21:37:40,421] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 417 2023-01-11T21:41:26.7720026Z [2023-01-11 21:37:42,014] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 417 2023-01-11T21:41:26.7720036Z 2023-01-11T21:41:26.7720219Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7720353Z import torch 2023-01-11T21:41:26.7720586Z import random 2023-01-11T21:41:26.7720773Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7720992Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7721002Z 2023-01-11T21:41:26.7721139Z aten = torch.ops.aten 2023-01-11T21:41:26.7721360Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7721505Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7721513Z 2023-01-11T21:41:26.7721523Z 2023-01-11T21:41:26.7721775Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7722132Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7722328Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.7722514Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.7722807Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7723005Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7723174Z const float* __restrict__ in_ptr2) 2023-01-11T21:41:26.7723286Z { 2023-01-11T21:41:26.7723441Z auto out_ptr1 = in_out_ptr1; 2023-01-11T21:41:26.7723621Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7723728Z { 2023-01-11T21:41:26.7723867Z #pragma omp for 2023-01-11T21:41:26.7724002Z for(long i0=0; i0<135252; i0+=1) 2023-01-11T21:41:26.7724117Z { 2023-01-11T21:41:26.7724357Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7724595Z auto tmp8 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7725006Z auto tmp1 = at::vec::Vectorized(static_cast(-1.061519070296458e-11)); 2023-01-11T21:41:26.7725170Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.7725573Z auto tmp3 = at::vec::Vectorized(static_cast(-1.988366587925593e-08)); 2023-01-11T21:41:26.7725734Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7725875Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:41:26.7726284Z auto tmp6 = at::vec::Vectorized(static_cast(-3.087032500374211e-07)); 2023-01-11T21:41:26.7726435Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.7726832Z auto tmp9 = at::vec::Vectorized(static_cast(1.55093272922008e-10)); 2023-01-11T21:41:26.7726982Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.7727138Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:41:26.7727316Z auto tmp12 = tmp11.reciprocal(); 2023-01-11T21:41:26.7727508Z auto tmp13 = at::vec::Vectorized(static_cast(1.0)); 2023-01-11T21:41:26.7727609Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:41:26.7727739Z tmp11.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7727862Z tmp14.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7727961Z } 2023-01-11T21:41:26.7728132Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7728280Z for(long i0=1082016; i0<1082016; i0+=1) 2023-01-11T21:41:26.7728394Z { 2023-01-11T21:41:26.7728633Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7728857Z auto tmp8 = in_ptr1[i0]; 2023-01-11T21:41:26.7729348Z auto tmp1 = static_cast(-1.061519070296458e-11); 2023-01-11T21:41:26.7729520Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.7729871Z auto tmp3 = static_cast(-1.988366587925593e-08); 2023-01-11T21:41:26.7730040Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.7730215Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:41:26.7730549Z auto tmp6 = static_cast(-3.087032500374211e-07); 2023-01-11T21:41:26.7730726Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.7731087Z auto tmp9 = static_cast(1.55093272922008e-10); 2023-01-11T21:41:26.7731261Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.7731440Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:41:26.7731767Z auto tmp12 = 1 / tmp11; 2023-01-11T21:41:26.7731977Z auto tmp13 = static_cast(1.0); 2023-01-11T21:41:26.7732148Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:41:26.7732305Z in_out_ptr0[i0] = tmp11; 2023-01-11T21:41:26.7732459Z out_ptr1[i0] = tmp14; 2023-01-11T21:41:26.7732594Z } 2023-01-11T21:41:26.7732761Z #pragma omp for 2023-01-11T21:41:26.7732924Z for(long i0=0; i0<41616; i0+=1) 2023-01-11T21:41:26.7733052Z { 2023-01-11T21:41:26.7733197Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.7733329Z { 2023-01-11T21:41:26.7733615Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + (8*i1) + (26*i0)); 2023-01-11T21:41:26.7733976Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr2 + 8*i1); 2023-01-11T21:41:26.7734159Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.7734370Z tmp2.store(in_out_ptr0 + (8*i1) + (26*i0)); 2023-01-11T21:41:26.7734513Z } 2023-01-11T21:41:26.7734697Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7734846Z for(long i1=24; i1<26; i1+=1) 2023-01-11T21:41:26.7734975Z { 2023-01-11T21:41:26.7735186Z auto tmp0 = in_out_ptr0[i1 + (26*i0)]; 2023-01-11T21:41:26.7735363Z auto tmp1 = in_ptr2[i1]; 2023-01-11T21:41:26.7735537Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.7735725Z in_out_ptr0[i1 + (26*i0)] = tmp2; 2023-01-11T21:41:26.7735843Z } 2023-01-11T21:41:26.7735954Z } 2023-01-11T21:41:26.7736114Z #pragma omp for 2023-01-11T21:41:26.7736295Z for(long i0=0; i0<135252; i0+=1) 2023-01-11T21:41:26.7736424Z { 2023-01-11T21:41:26.7736692Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7736966Z auto tmp1 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.7737144Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7737314Z tmp2.store(in_out_ptr1 + 8*i0); 2023-01-11T21:41:26.7737439Z } 2023-01-11T21:41:26.7737622Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7737804Z for(long i0=1082016; i0<1082016; i0+=1) 2023-01-11T21:41:26.7737937Z { 2023-01-11T21:41:26.7738113Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.7738284Z auto tmp1 = in_out_ptr0[i0]; 2023-01-11T21:41:26.7738429Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7738607Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.7738735Z } 2023-01-11T21:41:26.7738858Z } 2023-01-11T21:41:26.7738978Z } 2023-01-11T21:41:26.7739168Z ''') 2023-01-11T21:41:26.7739180Z 2023-01-11T21:41:26.7739189Z 2023-01-11T21:41:26.7739374Z async_compile.wait(globals()) 2023-01-11T21:41:26.7739509Z del async_compile 2023-01-11T21:41:26.7739521Z 2023-01-11T21:41:26.7739669Z def call(args): 2023-01-11T21:41:26.7739840Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7739983Z args.clear() 2023-01-11T21:41:26.7740420Z buf0 = empty_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7740599Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.7741011Z buf2 = empty_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7741158Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.7741322Z buf4 = buf2; del buf2 # reuse 2023-01-11T21:41:26.7741734Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr())) 2023-01-11T21:41:26.7741870Z del arg0_1 2023-01-11T21:41:26.7742006Z del arg1_1 2023-01-11T21:41:26.7742144Z del arg2_1 2023-01-11T21:41:26.7742299Z return (buf4, ) 2023-01-11T21:41:26.7742308Z 2023-01-11T21:41:26.7742314Z 2023-01-11T21:41:26.7742469Z if __name__ == "__main__": 2023-01-11T21:41:26.7742780Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7743026Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7743541Z arg0_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7743963Z arg1_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7744361Z arg2_1 = rand_strided((26, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7744599Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7744609Z 2023-01-11T21:41:26.7744753Z ok (1.723s) 2023-01-11T21:41:26.7745759Z test_select_scatter_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7746019Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7746521Z [2023-01-11 21:37:42,102] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 418 2023-01-11T21:41:26.7747048Z [2023-01-11 21:37:43,821] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 418 2023-01-11T21:41:26.7747058Z 2023-01-11T21:41:26.7747246Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7747391Z import torch 2023-01-11T21:41:26.7747534Z import random 2023-01-11T21:41:26.7747765Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7748006Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7748016Z 2023-01-11T21:41:26.7748171Z aten = torch.ops.aten 2023-01-11T21:41:26.7748422Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7748621Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7748634Z 2023-01-11T21:41:26.7748642Z 2023-01-11T21:41:26.7748917Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7749307Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7749537Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7749757Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7749951Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.7750153Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7750328Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7750461Z { 2023-01-11T21:41:26.7750664Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7750788Z { 2023-01-11T21:41:26.7750962Z #pragma omp for 2023-01-11T21:41:26.7751124Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7751255Z { 2023-01-11T21:41:26.7751404Z #pragma GCC ivdep 2023-01-11T21:41:26.7751573Z for(long i1=0; i1<197; i1+=1) 2023-01-11T21:41:26.7751702Z { 2023-01-11T21:41:26.7751867Z #pragma GCC ivdep 2023-01-11T21:41:26.7752044Z for(long i2=0; i2<38; i2+=1) 2023-01-11T21:41:26.7752178Z { 2023-01-11T21:41:26.7752291Z { 2023-01-11T21:41:26.7752435Z { 2023-01-11T21:41:26.7752640Z auto tmp3 = in_ptr0[i2 + (38*i0)]; 2023-01-11T21:41:26.7752864Z auto tmp4 = in_ptr1[i2 + (38*i1) + (7486*i0)]; 2023-01-11T21:41:26.7753072Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.7753274Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.7753467Z auto tmp2 = tmp0 == tmp1; 2023-01-11T21:41:26.7753675Z auto tmp5 = tmp2 ? tmp3 : tmp4; 2023-01-11T21:41:26.7753870Z out_ptr0[i2 + (38*i1) + (7486*i0)] = tmp5; 2023-01-11T21:41:26.7754117Z } 2023-01-11T21:41:26.7754248Z } 2023-01-11T21:41:26.7754380Z } 2023-01-11T21:41:26.7754508Z } 2023-01-11T21:41:26.7754641Z } 2023-01-11T21:41:26.7754804Z #pragma omp for 2023-01-11T21:41:26.7754957Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7755088Z { 2023-01-11T21:41:26.7755247Z #pragma GCC ivdep 2023-01-11T21:41:26.7755426Z for(long i1=0; i1<7486; i1+=1) 2023-01-11T21:41:26.7755557Z { 2023-01-11T21:41:26.7755694Z { 2023-01-11T21:41:26.7755813Z { 2023-01-11T21:41:26.7756005Z auto tmp3 = in_ptr2[i1]; 2023-01-11T21:41:26.7756273Z auto tmp4 = in_ptr1[i1 + (7486*i0)]; 2023-01-11T21:41:26.7756493Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.7756702Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7756893Z auto tmp2 = tmp0 == tmp1; 2023-01-11T21:41:26.7757093Z auto tmp5 = tmp2 ? tmp3 : tmp4; 2023-01-11T21:41:26.7757283Z out_ptr1[i1 + (7486*i0)] = tmp5; 2023-01-11T21:41:26.7757400Z } 2023-01-11T21:41:26.7757534Z } 2023-01-11T21:41:26.7757664Z } 2023-01-11T21:41:26.7757791Z } 2023-01-11T21:41:26.7757909Z } 2023-01-11T21:41:26.7758029Z } 2023-01-11T21:41:26.7758203Z ''') 2023-01-11T21:41:26.7758215Z 2023-01-11T21:41:26.7758242Z 2023-01-11T21:41:26.7758402Z async_compile.wait(globals()) 2023-01-11T21:41:26.7758545Z del async_compile 2023-01-11T21:41:26.7758556Z 2023-01-11T21:41:26.7758691Z def call(args): 2023-01-11T21:41:26.7758848Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.7758997Z args.clear() 2023-01-11T21:41:26.7759435Z buf0 = empty_strided((8, 197, 38), (7486, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7759860Z buf1 = empty_strided((8, 197, 38), (7486, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7760243Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7760380Z del arg0_1 2023-01-11T21:41:26.7760513Z del arg1_1 2023-01-11T21:41:26.7760659Z del arg2_1 2023-01-11T21:41:26.7760823Z return (buf0, buf1, ) 2023-01-11T21:41:26.7760837Z 2023-01-11T21:41:26.7760844Z 2023-01-11T21:41:26.7761000Z if __name__ == "__main__": 2023-01-11T21:41:26.7761231Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7761467Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7761876Z arg0_1 = rand_strided((8, 197, 38), (7486, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7762276Z arg1_1 = rand_strided((8, 38), (38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7762679Z arg2_1 = rand_strided((197, 38), (38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7762925Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.7762937Z 2023-01-11T21:41:26.7763067Z ok (1.768s) 2023-01-11T21:41:26.7763944Z test_sgn_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7764190Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7764718Z [2023-01-11 21:37:43,847] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 419 2023-01-11T21:41:26.7765265Z [2023-01-11 21:37:46,148] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 419 2023-01-11T21:41:26.7765377Z 2023-01-11T21:41:26.7765549Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7765688Z import torch 2023-01-11T21:41:26.7765826Z import random 2023-01-11T21:41:26.7766062Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7766307Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7766320Z 2023-01-11T21:41:26.7766475Z aten = torch.ops.aten 2023-01-11T21:41:26.7766735Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7766922Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7766936Z 2023-01-11T21:41:26.7766943Z 2023-01-11T21:41:26.7767203Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7767594Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7767901Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7768106Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7768302Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7768430Z { 2023-01-11T21:41:26.7768630Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7768739Z { 2023-01-11T21:41:26.7768893Z #pragma omp for 2023-01-11T21:41:26.7769183Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:41:26.7769314Z { 2023-01-11T21:41:26.7769588Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7769914Z auto tmp1 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), decltype(tmp0)(0) < tmp0); 2023-01-11T21:41:26.7770248Z auto tmp2 = decltype(tmp0)::blendv(decltype(tmp0)(0), decltype(tmp0)(1), tmp0 < decltype(tmp0)(0)); 2023-01-11T21:41:26.7770524Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.7770774Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7770943Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.7771262Z auto tmp6 = decltype(tmp5)::blendv(decltype(tmp5)(0), decltype(tmp5)(1), decltype(tmp5)(0) < tmp5); 2023-01-11T21:41:26.7771592Z auto tmp7 = decltype(tmp5)::blendv(decltype(tmp5)(0), decltype(tmp5)(1), tmp5 < decltype(tmp5)(0)); 2023-01-11T21:41:26.7771852Z auto tmp8 = tmp6 - tmp7; 2023-01-11T21:41:26.7772099Z auto tmp9 = tmp8 - tmp4; 2023-01-11T21:41:26.7772290Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7772471Z tmp9.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7772580Z } 2023-01-11T21:41:26.7772772Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7772935Z for(long i0=40; i0<41; i0+=1) 2023-01-11T21:41:26.7773062Z { 2023-01-11T21:41:26.7773225Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7773409Z auto tmp1 = tmp0 > 0 ? 1 : 0; 2023-01-11T21:41:26.7773581Z auto tmp2 = tmp0 < 0 ? 1 : 0; 2023-01-11T21:41:26.7773813Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.7774017Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.7774195Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.7774372Z auto tmp6 = tmp5 > 0 ? 1 : 0; 2023-01-11T21:41:26.7774542Z auto tmp7 = tmp5 < 0 ? 1 : 0; 2023-01-11T21:41:26.7774792Z auto tmp8 = tmp6 - tmp7; 2023-01-11T21:41:26.7775046Z auto tmp9 = tmp8 - tmp4; 2023-01-11T21:41:26.7775189Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.7775348Z out_ptr1[i0] = tmp9; 2023-01-11T21:41:26.7775477Z } 2023-01-11T21:41:26.7775599Z } 2023-01-11T21:41:26.7775723Z } 2023-01-11T21:41:26.7775884Z ''') 2023-01-11T21:41:26.7775895Z 2023-01-11T21:41:26.7775901Z 2023-01-11T21:41:26.7776081Z async_compile.wait(globals()) 2023-01-11T21:41:26.7776215Z del async_compile 2023-01-11T21:41:26.7776254Z 2023-01-11T21:41:26.7776374Z def call(args): 2023-01-11T21:41:26.7776511Z arg0_1, = args 2023-01-11T21:41:26.7776659Z args.clear() 2023-01-11T21:41:26.7777190Z buf0 = empty_strided((41, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7777571Z buf1 = empty_strided((41, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7777894Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7778035Z del arg0_1 2023-01-11T21:41:26.7778168Z return (buf0, buf1, ) 2023-01-11T21:41:26.7778177Z 2023-01-11T21:41:26.7778186Z 2023-01-11T21:41:26.7778341Z if __name__ == "__main__": 2023-01-11T21:41:26.7778564Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7778806Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7779194Z arg0_1 = rand_strided((41, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7779509Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7779526Z 2023-01-11T21:41:26.7779664Z ok (2.323s) 2023-01-11T21:41:26.7780570Z test_sgn_extremal_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7780822Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7781330Z [2023-01-11 21:37:46,163] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 420 2023-01-11T21:41:26.7781863Z [2023-01-11 21:37:48,894] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 420 2023-01-11T21:41:26.7781873Z 2023-01-11T21:41:26.7782058Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7782206Z import torch 2023-01-11T21:41:26.7782360Z import random 2023-01-11T21:41:26.7782587Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7782829Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7782840Z 2023-01-11T21:41:26.7782993Z aten = torch.ops.aten 2023-01-11T21:41:26.7783314Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7783502Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7783512Z 2023-01-11T21:41:26.7783519Z 2023-01-11T21:41:26.7783805Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7784201Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7784441Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7784641Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7784765Z { 2023-01-11T21:41:26.7784966Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7785076Z { 2023-01-11T21:41:26.7785234Z #pragma omp for 2023-01-11T21:41:26.7785399Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.7785530Z { 2023-01-11T21:41:26.7785668Z { 2023-01-11T21:41:26.7785803Z { 2023-01-11T21:41:26.7785966Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7786149Z auto tmp1 = tmp0 > 0 ? 1 : 0; 2023-01-11T21:41:26.7786330Z auto tmp2 = tmp0 < 0 ? 1 : 0; 2023-01-11T21:41:26.7786618Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.7786790Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.7786924Z } 2023-01-11T21:41:26.7787047Z } 2023-01-11T21:41:26.7787155Z } 2023-01-11T21:41:26.7787273Z } 2023-01-11T21:41:26.7787394Z } 2023-01-11T21:41:26.7787555Z ''') 2023-01-11T21:41:26.7787565Z 2023-01-11T21:41:26.7787573Z 2023-01-11T21:41:26.7787755Z async_compile.wait(globals()) 2023-01-11T21:41:26.7787894Z del async_compile 2023-01-11T21:41:26.7787911Z 2023-01-11T21:41:26.7788052Z def call(args): 2023-01-11T21:41:26.7788180Z arg0_1, = args 2023-01-11T21:41:26.7788327Z args.clear() 2023-01-11T21:41:26.7788828Z buf0 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7789091Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7789236Z del arg0_1 2023-01-11T21:41:26.7789383Z return (buf0, ) 2023-01-11T21:41:26.7789392Z 2023-01-11T21:41:26.7789398Z 2023-01-11T21:41:26.7789550Z if __name__ == "__main__": 2023-01-11T21:41:26.7789771Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7790002Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7790394Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7790608Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7790616Z 2023-01-11T21:41:26.7790738Z ok (2.745s) 2023-01-11T21:41:26.7791736Z test_shape_prop_torch_ones_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7791996Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7792528Z [2023-01-11 21:37:49,281] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 421 2023-01-11T21:41:26.7793060Z [2023-01-11 21:37:51,616] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 421 2023-01-11T21:41:26.7793070Z 2023-01-11T21:41:26.7793255Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7793376Z import torch 2023-01-11T21:41:26.7793522Z import random 2023-01-11T21:41:26.7793754Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7793998Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7794008Z 2023-01-11T21:41:26.7794166Z aten = torch.ops.aten 2023-01-11T21:41:26.7794424Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7794610Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7794622Z 2023-01-11T21:41:26.7794629Z 2023-01-11T21:41:26.7794905Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7795276Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7795510Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7795709Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7795835Z { 2023-01-11T21:41:26.7796034Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7796162Z { 2023-01-11T21:41:26.7796323Z #pragma omp for 2023-01-11T21:41:26.7796481Z for(long i0=0; i0<3145728; i0+=1) 2023-01-11T21:41:26.7796612Z { 2023-01-11T21:41:26.7796884Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7797155Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7797334Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7797508Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7797633Z } 2023-01-11T21:41:26.7797822Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7797989Z for(long i0=25165824; i0<25165824; i0+=1) 2023-01-11T21:41:26.7798113Z { 2023-01-11T21:41:26.7798287Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7798475Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7798642Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7798807Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7798913Z } 2023-01-11T21:41:26.7799033Z } 2023-01-11T21:41:26.7799159Z } 2023-01-11T21:41:26.7799345Z ''') 2023-01-11T21:41:26.7799363Z 2023-01-11T21:41:26.7799372Z 2023-01-11T21:41:26.7799557Z async_compile.wait(globals()) 2023-01-11T21:41:26.7799700Z del async_compile 2023-01-11T21:41:26.7799809Z 2023-01-11T21:41:26.7799964Z def call(args): 2023-01-11T21:41:26.7800098Z arg0_1, = args 2023-01-11T21:41:26.7800229Z args.clear() 2023-01-11T21:41:26.7800708Z buf0 = empty_strided((8, 12, 512, 512), (3145728, 262144, 512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7800961Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7801101Z del arg0_1 2023-01-11T21:41:26.7801251Z return (buf0, ) 2023-01-11T21:41:26.7801260Z 2023-01-11T21:41:26.7801267Z 2023-01-11T21:41:26.7801413Z if __name__ == "__main__": 2023-01-11T21:41:26.7801639Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7801858Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7802403Z arg0_1 = rand_strided((8, 12, 512, 512), (3145728, 262144, 512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7802626Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7802644Z 2023-01-11T21:41:26.7802777Z ok (3.865s) 2023-01-11T21:41:26.7803668Z test_sigmoid_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7803924Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7804442Z [2023-01-11 21:37:52,783] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 422 2023-01-11T21:41:26.7804958Z [2023-01-11 21:37:54,332] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 422 2023-01-11T21:41:26.7804978Z 2023-01-11T21:41:26.7805171Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7805313Z import torch 2023-01-11T21:41:26.7805435Z import random 2023-01-11T21:41:26.7805657Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7805899Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7805912Z 2023-01-11T21:41:26.7806072Z aten = torch.ops.aten 2023-01-11T21:41:26.7806333Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7806514Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7806529Z 2023-01-11T21:41:26.7806536Z 2023-01-11T21:41:26.7806814Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7807194Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7807419Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7807627Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7807824Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7808015Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7808150Z { 2023-01-11T21:41:26.7808350Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7808475Z { 2023-01-11T21:41:26.7808622Z #pragma omp for 2023-01-11T21:41:26.7808792Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7808921Z { 2023-01-11T21:41:26.7809334Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7809600Z auto tmp2 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.7809866Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:41:26.7810029Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.7810273Z auto tmp4 = decltype(tmp3)(1)/(decltype(tmp3)(1) + tmp3.neg().exp()); 2023-01-11T21:41:26.7810462Z tmp1.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7810652Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7810775Z } 2023-01-11T21:41:26.7810962Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7811283Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7811413Z { 2023-01-11T21:41:26.7811571Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7811740Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.7812045Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:41:26.7812212Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:41:26.7812386Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.7812659Z auto tmp5 = std::exp(-tmp4); 2023-01-11T21:41:26.7812834Z auto tmp6 = 1 / (1 + tmp5); 2023-01-11T21:41:26.7812980Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7813150Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.7813280Z } 2023-01-11T21:41:26.7813404Z } 2023-01-11T21:41:26.7813525Z } 2023-01-11T21:41:26.7813697Z ''') 2023-01-11T21:41:26.7813710Z 2023-01-11T21:41:26.7813815Z 2023-01-11T21:41:26.7814002Z async_compile.wait(globals()) 2023-01-11T21:41:26.7814133Z del async_compile 2023-01-11T21:41:26.7814170Z 2023-01-11T21:41:26.7814297Z def call(args): 2023-01-11T21:41:26.7814439Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7814585Z args.clear() 2023-01-11T21:41:26.7814984Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7815368Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7815735Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7815869Z del arg0_1 2023-01-11T21:41:26.7815991Z del arg1_1 2023-01-11T21:41:26.7816140Z return (buf0, buf1, ) 2023-01-11T21:41:26.7816153Z 2023-01-11T21:41:26.7816161Z 2023-01-11T21:41:26.7816315Z if __name__ == "__main__": 2023-01-11T21:41:26.7816540Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7816792Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7817173Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7817567Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7817801Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7817811Z 2023-01-11T21:41:26.7817926Z ok (1.583s) 2023-01-11T21:41:26.7818815Z test_signbit_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7819070Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7819589Z [2023-01-11 21:37:54,366] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 423 2023-01-11T21:41:26.7820119Z [2023-01-11 21:37:55,936] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 423 2023-01-11T21:41:26.7820140Z 2023-01-11T21:41:26.7820335Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7820481Z import torch 2023-01-11T21:41:26.7820629Z import random 2023-01-11T21:41:26.7820853Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7821078Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7821090Z 2023-01-11T21:41:26.7821245Z aten = torch.ops.aten 2023-01-11T21:41:26.7821505Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7821689Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7821698Z 2023-01-11T21:41:26.7821706Z 2023-01-11T21:41:26.7821992Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7822379Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7822621Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7822812Z bool* __restrict__ out_ptr0, 2023-01-11T21:41:26.7823079Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.7823286Z { 2023-01-11T21:41:26.7823493Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7823617Z { 2023-01-11T21:41:26.7823775Z #pragma omp for 2023-01-11T21:41:26.7823944Z for(long i0=0; i0<72; i0+=1) 2023-01-11T21:41:26.7824068Z { 2023-01-11T21:41:26.7824179Z { 2023-01-11T21:41:26.7824306Z { 2023-01-11T21:41:26.7824501Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7824712Z auto tmp1 = std::signbit(tmp0); 2023-01-11T21:41:26.7824974Z auto tmp2 = -tmp0; 2023-01-11T21:41:26.7825176Z auto tmp3 = std::signbit(tmp2); 2023-01-11T21:41:26.7825361Z auto tmp4 = tmp3 == 0; 2023-01-11T21:41:26.7825636Z auto tmp5 = static_cast(tmp4); 2023-01-11T21:41:26.7825847Z auto tmp6 = static_cast(1); 2023-01-11T21:41:26.7826033Z auto tmp7 = tmp5 & tmp6; 2023-01-11T21:41:26.7826202Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.7826376Z out_ptr1[i0] = tmp7; 2023-01-11T21:41:26.7826512Z } 2023-01-11T21:41:26.7826636Z } 2023-01-11T21:41:26.7826740Z } 2023-01-11T21:41:26.7826867Z } 2023-01-11T21:41:26.7826989Z } 2023-01-11T21:41:26.7827166Z ''') 2023-01-11T21:41:26.7827176Z 2023-01-11T21:41:26.7827184Z 2023-01-11T21:41:26.7827367Z async_compile.wait(globals()) 2023-01-11T21:41:26.7827513Z del async_compile 2023-01-11T21:41:26.7827524Z 2023-01-11T21:41:26.7827665Z def call(args): 2023-01-11T21:41:26.7827784Z arg0_1, = args 2023-01-11T21:41:26.7827924Z args.clear() 2023-01-11T21:41:26.7828354Z buf0 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.7828765Z buf1 = empty_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.7829084Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7829225Z del arg0_1 2023-01-11T21:41:26.7829380Z return (buf0, buf1, ) 2023-01-11T21:41:26.7829391Z 2023-01-11T21:41:26.7829398Z 2023-01-11T21:41:26.7829556Z if __name__ == "__main__": 2023-01-11T21:41:26.7829761Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7830011Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7830423Z arg0_1 = rand_strided((1, 2, 6, 6), (72, 36, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7830638Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7830648Z 2023-01-11T21:41:26.7830786Z ok (1.594s) 2023-01-11T21:41:26.7831664Z test_silu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7831915Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7832440Z [2023-01-11 21:37:55,954] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 424 2023-01-11T21:41:26.7832952Z [2023-01-11 21:37:55,962] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 424 2023-01-11T21:41:26.7832962Z 2023-01-11T21:41:26.7833150Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7833273Z import torch 2023-01-11T21:41:26.7833419Z import random 2023-01-11T21:41:26.7833644Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7833895Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7833908Z 2023-01-11T21:41:26.7834072Z aten = torch.ops.aten 2023-01-11T21:41:26.7834430Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7834610Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7834620Z 2023-01-11T21:41:26.7834628Z 2023-01-11T21:41:26.7834885Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7835271Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7835493Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7835695Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7835818Z { 2023-01-11T21:41:26.7836012Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7836139Z { 2023-01-11T21:41:26.7836275Z #pragma omp for 2023-01-11T21:41:26.7836437Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7836563Z { 2023-01-11T21:41:26.7836918Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7837187Z auto tmp1 = decltype(tmp0)(1)/(decltype(tmp0)(1) + tmp0.neg().exp()); 2023-01-11T21:41:26.7837365Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.7837563Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7837683Z } 2023-01-11T21:41:26.7837859Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7838025Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7838147Z { 2023-01-11T21:41:26.7838319Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7838615Z auto tmp1 = std::exp(-tmp0); 2023-01-11T21:41:26.7838784Z auto tmp2 = 1 / (1 + tmp1); 2023-01-11T21:41:26.7838937Z auto tmp3 = tmp0 * tmp2; 2023-01-11T21:41:26.7839102Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.7839228Z } 2023-01-11T21:41:26.7839354Z } 2023-01-11T21:41:26.7839473Z } 2023-01-11T21:41:26.7839642Z ''') 2023-01-11T21:41:26.7839655Z 2023-01-11T21:41:26.7839666Z 2023-01-11T21:41:26.7839847Z async_compile.wait(globals()) 2023-01-11T21:41:26.7839976Z del async_compile 2023-01-11T21:41:26.7840013Z 2023-01-11T21:41:26.7840141Z def call(args): 2023-01-11T21:41:26.7840280Z arg0_1, = args 2023-01-11T21:41:26.7840421Z args.clear() 2023-01-11T21:41:26.7840821Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7841089Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7841232Z del arg0_1 2023-01-11T21:41:26.7841382Z return (buf0, ) 2023-01-11T21:41:26.7841397Z 2023-01-11T21:41:26.7841404Z 2023-01-11T21:41:26.7841531Z if __name__ == "__main__": 2023-01-11T21:41:26.7841748Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7841994Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7842387Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7842607Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7842618Z 2023-01-11T21:41:26.7842751Z ok (0.025s) 2023-01-11T21:41:26.7843659Z test_simplify_loops_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7843910Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7844432Z [2023-01-11 21:37:55,975] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 425 2023-01-11T21:41:26.7844929Z [2023-01-11 21:37:57,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 425 2023-01-11T21:41:26.7844963Z 2023-01-11T21:41:26.7845137Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7845280Z import torch 2023-01-11T21:41:26.7845429Z import random 2023-01-11T21:41:26.7845659Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7845990Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7846003Z 2023-01-11T21:41:26.7846163Z aten = torch.ops.aten 2023-01-11T21:41:26.7846428Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7846595Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7846604Z 2023-01-11T21:41:26.7846629Z 2023-01-11T21:41:26.7846886Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7847281Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7847520Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7847722Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7847924Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7848047Z { 2023-01-11T21:41:26.7848317Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7848432Z { 2023-01-11T21:41:26.7848609Z #pragma omp for collapse(2) 2023-01-11T21:41:26.7848784Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.7848911Z { 2023-01-11T21:41:26.7849218Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.7849356Z { 2023-01-11T21:41:26.7849523Z for(long i2=0; i2<3; i2+=1) 2023-01-11T21:41:26.7849649Z { 2023-01-11T21:41:26.7849949Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i2) + (30*i1) + (120*i0)); 2023-01-11T21:41:26.7850235Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i2) + (30*i0) + (180*i1)); 2023-01-11T21:41:26.7850413Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7850627Z tmp2.store(out_ptr0 + (8*i2) + (30*i1) + (120*i0)); 2023-01-11T21:41:26.7850766Z } 2023-01-11T21:41:26.7850966Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7851132Z for(long i2=24; i2<30; i2+=1) 2023-01-11T21:41:26.7851264Z { 2023-01-11T21:41:26.7851469Z auto tmp0 = in_ptr0[i2 + (30*i1) + (120*i0)]; 2023-01-11T21:41:26.7851681Z auto tmp1 = in_ptr1[i2 + (30*i0) + (180*i1)]; 2023-01-11T21:41:26.7851864Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7852062Z out_ptr0[i2 + (30*i1) + (120*i0)] = tmp2; 2023-01-11T21:41:26.7852191Z } 2023-01-11T21:41:26.7852305Z } 2023-01-11T21:41:26.7852429Z } 2023-01-11T21:41:26.7852556Z } 2023-01-11T21:41:26.7852679Z } 2023-01-11T21:41:26.7852868Z ''') 2023-01-11T21:41:26.7852880Z 2023-01-11T21:41:26.7852888Z 2023-01-11T21:41:26.7853066Z async_compile.wait(globals()) 2023-01-11T21:41:26.7853214Z del async_compile 2023-01-11T21:41:26.7853223Z 2023-01-11T21:41:26.7853371Z def call(args): 2023-01-11T21:41:26.7853514Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7853660Z args.clear() 2023-01-11T21:41:26.7854114Z buf0 = empty_strided((2, 3, 4, 5, 6), (360, 120, 30, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7854442Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7854581Z del arg0_1 2023-01-11T21:41:26.7854723Z del arg1_1 2023-01-11T21:41:26.7854863Z return (buf0, ) 2023-01-11T21:41:26.7854877Z 2023-01-11T21:41:26.7854883Z 2023-01-11T21:41:26.7855018Z if __name__ == "__main__": 2023-01-11T21:41:26.7855248Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7855500Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7855950Z arg0_1 = rand_strided((2, 3, 4, 5, 6), (360, 120, 30, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7856393Z arg1_1 = rand_strided((2, 3, 4, 5, 6), (90, 30, 180, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7856625Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7856639Z 2023-01-11T21:41:26.7856774Z ok (1.772s) 2023-01-11T21:41:26.7857805Z test_sin_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7858051Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7858551Z [2023-01-11 21:37:57,777] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 426 2023-01-11T21:41:26.7859094Z [2023-01-11 21:37:59,323] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 426 2023-01-11T21:41:26.7859104Z 2023-01-11T21:41:26.7859382Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7859538Z import torch 2023-01-11T21:41:26.7859692Z import random 2023-01-11T21:41:26.7859916Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7860158Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7860168Z 2023-01-11T21:41:26.7860330Z aten = torch.ops.aten 2023-01-11T21:41:26.7860571Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7860752Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7860762Z 2023-01-11T21:41:26.7860769Z 2023-01-11T21:41:26.7861044Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7861430Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7861666Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7861863Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7862054Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7862182Z { 2023-01-11T21:41:26.7862370Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7862491Z { 2023-01-11T21:41:26.7862651Z #pragma omp for 2023-01-11T21:41:26.7862827Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.7862954Z { 2023-01-11T21:41:26.7863305Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7863480Z auto tmp1 = tmp0.sin(); 2023-01-11T21:41:26.7863730Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.7863902Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.7864166Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7864333Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.7864500Z auto tmp6 = tmp5.sin(); 2023-01-11T21:41:26.7864682Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7864867Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7864976Z } 2023-01-11T21:41:26.7865172Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7865343Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.7865474Z { 2023-01-11T21:41:26.7865646Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7865824Z auto tmp1 = std::sin(tmp0); 2023-01-11T21:41:26.7866019Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.7866169Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.7866360Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.7866529Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.7866708Z auto tmp6 = std::sin(tmp5); 2023-01-11T21:41:26.7866871Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.7867029Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.7867152Z } 2023-01-11T21:41:26.7867259Z } 2023-01-11T21:41:26.7867386Z } 2023-01-11T21:41:26.7867578Z ''') 2023-01-11T21:41:26.7867591Z 2023-01-11T21:41:26.7867598Z 2023-01-11T21:41:26.7867794Z async_compile.wait(globals()) 2023-01-11T21:41:26.7867947Z del async_compile 2023-01-11T21:41:26.7867959Z 2023-01-11T21:41:26.7868096Z def call(args): 2023-01-11T21:41:26.7868349Z arg0_1, = args 2023-01-11T21:41:26.7868473Z args.clear() 2023-01-11T21:41:26.7868889Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7869290Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7869611Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7869754Z del arg0_1 2023-01-11T21:41:26.7869911Z return (buf0, buf1, ) 2023-01-11T21:41:26.7869921Z 2023-01-11T21:41:26.7869931Z 2023-01-11T21:41:26.7870086Z if __name__ == "__main__": 2023-01-11T21:41:26.7870315Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7870539Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7871018Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7871230Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7871245Z 2023-01-11T21:41:26.7871388Z ok (1.590s) 2023-01-11T21:41:26.7872301Z test_sizehint_issue1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7872558Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7873081Z [2023-01-11 21:37:59,484] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 427 2023-01-11T21:41:26.7873616Z [2023-01-11 21:38:01,063] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 427 2023-01-11T21:41:26.7873632Z 2023-01-11T21:41:26.7873831Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7873973Z import torch 2023-01-11T21:41:26.7874106Z import random 2023-01-11T21:41:26.7874326Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7874566Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7874581Z 2023-01-11T21:41:26.7874735Z aten = torch.ops.aten 2023-01-11T21:41:26.7874992Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7875178Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7875190Z 2023-01-11T21:41:26.7875198Z 2023-01-11T21:41:26.7875471Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7875858Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7876064Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7876264Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7876384Z { 2023-01-11T21:41:26.7876586Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7876713Z { 2023-01-11T21:41:26.7876896Z #pragma omp for collapse(2) 2023-01-11T21:41:26.7877059Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7877175Z { 2023-01-11T21:41:26.7877341Z for(long i1=0; i1<384; i1+=1) 2023-01-11T21:41:26.7877473Z { 2023-01-11T21:41:26.7877642Z #pragma GCC ivdep 2023-01-11T21:41:26.7877814Z for(long i2=0; i2<196; i2+=1) 2023-01-11T21:41:26.7877946Z { 2023-01-11T21:41:26.7878063Z { 2023-01-11T21:41:26.7878201Z { 2023-01-11T21:41:26.7878429Z auto tmp0 = static_cast(4*(i2 / 14)); 2023-01-11T21:41:26.7878646Z auto tmp1 = static_cast((i1 / 4) % 4); 2023-01-11T21:41:26.7878838Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7879064Z auto tmp3 = static_cast(4*(i2 % 14)); 2023-01-11T21:41:26.7879288Z auto tmp4 = static_cast(i1 % 4); 2023-01-11T21:41:26.7879576Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.7879801Z auto tmp6 = in_ptr0[tmp5 + (56*tmp2) + (3136*(i1 / 16)) + (75264*i0)]; 2023-01-11T21:41:26.7880004Z out_ptr0[i2 + (196*i1) + (75264*i0)] = tmp6; 2023-01-11T21:41:26.7880141Z } 2023-01-11T21:41:26.7880273Z } 2023-01-11T21:41:26.7880447Z } 2023-01-11T21:41:26.7880580Z } 2023-01-11T21:41:26.7880707Z } 2023-01-11T21:41:26.7880813Z } 2023-01-11T21:41:26.7880931Z } 2023-01-11T21:41:26.7881124Z ''') 2023-01-11T21:41:26.7881138Z 2023-01-11T21:41:26.7881145Z 2023-01-11T21:41:26.7881318Z async_compile.wait(globals()) 2023-01-11T21:41:26.7881457Z del async_compile 2023-01-11T21:41:26.7881469Z 2023-01-11T21:41:26.7881613Z def call(args): 2023-01-11T21:41:26.7881825Z arg0_1, = args 2023-01-11T21:41:26.7881962Z args.clear() 2023-01-11T21:41:26.7882403Z buf0 = empty_strided((2, 384, 196), (75264, 196, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7882717Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7882860Z del arg0_1 2023-01-11T21:41:26.7883007Z return (buf0, ) 2023-01-11T21:41:26.7883017Z 2023-01-11T21:41:26.7883027Z 2023-01-11T21:41:26.7883174Z if __name__ == "__main__": 2023-01-11T21:41:26.7883399Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7883638Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7884065Z arg0_1 = rand_strided((2, 24, 56, 56), (75264, 3136, 56, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7884277Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7884286Z 2023-01-11T21:41:26.7884421Z ok (1.743s) 2023-01-11T21:41:26.7885322Z test_slice1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7885579Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7886098Z [2023-01-11 21:38:01,112] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 428 2023-01-11T21:41:26.7886615Z [2023-01-11 21:38:02,621] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 428 2023-01-11T21:41:26.7886625Z 2023-01-11T21:41:26.7886810Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7886953Z import torch 2023-01-11T21:41:26.7887077Z import random 2023-01-11T21:41:26.7887309Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7887555Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7887571Z 2023-01-11T21:41:26.7887725Z aten = torch.ops.aten 2023-01-11T21:41:26.7887999Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7888182Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7888192Z 2023-01-11T21:41:26.7888201Z 2023-01-11T21:41:26.7888470Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7888856Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7889210Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7889415Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7889607Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7889733Z { 2023-01-11T21:41:26.7889931Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7890063Z { 2023-01-11T21:41:26.7890243Z #pragma omp for collapse(2) 2023-01-11T21:41:26.7890395Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7890527Z { 2023-01-11T21:41:26.7890696Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.7891006Z { 2023-01-11T21:41:26.7891137Z { 2023-01-11T21:41:26.7891284Z { 2023-01-11T21:41:26.7891490Z auto tmp0 = in_ptr0[(2*i1) + (40*i0)]; 2023-01-11T21:41:26.7891679Z auto tmp1 = in_ptr0[20 + (2*i1) + (40*i0)]; 2023-01-11T21:41:26.7891874Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7892076Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.7892265Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.7892449Z auto tmp5 = tmp1 + tmp3; 2023-01-11T21:41:26.7892627Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.7892814Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.7893066Z out_ptr1[i1 + (10*i0)] = tmp6; 2023-01-11T21:41:26.7893211Z } 2023-01-11T21:41:26.7893343Z } 2023-01-11T21:41:26.7893483Z } 2023-01-11T21:41:26.7893614Z } 2023-01-11T21:41:26.7893731Z } 2023-01-11T21:41:26.7893855Z } 2023-01-11T21:41:26.7894026Z ''') 2023-01-11T21:41:26.7894039Z 2023-01-11T21:41:26.7894047Z 2023-01-11T21:41:26.7894228Z async_compile.wait(globals()) 2023-01-11T21:41:26.7894382Z del async_compile 2023-01-11T21:41:26.7894391Z 2023-01-11T21:41:26.7894532Z def call(args): 2023-01-11T21:41:26.7894662Z arg0_1, = args 2023-01-11T21:41:26.7894808Z args.clear() 2023-01-11T21:41:26.7895208Z buf0 = empty_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7895588Z buf1 = empty_strided((2, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7895911Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7896049Z del arg0_1 2023-01-11T21:41:26.7896209Z return (buf0, buf1, ) 2023-01-11T21:41:26.7896223Z 2023-01-11T21:41:26.7896230Z 2023-01-11T21:41:26.7896382Z if __name__ == "__main__": 2023-01-11T21:41:26.7896604Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7896850Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7897268Z arg0_1 = rand_strided((2, 20, 2), (40, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7897469Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7897498Z 2023-01-11T21:41:26.7897615Z ok (1.555s) 2023-01-11T21:41:26.7898504Z test_slice2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7898754Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7899274Z [2023-01-11 21:38:02,665] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 429 2023-01-11T21:41:26.7899812Z [2023-01-11 21:38:04,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 429 2023-01-11T21:41:26.7899821Z 2023-01-11T21:41:26.7900006Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7900150Z import torch 2023-01-11T21:41:26.7900304Z import random 2023-01-11T21:41:26.7900534Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7900746Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7900755Z 2023-01-11T21:41:26.7900907Z aten = torch.ops.aten 2023-01-11T21:41:26.7901170Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7901357Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7901367Z 2023-01-11T21:41:26.7901373Z 2023-01-11T21:41:26.7901650Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7902042Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7902423Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7902630Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7902800Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7902922Z { 2023-01-11T21:41:26.7903192Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7903325Z { 2023-01-11T21:41:26.7903475Z #pragma omp for 2023-01-11T21:41:26.7903649Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.7903760Z { 2023-01-11T21:41:26.7903888Z { 2023-01-11T21:41:26.7904017Z { 2023-01-11T21:41:26.7904204Z auto tmp0 = in_ptr0[1 + (4*i0)]; 2023-01-11T21:41:26.7904396Z auto tmp1 = in_ptr0[42 + (4*i0)]; 2023-01-11T21:41:26.7904652Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7904869Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.7905037Z auto tmp4 = tmp0 + tmp3; 2023-01-11T21:41:26.7905233Z auto tmp5 = static_cast(2); 2023-01-11T21:41:26.7905413Z auto tmp6 = tmp1 + tmp5; 2023-01-11T21:41:26.7905591Z auto tmp7 = tmp4 + tmp6; 2023-01-11T21:41:26.7905759Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7905934Z out_ptr1[i0] = tmp7; 2023-01-11T21:41:26.7906054Z } 2023-01-11T21:41:26.7906166Z } 2023-01-11T21:41:26.7906288Z } 2023-01-11T21:41:26.7906412Z } 2023-01-11T21:41:26.7906531Z } 2023-01-11T21:41:26.7906716Z ''') 2023-01-11T21:41:26.7906726Z 2023-01-11T21:41:26.7906733Z 2023-01-11T21:41:26.7906907Z async_compile.wait(globals()) 2023-01-11T21:41:26.7907052Z del async_compile 2023-01-11T21:41:26.7907066Z 2023-01-11T21:41:26.7907211Z def call(args): 2023-01-11T21:41:26.7907334Z arg0_1, = args 2023-01-11T21:41:26.7907474Z args.clear() 2023-01-11T21:41:26.7907883Z buf0 = empty_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7908288Z buf1 = empty_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7908609Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7908750Z del arg0_1 2023-01-11T21:41:26.7908909Z return (buf0, buf1, ) 2023-01-11T21:41:26.7908921Z 2023-01-11T21:41:26.7908928Z 2023-01-11T21:41:26.7909063Z if __name__ == "__main__": 2023-01-11T21:41:26.7909301Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7909535Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7909947Z arg0_1 = rand_strided((2, 20, 2), (40, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7910173Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7910193Z 2023-01-11T21:41:26.7910332Z ok (1.552s) 2023-01-11T21:41:26.7911237Z test_slice_mutation1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7911487Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7912027Z [2023-01-11 21:38:04,224] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 430 2023-01-11T21:41:26.7912551Z [2023-01-11 21:38:05,883] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 430 2023-01-11T21:41:26.7912563Z 2023-01-11T21:41:26.7912731Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7912876Z import torch 2023-01-11T21:41:26.7913027Z import random 2023-01-11T21:41:26.7913257Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7913604Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7913615Z 2023-01-11T21:41:26.7913771Z aten = torch.ops.aten 2023-01-11T21:41:26.7914036Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7914202Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7914213Z 2023-01-11T21:41:26.7914241Z 2023-01-11T21:41:26.7914502Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7914899Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7915129Z extern "C" void kernel(float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7915315Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7915503Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7915693Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.7915895Z { 2023-01-11T21:41:26.7916078Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7916200Z { 2023-01-11T21:41:26.7916364Z #pragma omp for 2023-01-11T21:41:26.7916526Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7916655Z { 2023-01-11T21:41:26.7916934Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:41:26.7917200Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7917352Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7917532Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7917715Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.7917847Z } 2023-01-11T21:41:26.7918042Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7918211Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7918330Z { 2023-01-11T21:41:26.7918509Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.7918705Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7918878Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7919044Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7919198Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.7919329Z } 2023-01-11T21:41:26.7919481Z #pragma omp for 2023-01-11T21:41:26.7919630Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7919760Z { 2023-01-11T21:41:26.7919896Z { 2023-01-11T21:41:26.7920030Z { 2023-01-11T21:41:26.7920245Z auto tmp0 = static_cast(3.0); 2023-01-11T21:41:26.7920422Z out_ptr0[3 + (8*i0)] = tmp0; 2023-01-11T21:41:26.7920555Z } 2023-01-11T21:41:26.7920669Z } 2023-01-11T21:41:26.7920792Z } 2023-01-11T21:41:26.7920947Z #pragma omp for 2023-01-11T21:41:26.7921117Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7921240Z { 2023-01-11T21:41:26.7921525Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7921691Z tmp0.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.7921822Z } 2023-01-11T21:41:26.7922010Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7922180Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7922312Z { 2023-01-11T21:41:26.7922485Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.7922648Z out_ptr2[i0] = tmp0; 2023-01-11T21:41:26.7922751Z } 2023-01-11T21:41:26.7922901Z #pragma omp for 2023-01-11T21:41:26.7923067Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.7923192Z { 2023-01-11T21:41:26.7923462Z auto tmp0 = at::vec::Vectorized(static_cast(4.0)); 2023-01-11T21:41:26.7923657Z tmp0.store(out_ptr0 + 32 + (8*i0)); 2023-01-11T21:41:26.7923786Z } 2023-01-11T21:41:26.7923952Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7924114Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.7924250Z { 2023-01-11T21:41:26.7924449Z auto tmp0 = static_cast(4.0); 2023-01-11T21:41:26.7924725Z out_ptr0[32 + i0] = tmp0; 2023-01-11T21:41:26.7924848Z } 2023-01-11T21:41:26.7925011Z #pragma omp for 2023-01-11T21:41:26.7925159Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7925284Z { 2023-01-11T21:41:26.7925546Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7925817Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7925982Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7926172Z tmp2.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.7926292Z } 2023-01-11T21:41:26.7926459Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7926631Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.7926759Z { 2023-01-11T21:41:26.7926932Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.7927199Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7927379Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7927549Z out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.7927664Z } 2023-01-11T21:41:26.7927791Z } 2023-01-11T21:41:26.7927915Z } 2023-01-11T21:41:26.7928098Z ''') 2023-01-11T21:41:26.7928110Z 2023-01-11T21:41:26.7928119Z 2023-01-11T21:41:26.7928302Z async_compile.wait(globals()) 2023-01-11T21:41:26.7928446Z del async_compile 2023-01-11T21:41:26.7928460Z 2023-01-11T21:41:26.7928604Z def call(args): 2023-01-11T21:41:26.7928732Z arg0_1, = args 2023-01-11T21:41:26.7928871Z args.clear() 2023-01-11T21:41:26.7929418Z buf0 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7929800Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7930191Z buf3 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7930581Z buf5 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7930944Z kernel_cpp_0(c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:41:26.7931132Z return (buf0, buf1, buf3, buf5, ) 2023-01-11T21:41:26.7931145Z 2023-01-11T21:41:26.7931152Z 2023-01-11T21:41:26.7931284Z if __name__ == "__main__": 2023-01-11T21:41:26.7931507Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7931755Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7932146Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7932360Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7932369Z 2023-01-11T21:41:26.7932504Z ok (1.710s) 2023-01-11T21:41:26.7933173Z test_slice_mutation2_cpu (__main__.CpuTests) ... [2023-01-11 21:38:05,920] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 431 2023-01-11T21:41:26.7933716Z [2023-01-11 21:38:07,463] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 431 2023-01-11T21:41:26.7933731Z 2023-01-11T21:41:26.7933916Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7934035Z import torch 2023-01-11T21:41:26.7934178Z import random 2023-01-11T21:41:26.7934415Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7934660Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7934669Z 2023-01-11T21:41:26.7934829Z aten = torch.ops.aten 2023-01-11T21:41:26.7935088Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7935270Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7935280Z 2023-01-11T21:41:26.7935287Z 2023-01-11T21:41:26.7935564Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7935933Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7936179Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7936381Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7936571Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7936896Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.7937023Z { 2023-01-11T21:41:26.7937226Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7937337Z { 2023-01-11T21:41:26.7937493Z #pragma omp for 2023-01-11T21:41:26.7937657Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7937790Z { 2023-01-11T21:41:26.7938077Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 20 + (8*i0)); 2023-01-11T21:41:26.7938338Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.7938512Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7938670Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7938807Z } 2023-01-11T21:41:26.7939001Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7939261Z for(long i0=16; i0<20; i0+=1) 2023-01-11T21:41:26.7939403Z { 2023-01-11T21:41:26.7939585Z auto tmp0 = in_ptr0[20 + i0]; 2023-01-11T21:41:26.7939797Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.7939949Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7940113Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.7940245Z } 2023-01-11T21:41:26.7940405Z #pragma omp for 2023-01-11T21:41:26.7940568Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.7940703Z { 2023-01-11T21:41:26.7940960Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7941137Z tmp0.store(out_ptr1 + 20 + (8*i0)); 2023-01-11T21:41:26.7941264Z } 2023-01-11T21:41:26.7941461Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7941628Z for(long i0=16; i0<20; i0+=1) 2023-01-11T21:41:26.7941754Z { 2023-01-11T21:41:26.7941924Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.7942087Z out_ptr1[20 + i0] = tmp0; 2023-01-11T21:41:26.7942200Z } 2023-01-11T21:41:26.7942352Z #pragma omp for 2023-01-11T21:41:26.7942521Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.7942650Z { 2023-01-11T21:41:26.7942920Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 1 + (8*i0)); 2023-01-11T21:41:26.7943278Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.7943463Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7943625Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.7943756Z } 2023-01-11T21:41:26.7943952Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7944115Z for(long i0=8; i0<9; i0+=1) 2023-01-11T21:41:26.7944246Z { 2023-01-11T21:41:26.7944423Z auto tmp0 = out_ptr1[1 + i0]; 2023-01-11T21:41:26.7944620Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.7944782Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7944943Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.7945071Z } 2023-01-11T21:41:26.7945237Z #pragma omp for 2023-01-11T21:41:26.7945398Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.7945529Z { 2023-01-11T21:41:26.7945791Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + 8*i0); 2023-01-11T21:41:26.7945964Z tmp0.store(out_ptr1 + 2 + (8*i0)); 2023-01-11T21:41:26.7946092Z } 2023-01-11T21:41:26.7946275Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7946443Z for(long i0=8; i0<9; i0+=1) 2023-01-11T21:41:26.7946573Z { 2023-01-11T21:41:26.7946749Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:41:26.7946909Z out_ptr1[2 + i0] = tmp0; 2023-01-11T21:41:26.7947024Z } 2023-01-11T21:41:26.7947148Z } 2023-01-11T21:41:26.7947268Z } 2023-01-11T21:41:26.7947469Z ''') 2023-01-11T21:41:26.7947481Z 2023-01-11T21:41:26.7947488Z 2023-01-11T21:41:26.7947674Z async_compile.wait(globals()) 2023-01-11T21:41:26.7947830Z del async_compile 2023-01-11T21:41:26.7947840Z 2023-01-11T21:41:26.7948090Z def call(args): 2023-01-11T21:41:26.7948218Z arg0_1, = args 2023-01-11T21:41:26.7948358Z args.clear() 2023-01-11T21:41:26.7948764Z buf0 = empty_strided((1, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7949153Z buf2 = empty_strided((1, 9), (9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7949510Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.7949649Z del arg0_1 2023-01-11T21:41:26.7949778Z return () 2023-01-11T21:41:26.7949787Z 2023-01-11T21:41:26.7949795Z 2023-01-11T21:41:26.7949943Z if __name__ == "__main__": 2023-01-11T21:41:26.7950151Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7950396Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7950881Z arg0_1 = rand_strided((1, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7951108Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.7951126Z 2023-01-11T21:41:26.7951271Z ok (1.579s) 2023-01-11T21:41:26.7952187Z test_slice_scatter2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7952429Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7952958Z [2023-01-11 21:38:07,492] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 432 2023-01-11T21:41:26.7953487Z [2023-01-11 21:38:09,028] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 432 2023-01-11T21:41:26.7953497Z 2023-01-11T21:41:26.7953663Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7953815Z import torch 2023-01-11T21:41:26.7953957Z import random 2023-01-11T21:41:26.7954195Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7954431Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7954442Z 2023-01-11T21:41:26.7954599Z aten = torch.ops.aten 2023-01-11T21:41:26.7954857Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7955023Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7955055Z 2023-01-11T21:41:26.7955062Z 2023-01-11T21:41:26.7955328Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7955708Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7955950Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7956151Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.7956283Z { 2023-01-11T21:41:26.7956483Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7956602Z { 2023-01-11T21:41:26.7956746Z #pragma omp for 2023-01-11T21:41:26.7956914Z for(long i0=0; i0<75648; i0+=1) 2023-01-11T21:41:26.7957039Z { 2023-01-11T21:41:26.7957314Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.7957485Z tmp0.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.7957618Z } 2023-01-11T21:41:26.7957811Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.7957976Z for(long i0=605184; i0<605184; i0+=1) 2023-01-11T21:41:26.7958104Z { 2023-01-11T21:41:26.7958274Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.7958437Z out_ptr0[i0] = tmp0; 2023-01-11T21:41:26.7958563Z } 2023-01-11T21:41:26.7958692Z } 2023-01-11T21:41:26.7958815Z } 2023-01-11T21:41:26.7958972Z ''') 2023-01-11T21:41:26.7958982Z 2023-01-11T21:41:26.7958988Z 2023-01-11T21:41:26.7959172Z async_compile.wait(globals()) 2023-01-11T21:41:26.7959318Z del async_compile 2023-01-11T21:41:26.7959329Z 2023-01-11T21:41:26.7959588Z def call(args): 2023-01-11T21:41:26.7959743Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7959892Z args.clear() 2023-01-11T21:41:26.7960333Z buf0 = empty_strided((8, 197, 384), (75648, 384, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7960577Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.7960714Z del arg1_1 2023-01-11T21:41:26.7960856Z return (buf0, ) 2023-01-11T21:41:26.7960868Z 2023-01-11T21:41:26.7960876Z 2023-01-11T21:41:26.7961026Z if __name__ == "__main__": 2023-01-11T21:41:26.7961252Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7961495Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7961926Z arg0_1 = rand_strided((8, 197, 384), (75648, 384, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7962424Z arg1_1 = rand_strided((8, 197, 384), (75648, 384, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7962635Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7962667Z 2023-01-11T21:41:26.7962789Z ok (1.582s) 2023-01-11T21:41:26.7963655Z test_slice_scatter_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7963854Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7964285Z [2023-01-11 21:38:09,081] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 433 2023-01-11T21:41:26.7964717Z [2023-01-11 21:38:10,600] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 433 2023-01-11T21:41:26.7964726Z 2023-01-11T21:41:26.7964868Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7964979Z import torch 2023-01-11T21:41:26.7965086Z import random 2023-01-11T21:41:26.7965247Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7965427Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7965435Z 2023-01-11T21:41:26.7965551Z aten = torch.ops.aten 2023-01-11T21:41:26.7965750Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7965888Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7965896Z 2023-01-11T21:41:26.7965903Z 2023-01-11T21:41:26.7966113Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7966412Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7966590Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7966749Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7966884Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7967030Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.7967125Z { 2023-01-11T21:41:26.7967272Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7967365Z { 2023-01-11T21:41:26.7967482Z #pragma omp for 2023-01-11T21:41:26.7967591Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.7967685Z { 2023-01-11T21:41:26.7967805Z #pragma GCC ivdep 2023-01-11T21:41:26.7967933Z for(long i1=0; i1<100; i1+=1) 2023-01-11T21:41:26.7968029Z { 2023-01-11T21:41:26.7968128Z { 2023-01-11T21:41:26.7968228Z { 2023-01-11T21:41:26.7968373Z auto tmp8 = in_ptr1[i1 + (100*i0)]; 2023-01-11T21:41:26.7968529Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.7968684Z auto tmp1 = static_cast(10); 2023-01-11T21:41:26.7968828Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.7969128Z auto tmp3 = static_cast(90); 2023-01-11T21:41:26.7969388Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.7969529Z auto tmp5 = tmp2 & tmp4; 2023-01-11T21:41:26.7969643Z float tmp6 = 0.0; 2023-01-11T21:41:26.7969756Z if(tmp5) 2023-01-11T21:41:26.7969858Z { 2023-01-11T21:41:26.7970132Z auto tmp7 = in_ptr0[(-10) + i1 + (80*i0)]; 2023-01-11T21:41:26.7970350Z tmp6 = tmp7; 2023-01-11T21:41:26.7970441Z } 2023-01-11T21:41:26.7970573Z auto tmp9 = tmp5 ? tmp6 : tmp8; 2023-01-11T21:41:26.7970722Z auto tmp10 = static_cast(i1 % 2); 2023-01-11T21:41:26.7970845Z auto tmp11 = static_cast(0); 2023-01-11T21:41:26.7971013Z auto tmp12 = tmp10 == tmp11; 2023-01-11T21:41:26.7971139Z auto tmp13 = tmp5 & tmp12; 2023-01-11T21:41:26.7971256Z float tmp14 = 0.0; 2023-01-11T21:41:26.7971356Z if(tmp13) 2023-01-11T21:41:26.7971451Z { 2023-01-11T21:41:26.7971695Z auto tmp15 = in_ptr0[(-5) + (80*i0) + (i1 / 2)]; 2023-01-11T21:41:26.7971792Z tmp14 = tmp15; 2023-01-11T21:41:26.7971881Z } 2023-01-11T21:41:26.7972016Z auto tmp16 = tmp13 ? tmp14 : tmp8; 2023-01-11T21:41:26.7972143Z out_ptr0[i1 + (100*i0)] = tmp9; 2023-01-11T21:41:26.7972269Z out_ptr1[i1 + (100*i0)] = tmp16; 2023-01-11T21:41:26.7972356Z } 2023-01-11T21:41:26.7972442Z } 2023-01-11T21:41:26.7972513Z } 2023-01-11T21:41:26.7972596Z } 2023-01-11T21:41:26.7972677Z } 2023-01-11T21:41:26.7972759Z } 2023-01-11T21:41:26.7972865Z ''') 2023-01-11T21:41:26.7972872Z 2023-01-11T21:41:26.7972877Z 2023-01-11T21:41:26.7972997Z async_compile.wait(globals()) 2023-01-11T21:41:26.7973093Z del async_compile 2023-01-11T21:41:26.7973099Z 2023-01-11T21:41:26.7973178Z def call(args): 2023-01-11T21:41:26.7973276Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.7973369Z args.clear() 2023-01-11T21:41:26.7973658Z buf0 = empty_strided((4, 8, 100), (800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7973943Z buf1 = empty_strided((4, 8, 100), (800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7974190Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.7974280Z del arg0_1 2023-01-11T21:41:26.7974356Z del arg1_1 2023-01-11T21:41:26.7974458Z return (buf0, buf1, ) 2023-01-11T21:41:26.7974465Z 2023-01-11T21:41:26.7974470Z 2023-01-11T21:41:26.7974573Z if __name__ == "__main__": 2023-01-11T21:41:26.7974721Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.7974881Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.7975174Z arg0_1 = rand_strided((4, 8, 100), (800, 100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7975457Z arg1_1 = rand_strided((4, 8, 80), (640, 80, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.7975608Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.7975615Z 2023-01-11T21:41:26.7975703Z ok (1.556s) 2023-01-11T21:41:26.7976298Z test_softmax_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.7976465Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.7976820Z [2023-01-11 21:38:10,645] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 434 2023-01-11T21:41:26.7976864Z 2023-01-11T21:41:26.7976990Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.7977083Z import torch 2023-01-11T21:41:26.7977175Z import random 2023-01-11T21:41:26.7977326Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.7977484Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.7977491Z 2023-01-11T21:41:26.7977591Z aten = torch.ops.aten 2023-01-11T21:41:26.7977753Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.7977873Z async_compile = AsyncCompile() 2023-01-11T21:41:26.7977880Z 2023-01-11T21:41:26.7977885Z 2023-01-11T21:41:26.7978067Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.7978362Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.7978519Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.7978652Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.7978787Z float* __restrict__ in_out_ptr2, 2023-01-11T21:41:26.7978922Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.7979045Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.7979173Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.7979301Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.7979424Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.7979547Z float* __restrict__ out_ptr6, 2023-01-11T21:41:26.7979670Z float* __restrict__ out_ptr7, 2023-01-11T21:41:26.7979793Z float* __restrict__ out_ptr8) 2023-01-11T21:41:26.7979859Z { 2023-01-11T21:41:26.7979973Z auto out_ptr3 = in_out_ptr0; 2023-01-11T21:41:26.7980088Z auto out_ptr4 = in_out_ptr1; 2023-01-11T21:41:26.7980205Z auto out_ptr5 = in_out_ptr2; 2023-01-11T21:41:26.7980338Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.7980418Z { 2023-01-11T21:41:26.7980519Z #pragma omp for 2023-01-11T21:41:26.7980616Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7980698Z { 2023-01-11T21:41:26.7980781Z { 2023-01-11T21:41:26.7981308Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.7981617Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7981775Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.7982058Z float tmp4 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7982223Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:41:26.7982326Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.7982412Z { 2023-01-11T21:41:26.7982604Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7982791Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7982912Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7983066Z tmp3_vec = at::vec::maximum(tmp3_vec, tmp2); 2023-01-11T21:41:26.7983287Z tmp4_vec = at::vec::maximum(tmp4_vec, tmp1); 2023-01-11T21:41:26.7983374Z } 2023-01-11T21:41:26.7983640Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp3_vec); 2023-01-11T21:41:26.7983913Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp4_vec); 2023-01-11T21:41:26.7984106Z #pragma omp simd simdlen(4) reduction(max:tmp3) reduction(max:tmp4) 2023-01-11T21:41:26.7984260Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.7984348Z { 2023-01-11T21:41:26.7984478Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.7984605Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.7984726Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7984860Z tmp3 = std::max(tmp3, tmp2); 2023-01-11T21:41:26.7984977Z tmp4 = std::max(tmp4, tmp1); 2023-01-11T21:41:26.7985061Z } 2023-01-11T21:41:26.7985171Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.7985282Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.7985367Z } 2023-01-11T21:41:26.7985449Z } 2023-01-11T21:41:26.7985536Z #pragma omp for 2023-01-11T21:41:26.7985676Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7985762Z { 2023-01-11T21:41:26.7985845Z { 2023-01-11T21:41:26.7985933Z { 2023-01-11T21:41:26.7986229Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.7986347Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7986421Z { 2023-01-11T21:41:26.7986512Z { 2023-01-11T21:41:26.7986645Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.7986783Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:41:26.7986872Z } 2023-01-11T21:41:26.7986961Z } 2023-01-11T21:41:26.7987072Z out_ptr2[i0] = tmp1; 2023-01-11T21:41:26.7987144Z } 2023-01-11T21:41:26.7987229Z } 2023-01-11T21:41:26.7987315Z } 2023-01-11T21:41:26.7987415Z #pragma omp for 2023-01-11T21:41:26.7987524Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7987607Z { 2023-01-11T21:41:26.7987694Z { 2023-01-11T21:41:26.7987931Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.7988038Z float tmp12 = 0; 2023-01-11T21:41:26.7988199Z auto tmp12_vec = at::vec::Vectorized(tmp12); 2023-01-11T21:41:26.7988312Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.7988397Z { 2023-01-11T21:41:26.7988584Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7988765Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7988931Z auto tmp3 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.7989106Z auto tmp6 = at::vec::Vectorized::loadu(out_ptr2 + 8*i1); 2023-01-11T21:41:26.7989261Z auto tmp9 = at::vec::Vectorized(out_ptr1[i0]); 2023-01-11T21:41:26.7989379Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7989564Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.7989689Z auto tmp5 = tmp4.exp(); 2023-01-11T21:41:26.7989869Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:41:26.7989987Z auto tmp8 = tmp7.exp(); 2023-01-11T21:41:26.7990173Z auto tmp10 = tmp1 - tmp9; 2023-01-11T21:41:26.7990279Z auto tmp11 = tmp10.exp(); 2023-01-11T21:41:26.7990414Z tmp5.store(out_ptr3 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7990550Z tmp8.store(out_ptr4 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7990688Z tmp11.store(out_ptr5 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7990795Z tmp12_vec += tmp5; 2023-01-11T21:41:26.7990883Z } 2023-01-11T21:41:26.7991144Z tmp12 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp12_vec); 2023-01-11T21:41:26.7991337Z #pragma omp simd simdlen(4) reduction(+:tmp12) 2023-01-11T21:41:26.7991438Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.7991522Z { 2023-01-11T21:41:26.7991650Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.7991774Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.7991893Z auto tmp3 = out_ptr0[i0]; 2023-01-11T21:41:26.7992014Z auto tmp6 = out_ptr2[i1]; 2023-01-11T21:41:26.7992131Z auto tmp9 = out_ptr1[i0]; 2023-01-11T21:41:26.7992237Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.7992423Z auto tmp4 = tmp2 - tmp3; 2023-01-11T21:41:26.7992554Z auto tmp5 = std::exp(tmp4); 2023-01-11T21:41:26.7992771Z auto tmp7 = tmp0 - tmp6; 2023-01-11T21:41:26.7992904Z auto tmp8 = std::exp(tmp7); 2023-01-11T21:41:26.7993088Z auto tmp10 = tmp1 - tmp9; 2023-01-11T21:41:26.7993222Z auto tmp11 = std::exp(tmp10); 2023-01-11T21:41:26.7993327Z out_ptr3[i1 + (8*i0)] = tmp5; 2023-01-11T21:41:26.7993445Z out_ptr4[i1 + (8*i0)] = tmp8; 2023-01-11T21:41:26.7993565Z out_ptr5[i1 + (8*i0)] = tmp11; 2023-01-11T21:41:26.7993667Z tmp12 += tmp5; 2023-01-11T21:41:26.7993753Z } 2023-01-11T21:41:26.7993859Z out_ptr6[i0] = tmp12; 2023-01-11T21:41:26.7993944Z } 2023-01-11T21:41:26.7994012Z } 2023-01-11T21:41:26.7994113Z #pragma omp for 2023-01-11T21:41:26.7994219Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7994303Z { 2023-01-11T21:41:26.7994414Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.7994498Z { 2023-01-11T21:41:26.7994686Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr3 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7994841Z auto tmp1 = at::vec::Vectorized(out_ptr6[i0]); 2023-01-11T21:41:26.7994955Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7995092Z tmp2.store(in_out_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7995176Z } 2023-01-11T21:41:26.7995296Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7995404Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.7995488Z { 2023-01-11T21:41:26.7995601Z auto tmp0 = out_ptr3[i1 + (8*i0)]; 2023-01-11T21:41:26.7995716Z auto tmp1 = out_ptr6[i0]; 2023-01-11T21:41:26.7995831Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7995954Z in_out_ptr0[i1 + (8*i0)] = tmp2; 2023-01-11T21:41:26.7996036Z } 2023-01-11T21:41:26.7996120Z } 2023-01-11T21:41:26.7996221Z #pragma omp for 2023-01-11T21:41:26.7996318Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7996399Z { 2023-01-11T21:41:26.7996482Z { 2023-01-11T21:41:26.7996570Z { 2023-01-11T21:41:26.7996675Z float tmp1 = 0; 2023-01-11T21:41:26.7996794Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.7996884Z { 2023-01-11T21:41:26.7996962Z { 2023-01-11T21:41:26.7997096Z auto tmp0 = out_ptr4[i0 + (8*i1)]; 2023-01-11T21:41:26.7997203Z tmp1 += tmp0; 2023-01-11T21:41:26.7997293Z } 2023-01-11T21:41:26.7997381Z } 2023-01-11T21:41:26.7997491Z out_ptr7[i0] = tmp1; 2023-01-11T21:41:26.7997578Z } 2023-01-11T21:41:26.7997649Z } 2023-01-11T21:41:26.7997731Z } 2023-01-11T21:41:26.7997834Z #pragma omp for 2023-01-11T21:41:26.7997942Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.7998025Z { 2023-01-11T21:41:26.7998134Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.7998241Z { 2023-01-11T21:41:26.7998426Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr4 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7998603Z auto tmp1 = at::vec::Vectorized::loadu(out_ptr7 + 8*i1); 2023-01-11T21:41:26.7998719Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7998854Z tmp2.store(in_out_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.7998939Z } 2023-01-11T21:41:26.7999059Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.7999168Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.7999238Z { 2023-01-11T21:41:26.7999361Z auto tmp0 = out_ptr4[i1 + (8*i0)]; 2023-01-11T21:41:26.7999476Z auto tmp1 = out_ptr7[i1]; 2023-01-11T21:41:26.7999588Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.7999740Z in_out_ptr1[i1 + (8*i0)] = tmp2; 2023-01-11T21:41:26.7999828Z } 2023-01-11T21:41:26.7999912Z } 2023-01-11T21:41:26.8000002Z #pragma omp for 2023-01-11T21:41:26.8000108Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8000192Z { 2023-01-11T21:41:26.8000275Z { 2023-01-11T21:41:26.8000521Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8000624Z float tmp1 = 0; 2023-01-11T21:41:26.8000784Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8000886Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8000972Z { 2023-01-11T21:41:26.8001158Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr5 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8001268Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8001355Z } 2023-01-11T21:41:26.8001615Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8001775Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8001889Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8001961Z { 2023-01-11T21:41:26.8002090Z auto tmp0 = out_ptr5[i1 + (8*i0)]; 2023-01-11T21:41:26.8002192Z tmp1 += tmp0; 2023-01-11T21:41:26.8002277Z } 2023-01-11T21:41:26.8002385Z out_ptr8[i0] = tmp1; 2023-01-11T21:41:26.8002469Z } 2023-01-11T21:41:26.8002550Z } 2023-01-11T21:41:26.8002637Z #pragma omp for 2023-01-11T21:41:26.8002743Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8002827Z { 2023-01-11T21:41:26.8002934Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8003020Z { 2023-01-11T21:41:26.8003207Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr5 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8003374Z auto tmp1 = at::vec::Vectorized(out_ptr8[i0]); 2023-01-11T21:41:26.8003478Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8003617Z tmp2.store(in_out_ptr2 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8003699Z } 2023-01-11T21:41:26.8003821Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.8003928Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8004011Z { 2023-01-11T21:41:26.8004136Z auto tmp0 = out_ptr5[i1 + (8*i0)]; 2023-01-11T21:41:26.8004240Z auto tmp1 = out_ptr8[i0]; 2023-01-11T21:41:26.8004354Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8004474Z in_out_ptr2[i1 + (8*i0)] = tmp2; 2023-01-11T21:41:26.8004558Z } 2023-01-11T21:41:26.8004642Z } 2023-01-11T21:41:26.8004723Z } 2023-01-11T21:41:26.8004801Z } 2023-01-11T21:41:26.8004901Z ''') 2023-01-11T21:41:26.8004909Z 2023-01-11T21:41:26.8004914Z 2023-01-11T21:41:26.8005030Z async_compile.wait(globals()) 2023-01-11T21:41:26.8005163Z del async_compile 2023-01-11T21:41:26.8005170Z 2023-01-11T21:41:26.8005260Z def call(args): 2023-01-11T21:41:26.8005358Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8005450Z args.clear() 2023-01-11T21:41:26.8005720Z buf0 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8005974Z buf8 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8006233Z buf4 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8006494Z buf1 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8006751Z buf5 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8007006Z buf9 = empty_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8007299Z buf2 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8007417Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.8007676Z buf6 = empty_strided((1, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8007774Z buf7 = buf5; del buf5 # reuse 2023-01-11T21:41:26.8008038Z buf10 = empty_strided((8, 1), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8008150Z buf11 = buf9; del buf9 # reuse 2023-01-11T21:41:26.8008611Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf11.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf10.data_ptr())) 2023-01-11T21:41:26.8008704Z del arg0_1 2023-01-11T21:41:26.8008791Z del arg1_1 2023-01-11T21:41:26.8008903Z return (buf3, buf7, buf11, ) 2023-01-11T21:41:26.8008910Z 2023-01-11T21:41:26.8008915Z 2023-01-11T21:41:26.8009139Z if __name__ == "__main__": 2023-01-11T21:41:26.8009280Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8009445Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8009712Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8009980Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8010134Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8010481Z [2023-01-11 21:38:12,283] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 434 2023-01-11T21:41:26.8010487Z 2023-01-11T21:41:26.8010555Z ok (1.683s) 2023-01-11T21:41:26.8011034Z test_softmax_one_kernel_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8011166Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8011427Z [2023-01-11 21:38:12,308] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 435 2023-01-11T21:41:26.8011681Z [2023-01-11 21:38:13,834] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 435 2023-01-11T21:41:26.8011698Z 2023-01-11T21:41:26.8011777Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8011845Z import torch 2023-01-11T21:41:26.8011913Z import random 2023-01-11T21:41:26.8012023Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8012143Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8012148Z 2023-01-11T21:41:26.8012223Z aten = torch.ops.aten 2023-01-11T21:41:26.8012356Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8012434Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8012439Z 2023-01-11T21:41:26.8012503Z 2023-01-11T21:41:26.8012640Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8012843Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8012958Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8013063Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8013160Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8013255Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.8013316Z { 2023-01-11T21:41:26.8013388Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.8013483Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8013546Z { 2023-01-11T21:41:26.8013622Z #pragma omp for 2023-01-11T21:41:26.8013703Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.8013766Z { 2023-01-11T21:41:26.8013851Z { 2023-01-11T21:41:26.8014235Z #pragma omp declare reduction(max:at::vec::Vectorized:omp_out = at::vec::maximum(omp_out, omp_in)) initializer(omp_priv={{-std::numeric_limits::infinity()}}) 2023-01-11T21:41:26.8014455Z float tmp1 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.8014576Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8014664Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8014727Z { 2023-01-11T21:41:26.8014868Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8014983Z tmp1_vec = at::vec::maximum(tmp1_vec, tmp0); 2023-01-11T21:41:26.8015046Z } 2023-01-11T21:41:26.8015245Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return at::vec::maximum(x, y);}, tmp1_vec); 2023-01-11T21:41:26.8015365Z #pragma omp simd simdlen(4) reduction(max:tmp1) 2023-01-11T21:41:26.8015451Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.8015518Z { 2023-01-11T21:41:26.8015615Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.8015713Z tmp1 = std::max(tmp1, tmp0); 2023-01-11T21:41:26.8015774Z } 2023-01-11T21:41:26.8015853Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.8015902Z } 2023-01-11T21:41:26.8015962Z } 2023-01-11T21:41:26.8016036Z #pragma omp for 2023-01-11T21:41:26.8016114Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.8016174Z { 2023-01-11T21:41:26.8016233Z { 2023-01-11T21:41:26.8016406Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8016482Z float tmp4 = 0; 2023-01-11T21:41:26.8016600Z auto tmp4_vec = at::vec::Vectorized(tmp4); 2023-01-11T21:41:26.8016688Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8016775Z { 2023-01-11T21:41:26.8016913Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8017035Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.8017123Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8017200Z auto tmp3 = tmp2.exp(); 2023-01-11T21:41:26.8017301Z tmp3.store(out_ptr1 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8017381Z tmp4_vec += tmp3; 2023-01-11T21:41:26.8017442Z } 2023-01-11T21:41:26.8017634Z tmp4 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp4_vec); 2023-01-11T21:41:26.8017753Z #pragma omp simd simdlen(4) reduction(+:tmp4) 2023-01-11T21:41:26.8017840Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.8017901Z { 2023-01-11T21:41:26.8018032Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.8018124Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:41:26.8018213Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8018310Z auto tmp3 = std::exp(tmp2); 2023-01-11T21:41:26.8018400Z out_ptr1[i1 + (32*i0)] = tmp3; 2023-01-11T21:41:26.8018475Z tmp4 += tmp3; 2023-01-11T21:41:26.8018536Z } 2023-01-11T21:41:26.8018603Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.8018665Z } 2023-01-11T21:41:26.8018725Z } 2023-01-11T21:41:26.8018798Z #pragma omp for 2023-01-11T21:41:26.8018877Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.8018936Z { 2023-01-11T21:41:26.8019018Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8019096Z { 2023-01-11T21:41:26.8019237Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8019364Z auto tmp1 = at::vec::Vectorized(out_ptr2[i0]); 2023-01-11T21:41:26.8019449Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8019553Z tmp2.store(in_out_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8019615Z } 2023-01-11T21:41:26.8019703Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.8019776Z for(long i1=32; i1<32; i1+=1) 2023-01-11T21:41:26.8019836Z { 2023-01-11T21:41:26.8019929Z auto tmp0 = out_ptr1[i1 + (32*i0)]; 2023-01-11T21:41:26.8020012Z auto tmp1 = out_ptr2[i0]; 2023-01-11T21:41:26.8020095Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8020186Z in_out_ptr0[i1 + (32*i0)] = tmp2; 2023-01-11T21:41:26.8020247Z } 2023-01-11T21:41:26.8020296Z } 2023-01-11T21:41:26.8020357Z } 2023-01-11T21:41:26.8020414Z } 2023-01-11T21:41:26.8020495Z ''') 2023-01-11T21:41:26.8020500Z 2023-01-11T21:41:26.8020506Z 2023-01-11T21:41:26.8020593Z async_compile.wait(globals()) 2023-01-11T21:41:26.8020663Z del async_compile 2023-01-11T21:41:26.8020668Z 2023-01-11T21:41:26.8020736Z def call(args): 2023-01-11T21:41:26.8020792Z arg0_1, = args 2023-01-11T21:41:26.8020860Z args.clear() 2023-01-11T21:41:26.8021059Z buf0 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8021257Z buf1 = empty_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8021450Z buf2 = empty_strided((16, 1), (1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8021532Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.8021716Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8021783Z del arg0_1 2023-01-11T21:41:26.8021843Z return (buf3, ) 2023-01-11T21:41:26.8021848Z 2023-01-11T21:41:26.8021852Z 2023-01-11T21:41:26.8021926Z if __name__ == "__main__": 2023-01-11T21:41:26.8022040Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8022160Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8022357Z arg0_1 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8022462Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8022467Z 2023-01-11T21:41:26.8022532Z ok (1.551s) 2023-01-11T21:41:26.8022996Z test_sort_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8023195Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8023457Z [2023-01-11 21:38:13,850] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 436 2023-01-11T21:41:26.8023713Z [2023-01-11 21:38:13,855] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.sort 2023-01-11T21:41:26.8023975Z [2023-01-11 21:38:13,859] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 436 2023-01-11T21:41:26.8023980Z 2023-01-11T21:41:26.8024074Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8024143Z import torch 2023-01-11T21:41:26.8024214Z import random 2023-01-11T21:41:26.8024327Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8024446Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8024451Z 2023-01-11T21:41:26.8024516Z aten = torch.ops.aten 2023-01-11T21:41:26.8024649Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8024768Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8024773Z 2023-01-11T21:41:26.8024778Z 2023-01-11T21:41:26.8024866Z async_compile.wait(globals()) 2023-01-11T21:41:26.8024938Z del async_compile 2023-01-11T21:41:26.8024943Z 2023-01-11T21:41:26.8025011Z def call(args): 2023-01-11T21:41:26.8025079Z arg0_1, = args 2023-01-11T21:41:26.8025147Z args.clear() 2023-01-11T21:41:26.8025215Z buf0 = aten.sort(arg0_1) 2023-01-11T21:41:26.8025279Z del arg0_1 2023-01-11T21:41:26.8025345Z buf1 = buf0[0] 2023-01-11T21:41:26.8025450Z assert_size_stride(buf1, (1, 1, 8, 8), (64, 64, 8, 1)) 2023-01-11T21:41:26.8025516Z buf2 = buf0[1] 2023-01-11T21:41:26.8025617Z assert_size_stride(buf2, (1, 1, 8, 8), (64, 64, 8, 1)) 2023-01-11T21:41:26.8025679Z del buf0 2023-01-11T21:41:26.8025743Z return (buf1, buf2, ) 2023-01-11T21:41:26.8025748Z 2023-01-11T21:41:26.8025752Z 2023-01-11T21:41:26.8025825Z if __name__ == "__main__": 2023-01-11T21:41:26.8025934Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8026056Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8026268Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8026375Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8026380Z 2023-01-11T21:41:26.8026445Z ok (0.023s) 2023-01-11T21:41:26.8026906Z test_split_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8027031Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8027275Z [2023-01-11 21:38:13,880] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 437 2023-01-11T21:41:26.8027539Z [2023-01-11 21:38:13,884] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 437 2023-01-11T21:41:26.8027965Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8028087Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8028342Z [2023-01-11 21:38:13,908] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 438 2023-01-11T21:41:26.8028604Z [2023-01-11 21:38:15,401] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 438 2023-01-11T21:41:26.8028610Z 2023-01-11T21:41:26.8028702Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8028771Z import torch 2023-01-11T21:41:26.8028839Z import random 2023-01-11T21:41:26.8028940Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8029093Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8029098Z 2023-01-11T21:41:26.8029175Z aten = torch.ops.aten 2023-01-11T21:41:26.8029306Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8029395Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8029400Z 2023-01-11T21:41:26.8029405Z 2023-01-11T21:41:26.8029490Z async_compile.wait(globals()) 2023-01-11T21:41:26.8029561Z del async_compile 2023-01-11T21:41:26.8029566Z 2023-01-11T21:41:26.8029634Z def call(args): 2023-01-11T21:41:26.8029689Z arg0_1, = args 2023-01-11T21:41:26.8029758Z args.clear() 2023-01-11T21:41:26.8029949Z return (as_strided(arg0_1, (2, 2, 3), (20, 10, 1)), as_strided(arg0_1, (2, 2, 3), (20, 10, 1), 3), as_strided(arg0_1, (2, 2, 3), (20, 10, 1), 6), as_strided(arg0_1, (2, 2, 1), (20, 10, 1), 9), ) 2023-01-11T21:41:26.8030008Z 2023-01-11T21:41:26.8030013Z 2023-01-11T21:41:26.8030088Z if __name__ == "__main__": 2023-01-11T21:41:26.8030200Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8030320Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8030527Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8030634Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8030639Z 2023-01-11T21:41:26.8030644Z 2023-01-11T21:41:26.8030734Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8030789Z import torch 2023-01-11T21:41:26.8030857Z import random 2023-01-11T21:41:26.8030966Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8031082Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8031087Z 2023-01-11T21:41:26.8031162Z aten = torch.ops.aten 2023-01-11T21:41:26.8031293Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8031384Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8031389Z 2023-01-11T21:41:26.8031393Z 2023-01-11T21:41:26.8031527Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8031722Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8031837Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8031936Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8031995Z { 2023-01-11T21:41:26.8032090Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8032152Z { 2023-01-11T21:41:26.8032227Z #pragma omp for 2023-01-11T21:41:26.8032295Z for(long i0=0; i0<5; i0+=1) 2023-01-11T21:41:26.8032354Z { 2023-01-11T21:41:26.8032488Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8032618Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8032703Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8032792Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8032854Z } 2023-01-11T21:41:26.8032937Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8033017Z for(long i0=40; i0<40; i0+=1) 2023-01-11T21:41:26.8033078Z { 2023-01-11T21:41:26.8033157Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8033253Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8033334Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8033411Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8033462Z } 2023-01-11T21:41:26.8033523Z } 2023-01-11T21:41:26.8033581Z } 2023-01-11T21:41:26.8033660Z ''') 2023-01-11T21:41:26.8033665Z 2023-01-11T21:41:26.8033670Z 2023-01-11T21:41:26.8033755Z async_compile.wait(globals()) 2023-01-11T21:41:26.8033824Z del async_compile 2023-01-11T21:41:26.8033829Z 2023-01-11T21:41:26.8033896Z def call(args): 2023-01-11T21:41:26.8033952Z arg0_1, = args 2023-01-11T21:41:26.8034021Z args.clear() 2023-01-11T21:41:26.8034227Z buf0 = empty_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8034392Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8034459Z del arg0_1 2023-01-11T21:41:26.8034646Z return (as_strided(buf0, (2, 2, 3), (20, 10, 1)), as_strided(buf0, (2, 2, 3), (20, 10, 1), 3), as_strided(buf0, (2, 2, 3), (20, 10, 1), 6), as_strided(buf0, (2, 2, 1), (20, 10, 0), 9), ) 2023-01-11T21:41:26.8034652Z 2023-01-11T21:41:26.8034656Z 2023-01-11T21:41:26.8034729Z if __name__ == "__main__": 2023-01-11T21:41:26.8034840Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8034949Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8035155Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8035259Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8035264Z 2023-01-11T21:41:26.8035354Z ok (1.543s) 2023-01-11T21:41:26.8035825Z test_split_with_sizes_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8035952Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8036210Z [2023-01-11 21:38:15,432] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 439 2023-01-11T21:41:26.8036473Z [2023-01-11 21:38:16,971] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 439 2023-01-11T21:41:26.8036898Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8037023Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8037276Z [2023-01-11 21:38:17,001] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 440 2023-01-11T21:41:26.8037528Z [2023-01-11 21:38:18,534] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 440 2023-01-11T21:41:26.8037949Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8038074Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8038326Z [2023-01-11 21:38:18,568] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 441 2023-01-11T21:41:26.8038333Z 2023-01-11T21:41:26.8038425Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8038494Z import torch 2023-01-11T21:41:26.8038562Z import random 2023-01-11T21:41:26.8038675Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8038791Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8038796Z 2023-01-11T21:41:26.8038860Z aten = torch.ops.aten 2023-01-11T21:41:26.8038990Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8039078Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8039083Z 2023-01-11T21:41:26.8039088Z 2023-01-11T21:41:26.8039221Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8039422Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8039540Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8039637Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8039761Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8039840Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.8039898Z { 2023-01-11T21:41:26.8039994Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8040053Z { 2023-01-11T21:41:26.8040128Z #pragma omp for 2023-01-11T21:41:26.8040208Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8040269Z { 2023-01-11T21:41:26.8040335Z #pragma GCC ivdep 2023-01-11T21:41:26.8040414Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8040475Z { 2023-01-11T21:41:26.8040540Z { 2023-01-11T21:41:26.8040604Z { 2023-01-11T21:41:26.8040705Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.8040839Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8040922Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8041027Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8041119Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8041212Z out_ptr0[i1 + (3*i0)] = tmp4; 2023-01-11T21:41:26.8041276Z } 2023-01-11T21:41:26.8041338Z } 2023-01-11T21:41:26.8041399Z } 2023-01-11T21:41:26.8041448Z } 2023-01-11T21:41:26.8041523Z #pragma omp for 2023-01-11T21:41:26.8041602Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8041666Z { 2023-01-11T21:41:26.8041742Z #pragma GCC ivdep 2023-01-11T21:41:26.8041822Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8041871Z { 2023-01-11T21:41:26.8041932Z { 2023-01-11T21:41:26.8041995Z { 2023-01-11T21:41:26.8042099Z auto tmp0 = in_ptr0[3 + i1 + (10*i0)]; 2023-01-11T21:41:26.8042203Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8042295Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8042399Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8042477Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8042568Z out_ptr1[i1 + (3*i0)] = tmp4; 2023-01-11T21:41:26.8042631Z } 2023-01-11T21:41:26.8042692Z } 2023-01-11T21:41:26.8042752Z } 2023-01-11T21:41:26.8042811Z } 2023-01-11T21:41:26.8042885Z #pragma omp for 2023-01-11T21:41:26.8042951Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8043010Z { 2023-01-11T21:41:26.8043088Z #pragma GCC ivdep 2023-01-11T21:41:26.8043167Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8043229Z { 2023-01-11T21:41:26.8043293Z { 2023-01-11T21:41:26.8043361Z { 2023-01-11T21:41:26.8043451Z auto tmp0 = in_ptr0[6 + i1 + (10*i0)]; 2023-01-11T21:41:26.8043554Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8043645Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8043747Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8043836Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8043927Z out_ptr2[i1 + (4*i0)] = tmp4; 2023-01-11T21:41:26.8043989Z } 2023-01-11T21:41:26.8044040Z } 2023-01-11T21:41:26.8044101Z } 2023-01-11T21:41:26.8044160Z } 2023-01-11T21:41:26.8044218Z } 2023-01-11T21:41:26.8044274Z } 2023-01-11T21:41:26.8044356Z ''') 2023-01-11T21:41:26.8044361Z 2023-01-11T21:41:26.8044365Z 2023-01-11T21:41:26.8044453Z async_compile.wait(globals()) 2023-01-11T21:41:26.8044511Z del async_compile 2023-01-11T21:41:26.8044516Z 2023-01-11T21:41:26.8044585Z def call(args): 2023-01-11T21:41:26.8044652Z arg0_1, = args 2023-01-11T21:41:26.8044721Z args.clear() 2023-01-11T21:41:26.8044956Z buf0 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8045156Z buf1 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8045352Z buf2 = empty_strided((2, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8045540Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8045596Z del arg0_1 2023-01-11T21:41:26.8045676Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.8045681Z 2023-01-11T21:41:26.8045685Z 2023-01-11T21:41:26.8045759Z if __name__ == "__main__": 2023-01-11T21:41:26.8045871Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8045991Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8046236Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8046345Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8046352Z 2023-01-11T21:41:26.8046356Z 2023-01-11T21:41:26.8046447Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8046502Z import torch 2023-01-11T21:41:26.8046569Z import random 2023-01-11T21:41:26.8046682Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8046800Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8046805Z 2023-01-11T21:41:26.8046879Z aten = torch.ops.aten 2023-01-11T21:41:26.8047010Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8047101Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8047106Z 2023-01-11T21:41:26.8047110Z 2023-01-11T21:41:26.8047243Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8047437Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8047553Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8047651Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8047752Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8047846Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.8047907Z { 2023-01-11T21:41:26.8048005Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8048054Z { 2023-01-11T21:41:26.8048130Z #pragma omp for 2023-01-11T21:41:26.8048211Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8048273Z { 2023-01-11T21:41:26.8048351Z #pragma GCC ivdep 2023-01-11T21:41:26.8048435Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8048500Z { 2023-01-11T21:41:26.8048552Z { 2023-01-11T21:41:26.8048616Z { 2023-01-11T21:41:26.8048716Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.8048826Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8048917Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8049167Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8049311Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8049440Z out_ptr0[i1 + (4*i0)] = tmp4; 2023-01-11T21:41:26.8049528Z } 2023-01-11T21:41:26.8049597Z } 2023-01-11T21:41:26.8049659Z } 2023-01-11T21:41:26.8049721Z } 2023-01-11T21:41:26.8049797Z #pragma omp for 2023-01-11T21:41:26.8049866Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8049929Z { 2023-01-11T21:41:26.8050009Z #pragma GCC ivdep 2023-01-11T21:41:26.8050092Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8050157Z { 2023-01-11T21:41:26.8050221Z { 2023-01-11T21:41:26.8050287Z { 2023-01-11T21:41:26.8050380Z auto tmp0 = in_ptr0[4 + i1 + (10*i0)]; 2023-01-11T21:41:26.8050487Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8050636Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8050741Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8050833Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8050927Z out_ptr1[i1 + (3*i0)] = tmp4; 2023-01-11T21:41:26.8050993Z } 2023-01-11T21:41:26.8051045Z } 2023-01-11T21:41:26.8051108Z } 2023-01-11T21:41:26.8051170Z } 2023-01-11T21:41:26.8051247Z #pragma omp for 2023-01-11T21:41:26.8051331Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8051392Z { 2023-01-11T21:41:26.8051471Z #pragma GCC ivdep 2023-01-11T21:41:26.8051540Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8051602Z { 2023-01-11T21:41:26.8051701Z { 2023-01-11T21:41:26.8051768Z { 2023-01-11T21:41:26.8051870Z auto tmp0 = in_ptr0[7 + i1 + (10*i0)]; 2023-01-11T21:41:26.8051976Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8052066Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8052158Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8052247Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8052339Z out_ptr2[i1 + (3*i0)] = tmp4; 2023-01-11T21:41:26.8052404Z } 2023-01-11T21:41:26.8052466Z } 2023-01-11T21:41:26.8052526Z } 2023-01-11T21:41:26.8052588Z } 2023-01-11T21:41:26.8052635Z } 2023-01-11T21:41:26.8052691Z } 2023-01-11T21:41:26.8052777Z ''') 2023-01-11T21:41:26.8052782Z 2023-01-11T21:41:26.8052786Z 2023-01-11T21:41:26.8052875Z async_compile.wait(globals()) 2023-01-11T21:41:26.8052946Z del async_compile 2023-01-11T21:41:26.8052953Z 2023-01-11T21:41:26.8053022Z def call(args): 2023-01-11T21:41:26.8053090Z arg0_1, = args 2023-01-11T21:41:26.8053149Z args.clear() 2023-01-11T21:41:26.8053355Z buf0 = empty_strided((2, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8053553Z buf1 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8053749Z buf2 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8053936Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8054003Z del arg0_1 2023-01-11T21:41:26.8054083Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.8054088Z 2023-01-11T21:41:26.8054093Z 2023-01-11T21:41:26.8054166Z if __name__ == "__main__": 2023-01-11T21:41:26.8054267Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8054389Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8054594Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8054702Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8054707Z 2023-01-11T21:41:26.8054972Z [2023-01-11 21:38:20,123] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 441 2023-01-11T21:41:26.8054978Z 2023-01-11T21:41:26.8055069Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8055136Z import torch 2023-01-11T21:41:26.8055203Z import random 2023-01-11T21:41:26.8055304Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8055421Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8055426Z 2023-01-11T21:41:26.8055502Z aten = torch.ops.aten 2023-01-11T21:41:26.8055632Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8055723Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8055728Z 2023-01-11T21:41:26.8055732Z 2023-01-11T21:41:26.8055865Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8056067Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8056284Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8056370Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8056464Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8056556Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8056651Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.8056708Z { 2023-01-11T21:41:26.8056805Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8056863Z { 2023-01-11T21:41:26.8056926Z #pragma omp for 2023-01-11T21:41:26.8057005Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8057065Z { 2023-01-11T21:41:26.8057126Z { 2023-01-11T21:41:26.8057187Z { 2023-01-11T21:41:26.8057309Z auto tmp0 = in_ptr0[10*i0]; 2023-01-11T21:41:26.8057415Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8057496Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8057598Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8057687Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8057771Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.8057833Z } 2023-01-11T21:41:26.8057894Z } 2023-01-11T21:41:26.8057954Z } 2023-01-11T21:41:26.8058016Z #pragma omp for 2023-01-11T21:41:26.8058093Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8058156Z { 2023-01-11T21:41:26.8058235Z #pragma GCC ivdep 2023-01-11T21:41:26.8058315Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.8058376Z { 2023-01-11T21:41:26.8058426Z { 2023-01-11T21:41:26.8058490Z { 2023-01-11T21:41:26.8058593Z auto tmp0 = in_ptr0[1 + i1 + (10*i0)]; 2023-01-11T21:41:26.8058699Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8058792Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8058897Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8058986Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8059079Z out_ptr1[i1 + (2*i0)] = tmp4; 2023-01-11T21:41:26.8059132Z } 2023-01-11T21:41:26.8059194Z } 2023-01-11T21:41:26.8059255Z } 2023-01-11T21:41:26.8059315Z } 2023-01-11T21:41:26.8059388Z #pragma omp for 2023-01-11T21:41:26.8059467Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8059516Z { 2023-01-11T21:41:26.8059592Z #pragma GCC ivdep 2023-01-11T21:41:26.8059671Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8059731Z { 2023-01-11T21:41:26.8059792Z { 2023-01-11T21:41:26.8059857Z { 2023-01-11T21:41:26.8059959Z auto tmp0 = in_ptr0[3 + i1 + (10*i0)]; 2023-01-11T21:41:26.8060053Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8060143Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8060247Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8060335Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8060426Z out_ptr2[i1 + (3*i0)] = tmp4; 2023-01-11T21:41:26.8060490Z } 2023-01-11T21:41:26.8060550Z } 2023-01-11T21:41:26.8060599Z } 2023-01-11T21:41:26.8060659Z } 2023-01-11T21:41:26.8060732Z #pragma omp for 2023-01-11T21:41:26.8060810Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8060870Z { 2023-01-11T21:41:26.8060946Z #pragma GCC ivdep 2023-01-11T21:41:26.8061028Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8061078Z { 2023-01-11T21:41:26.8061139Z { 2023-01-11T21:41:26.8061203Z { 2023-01-11T21:41:26.8061336Z auto tmp0 = in_ptr0[6 + i1 + (10*i0)]; 2023-01-11T21:41:26.8061440Z auto tmp1 = static_cast(2.0); 2023-01-11T21:41:26.8061530Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8061633Z auto tmp3 = static_cast(1.0); 2023-01-11T21:41:26.8061710Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8061802Z out_ptr3[i1 + (4*i0)] = tmp4; 2023-01-11T21:41:26.8061864Z } 2023-01-11T21:41:26.8061925Z } 2023-01-11T21:41:26.8061984Z } 2023-01-11T21:41:26.8062044Z } 2023-01-11T21:41:26.8062102Z } 2023-01-11T21:41:26.8062148Z } 2023-01-11T21:41:26.8062230Z ''') 2023-01-11T21:41:26.8062235Z 2023-01-11T21:41:26.8062239Z 2023-01-11T21:41:26.8062356Z async_compile.wait(globals()) 2023-01-11T21:41:26.8062430Z del async_compile 2023-01-11T21:41:26.8062434Z 2023-01-11T21:41:26.8062505Z def call(args): 2023-01-11T21:41:26.8062572Z arg0_1, = args 2023-01-11T21:41:26.8062641Z args.clear() 2023-01-11T21:41:26.8062830Z buf0 = empty_strided((2, 2, 1), (2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8063027Z buf1 = empty_strided((2, 2, 2), (4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8063319Z buf2 = empty_strided((2, 2, 3), (6, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8063525Z buf3 = empty_strided((2, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8063734Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.8063802Z del arg0_1 2023-01-11T21:41:26.8063890Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.8063895Z 2023-01-11T21:41:26.8063902Z 2023-01-11T21:41:26.8063975Z if __name__ == "__main__": 2023-01-11T21:41:26.8064075Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8064198Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8064403Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8064509Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8064514Z 2023-01-11T21:41:26.8064578Z ok (4.723s) 2023-01-11T21:41:26.8065040Z test_squeeze1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8065168Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8065428Z [2023-01-11 21:38:20,146] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 442 2023-01-11T21:41:26.8065694Z [2023-01-11 21:38:21,644] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 442 2023-01-11T21:41:26.8065699Z 2023-01-11T21:41:26.8065790Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8065846Z import torch 2023-01-11T21:41:26.8065913Z import random 2023-01-11T21:41:26.8066024Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8066142Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8066147Z 2023-01-11T21:41:26.8066222Z aten = torch.ops.aten 2023-01-11T21:41:26.8066352Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8066441Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8066447Z 2023-01-11T21:41:26.8066451Z 2023-01-11T21:41:26.8066581Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8066774Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8066889Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8067022Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8067117Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8067175Z { 2023-01-11T21:41:26.8067270Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8067329Z { 2023-01-11T21:41:26.8067393Z #pragma omp for 2023-01-11T21:41:26.8067472Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.8067532Z { 2023-01-11T21:41:26.8067671Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8067801Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8067885Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8068011Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.8068109Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8068190Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.8068283Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8068371Z tmp5.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8068430Z } 2023-01-11T21:41:26.8068522Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8068600Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.8068649Z { 2023-01-11T21:41:26.8068730Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8068826Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8068906Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8069002Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.8069082Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8069161Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.8069226Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.8069301Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.8069362Z } 2023-01-11T21:41:26.8069421Z } 2023-01-11T21:41:26.8069477Z } 2023-01-11T21:41:26.8069557Z ''') 2023-01-11T21:41:26.8069564Z 2023-01-11T21:41:26.8069568Z 2023-01-11T21:41:26.8069654Z async_compile.wait(globals()) 2023-01-11T21:41:26.8069712Z del async_compile 2023-01-11T21:41:26.8069717Z 2023-01-11T21:41:26.8069785Z def call(args): 2023-01-11T21:41:26.8069856Z arg0_1, = args 2023-01-11T21:41:26.8069924Z args.clear() 2023-01-11T21:41:26.8070125Z buf0 = empty_strided((2, 2, 2), (4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8070322Z buf1 = empty_strided((2, 2, 2), (4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8070484Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8070550Z del arg0_1 2023-01-11T21:41:26.8070613Z return (buf0, buf1, ) 2023-01-11T21:41:26.8070618Z 2023-01-11T21:41:26.8070622Z 2023-01-11T21:41:26.8070698Z if __name__ == "__main__": 2023-01-11T21:41:26.8070808Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8070928Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8071157Z arg0_1 = rand_strided((1, 2, 1, 2, 2, 1, 1), (8, 4, 4, 2, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8071262Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8071267Z 2023-01-11T21:41:26.8071331Z ok (1.520s) 2023-01-11T21:41:26.8071792Z test_squeeze2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8071916Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8072164Z [2023-01-11 21:38:21,669] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 443 2023-01-11T21:41:26.8072427Z [2023-01-11 21:38:23,156] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 443 2023-01-11T21:41:26.8072461Z 2023-01-11T21:41:26.8072555Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8072623Z import torch 2023-01-11T21:41:26.8072691Z import random 2023-01-11T21:41:26.8072803Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8072920Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8072925Z 2023-01-11T21:41:26.8073000Z aten = torch.ops.aten 2023-01-11T21:41:26.8073118Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8073206Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8073211Z 2023-01-11T21:41:26.8073215Z 2023-01-11T21:41:26.8073347Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8073581Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8073699Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8073797Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8073894Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8073951Z { 2023-01-11T21:41:26.8074035Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8074094Z { 2023-01-11T21:41:26.8074168Z #pragma omp for 2023-01-11T21:41:26.8074248Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8074308Z { 2023-01-11T21:41:26.8074443Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8074574Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8074646Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8074773Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.8074857Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8074937Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.8075026Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8075115Z tmp5.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8075176Z } 2023-01-11T21:41:26.8075256Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8075336Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.8075396Z { 2023-01-11T21:41:26.8075477Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8075572Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8075653Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8075749Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.8075818Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8075896Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.8075974Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.8076050Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.8076109Z } 2023-01-11T21:41:26.8076170Z } 2023-01-11T21:41:26.8076227Z } 2023-01-11T21:41:26.8076295Z ''') 2023-01-11T21:41:26.8076299Z 2023-01-11T21:41:26.8076306Z 2023-01-11T21:41:26.8076398Z async_compile.wait(globals()) 2023-01-11T21:41:26.8076469Z del async_compile 2023-01-11T21:41:26.8076474Z 2023-01-11T21:41:26.8076542Z def call(args): 2023-01-11T21:41:26.8076609Z arg0_1, = args 2023-01-11T21:41:26.8076677Z args.clear() 2023-01-11T21:41:26.8076893Z buf0 = empty_strided((1, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8077103Z buf1 = empty_strided((2, 1, 2, 2, 2, 1), (8, 8, 4, 2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8077261Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8077326Z del arg0_1 2023-01-11T21:41:26.8077401Z return (buf0, buf1, ) 2023-01-11T21:41:26.8077406Z 2023-01-11T21:41:26.8077410Z 2023-01-11T21:41:26.8077484Z if __name__ == "__main__": 2023-01-11T21:41:26.8077598Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8077717Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8077985Z arg0_1 = rand_strided((1, 2, 1, 2, 2, 2, 1), (16, 8, 8, 4, 2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8078079Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8078095Z 2023-01-11T21:41:26.8078148Z ok (1.512s) 2023-01-11T21:41:26.8078606Z test_stack_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8078732Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8079032Z [2023-01-11 21:38:23,177] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 444 2023-01-11T21:41:26.8079297Z [2023-01-11 21:38:24,746] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 444 2023-01-11T21:41:26.8079306Z 2023-01-11T21:41:26.8079397Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8079464Z import torch 2023-01-11T21:41:26.8079532Z import random 2023-01-11T21:41:26.8079632Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8079749Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8079755Z 2023-01-11T21:41:26.8079829Z aten = torch.ops.aten 2023-01-11T21:41:26.8079960Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8080048Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8080054Z 2023-01-11T21:41:26.8080058Z 2023-01-11T21:41:26.8080189Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8080391Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8080507Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8080610Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8080696Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8080790Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8080848Z { 2023-01-11T21:41:26.8080944Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8081005Z { 2023-01-11T21:41:26.8081080Z #pragma omp for 2023-01-11T21:41:26.8081149Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.8081210Z { 2023-01-11T21:41:26.8081287Z #pragma GCC ivdep 2023-01-11T21:41:26.8081371Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.8081432Z { 2023-01-11T21:41:26.8081494Z { 2023-01-11T21:41:26.8081558Z { 2023-01-11T21:41:26.8081640Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.8081738Z out_ptr0[(2*i1) + (32*i0)] = tmp0; 2023-01-11T21:41:26.8081803Z } 2023-01-11T21:41:26.8081866Z } 2023-01-11T21:41:26.8081926Z } 2023-01-11T21:41:26.8081985Z } 2023-01-11T21:41:26.8082059Z #pragma omp for 2023-01-11T21:41:26.8082125Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.8082186Z { 2023-01-11T21:41:26.8082263Z #pragma GCC ivdep 2023-01-11T21:41:26.8082344Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.8082406Z { 2023-01-11T21:41:26.8082468Z { 2023-01-11T21:41:26.8082532Z { 2023-01-11T21:41:26.8082611Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.8082706Z out_ptr1[(2*i1) + (32*i0)] = tmp0; 2023-01-11T21:41:26.8082770Z } 2023-01-11T21:41:26.8082833Z } 2023-01-11T21:41:26.8082893Z } 2023-01-11T21:41:26.8082954Z } 2023-01-11T21:41:26.8083002Z } 2023-01-11T21:41:26.8083058Z } 2023-01-11T21:41:26.8083136Z ''') 2023-01-11T21:41:26.8083141Z 2023-01-11T21:41:26.8083173Z 2023-01-11T21:41:26.8083262Z async_compile.wait(globals()) 2023-01-11T21:41:26.8083331Z del async_compile 2023-01-11T21:41:26.8083337Z 2023-01-11T21:41:26.8083405Z def call(args): 2023-01-11T21:41:26.8083478Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8083546Z args.clear() 2023-01-11T21:41:26.8083741Z buf2 = empty_strided((12, 16, 2), (32, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8083844Z buf0 = as_strided(buf2, (12, 16, 1), (32, 2, 1)) # alias 2023-01-11T21:41:26.8083947Z buf1 = as_strided(buf2, (12, 16, 1), (32, 2, 1), 1) # alias 2023-01-11T21:41:26.8084136Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8084201Z del arg0_1 2023-01-11T21:41:26.8084266Z del arg1_1 2023-01-11T21:41:26.8084364Z return (buf2, ) 2023-01-11T21:41:26.8084370Z 2023-01-11T21:41:26.8084374Z 2023-01-11T21:41:26.8084436Z if __name__ == "__main__": 2023-01-11T21:41:26.8084550Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8084669Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8084868Z arg0_1 = rand_strided((1, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8085062Z arg1_1 = rand_strided((12, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8085175Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8085180Z 2023-01-11T21:41:26.8085245Z ok (1.590s) 2023-01-11T21:41:26.8085706Z test_std_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8085833Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8086079Z [2023-01-11 21:38:24,786] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 445 2023-01-11T21:41:26.8086096Z 2023-01-11T21:41:26.8086176Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8086243Z import torch 2023-01-11T21:41:26.8086311Z import random 2023-01-11T21:41:26.8086422Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8086547Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8086555Z 2023-01-11T21:41:26.8086678Z aten = torch.ops.aten 2023-01-11T21:41:26.8086934Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8087083Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8087093Z 2023-01-11T21:41:26.8087122Z 2023-01-11T21:41:26.8087419Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8087787Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8088001Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8088175Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.8088352Z float* __restrict__ in_out_ptr2, 2023-01-11T21:41:26.8088527Z float* __restrict__ in_out_ptr3, 2023-01-11T21:41:26.8088698Z float* __restrict__ in_out_ptr4, 2023-01-11T21:41:26.8088850Z float* __restrict__ in_out_ptr5, 2023-01-11T21:41:26.8089131Z float* __restrict__ in_out_ptr6, 2023-01-11T21:41:26.8089309Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8089489Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8089660Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8089840Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.8090015Z float* __restrict__ out_ptr5, 2023-01-11T21:41:26.8090155Z float* __restrict__ out_ptr7, 2023-01-11T21:41:26.8090574Z float* __restrict__ out_ptr10, 2023-01-11T21:41:26.8090773Z float* __restrict__ out_ptr12, 2023-01-11T21:41:26.8090967Z float* __restrict__ out_ptr14) 2023-01-11T21:41:26.8091094Z { 2023-01-11T21:41:26.8091275Z auto out_ptr6 = in_out_ptr0; 2023-01-11T21:41:26.8091460Z auto out_ptr8 = in_out_ptr1; 2023-01-11T21:41:26.8091624Z auto out_ptr11 = in_out_ptr2; 2023-01-11T21:41:26.8091809Z auto out_ptr13 = in_out_ptr3; 2023-01-11T21:41:26.8091978Z auto out_ptr1 = in_out_ptr4; 2023-01-11T21:41:26.8092153Z auto out_ptr3 = in_out_ptr5; 2023-01-11T21:41:26.8092331Z auto out_ptr9 = in_out_ptr6; 2023-01-11T21:41:26.8092453Z { 2023-01-11T21:41:26.8092927Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8093107Z float tmp1 = 0; 2023-01-11T21:41:26.8093326Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8093540Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8093671Z { 2023-01-11T21:41:26.8093884Z #pragma omp for reduction(+:tmp1_vec) 2023-01-11T21:41:26.8094070Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8094207Z { 2023-01-11T21:41:26.8094475Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8094624Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8094760Z } 2023-01-11T21:41:26.8095140Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8095377Z #pragma omp for simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8095565Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.8095703Z { 2023-01-11T21:41:26.8095880Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8096027Z tmp1 += tmp0; 2023-01-11T21:41:26.8096160Z } 2023-01-11T21:41:26.8096291Z } 2023-01-11T21:41:26.8096452Z out_ptr0[0] = tmp1; 2023-01-11T21:41:26.8096583Z } 2023-01-11T21:41:26.8096710Z { 2023-01-11T21:41:26.8097078Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8097223Z float tmp6 = 0; 2023-01-11T21:41:26.8097459Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8097619Z float tmp7 = 0; 2023-01-11T21:41:26.8097862Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.8098065Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8098201Z { 2023-01-11T21:41:26.8098476Z #pragma omp for reduction(+:tmp6_vec) reduction(+:tmp7_vec) 2023-01-11T21:41:26.8098642Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8098760Z { 2023-01-11T21:41:26.8099037Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8099283Z auto tmp1 = at::vec::Vectorized(out_ptr0[0]); 2023-01-11T21:41:26.8099561Z auto tmp2 = at::vec::Vectorized(static_cast(256)); 2023-01-11T21:41:26.8099742Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8100052Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8100235Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8100381Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8100542Z tmp7_vec += tmp0; 2023-01-11T21:41:26.8100678Z } 2023-01-11T21:41:26.8101064Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8101445Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.8101854Z #pragma omp for simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.8102037Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.8102176Z { 2023-01-11T21:41:26.8102341Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8102522Z auto tmp1 = out_ptr0[0]; 2023-01-11T21:41:26.8102726Z auto tmp2 = static_cast(256); 2023-01-11T21:41:26.8102909Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8103274Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8103454Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8103612Z tmp6 += tmp5; 2023-01-11T21:41:26.8103750Z tmp7 += tmp0; 2023-01-11T21:41:26.8103883Z } 2023-01-11T21:41:26.8104018Z } 2023-01-11T21:41:26.8104280Z out_ptr1[0] = tmp6; 2023-01-11T21:41:26.8104445Z out_ptr2[0] = tmp7; 2023-01-11T21:41:26.8104576Z } 2023-01-11T21:41:26.8104715Z { 2023-01-11T21:41:26.8105069Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8105236Z float tmp6 = 0; 2023-01-11T21:41:26.8105466Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8105629Z float tmp7 = 0; 2023-01-11T21:41:26.8105860Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.8106070Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8106207Z { 2023-01-11T21:41:26.8106478Z #pragma omp for reduction(+:tmp6_vec) reduction(+:tmp7_vec) 2023-01-11T21:41:26.8106634Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8106774Z { 2023-01-11T21:41:26.8107049Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8107307Z auto tmp1 = at::vec::Vectorized(out_ptr2[0]); 2023-01-11T21:41:26.8107573Z auto tmp2 = at::vec::Vectorized(static_cast(256)); 2023-01-11T21:41:26.8107763Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8108069Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8108232Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8108399Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8108560Z tmp7_vec += tmp0; 2023-01-11T21:41:26.8108694Z } 2023-01-11T21:41:26.8109080Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8109454Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.8109745Z #pragma omp for simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.8109925Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.8110055Z { 2023-01-11T21:41:26.8110221Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8110397Z auto tmp1 = out_ptr2[0]; 2023-01-11T21:41:26.8110606Z auto tmp2 = static_cast(256); 2023-01-11T21:41:26.8110784Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8111064Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8111233Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8111401Z tmp6 += tmp5; 2023-01-11T21:41:26.8111540Z tmp7 += tmp0; 2023-01-11T21:41:26.8111675Z } 2023-01-11T21:41:26.8111818Z } 2023-01-11T21:41:26.8111981Z out_ptr3[0] = tmp6; 2023-01-11T21:41:26.8112141Z out_ptr4[0] = tmp7; 2023-01-11T21:41:26.8112273Z } 2023-01-11T21:41:26.8112463Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8112593Z { 2023-01-11T21:41:26.8112762Z #pragma omp for 2023-01-11T21:41:26.8112944Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8113071Z { 2023-01-11T21:41:26.8113318Z { 2023-01-11T21:41:26.8113708Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8113855Z float tmp1 = 0; 2023-01-11T21:41:26.8114099Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8114281Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8114423Z { 2023-01-11T21:41:26.8114705Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8114875Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8115004Z } 2023-01-11T21:41:26.8115380Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8115695Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8115886Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8116035Z { 2023-01-11T21:41:26.8116239Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8116399Z tmp1 += tmp0; 2023-01-11T21:41:26.8116538Z } 2023-01-11T21:41:26.8116710Z out_ptr5[i0] = tmp1; 2023-01-11T21:41:26.8116824Z } 2023-01-11T21:41:26.8116955Z } 2023-01-11T21:41:26.8117121Z #pragma omp for 2023-01-11T21:41:26.8117297Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8117431Z { 2023-01-11T21:41:26.8117564Z { 2023-01-11T21:41:26.8117928Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8118073Z float tmp6 = 0; 2023-01-11T21:41:26.8118328Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8118494Z float tmp7 = 0; 2023-01-11T21:41:26.8118737Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.8118920Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8119056Z { 2023-01-11T21:41:26.8119344Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8119606Z auto tmp1 = at::vec::Vectorized(out_ptr5[i0]); 2023-01-11T21:41:26.8119859Z auto tmp2 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.8120053Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8120369Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8120560Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8120732Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8120897Z tmp7_vec += tmp0; 2023-01-11T21:41:26.8121037Z } 2023-01-11T21:41:26.8121414Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8121780Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.8122057Z #pragma omp simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.8122237Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8122370Z { 2023-01-11T21:41:26.8122567Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8122751Z auto tmp1 = out_ptr5[i0]; 2023-01-11T21:41:26.8122961Z auto tmp2 = static_cast(8); 2023-01-11T21:41:26.8123137Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8123418Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8123607Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8123774Z tmp6 += tmp5; 2023-01-11T21:41:26.8124043Z tmp7 += tmp0; 2023-01-11T21:41:26.8124174Z } 2023-01-11T21:41:26.8124341Z out_ptr6[i0] = tmp6; 2023-01-11T21:41:26.8124516Z out_ptr7[i0] = tmp7; 2023-01-11T21:41:26.8124627Z } 2023-01-11T21:41:26.8124761Z } 2023-01-11T21:41:26.8124923Z #pragma omp for 2023-01-11T21:41:26.8125091Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8125230Z { 2023-01-11T21:41:26.8125495Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr6 + 8*i0); 2023-01-11T21:41:26.8125762Z auto tmp1 = at::vec::Vectorized(static_cast(7)); 2023-01-11T21:41:26.8125915Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8126104Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8126240Z } 2023-01-11T21:41:26.8126521Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8126699Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.8126834Z { 2023-01-11T21:41:26.8127015Z auto tmp0 = out_ptr6[i0]; 2023-01-11T21:41:26.8127198Z auto tmp1 = static_cast(7); 2023-01-11T21:41:26.8127372Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8127538Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8127671Z } 2023-01-11T21:41:26.8127828Z #pragma omp for 2023-01-11T21:41:26.8127993Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8128108Z { 2023-01-11T21:41:26.8128236Z { 2023-01-11T21:41:26.8128617Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8128779Z float tmp6 = 0; 2023-01-11T21:41:26.8129156Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8129356Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8129490Z { 2023-01-11T21:41:26.8129780Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8130023Z auto tmp1 = at::vec::Vectorized(out_ptr7[i0]); 2023-01-11T21:41:26.8130302Z auto tmp2 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.8130492Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8130802Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8130996Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8131173Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8131312Z } 2023-01-11T21:41:26.8131684Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8131907Z #pragma omp simd simdlen(4) reduction(+:tmp6) 2023-01-11T21:41:26.8132093Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8132235Z { 2023-01-11T21:41:26.8132442Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8132637Z auto tmp1 = out_ptr7[i0]; 2023-01-11T21:41:26.8132858Z auto tmp2 = static_cast(8); 2023-01-11T21:41:26.8133043Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8133309Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8133492Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8133653Z tmp6 += tmp5; 2023-01-11T21:41:26.8133792Z } 2023-01-11T21:41:26.8133963Z out_ptr8[i0] = tmp6; 2023-01-11T21:41:26.8134097Z } 2023-01-11T21:41:26.8134232Z } 2023-01-11T21:41:26.8134383Z #pragma omp for 2023-01-11T21:41:26.8134557Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8134696Z { 2023-01-11T21:41:26.8134980Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr8 + 8*i0); 2023-01-11T21:41:26.8135253Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.8135581Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8135787Z tmp2.store(in_out_ptr1 + 8*i0); 2023-01-11T21:41:26.8135920Z } 2023-01-11T21:41:26.8136101Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8136262Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.8136392Z { 2023-01-11T21:41:26.8136571Z auto tmp0 = out_ptr8[i0]; 2023-01-11T21:41:26.8136760Z auto tmp1 = static_cast(8); 2023-01-11T21:41:26.8136936Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8137085Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.8137216Z } 2023-01-11T21:41:26.8137346Z } 2023-01-11T21:41:26.8137478Z { 2023-01-11T21:41:26.8137960Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8138142Z float tmp6 = 0; 2023-01-11T21:41:26.8138389Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8138612Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8138729Z { 2023-01-11T21:41:26.8138955Z #pragma omp for reduction(+:tmp6_vec) 2023-01-11T21:41:26.8139123Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8139264Z { 2023-01-11T21:41:26.8139537Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8150790Z auto tmp1 = at::vec::Vectorized(out_ptr4[0]); 2023-01-11T21:41:26.8151202Z auto tmp2 = at::vec::Vectorized(static_cast(256)); 2023-01-11T21:41:26.8151378Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8151698Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8151884Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8152072Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8152217Z } 2023-01-11T21:41:26.8152612Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8152860Z #pragma omp for simd simdlen(4) reduction(+:tmp6) 2023-01-11T21:41:26.8153050Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.8153174Z { 2023-01-11T21:41:26.8153354Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8153532Z auto tmp1 = out_ptr4[0]; 2023-01-11T21:41:26.8153738Z auto tmp2 = static_cast(256); 2023-01-11T21:41:26.8153917Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8154207Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8154390Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8154524Z tmp6 += tmp5; 2023-01-11T21:41:26.8154664Z } 2023-01-11T21:41:26.8154805Z } 2023-01-11T21:41:26.8154972Z out_ptr9[0] = tmp6; 2023-01-11T21:41:26.8155106Z } 2023-01-11T21:41:26.8155314Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8155427Z { 2023-01-11T21:41:26.8155577Z #pragma omp for 2023-01-11T21:41:26.8155748Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8155881Z { 2023-01-11T21:41:26.8156014Z { 2023-01-11T21:41:26.8156152Z { 2023-01-11T21:41:26.8156319Z float tmp1 = 0; 2023-01-11T21:41:26.8156481Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.8156627Z { 2023-01-11T21:41:26.8156773Z { 2023-01-11T21:41:26.8156986Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.8157160Z tmp1 += tmp0; 2023-01-11T21:41:26.8157304Z } 2023-01-11T21:41:26.8157441Z } 2023-01-11T21:41:26.8157603Z out_ptr10[i0] = tmp1; 2023-01-11T21:41:26.8157747Z } 2023-01-11T21:41:26.8157886Z } 2023-01-11T21:41:26.8158021Z } 2023-01-11T21:41:26.8158372Z #pragma omp for 2023-01-11T21:41:26.8158539Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8158654Z { 2023-01-11T21:41:26.8158791Z { 2023-01-11T21:41:26.8158924Z { 2023-01-11T21:41:26.8159093Z float tmp6 = 0; 2023-01-11T21:41:26.8159261Z float tmp7 = 0; 2023-01-11T21:41:26.8159439Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.8159581Z { 2023-01-11T21:41:26.8159712Z { 2023-01-11T21:41:26.8159921Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.8160126Z auto tmp1 = out_ptr10[i0]; 2023-01-11T21:41:26.8160335Z auto tmp2 = static_cast(8); 2023-01-11T21:41:26.8160619Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8160952Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8161143Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8161316Z tmp6 += tmp5; 2023-01-11T21:41:26.8161466Z tmp7 += tmp0; 2023-01-11T21:41:26.8161613Z } 2023-01-11T21:41:26.8161753Z } 2023-01-11T21:41:26.8161929Z out_ptr11[i0] = tmp6; 2023-01-11T21:41:26.8162101Z out_ptr12[i0] = tmp7; 2023-01-11T21:41:26.8162238Z } 2023-01-11T21:41:26.8162346Z } 2023-01-11T21:41:26.8162482Z } 2023-01-11T21:41:26.8162653Z #pragma omp for 2023-01-11T21:41:26.8162820Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8162957Z { 2023-01-11T21:41:26.8163237Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr11 + 8*i0); 2023-01-11T21:41:26.8163512Z auto tmp1 = at::vec::Vectorized(static_cast(7)); 2023-01-11T21:41:26.8163685Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8163842Z auto tmp3 = tmp2.sqrt(); 2023-01-11T21:41:26.8164042Z tmp3.store(in_out_ptr2 + 8*i0); 2023-01-11T21:41:26.8164172Z } 2023-01-11T21:41:26.8164363Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8164532Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.8164661Z { 2023-01-11T21:41:26.8164824Z auto tmp0 = out_ptr11[i0]; 2023-01-11T21:41:26.8165032Z auto tmp1 = static_cast(7); 2023-01-11T21:41:26.8165196Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8165397Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:41:26.8165568Z in_out_ptr2[i0] = tmp3; 2023-01-11T21:41:26.8165709Z } 2023-01-11T21:41:26.8165871Z #pragma omp for 2023-01-11T21:41:26.8166016Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8166149Z { 2023-01-11T21:41:26.8166295Z { 2023-01-11T21:41:26.8166432Z { 2023-01-11T21:41:26.8166596Z float tmp6 = 0; 2023-01-11T21:41:26.8166787Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.8166929Z { 2023-01-11T21:41:26.8167059Z { 2023-01-11T21:41:26.8167260Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.8167462Z auto tmp1 = out_ptr12[i0]; 2023-01-11T21:41:26.8167673Z auto tmp2 = static_cast(8); 2023-01-11T21:41:26.8167872Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8168195Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8168390Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8168541Z tmp6 += tmp5; 2023-01-11T21:41:26.8168682Z } 2023-01-11T21:41:26.8168819Z } 2023-01-11T21:41:26.8168998Z out_ptr13[i0] = tmp6; 2023-01-11T21:41:26.8169294Z } 2023-01-11T21:41:26.8169430Z } 2023-01-11T21:41:26.8169714Z } 2023-01-11T21:41:26.8169859Z #pragma omp for 2023-01-11T21:41:26.8170028Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8170156Z { 2023-01-11T21:41:26.8170430Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr13 + 8*i0); 2023-01-11T21:41:26.8170703Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.8170881Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8171056Z auto tmp3 = tmp2.sqrt(); 2023-01-11T21:41:26.8171228Z tmp3.store(in_out_ptr3 + 8*i0); 2023-01-11T21:41:26.8171363Z } 2023-01-11T21:41:26.8171555Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8171729Z for(long i0=32; i0<32; i0+=1) 2023-01-11T21:41:26.8171856Z { 2023-01-11T21:41:26.8172135Z auto tmp0 = out_ptr13[i0]; 2023-01-11T21:41:26.8172346Z auto tmp1 = static_cast(8); 2023-01-11T21:41:26.8172507Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8172709Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:41:26.8172882Z in_out_ptr3[i0] = tmp3; 2023-01-11T21:41:26.8173020Z } 2023-01-11T21:41:26.8173176Z #pragma omp for 2023-01-11T21:41:26.8173343Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8173481Z { 2023-01-11T21:41:26.8173640Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8173776Z { 2023-01-11T21:41:26.8174052Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8174335Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr0 + 8 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8174617Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr0 + 16 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8174907Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr0 + 24 + (8*i1) + (32*i0)); 2023-01-11T21:41:26.8175088Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8175276Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8175439Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.8175715Z auto tmp7 = at::vec::Vectorized(static_cast(4)); 2023-01-11T21:41:26.8175890Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:41:26.8176198Z auto tmp9 = tmp0 - tmp8; 2023-01-11T21:41:26.8176384Z auto tmp10 = tmp9.pow(2); 2023-01-11T21:41:26.8176652Z auto tmp11 = tmp1 - tmp8; 2023-01-11T21:41:26.8176838Z auto tmp12 = tmp11.pow(2); 2023-01-11T21:41:26.8176991Z auto tmp13 = tmp10 + tmp12; 2023-01-11T21:41:26.8177267Z auto tmp14 = tmp3 - tmp8; 2023-01-11T21:41:26.8177450Z auto tmp15 = tmp14.pow(2); 2023-01-11T21:41:26.8177642Z auto tmp16 = tmp13 + tmp15; 2023-01-11T21:41:26.8177917Z auto tmp17 = tmp5 - tmp8; 2023-01-11T21:41:26.8178101Z auto tmp18 = tmp17.pow(2); 2023-01-11T21:41:26.8178293Z auto tmp19 = tmp16 + tmp18; 2023-01-11T21:41:26.8178576Z auto tmp20 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.8178744Z auto tmp21 = tmp19 / tmp20; 2023-01-11T21:41:26.8178921Z auto tmp22 = tmp21.sqrt(); 2023-01-11T21:41:26.8179134Z tmp22.store(out_ptr14 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8179272Z } 2023-01-11T21:41:26.8179460Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.8179635Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8179768Z { 2023-01-11T21:41:26.8179941Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.8180138Z auto tmp1 = in_ptr0[8 + i1 + (32*i0)]; 2023-01-11T21:41:26.8180343Z auto tmp3 = in_ptr0[16 + i1 + (32*i0)]; 2023-01-11T21:41:26.8180547Z auto tmp5 = in_ptr0[24 + i1 + (32*i0)]; 2023-01-11T21:41:26.8180722Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8181028Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8181205Z auto tmp6 = tmp4 + tmp5; 2023-01-11T21:41:26.8181392Z auto tmp7 = static_cast(4); 2023-01-11T21:41:26.8181579Z auto tmp8 = tmp6 / tmp7; 2023-01-11T21:41:26.8181864Z auto tmp9 = tmp0 - tmp8; 2023-01-11T21:41:26.8182053Z auto tmp10 = tmp9 * tmp9; 2023-01-11T21:41:26.8182328Z auto tmp11 = tmp1 - tmp8; 2023-01-11T21:41:26.8182513Z auto tmp12 = tmp11 * tmp11; 2023-01-11T21:41:26.8182700Z auto tmp13 = tmp10 + tmp12; 2023-01-11T21:41:26.8182964Z auto tmp14 = tmp3 - tmp8; 2023-01-11T21:41:26.8183257Z auto tmp15 = tmp14 * tmp14; 2023-01-11T21:41:26.8183537Z auto tmp16 = tmp13 + tmp15; 2023-01-11T21:41:26.8183821Z auto tmp17 = tmp5 - tmp8; 2023-01-11T21:41:26.8184003Z auto tmp18 = tmp17 * tmp17; 2023-01-11T21:41:26.8184194Z auto tmp19 = tmp16 + tmp18; 2023-01-11T21:41:26.8184399Z auto tmp20 = static_cast(3); 2023-01-11T21:41:26.8184569Z auto tmp21 = tmp19 / tmp20; 2023-01-11T21:41:26.8184783Z auto tmp22 = std::sqrt(tmp21); 2023-01-11T21:41:26.8184969Z out_ptr14[i1 + (8*i0)] = tmp22; 2023-01-11T21:41:26.8185108Z } 2023-01-11T21:41:26.8185246Z } 2023-01-11T21:41:26.8185414Z #pragma omp single 2023-01-11T21:41:26.8185554Z { 2023-01-11T21:41:26.8185662Z { 2023-01-11T21:41:26.8185794Z { 2023-01-11T21:41:26.8185982Z auto tmp0 = out_ptr1[0]; 2023-01-11T21:41:26.8186195Z auto tmp1 = static_cast(255); 2023-01-11T21:41:26.8186394Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8186567Z in_out_ptr4[0] = tmp2; 2023-01-11T21:41:26.8186695Z } 2023-01-11T21:41:26.8186820Z } 2023-01-11T21:41:26.8186952Z } 2023-01-11T21:41:26.8187115Z #pragma omp single 2023-01-11T21:41:26.8187245Z { 2023-01-11T21:41:26.8187386Z { 2023-01-11T21:41:26.8187520Z { 2023-01-11T21:41:26.8187681Z auto tmp0 = out_ptr3[0]; 2023-01-11T21:41:26.8187895Z auto tmp1 = static_cast(256); 2023-01-11T21:41:26.8188082Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8188267Z in_out_ptr5[0] = tmp2; 2023-01-11T21:41:26.8188400Z } 2023-01-11T21:41:26.8188533Z } 2023-01-11T21:41:26.8188661Z } 2023-01-11T21:41:26.8188800Z #pragma omp single 2023-01-11T21:41:26.8188930Z { 2023-01-11T21:41:26.8189062Z { 2023-01-11T21:41:26.8189199Z { 2023-01-11T21:41:26.8189386Z auto tmp0 = out_ptr9[0]; 2023-01-11T21:41:26.8189603Z auto tmp1 = static_cast(256); 2023-01-11T21:41:26.8189792Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8189986Z auto tmp3 = std::sqrt(tmp2); 2023-01-11T21:41:26.8190167Z in_out_ptr6[0] = tmp3; 2023-01-11T21:41:26.8190304Z } 2023-01-11T21:41:26.8190439Z } 2023-01-11T21:41:26.8190566Z } 2023-01-11T21:41:26.8190694Z } 2023-01-11T21:41:26.8190825Z } 2023-01-11T21:41:26.8191005Z ''') 2023-01-11T21:41:26.8191017Z 2023-01-11T21:41:26.8191024Z 2023-01-11T21:41:26.8191213Z async_compile.wait(globals()) 2023-01-11T21:41:26.8191365Z del async_compile 2023-01-11T21:41:26.8191377Z 2023-01-11T21:41:26.8191513Z def call(args): 2023-01-11T21:41:26.8191659Z arg0_1, = args 2023-01-11T21:41:26.8191812Z args.clear() 2023-01-11T21:41:26.8192265Z buf0 = empty_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8192626Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8193191Z buf2 = empty_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8193557Z buf3 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8193974Z buf10 = empty_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8194399Z buf4 = empty_strided((2, 4, 4, 1), (16, 4, 1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8194807Z buf5 = empty_strided((2, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8195224Z buf7 = empty_strided((2, 4, 4, 1), (16, 4, 1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8195397Z buf6 = buf5; del buf5 # reuse 2023-01-11T21:41:26.8195789Z buf8 = empty_strided((2, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8196059Z buf9 = buf8; del buf8 # reuse 2023-01-11T21:41:26.8196435Z buf11 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8196872Z buf12 = empty_strided((1, 1, 4, 8), (32, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8197262Z buf13 = empty_strided((4, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8197690Z buf15 = empty_strided((1, 1, 4, 8), (32, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8197871Z buf14 = buf13; del buf13 # reuse 2023-01-11T21:41:26.8198264Z buf16 = empty_strided((4, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8198416Z buf17 = buf16; del buf16 # reuse 2023-01-11T21:41:26.8198822Z buf18 = empty_strided((2, 4, 1, 8), (32, 8, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8199001Z buf19 = buf1; del buf1 # reuse 2023-01-11T21:41:26.8199170Z buf20 = buf3; del buf3 # reuse 2023-01-11T21:41:26.8199349Z buf21 = buf11; del buf11 # reuse 2023-01-11T21:41:26.8200223Z kernel_cpp_0(c_void_p(buf6.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf14.data_ptr()), c_void_p(buf17.data_ptr()), c_void_p(buf19.data_ptr()), c_void_p(buf20.data_ptr()), c_void_p(buf21.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf12.data_ptr()), c_void_p(buf15.data_ptr()), c_void_p(buf18.data_ptr())) 2023-01-11T21:41:26.8200385Z del arg0_1 2023-01-11T21:41:26.8200618Z return (buf19, buf20, buf6, buf9, buf21, buf14, buf17, buf18, ) 2023-01-11T21:41:26.8200631Z 2023-01-11T21:41:26.8200642Z 2023-01-11T21:41:26.8200799Z if __name__ == "__main__": 2023-01-11T21:41:26.8201014Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8201257Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8201722Z arg0_1 = rand_strided((2, 4, 4, 8), (128, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8201943Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8202489Z [2023-01-11 21:38:26,677] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 445 2023-01-11T21:41:26.8202511Z 2023-01-11T21:41:26.8202654Z ok (1.932s) 2023-01-11T21:41:26.8203310Z test_strided_inputs_cpu (__main__.CpuTests) ... [2023-01-11 21:38:26,693] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 446 2023-01-11T21:41:26.8203837Z [2023-01-11 21:38:28,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 446 2023-01-11T21:41:26.8203847Z 2023-01-11T21:41:26.8204039Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8204167Z import torch 2023-01-11T21:41:26.8204317Z import random 2023-01-11T21:41:26.8204545Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8204783Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8204794Z 2023-01-11T21:41:26.8204963Z aten = torch.ops.aten 2023-01-11T21:41:26.8205239Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8205539Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8205555Z 2023-01-11T21:41:26.8205563Z 2023-01-11T21:41:26.8205841Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8206212Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8206448Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8206653Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8206854Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8206984Z { 2023-01-11T21:41:26.8207188Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8207304Z { 2023-01-11T21:41:26.8207455Z #pragma omp for 2023-01-11T21:41:26.8207627Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.8207754Z { 2023-01-11T21:41:26.8207972Z { 2023-01-11T21:41:26.8208120Z { 2023-01-11T21:41:26.8208319Z auto tmp0 = in_ptr0[2*i0]; 2023-01-11T21:41:26.8208503Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.8208687Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8208857Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8209161Z } 2023-01-11T21:41:26.8209310Z } 2023-01-11T21:41:26.8209447Z } 2023-01-11T21:41:26.8209577Z } 2023-01-11T21:41:26.8209687Z } 2023-01-11T21:41:26.8209873Z ''') 2023-01-11T21:41:26.8209887Z 2023-01-11T21:41:26.8209894Z 2023-01-11T21:41:26.8210082Z async_compile.wait(globals()) 2023-01-11T21:41:26.8210242Z del async_compile 2023-01-11T21:41:26.8210253Z 2023-01-11T21:41:26.8210398Z def call(args): 2023-01-11T21:41:26.8210559Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8210713Z args.clear() 2023-01-11T21:41:26.8211123Z buf0 = empty_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8211429Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8211581Z del arg0_1 2023-01-11T21:41:26.8211729Z del arg1_1 2023-01-11T21:41:26.8211873Z return (buf0, ) 2023-01-11T21:41:26.8211883Z 2023-01-11T21:41:26.8211892Z 2023-01-11T21:41:26.8212045Z if __name__ == "__main__": 2023-01-11T21:41:26.8212279Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8212521Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8212907Z arg0_1 = rand_strided((8, 16), (32, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8213313Z arg1_1 = rand_strided((8, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8213549Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8213564Z 2023-01-11T21:41:26.8213699Z ok (1.487s) 2023-01-11T21:41:26.8214586Z test_sum1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8214849Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8215393Z [2023-01-11 21:38:28,182] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 447 2023-01-11T21:41:26.8215915Z [2023-01-11 21:38:29,816] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 447 2023-01-11T21:41:26.8215929Z 2023-01-11T21:41:26.8216121Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8216274Z import torch 2023-01-11T21:41:26.8216404Z import random 2023-01-11T21:41:26.8216629Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8216878Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8216891Z 2023-01-11T21:41:26.8217057Z aten = torch.ops.aten 2023-01-11T21:41:26.8217478Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8217660Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8217672Z 2023-01-11T21:41:26.8217678Z 2023-01-11T21:41:26.8217973Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8218359Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8218575Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8218788Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8218991Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8219115Z { 2023-01-11T21:41:26.8219313Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8219435Z { 2023-01-11T21:41:26.8219600Z #pragma omp for 2023-01-11T21:41:26.8219853Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8219995Z { 2023-01-11T21:41:26.8220133Z { 2023-01-11T21:41:26.8220507Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8220678Z float tmp3 = 0; 2023-01-11T21:41:26.8220925Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.8221115Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8221240Z { 2023-01-11T21:41:26.8221521Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8221809Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8221991Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8222168Z tmp3_vec += tmp2; 2023-01-11T21:41:26.8222302Z } 2023-01-11T21:41:26.8222687Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.8222928Z #pragma omp simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.8223093Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8223320Z { 2023-01-11T21:41:26.8223515Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8223705Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.8223890Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8224056Z tmp3 += tmp2; 2023-01-11T21:41:26.8224188Z } 2023-01-11T21:41:26.8224334Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8224470Z } 2023-01-11T21:41:26.8224599Z } 2023-01-11T21:41:26.8224730Z } 2023-01-11T21:41:26.8224855Z } 2023-01-11T21:41:26.8225056Z ''') 2023-01-11T21:41:26.8225073Z 2023-01-11T21:41:26.8225081Z 2023-01-11T21:41:26.8225269Z async_compile.wait(globals()) 2023-01-11T21:41:26.8225408Z del async_compile 2023-01-11T21:41:26.8225437Z 2023-01-11T21:41:26.8225568Z def call(args): 2023-01-11T21:41:26.8225741Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8225894Z args.clear() 2023-01-11T21:41:26.8226287Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8226608Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8226757Z del arg0_1 2023-01-11T21:41:26.8226903Z del arg1_1 2023-01-11T21:41:26.8227036Z return (buf0, ) 2023-01-11T21:41:26.8227048Z 2023-01-11T21:41:26.8227056Z 2023-01-11T21:41:26.8227200Z if __name__ == "__main__": 2023-01-11T21:41:26.8227434Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8227681Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8228084Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8228474Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8228710Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8228834Z 2023-01-11T21:41:26.8228979Z ok (1.651s) 2023-01-11T21:41:26.8229821Z test_sum2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8230070Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8230588Z [2023-01-11 21:38:29,839] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 448 2023-01-11T21:41:26.8231193Z [2023-01-11 21:38:31,378] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 448 2023-01-11T21:41:26.8231210Z 2023-01-11T21:41:26.8231404Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8231551Z import torch 2023-01-11T21:41:26.8231697Z import random 2023-01-11T21:41:26.8231930Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8232163Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8232174Z 2023-01-11T21:41:26.8232316Z aten = torch.ops.aten 2023-01-11T21:41:26.8232586Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8232776Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8232788Z 2023-01-11T21:41:26.8232795Z 2023-01-11T21:41:26.8233079Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8233481Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8233719Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8233930Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8234146Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8234321Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8234461Z { 2023-01-11T21:41:26.8234662Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8234795Z { 2023-01-11T21:41:26.8234950Z #pragma omp for 2023-01-11T21:41:26.8235129Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8235265Z { 2023-01-11T21:41:26.8235416Z #pragma GCC ivdep 2023-01-11T21:41:26.8235594Z for(long i1=0; i1<21; i1+=1) 2023-01-11T21:41:26.8235731Z { 2023-01-11T21:41:26.8235860Z { 2023-01-11T21:41:26.8235998Z { 2023-01-11T21:41:26.8236166Z float tmp3 = 0; 2023-01-11T21:41:26.8236337Z for(long i2=0; i2<27; i2+=1) 2023-01-11T21:41:26.8236487Z { 2023-01-11T21:41:26.8236635Z { 2023-01-11T21:41:26.8236858Z auto tmp0 = in_ptr0[i1 + (21*i2) + (567*i0)]; 2023-01-11T21:41:26.8237083Z auto tmp1 = in_ptr1[i1 + (21*i2) + (567*i0)]; 2023-01-11T21:41:26.8237289Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8237468Z tmp3 += tmp2; 2023-01-11T21:41:26.8237617Z } 2023-01-11T21:41:26.8237740Z } 2023-01-11T21:41:26.8237923Z out_ptr0[i1 + (21*i0)] = tmp3; 2023-01-11T21:41:26.8238065Z } 2023-01-11T21:41:26.8238204Z } 2023-01-11T21:41:26.8238341Z } 2023-01-11T21:41:26.8238478Z } 2023-01-11T21:41:26.8238621Z #pragma omp for 2023-01-11T21:41:26.8238781Z for(long i0=0; i0<216; i0+=1) 2023-01-11T21:41:26.8238924Z { 2023-01-11T21:41:26.8239060Z { 2023-01-11T21:41:26.8239453Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8239621Z float tmp3 = 0; 2023-01-11T21:41:26.8239856Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.8240147Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.8240270Z { 2023-01-11T21:41:26.8240551Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (21*i0)); 2023-01-11T21:41:26.8240829Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (21*i0)); 2023-01-11T21:41:26.8241013Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8241180Z tmp3_vec += tmp2; 2023-01-11T21:41:26.8241313Z } 2023-01-11T21:41:26.8241688Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.8241944Z #pragma omp simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.8242197Z for(long i1=16; i1<21; i1+=1) 2023-01-11T21:41:26.8242346Z { 2023-01-11T21:41:26.8242551Z auto tmp0 = in_ptr0[i1 + (21*i0)]; 2023-01-11T21:41:26.8242748Z auto tmp1 = in_ptr1[i1 + (21*i0)]; 2023-01-11T21:41:26.8242944Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8243103Z tmp3 += tmp2; 2023-01-11T21:41:26.8243244Z } 2023-01-11T21:41:26.8243394Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.8243534Z } 2023-01-11T21:41:26.8243654Z } 2023-01-11T21:41:26.8243781Z } 2023-01-11T21:41:26.8243907Z } 2023-01-11T21:41:26.8244107Z ''') 2023-01-11T21:41:26.8244121Z 2023-01-11T21:41:26.8244129Z 2023-01-11T21:41:26.8244310Z async_compile.wait(globals()) 2023-01-11T21:41:26.8244443Z del async_compile 2023-01-11T21:41:26.8244454Z 2023-01-11T21:41:26.8244592Z def call(args): 2023-01-11T21:41:26.8244750Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8244906Z args.clear() 2023-01-11T21:41:26.8245323Z buf0 = empty_strided((8, 21), (21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8245728Z buf1 = empty_strided((8, 9, 3), (27, 3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8246101Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8246251Z del arg0_1 2023-01-11T21:41:26.8246379Z del arg1_1 2023-01-11T21:41:26.8246536Z return (buf0, buf1, ) 2023-01-11T21:41:26.8246548Z 2023-01-11T21:41:26.8246558Z 2023-01-11T21:41:26.8246713Z if __name__ == "__main__": 2023-01-11T21:41:26.8246949Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8247200Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8247633Z arg0_1 = rand_strided((8, 9, 3, 21), (567, 63, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8248076Z arg1_1 = rand_strided((8, 9, 3, 21), (567, 63, 21, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8248288Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8248327Z 2023-01-11T21:41:26.8248441Z ok (1.562s) 2023-01-11T21:41:26.8249574Z test_sum3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8249829Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8250370Z [2023-01-11 21:38:31,401] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 449 2023-01-11T21:41:26.8250896Z [2023-01-11 21:38:32,917] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 449 2023-01-11T21:41:26.8250916Z 2023-01-11T21:41:26.8251103Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8251252Z import torch 2023-01-11T21:41:26.8251534Z import random 2023-01-11T21:41:26.8251776Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8252003Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8252016Z 2023-01-11T21:41:26.8252176Z aten = torch.ops.aten 2023-01-11T21:41:26.8252435Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8252625Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8252636Z 2023-01-11T21:41:26.8252643Z 2023-01-11T21:41:26.8252937Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8253321Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8253541Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8253757Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8254039Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8254240Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8254433Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.8254562Z { 2023-01-11T21:41:26.8254760Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8254888Z { 2023-01-11T21:41:26.8255050Z #pragma omp for 2023-01-11T21:41:26.8255210Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.8255332Z { 2023-01-11T21:41:26.8255465Z { 2023-01-11T21:41:26.8255844Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8256011Z float tmp3 = 0; 2023-01-11T21:41:26.8256257Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.8256430Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8256551Z { 2023-01-11T21:41:26.8256849Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.8257119Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i1); 2023-01-11T21:41:26.8257306Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8257520Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.8257695Z tmp3_vec += tmp2; 2023-01-11T21:41:26.8257829Z } 2023-01-11T21:41:26.8258203Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.8258425Z #pragma omp simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.8258617Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.8258758Z { 2023-01-11T21:41:26.8258951Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.8259136Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.8259328Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8259519Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.8259667Z tmp3 += tmp2; 2023-01-11T21:41:26.8259807Z } 2023-01-11T21:41:26.8259980Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.8260107Z } 2023-01-11T21:41:26.8260235Z } 2023-01-11T21:41:26.8260395Z #pragma omp for 2023-01-11T21:41:26.8260559Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.8260671Z { 2023-01-11T21:41:26.8260940Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.8261208Z auto tmp1 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.8261385Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8261565Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.8261701Z } 2023-01-11T21:41:26.8261889Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8262044Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.8262169Z { 2023-01-11T21:41:26.8262338Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.8262645Z auto tmp1 = static_cast(10); 2023-01-11T21:41:26.8262816Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8262986Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.8263110Z } 2023-01-11T21:41:26.8263296Z } 2023-01-11T21:41:26.8263432Z } 2023-01-11T21:41:26.8263633Z ''') 2023-01-11T21:41:26.8263644Z 2023-01-11T21:41:26.8263655Z 2023-01-11T21:41:26.8263840Z async_compile.wait(globals()) 2023-01-11T21:41:26.8263995Z del async_compile 2023-01-11T21:41:26.8264010Z 2023-01-11T21:41:26.8264142Z def call(args): 2023-01-11T21:41:26.8264305Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8264434Z args.clear() 2023-01-11T21:41:26.8264844Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8265350Z buf1 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8265746Z buf2 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8266158Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8266306Z del arg0_1 2023-01-11T21:41:26.8266450Z del arg1_1 2023-01-11T21:41:26.8266616Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.8266627Z 2023-01-11T21:41:26.8266635Z 2023-01-11T21:41:26.8266796Z if __name__ == "__main__": 2023-01-11T21:41:26.8266997Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8267243Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8267652Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8268043Z arg1_1 = rand_strided((1, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8268284Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8268293Z 2023-01-11T21:41:26.8268432Z ok (1.538s) 2023-01-11T21:41:26.8269305Z test_sum4_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8269566Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8270100Z [2023-01-11 21:38:32,941] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 450 2023-01-11T21:41:26.8270609Z [2023-01-11 21:38:34,482] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 450 2023-01-11T21:41:26.8270625Z 2023-01-11T21:41:26.8270822Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8270984Z import torch 2023-01-11T21:41:26.8271133Z import random 2023-01-11T21:41:26.8271358Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8271616Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8271627Z 2023-01-11T21:41:26.8271781Z aten = torch.ops.aten 2023-01-11T21:41:26.8272026Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8272218Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8272229Z 2023-01-11T21:41:26.8272235Z 2023-01-11T21:41:26.8272514Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8272902Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8273136Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8273342Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8273540Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8273735Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8273918Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.8274119Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.8274383Z { 2023-01-11T21:41:26.8274586Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8274710Z { 2023-01-11T21:41:26.8274874Z #pragma omp for 2023-01-11T21:41:26.8275041Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.8275157Z { 2023-01-11T21:41:26.8275435Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8275692Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8275878Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8276065Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8276200Z } 2023-01-11T21:41:26.8276397Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8276544Z for(long i0=1024; i0<1024; i0+=1) 2023-01-11T21:41:26.8276762Z { 2023-01-11T21:41:26.8276952Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8277147Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8277331Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8277490Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8277616Z } 2023-01-11T21:41:26.8277767Z #pragma omp for 2023-01-11T21:41:26.8277938Z for(long i0=0; i0<128; i0+=1) 2023-01-11T21:41:26.8278072Z { 2023-01-11T21:41:26.8278210Z { 2023-01-11T21:41:26.8278575Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8278754Z float tmp1 = 0; 2023-01-11T21:41:26.8278997Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8279183Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8279305Z { 2023-01-11T21:41:26.8279586Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8279757Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8279902Z } 2023-01-11T21:41:26.8280285Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8280517Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8280700Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8280840Z { 2023-01-11T21:41:26.8281022Z auto tmp0 = out_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8281185Z tmp1 += tmp0; 2023-01-11T21:41:26.8281326Z } 2023-01-11T21:41:26.8281489Z out_ptr1[i0] = tmp1; 2023-01-11T21:41:26.8281626Z } 2023-01-11T21:41:26.8281772Z } 2023-01-11T21:41:26.8281912Z #pragma omp for 2023-01-11T21:41:26.8282083Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.8282219Z { 2023-01-11T21:41:26.8282480Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8282755Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.8282930Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8283122Z tmp2.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.8283252Z } 2023-01-11T21:41:26.8283425Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8283604Z for(long i0=128; i0<128; i0+=1) 2023-01-11T21:41:26.8283733Z { 2023-01-11T21:41:26.8283905Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.8284106Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.8284270Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8284402Z out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.8284537Z } 2023-01-11T21:41:26.8284701Z #pragma omp for 2023-01-11T21:41:26.8284868Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.8285008Z { 2023-01-11T21:41:26.8285144Z { 2023-01-11T21:41:26.8285517Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8285767Z float tmp1 = 0; 2023-01-11T21:41:26.8286029Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8286216Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8286341Z { 2023-01-11T21:41:26.8286632Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8286799Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8286945Z } 2023-01-11T21:41:26.8287323Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8287565Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8287812Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8287962Z { 2023-01-11T21:41:26.8288177Z auto tmp0 = out_ptr2[i1 + (8*i0)]; 2023-01-11T21:41:26.8288333Z tmp1 += tmp0; 2023-01-11T21:41:26.8288468Z } 2023-01-11T21:41:26.8288634Z out_ptr3[i0] = tmp1; 2023-01-11T21:41:26.8288753Z } 2023-01-11T21:41:26.8288888Z } 2023-01-11T21:41:26.8289177Z #pragma omp for 2023-01-11T21:41:26.8289339Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8289468Z { 2023-01-11T21:41:26.8289742Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr3 + 8*i0); 2023-01-11T21:41:26.8290002Z auto tmp1 = at::vec::Vectorized(static_cast(5)); 2023-01-11T21:41:26.8290182Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8290343Z tmp2.store(out_ptr4 + 8*i0); 2023-01-11T21:41:26.8290478Z } 2023-01-11T21:41:26.8290679Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8290850Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.8290992Z { 2023-01-11T21:41:26.8291173Z auto tmp0 = out_ptr3[i0]; 2023-01-11T21:41:26.8291352Z auto tmp1 = static_cast(5); 2023-01-11T21:41:26.8291540Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8291700Z out_ptr4[i0] = tmp2; 2023-01-11T21:41:26.8291837Z } 2023-01-11T21:41:26.8291968Z } 2023-01-11T21:41:26.8292097Z } 2023-01-11T21:41:26.8292287Z ''') 2023-01-11T21:41:26.8292300Z 2023-01-11T21:41:26.8292306Z 2023-01-11T21:41:26.8292500Z async_compile.wait(globals()) 2023-01-11T21:41:26.8292630Z del async_compile 2023-01-11T21:41:26.8292639Z 2023-01-11T21:41:26.8292791Z def call(args): 2023-01-11T21:41:26.8292935Z arg0_1, = args 2023-01-11T21:41:26.8293083Z args.clear() 2023-01-11T21:41:26.8293520Z buf0 = empty_strided((1, 16, 8, 8), (1024, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8293948Z buf1 = empty_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8294349Z buf2 = empty_strided((1, 16, 8), (128, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8294724Z buf3 = empty_strided((1, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8295111Z buf4 = empty_strided((1, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8295553Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.8295701Z del arg0_1 2023-01-11T21:41:26.8295901Z return (buf4, buf3, buf2, buf1, buf0, ) 2023-01-11T21:41:26.8295916Z 2023-01-11T21:41:26.8295924Z 2023-01-11T21:41:26.8296083Z if __name__ == "__main__": 2023-01-11T21:41:26.8296306Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8296557Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8296975Z arg0_1 = rand_strided((1, 16, 8, 8), (1024, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8297322Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8297335Z 2023-01-11T21:41:26.8297481Z ok (1.566s) 2023-01-11T21:41:26.8298352Z test_sum5_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8298612Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8299144Z [2023-01-11 21:38:34,506] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 451 2023-01-11T21:41:26.8299791Z [2023-01-11 21:38:36,024] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 451 2023-01-11T21:41:26.8299810Z 2023-01-11T21:41:26.8300005Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8300154Z import torch 2023-01-11T21:41:26.8300302Z import random 2023-01-11T21:41:26.8300518Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8300757Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8300767Z 2023-01-11T21:41:26.8300926Z aten = torch.ops.aten 2023-01-11T21:41:26.8301189Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8301382Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8301393Z 2023-01-11T21:41:26.8301399Z 2023-01-11T21:41:26.8301691Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8302079Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8302318Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8302528Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8302728Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8302868Z { 2023-01-11T21:41:26.8303045Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.8303328Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8303460Z { 2023-01-11T21:41:26.8303623Z #pragma omp for 2023-01-11T21:41:26.8303780Z for(long i0=0; i0<136; i0+=1) 2023-01-11T21:41:26.8303912Z { 2023-01-11T21:41:26.8304044Z { 2023-01-11T21:41:26.8304417Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8304583Z float tmp3 = 0; 2023-01-11T21:41:26.8304821Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.8305010Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8305136Z { 2023-01-11T21:41:26.8305433Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (9*i0)); 2023-01-11T21:41:26.8305711Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8305899Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8306063Z tmp3_vec += tmp2; 2023-01-11T21:41:26.8306205Z } 2023-01-11T21:41:26.8306597Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.8306829Z #pragma omp simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.8306989Z for(long i1=8; i1<9; i1+=1) 2023-01-11T21:41:26.8307140Z { 2023-01-11T21:41:26.8307341Z auto tmp0 = in_ptr0[i1 + (9*i0)]; 2023-01-11T21:41:26.8307547Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8307734Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8307890Z tmp3 += tmp2; 2023-01-11T21:41:26.8308038Z } 2023-01-11T21:41:26.8308191Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8308430Z } 2023-01-11T21:41:26.8308560Z } 2023-01-11T21:41:26.8308730Z #pragma omp for 2023-01-11T21:41:26.8308889Z for(long i0=0; i0<17; i0+=1) 2023-01-11T21:41:26.8309024Z { 2023-01-11T21:41:26.8309161Z { 2023-01-11T21:41:26.8309517Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8309686Z float tmp3 = 0; 2023-01-11T21:41:26.8309924Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.8310107Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8310243Z { 2023-01-11T21:41:26.8310522Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8310879Z auto tmp1 = at::vec::Vectorized(static_cast(3)); 2023-01-11T21:41:26.8311067Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8311230Z tmp3_vec += tmp2; 2023-01-11T21:41:26.8311374Z } 2023-01-11T21:41:26.8311743Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.8311989Z #pragma omp simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.8312168Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8312299Z { 2023-01-11T21:41:26.8312498Z auto tmp0 = out_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8312707Z auto tmp1 = static_cast(3); 2023-01-11T21:41:26.8312874Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8313040Z tmp3 += tmp2; 2023-01-11T21:41:26.8313175Z } 2023-01-11T21:41:26.8313359Z out_ptr1[i0] = tmp3; 2023-01-11T21:41:26.8313493Z } 2023-01-11T21:41:26.8313619Z } 2023-01-11T21:41:26.8313770Z #pragma omp for 2023-01-11T21:41:26.8313947Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8314078Z { 2023-01-11T21:41:26.8314356Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8314624Z auto tmp1 = at::vec::Vectorized(static_cast(5)); 2023-01-11T21:41:26.8314804Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8314997Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8315126Z } 2023-01-11T21:41:26.8315300Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8315465Z for(long i0=16; i0<17; i0+=1) 2023-01-11T21:41:26.8315594Z { 2023-01-11T21:41:26.8315763Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.8315963Z auto tmp1 = static_cast(5); 2023-01-11T21:41:26.8316144Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8316319Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8316430Z } 2023-01-11T21:41:26.8316567Z } 2023-01-11T21:41:26.8316689Z } 2023-01-11T21:41:26.8316892Z ''') 2023-01-11T21:41:26.8316906Z 2023-01-11T21:41:26.8316913Z 2023-01-11T21:41:26.8317097Z async_compile.wait(globals()) 2023-01-11T21:41:26.8317255Z del async_compile 2023-01-11T21:41:26.8317265Z 2023-01-11T21:41:26.8317397Z def call(args): 2023-01-11T21:41:26.8317521Z arg0_1, = args 2023-01-11T21:41:26.8317667Z args.clear() 2023-01-11T21:41:26.8318104Z buf0 = empty_strided((1, 17, 8), (136, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8318497Z buf1 = empty_strided((1, 17), (17, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8318678Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:41:26.8318994Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8319144Z del arg0_1 2023-01-11T21:41:26.8319279Z return (buf2, ) 2023-01-11T21:41:26.8319293Z 2023-01-11T21:41:26.8319323Z 2023-01-11T21:41:26.8319462Z if __name__ == "__main__": 2023-01-11T21:41:26.8319794Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8320042Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8320473Z arg0_1 = rand_strided((1, 17, 8, 9), (1224, 72, 9, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8320682Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8320695Z 2023-01-11T21:41:26.8320841Z ok (1.541s) 2023-01-11T21:41:26.8321742Z test_sum_dtype_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8322078Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8322612Z [2023-01-11 21:38:36,045] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 452 2023-01-11T21:41:26.8323130Z [2023-01-11 21:38:36,063] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 452 2023-01-11T21:41:26.8323140Z 2023-01-11T21:41:26.8323337Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8323491Z import torch 2023-01-11T21:41:26.8323640Z import random 2023-01-11T21:41:26.8323876Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8324108Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8324117Z 2023-01-11T21:41:26.8324280Z aten = torch.ops.aten 2023-01-11T21:41:26.8324522Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8324716Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8324726Z 2023-01-11T21:41:26.8324734Z 2023-01-11T21:41:26.8325018Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8325413Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8325660Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8325869Z double* __restrict__ out_ptr0, 2023-01-11T21:41:26.8326064Z double* __restrict__ out_ptr1, 2023-01-11T21:41:26.8326268Z double* __restrict__ out_ptr2) 2023-01-11T21:41:26.8326381Z { 2023-01-11T21:41:26.8326583Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8326708Z { 2023-01-11T21:41:26.8326867Z #pragma omp for 2023-01-11T21:41:26.8327038Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8327170Z { 2023-01-11T21:41:26.8327306Z { 2023-01-11T21:41:26.8327426Z { 2023-01-11T21:41:26.8327598Z double tmp2 = 0; 2023-01-11T21:41:26.8327796Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.8327935Z { 2023-01-11T21:41:26.8328084Z { 2023-01-11T21:41:26.8328306Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.8328538Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8328687Z tmp2 += tmp1; 2023-01-11T21:41:26.8328830Z } 2023-01-11T21:41:26.8328966Z } 2023-01-11T21:41:26.8329281Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8329426Z } 2023-01-11T21:41:26.8329563Z } 2023-01-11T21:41:26.8329694Z } 2023-01-11T21:41:26.8329804Z } 2023-01-11T21:41:26.8329919Z { 2023-01-11T21:41:26.8330047Z { 2023-01-11T21:41:26.8330208Z double tmp2 = 0; 2023-01-11T21:41:26.8330428Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8330560Z { 2023-01-11T21:41:26.8330759Z #pragma omp for reduction(+:tmp2) 2023-01-11T21:41:26.8330938Z for(long i0=0; i0<1024; i0+=1) 2023-01-11T21:41:26.8331219Z { 2023-01-11T21:41:26.8331363Z { 2023-01-11T21:41:26.8331557Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8331774Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8331941Z tmp2 += tmp1; 2023-01-11T21:41:26.8332066Z } 2023-01-11T21:41:26.8332200Z } 2023-01-11T21:41:26.8332328Z } 2023-01-11T21:41:26.8332501Z out_ptr1[0] = tmp2; 2023-01-11T21:41:26.8332632Z } 2023-01-11T21:41:26.8332751Z } 2023-01-11T21:41:26.8332955Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8333062Z { 2023-01-11T21:41:26.8333222Z #pragma omp for 2023-01-11T21:41:26.8333392Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8333526Z { 2023-01-11T21:41:26.8333840Z #pragma GCC ivdep 2023-01-11T21:41:26.8334033Z for(long i1=0; i1<32; i1+=1) 2023-01-11T21:41:26.8334151Z { 2023-01-11T21:41:26.8334297Z { 2023-01-11T21:41:26.8334437Z { 2023-01-11T21:41:26.8334639Z auto tmp0 = in_ptr0[i1 + (32*i0)]; 2023-01-11T21:41:26.8334833Z auto tmp2 = out_ptr0[i1]; 2023-01-11T21:41:26.8335023Z auto tmp4 = out_ptr1[0]; 2023-01-11T21:41:26.8335247Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8335422Z auto tmp3 = tmp1 * tmp2; 2023-01-11T21:41:26.8335598Z auto tmp5 = tmp3 + tmp4; 2023-01-11T21:41:26.8335791Z out_ptr2[i1 + (32*i0)] = tmp5; 2023-01-11T21:41:26.8335935Z } 2023-01-11T21:41:26.8336072Z } 2023-01-11T21:41:26.8336209Z } 2023-01-11T21:41:26.8336339Z } 2023-01-11T21:41:26.8336449Z } 2023-01-11T21:41:26.8336572Z } 2023-01-11T21:41:26.8336789Z ''') 2023-01-11T21:41:26.8336803Z 2023-01-11T21:41:26.8336812Z 2023-01-11T21:41:26.8337000Z async_compile.wait(globals()) 2023-01-11T21:41:26.8337154Z del async_compile 2023-01-11T21:41:26.8337163Z 2023-01-11T21:41:26.8337312Z def call(args): 2023-01-11T21:41:26.8337459Z arg0_1, = args 2023-01-11T21:41:26.8337585Z args.clear() 2023-01-11T21:41:26.8337994Z buf0 = empty_strided((32, ), (1, ), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.8338365Z buf1 = empty_strided((), (), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.8338779Z buf2 = empty_strided((32, 32), (32, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.8339146Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8339294Z del arg0_1 2023-01-11T21:41:26.8339441Z return (buf2, ) 2023-01-11T21:41:26.8339452Z 2023-01-11T21:41:26.8339459Z 2023-01-11T21:41:26.8339627Z if __name__ == "__main__": 2023-01-11T21:41:26.8339863Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8340097Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8340503Z arg0_1 = rand_strided((32, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8340725Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8340738Z 2023-01-11T21:41:26.8340878Z ok (0.039s) 2023-01-11T21:41:26.8341765Z test_sum_int_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8342022Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8342558Z [2023-01-11 21:38:36,083] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 453 2023-01-11T21:41:26.8343267Z [2023-01-11 21:38:36,095] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 453 2023-01-11T21:41:26.8344086Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8344334Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8344836Z [2023-01-11 21:38:36,112] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 454 2023-01-11T21:41:26.8345369Z [2023-01-11 21:38:36,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 454 2023-01-11T21:41:26.8346126Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8346325Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8346769Z [2023-01-11 21:38:36,141] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 455 2023-01-11T21:41:26.8347302Z [2023-01-11 21:38:36,153] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 455 2023-01-11T21:41:26.8347314Z 2023-01-11T21:41:26.8347509Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8347663Z import torch 2023-01-11T21:41:26.8347814Z import random 2023-01-11T21:41:26.8348033Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8348263Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8348276Z 2023-01-11T21:41:26.8348444Z aten = torch.ops.aten 2023-01-11T21:41:26.8348715Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8348897Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8348906Z 2023-01-11T21:41:26.8348913Z 2023-01-11T21:41:26.8349190Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8349579Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8349804Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8349993Z const bool* __restrict__ in_ptr0, 2023-01-11T21:41:26.8350189Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.8350308Z { 2023-01-11T21:41:26.8350492Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.8350622Z { 2023-01-11T21:41:26.8350743Z { 2023-01-11T21:41:26.8350904Z long tmp2 = 0; 2023-01-11T21:41:26.8351041Z long tmp3 = 0; 2023-01-11T21:41:26.8351258Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8351401Z { 2023-01-11T21:41:26.8351746Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:41:26.8351915Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.8352037Z { 2023-01-11T21:41:26.8352158Z { 2023-01-11T21:41:26.8352302Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8352483Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8352648Z tmp2 += tmp1; 2023-01-11T21:41:26.8352791Z tmp3 += tmp1; 2023-01-11T21:41:26.8352914Z } 2023-01-11T21:41:26.8353031Z } 2023-01-11T21:41:26.8353141Z } 2023-01-11T21:41:26.8353268Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.8353406Z out_ptr1[0] = tmp3; 2023-01-11T21:41:26.8353525Z } 2023-01-11T21:41:26.8353645Z } 2023-01-11T21:41:26.8353754Z { 2023-01-11T21:41:26.8354006Z { 2023-01-11T21:41:26.8354138Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.8354285Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:41:26.8354458Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.8354618Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8354772Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8354921Z in_out_ptr0[0] = tmp4; 2023-01-11T21:41:26.8355025Z } 2023-01-11T21:41:26.8355117Z } 2023-01-11T21:41:26.8355225Z } 2023-01-11T21:41:26.8355396Z ''') 2023-01-11T21:41:26.8355411Z 2023-01-11T21:41:26.8355418Z 2023-01-11T21:41:26.8355581Z async_compile.wait(globals()) 2023-01-11T21:41:26.8355714Z del async_compile 2023-01-11T21:41:26.8355722Z 2023-01-11T21:41:26.8355846Z def call(args): 2023-01-11T21:41:26.8355978Z arg0_1, = args 2023-01-11T21:41:26.8356180Z args.clear() 2023-01-11T21:41:26.8356513Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8356827Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8356983Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:41:26.8357270Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8357401Z del arg0_1 2023-01-11T21:41:26.8357514Z return (buf2, ) 2023-01-11T21:41:26.8357525Z 2023-01-11T21:41:26.8357531Z 2023-01-11T21:41:26.8357669Z if __name__ == "__main__": 2023-01-11T21:41:26.8357845Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8358063Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8358396Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8358588Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8358596Z 2023-01-11T21:41:26.8358604Z 2023-01-11T21:41:26.8358766Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8358895Z import torch 2023-01-11T21:41:26.8359022Z import random 2023-01-11T21:41:26.8359220Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8359413Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8359422Z 2023-01-11T21:41:26.8359563Z aten = torch.ops.aten 2023-01-11T21:41:26.8359785Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8359946Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8359957Z 2023-01-11T21:41:26.8359962Z 2023-01-11T21:41:26.8360209Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8360546Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8360751Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8360947Z const unsigned char* __restrict__ in_ptr0, 2023-01-11T21:41:26.8361102Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.8361209Z { 2023-01-11T21:41:26.8361362Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.8361469Z { 2023-01-11T21:41:26.8361587Z { 2023-01-11T21:41:26.8361725Z long tmp2 = 0; 2023-01-11T21:41:26.8361870Z long tmp3 = 0; 2023-01-11T21:41:26.8362040Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8362157Z { 2023-01-11T21:41:26.8362370Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:41:26.8362530Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.8362646Z { 2023-01-11T21:41:26.8362776Z { 2023-01-11T21:41:26.8362947Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8363112Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8363254Z tmp2 += tmp1; 2023-01-11T21:41:26.8363396Z tmp3 += tmp1; 2023-01-11T21:41:26.8363521Z } 2023-01-11T21:41:26.8363642Z } 2023-01-11T21:41:26.8363752Z } 2023-01-11T21:41:26.8363894Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.8364115Z out_ptr1[0] = tmp3; 2023-01-11T21:41:26.8364233Z } 2023-01-11T21:41:26.8364346Z } 2023-01-11T21:41:26.8364454Z { 2023-01-11T21:41:26.8364562Z { 2023-01-11T21:41:26.8364717Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.8364840Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:41:26.8365012Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.8365167Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8365318Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8365459Z in_out_ptr0[0] = tmp4; 2023-01-11T21:41:26.8365571Z } 2023-01-11T21:41:26.8365676Z } 2023-01-11T21:41:26.8365768Z } 2023-01-11T21:41:26.8365934Z ''') 2023-01-11T21:41:26.8365943Z 2023-01-11T21:41:26.8365949Z 2023-01-11T21:41:26.8366175Z async_compile.wait(globals()) 2023-01-11T21:41:26.8366320Z del async_compile 2023-01-11T21:41:26.8366331Z 2023-01-11T21:41:26.8366453Z def call(args): 2023-01-11T21:41:26.8366587Z arg0_1, = args 2023-01-11T21:41:26.8366713Z args.clear() 2023-01-11T21:41:26.8367022Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8367349Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8367502Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:41:26.8367775Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8367905Z del arg0_1 2023-01-11T21:41:26.8368027Z return (buf2, ) 2023-01-11T21:41:26.8368036Z 2023-01-11T21:41:26.8368042Z 2023-01-11T21:41:26.8368184Z if __name__ == "__main__": 2023-01-11T21:41:26.8368386Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8368584Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8368918Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.uint8) 2023-01-11T21:41:26.8369235Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8369249Z 2023-01-11T21:41:26.8369260Z 2023-01-11T21:41:26.8369429Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8369558Z import torch 2023-01-11T21:41:26.8369693Z import random 2023-01-11T21:41:26.8369894Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8370104Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8370118Z 2023-01-11T21:41:26.8370239Z aten = torch.ops.aten 2023-01-11T21:41:26.8370467Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8370623Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8370632Z 2023-01-11T21:41:26.8370639Z 2023-01-11T21:41:26.8370887Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8371229Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8371430Z extern "C" void kernel(long* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8371613Z const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.8371787Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.8371879Z { 2023-01-11T21:41:26.8372032Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.8372148Z { 2023-01-11T21:41:26.8372255Z { 2023-01-11T21:41:26.8372398Z long tmp2 = 0; 2023-01-11T21:41:26.8372536Z long tmp3 = 0; 2023-01-11T21:41:26.8372702Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8372816Z { 2023-01-11T21:41:26.8373032Z #pragma omp for reduction(+:tmp2) reduction(+:tmp3) 2023-01-11T21:41:26.8373190Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.8373315Z { 2023-01-11T21:41:26.8373441Z { 2023-01-11T21:41:26.8373606Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8373784Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8373921Z tmp2 += tmp1; 2023-01-11T21:41:26.8374062Z tmp3 += tmp1; 2023-01-11T21:41:26.8374321Z } 2023-01-11T21:41:26.8374441Z } 2023-01-11T21:41:26.8374553Z } 2023-01-11T21:41:26.8374693Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.8374815Z out_ptr1[0] = tmp3; 2023-01-11T21:41:26.8374932Z } 2023-01-11T21:41:26.8375049Z } 2023-01-11T21:41:26.8375159Z { 2023-01-11T21:41:26.8375268Z { 2023-01-11T21:41:26.8375421Z auto tmp0 = out_ptr0[0]; 2023-01-11T21:41:26.8375570Z auto tmp3 = out_ptr1[0]; 2023-01-11T21:41:26.8375728Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.8375880Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8376029Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8376180Z in_out_ptr0[0] = tmp4; 2023-01-11T21:41:26.8376286Z } 2023-01-11T21:41:26.8376484Z } 2023-01-11T21:41:26.8376583Z } 2023-01-11T21:41:26.8376755Z ''') 2023-01-11T21:41:26.8376767Z 2023-01-11T21:41:26.8376779Z 2023-01-11T21:41:26.8376941Z async_compile.wait(globals()) 2023-01-11T21:41:26.8377074Z del async_compile 2023-01-11T21:41:26.8377082Z 2023-01-11T21:41:26.8377210Z def call(args): 2023-01-11T21:41:26.8377334Z arg0_1, = args 2023-01-11T21:41:26.8377465Z args.clear() 2023-01-11T21:41:26.8377787Z buf0 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8378075Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8378226Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:41:26.8378501Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8378629Z del arg0_1 2023-01-11T21:41:26.8378752Z return (buf2, ) 2023-01-11T21:41:26.8378761Z 2023-01-11T21:41:26.8378767Z 2023-01-11T21:41:26.8378910Z if __name__ == "__main__": 2023-01-11T21:41:26.8379112Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8379327Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8379647Z arg0_1 = rand_strided((64, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.8379831Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8379841Z 2023-01-11T21:41:26.8379964Z ok (0.090s) 2023-01-11T21:41:26.8380745Z test_sum_keepdims_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8380964Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8381419Z [2023-01-11 21:38:36,169] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 456 2023-01-11T21:41:26.8381879Z [2023-01-11 21:38:36,178] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 456 2023-01-11T21:41:26.8381896Z 2023-01-11T21:41:26.8382065Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8382193Z import torch 2023-01-11T21:41:26.8382299Z import random 2023-01-11T21:41:26.8382503Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8382703Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8382711Z 2023-01-11T21:41:26.8382848Z aten = torch.ops.aten 2023-01-11T21:41:26.8383070Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8383320Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8383330Z 2023-01-11T21:41:26.8383337Z 2023-01-11T21:41:26.8383594Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8383933Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8384153Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8384343Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8384615Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8384733Z { 2023-01-11T21:41:26.8384903Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8385015Z { 2023-01-11T21:41:26.8385156Z #pragma omp for 2023-01-11T21:41:26.8385281Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8385392Z { 2023-01-11T21:41:26.8385512Z { 2023-01-11T21:41:26.8385840Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8385985Z float tmp3 = 0; 2023-01-11T21:41:26.8386192Z auto tmp3_vec = at::vec::Vectorized(tmp3); 2023-01-11T21:41:26.8386350Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8386456Z { 2023-01-11T21:41:26.8386772Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8387015Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8387185Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8387340Z tmp3_vec += tmp2; 2023-01-11T21:41:26.8387464Z } 2023-01-11T21:41:26.8387803Z tmp3 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp3_vec); 2023-01-11T21:41:26.8388015Z #pragma omp simd simdlen(4) reduction(+:tmp3) 2023-01-11T21:41:26.8388172Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8388270Z { 2023-01-11T21:41:26.8388437Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8388603Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.8388767Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8388913Z tmp3 += tmp2; 2023-01-11T21:41:26.8389026Z } 2023-01-11T21:41:26.8389178Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8389277Z } 2023-01-11T21:41:26.8389380Z } 2023-01-11T21:41:26.8389494Z } 2023-01-11T21:41:26.8389605Z } 2023-01-11T21:41:26.8389768Z ''') 2023-01-11T21:41:26.8389781Z 2023-01-11T21:41:26.8389788Z 2023-01-11T21:41:26.8389955Z async_compile.wait(globals()) 2023-01-11T21:41:26.8390091Z del async_compile 2023-01-11T21:41:26.8390100Z 2023-01-11T21:41:26.8390202Z def call(args): 2023-01-11T21:41:26.8390332Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8390460Z args.clear() 2023-01-11T21:41:26.8390810Z buf0 = empty_strided((8, 1), (1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8391089Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8391215Z del arg0_1 2023-01-11T21:41:26.8391348Z del arg1_1 2023-01-11T21:41:26.8391459Z return (buf0, ) 2023-01-11T21:41:26.8391469Z 2023-01-11T21:41:26.8391482Z 2023-01-11T21:41:26.8391619Z if __name__ == "__main__": 2023-01-11T21:41:26.8391821Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8392030Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8392379Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8392720Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8392926Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8392937Z 2023-01-11T21:41:26.8393059Z ok (0.025s) 2023-01-11T21:41:26.8393822Z test_tanh_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8394118Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8394581Z [2023-01-11 21:38:36,208] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 457 2023-01-11T21:41:26.8395042Z [2023-01-11 21:38:37,695] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 457 2023-01-11T21:41:26.8395051Z 2023-01-11T21:41:26.8395222Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8395357Z import torch 2023-01-11T21:41:26.8395484Z import random 2023-01-11T21:41:26.8395687Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8395891Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8395901Z 2023-01-11T21:41:26.8396023Z aten = torch.ops.aten 2023-01-11T21:41:26.8396325Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8396496Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8396507Z 2023-01-11T21:41:26.8396513Z 2023-01-11T21:41:26.8396766Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8397127Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8397340Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8397512Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8397687Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8397787Z { 2023-01-11T21:41:26.8397958Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8398070Z { 2023-01-11T21:41:26.8398206Z #pragma omp for 2023-01-11T21:41:26.8398350Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8398473Z { 2023-01-11T21:41:26.8398709Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8398850Z auto tmp1 = tmp0.tanh(); 2023-01-11T21:41:26.8399076Z auto tmp2 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.8399240Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.8399475Z auto tmp4 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8399632Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.8399777Z auto tmp6 = tmp5.tanh(); 2023-01-11T21:41:26.8399933Z tmp3.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8400086Z tmp6.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8400198Z } 2023-01-11T21:41:26.8400368Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8400517Z for(long i0=256; i0<256; i0+=1) 2023-01-11T21:41:26.8400624Z { 2023-01-11T21:41:26.8400808Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8400982Z auto tmp1 = std::tanh(tmp0); 2023-01-11T21:41:26.8401141Z auto tmp2 = static_cast(2); 2023-01-11T21:41:26.8401298Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.8401465Z auto tmp4 = static_cast(1); 2023-01-11T21:41:26.8401613Z auto tmp5 = tmp0 + tmp4; 2023-01-11T21:41:26.8401783Z auto tmp6 = std::tanh(tmp5); 2023-01-11T21:41:26.8401935Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8402076Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.8402176Z } 2023-01-11T21:41:26.8402277Z } 2023-01-11T21:41:26.8402391Z } 2023-01-11T21:41:26.8402553Z ''') 2023-01-11T21:41:26.8402565Z 2023-01-11T21:41:26.8402570Z 2023-01-11T21:41:26.8402726Z async_compile.wait(globals()) 2023-01-11T21:41:26.8402862Z del async_compile 2023-01-11T21:41:26.8402875Z 2023-01-11T21:41:26.8403002Z def call(args): 2023-01-11T21:41:26.8403120Z arg0_1, = args 2023-01-11T21:41:26.8403237Z args.clear() 2023-01-11T21:41:26.8403602Z buf0 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8403951Z buf1 = empty_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8404229Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8404448Z del arg0_1 2023-01-11T21:41:26.8404589Z return (buf0, buf1, ) 2023-01-11T21:41:26.8404599Z 2023-01-11T21:41:26.8404605Z 2023-01-11T21:41:26.8404733Z if __name__ == "__main__": 2023-01-11T21:41:26.8404910Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8405128Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8405487Z arg0_1 = rand_strided((16, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8405664Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8405676Z 2023-01-11T21:41:26.8405794Z ok (1.518s) 2023-01-11T21:41:26.8406638Z test_tensor1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8406866Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8407328Z [2023-01-11 21:38:37,715] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 458 2023-01-11T21:41:26.8407788Z [2023-01-11 21:38:39,192] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 458 2023-01-11T21:41:26.8407798Z 2023-01-11T21:41:26.8407950Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8408061Z import torch 2023-01-11T21:41:26.8408190Z import random 2023-01-11T21:41:26.8408394Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8408611Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8408621Z 2023-01-11T21:41:26.8408754Z aten = torch.ops.aten 2023-01-11T21:41:26.8408990Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8409285Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8409303Z 2023-01-11T21:41:26.8409310Z 2023-01-11T21:41:26.8409561Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8409880Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8410087Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8410255Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8410424Z long* __restrict__ out_ptr1) 2023-01-11T21:41:26.8410522Z { 2023-01-11T21:41:26.8410703Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8410813Z { 2023-01-11T21:41:26.8410939Z #pragma omp for 2023-01-11T21:41:26.8411088Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.8411209Z { 2023-01-11T21:41:26.8411315Z { 2023-01-11T21:41:26.8411431Z { 2023-01-11T21:41:26.8411597Z auto tmp2 = in_ptr0[i0]; 2023-01-11T21:41:26.8411768Z auto tmp0 = static_cast(1); 2023-01-11T21:41:26.8411955Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8412114Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.8412261Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8412374Z } 2023-01-11T21:41:26.8412492Z } 2023-01-11T21:41:26.8412608Z } 2023-01-11T21:41:26.8412748Z #pragma omp single 2023-01-11T21:41:26.8412861Z { 2023-01-11T21:41:26.8412967Z { 2023-01-11T21:41:26.8413085Z { 2023-01-11T21:41:26.8413274Z auto tmp0 = static_cast(5); 2023-01-11T21:41:26.8413426Z out_ptr1[0] = tmp0; 2023-01-11T21:41:26.8413540Z } 2023-01-11T21:41:26.8413636Z } 2023-01-11T21:41:26.8413745Z } 2023-01-11T21:41:26.8413846Z } 2023-01-11T21:41:26.8413958Z } 2023-01-11T21:41:26.8414127Z ''') 2023-01-11T21:41:26.8414138Z 2023-01-11T21:41:26.8414146Z 2023-01-11T21:41:26.8414434Z async_compile.wait(globals()) 2023-01-11T21:41:26.8414566Z del async_compile 2023-01-11T21:41:26.8414573Z 2023-01-11T21:41:26.8414678Z def call(args): 2023-01-11T21:41:26.8414808Z arg0_1, = args 2023-01-11T21:41:26.8414941Z args.clear() 2023-01-11T21:41:26.8415302Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8415615Z buf1 = empty_strided((), (), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8415901Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8416026Z del arg0_1 2023-01-11T21:41:26.8416151Z return (buf0, buf1, ) 2023-01-11T21:41:26.8416174Z 2023-01-11T21:41:26.8416180Z 2023-01-11T21:41:26.8416296Z if __name__ == "__main__": 2023-01-11T21:41:26.8416491Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8416802Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8417152Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8417364Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8417372Z 2023-01-11T21:41:26.8417493Z ok (1.497s) 2023-01-11T21:41:26.8418262Z test_tensor2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8418485Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8418943Z [2023-01-11 21:38:39,212] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 459 2023-01-11T21:41:26.8419385Z [2023-01-11 21:38:40,688] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 459 2023-01-11T21:41:26.8419417Z 2023-01-11T21:41:26.8419571Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8419697Z import torch 2023-01-11T21:41:26.8419828Z import random 2023-01-11T21:41:26.8420026Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8420222Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8420231Z 2023-01-11T21:41:26.8420374Z aten = torch.ops.aten 2023-01-11T21:41:26.8420607Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8420761Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8421025Z constant0 = None # 4ebd4ff1c68a89413a036eaaf84436373c4ec2939ac1d7f84e9908772a109281 2023-01-11T21:41:26.8421034Z 2023-01-11T21:41:26.8421040Z 2023-01-11T21:41:26.8421284Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8421628Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8421824Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.8422007Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8422178Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8422290Z { 2023-01-11T21:41:26.8422444Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8422555Z { 2023-01-11T21:41:26.8422683Z #pragma omp for 2023-01-11T21:41:26.8422834Z for(long i0=0; i0<19; i0+=1) 2023-01-11T21:41:26.8422956Z { 2023-01-11T21:41:26.8423068Z { 2023-01-11T21:41:26.8423237Z { 2023-01-11T21:41:26.8423407Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8423551Z auto tmp2 = in_ptr1[0]; 2023-01-11T21:41:26.8423742Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.8423902Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.8424066Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8424186Z } 2023-01-11T21:41:26.8424288Z } 2023-01-11T21:41:26.8424394Z } 2023-01-11T21:41:26.8424638Z } 2023-01-11T21:41:26.8424745Z } 2023-01-11T21:41:26.8424914Z ''') 2023-01-11T21:41:26.8424927Z 2023-01-11T21:41:26.8424934Z 2023-01-11T21:41:26.8425095Z async_compile.wait(globals()) 2023-01-11T21:41:26.8425224Z del async_compile 2023-01-11T21:41:26.8425237Z 2023-01-11T21:41:26.8425347Z def call(args): 2023-01-11T21:41:26.8425483Z arg0_1, = args 2023-01-11T21:41:26.8425613Z args.clear() 2023-01-11T21:41:26.8425967Z buf0 = empty_strided((19, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8426249Z kernel_cpp_0(c_void_p(constant0.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8426379Z del arg0_1 2023-01-11T21:41:26.8426502Z return (buf0, ) 2023-01-11T21:41:26.8426513Z 2023-01-11T21:41:26.8426518Z 2023-01-11T21:41:26.8426730Z if __name__ == "__main__": 2023-01-11T21:41:26.8426913Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8427135Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8427495Z constant0 = rand_strided((19, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8427825Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8428013Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8428022Z 2023-01-11T21:41:26.8428141Z ok (1.496s) 2023-01-11T21:41:26.8428909Z test_tensor3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8429138Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8429583Z [2023-01-11 21:38:40,718] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 460 2023-01-11T21:41:26.8430038Z [2023-01-11 21:38:42,225] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 460 2023-01-11T21:41:26.8430070Z 2023-01-11T21:41:26.8430222Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8430356Z import torch 2023-01-11T21:41:26.8430479Z import random 2023-01-11T21:41:26.8430682Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8430881Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8430891Z 2023-01-11T21:41:26.8431037Z aten = torch.ops.aten 2023-01-11T21:41:26.8431280Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8431435Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8431443Z 2023-01-11T21:41:26.8431449Z 2023-01-11T21:41:26.8431681Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8432022Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8432239Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8432412Z long* __restrict__ out_ptr0, 2023-01-11T21:41:26.8432577Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.8432749Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.8432858Z { 2023-01-11T21:41:26.8432982Z #pragma GCC ivdep 2023-01-11T21:41:26.8433129Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8433232Z { 2023-01-11T21:41:26.8433345Z { 2023-01-11T21:41:26.8433458Z { 2023-01-11T21:41:26.8433638Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.8433802Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8433970Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.8434137Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.8434323Z auto tmp4 = tmp2 ? tmp1 : tmp3; 2023-01-11T21:41:26.8434480Z auto tmp5 = tmp4 + tmp1; 2023-01-11T21:41:26.8434747Z out_ptr0[i0] = tmp5; 2023-01-11T21:41:26.8434863Z } 2023-01-11T21:41:26.8434956Z } 2023-01-11T21:41:26.8435068Z } 2023-01-11T21:41:26.8435205Z #pragma GCC ivdep 2023-01-11T21:41:26.8435352Z for(long i0=0; i0<3; i0+=1) 2023-01-11T21:41:26.8435462Z { 2023-01-11T21:41:26.8435576Z { 2023-01-11T21:41:26.8435697Z { 2023-01-11T21:41:26.8435850Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.8436026Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8436187Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.8436355Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.8436510Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.8436673Z auto tmp5 = static_cast(3); 2023-01-11T21:41:26.8436924Z auto tmp6 = tmp4 ? tmp3 : tmp5; 2023-01-11T21:41:26.8437073Z auto tmp7 = tmp2 ? tmp1 : tmp6; 2023-01-11T21:41:26.8437232Z auto tmp8 = tmp7 + tmp3; 2023-01-11T21:41:26.8437372Z out_ptr1[i0] = tmp8; 2023-01-11T21:41:26.8437489Z } 2023-01-11T21:41:26.8437602Z } 2023-01-11T21:41:26.8437719Z } 2023-01-11T21:41:26.8437893Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8437995Z { 2023-01-11T21:41:26.8438136Z #pragma omp for 2023-01-11T21:41:26.8438284Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8438403Z { 2023-01-11T21:41:26.8438519Z { 2023-01-11T21:41:26.8438629Z { 2023-01-11T21:41:26.8438779Z auto tmp12 = in_ptr0[i0]; 2023-01-11T21:41:26.8438954Z auto tmp0 = static_cast(i0); 2023-01-11T21:41:26.8439122Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.8439297Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.8439480Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.8439645Z auto tmp4 = tmp0 < tmp3; 2023-01-11T21:41:26.8439814Z auto tmp5 = tmp4 ? tmp3 : tmp1; 2023-01-11T21:41:26.8439951Z auto tmp6 = static_cast(3); 2023-01-11T21:41:26.8440114Z auto tmp7 = tmp0 < tmp6; 2023-01-11T21:41:26.8440294Z auto tmp8 = static_cast(4); 2023-01-11T21:41:26.8440466Z auto tmp9 = tmp7 ? tmp6 : tmp8; 2023-01-11T21:41:26.8440640Z auto tmp10 = tmp2 ? tmp5 : tmp9; 2023-01-11T21:41:26.8440822Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8440983Z auto tmp13 = tmp11 + tmp12; 2023-01-11T21:41:26.8441135Z out_ptr2[i0] = tmp13; 2023-01-11T21:41:26.8441236Z } 2023-01-11T21:41:26.8441355Z } 2023-01-11T21:41:26.8441477Z } 2023-01-11T21:41:26.8441580Z } 2023-01-11T21:41:26.8441693Z } 2023-01-11T21:41:26.8441866Z ''') 2023-01-11T21:41:26.8441882Z 2023-01-11T21:41:26.8441889Z 2023-01-11T21:41:26.8442047Z async_compile.wait(globals()) 2023-01-11T21:41:26.8442160Z del async_compile 2023-01-11T21:41:26.8442168Z 2023-01-11T21:41:26.8442296Z def call(args): 2023-01-11T21:41:26.8442415Z arg0_1, = args 2023-01-11T21:41:26.8442543Z args.clear() 2023-01-11T21:41:26.8442886Z buf0 = empty_strided((2, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8443209Z buf1 = empty_strided((3, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8443556Z buf2 = empty_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8443864Z buf3 = empty_strided((0, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8444177Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8444315Z del arg0_1 2023-01-11T21:41:26.8444475Z return (buf3, buf0, buf1, buf2, ) 2023-01-11T21:41:26.8444483Z 2023-01-11T21:41:26.8444589Z 2023-01-11T21:41:26.8444725Z if __name__ == "__main__": 2023-01-11T21:41:26.8444921Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8445143Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8445497Z arg0_1 = rand_strided((4, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8445664Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8445697Z 2023-01-11T21:41:26.8445808Z ok (1.537s) 2023-01-11T21:41:26.8446668Z test_tmp_not_defined_issue1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8446900Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8447522Z Failed to collect metadata on function, produced code may be suboptimal. Known situations this can occur are inference mode only compilation involving resize_ or prims (!schema.hasAnyAliasInfo() INTERNAL ASSERT FAILED); if your situation looks different please file a bug to PyTorch. 2023-01-11T21:41:26.8447687Z Traceback (most recent call last): 2023-01-11T21:41:26.8448176Z File "/opt/conda/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1273, in aot_wrapper_dedupe 2023-01-11T21:41:26.8448463Z fw_metadata, _out, _num_aliasing_metadata_outs = run_functionalized_fw_and_collect_metadata( 2023-01-11T21:41:26.8448903Z File "/opt/conda/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 289, in inner 2023-01-11T21:41:26.8449170Z outs = f(*f_args) 2023-01-11T21:41:26.8449634Z File "/opt/conda/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2327, in functional_call 2023-01-11T21:41:26.8449844Z out = Interpreter(mod).run(*args[params_len:], **kwargs) 2023-01-11T21:41:26.8450251Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py", line 136, in run 2023-01-11T21:41:26.8450413Z self.env[node] = self.run_node(node) 2023-01-11T21:41:26.8450819Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py", line 177, in run_node 2023-01-11T21:41:26.8451020Z return getattr(self, n.op)(n.target, args, kwargs) 2023-01-11T21:41:26.8451441Z File "/opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py", line 249, in call_function 2023-01-11T21:41:26.8451601Z return target(*args, **kwargs) 2023-01-11T21:41:26.8451966Z File "/opt/conda/lib/python3.10/site-packages/torch/_ops.py", line 284, in __call__ 2023-01-11T21:41:26.8452140Z return self._op(*args, **kwargs or {}) 2023-01-11T21:41:26.8452602Z File "/opt/conda/lib/python3.10/site-packages/torch/_inductor/overrides.py", line 36, in __torch_function__ 2023-01-11T21:41:26.8452762Z return func(*args, **kwargs) 2023-01-11T21:41:26.8453139Z File "/opt/conda/lib/python3.10/site-packages/torch/_ops.py", line 284, in __call__ 2023-01-11T21:41:26.8453311Z return self._op(*args, **kwargs or {}) 2023-01-11T21:41:26.8453734Z File "/opt/conda/lib/python3.10/site-packages/torch/_prims/__init__.py", line 285, in _autograd_impl 2023-01-11T21:41:26.8453946Z return backwards_not_supported(_prim)(*args, **kwargs) 2023-01-11T21:41:26.8454389Z File "/opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py", line 309, in _autograd_impl 2023-01-11T21:41:26.8454563Z return redispatch_prim(args, kwargs) 2023-01-11T21:41:26.8455020Z File "/opt/conda/lib/python3.10/site-packages/torch/_prims_common/wrappers.py", line 279, in redispatch_prim 2023-01-11T21:41:26.8455176Z return prim(*args, **kwargs) 2023-01-11T21:41:26.8455560Z File "/opt/conda/lib/python3.10/site-packages/torch/_ops.py", line 284, in __call__ 2023-01-11T21:41:26.8455736Z return self._op(*args, **kwargs or {}) 2023-01-11T21:41:26.8456715Z RuntimeError: !schema.hasAnyAliasInfo() INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/aten/src/ATen/FunctionalizeFallbackKernel.cpp":32, please report a bug to PyTorch. mutating and aliasing ops should all have codegen'd kernels 2023-01-11T21:41:26.8456728Z 2023-01-11T21:41:26.8457137Z While executing %broadcast_in_dim_default : [#users=1] = call_function[target=torch.ops.prims.broadcast_in_dim.default](args = (%var_default_1, [1, 512, 1], [0, 1]), kwargs = {}) 2023-01-11T21:41:26.8457279Z Original traceback: 2023-01-11T21:41:26.8457400Z Module stack: {} 2023-01-11T21:41:26.8457667Z File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 4723, in forward 2023-01-11T21:41:26.8457932Z broadcast_in_dim_default_2 = torch.ops.prims.broadcast_in_dim.default( 2023-01-11T21:41:26.8458303Z | File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 318, in run 2023-01-11T21:41:26.8458457Z return model(*ex, **kwargs) 2023-01-11T21:41:26.8458469Z 2023-01-11T21:41:26.8458928Z [2023-01-11 21:38:42,445] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 461 2023-01-11T21:41:26.8458939Z 2023-01-11T21:41:26.8459107Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8459239Z import torch 2023-01-11T21:41:26.8459335Z import random 2023-01-11T21:41:26.8459540Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8459755Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8459766Z 2023-01-11T21:41:26.8459909Z aten = torch.ops.aten 2023-01-11T21:41:26.8460129Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8460290Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8460301Z 2023-01-11T21:41:26.8460307Z 2023-01-11T21:41:26.8460554Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8460896Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8461086Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8461266Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.8461450Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8461638Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8461810Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.8461990Z const float* __restrict__ in_ptr3, 2023-01-11T21:41:26.8462169Z const float* __restrict__ in_ptr4, 2023-01-11T21:41:26.8462348Z const float* __restrict__ in_ptr5, 2023-01-11T21:41:26.8462496Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8462664Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8462842Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.8463021Z float* __restrict__ out_ptr5) 2023-01-11T21:41:26.8463208Z { 2023-01-11T21:41:26.8463365Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.8463520Z auto out_ptr4 = in_out_ptr1; 2023-01-11T21:41:26.8463676Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8463788Z { 2023-01-11T21:41:26.8463922Z #pragma omp for 2023-01-11T21:41:26.8464076Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:41:26.8464188Z { 2023-01-11T21:41:26.8464301Z { 2023-01-11T21:41:26.8464644Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8464777Z float tmp1 = 0; 2023-01-11T21:41:26.8464987Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8465140Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.8465262Z { 2023-01-11T21:41:26.8465520Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.8465666Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8465874Z } 2023-01-11T21:41:26.8466210Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8466406Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8466567Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:41:26.8466671Z { 2023-01-11T21:41:26.8466854Z auto tmp0 = in_ptr0[i1 + (1024*i0)]; 2023-01-11T21:41:26.8466994Z tmp1 += tmp0; 2023-01-11T21:41:26.8467113Z } 2023-01-11T21:41:26.8467261Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.8467361Z } 2023-01-11T21:41:26.8467464Z } 2023-01-11T21:41:26.8467603Z #pragma omp for 2023-01-11T21:41:26.8467824Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:41:26.8467942Z { 2023-01-11T21:41:26.8468062Z { 2023-01-11T21:41:26.8468387Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8468529Z float tmp6 = 0; 2023-01-11T21:41:26.8468744Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8468897Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.8469010Z { 2023-01-11T21:41:26.8469251Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.8469483Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.8469723Z auto tmp2 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:41:26.8469885Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8470139Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8470311Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8470465Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8470589Z } 2023-01-11T21:41:26.8470922Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8471131Z #pragma omp simd simdlen(4) reduction(+:tmp6) 2023-01-11T21:41:26.8471290Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:41:26.8471389Z { 2023-01-11T21:41:26.8471567Z auto tmp0 = in_ptr0[i1 + (1024*i0)]; 2023-01-11T21:41:26.8471729Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:41:26.8471915Z auto tmp2 = static_cast(1024); 2023-01-11T21:41:26.8472077Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8472325Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8472489Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8472634Z tmp6 += tmp5; 2023-01-11T21:41:26.8472736Z } 2023-01-11T21:41:26.8472888Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.8473006Z } 2023-01-11T21:41:26.8473118Z } 2023-01-11T21:41:26.8473252Z #pragma omp for 2023-01-11T21:41:26.8473393Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.8473491Z { 2023-01-11T21:41:26.8473729Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8473962Z auto tmp1 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:41:26.8474116Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8474294Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8474406Z } 2023-01-11T21:41:26.8474573Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8474717Z for(long i0=512; i0<512; i0+=1) 2023-01-11T21:41:26.8474809Z { 2023-01-11T21:41:26.8474968Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.8475156Z auto tmp1 = static_cast(1024); 2023-01-11T21:41:26.8475393Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8475536Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8475647Z } 2023-01-11T21:41:26.8475772Z #pragma omp for 2023-01-11T21:41:26.8475920Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:41:26.8476033Z { 2023-01-11T21:41:26.8476153Z { 2023-01-11T21:41:26.8476469Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8476617Z float tmp9 = 0; 2023-01-11T21:41:26.8476829Z auto tmp9_vec = at::vec::Vectorized(tmp9); 2023-01-11T21:41:26.8476986Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.8477088Z { 2023-01-11T21:41:26.8477414Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.8477636Z auto tmp1 = at::vec::Vectorized(in_ptr2[i0]); 2023-01-11T21:41:26.8477863Z auto tmp3 = at::vec::Vectorized(in_ptr3[i0]); 2023-01-11T21:41:26.8478097Z auto tmp5 = at::vec::Vectorized::loadu(in_ptr4 + 8*i1); 2023-01-11T21:41:26.8478331Z auto tmp7 = at::vec::Vectorized::loadu(in_ptr5 + 8*i1); 2023-01-11T21:41:26.8478603Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.8478768Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.8478901Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8479067Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.8479261Z tmp8.store(out_ptr2 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.8479412Z tmp9_vec += tmp8; 2023-01-11T21:41:26.8479532Z } 2023-01-11T21:41:26.8479864Z tmp9 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp9_vec); 2023-01-11T21:41:26.8480074Z #pragma omp simd simdlen(4) reduction(+:tmp9) 2023-01-11T21:41:26.8480230Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:41:26.8480334Z { 2023-01-11T21:41:26.8480501Z auto tmp0 = in_ptr1[i1 + (1024*i0)]; 2023-01-11T21:41:26.8480656Z auto tmp1 = in_ptr2[i0]; 2023-01-11T21:41:26.8480817Z auto tmp3 = in_ptr3[i0]; 2023-01-11T21:41:26.8480980Z auto tmp5 = in_ptr4[i1]; 2023-01-11T21:41:26.8481143Z auto tmp7 = in_ptr5[i1]; 2023-01-11T21:41:26.8481393Z auto tmp2 = tmp0 - tmp1; 2023-01-11T21:41:26.8481535Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.8481702Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8481864Z auto tmp8 = tmp6 + tmp7; 2023-01-11T21:41:26.8482040Z out_ptr2[i1 + (1024*i0)] = tmp8; 2023-01-11T21:41:26.8482176Z tmp9 += tmp8; 2023-01-11T21:41:26.8482296Z } 2023-01-11T21:41:26.8482440Z out_ptr3[i0] = tmp9; 2023-01-11T21:41:26.8482542Z } 2023-01-11T21:41:26.8482658Z } 2023-01-11T21:41:26.8482794Z #pragma omp for 2023-01-11T21:41:26.8482930Z for(long i0=0; i0<512; i0+=1) 2023-01-11T21:41:26.8483050Z { 2023-01-11T21:41:26.8483168Z { 2023-01-11T21:41:26.8483492Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8483622Z float tmp6 = 0; 2023-01-11T21:41:26.8483836Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8483978Z float tmp7 = 0; 2023-01-11T21:41:26.8484196Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.8484368Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.8484484Z { 2023-01-11T21:41:26.8484722Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + (8*i1) + (1024*i0)); 2023-01-11T21:41:26.8485046Z auto tmp1 = at::vec::Vectorized(out_ptr3[i0]); 2023-01-11T21:41:26.8485272Z auto tmp2 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:41:26.8485434Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8485697Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8485864Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8486014Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8486157Z tmp7_vec += tmp0; 2023-01-11T21:41:26.8486270Z } 2023-01-11T21:41:26.8486602Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8486972Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.8487218Z #pragma omp simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.8487380Z for(long i1=1024; i1<1024; i1+=1) 2023-01-11T21:41:26.8487503Z { 2023-01-11T21:41:26.8487689Z auto tmp0 = out_ptr2[i1 + (1024*i0)]; 2023-01-11T21:41:26.8487837Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:41:26.8488023Z auto tmp2 = static_cast(1024); 2023-01-11T21:41:26.8488184Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8488422Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8488576Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8488713Z tmp6 += tmp5; 2023-01-11T21:41:26.8488857Z tmp7 += tmp0; 2023-01-11T21:41:26.8488979Z } 2023-01-11T21:41:26.8489255Z out_ptr4[i0] = tmp6; 2023-01-11T21:41:26.8489400Z out_ptr5[i0] = tmp7; 2023-01-11T21:41:26.8489513Z } 2023-01-11T21:41:26.8489618Z } 2023-01-11T21:41:26.8489763Z #pragma omp for 2023-01-11T21:41:26.8489905Z for(long i0=0; i0<64; i0+=1) 2023-01-11T21:41:26.8490025Z { 2023-01-11T21:41:26.8490263Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr4 + 8*i0); 2023-01-11T21:41:26.8490492Z auto tmp1 = at::vec::Vectorized(static_cast(1024)); 2023-01-11T21:41:26.8490630Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8490997Z auto tmp3 = at::vec::Vectorized(static_cast(1e-05)); 2023-01-11T21:41:26.8491157Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8491321Z tmp4.store(in_out_ptr1 + 8*i0); 2023-01-11T21:41:26.8491439Z } 2023-01-11T21:41:26.8491615Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8491764Z for(long i0=512; i0<512; i0+=1) 2023-01-11T21:41:26.8491860Z { 2023-01-11T21:41:26.8492004Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:41:26.8492187Z auto tmp1 = static_cast(1024); 2023-01-11T21:41:26.8492343Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8492622Z auto tmp3 = static_cast(1e-05); 2023-01-11T21:41:26.8492774Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8492917Z in_out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.8493013Z } 2023-01-11T21:41:26.8493134Z } 2023-01-11T21:41:26.8493248Z } 2023-01-11T21:41:26.8493393Z ''') 2023-01-11T21:41:26.8493405Z 2023-01-11T21:41:26.8493413Z 2023-01-11T21:41:26.8493575Z async_compile.wait(globals()) 2023-01-11T21:41:26.8493702Z del async_compile 2023-01-11T21:41:26.8493714Z 2023-01-11T21:41:26.8493842Z def call(args): 2023-01-11T21:41:26.8494015Z arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args 2023-01-11T21:41:26.8494146Z args.clear() 2023-01-11T21:41:26.8494515Z buf0 = empty_strided((1, 512, 1), (512, 1, 512), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8495092Z buf1 = empty_strided((1, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8495235Z buf2 = buf1; del buf1 # reuse 2023-01-11T21:41:26.8495613Z buf3 = empty_strided((1, 512, 1024), (524288, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8495976Z buf4 = empty_strided((1, 512, 1), (512, 1, 512), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8496324Z buf5 = empty_strided((1, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8496656Z buf6 = empty_strided((1, 512), (512, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8496856Z buf7 = as_strided(buf5, (1, 512, 1), (512, 1, 1)); del buf5 # reuse 2023-01-11T21:41:26.8497561Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(arg3_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(arg4_1.data_ptr()), c_void_p(arg5_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf6.data_ptr())) 2023-01-11T21:41:26.8497690Z del arg0_1 2023-01-11T21:41:26.8497811Z del arg1_1 2023-01-11T21:41:26.8497938Z del arg2_1 2023-01-11T21:41:26.8498057Z del arg3_1 2023-01-11T21:41:26.8498175Z del arg4_1 2023-01-11T21:41:26.8498281Z del arg5_1 2023-01-11T21:41:26.8498437Z return (buf2, buf6, buf7, ) 2023-01-11T21:41:26.8498447Z 2023-01-11T21:41:26.8498453Z 2023-01-11T21:41:26.8498589Z if __name__ == "__main__": 2023-01-11T21:41:26.8498802Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8499016Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8499366Z arg0_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8499715Z arg1_1 = rand_strided((1024, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8500090Z arg2_1 = rand_strided((1, 512, 1024), (524288, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8500466Z arg3_1 = rand_strided((1, 512, 1024), (524288, 1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8500828Z arg4_1 = rand_strided((1, 512, 1), (512, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8501186Z arg5_1 = rand_strided((1, 512, 1), (512, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8501435Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1])) 2023-01-11T21:41:26.8501907Z [2023-01-11 21:38:44,193] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 461 2023-01-11T21:41:26.8501918Z 2023-01-11T21:41:26.8502037Z ok (1.979s) 2023-01-11T21:41:26.8502827Z test_tmp_not_defined_issue2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8503053Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8503574Z [2023-01-11 21:38:44,269] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 462 2023-01-11T21:41:26.8504040Z [2023-01-11 21:38:45,764] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 462 2023-01-11T21:41:26.8504054Z 2023-01-11T21:41:26.8504196Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8504328Z import torch 2023-01-11T21:41:26.8504458Z import random 2023-01-11T21:41:26.8504663Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8504870Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8504879Z 2023-01-11T21:41:26.8505011Z aten = torch.ops.aten 2023-01-11T21:41:26.8505251Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8505513Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8505541Z 2023-01-11T21:41:26.8505550Z 2023-01-11T21:41:26.8505771Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8506114Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8506323Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8506509Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8506679Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.8506852Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8506966Z { 2023-01-11T21:41:26.8507063Z { 2023-01-11T21:41:26.8507380Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8507600Z float tmp5 = 0; 2023-01-11T21:41:26.8507811Z auto tmp5_vec = at::vec::Vectorized(tmp5); 2023-01-11T21:41:26.8508000Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8508122Z { 2023-01-11T21:41:26.8508298Z #pragma omp for reduction(+:tmp5_vec) 2023-01-11T21:41:26.8508465Z for(long i0=0; i0<17600; i0+=1) 2023-01-11T21:41:26.8508564Z { 2023-01-11T21:41:26.8508799Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8509008Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.8509244Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr2 + 8*i0); 2023-01-11T21:41:26.8509409Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8509562Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.8509712Z tmp5_vec += tmp4; 2023-01-11T21:41:26.8509800Z } 2023-01-11T21:41:26.8510138Z tmp5 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp5_vec); 2023-01-11T21:41:26.8510351Z #pragma omp for simd simdlen(4) reduction(+:tmp5) 2023-01-11T21:41:26.8510519Z for(long i0=140800; i0<140800; i0+=1) 2023-01-11T21:41:26.8510631Z { 2023-01-11T21:41:26.8510794Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8510946Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.8511105Z auto tmp3 = in_ptr2[i0]; 2023-01-11T21:41:26.8511239Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8511386Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.8511520Z tmp5 += tmp4; 2023-01-11T21:41:26.8511631Z } 2023-01-11T21:41:26.8511748Z } 2023-01-11T21:41:26.8511891Z out_ptr0[0] = tmp5; 2023-01-11T21:41:26.8511983Z } 2023-01-11T21:41:26.8512093Z } 2023-01-11T21:41:26.8512250Z ''') 2023-01-11T21:41:26.8512261Z 2023-01-11T21:41:26.8512273Z 2023-01-11T21:41:26.8512436Z async_compile.wait(globals()) 2023-01-11T21:41:26.8512569Z del async_compile 2023-01-11T21:41:26.8512583Z 2023-01-11T21:41:26.8512716Z def call(args): 2023-01-11T21:41:26.8512897Z primals_1, primals_2, primals_3 = args 2023-01-11T21:41:26.8513022Z args.clear() 2023-01-11T21:41:26.8513340Z buf0 = empty_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8513683Z kernel_cpp_0(c_void_p(primals_3.data_ptr()), c_void_p(primals_2.data_ptr()), c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8513878Z return (buf0, primals_1, primals_2, primals_3, ) 2023-01-11T21:41:26.8513890Z 2023-01-11T21:41:26.8513896Z 2023-01-11T21:41:26.8514040Z if __name__ == "__main__": 2023-01-11T21:41:26.8514244Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8514457Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8514869Z primals_1 = rand_strided((1, 88, 40, 40), (140800, 1600, 40, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8515208Z primals_2 = rand_strided((), (), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8515711Z primals_3 = rand_strided((1, 88, 40, 40), (140800, 1600, 40, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8515944Z print_performance(lambda: call([primals_1, primals_2, primals_3])) 2023-01-11T21:41:26.8515954Z 2023-01-11T21:41:26.8516077Z ok (1.563s) 2023-01-11T21:41:26.8516329Z test_to_device_constant_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:41:26.8516565Z test_to_device_cpu (__main__.CpuTests) ... skip: requires cuda (0.000s) 2023-01-11T21:41:26.8517407Z test_to_dtype_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8517632Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8518095Z [2023-01-11 21:38:45,864] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 463 2023-01-11T21:41:26.8518560Z [2023-01-11 21:38:47,629] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 463 2023-01-11T21:41:26.8518568Z 2023-01-11T21:41:26.8518737Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8518854Z import torch 2023-01-11T21:41:26.8518976Z import random 2023-01-11T21:41:26.8519182Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8519394Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8519403Z 2023-01-11T21:41:26.8519547Z aten = torch.ops.aten 2023-01-11T21:41:26.8519775Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8519944Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8519953Z 2023-01-11T21:41:26.8519959Z 2023-01-11T21:41:26.8520202Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8520535Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8520745Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.8520913Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8521071Z bool* __restrict__ out_ptr1) 2023-01-11T21:41:26.8521183Z { 2023-01-11T21:41:26.8521360Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8521473Z { 2023-01-11T21:41:26.8521593Z #pragma omp for 2023-01-11T21:41:26.8521737Z for(long i0=0; i0<40; i0+=1) 2023-01-11T21:41:26.8521852Z { 2023-01-11T21:41:26.8521975Z { 2023-01-11T21:41:26.8522091Z { 2023-01-11T21:41:26.8522267Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8522451Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8522589Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8522791Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8522980Z auto tmp4 = static_cast(tmp0); 2023-01-11T21:41:26.8523134Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.8523286Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.8523393Z } 2023-01-11T21:41:26.8523512Z } 2023-01-11T21:41:26.8523605Z } 2023-01-11T21:41:26.8523719Z } 2023-01-11T21:41:26.8523828Z } 2023-01-11T21:41:26.8523986Z ''') 2023-01-11T21:41:26.8523994Z 2023-01-11T21:41:26.8524001Z 2023-01-11T21:41:26.8524162Z async_compile.wait(globals()) 2023-01-11T21:41:26.8524289Z del async_compile 2023-01-11T21:41:26.8524298Z 2023-01-11T21:41:26.8524426Z def call(args): 2023-01-11T21:41:26.8524547Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8524670Z args.clear() 2023-01-11T21:41:26.8525035Z buf0 = empty_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8525389Z buf1 = empty_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8525779Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8525935Z return (arg0_1, buf0, arg1_1, buf1, ) 2023-01-11T21:41:26.8525947Z 2023-01-11T21:41:26.8525953Z 2023-01-11T21:41:26.8526096Z if __name__ == "__main__": 2023-01-11T21:41:26.8526288Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8526493Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8526850Z arg0_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8527201Z arg1_1 = rand_strided((2, 2, 10), (20, 10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.8527395Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8527469Z 2023-01-11T21:41:26.8527594Z ok (1.861s) 2023-01-11T21:41:26.8528366Z test_topk_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8528596Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8529164Z [2023-01-11 21:38:47,645] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 464 2023-01-11T21:41:26.8529566Z [2023-01-11 21:38:47,651] torch._inductor.ir: [WARNING] Using FallbackKernel: aten.topk 2023-01-11T21:41:26.8530011Z [2023-01-11 21:38:47,653] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 464 2023-01-11T21:41:26.8530041Z 2023-01-11T21:41:26.8530194Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8530329Z import torch 2023-01-11T21:41:26.8530461Z import random 2023-01-11T21:41:26.8530665Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8530870Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8530880Z 2023-01-11T21:41:26.8531016Z aten = torch.ops.aten 2023-01-11T21:41:26.8531244Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8531387Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8531397Z 2023-01-11T21:41:26.8531423Z 2023-01-11T21:41:26.8531562Z async_compile.wait(globals()) 2023-01-11T21:41:26.8531684Z del async_compile 2023-01-11T21:41:26.8531695Z 2023-01-11T21:41:26.8531824Z def call(args): 2023-01-11T21:41:26.8531951Z arg0_1, = args 2023-01-11T21:41:26.8532077Z args.clear() 2023-01-11T21:41:26.8532232Z buf0 = aten.topk(arg0_1, 2) 2023-01-11T21:41:26.8532331Z del arg0_1 2023-01-11T21:41:26.8532455Z buf1 = buf0[0] 2023-01-11T21:41:26.8532656Z assert_size_stride(buf1, (1, 1, 8, 2), (16, 16, 2, 1)) 2023-01-11T21:41:26.8532781Z buf2 = buf0[1] 2023-01-11T21:41:26.8532970Z assert_size_stride(buf2, (1, 1, 8, 2), (16, 16, 2, 1)) 2023-01-11T21:41:26.8533088Z del buf0 2023-01-11T21:41:26.8533225Z return (buf1, buf2, ) 2023-01-11T21:41:26.8533234Z 2023-01-11T21:41:26.8533240Z 2023-01-11T21:41:26.8533375Z if __name__ == "__main__": 2023-01-11T21:41:26.8533560Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8533778Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8534161Z arg0_1 = rand_strided((1, 1, 8, 8), (64, 64, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8534354Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8534361Z 2023-01-11T21:41:26.8534484Z ok (0.023s) 2023-01-11T21:41:26.8535279Z test_transpose_add_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8535640Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8536117Z [2023-01-11 21:38:47,668] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 465 2023-01-11T21:41:26.8536575Z [2023-01-11 21:38:49,312] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 465 2023-01-11T21:41:26.8536584Z 2023-01-11T21:41:26.8536748Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8536858Z import torch 2023-01-11T21:41:26.8536987Z import random 2023-01-11T21:41:26.8537184Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8537399Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8537410Z 2023-01-11T21:41:26.8537643Z aten = torch.ops.aten 2023-01-11T21:41:26.8537870Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8538044Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8538053Z 2023-01-11T21:41:26.8538059Z 2023-01-11T21:41:26.8538288Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8538626Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8538837Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8539027Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8539202Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8539319Z { 2023-01-11T21:41:26.8539488Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8539582Z { 2023-01-11T21:41:26.8539731Z #pragma omp for 2023-01-11T21:41:26.8539879Z for(long i0=0; i0<32; i0+=1) 2023-01-11T21:41:26.8539994Z { 2023-01-11T21:41:26.8540150Z #pragma GCC ivdep 2023-01-11T21:41:26.8540292Z for(long i1=0; i1<16; i1+=1) 2023-01-11T21:41:26.8540414Z { 2023-01-11T21:41:26.8540519Z { 2023-01-11T21:41:26.8540647Z { 2023-01-11T21:41:26.8540824Z auto tmp0 = in_ptr0[i0 + (32*i1)]; 2023-01-11T21:41:26.8541005Z auto tmp1 = in_ptr1[i1 + (16*i0)]; 2023-01-11T21:41:26.8541163Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8541339Z out_ptr0[i0 + (32*i1)] = tmp2; 2023-01-11T21:41:26.8541462Z } 2023-01-11T21:41:26.8541562Z } 2023-01-11T21:41:26.8541668Z } 2023-01-11T21:41:26.8541786Z } 2023-01-11T21:41:26.8541888Z } 2023-01-11T21:41:26.8541991Z } 2023-01-11T21:41:26.8542157Z ''') 2023-01-11T21:41:26.8542166Z 2023-01-11T21:41:26.8542172Z 2023-01-11T21:41:26.8542329Z async_compile.wait(globals()) 2023-01-11T21:41:26.8542451Z del async_compile 2023-01-11T21:41:26.8542459Z 2023-01-11T21:41:26.8542584Z def call(args): 2023-01-11T21:41:26.8542719Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8542851Z args.clear() 2023-01-11T21:41:26.8543298Z buf0 = empty_strided((32, 16), (1, 32), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8543580Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8543704Z del arg0_1 2023-01-11T21:41:26.8543808Z del arg1_1 2023-01-11T21:41:26.8543942Z return (buf0, ) 2023-01-11T21:41:26.8543954Z 2023-01-11T21:41:26.8543960Z 2023-01-11T21:41:26.8544094Z if __name__ == "__main__": 2023-01-11T21:41:26.8544293Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8544507Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8544858Z arg0_1 = rand_strided((16, 32), (32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8545207Z arg1_1 = rand_strided((32, 16), (16, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8545406Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8545517Z 2023-01-11T21:41:26.8545622Z ok (1.659s) 2023-01-11T21:41:26.8546397Z test_transpose_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8546621Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8547081Z [2023-01-11 21:38:49,336] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 466 2023-01-11T21:41:26.8547540Z [2023-01-11 21:38:49,351] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 466 2023-01-11T21:41:26.8547623Z 2023-01-11T21:41:26.8547799Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8547928Z import torch 2023-01-11T21:41:26.8548067Z import random 2023-01-11T21:41:26.8548271Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8548460Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8548489Z 2023-01-11T21:41:26.8548610Z aten = torch.ops.aten 2023-01-11T21:41:26.8548835Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8548998Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8549006Z 2023-01-11T21:41:26.8549013Z 2023-01-11T21:41:26.8549258Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8549601Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8549810Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8549994Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8550168Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8550321Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8550434Z { 2023-01-11T21:41:26.8550610Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8550716Z { 2023-01-11T21:41:26.8550855Z #pragma omp for 2023-01-11T21:41:26.8551001Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8551102Z { 2023-01-11T21:41:26.8551256Z #pragma GCC ivdep 2023-01-11T21:41:26.8551408Z for(long i1=0; i1<8; i1+=1) 2023-01-11T21:41:26.8551522Z { 2023-01-11T21:41:26.8551640Z { 2023-01-11T21:41:26.8551764Z { 2023-01-11T21:41:26.8551941Z auto tmp0 = in_ptr0[i0 + (8*i1)]; 2023-01-11T21:41:26.8552108Z auto tmp1 = in_ptr1[i1 + (8*i0)]; 2023-01-11T21:41:26.8552276Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8552441Z out_ptr0[i0 + (8*i1)] = tmp2; 2023-01-11T21:41:26.8552570Z } 2023-01-11T21:41:26.8552690Z } 2023-01-11T21:41:26.8552812Z } 2023-01-11T21:41:26.8552942Z } 2023-01-11T21:41:26.8553069Z #pragma omp for 2023-01-11T21:41:26.8553214Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8553327Z { 2023-01-11T21:41:26.8553569Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.8553808Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.8553960Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8554203Z auto tmp3 = at::vec::Vectorized(static_cast(10)); 2023-01-11T21:41:26.8554360Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8554509Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8554619Z } 2023-01-11T21:41:26.8554787Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8554933Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.8555050Z { 2023-01-11T21:41:26.8555201Z auto tmp0 = in_ptr1[i0]; 2023-01-11T21:41:26.8555366Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.8555599Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8555779Z auto tmp3 = static_cast(10); 2023-01-11T21:41:26.8555927Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8556075Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.8556188Z } 2023-01-11T21:41:26.8556300Z } 2023-01-11T21:41:26.8556383Z } 2023-01-11T21:41:26.8556552Z ''') 2023-01-11T21:41:26.8556566Z 2023-01-11T21:41:26.8556572Z 2023-01-11T21:41:26.8556730Z async_compile.wait(globals()) 2023-01-11T21:41:26.8556864Z del async_compile 2023-01-11T21:41:26.8556875Z 2023-01-11T21:41:26.8557005Z def call(args): 2023-01-11T21:41:26.8557140Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8557262Z args.clear() 2023-01-11T21:41:26.8557670Z buf0 = empty_strided((8, 8), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8558016Z buf1 = empty_strided((8, 8), (1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8558355Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8558487Z del arg0_1 2023-01-11T21:41:26.8558615Z del arg1_1 2023-01-11T21:41:26.8558748Z return (buf0, buf1, ) 2023-01-11T21:41:26.8558759Z 2023-01-11T21:41:26.8558764Z 2023-01-11T21:41:26.8558905Z if __name__ == "__main__": 2023-01-11T21:41:26.8559106Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8559304Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8559647Z arg0_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8559994Z arg1_1 = rand_strided((8, 8), (8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8560197Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8560211Z 2023-01-11T21:41:26.8560330Z ok (0.038s) 2023-01-11T21:41:26.8560932Z test_transposed_propagates_cpu (__main__.CpuTests) ... [2023-01-11 21:38:49,364] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 467 2023-01-11T21:41:26.8561414Z [2023-01-11 21:38:50,991] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 467 2023-01-11T21:41:26.8561423Z 2023-01-11T21:41:26.8561587Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8561721Z import torch 2023-01-11T21:41:26.8561834Z import random 2023-01-11T21:41:26.8562027Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8562238Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8562247Z 2023-01-11T21:41:26.8562386Z aten = torch.ops.aten 2023-01-11T21:41:26.8562622Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8562778Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8562787Z 2023-01-11T21:41:26.8562795Z 2023-01-11T21:41:26.8563050Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8563388Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8563581Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8563770Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8563947Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8564059Z { 2023-01-11T21:41:26.8564205Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8564289Z { 2023-01-11T21:41:26.8564396Z #pragma omp for 2023-01-11T21:41:26.8564493Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8564573Z { 2023-01-11T21:41:26.8564755Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8564928Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.8565038Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8565160Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8565243Z } 2023-01-11T21:41:26.8565353Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8565556Z for(long i0=64; i0<64; i0+=1) 2023-01-11T21:41:26.8565638Z { 2023-01-11T21:41:26.8565749Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8565858Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.8565968Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8566074Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8566143Z } 2023-01-11T21:41:26.8566221Z } 2023-01-11T21:41:26.8566301Z } 2023-01-11T21:41:26.8566411Z ''') 2023-01-11T21:41:26.8566418Z 2023-01-11T21:41:26.8566422Z 2023-01-11T21:41:26.8566542Z async_compile.wait(globals()) 2023-01-11T21:41:26.8566641Z del async_compile 2023-01-11T21:41:26.8566647Z 2023-01-11T21:41:26.8566741Z def call(args): 2023-01-11T21:41:26.8566828Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8566921Z args.clear() 2023-01-11T21:41:26.8567254Z buf0 = empty_strided((1, 4, 4, 4), (64, 4, 1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8567475Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8567567Z del arg0_1 2023-01-11T21:41:26.8567656Z del arg1_1 2023-01-11T21:41:26.8567752Z return (buf0, ) 2023-01-11T21:41:26.8567759Z 2023-01-11T21:41:26.8567764Z 2023-01-11T21:41:26.8567862Z if __name__ == "__main__": 2023-01-11T21:41:26.8567998Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8568158Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8568448Z arg0_1 = rand_strided((1, 4, 4, 4), (64, 4, 1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8568725Z arg1_1 = rand_strided((4, 4, 4), (4, 1, 16), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8568874Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8568881Z 2023-01-11T21:41:26.8568970Z ok (1.640s) 2023-01-11T21:41:26.8569282Z test_triton_conv_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:41:26.8569741Z test_triton_mm2_cpu (__main__.CpuTests) ... [2023-01-11 21:38:51,026] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 468 2023-01-11T21:41:26.8570093Z [2023-01-11 21:38:52,502] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 468 2023-01-11T21:41:26.8570102Z 2023-01-11T21:41:26.8570226Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8570317Z import torch 2023-01-11T21:41:26.8570411Z import random 2023-01-11T21:41:26.8570564Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8570722Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8570729Z 2023-01-11T21:41:26.8570831Z aten = torch.ops.aten 2023-01-11T21:41:26.8571002Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8571114Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8571121Z 2023-01-11T21:41:26.8571126Z 2023-01-11T21:41:26.8571309Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8571574Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8571726Z extern "C" void kernel(float* __restrict__ in_out_ptr0) 2023-01-11T21:41:26.8571806Z { 2023-01-11T21:41:26.8571932Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8572012Z { 2023-01-11T21:41:26.8572101Z #pragma omp for 2023-01-11T21:41:26.8572212Z for(long i0=0; i0<131072; i0+=1) 2023-01-11T21:41:26.8572300Z { 2023-01-11T21:41:26.8572483Z auto tmp0 = at::vec::Vectorized::loadu(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8572652Z auto tmp1 = at::vec::clamp_min(tmp0, decltype(tmp0)(0)); 2023-01-11T21:41:26.8572777Z tmp1.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8572862Z } 2023-01-11T21:41:26.8572976Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8573095Z for(long i0=1048576; i0<1048576; i0+=1) 2023-01-11T21:41:26.8573180Z { 2023-01-11T21:41:26.8573363Z auto tmp0 = in_out_ptr0[i0]; 2023-01-11T21:41:26.8573478Z auto tmp1 = tmp0 * (tmp0>0); 2023-01-11T21:41:26.8573590Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.8573672Z } 2023-01-11T21:41:26.8573740Z } 2023-01-11T21:41:26.8573817Z } 2023-01-11T21:41:26.8573926Z ''') 2023-01-11T21:41:26.8573932Z 2023-01-11T21:41:26.8573937Z 2023-01-11T21:41:26.8574053Z async_compile.wait(globals()) 2023-01-11T21:41:26.8574150Z del async_compile 2023-01-11T21:41:26.8574156Z 2023-01-11T21:41:26.8574249Z def call(args): 2023-01-11T21:41:26.8574347Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.8574441Z args.clear() 2023-01-11T21:41:26.8574712Z buf0 = empty_strided((1024, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8574834Z aten.mm.out(arg0_1, arg1_1, out=buf0) 2023-01-11T21:41:26.8574971Z del arg0_1 2023-01-11T21:41:26.8575064Z del arg1_1 2023-01-11T21:41:26.8575176Z buf1 = buf0; del buf0 # reuse 2023-01-11T21:41:26.8575312Z kernel_cpp_0(c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8575395Z return (buf1, ) 2023-01-11T21:41:26.8575415Z 2023-01-11T21:41:26.8575420Z 2023-01-11T21:41:26.8575505Z if __name__ == "__main__": 2023-01-11T21:41:26.8575655Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8575815Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8576102Z arg0_1 = rand_strided((1024, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8576378Z arg1_1 = rand_strided((1024, 1024), (1024, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8576528Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.8576535Z 2023-01-11T21:41:26.8576622Z ok (1.520s) 2023-01-11T21:41:26.8577236Z test_triu_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8577405Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8577743Z [2023-01-11 21:38:52,554] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 469 2023-01-11T21:41:26.8578105Z [2023-01-11 21:38:54,224] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 469 2023-01-11T21:41:26.8578112Z 2023-01-11T21:41:26.8578235Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8578327Z import torch 2023-01-11T21:41:26.8578421Z import random 2023-01-11T21:41:26.8578573Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8578737Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8578743Z 2023-01-11T21:41:26.8578844Z aten = torch.ops.aten 2023-01-11T21:41:26.8579007Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8579131Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8579138Z 2023-01-11T21:41:26.8579143Z 2023-01-11T21:41:26.8579323Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8579585Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8579743Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8579877Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8580005Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8580132Z float* __restrict__ out_ptr2) 2023-01-11T21:41:26.8580199Z { 2023-01-11T21:41:26.8580328Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8580409Z { 2023-01-11T21:41:26.8580531Z #pragma omp for collapse(2) 2023-01-11T21:41:26.8580640Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8580723Z { 2023-01-11T21:41:26.8580857Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.8580942Z { 2023-01-11T21:41:26.8581049Z #pragma GCC ivdep 2023-01-11T21:41:26.8581166Z for(long i2=0; i2<10; i2+=1) 2023-01-11T21:41:26.8581254Z { 2023-01-11T21:41:26.8581341Z { 2023-01-11T21:41:26.8581432Z { 2023-01-11T21:41:26.8581559Z auto tmp3 = in_ptr0[i2 + (10*i1) + (100*i0)]; 2023-01-11T21:41:26.8581814Z auto tmp0 = static_cast((-1) + i2 + ((-1)*i1)); 2023-01-11T21:41:26.8581953Z auto tmp1 = static_cast(0); 2023-01-11T21:41:26.8582080Z auto tmp2 = tmp0 >= tmp1; 2023-01-11T21:41:26.8582220Z auto tmp4 = static_cast(0); 2023-01-11T21:41:26.8582389Z auto tmp5 = tmp2 ? tmp3 : tmp4; 2023-01-11T21:41:26.8582631Z auto tmp6 = static_cast(i2 + ((-1)*i1)); 2023-01-11T21:41:26.8582763Z auto tmp7 = tmp6 >= tmp1; 2023-01-11T21:41:26.8582883Z auto tmp8 = tmp7 ? tmp3 : tmp4; 2023-01-11T21:41:26.8583217Z auto tmp9 = static_cast((-2) + i2 + ((-1)*i1)); 2023-01-11T21:41:26.8583349Z auto tmp10 = tmp9 >= tmp1; 2023-01-11T21:41:26.8583487Z auto tmp11 = tmp10 ? tmp3 : tmp4; 2023-01-11T21:41:26.8583625Z out_ptr0[i2 + (10*i1) + (100*i0)] = tmp5; 2023-01-11T21:41:26.8583761Z out_ptr1[i2 + (10*i1) + (100*i0)] = tmp8; 2023-01-11T21:41:26.8583897Z out_ptr2[i2 + (10*i1) + (100*i0)] = tmp11; 2023-01-11T21:41:26.8583987Z } 2023-01-11T21:41:26.8584063Z } 2023-01-11T21:41:26.8584151Z } 2023-01-11T21:41:26.8584235Z } 2023-01-11T21:41:26.8584318Z } 2023-01-11T21:41:26.8584405Z } 2023-01-11T21:41:26.8584484Z } 2023-01-11T21:41:26.8584579Z ''') 2023-01-11T21:41:26.8584586Z 2023-01-11T21:41:26.8584605Z 2023-01-11T21:41:26.8584711Z async_compile.wait(globals()) 2023-01-11T21:41:26.8584806Z del async_compile 2023-01-11T21:41:26.8584812Z 2023-01-11T21:41:26.8584906Z def call(args): 2023-01-11T21:41:26.8584998Z arg0_1, = args 2023-01-11T21:41:26.8585093Z args.clear() 2023-01-11T21:41:26.8585380Z buf0 = empty_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8585662Z buf1 = empty_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8585934Z buf2 = empty_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8586184Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr())) 2023-01-11T21:41:26.8586277Z del arg0_1 2023-01-11T21:41:26.8586386Z return (buf0, buf1, buf2, ) 2023-01-11T21:41:26.8586397Z 2023-01-11T21:41:26.8586401Z 2023-01-11T21:41:26.8586502Z if __name__ == "__main__": 2023-01-11T21:41:26.8586652Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8586813Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8587097Z arg0_1 = rand_strided((2, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8587225Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8587232Z 2023-01-11T21:41:26.8587318Z ok (1.712s) 2023-01-11T21:41:26.8587935Z test_unbind_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8588100Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8588489Z [2023-01-11 21:38:54,246] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 470 2023-01-11T21:41:26.8588853Z [2023-01-11 21:38:54,253] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 470 2023-01-11T21:41:26.8588861Z 2023-01-11T21:41:26.8588985Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8589079Z import torch 2023-01-11T21:41:26.8589173Z import random 2023-01-11T21:41:26.8589309Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8589467Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8589473Z 2023-01-11T21:41:26.8589572Z aten = torch.ops.aten 2023-01-11T21:41:26.8589746Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8589900Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8589909Z 2023-01-11T21:41:26.8589914Z 2023-01-11T21:41:26.8590033Z async_compile.wait(globals()) 2023-01-11T21:41:26.8590132Z del async_compile 2023-01-11T21:41:26.8590140Z 2023-01-11T21:41:26.8590234Z def call(args): 2023-01-11T21:41:26.8590311Z arg0_1, = args 2023-01-11T21:41:26.8590404Z args.clear() 2023-01-11T21:41:26.8590762Z return (as_strided(arg0_1, (4, 4), (4, 1)), as_strided(arg0_1, (4, 4), (4, 1), 16), as_strided(arg0_1, (4, 4), (4, 1), 32), as_strided(arg0_1, (4, 4), (4, 1), 48), as_strided(arg0_1, (4, 4), (16, 4)), as_strided(arg0_1, (4, 4), (16, 4), 1), as_strided(arg0_1, (4, 4), (16, 4), 2), as_strided(arg0_1, (4, 4), (16, 4), 3), ) 2023-01-11T21:41:26.8590770Z 2023-01-11T21:41:26.8590775Z 2023-01-11T21:41:26.8590875Z if __name__ == "__main__": 2023-01-11T21:41:26.8591025Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8591187Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8591470Z arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8591614Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8591624Z 2023-01-11T21:41:26.8591712Z ok (0.029s) 2023-01-11T21:41:26.8592334Z test_unroll_small_reduction_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8592486Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8592841Z [2023-01-11 21:38:54,294] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 471 2023-01-11T21:41:26.8593204Z [2023-01-11 21:38:55,848] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 471 2023-01-11T21:41:26.8593765Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8593933Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8594286Z [2023-01-11 21:38:55,890] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 472 2023-01-11T21:41:26.8594293Z 2023-01-11T21:41:26.8594417Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8594510Z import torch 2023-01-11T21:41:26.8594604Z import random 2023-01-11T21:41:26.8594743Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8594900Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8594910Z 2023-01-11T21:41:26.8595011Z aten = torch.ops.aten 2023-01-11T21:41:26.8595183Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8595338Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8595345Z 2023-01-11T21:41:26.8595350Z 2023-01-11T21:41:26.8595534Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8595795Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8595953Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8596085Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8596197Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.8596325Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8596448Z long* __restrict__ out_ptr3, 2023-01-11T21:41:26.8596576Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.8596732Z bool* __restrict__ out_ptr5, 2023-01-11T21:41:26.8596858Z bool* __restrict__ out_ptr6, 2023-01-11T21:41:26.8596981Z long* __restrict__ out_ptr7, 2023-01-11T21:41:26.8597093Z long* __restrict__ out_ptr8, 2023-01-11T21:41:26.8597219Z float* __restrict__ out_ptr9, 2023-01-11T21:41:26.8597351Z float* __restrict__ out_ptr10) 2023-01-11T21:41:26.8597432Z { 2023-01-11T21:41:26.8597560Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8597642Z { 2023-01-11T21:41:26.8597743Z #pragma omp for 2023-01-11T21:41:26.8597837Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8597919Z { 2023-01-11T21:41:26.8598003Z { 2023-01-11T21:41:26.8598088Z { 2023-01-11T21:41:26.8598211Z auto tmp0 = in_ptr0[3*i0]; 2023-01-11T21:41:26.8598338Z auto tmp1 = in_ptr0[1 + (3*i0)]; 2023-01-11T21:41:26.8598466Z auto tmp3 = in_ptr0[2 + (3*i0)]; 2023-01-11T21:41:26.8598628Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::min(tmp0, tmp1); 2023-01-11T21:41:26.8598797Z auto tmp4 = (tmp3 != tmp3) ? tmp3 : std::min(tmp2, tmp3); 2023-01-11T21:41:26.8598933Z auto tmp5 = static_cast(0); 2023-01-11T21:41:26.8599063Z auto tmp6 = static_cast(1); 2023-01-11T21:41:26.8599184Z auto tmp7 = tmp1 < tmp0; 2023-01-11T21:41:26.8599312Z auto tmp8 = tmp7 ? tmp6 : tmp5; 2023-01-11T21:41:26.8599443Z auto tmp9 = static_cast(2); 2023-01-11T21:41:26.8599548Z auto tmp10 = tmp3 < tmp2; 2023-01-11T21:41:26.8599678Z auto tmp11 = tmp10 ? tmp9 : tmp8; 2023-01-11T21:41:26.8599847Z auto tmp12 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:41:26.8600014Z auto tmp13 = (tmp3 != tmp3) ? tmp3 : std::max(tmp12, tmp3); 2023-01-11T21:41:26.8600137Z auto tmp14 = tmp1 > tmp0; 2023-01-11T21:41:26.8600265Z auto tmp15 = tmp14 ? tmp6 : tmp5; 2023-01-11T21:41:26.8600389Z auto tmp16 = tmp3 > tmp12; 2023-01-11T21:41:26.8600519Z auto tmp17 = tmp16 ? tmp9 : tmp15; 2023-01-11T21:41:26.8600622Z auto tmp18 = tmp0 + tmp1; 2023-01-11T21:41:26.8600742Z auto tmp19 = tmp18 + tmp3; 2023-01-11T21:41:26.8600880Z auto tmp20 = static_cast(1); 2023-01-11T21:41:26.8600999Z auto tmp21 = tmp0 > tmp20; 2023-01-11T21:41:26.8601138Z auto tmp22 = static_cast(tmp21); 2023-01-11T21:41:26.8601277Z auto tmp23 = static_cast(tmp22); 2023-01-11T21:41:26.8601394Z auto tmp24 = tmp1 > tmp20; 2023-01-11T21:41:26.8601519Z auto tmp25 = static_cast(tmp24); 2023-01-11T21:41:26.8601662Z auto tmp26 = static_cast(tmp25); 2023-01-11T21:41:26.8601784Z auto tmp27 = tmp23 || tmp26; 2023-01-11T21:41:26.8601904Z auto tmp28 = tmp3 > tmp20; 2023-01-11T21:41:26.8602076Z auto tmp29 = static_cast(tmp28); 2023-01-11T21:41:26.8602214Z auto tmp30 = static_cast(tmp29); 2023-01-11T21:41:26.8602338Z auto tmp31 = tmp27 || tmp30; 2023-01-11T21:41:26.8602477Z auto tmp32 = static_cast(0); 2023-01-11T21:41:26.8602583Z auto tmp33 = tmp0 > tmp32; 2023-01-11T21:41:26.8602700Z auto tmp34 = tmp33 == 0; 2023-01-11T21:41:26.8602837Z auto tmp35 = static_cast(tmp34); 2023-01-11T21:41:26.8602974Z auto tmp36 = static_cast(tmp35); 2023-01-11T21:41:26.8603093Z auto tmp37 = tmp1 > tmp32; 2023-01-11T21:41:26.8603210Z auto tmp38 = tmp37 == 0; 2023-01-11T21:41:26.8603379Z auto tmp39 = static_cast(tmp38); 2023-01-11T21:41:26.8603504Z auto tmp40 = static_cast(tmp39); 2023-01-11T21:41:26.8603632Z auto tmp41 = tmp36 || tmp40; 2023-01-11T21:41:26.8603749Z auto tmp42 = tmp3 > tmp32; 2023-01-11T21:41:26.8603867Z auto tmp43 = tmp42 == 0; 2023-01-11T21:41:26.8604004Z auto tmp44 = static_cast(tmp43); 2023-01-11T21:41:26.8604141Z auto tmp45 = static_cast(tmp44); 2023-01-11T21:41:26.8604263Z auto tmp46 = tmp41 || tmp45; 2023-01-11T21:41:26.8604365Z auto tmp47 = tmp46 == 0; 2023-01-11T21:41:26.8604476Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.8604586Z out_ptr1[i0] = tmp11; 2023-01-11T21:41:26.8604698Z out_ptr2[i0] = tmp13; 2023-01-11T21:41:26.8604807Z out_ptr3[i0] = tmp17; 2023-01-11T21:41:26.8604921Z out_ptr4[i0] = tmp19; 2023-01-11T21:41:26.8605030Z out_ptr5[i0] = tmp31; 2023-01-11T21:41:26.8605124Z out_ptr6[i0] = tmp47; 2023-01-11T21:41:26.8605236Z out_ptr7[i0] = tmp11; 2023-01-11T21:41:26.8605342Z out_ptr8[i0] = tmp17; 2023-01-11T21:41:26.8605454Z out_ptr9[i0] = tmp4; 2023-01-11T21:41:26.8605568Z out_ptr10[i0] = tmp13; 2023-01-11T21:41:26.8605654Z } 2023-01-11T21:41:26.8605738Z } 2023-01-11T21:41:26.8605806Z } 2023-01-11T21:41:26.8605887Z } 2023-01-11T21:41:26.8605966Z } 2023-01-11T21:41:26.8606077Z ''') 2023-01-11T21:41:26.8606084Z 2023-01-11T21:41:26.8606089Z 2023-01-11T21:41:26.8606208Z async_compile.wait(globals()) 2023-01-11T21:41:26.8606305Z del async_compile 2023-01-11T21:41:26.8606312Z 2023-01-11T21:41:26.8606403Z def call(args): 2023-01-11T21:41:26.8606492Z arg0_1, = args 2023-01-11T21:41:26.8606571Z args.clear() 2023-01-11T21:41:26.8606840Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8607096Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8607364Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8607617Z buf3 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8607875Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8608122Z buf5 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8608351Z buf6 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8608603Z buf7 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8608853Z buf8 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8609272Z buf9 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8609513Z buf10 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8609888Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf6.data_ptr()), c_void_p(buf7.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr())) 2023-01-11T21:41:26.8610020Z del arg0_1 2023-01-11T21:41:26.8610150Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, ) 2023-01-11T21:41:26.8610155Z 2023-01-11T21:41:26.8610159Z 2023-01-11T21:41:26.8610234Z if __name__ == "__main__": 2023-01-11T21:41:26.8610335Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8610459Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8610653Z arg0_1 = rand_strided((8, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8610795Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8610801Z 2023-01-11T21:41:26.8611069Z [2023-01-11 21:38:57,427] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 472 2023-01-11T21:41:26.8611077Z 2023-01-11T21:41:26.8611170Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8611239Z import torch 2023-01-11T21:41:26.8611308Z import random 2023-01-11T21:41:26.8611408Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8611524Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8611529Z 2023-01-11T21:41:26.8611605Z aten = torch.ops.aten 2023-01-11T21:41:26.8611734Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8611823Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8611828Z 2023-01-11T21:41:26.8611832Z 2023-01-11T21:41:26.8611964Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8612168Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8612281Z extern "C" void kernel(bool* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8612375Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8612472Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8612565Z long* __restrict__ out_ptr1, 2023-01-11T21:41:26.8612659Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8612750Z long* __restrict__ out_ptr3, 2023-01-11T21:41:26.8612842Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.8612932Z bool* __restrict__ out_ptr5, 2023-01-11T21:41:26.8613023Z long* __restrict__ out_ptr7, 2023-01-11T21:41:26.8613101Z long* __restrict__ out_ptr8, 2023-01-11T21:41:26.8613195Z float* __restrict__ out_ptr9, 2023-01-11T21:41:26.8613293Z float* __restrict__ out_ptr10) 2023-01-11T21:41:26.8613354Z { 2023-01-11T21:41:26.8613437Z auto out_ptr6 = in_out_ptr0; 2023-01-11T21:41:26.8613532Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8613594Z { 2023-01-11T21:41:26.8613657Z #pragma omp for 2023-01-11T21:41:26.8613737Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8613798Z { 2023-01-11T21:41:26.8613860Z { 2023-01-11T21:41:26.8613923Z { 2023-01-11T21:41:26.8614054Z float tmp1 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.8614173Z struct IndexValue_13 {size_t index; float value;}; 2023-01-11T21:41:26.8614297Z IndexValue_13 tmp2{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.8614436Z #pragma omp declare reduction(argmin : struct IndexValue_13 :\ 2023-01-11T21:41:26.8614584Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.8614733Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.8614922Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.8615162Z float tmp3 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.8615282Z struct IndexValue_14 {size_t index; float value;}; 2023-01-11T21:41:26.8615516Z IndexValue_14 tmp4{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.8615654Z #pragma omp declare reduction(argmax : struct IndexValue_14 :\ 2023-01-11T21:41:26.8615790Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.8615934Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.8616205Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.8616289Z float tmp5 = 0; 2023-01-11T21:41:26.8616369Z bool tmp10 = 0; 2023-01-11T21:41:26.8616447Z bool tmp16 = 0; 2023-01-11T21:41:26.8616567Z struct IndexValue_15 {size_t index; float value;}; 2023-01-11T21:41:26.8616703Z IndexValue_15 tmp17{0, std::numeric_limits::infinity()}; 2023-01-11T21:41:26.8616829Z #pragma omp declare reduction(argmin : struct IndexValue_15 :\ 2023-01-11T21:41:26.8616977Z omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.8617118Z omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.8617261Z initializer(omp_priv = {0, std::numeric_limits::infinity()}) 2023-01-11T21:41:26.8617380Z struct IndexValue_16 {size_t index; float value;}; 2023-01-11T21:41:26.8617617Z IndexValue_16 tmp18{0, -std::numeric_limits::infinity()}; 2023-01-11T21:41:26.8617756Z #pragma omp declare reduction(argmax : struct IndexValue_16 :\ 2023-01-11T21:41:26.8617907Z omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\ 2023-01-11T21:41:26.8618041Z omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\ 2023-01-11T21:41:26.8618283Z initializer(omp_priv = {0, -std::numeric_limits::infinity()}) 2023-01-11T21:41:26.8618409Z float tmp19 = std::numeric_limits::infinity(); 2023-01-11T21:41:26.8618621Z float tmp20 = -std::numeric_limits::infinity(); 2023-01-11T21:41:26.8618711Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8618777Z { 2023-01-11T21:41:26.8618844Z { 2023-01-11T21:41:26.8618949Z auto tmp0 = in_ptr0[i1 + (3*i0)]; 2023-01-11T21:41:26.8619043Z auto tmp6 = static_cast(1); 2023-01-11T21:41:26.8619141Z auto tmp7 = tmp0 > tmp6; 2023-01-11T21:41:26.8619248Z auto tmp8 = static_cast(tmp7); 2023-01-11T21:41:26.8619354Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.8619460Z auto tmp11 = static_cast(0); 2023-01-11T21:41:26.8619555Z auto tmp12 = tmp0 > tmp11; 2023-01-11T21:41:26.8619649Z auto tmp13 = tmp12 == 0; 2023-01-11T21:41:26.8619756Z auto tmp14 = static_cast(tmp13); 2023-01-11T21:41:26.8619852Z auto tmp15 = static_cast(tmp14); 2023-01-11T21:41:26.8619954Z tmp1 = std::min(tmp1, tmp0); 2023-01-11T21:41:26.8620049Z if (tmp2.value > tmp0) { 2023-01-11T21:41:26.8620157Z tmp2.index = i1; tmp2.value = tmp0; 2023-01-11T21:41:26.8620226Z } 2023-01-11T21:41:26.8620358Z tmp3 = std::max(tmp3, tmp0); 2023-01-11T21:41:26.8620452Z if (tmp4.value < tmp0) { 2023-01-11T21:41:26.8620549Z tmp4.index = i1; tmp4.value = tmp0; 2023-01-11T21:41:26.8620618Z } 2023-01-11T21:41:26.8620699Z tmp5 += tmp0; 2023-01-11T21:41:26.8620788Z tmp10 = tmp10 || tmp9; 2023-01-11T21:41:26.8620877Z tmp16 = tmp16 || tmp15; 2023-01-11T21:41:26.8620970Z if (tmp17.value > tmp0) { 2023-01-11T21:41:26.8621079Z tmp17.index = i1; tmp17.value = tmp0; 2023-01-11T21:41:26.8621148Z } 2023-01-11T21:41:26.8621276Z if (tmp18.value < tmp0) { 2023-01-11T21:41:26.8621390Z tmp18.index = i1; tmp18.value = tmp0; 2023-01-11T21:41:26.8621460Z } 2023-01-11T21:41:26.8621564Z tmp19 = std::min(tmp19, tmp0); 2023-01-11T21:41:26.8621665Z tmp20 = std::max(tmp20, tmp0); 2023-01-11T21:41:26.8621731Z } 2023-01-11T21:41:26.8621795Z } 2023-01-11T21:41:26.8621868Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.8621960Z out_ptr1[i0] = tmp2.index; 2023-01-11T21:41:26.8622041Z out_ptr2[i0] = tmp3; 2023-01-11T21:41:26.8622129Z out_ptr3[i0] = tmp4.index; 2023-01-11T21:41:26.8622209Z out_ptr4[i0] = tmp5; 2023-01-11T21:41:26.8622290Z out_ptr5[i0] = tmp10; 2023-01-11T21:41:26.8622371Z out_ptr6[i0] = tmp16; 2023-01-11T21:41:26.8622454Z out_ptr7[i0] = tmp17.index; 2023-01-11T21:41:26.8622545Z out_ptr8[i0] = tmp18.index; 2023-01-11T21:41:26.8622625Z out_ptr9[i0] = tmp19; 2023-01-11T21:41:26.8622711Z out_ptr10[i0] = tmp20; 2023-01-11T21:41:26.8622774Z } 2023-01-11T21:41:26.8622836Z } 2023-01-11T21:41:26.8622896Z } 2023-01-11T21:41:26.8622962Z #pragma omp for 2023-01-11T21:41:26.8623042Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8623102Z { 2023-01-11T21:41:26.8623238Z { 2023-01-11T21:41:26.8623306Z { 2023-01-11T21:41:26.8623399Z auto tmp0 = out_ptr6[i0]; 2023-01-11T21:41:26.8623484Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.8623560Z in_out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.8623622Z } 2023-01-11T21:41:26.8623684Z } 2023-01-11T21:41:26.8623746Z } 2023-01-11T21:41:26.8623804Z } 2023-01-11T21:41:26.8623864Z } 2023-01-11T21:41:26.8623936Z ''') 2023-01-11T21:41:26.8623942Z 2023-01-11T21:41:26.8623958Z 2023-01-11T21:41:26.8624036Z async_compile.wait(globals()) 2023-01-11T21:41:26.8624108Z del async_compile 2023-01-11T21:41:26.8624113Z 2023-01-11T21:41:26.8624182Z def call(args): 2023-01-11T21:41:26.8624250Z arg0_1, = args 2023-01-11T21:41:26.8624319Z args.clear() 2023-01-11T21:41:26.8624513Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8624700Z buf1 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8624876Z buf2 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8625059Z buf3 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8625244Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8625426Z buf5 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8625603Z buf6 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8625789Z buf8 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8626009Z buf9 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.8626202Z buf10 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8626379Z buf11 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8626463Z buf7 = buf6; del buf6 # reuse 2023-01-11T21:41:26.8626839Z kernel_cpp_0(c_void_p(buf7.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(buf10.data_ptr()), c_void_p(buf11.data_ptr())) 2023-01-11T21:41:26.8626908Z del arg0_1 2023-01-11T21:41:26.8627066Z return (buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf10, buf11, ) 2023-01-11T21:41:26.8627072Z 2023-01-11T21:41:26.8627076Z 2023-01-11T21:41:26.8627153Z if __name__ == "__main__": 2023-01-11T21:41:26.8627268Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8627390Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8627584Z arg0_1 = rand_strided((8, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8627678Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8627683Z 2023-01-11T21:41:26.8627748Z ok (3.175s) 2023-01-11T21:41:26.8627887Z test_unspec_inputs_cpu (__main__.CpuTests) ... skip: requires cuda (0.001s) 2023-01-11T21:41:26.8628355Z test_unsqueeze_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8628480Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8628746Z [2023-01-11 21:38:57,461] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 473 2023-01-11T21:41:26.8629010Z [2023-01-11 21:38:59,125] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 473 2023-01-11T21:41:26.8629015Z 2023-01-11T21:41:26.8629107Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8629175Z import torch 2023-01-11T21:41:26.8629232Z import random 2023-01-11T21:41:26.8629343Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8629461Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8629466Z 2023-01-11T21:41:26.8629542Z aten = torch.ops.aten 2023-01-11T21:41:26.8629676Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8629768Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8629773Z 2023-01-11T21:41:26.8629777Z 2023-01-11T21:41:26.8629909Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8630114Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8630219Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8630316Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8630411Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8630503Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8630596Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.8630698Z { 2023-01-11T21:41:26.8630795Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8630843Z { 2023-01-11T21:41:26.8630916Z #pragma omp for 2023-01-11T21:41:26.8630997Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8631057Z { 2023-01-11T21:41:26.8631193Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8631324Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8631446Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8631574Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.8631645Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8631726Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.8631815Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8631902Z tmp5.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8631988Z tmp4.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.8632073Z tmp5.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.8632134Z } 2023-01-11T21:41:26.8632213Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8632294Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.8632353Z { 2023-01-11T21:41:26.8632460Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8632560Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8632642Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8632739Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.8632809Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8632889Z auto tmp5 = tmp0 + tmp3; 2023-01-11T21:41:26.8632968Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.8633044Z out_ptr1[i0] = tmp5; 2023-01-11T21:41:26.8633118Z out_ptr2[i0] = tmp4; 2023-01-11T21:41:26.8633192Z out_ptr3[i0] = tmp5; 2023-01-11T21:41:26.8633241Z } 2023-01-11T21:41:26.8633299Z } 2023-01-11T21:41:26.8633357Z } 2023-01-11T21:41:26.8633435Z ''') 2023-01-11T21:41:26.8633441Z 2023-01-11T21:41:26.8633445Z 2023-01-11T21:41:26.8633532Z async_compile.wait(globals()) 2023-01-11T21:41:26.8633603Z del async_compile 2023-01-11T21:41:26.8633609Z 2023-01-11T21:41:26.8633677Z def call(args): 2023-01-11T21:41:26.8633746Z arg0_1, = args 2023-01-11T21:41:26.8633804Z args.clear() 2023-01-11T21:41:26.8634023Z buf0 = empty_strided((2, 2, 2, 2, 1), (8, 4, 2, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8634241Z buf1 = empty_strided((2, 2, 1, 2, 2), (8, 4, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8634453Z buf2 = empty_strided((1, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8634658Z buf3 = empty_strided((2, 2, 2, 1, 2), (8, 4, 2, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8634870Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.8634937Z del arg0_1 2023-01-11T21:41:26.8635030Z return (buf0, buf1, buf2, buf3, ) 2023-01-11T21:41:26.8635034Z 2023-01-11T21:41:26.8635039Z 2023-01-11T21:41:26.8635101Z if __name__ == "__main__": 2023-01-11T21:41:26.8635215Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8635336Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8635542Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8635651Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8635656Z 2023-01-11T21:41:26.8635720Z ok (1.696s) 2023-01-11T21:41:26.8636193Z test_unsqueeze_inplace_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8636318Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8636577Z [2023-01-11 21:38:59,159] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 474 2023-01-11T21:41:26.8636830Z [2023-01-11 21:39:00,695] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 474 2023-01-11T21:41:26.8636880Z 2023-01-11T21:41:26.8636962Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8637031Z import torch 2023-01-11T21:41:26.8637099Z import random 2023-01-11T21:41:26.8637212Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8637331Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8637336Z 2023-01-11T21:41:26.8637412Z aten = torch.ops.aten 2023-01-11T21:41:26.8637543Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8637621Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8637625Z 2023-01-11T21:41:26.8637641Z 2023-01-11T21:41:26.8637761Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8637964Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8638113Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8638213Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8638312Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8638374Z { 2023-01-11T21:41:26.8638471Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8638518Z { 2023-01-11T21:41:26.8638592Z #pragma omp for 2023-01-11T21:41:26.8638674Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8638734Z { 2023-01-11T21:41:26.8638867Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.8639000Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.8639084Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8639200Z auto tmp3 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.8639285Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8639374Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8639465Z tmp4.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8639526Z } 2023-01-11T21:41:26.8639618Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8639701Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.8639750Z { 2023-01-11T21:41:26.8639831Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8639928Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.8640008Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8640106Z auto tmp3 = static_cast(2); 2023-01-11T21:41:26.8640186Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8640263Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8640326Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.8640385Z } 2023-01-11T21:41:26.8640444Z } 2023-01-11T21:41:26.8640500Z } 2023-01-11T21:41:26.8640579Z ''') 2023-01-11T21:41:26.8640584Z 2023-01-11T21:41:26.8640588Z 2023-01-11T21:41:26.8640675Z async_compile.wait(globals()) 2023-01-11T21:41:26.8640748Z del async_compile 2023-01-11T21:41:26.8640753Z 2023-01-11T21:41:26.8640809Z def call(args): 2023-01-11T21:41:26.8640877Z arg0_1, = args 2023-01-11T21:41:26.8640946Z args.clear() 2023-01-11T21:41:26.8641162Z buf0 = empty_strided((2, 2, 1, 2, 2), (8, 4, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8641375Z buf1 = empty_strided((1, 2, 2, 2, 2), (16, 8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8641536Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8641603Z del arg0_1 2023-01-11T21:41:26.8641678Z return (buf0, buf1, ) 2023-01-11T21:41:26.8641684Z 2023-01-11T21:41:26.8641688Z 2023-01-11T21:41:26.8641750Z if __name__ == "__main__": 2023-01-11T21:41:26.8641862Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8641985Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8642193Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8642298Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8642333Z 2023-01-11T21:41:26.8642401Z ok (1.570s) 2023-01-11T21:41:26.8642876Z test_upsample_bicubic2d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8643003Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8643262Z [2023-01-11 21:39:02,309] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 475 2023-01-11T21:41:26.8643268Z 2023-01-11T21:41:26.8643348Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8643416Z import torch 2023-01-11T21:41:26.8643511Z import random 2023-01-11T21:41:26.8643626Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8643745Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8643751Z 2023-01-11T21:41:26.8643826Z aten = torch.ops.aten 2023-01-11T21:41:26.8643957Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8644046Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8644051Z 2023-01-11T21:41:26.8644055Z 2023-01-11T21:41:26.8644176Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8644378Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8644495Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8644592Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8644687Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8644745Z { 2023-01-11T21:41:26.8644842Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8644890Z { 2023-01-11T21:41:26.8644965Z #pragma omp for 2023-01-11T21:41:26.8645046Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.8645109Z { 2023-01-11T21:41:26.8645186Z #pragma GCC ivdep 2023-01-11T21:41:26.8645270Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.8652457Z { 2023-01-11T21:41:26.8652691Z #pragma GCC ivdep 2023-01-11T21:41:26.8652865Z for(long i2=0; i2<128; i2+=1) 2023-01-11T21:41:26.8652988Z { 2023-01-11T21:41:26.8653119Z { 2023-01-11T21:41:26.8653247Z { 2023-01-11T21:41:26.8653439Z auto tmp0 = static_cast(i2); 2023-01-11T21:41:26.8653622Z auto tmp1 = 0.2440944881889764 * tmp0; 2023-01-11T21:41:26.8653800Z auto tmp2 = std::floor(tmp1); 2023-01-11T21:41:26.8654106Z auto tmp3 = tmp1 - tmp2; 2023-01-11T21:41:26.8654315Z auto tmp4 = static_cast(i1); 2023-01-11T21:41:26.8654503Z auto tmp5 = 0.49606299212598426 * tmp4; 2023-01-11T21:41:26.8654700Z auto tmp6 = std::floor(tmp5); 2023-01-11T21:41:26.8654979Z auto tmp7 = tmp5 - tmp6; 2023-01-11T21:41:26.8655166Z auto tmp8 = static_cast(tmp6); 2023-01-11T21:41:26.8655354Z auto tmp9 = static_cast(tmp2); 2023-01-11T21:41:26.8655598Z auto tmp10 = tmp8 + -1; 2023-01-11T21:41:26.8655760Z auto tmp11 = tmp8 + 0; 2023-01-11T21:41:26.8655923Z auto tmp12 = tmp8 + 1; 2023-01-11T21:41:26.8656079Z auto tmp13 = tmp8 + 2; 2023-01-11T21:41:26.8656336Z auto tmp14 = tmp9 + -1; 2023-01-11T21:41:26.8656497Z auto tmp15 = tmp9 + 0; 2023-01-11T21:41:26.8656663Z auto tmp16 = tmp9 + 1; 2023-01-11T21:41:26.8656816Z auto tmp17 = tmp9 + 2; 2023-01-11T21:41:26.8657207Z auto tmp18 = (tmp10 != tmp10) ? tmp10 : std::min(63, tmp10); 2023-01-11T21:41:26.8657431Z auto tmp19 = (tmp18 != tmp18) ? tmp18 : std::max(0, tmp18); 2023-01-11T21:41:26.8657663Z auto tmp20 = (tmp14 != tmp14) ? tmp14 : std::min(31, tmp14); 2023-01-11T21:41:26.8657895Z auto tmp21 = (tmp20 != tmp20) ? tmp20 : std::max(0, tmp20); 2023-01-11T21:41:26.8658102Z auto tmp22 = in_ptr0[tmp21 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:41:26.8658328Z auto tmp23 = (tmp15 != tmp15) ? tmp15 : std::min(31, tmp15); 2023-01-11T21:41:26.8658545Z auto tmp24 = (tmp23 != tmp23) ? tmp23 : std::max(0, tmp23); 2023-01-11T21:41:26.8658849Z auto tmp25 = in_ptr0[tmp24 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:41:26.8659058Z auto tmp26 = (tmp16 != tmp16) ? tmp16 : std::min(31, tmp16); 2023-01-11T21:41:26.8659290Z auto tmp27 = (tmp26 != tmp26) ? tmp26 : std::max(0, tmp26); 2023-01-11T21:41:26.8659489Z auto tmp28 = in_ptr0[tmp27 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:41:26.8659707Z auto tmp29 = (tmp17 != tmp17) ? tmp17 : std::min(31, tmp17); 2023-01-11T21:41:26.8659929Z auto tmp30 = (tmp29 != tmp29) ? tmp29 : std::max(0, tmp29); 2023-01-11T21:41:26.8660134Z auto tmp31 = in_ptr0[tmp30 + (32*tmp19) + (2048*i0)]; 2023-01-11T21:41:26.8660304Z auto tmp32 = tmp3 + 1.0; 2023-01-11T21:41:26.8660597Z auto tmp33 = -0.75 * tmp32; 2023-01-11T21:41:26.8660862Z auto tmp34 = tmp33 - -3.75; 2023-01-11T21:41:26.8661025Z auto tmp35 = tmp34 * tmp32; 2023-01-11T21:41:26.8661298Z auto tmp36 = tmp35 + -6.0; 2023-01-11T21:41:26.8661477Z auto tmp37 = tmp36 * tmp32; 2023-01-11T21:41:26.8661752Z auto tmp38 = tmp37 - -3.0; 2023-01-11T21:41:26.8661923Z auto tmp39 = 1.25 * tmp3; 2023-01-11T21:41:26.8662193Z auto tmp40 = tmp39 - 2.25; 2023-01-11T21:41:26.8662363Z auto tmp41 = tmp40 * tmp3; 2023-01-11T21:41:26.8662520Z auto tmp42 = tmp41 * tmp3; 2023-01-11T21:41:26.8662683Z auto tmp43 = tmp42 + 1.0; 2023-01-11T21:41:26.8662949Z auto tmp44 = 1.0 - tmp3; 2023-01-11T21:41:26.8663116Z auto tmp45 = 1.25 * tmp44; 2023-01-11T21:41:26.8663477Z auto tmp46 = tmp45 - 2.25; 2023-01-11T21:41:26.8663664Z auto tmp47 = tmp46 * tmp44; 2023-01-11T21:41:26.8663836Z auto tmp48 = tmp47 * tmp44; 2023-01-11T21:41:26.8663990Z auto tmp49 = tmp48 + 1.0; 2023-01-11T21:41:26.8664161Z auto tmp50 = tmp44 + 1.0; 2023-01-11T21:41:26.8664422Z auto tmp51 = -0.75 * tmp50; 2023-01-11T21:41:26.8664694Z auto tmp52 = tmp51 - -3.75; 2023-01-11T21:41:26.8664866Z auto tmp53 = tmp52 * tmp50; 2023-01-11T21:41:26.8665135Z auto tmp54 = tmp53 + -6.0; 2023-01-11T21:41:26.8665300Z auto tmp55 = tmp54 * tmp50; 2023-01-11T21:41:26.8665581Z auto tmp56 = tmp55 - -3.0; 2023-01-11T21:41:26.8665732Z auto tmp57 = tmp22 * tmp38; 2023-01-11T21:41:26.8665896Z auto tmp58 = tmp25 * tmp43; 2023-01-11T21:41:26.8666066Z auto tmp59 = tmp28 * tmp49; 2023-01-11T21:41:26.8666235Z auto tmp60 = tmp31 * tmp56; 2023-01-11T21:41:26.8666522Z auto tmp61 = tmp59 + tmp60; 2023-01-11T21:41:26.8666694Z auto tmp62 = tmp58 + tmp61; 2023-01-11T21:41:26.8666859Z auto tmp63 = tmp57 + tmp62; 2023-01-11T21:41:26.8667075Z auto tmp64 = (tmp11 != tmp11) ? tmp11 : std::min(63, tmp11); 2023-01-11T21:41:26.8667298Z auto tmp65 = (tmp64 != tmp64) ? tmp64 : std::max(0, tmp64); 2023-01-11T21:41:26.8667503Z auto tmp66 = in_ptr0[tmp21 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:41:26.8667707Z auto tmp67 = in_ptr0[tmp24 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:41:26.8667910Z auto tmp68 = in_ptr0[tmp27 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:41:26.8668179Z auto tmp69 = in_ptr0[tmp30 + (32*tmp65) + (2048*i0)]; 2023-01-11T21:41:26.8668356Z auto tmp70 = tmp66 * tmp38; 2023-01-11T21:41:26.8668535Z auto tmp71 = tmp67 * tmp43; 2023-01-11T21:41:26.8668707Z auto tmp72 = tmp68 * tmp49; 2023-01-11T21:41:26.8668851Z auto tmp73 = tmp69 * tmp56; 2023-01-11T21:41:26.8669028Z auto tmp74 = tmp72 + tmp73; 2023-01-11T21:41:26.8669187Z auto tmp75 = tmp71 + tmp74; 2023-01-11T21:41:26.8669362Z auto tmp76 = tmp70 + tmp75; 2023-01-11T21:41:26.8669583Z auto tmp77 = (tmp12 != tmp12) ? tmp12 : std::min(63, tmp12); 2023-01-11T21:41:26.8669798Z auto tmp78 = (tmp77 != tmp77) ? tmp77 : std::max(0, tmp77); 2023-01-11T21:41:26.8669997Z auto tmp79 = in_ptr0[tmp21 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:41:26.8670209Z auto tmp80 = in_ptr0[tmp24 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:41:26.8670396Z auto tmp81 = in_ptr0[tmp27 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:41:26.8670605Z auto tmp82 = in_ptr0[tmp30 + (32*tmp78) + (2048*i0)]; 2023-01-11T21:41:26.8670777Z auto tmp83 = tmp79 * tmp38; 2023-01-11T21:41:26.8670945Z auto tmp84 = tmp80 * tmp43; 2023-01-11T21:41:26.8671112Z auto tmp85 = tmp81 * tmp49; 2023-01-11T21:41:26.8671279Z auto tmp86 = tmp82 * tmp56; 2023-01-11T21:41:26.8671452Z auto tmp87 = tmp85 + tmp86; 2023-01-11T21:41:26.8671599Z auto tmp88 = tmp84 + tmp87; 2023-01-11T21:41:26.8671769Z auto tmp89 = tmp83 + tmp88; 2023-01-11T21:41:26.8671990Z auto tmp90 = (tmp13 != tmp13) ? tmp13 : std::min(63, tmp13); 2023-01-11T21:41:26.8672215Z auto tmp91 = (tmp90 != tmp90) ? tmp90 : std::max(0, tmp90); 2023-01-11T21:41:26.8672414Z auto tmp92 = in_ptr0[tmp21 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:41:26.8672622Z auto tmp93 = in_ptr0[tmp24 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:41:26.8672818Z auto tmp94 = in_ptr0[tmp27 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:41:26.8673014Z auto tmp95 = in_ptr0[tmp30 + (32*tmp91) + (2048*i0)]; 2023-01-11T21:41:26.8673188Z auto tmp96 = tmp92 * tmp38; 2023-01-11T21:41:26.8673337Z auto tmp97 = tmp93 * tmp43; 2023-01-11T21:41:26.8673499Z auto tmp98 = tmp94 * tmp49; 2023-01-11T21:41:26.8673668Z auto tmp99 = tmp95 * tmp56; 2023-01-11T21:41:26.8673849Z auto tmp100 = tmp98 + tmp99; 2023-01-11T21:41:26.8674021Z auto tmp101 = tmp97 + tmp100; 2023-01-11T21:41:26.8674196Z auto tmp102 = tmp96 + tmp101; 2023-01-11T21:41:26.8674460Z auto tmp103 = tmp7 + 1.0; 2023-01-11T21:41:26.8674735Z auto tmp104 = -0.75 * tmp103; 2023-01-11T21:41:26.8675009Z auto tmp105 = tmp104 - -3.75; 2023-01-11T21:41:26.8675189Z auto tmp106 = tmp105 * tmp103; 2023-01-11T21:41:26.8675469Z auto tmp107 = tmp106 + -6.0; 2023-01-11T21:41:26.8675643Z auto tmp108 = tmp107 * tmp103; 2023-01-11T21:41:26.8675921Z auto tmp109 = tmp108 - -3.0; 2023-01-11T21:41:26.8676086Z auto tmp110 = 1.25 * tmp7; 2023-01-11T21:41:26.8676334Z auto tmp111 = tmp110 - 2.25; 2023-01-11T21:41:26.8676498Z auto tmp112 = tmp111 * tmp7; 2023-01-11T21:41:26.8676750Z auto tmp113 = tmp112 * tmp7; 2023-01-11T21:41:26.8676931Z auto tmp114 = tmp113 + 1.0; 2023-01-11T21:41:26.8677193Z auto tmp115 = 1.0 - tmp7; 2023-01-11T21:41:26.8677366Z auto tmp116 = 1.25 * tmp115; 2023-01-11T21:41:26.8677632Z auto tmp117 = tmp116 - 2.25; 2023-01-11T21:41:26.8677812Z auto tmp118 = tmp117 * tmp115; 2023-01-11T21:41:26.8677960Z auto tmp119 = tmp118 * tmp115; 2023-01-11T21:41:26.8678132Z auto tmp120 = tmp119 + 1.0; 2023-01-11T21:41:26.8678299Z auto tmp121 = tmp115 + 1.0; 2023-01-11T21:41:26.8678570Z auto tmp122 = -0.75 * tmp121; 2023-01-11T21:41:26.8678835Z auto tmp123 = tmp122 - -3.75; 2023-01-11T21:41:26.8679009Z auto tmp124 = tmp123 * tmp121; 2023-01-11T21:41:26.8679285Z auto tmp125 = tmp124 + -6.0; 2023-01-11T21:41:26.8679441Z auto tmp126 = tmp125 * tmp121; 2023-01-11T21:41:26.8679712Z auto tmp127 = tmp126 - -3.0; 2023-01-11T21:41:26.8679885Z auto tmp128 = tmp63 * tmp109; 2023-01-11T21:41:26.8680047Z auto tmp129 = tmp76 * tmp114; 2023-01-11T21:41:26.8680222Z auto tmp130 = tmp89 * tmp120; 2023-01-11T21:41:26.8680394Z auto tmp131 = tmp102 * tmp127; 2023-01-11T21:41:26.8680560Z auto tmp132 = tmp130 + tmp131; 2023-01-11T21:41:26.8680731Z auto tmp133 = tmp129 + tmp132; 2023-01-11T21:41:26.8680887Z auto tmp134 = tmp128 + tmp133; 2023-01-11T21:41:26.8681072Z out_ptr0[i2 + (128*i1) + (16384*i0)] = tmp134; 2023-01-11T21:41:26.8681185Z } 2023-01-11T21:41:26.8681315Z } 2023-01-11T21:41:26.8681435Z } 2023-01-11T21:41:26.8681550Z } 2023-01-11T21:41:26.8681670Z } 2023-01-11T21:41:26.8681805Z #pragma omp for 2023-01-11T21:41:26.8681955Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.8682069Z { 2023-01-11T21:41:26.8682209Z #pragma GCC ivdep 2023-01-11T21:41:26.8682362Z for(long i1=0; i1<128; i1+=1) 2023-01-11T21:41:26.8682481Z { 2023-01-11T21:41:26.8682613Z #pragma GCC ivdep 2023-01-11T21:41:26.8682767Z for(long i2=0; i2<256; i2+=1) 2023-01-11T21:41:26.8682884Z { 2023-01-11T21:41:26.8683003Z { 2023-01-11T21:41:26.8683127Z { 2023-01-11T21:41:26.8683329Z auto tmp0 = static_cast(i2); 2023-01-11T21:41:26.8683488Z auto tmp1 = tmp0 + 0.5; 2023-01-11T21:41:26.8683627Z auto tmp2 = 0.125 * tmp1; 2023-01-11T21:41:26.8683916Z auto tmp3 = tmp2 - 0.5; 2023-01-11T21:41:26.8684112Z auto tmp4 = std::floor(tmp3); 2023-01-11T21:41:26.8684472Z auto tmp5 = tmp3 - tmp4; 2023-01-11T21:41:26.8684669Z auto tmp6 = static_cast(i1); 2023-01-11T21:41:26.8684842Z auto tmp7 = tmp6 + 0.5; 2023-01-11T21:41:26.8685009Z auto tmp8 = 0.5 * tmp7; 2023-01-11T21:41:26.8685252Z auto tmp9 = tmp8 - 0.5; 2023-01-11T21:41:26.8685423Z auto tmp10 = std::floor(tmp9); 2023-01-11T21:41:26.8685686Z auto tmp11 = tmp9 - tmp10; 2023-01-11T21:41:26.8685876Z auto tmp12 = static_cast(tmp10); 2023-01-11T21:41:26.8686056Z auto tmp13 = static_cast(tmp4); 2023-01-11T21:41:26.8686385Z auto tmp14 = tmp12 + -1; 2023-01-11T21:41:26.8686567Z auto tmp15 = tmp12 + 0; 2023-01-11T21:41:26.8686725Z auto tmp16 = tmp12 + 1; 2023-01-11T21:41:26.8686872Z auto tmp17 = tmp12 + 2; 2023-01-11T21:41:26.8687132Z auto tmp18 = tmp13 + -1; 2023-01-11T21:41:26.8687305Z auto tmp19 = tmp13 + 0; 2023-01-11T21:41:26.8687466Z auto tmp20 = tmp13 + 1; 2023-01-11T21:41:26.8687628Z auto tmp21 = tmp13 + 2; 2023-01-11T21:41:26.8687854Z auto tmp22 = (tmp14 != tmp14) ? tmp14 : std::min(63, tmp14); 2023-01-11T21:41:26.8688081Z auto tmp23 = (tmp22 != tmp22) ? tmp22 : std::max(0, tmp22); 2023-01-11T21:41:26.8688310Z auto tmp24 = (tmp18 != tmp18) ? tmp18 : std::min(31, tmp18); 2023-01-11T21:41:26.8688533Z auto tmp25 = (tmp24 != tmp24) ? tmp24 : std::max(0, tmp24); 2023-01-11T21:41:26.8688731Z auto tmp26 = in_ptr0[tmp25 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:41:26.8688956Z auto tmp27 = (tmp19 != tmp19) ? tmp19 : std::min(31, tmp19); 2023-01-11T21:41:26.8689311Z auto tmp28 = (tmp27 != tmp27) ? tmp27 : std::max(0, tmp27); 2023-01-11T21:41:26.8689512Z auto tmp29 = in_ptr0[tmp28 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:41:26.8689733Z auto tmp30 = (tmp20 != tmp20) ? tmp20 : std::min(31, tmp20); 2023-01-11T21:41:26.8689961Z auto tmp31 = (tmp30 != tmp30) ? tmp30 : std::max(0, tmp30); 2023-01-11T21:41:26.8690163Z auto tmp32 = in_ptr0[tmp31 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:41:26.8690384Z auto tmp33 = (tmp21 != tmp21) ? tmp21 : std::min(31, tmp21); 2023-01-11T21:41:26.8690608Z auto tmp34 = (tmp33 != tmp33) ? tmp33 : std::max(0, tmp33); 2023-01-11T21:41:26.8690788Z auto tmp35 = in_ptr0[tmp34 + (32*tmp23) + (2048*i0)]; 2023-01-11T21:41:26.8690964Z auto tmp36 = tmp5 + 1.0; 2023-01-11T21:41:26.8691259Z auto tmp37 = -0.75 * tmp36; 2023-01-11T21:41:26.8691530Z auto tmp38 = tmp37 - -3.75; 2023-01-11T21:41:26.8691700Z auto tmp39 = tmp38 * tmp36; 2023-01-11T21:41:26.8691964Z auto tmp40 = tmp39 + -6.0; 2023-01-11T21:41:26.8692146Z auto tmp41 = tmp40 * tmp36; 2023-01-11T21:41:26.8692399Z auto tmp42 = tmp41 - -3.0; 2023-01-11T21:41:26.8692566Z auto tmp43 = 1.25 * tmp5; 2023-01-11T21:41:26.8692835Z auto tmp44 = tmp43 - 2.25; 2023-01-11T21:41:26.8693003Z auto tmp45 = tmp44 * tmp5; 2023-01-11T21:41:26.8693182Z auto tmp46 = tmp45 * tmp5; 2023-01-11T21:41:26.8693345Z auto tmp47 = tmp46 + 1.0; 2023-01-11T21:41:26.8693745Z auto tmp48 = 1.0 - tmp5; 2023-01-11T21:41:26.8693912Z auto tmp49 = 1.25 * tmp48; 2023-01-11T21:41:26.8694147Z auto tmp50 = tmp49 - 2.25; 2023-01-11T21:41:26.8694318Z auto tmp51 = tmp50 * tmp48; 2023-01-11T21:41:26.8694487Z auto tmp52 = tmp51 * tmp48; 2023-01-11T21:41:26.8694665Z auto tmp53 = tmp52 + 1.0; 2023-01-11T21:41:26.8694831Z auto tmp54 = tmp48 + 1.0; 2023-01-11T21:41:26.8695086Z auto tmp55 = -0.75 * tmp54; 2023-01-11T21:41:26.8695359Z auto tmp56 = tmp55 - -3.75; 2023-01-11T21:41:26.8695510Z auto tmp57 = tmp56 * tmp54; 2023-01-11T21:41:26.8695860Z auto tmp58 = tmp57 + -6.0; 2023-01-11T21:41:26.8696052Z auto tmp59 = tmp58 * tmp54; 2023-01-11T21:41:26.8696321Z auto tmp60 = tmp59 - -3.0; 2023-01-11T21:41:26.8696498Z auto tmp61 = tmp26 * tmp42; 2023-01-11T21:41:26.8696662Z auto tmp62 = tmp29 * tmp47; 2023-01-11T21:41:26.8696828Z auto tmp63 = tmp32 * tmp53; 2023-01-11T21:41:26.8696988Z auto tmp64 = tmp35 * tmp60; 2023-01-11T21:41:26.8697161Z auto tmp65 = tmp63 + tmp64; 2023-01-11T21:41:26.8697320Z auto tmp66 = tmp62 + tmp65; 2023-01-11T21:41:26.8697484Z auto tmp67 = tmp61 + tmp66; 2023-01-11T21:41:26.8697713Z auto tmp68 = (tmp15 != tmp15) ? tmp15 : std::min(63, tmp15); 2023-01-11T21:41:26.8697944Z auto tmp69 = (tmp68 != tmp68) ? tmp68 : std::max(0, tmp68); 2023-01-11T21:41:26.8698150Z auto tmp70 = in_ptr0[tmp25 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:41:26.8698359Z auto tmp71 = in_ptr0[tmp28 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:41:26.8698565Z auto tmp72 = in_ptr0[tmp31 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:41:26.8698748Z auto tmp73 = in_ptr0[tmp34 + (32*tmp69) + (2048*i0)]; 2023-01-11T21:41:26.8698918Z auto tmp74 = tmp70 * tmp42; 2023-01-11T21:41:26.8699079Z auto tmp75 = tmp71 * tmp47; 2023-01-11T21:41:26.8699247Z auto tmp76 = tmp72 * tmp53; 2023-01-11T21:41:26.8699415Z auto tmp77 = tmp73 * tmp60; 2023-01-11T21:41:26.8699581Z auto tmp78 = tmp76 + tmp77; 2023-01-11T21:41:26.8699742Z auto tmp79 = tmp75 + tmp78; 2023-01-11T21:41:26.8699902Z auto tmp80 = tmp74 + tmp79; 2023-01-11T21:41:26.8700125Z auto tmp81 = (tmp16 != tmp16) ? tmp16 : std::min(63, tmp16); 2023-01-11T21:41:26.8700351Z auto tmp82 = (tmp81 != tmp81) ? tmp81 : std::max(0, tmp81); 2023-01-11T21:41:26.8700552Z auto tmp83 = in_ptr0[tmp25 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:41:26.8700751Z auto tmp84 = in_ptr0[tmp28 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:41:26.8700955Z auto tmp85 = in_ptr0[tmp31 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:41:26.8701154Z auto tmp86 = in_ptr0[tmp34 + (32*tmp82) + (2048*i0)]; 2023-01-11T21:41:26.8701320Z auto tmp87 = tmp83 * tmp42; 2023-01-11T21:41:26.8701469Z auto tmp88 = tmp84 * tmp47; 2023-01-11T21:41:26.8701638Z auto tmp89 = tmp85 * tmp53; 2023-01-11T21:41:26.8701821Z auto tmp90 = tmp86 * tmp60; 2023-01-11T21:41:26.8701981Z auto tmp91 = tmp89 + tmp90; 2023-01-11T21:41:26.8702149Z auto tmp92 = tmp88 + tmp91; 2023-01-11T21:41:26.8702410Z auto tmp93 = tmp87 + tmp92; 2023-01-11T21:41:26.8702636Z auto tmp94 = (tmp17 != tmp17) ? tmp17 : std::min(63, tmp17); 2023-01-11T21:41:26.8702855Z auto tmp95 = (tmp94 != tmp94) ? tmp94 : std::max(0, tmp94); 2023-01-11T21:41:26.8703039Z auto tmp96 = in_ptr0[tmp25 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:41:26.8703329Z auto tmp97 = in_ptr0[tmp28 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:41:26.8703535Z auto tmp98 = in_ptr0[tmp31 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:41:26.8703738Z auto tmp99 = in_ptr0[tmp34 + (32*tmp95) + (2048*i0)]; 2023-01-11T21:41:26.8703986Z auto tmp100 = tmp96 * tmp42; 2023-01-11T21:41:26.8704168Z auto tmp101 = tmp97 * tmp47; 2023-01-11T21:41:26.8704350Z auto tmp102 = tmp98 * tmp53; 2023-01-11T21:41:26.8704524Z auto tmp103 = tmp99 * tmp60; 2023-01-11T21:41:26.8704682Z auto tmp104 = tmp102 + tmp103; 2023-01-11T21:41:26.8704854Z auto tmp105 = tmp101 + tmp104; 2023-01-11T21:41:26.8705030Z auto tmp106 = tmp100 + tmp105; 2023-01-11T21:41:26.8705202Z auto tmp107 = tmp11 + 1.0; 2023-01-11T21:41:26.8705505Z auto tmp108 = -0.75 * tmp107; 2023-01-11T21:41:26.8705776Z auto tmp109 = tmp108 - -3.75; 2023-01-11T21:41:26.8705948Z auto tmp110 = tmp109 * tmp107; 2023-01-11T21:41:26.8706224Z auto tmp111 = tmp110 + -6.0; 2023-01-11T21:41:26.8706388Z auto tmp112 = tmp111 * tmp107; 2023-01-11T21:41:26.8706661Z auto tmp113 = tmp112 - -3.0; 2023-01-11T21:41:26.8706823Z auto tmp114 = 1.25 * tmp11; 2023-01-11T21:41:26.8707089Z auto tmp115 = tmp114 - 2.25; 2023-01-11T21:41:26.8707270Z auto tmp116 = tmp115 * tmp11; 2023-01-11T21:41:26.8707439Z auto tmp117 = tmp116 * tmp11; 2023-01-11T21:41:26.8707610Z auto tmp118 = tmp117 + 1.0; 2023-01-11T21:41:26.8707848Z auto tmp119 = 1.0 - tmp11; 2023-01-11T21:41:26.8708008Z auto tmp120 = 1.25 * tmp119; 2023-01-11T21:41:26.8708284Z auto tmp121 = tmp120 - 2.25; 2023-01-11T21:41:26.8708456Z auto tmp122 = tmp121 * tmp119; 2023-01-11T21:41:26.8708624Z auto tmp123 = tmp122 * tmp119; 2023-01-11T21:41:26.8708799Z auto tmp124 = tmp123 + 1.0; 2023-01-11T21:41:26.8708964Z auto tmp125 = tmp119 + 1.0; 2023-01-11T21:41:26.8709240Z auto tmp126 = -0.75 * tmp125; 2023-01-11T21:41:26.8709495Z auto tmp127 = tmp126 - -3.75; 2023-01-11T21:41:26.8709673Z auto tmp128 = tmp127 * tmp125; 2023-01-11T21:41:26.8709954Z auto tmp129 = tmp128 + -6.0; 2023-01-11T21:41:26.8710126Z auto tmp130 = tmp129 * tmp125; 2023-01-11T21:41:26.8710391Z auto tmp131 = tmp130 - -3.0; 2023-01-11T21:41:26.8710577Z auto tmp132 = tmp67 * tmp113; 2023-01-11T21:41:26.8710742Z auto tmp133 = tmp80 * tmp118; 2023-01-11T21:41:26.8710903Z auto tmp134 = tmp93 * tmp124; 2023-01-11T21:41:26.8711066Z auto tmp135 = tmp106 * tmp131; 2023-01-11T21:41:26.8711246Z auto tmp136 = tmp134 + tmp135; 2023-01-11T21:41:26.8711427Z auto tmp137 = tmp133 + tmp136; 2023-01-11T21:41:26.8711696Z auto tmp138 = tmp132 + tmp137; 2023-01-11T21:41:26.8711879Z out_ptr1[i2 + (256*i1) + (32768*i0)] = tmp138; 2023-01-11T21:41:26.8712009Z } 2023-01-11T21:41:26.8712112Z } 2023-01-11T21:41:26.8712230Z } 2023-01-11T21:41:26.8712351Z } 2023-01-11T21:41:26.8712463Z } 2023-01-11T21:41:26.8712579Z } 2023-01-11T21:41:26.8712683Z } 2023-01-11T21:41:26.8712848Z ''') 2023-01-11T21:41:26.8712857Z 2023-01-11T21:41:26.8712863Z 2023-01-11T21:41:26.8713002Z async_compile.wait(globals()) 2023-01-11T21:41:26.8713147Z del async_compile 2023-01-11T21:41:26.8713159Z 2023-01-11T21:41:26.8713283Z def call(args): 2023-01-11T21:41:26.8713410Z arg0_1, = args 2023-01-11T21:41:26.8713544Z args.clear() 2023-01-11T21:41:26.8714020Z buf0 = empty_strided((4, 3, 128, 128), (49152, 16384, 128, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8714420Z buf1 = empty_strided((4, 3, 128, 256), (98304, 32768, 256, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8714701Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8714815Z del arg0_1 2023-01-11T21:41:26.8714959Z return (buf0, buf1, ) 2023-01-11T21:41:26.8714970Z 2023-01-11T21:41:26.8714978Z 2023-01-11T21:41:26.8715106Z if __name__ == "__main__": 2023-01-11T21:41:26.8715306Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8715532Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8715916Z arg0_1 = rand_strided((4, 3, 64, 32), (6144, 2048, 32, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8716113Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8716581Z [2023-01-11 21:39:04,215] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 475 2023-01-11T21:41:26.8716591Z 2023-01-11T21:41:26.8716697Z ok (3.529s) 2023-01-11T21:41:26.8717490Z test_upsample_bilinear2d_a_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8717717Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8718177Z [2023-01-11 21:39:04,787] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 476 2023-01-11T21:41:26.8718186Z 2023-01-11T21:41:26.8718355Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8718494Z import torch 2023-01-11T21:41:26.8718625Z import random 2023-01-11T21:41:26.8718836Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8719043Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8719062Z 2023-01-11T21:41:26.8719185Z aten = torch.ops.aten 2023-01-11T21:41:26.8719429Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8719590Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8719603Z 2023-01-11T21:41:26.8719608Z 2023-01-11T21:41:26.8719855Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8720203Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8720406Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8720582Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.8720771Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8720929Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8721103Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.8721213Z { 2023-01-11T21:41:26.8721365Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.8721622Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:41:26.8721803Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8721914Z { 2023-01-11T21:41:26.8722036Z #pragma omp for 2023-01-11T21:41:26.8722186Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8722290Z { 2023-01-11T21:41:26.8722431Z #pragma GCC ivdep 2023-01-11T21:41:26.8722596Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:41:26.8722706Z { 2023-01-11T21:41:26.8722853Z #pragma GCC ivdep 2023-01-11T21:41:26.8722988Z for(long i2=0; i2<45; i2+=1) 2023-01-11T21:41:26.8723099Z { 2023-01-11T21:41:26.8723219Z { 2023-01-11T21:41:26.8723342Z { 2023-01-11T21:41:26.8723532Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8723791Z auto tmp1 = static_cast(0.5); 2023-01-11T21:41:26.8723966Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8724167Z auto tmp3 = static_cast(0.8222222222222222); 2023-01-11T21:41:26.8724325Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.8724611Z auto tmp5 = tmp4 - tmp1; 2023-01-11T21:41:26.8724799Z auto tmp6 = static_cast(0.0); 2023-01-11T21:41:26.8725027Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::max(tmp5, tmp6); 2023-01-11T21:41:26.8725212Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:41:26.8725405Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.8725584Z auto tmp10 = static_cast(i2); 2023-01-11T21:41:26.8725747Z auto tmp11 = tmp10 + tmp1; 2023-01-11T21:41:26.8725963Z auto tmp12 = static_cast(0.8444444444444444); 2023-01-11T21:41:26.8726136Z auto tmp13 = tmp11 * tmp12; 2023-01-11T21:41:26.8726419Z auto tmp14 = tmp13 - tmp1; 2023-01-11T21:41:26.8726646Z auto tmp15 = (tmp6 != tmp6) ? tmp6 : std::max(tmp14, tmp6); 2023-01-11T21:41:26.8726842Z auto tmp16 = std::floor(tmp15); 2023-01-11T21:41:26.8727034Z auto tmp17 = static_cast(tmp16); 2023-01-11T21:41:26.8727222Z auto tmp18 = in_ptr0[tmp17 + (38*tmp9) + (1406*i0)]; 2023-01-11T21:41:26.8727416Z auto tmp19 = static_cast(1.0); 2023-01-11T21:41:26.8727615Z auto tmp20 = static_cast(tmp9); 2023-01-11T21:41:26.8727883Z auto tmp21 = tmp7 - tmp20; 2023-01-11T21:41:26.8728158Z auto tmp22 = tmp19 - tmp21; 2023-01-11T21:41:26.8728337Z auto tmp23 = tmp18 * tmp22; 2023-01-11T21:41:26.8728526Z auto tmp24 = std::ceil(tmp7); 2023-01-11T21:41:26.8728718Z auto tmp25 = static_cast(36.0); 2023-01-11T21:41:26.8728931Z auto tmp26 = (tmp25 != tmp25) ? tmp25 : std::min(tmp24, tmp25); 2023-01-11T21:41:26.8729247Z auto tmp27 = static_cast(tmp26); 2023-01-11T21:41:26.8729459Z auto tmp28 = in_ptr0[tmp17 + (38*tmp27) + (1406*i0)]; 2023-01-11T21:41:26.8729624Z auto tmp29 = tmp28 * tmp21; 2023-01-11T21:41:26.8729795Z auto tmp30 = tmp23 + tmp29; 2023-01-11T21:41:26.8729985Z out_ptr0[i2 + (45*i1) + (2025*i0)] = tmp30; 2023-01-11T21:41:26.8730113Z } 2023-01-11T21:41:26.8730233Z } 2023-01-11T21:41:26.8730330Z } 2023-01-11T21:41:26.8730444Z } 2023-01-11T21:41:26.8730568Z } 2023-01-11T21:41:26.8730718Z #pragma omp for 2023-01-11T21:41:26.8731021Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8731135Z { 2023-01-11T21:41:26.8731262Z #pragma GCC ivdep 2023-01-11T21:41:26.8731413Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:41:26.8731528Z { 2023-01-11T21:41:26.8731680Z #pragma GCC ivdep 2023-01-11T21:41:26.8731833Z for(long i2=0; i2<45; i2+=1) 2023-01-11T21:41:26.8731956Z { 2023-01-11T21:41:26.8732073Z { 2023-01-11T21:41:26.8732180Z { 2023-01-11T21:41:26.8732372Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8732565Z auto tmp1 = static_cast(0.5); 2023-01-11T21:41:26.8732738Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8733029Z auto tmp3 = static_cast(0.8222222222222222); 2023-01-11T21:41:26.8733209Z auto tmp4 = tmp2 * tmp3; 2023-01-11T21:41:26.8733506Z auto tmp5 = tmp4 - tmp1; 2023-01-11T21:41:26.8733688Z auto tmp6 = static_cast(0.0); 2023-01-11T21:41:26.8733917Z auto tmp7 = (tmp6 != tmp6) ? tmp6 : std::max(tmp5, tmp6); 2023-01-11T21:41:26.8734106Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:41:26.8734296Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.8734487Z auto tmp10 = static_cast(i2); 2023-01-11T21:41:26.8734656Z auto tmp11 = tmp10 + tmp1; 2023-01-11T21:41:26.8734860Z auto tmp12 = static_cast(0.8444444444444444); 2023-01-11T21:41:26.8735030Z auto tmp13 = tmp11 * tmp12; 2023-01-11T21:41:26.8735281Z auto tmp14 = tmp13 - tmp1; 2023-01-11T21:41:26.8735511Z auto tmp15 = (tmp6 != tmp6) ? tmp6 : std::max(tmp14, tmp6); 2023-01-11T21:41:26.8735706Z auto tmp16 = std::ceil(tmp15); 2023-01-11T21:41:26.8735904Z auto tmp17 = static_cast(37.0); 2023-01-11T21:41:26.8736124Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp16, tmp17); 2023-01-11T21:41:26.8736324Z auto tmp19 = static_cast(tmp18); 2023-01-11T21:41:26.8736533Z auto tmp20 = in_ptr0[tmp19 + (38*tmp9) + (1406*i0)]; 2023-01-11T21:41:26.8736729Z auto tmp21 = static_cast(1.0); 2023-01-11T21:41:26.8736916Z auto tmp22 = static_cast(tmp9); 2023-01-11T21:41:26.8737174Z auto tmp23 = tmp7 - tmp22; 2023-01-11T21:41:26.8737449Z auto tmp24 = tmp21 - tmp23; 2023-01-11T21:41:26.8737627Z auto tmp25 = tmp20 * tmp24; 2023-01-11T21:41:26.8737805Z auto tmp26 = std::ceil(tmp7); 2023-01-11T21:41:26.8738006Z auto tmp27 = static_cast(36.0); 2023-01-11T21:41:26.8738238Z auto tmp28 = (tmp27 != tmp27) ? tmp27 : std::min(tmp26, tmp27); 2023-01-11T21:41:26.8738429Z auto tmp29 = static_cast(tmp28); 2023-01-11T21:41:26.8738631Z auto tmp30 = in_ptr0[tmp19 + (38*tmp29) + (1406*i0)]; 2023-01-11T21:41:26.8738788Z auto tmp31 = tmp30 * tmp23; 2023-01-11T21:41:26.8738952Z auto tmp32 = tmp25 + tmp31; 2023-01-11T21:41:26.8739139Z out_ptr1[i2 + (45*i1) + (2025*i0)] = tmp32; 2023-01-11T21:41:26.8739263Z } 2023-01-11T21:41:26.8739387Z } 2023-01-11T21:41:26.8739505Z } 2023-01-11T21:41:26.8739632Z } 2023-01-11T21:41:26.8739731Z } 2023-01-11T21:41:26.8739863Z #pragma omp for 2023-01-11T21:41:26.8740113Z for(long i0=0; i0<360; i0+=1) 2023-01-11T21:41:26.8740229Z { 2023-01-11T21:41:26.8740376Z #pragma GCC ivdep 2023-01-11T21:41:26.8740535Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:41:26.8740633Z { 2023-01-11T21:41:26.8740752Z { 2023-01-11T21:41:26.8740874Z { 2023-01-11T21:41:26.8741044Z auto tmp0 = out_ptr0[i1 + (45*i0)]; 2023-01-11T21:41:26.8741226Z auto tmp16 = out_ptr1[i1 + (45*i0)]; 2023-01-11T21:41:26.8741414Z auto tmp1 = static_cast(1.0); 2023-01-11T21:41:26.8741613Z auto tmp2 = static_cast(i1); 2023-01-11T21:41:26.8741778Z auto tmp3 = static_cast(0.5); 2023-01-11T21:41:26.8742026Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8742239Z auto tmp5 = static_cast(0.8444444444444444); 2023-01-11T21:41:26.8742416Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8742689Z auto tmp7 = tmp6 - tmp3; 2023-01-11T21:41:26.8742873Z auto tmp8 = static_cast(0.0); 2023-01-11T21:41:26.8743095Z auto tmp9 = (tmp8 != tmp8) ? tmp8 : std::max(tmp7, tmp8); 2023-01-11T21:41:26.8743353Z auto tmp10 = std::floor(tmp9); 2023-01-11T21:41:26.8743515Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8743699Z auto tmp12 = static_cast(tmp11); 2023-01-11T21:41:26.8743969Z auto tmp13 = tmp9 - tmp12; 2023-01-11T21:41:26.8744219Z auto tmp14 = tmp1 - tmp13; 2023-01-11T21:41:26.8744389Z auto tmp15 = tmp0 * tmp14; 2023-01-11T21:41:26.8744558Z auto tmp17 = tmp16 * tmp13; 2023-01-11T21:41:26.8744731Z auto tmp18 = tmp15 + tmp17; 2023-01-11T21:41:26.8744908Z in_out_ptr0[i1 + (45*i0)] = tmp18; 2023-01-11T21:41:26.8745009Z } 2023-01-11T21:41:26.8745132Z } 2023-01-11T21:41:26.8745255Z } 2023-01-11T21:41:26.8745371Z } 2023-01-11T21:41:26.8745521Z #pragma omp for 2023-01-11T21:41:26.8745667Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8745763Z { 2023-01-11T21:41:26.8745897Z #pragma GCC ivdep 2023-01-11T21:41:26.8746051Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:41:26.8746173Z { 2023-01-11T21:41:26.8746319Z #pragma GCC ivdep 2023-01-11T21:41:26.8746470Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:41:26.8746589Z { 2023-01-11T21:41:26.8746682Z { 2023-01-11T21:41:26.8746808Z { 2023-01-11T21:41:26.8747003Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8747207Z auto tmp1 = static_cast(0.4931506849315068); 2023-01-11T21:41:26.8747390Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8747573Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.8747774Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.8747940Z auto tmp5 = static_cast(i2); 2023-01-11T21:41:26.8748150Z auto tmp6 = static_cast(0.49333333333333335); 2023-01-11T21:41:26.8748312Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.8748503Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:41:26.8748693Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.8748903Z auto tmp10 = in_ptr0[tmp9 + (38*tmp4) + (1406*i0)]; 2023-01-11T21:41:26.8749095Z auto tmp11 = static_cast(1.0); 2023-01-11T21:41:26.8749302Z auto tmp12 = static_cast(tmp4); 2023-01-11T21:41:26.8749673Z auto tmp13 = tmp2 - tmp12; 2023-01-11T21:41:26.8749936Z auto tmp14 = tmp11 - tmp13; 2023-01-11T21:41:26.8750104Z auto tmp15 = tmp10 * tmp14; 2023-01-11T21:41:26.8750296Z auto tmp16 = std::ceil(tmp2); 2023-01-11T21:41:26.8750487Z auto tmp17 = static_cast(36.0); 2023-01-11T21:41:26.8750718Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp16, tmp17); 2023-01-11T21:41:26.8750905Z auto tmp19 = static_cast(tmp18); 2023-01-11T21:41:26.8751113Z auto tmp20 = in_ptr0[tmp9 + (38*tmp19) + (1406*i0)]; 2023-01-11T21:41:26.8751339Z auto tmp21 = tmp20 * tmp13; 2023-01-11T21:41:26.8751521Z auto tmp22 = tmp15 + tmp21; 2023-01-11T21:41:26.8751718Z auto tmp23 = static_cast(tmp9); 2023-01-11T21:41:26.8751993Z auto tmp24 = tmp7 - tmp23; 2023-01-11T21:41:26.8752252Z auto tmp25 = tmp11 - tmp24; 2023-01-11T21:41:26.8752417Z auto tmp26 = tmp22 * tmp25; 2023-01-11T21:41:26.8752595Z out_ptr2[i2 + (76*i1) + (5624*i0)] = tmp26; 2023-01-11T21:41:26.8752704Z } 2023-01-11T21:41:26.8752825Z } 2023-01-11T21:41:26.8752944Z } 2023-01-11T21:41:26.8753054Z } 2023-01-11T21:41:26.8753166Z } 2023-01-11T21:41:26.8753309Z #pragma omp for 2023-01-11T21:41:26.8753466Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8753563Z { 2023-01-11T21:41:26.8753708Z #pragma GCC ivdep 2023-01-11T21:41:26.8753859Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:41:26.8753970Z { 2023-01-11T21:41:26.8754124Z #pragma GCC ivdep 2023-01-11T21:41:26.8754275Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:41:26.8754400Z { 2023-01-11T21:41:26.8754502Z { 2023-01-11T21:41:26.8754630Z { 2023-01-11T21:41:26.8754820Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8755040Z auto tmp1 = static_cast(0.4931506849315068); 2023-01-11T21:41:26.8755207Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8755402Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.8755586Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.8755762Z auto tmp5 = static_cast(i2); 2023-01-11T21:41:26.8755975Z auto tmp6 = static_cast(0.49333333333333335); 2023-01-11T21:41:26.8756147Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.8756336Z auto tmp8 = std::ceil(tmp7); 2023-01-11T21:41:26.8756526Z auto tmp9 = static_cast(37.0); 2023-01-11T21:41:26.8756760Z auto tmp10 = (tmp9 != tmp9) ? tmp9 : std::min(tmp8, tmp9); 2023-01-11T21:41:26.8756964Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8757162Z auto tmp12 = in_ptr0[tmp11 + (38*tmp4) + (1406*i0)]; 2023-01-11T21:41:26.8757331Z auto tmp13 = static_cast(1.0); 2023-01-11T21:41:26.8757527Z auto tmp14 = static_cast(tmp4); 2023-01-11T21:41:26.8757816Z auto tmp15 = tmp2 - tmp14; 2023-01-11T21:41:26.8758086Z auto tmp16 = tmp13 - tmp15; 2023-01-11T21:41:26.8758268Z auto tmp17 = tmp12 * tmp16; 2023-01-11T21:41:26.8758458Z auto tmp18 = std::ceil(tmp2); 2023-01-11T21:41:26.8758773Z auto tmp19 = static_cast(36.0); 2023-01-11T21:41:26.8759002Z auto tmp20 = (tmp19 != tmp19) ? tmp19 : std::min(tmp18, tmp19); 2023-01-11T21:41:26.8759174Z auto tmp21 = static_cast(tmp20); 2023-01-11T21:41:26.8759375Z auto tmp22 = in_ptr0[tmp11 + (38*tmp21) + (1406*i0)]; 2023-01-11T21:41:26.8759539Z auto tmp23 = tmp22 * tmp15; 2023-01-11T21:41:26.8759712Z auto tmp24 = tmp17 + tmp23; 2023-01-11T21:41:26.8759904Z auto tmp25 = std::floor(tmp7); 2023-01-11T21:41:26.8760099Z auto tmp26 = static_cast(tmp25); 2023-01-11T21:41:26.8760291Z auto tmp27 = static_cast(tmp26); 2023-01-11T21:41:26.8760638Z auto tmp28 = tmp7 - tmp27; 2023-01-11T21:41:26.8760798Z auto tmp29 = tmp24 * tmp28; 2023-01-11T21:41:26.8760989Z out_ptr3[i2 + (76*i1) + (5624*i0)] = tmp29; 2023-01-11T21:41:26.8761117Z } 2023-01-11T21:41:26.8761233Z } 2023-01-11T21:41:26.8761353Z } 2023-01-11T21:41:26.8761470Z } 2023-01-11T21:41:26.8761580Z } 2023-01-11T21:41:26.8761706Z #pragma omp for 2023-01-11T21:41:26.8761848Z for(long i0=0; i0<5624; i0+=1) 2023-01-11T21:41:26.8761960Z { 2023-01-11T21:41:26.8762188Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + 8*i0); 2023-01-11T21:41:26.8762426Z auto tmp1 = at::vec::Vectorized::loadu(out_ptr3 + 8*i0); 2023-01-11T21:41:26.8762580Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8762749Z tmp2.store(in_out_ptr1 + 8*i0); 2023-01-11T21:41:26.8762831Z } 2023-01-11T21:41:26.8763016Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8763179Z for(long i0=44992; i0<44992; i0+=1) 2023-01-11T21:41:26.8763300Z { 2023-01-11T21:41:26.8763460Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:41:26.8763608Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:41:26.8763756Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8763893Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.8764012Z } 2023-01-11T21:41:26.8764125Z } 2023-01-11T21:41:26.8764233Z } 2023-01-11T21:41:26.8764398Z ''') 2023-01-11T21:41:26.8764408Z 2023-01-11T21:41:26.8764416Z 2023-01-11T21:41:26.8764573Z async_compile.wait(globals()) 2023-01-11T21:41:26.8764711Z del async_compile 2023-01-11T21:41:26.8764722Z 2023-01-11T21:41:26.8764831Z def call(args): 2023-01-11T21:41:26.8764957Z arg0_1, = args 2023-01-11T21:41:26.8765082Z args.clear() 2023-01-11T21:41:26.8765473Z buf0 = empty_strided((2, 4, 45, 45), (8100, 2025, 45, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8765863Z buf1 = empty_strided((2, 4, 45, 45), (8100, 2025, 45, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8766015Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:41:26.8766391Z buf3 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8766774Z buf4 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8766902Z buf5 = buf3; del buf3 # reuse 2023-01-11T21:41:26.8767265Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(buf5.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.8767395Z del arg0_1 2023-01-11T21:41:26.8767525Z return (buf2, buf5, ) 2023-01-11T21:41:26.8767537Z 2023-01-11T21:41:26.8767543Z 2023-01-11T21:41:26.8767674Z if __name__ == "__main__": 2023-01-11T21:41:26.8767884Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8768110Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8768495Z arg0_1 = rand_strided((2, 4, 37, 38), (5624, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8768760Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8769349Z [2023-01-11 21:39:06,707] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 476 2023-01-11T21:41:26.8769359Z 2023-01-11T21:41:26.8769489Z ok (2.484s) 2023-01-11T21:41:26.8770295Z test_upsample_bilinear2d_b_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8770628Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8771084Z [2023-01-11 21:39:06,990] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 477 2023-01-11T21:41:26.8771564Z [2023-01-11 21:39:08,580] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 477 2023-01-11T21:41:26.8771573Z 2023-01-11T21:41:26.8771731Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8771870Z import torch 2023-01-11T21:41:26.8771983Z import random 2023-01-11T21:41:26.8772185Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8772405Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8772413Z 2023-01-11T21:41:26.8772550Z aten = torch.ops.aten 2023-01-11T21:41:26.8772779Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8772940Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8772949Z 2023-01-11T21:41:26.8772954Z 2023-01-11T21:41:26.8773197Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8773543Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8773728Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8773920Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8774093Z float* __restrict__ out_ptr1) 2023-01-11T21:41:26.8774199Z { 2023-01-11T21:41:26.8774364Z auto out_ptr0 = in_out_ptr0; 2023-01-11T21:41:26.8774538Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8774656Z { 2023-01-11T21:41:26.8774802Z #pragma omp for collapse(2) 2023-01-11T21:41:26.8774938Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8775048Z { 2023-01-11T21:41:26.8775204Z for(long i1=0; i1<80; i1+=1) 2023-01-11T21:41:26.8775323Z { 2023-01-11T21:41:26.8775472Z #pragma GCC ivdep 2023-01-11T21:41:26.8775629Z for(long i2=0; i2<118; i2+=1) 2023-01-11T21:41:26.8775728Z { 2023-01-11T21:41:26.8775846Z { 2023-01-11T21:41:26.8775969Z { 2023-01-11T21:41:26.8776164Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8776381Z auto tmp1 = static_cast(0.4936708860759494); 2023-01-11T21:41:26.8776543Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8776726Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.8776903Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.8777095Z auto tmp5 = static_cast(i2); 2023-01-11T21:41:26.8777295Z auto tmp6 = static_cast(0.49572649572649574); 2023-01-11T21:41:26.8777465Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.8777661Z auto tmp8 = std::floor(tmp7); 2023-01-11T21:41:26.8777856Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.8778065Z auto tmp10 = in_ptr0[tmp9 + (59*tmp4) + (2360*i0)]; 2023-01-11T21:41:26.8778390Z auto tmp11 = static_cast(1.0); 2023-01-11T21:41:26.8778573Z auto tmp12 = static_cast(tmp4); 2023-01-11T21:41:26.8778872Z auto tmp13 = tmp2 - tmp12; 2023-01-11T21:41:26.8779137Z auto tmp14 = tmp11 - tmp13; 2023-01-11T21:41:26.8779314Z auto tmp15 = tmp10 * tmp14; 2023-01-11T21:41:26.8779495Z auto tmp16 = std::ceil(tmp2); 2023-01-11T21:41:26.8779683Z auto tmp17 = static_cast(39.0); 2023-01-11T21:41:26.8779911Z auto tmp18 = (tmp17 != tmp17) ? tmp17 : std::min(tmp16, tmp17); 2023-01-11T21:41:26.8780112Z auto tmp19 = static_cast(tmp18); 2023-01-11T21:41:26.8780373Z auto tmp20 = in_ptr0[tmp9 + (59*tmp19) + (2360*i0)]; 2023-01-11T21:41:26.8780552Z auto tmp21 = tmp20 * tmp13; 2023-01-11T21:41:26.8780725Z auto tmp22 = tmp15 + tmp21; 2023-01-11T21:41:26.8780921Z auto tmp23 = static_cast(tmp9); 2023-01-11T21:41:26.8781195Z auto tmp24 = tmp7 - tmp23; 2023-01-11T21:41:26.8781453Z auto tmp25 = tmp11 - tmp24; 2023-01-11T21:41:26.8781617Z auto tmp26 = tmp22 * tmp25; 2023-01-11T21:41:26.8781804Z out_ptr0[i2 + (118*i1) + (9440*i0)] = tmp26; 2023-01-11T21:41:26.8781918Z } 2023-01-11T21:41:26.8782034Z } 2023-01-11T21:41:26.8782152Z } 2023-01-11T21:41:26.8782258Z } 2023-01-11T21:41:26.8782371Z } 2023-01-11T21:41:26.8782537Z #pragma omp for collapse(2) 2023-01-11T21:41:26.8782670Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.8782787Z { 2023-01-11T21:41:26.8782935Z for(long i1=0; i1<80; i1+=1) 2023-01-11T21:41:26.8783046Z { 2023-01-11T21:41:26.8783302Z #pragma GCC ivdep 2023-01-11T21:41:26.8783468Z for(long i2=0; i2<118; i2+=1) 2023-01-11T21:41:26.8783590Z { 2023-01-11T21:41:26.8783695Z { 2023-01-11T21:41:26.8783818Z { 2023-01-11T21:41:26.8784012Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8784213Z auto tmp1 = static_cast(0.4936708860759494); 2023-01-11T21:41:26.8784388Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8784581Z auto tmp3 = std::floor(tmp2); 2023-01-11T21:41:26.8784771Z auto tmp4 = static_cast(tmp3); 2023-01-11T21:41:26.8784942Z auto tmp5 = static_cast(i2); 2023-01-11T21:41:26.8785156Z auto tmp6 = static_cast(0.49572649572649574); 2023-01-11T21:41:26.8785329Z auto tmp7 = tmp5 * tmp6; 2023-01-11T21:41:26.8785520Z auto tmp8 = std::ceil(tmp7); 2023-01-11T21:41:26.8785716Z auto tmp9 = static_cast(58.0); 2023-01-11T21:41:26.8785944Z auto tmp10 = (tmp9 != tmp9) ? tmp9 : std::min(tmp8, tmp9); 2023-01-11T21:41:26.8786138Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8786331Z auto tmp12 = in_ptr0[tmp11 + (59*tmp4) + (2360*i0)]; 2023-01-11T21:41:26.8786498Z auto tmp13 = static_cast(1.0); 2023-01-11T21:41:26.8786690Z auto tmp14 = static_cast(tmp4); 2023-01-11T21:41:26.8786982Z auto tmp15 = tmp2 - tmp14; 2023-01-11T21:41:26.8787247Z auto tmp16 = tmp13 - tmp15; 2023-01-11T21:41:26.8787432Z auto tmp17 = tmp12 * tmp16; 2023-01-11T21:41:26.8787615Z auto tmp18 = std::ceil(tmp2); 2023-01-11T21:41:26.8787905Z auto tmp19 = static_cast(39.0); 2023-01-11T21:41:26.8788135Z auto tmp20 = (tmp19 != tmp19) ? tmp19 : std::min(tmp18, tmp19); 2023-01-11T21:41:26.8788315Z auto tmp21 = static_cast(tmp20); 2023-01-11T21:41:26.8788522Z auto tmp22 = in_ptr0[tmp11 + (59*tmp21) + (2360*i0)]; 2023-01-11T21:41:26.8788694Z auto tmp23 = tmp22 * tmp15; 2023-01-11T21:41:26.8788862Z auto tmp24 = tmp17 + tmp23; 2023-01-11T21:41:26.8789052Z auto tmp25 = std::floor(tmp7); 2023-01-11T21:41:26.8789248Z auto tmp26 = static_cast(tmp25); 2023-01-11T21:41:26.8789511Z auto tmp27 = static_cast(tmp26); 2023-01-11T21:41:26.8789778Z auto tmp28 = tmp7 - tmp27; 2023-01-11T21:41:26.8789949Z auto tmp29 = tmp24 * tmp28; 2023-01-11T21:41:26.8790139Z out_ptr1[i2 + (118*i1) + (9440*i0)] = tmp29; 2023-01-11T21:41:26.8790264Z } 2023-01-11T21:41:26.8790388Z } 2023-01-11T21:41:26.8790492Z } 2023-01-11T21:41:26.8790608Z } 2023-01-11T21:41:26.8790729Z } 2023-01-11T21:41:26.8790851Z #pragma omp for 2023-01-11T21:41:26.8791004Z for(long i0=0; i0<2360; i0+=1) 2023-01-11T21:41:26.8791120Z { 2023-01-11T21:41:26.8791343Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr0 + 8*i0); 2023-01-11T21:41:26.8791581Z auto tmp1 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8791732Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8791916Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8792016Z } 2023-01-11T21:41:26.8792186Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8792350Z for(long i0=18880; i0<18880; i0+=1) 2023-01-11T21:41:26.8792470Z { 2023-01-11T21:41:26.8792629Z auto tmp0 = out_ptr0[i0]; 2023-01-11T21:41:26.8792780Z auto tmp1 = out_ptr1[i0]; 2023-01-11T21:41:26.8792926Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.8793051Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8793170Z } 2023-01-11T21:41:26.8793278Z } 2023-01-11T21:41:26.8793392Z } 2023-01-11T21:41:26.8793556Z ''') 2023-01-11T21:41:26.8793566Z 2023-01-11T21:41:26.8793577Z 2023-01-11T21:41:26.8793727Z async_compile.wait(globals()) 2023-01-11T21:41:26.8793856Z del async_compile 2023-01-11T21:41:26.8793867Z 2023-01-11T21:41:26.8793979Z def call(args): 2023-01-11T21:41:26.8794109Z arg0_1, = args 2023-01-11T21:41:26.8794239Z args.clear() 2023-01-11T21:41:26.8794642Z buf0 = empty_strided((1, 2, 80, 118), (18880, 9440, 118, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8795039Z buf1 = empty_strided((1, 2, 80, 118), (18880, 9440, 118, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8795194Z buf2 = buf0; del buf0 # reuse 2023-01-11T21:41:26.8795467Z kernel_cpp_0(c_void_p(buf2.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8795595Z del arg0_1 2023-01-11T21:41:26.8795709Z return (buf2, ) 2023-01-11T21:41:26.8795721Z 2023-01-11T21:41:26.8795727Z 2023-01-11T21:41:26.8795859Z if __name__ == "__main__": 2023-01-11T21:41:26.8796062Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8796275Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8796667Z arg0_1 = rand_strided((1, 2, 40, 59), (4720, 2360, 59, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8796853Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8796863Z 2023-01-11T21:41:26.8796986Z ok (1.872s) 2023-01-11T21:41:26.8797797Z test_upsample_nearest1d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8798151Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8798590Z [2023-01-11 21:39:08,869] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 478 2023-01-11T21:41:26.8799057Z [2023-01-11 21:39:10,404] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 478 2023-01-11T21:41:26.8799070Z 2023-01-11T21:41:26.8799229Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8799346Z import torch 2023-01-11T21:41:26.8799559Z import random 2023-01-11T21:41:26.8799764Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8799971Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8799989Z 2023-01-11T21:41:26.8800124Z aten = torch.ops.aten 2023-01-11T21:41:26.8800340Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8800503Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8800513Z 2023-01-11T21:41:26.8800520Z 2023-01-11T21:41:26.8800767Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8801113Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8801326Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8801502Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8801670Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8801835Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8801991Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.8802159Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.8802275Z { 2023-01-11T21:41:26.8802450Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8802561Z { 2023-01-11T21:41:26.8802700Z #pragma omp for 2023-01-11T21:41:26.8802850Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8802948Z { 2023-01-11T21:41:26.8803100Z #pragma GCC ivdep 2023-01-11T21:41:26.8803251Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:41:26.8803358Z { 2023-01-11T21:41:26.8803480Z { 2023-01-11T21:41:26.8803608Z { 2023-01-11T21:41:26.8803778Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8803967Z auto tmp1 = static_cast(0.5); 2023-01-11T21:41:26.8804125Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8804325Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8804507Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:41:26.8804678Z out_ptr0[i1 + (74*i0)] = tmp4; 2023-01-11T21:41:26.8804845Z out_ptr1[i1 + (74*i0)] = tmp4; 2023-01-11T21:41:26.8804963Z } 2023-01-11T21:41:26.8805058Z } 2023-01-11T21:41:26.8805180Z } 2023-01-11T21:41:26.8805299Z } 2023-01-11T21:41:26.8805440Z #pragma omp for 2023-01-11T21:41:26.8805594Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8805707Z { 2023-01-11T21:41:26.8805819Z #pragma GCC ivdep 2023-01-11T21:41:26.8805977Z for(long i1=0; i1<70; i1+=1) 2023-01-11T21:41:26.8806102Z { 2023-01-11T21:41:26.8806217Z { 2023-01-11T21:41:26.8806336Z { 2023-01-11T21:41:26.8806519Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8806715Z auto tmp1 = static_cast(0.5285714285714286); 2023-01-11T21:41:26.8806863Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8807160Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8807346Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:41:26.8807510Z out_ptr2[i1 + (70*i0)] = tmp4; 2023-01-11T21:41:26.8807636Z } 2023-01-11T21:41:26.8807750Z } 2023-01-11T21:41:26.8807873Z } 2023-01-11T21:41:26.8807972Z } 2023-01-11T21:41:26.8808106Z #pragma omp for 2023-01-11T21:41:26.8808249Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8808363Z { 2023-01-11T21:41:26.8808509Z #pragma GCC ivdep 2023-01-11T21:41:26.8808664Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:41:26.8808782Z { 2023-01-11T21:41:26.8808882Z { 2023-01-11T21:41:26.8809119Z { 2023-01-11T21:41:26.8809437Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8809644Z auto tmp1 = static_cast(0.8222222222222222); 2023-01-11T21:41:26.8809816Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8810001Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8810176Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:41:26.8810328Z out_ptr3[i1 + (45*i0)] = tmp4; 2023-01-11T21:41:26.8810447Z } 2023-01-11T21:41:26.8810563Z } 2023-01-11T21:41:26.8810684Z } 2023-01-11T21:41:26.8810798Z } 2023-01-11T21:41:26.8810930Z #pragma omp for 2023-01-11T21:41:26.8811078Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8811177Z { 2023-01-11T21:41:26.8811325Z #pragma GCC ivdep 2023-01-11T21:41:26.8811468Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:41:26.8811587Z { 2023-01-11T21:41:26.8811703Z { 2023-01-11T21:41:26.8811823Z { 2023-01-11T21:41:26.8811989Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8812202Z auto tmp1 = static_cast(1.0277777777777777); 2023-01-11T21:41:26.8812370Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8812554Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8812738Z auto tmp4 = in_ptr0[tmp3 + (37*i0)]; 2023-01-11T21:41:26.8812915Z out_ptr4[i1 + (36*i0)] = tmp4; 2023-01-11T21:41:26.8813034Z } 2023-01-11T21:41:26.8813156Z } 2023-01-11T21:41:26.8813255Z } 2023-01-11T21:41:26.8813355Z } 2023-01-11T21:41:26.8813471Z } 2023-01-11T21:41:26.8813581Z } 2023-01-11T21:41:26.8813766Z ''') 2023-01-11T21:41:26.8813779Z 2023-01-11T21:41:26.8813785Z 2023-01-11T21:41:26.8813956Z async_compile.wait(globals()) 2023-01-11T21:41:26.8814093Z del async_compile 2023-01-11T21:41:26.8814103Z 2023-01-11T21:41:26.8814198Z def call(args): 2023-01-11T21:41:26.8814335Z arg0_1, = args 2023-01-11T21:41:26.8814456Z args.clear() 2023-01-11T21:41:26.8814824Z buf0 = empty_strided((2, 4, 74), (296, 74, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8815178Z buf4 = empty_strided((2, 4, 74), (296, 74, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8815535Z buf1 = empty_strided((2, 4, 70), (280, 70, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8815862Z buf2 = empty_strided((2, 4, 45), (180, 45, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8816150Z buf3 = empty_strided((2, 4, 36), (144, 36, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8816549Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.8816682Z del arg0_1 2023-01-11T21:41:26.8816851Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.8816859Z 2023-01-11T21:41:26.8816984Z 2023-01-11T21:41:26.8817129Z if __name__ == "__main__": 2023-01-11T21:41:26.8817340Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8817552Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8817916Z arg0_1 = rand_strided((2, 4, 37), (148, 37, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8818104Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8818116Z 2023-01-11T21:41:26.8818214Z ok (1.823s) 2023-01-11T21:41:26.8819095Z test_upsample_nearest2d_backward_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8819319Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8819788Z [2023-01-11 21:39:10,431] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 479 2023-01-11T21:41:26.8819797Z 2023-01-11T21:41:26.8819971Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8820094Z import torch 2023-01-11T21:41:26.8820225Z import random 2023-01-11T21:41:26.8820432Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8820640Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8820649Z 2023-01-11T21:41:26.8820777Z aten = torch.ops.aten 2023-01-11T21:41:26.8821003Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8821169Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8821181Z 2023-01-11T21:41:26.8821187Z 2023-01-11T21:41:26.8821435Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8821771Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8821988Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8822161Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8822330Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8822477Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8822652Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.8822821Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.8822938Z { 2023-01-11T21:41:26.8823116Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8823300Z { 2023-01-11T21:41:26.8823432Z #pragma omp for 2023-01-11T21:41:26.8823562Z for(long i0=0; i0<27; i0+=1) 2023-01-11T21:41:26.8823679Z { 2023-01-11T21:41:26.8823826Z #pragma GCC ivdep 2023-01-11T21:41:26.8823984Z for(long i1=0; i1<6; i1+=1) 2023-01-11T21:41:26.8824103Z { 2023-01-11T21:41:26.8824215Z { 2023-01-11T21:41:26.8824314Z { 2023-01-11T21:41:26.8824502Z auto tmp0 = in_ptr0[(2*i1) + (24*i0)]; 2023-01-11T21:41:26.8824691Z auto tmp1 = in_ptr0[1 + (2*i1) + (24*i0)]; 2023-01-11T21:41:26.8824884Z auto tmp3 = in_ptr0[12 + (2*i1) + (24*i0)]; 2023-01-11T21:41:26.8825055Z auto tmp5 = in_ptr0[13 + (2*i1) + (24*i0)]; 2023-01-11T21:41:26.8825233Z auto tmp2 = tmp1 + tmp0; 2023-01-11T21:41:26.8825406Z auto tmp4 = tmp3 + tmp2; 2023-01-11T21:41:26.8825573Z auto tmp6 = tmp5 + tmp4; 2023-01-11T21:41:26.8825741Z auto tmp7 = static_cast(1.0); 2023-01-11T21:41:26.8825898Z auto tmp8 = tmp6 * tmp7; 2023-01-11T21:41:26.8826066Z out_ptr0[i1 + (6*i0)] = tmp8; 2023-01-11T21:41:26.8826202Z } 2023-01-11T21:41:26.8826332Z } 2023-01-11T21:41:26.8826449Z } 2023-01-11T21:41:26.8826665Z } 2023-01-11T21:41:26.8826785Z #pragma omp for 2023-01-11T21:41:26.8826935Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:41:26.8827058Z { 2023-01-11T21:41:26.8827205Z #pragma GCC ivdep 2023-01-11T21:41:26.8827353Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8827465Z { 2023-01-11T21:41:26.8827600Z #pragma GCC ivdep 2023-01-11T21:41:26.8827752Z for(long i2=0; i2<5; i2+=1) 2023-01-11T21:41:26.8827874Z { 2023-01-11T21:41:26.8827993Z { 2023-01-11T21:41:26.8828125Z { 2023-01-11T21:41:26.8828323Z auto tmp0 = static_cast(((3 + (6*i1)) / 4)); 2023-01-11T21:41:26.8828530Z auto tmp1 = static_cast(((9 + (6*i1)) / 4)); 2023-01-11T21:41:26.8828778Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.8828970Z auto tmp3 = static_cast(((4 + (12*i2)) / 5)); 2023-01-11T21:41:26.8829170Z auto tmp4 = static_cast(((16 + (12*i2)) / 5)); 2023-01-11T21:41:26.8829345Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.8829512Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.8829677Z float tmp7 = 0.0; 2023-01-11T21:41:26.8829817Z if(tmp6) 2023-01-11T21:41:26.8829939Z { 2023-01-11T21:41:26.8830140Z auto tmp8 = in_ptr0[(12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:41:26.8830297Z tmp7 = tmp8; 2023-01-11T21:41:26.8830426Z } 2023-01-11T21:41:26.8830632Z auto tmp9 = static_cast(1 + (((4 + (12*i2)) / 5))); 2023-01-11T21:41:26.8830804Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:41:26.8830972Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:41:26.8831138Z float tmp12 = 0.0; 2023-01-11T21:41:26.8831259Z if(tmp11) 2023-01-11T21:41:26.8831387Z { 2023-01-11T21:41:26.8831602Z auto tmp13 = in_ptr0[1 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:41:26.8831759Z tmp12 = tmp13; 2023-01-11T21:41:26.8831885Z } 2023-01-11T21:41:26.8832060Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:41:26.8832266Z auto tmp15 = static_cast(2 + (((4 + (12*i2)) / 5))); 2023-01-11T21:41:26.8832436Z auto tmp16 = tmp15 < tmp4; 2023-01-11T21:41:26.8832602Z auto tmp17 = tmp2 & tmp16; 2023-01-11T21:41:26.8832761Z float tmp18 = 0.0; 2023-01-11T21:41:26.8832908Z if(tmp17) 2023-01-11T21:41:26.8833033Z { 2023-01-11T21:41:26.8833251Z auto tmp19 = in_ptr0[2 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:41:26.8833404Z tmp18 = tmp19; 2023-01-11T21:41:26.8833529Z } 2023-01-11T21:41:26.8833686Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:41:26.8833892Z auto tmp21 = static_cast(1 + (((3 + (6*i1)) / 4))); 2023-01-11T21:41:26.8834063Z auto tmp22 = tmp21 < tmp1; 2023-01-11T21:41:26.8834231Z auto tmp23 = tmp22 & tmp5; 2023-01-11T21:41:26.8834384Z float tmp24 = 0.0; 2023-01-11T21:41:26.8834525Z if(tmp23) 2023-01-11T21:41:26.8834659Z { 2023-01-11T21:41:26.8834877Z auto tmp25 = in_ptr0[12 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:41:26.8835113Z tmp24 = tmp25; 2023-01-11T21:41:26.8835247Z } 2023-01-11T21:41:26.8835420Z auto tmp26 = tmp24 + tmp20; 2023-01-11T21:41:26.8835584Z auto tmp27 = tmp22 & tmp10; 2023-01-11T21:41:26.8835760Z float tmp28 = 0.0; 2023-01-11T21:41:26.8835910Z if(tmp27) 2023-01-11T21:41:26.8836036Z { 2023-01-11T21:41:26.8836237Z auto tmp29 = in_ptr0[13 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:41:26.8836387Z tmp28 = tmp29; 2023-01-11T21:41:26.8836523Z } 2023-01-11T21:41:26.8836763Z auto tmp30 = tmp28 + tmp26; 2023-01-11T21:41:26.8836943Z auto tmp31 = tmp22 & tmp16; 2023-01-11T21:41:26.8837101Z float tmp32 = 0.0; 2023-01-11T21:41:26.8837240Z if(tmp31) 2023-01-11T21:41:26.8837349Z { 2023-01-11T21:41:26.8837567Z auto tmp33 = in_ptr0[14 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((4 + (12*i2)) / 5))]; 2023-01-11T21:41:26.8837712Z tmp32 = tmp33; 2023-01-11T21:41:26.8837838Z } 2023-01-11T21:41:26.8837997Z auto tmp34 = tmp32 + tmp30; 2023-01-11T21:41:26.8838177Z out_ptr1[i2 + (5*i1) + (20*i0)] = tmp34; 2023-01-11T21:41:26.8838306Z } 2023-01-11T21:41:26.8838431Z } 2023-01-11T21:41:26.8838535Z } 2023-01-11T21:41:26.8838656Z } 2023-01-11T21:41:26.8838766Z } 2023-01-11T21:41:26.8838915Z #pragma omp for 2023-01-11T21:41:26.8839069Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:41:26.8839188Z { 2023-01-11T21:41:26.8839313Z #pragma GCC ivdep 2023-01-11T21:41:26.8839464Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.8839569Z { 2023-01-11T21:41:26.8839714Z #pragma GCC ivdep 2023-01-11T21:41:26.8839877Z for(long i2=0; i2<8; i2+=1) 2023-01-11T21:41:26.8839994Z { 2023-01-11T21:41:26.8840117Z { 2023-01-11T21:41:26.8840230Z { 2023-01-11T21:41:26.8840419Z auto tmp0 = static_cast(3*i1); 2023-01-11T21:41:26.8840624Z auto tmp1 = static_cast(3 + (3*i1)); 2023-01-11T21:41:26.8840791Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.8840995Z auto tmp3 = static_cast(((7 + (12*i2)) / 8)); 2023-01-11T21:41:26.8841203Z auto tmp4 = static_cast(((19 + (12*i2)) / 8)); 2023-01-11T21:41:26.8841379Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.8841554Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.8841707Z float tmp7 = 0.0; 2023-01-11T21:41:26.8841847Z if(tmp6) 2023-01-11T21:41:26.8841967Z { 2023-01-11T21:41:26.8842169Z auto tmp8 = in_ptr0[(36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8842330Z tmp7 = tmp8; 2023-01-11T21:41:26.8842459Z } 2023-01-11T21:41:26.8842662Z auto tmp9 = static_cast(1 + (((7 + (12*i2)) / 8))); 2023-01-11T21:41:26.8842806Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:41:26.8842978Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:41:26.8843149Z float tmp12 = 0.0; 2023-01-11T21:41:26.8843293Z if(tmp11) 2023-01-11T21:41:26.8843513Z { 2023-01-11T21:41:26.8843721Z auto tmp13 = in_ptr0[1 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8843883Z tmp12 = tmp13; 2023-01-11T21:41:26.8843992Z } 2023-01-11T21:41:26.8844163Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:41:26.8844358Z auto tmp15 = static_cast(1 + (3*i1)); 2023-01-11T21:41:26.8844528Z auto tmp16 = tmp15 < tmp1; 2023-01-11T21:41:26.8844707Z auto tmp17 = tmp16 & tmp5; 2023-01-11T21:41:26.8844867Z float tmp18 = 0.0; 2023-01-11T21:41:26.8845013Z if(tmp17) 2023-01-11T21:41:26.8845121Z { 2023-01-11T21:41:26.8845397Z auto tmp19 = in_ptr0[12 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8845564Z tmp18 = tmp19; 2023-01-11T21:41:26.8845696Z } 2023-01-11T21:41:26.8845871Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:41:26.8846042Z auto tmp21 = tmp16 & tmp10; 2023-01-11T21:41:26.8846200Z float tmp22 = 0.0; 2023-01-11T21:41:26.8846339Z if(tmp21) 2023-01-11T21:41:26.8846450Z { 2023-01-11T21:41:26.8846661Z auto tmp23 = in_ptr0[13 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8846809Z tmp22 = tmp23; 2023-01-11T21:41:26.8846930Z } 2023-01-11T21:41:26.8847101Z auto tmp24 = tmp22 + tmp20; 2023-01-11T21:41:26.8847306Z auto tmp25 = static_cast(2 + (3*i1)); 2023-01-11T21:41:26.8847470Z auto tmp26 = tmp25 < tmp1; 2023-01-11T21:41:26.8847619Z auto tmp27 = tmp26 & tmp5; 2023-01-11T21:41:26.8847775Z float tmp28 = 0.0; 2023-01-11T21:41:26.8847923Z if(tmp27) 2023-01-11T21:41:26.8848048Z { 2023-01-11T21:41:26.8848255Z auto tmp29 = in_ptr0[24 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8848394Z tmp28 = tmp29; 2023-01-11T21:41:26.8848526Z } 2023-01-11T21:41:26.8848679Z auto tmp30 = tmp28 + tmp24; 2023-01-11T21:41:26.8848841Z auto tmp31 = tmp26 & tmp10; 2023-01-11T21:41:26.8849130Z float tmp32 = 0.0; 2023-01-11T21:41:26.8849278Z if(tmp31) 2023-01-11T21:41:26.8849408Z { 2023-01-11T21:41:26.8849616Z auto tmp33 = in_ptr0[25 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8849781Z tmp32 = tmp33; 2023-01-11T21:41:26.8849908Z } 2023-01-11T21:41:26.8850060Z auto tmp34 = tmp32 + tmp30; 2023-01-11T21:41:26.8850212Z float tmp35 = 0.0; 2023-01-11T21:41:26.8850355Z if(tmp6) 2023-01-11T21:41:26.8850482Z { 2023-01-11T21:41:26.8850697Z auto tmp36 = in_ptr0[(36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8850848Z tmp35 = tmp36; 2023-01-11T21:41:26.8850967Z } 2023-01-11T21:41:26.8851102Z float tmp37 = 0.0; 2023-01-11T21:41:26.8851246Z if(tmp11) 2023-01-11T21:41:26.8851373Z { 2023-01-11T21:41:26.8851591Z auto tmp38 = in_ptr0[1 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8851862Z tmp37 = tmp38; 2023-01-11T21:41:26.8851988Z } 2023-01-11T21:41:26.8852164Z auto tmp39 = tmp37 + tmp35; 2023-01-11T21:41:26.8852307Z float tmp40 = 0.0; 2023-01-11T21:41:26.8852452Z if(tmp17) 2023-01-11T21:41:26.8852576Z { 2023-01-11T21:41:26.8852788Z auto tmp41 = in_ptr0[12 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8852937Z tmp40 = tmp41; 2023-01-11T21:41:26.8853068Z } 2023-01-11T21:41:26.8853233Z auto tmp42 = tmp40 + tmp39; 2023-01-11T21:41:26.8853394Z float tmp43 = 0.0; 2023-01-11T21:41:26.8853600Z if(tmp21) 2023-01-11T21:41:26.8853730Z { 2023-01-11T21:41:26.8853945Z auto tmp44 = in_ptr0[13 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8854104Z tmp43 = tmp44; 2023-01-11T21:41:26.8854223Z } 2023-01-11T21:41:26.8854403Z auto tmp45 = tmp43 + tmp42; 2023-01-11T21:41:26.8854564Z float tmp46 = 0.0; 2023-01-11T21:41:26.8854685Z if(tmp27) 2023-01-11T21:41:26.8854818Z { 2023-01-11T21:41:26.8855021Z auto tmp47 = in_ptr0[24 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8855182Z tmp46 = tmp47; 2023-01-11T21:41:26.8855309Z } 2023-01-11T21:41:26.8855476Z auto tmp48 = tmp46 + tmp45; 2023-01-11T21:41:26.8855637Z float tmp49 = 0.0; 2023-01-11T21:41:26.8855754Z if(tmp31) 2023-01-11T21:41:26.8855886Z { 2023-01-11T21:41:26.8856092Z auto tmp50 = in_ptr0[25 + (36*i1) + (72*i0) + (((7 + (12*i2)) / 8))]; 2023-01-11T21:41:26.8856247Z tmp49 = tmp50; 2023-01-11T21:41:26.8856371Z } 2023-01-11T21:41:26.8856532Z auto tmp51 = tmp49 + tmp48; 2023-01-11T21:41:26.8856709Z out_ptr2[i2 + (8*i1) + (16*i0)] = tmp34; 2023-01-11T21:41:26.8856873Z out_ptr3[i2 + (8*i1) + (16*i0)] = tmp51; 2023-01-11T21:41:26.8856999Z } 2023-01-11T21:41:26.8857127Z } 2023-01-11T21:41:26.8857243Z } 2023-01-11T21:41:26.8857354Z } 2023-01-11T21:41:26.8857472Z } 2023-01-11T21:41:26.8857629Z #pragma omp for 2023-01-11T21:41:26.8857772Z for(long i0=0; i0<9; i0+=1) 2023-01-11T21:41:26.8857888Z { 2023-01-11T21:41:26.8858037Z #pragma GCC ivdep 2023-01-11T21:41:26.8858182Z for(long i1=0; i1<4; i1+=1) 2023-01-11T21:41:26.8858302Z { 2023-01-11T21:41:26.8858454Z #pragma GCC ivdep 2023-01-11T21:41:26.8858614Z for(long i2=0; i2<7; i2+=1) 2023-01-11T21:41:26.8858716Z { 2023-01-11T21:41:26.8858840Z { 2023-01-11T21:41:26.8858964Z { 2023-01-11T21:41:26.8859169Z auto tmp0 = static_cast(((3 + (6*i1)) / 4)); 2023-01-11T21:41:26.8859374Z auto tmp1 = static_cast(((9 + (6*i1)) / 4)); 2023-01-11T21:41:26.8859543Z auto tmp2 = tmp0 < tmp1; 2023-01-11T21:41:26.8859749Z auto tmp3 = static_cast(((6 + (12*i2)) / 7)); 2023-01-11T21:41:26.8859927Z auto tmp4 = static_cast(((18 + (12*i2)) / 7)); 2023-01-11T21:41:26.8860102Z auto tmp5 = tmp3 < tmp4; 2023-01-11T21:41:26.8860394Z auto tmp6 = tmp2 & tmp5; 2023-01-11T21:41:26.8860551Z float tmp7 = 0.0; 2023-01-11T21:41:26.8860687Z if(tmp6) 2023-01-11T21:41:26.8860818Z { 2023-01-11T21:41:26.8861043Z auto tmp8 = in_ptr0[(12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:41:26.8861192Z tmp7 = tmp8; 2023-01-11T21:41:26.8861306Z } 2023-01-11T21:41:26.8861504Z auto tmp9 = static_cast(1 + (((6 + (12*i2)) / 7))); 2023-01-11T21:41:26.8861678Z auto tmp10 = tmp9 < tmp4; 2023-01-11T21:41:26.8861847Z auto tmp11 = tmp2 & tmp10; 2023-01-11T21:41:26.8862064Z float tmp12 = 0.0; 2023-01-11T21:41:26.8862202Z if(tmp11) 2023-01-11T21:41:26.8862331Z { 2023-01-11T21:41:26.8862541Z auto tmp13 = in_ptr0[1 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:41:26.8862697Z tmp12 = tmp13; 2023-01-11T21:41:26.8862823Z } 2023-01-11T21:41:26.8862993Z auto tmp14 = tmp12 + tmp7; 2023-01-11T21:41:26.8863276Z auto tmp15 = static_cast(1 + (((3 + (6*i1)) / 4))); 2023-01-11T21:41:26.8863452Z auto tmp16 = tmp15 < tmp1; 2023-01-11T21:41:26.8863617Z auto tmp17 = tmp16 & tmp5; 2023-01-11T21:41:26.8863760Z float tmp18 = 0.0; 2023-01-11T21:41:26.8863901Z if(tmp17) 2023-01-11T21:41:26.8864034Z { 2023-01-11T21:41:26.8864277Z auto tmp19 = in_ptr0[12 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:41:26.8864436Z tmp18 = tmp19; 2023-01-11T21:41:26.8864561Z } 2023-01-11T21:41:26.8864725Z auto tmp20 = tmp18 + tmp14; 2023-01-11T21:41:26.8864891Z auto tmp21 = tmp16 & tmp10; 2023-01-11T21:41:26.8865032Z float tmp22 = 0.0; 2023-01-11T21:41:26.8865172Z if(tmp21) 2023-01-11T21:41:26.8865298Z { 2023-01-11T21:41:26.8865525Z auto tmp23 = in_ptr0[13 + (12*(((3 + (6*i1)) / 4))) + (72*i0) + (((6 + (12*i2)) / 7))]; 2023-01-11T21:41:26.8865674Z tmp22 = tmp23; 2023-01-11T21:41:26.8865771Z } 2023-01-11T21:41:26.8865898Z auto tmp24 = tmp22 + tmp20; 2023-01-11T21:41:26.8866023Z out_ptr4[i2 + (7*i1) + (28*i0)] = tmp24; 2023-01-11T21:41:26.8866117Z } 2023-01-11T21:41:26.8866208Z } 2023-01-11T21:41:26.8866294Z } 2023-01-11T21:41:26.8866381Z } 2023-01-11T21:41:26.8866465Z } 2023-01-11T21:41:26.8866553Z } 2023-01-11T21:41:26.8866626Z } 2023-01-11T21:41:26.8866778Z ''') 2023-01-11T21:41:26.8866788Z 2023-01-11T21:41:26.8866794Z 2023-01-11T21:41:26.8866935Z async_compile.wait(globals()) 2023-01-11T21:41:26.8867047Z del async_compile 2023-01-11T21:41:26.8867055Z 2023-01-11T21:41:26.8867164Z def call(args): 2023-01-11T21:41:26.8867271Z arg0_1, = args 2023-01-11T21:41:26.8867380Z args.clear() 2023-01-11T21:41:26.8867720Z buf0 = empty_strided((3, 3, 3, 6), (54, 18, 6, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8868059Z buf1 = empty_strided((3, 3, 4, 5), (60, 20, 5, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8868400Z buf2 = empty_strided((3, 3, 2, 8), (48, 16, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8868743Z buf3 = empty_strided((3, 3, 2, 8), (48, 16, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8869176Z buf4 = empty_strided((3, 3, 4, 7), (84, 28, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8869548Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr())) 2023-01-11T21:41:26.8869654Z del arg0_1 2023-01-11T21:41:26.8869804Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.8869814Z 2023-01-11T21:41:26.8869820Z 2023-01-11T21:41:26.8869934Z if __name__ == "__main__": 2023-01-11T21:41:26.8870099Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8870293Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8870723Z arg0_1 = rand_strided((3, 3, 6, 12), (216, 72, 12, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8870903Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8871344Z [2023-01-11 21:39:12,370] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 479 2023-01-11T21:41:26.8871359Z 2023-01-11T21:41:26.8871464Z ok (1.966s) 2023-01-11T21:41:26.8872235Z test_upsample_nearest2d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8872439Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8872878Z [2023-01-11 21:39:12,799] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 480 2023-01-11T21:41:26.8873309Z [2023-01-11 21:39:14,369] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 480 2023-01-11T21:41:26.8873339Z 2023-01-11T21:41:26.8873473Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8873582Z import torch 2023-01-11T21:41:26.8873691Z import random 2023-01-11T21:41:26.8873870Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8874063Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8874070Z 2023-01-11T21:41:26.8874190Z aten = torch.ops.aten 2023-01-11T21:41:26.8874402Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8874529Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8874537Z 2023-01-11T21:41:26.8874558Z 2023-01-11T21:41:26.8874775Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8875104Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8875294Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8875453Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8875607Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8875761Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8875909Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.8876039Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.8876132Z { 2023-01-11T21:41:26.8876288Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8876383Z { 2023-01-11T21:41:26.8876500Z #pragma omp for 2023-01-11T21:41:26.8876627Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8876723Z { 2023-01-11T21:41:26.8876833Z #pragma GCC ivdep 2023-01-11T21:41:26.8876969Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:41:26.8877067Z { 2023-01-11T21:41:26.8877195Z #pragma GCC ivdep 2023-01-11T21:41:26.8877332Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:41:26.8877438Z { 2023-01-11T21:41:26.8877527Z { 2023-01-11T21:41:26.8877634Z { 2023-01-11T21:41:26.8877909Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8878080Z auto tmp1 = static_cast(0.5); 2023-01-11T21:41:26.8878227Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8878393Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8878560Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8878707Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:41:26.8878861Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:41:26.8879046Z auto tmp7 = in_ptr0[tmp6 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:41:26.8879210Z out_ptr0[i2 + (76*i1) + (5624*i0)] = tmp7; 2023-01-11T21:41:26.8879442Z out_ptr1[i2 + (76*i1) + (5624*i0)] = tmp7; 2023-01-11T21:41:26.8879567Z } 2023-01-11T21:41:26.8879678Z } 2023-01-11T21:41:26.8879776Z } 2023-01-11T21:41:26.8879859Z } 2023-01-11T21:41:26.8879957Z } 2023-01-11T21:41:26.8880079Z #pragma omp for 2023-01-11T21:41:26.8880204Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8880299Z { 2023-01-11T21:41:26.8880422Z #pragma GCC ivdep 2023-01-11T21:41:26.8880552Z for(long i1=0; i1<70; i1+=1) 2023-01-11T21:41:26.8880635Z { 2023-01-11T21:41:26.8880761Z #pragma GCC ivdep 2023-01-11T21:41:26.8880896Z for(long i2=0; i2<75; i2+=1) 2023-01-11T21:41:26.8880996Z { 2023-01-11T21:41:26.8881098Z { 2023-01-11T21:41:26.8881204Z { 2023-01-11T21:41:26.8881356Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8881545Z auto tmp1 = static_cast(0.5285714285714286); 2023-01-11T21:41:26.8881694Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8881869Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8882033Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8882212Z auto tmp5 = static_cast(0.5066666666666667); 2023-01-11T21:41:26.8882355Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8882519Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.8882686Z auto tmp8 = in_ptr0[tmp7 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:41:26.8882847Z out_ptr2[i2 + (75*i1) + (5250*i0)] = tmp8; 2023-01-11T21:41:26.8882952Z } 2023-01-11T21:41:26.8883054Z } 2023-01-11T21:41:26.8883154Z } 2023-01-11T21:41:26.8883255Z } 2023-01-11T21:41:26.8883352Z } 2023-01-11T21:41:26.8883459Z #pragma omp for 2023-01-11T21:41:26.8883588Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8883682Z { 2023-01-11T21:41:26.8883812Z #pragma GCC ivdep 2023-01-11T21:41:26.8883945Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:41:26.8884042Z { 2023-01-11T21:41:26.8884169Z #pragma GCC ivdep 2023-01-11T21:41:26.8884291Z for(long i2=0; i2<74; i2+=1) 2023-01-11T21:41:26.8884390Z { 2023-01-11T21:41:26.8884491Z { 2023-01-11T21:41:26.8884597Z { 2023-01-11T21:41:26.8884766Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8884944Z auto tmp1 = static_cast(0.8222222222222222); 2023-01-11T21:41:26.8885094Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8885248Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8885414Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8885694Z auto tmp5 = static_cast(0.5135135135135135); 2023-01-11T21:41:26.8885839Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8886004Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.8886181Z auto tmp8 = in_ptr0[tmp7 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:41:26.8886339Z out_ptr3[i2 + (74*i1) + (3330*i0)] = tmp8; 2023-01-11T21:41:26.8886431Z } 2023-01-11T21:41:26.8886533Z } 2023-01-11T21:41:26.8886631Z } 2023-01-11T21:41:26.8886728Z } 2023-01-11T21:41:26.8886822Z } 2023-01-11T21:41:26.8886941Z #pragma omp for 2023-01-11T21:41:26.8887068Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8887148Z { 2023-01-11T21:41:26.8887339Z #pragma GCC ivdep 2023-01-11T21:41:26.8887495Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:41:26.8887601Z { 2023-01-11T21:41:26.8887726Z #pragma GCC ivdep 2023-01-11T21:41:26.8887861Z for(long i2=0; i2<39; i2+=1) 2023-01-11T21:41:26.8887962Z { 2023-01-11T21:41:26.8888047Z { 2023-01-11T21:41:26.8888148Z { 2023-01-11T21:41:26.8888320Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8888501Z auto tmp1 = static_cast(1.0277777777777777); 2023-01-11T21:41:26.8888649Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8888817Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8888984Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8889284Z auto tmp5 = static_cast(0.9743589743589743); 2023-01-11T21:41:26.8889444Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8889609Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.8889794Z auto tmp8 = in_ptr0[tmp7 + (38*tmp3) + (1406*i0)]; 2023-01-11T21:41:26.8889953Z out_ptr4[i2 + (39*i1) + (1404*i0)] = tmp8; 2023-01-11T21:41:26.8890059Z } 2023-01-11T21:41:26.8890162Z } 2023-01-11T21:41:26.8890247Z } 2023-01-11T21:41:26.8890348Z } 2023-01-11T21:41:26.8890445Z } 2023-01-11T21:41:26.8890538Z } 2023-01-11T21:41:26.8890625Z } 2023-01-11T21:41:26.8890780Z ''') 2023-01-11T21:41:26.8890791Z 2023-01-11T21:41:26.8890797Z 2023-01-11T21:41:26.8890943Z async_compile.wait(globals()) 2023-01-11T21:41:26.8891041Z del async_compile 2023-01-11T21:41:26.8891064Z 2023-01-11T21:41:26.8891161Z def call(args): 2023-01-11T21:41:26.8891265Z arg0_1, = args 2023-01-11T21:41:26.8891379Z args.clear() 2023-01-11T21:41:26.8891760Z buf0 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8892123Z buf4 = empty_strided((2, 4, 74, 76), (22496, 5624, 76, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8892481Z buf1 = empty_strided((2, 4, 70, 75), (21000, 5250, 75, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8892830Z buf2 = empty_strided((2, 4, 45, 74), (13320, 3330, 74, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8893166Z buf3 = empty_strided((2, 4, 36, 39), (5616, 1404, 39, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8893538Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.8893643Z del arg0_1 2023-01-11T21:41:26.8893791Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.8893800Z 2023-01-11T21:41:26.8893811Z 2023-01-11T21:41:26.8893931Z if __name__ == "__main__": 2023-01-11T21:41:26.8894110Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8894434Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8894803Z arg0_1 = rand_strided((2, 4, 37, 38), (5624, 1406, 38, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8894972Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8894981Z 2023-01-11T21:41:26.8895069Z ok (2.002s) 2023-01-11T21:41:26.8895845Z test_upsample_nearest3d_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8896166Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8896626Z [2023-01-11 21:39:14,954] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 481 2023-01-11T21:41:26.8897068Z [2023-01-11 21:39:16,565] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 481 2023-01-11T21:41:26.8897077Z 2023-01-11T21:41:26.8897221Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8897328Z import torch 2023-01-11T21:41:26.8897439Z import random 2023-01-11T21:41:26.8897619Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8897792Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8897801Z 2023-01-11T21:41:26.8897925Z aten = torch.ops.aten 2023-01-11T21:41:26.8898136Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8898280Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8898288Z 2023-01-11T21:41:26.8898294Z 2023-01-11T21:41:26.8898525Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8898854Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8899046Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8899199Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8899335Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.8899480Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.8899627Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.8899771Z float* __restrict__ out_ptr4) 2023-01-11T21:41:26.8899866Z { 2023-01-11T21:41:26.8900020Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8900116Z { 2023-01-11T21:41:26.8900219Z #pragma omp for 2023-01-11T21:41:26.8900344Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8900440Z { 2023-01-11T21:41:26.8900562Z #pragma GCC ivdep 2023-01-11T21:41:26.8900700Z for(long i1=0; i1<74; i1+=1) 2023-01-11T21:41:26.8900800Z { 2023-01-11T21:41:26.8900927Z #pragma GCC ivdep 2023-01-11T21:41:26.8901056Z for(long i2=0; i2<76; i2+=1) 2023-01-11T21:41:26.8901155Z { 2023-01-11T21:41:26.8901283Z #pragma GCC ivdep 2023-01-11T21:41:26.8901421Z for(long i3=0; i3<78; i3+=1) 2023-01-11T21:41:26.8901523Z { 2023-01-11T21:41:26.8901630Z { 2023-01-11T21:41:26.8901740Z { 2023-01-11T21:41:26.8901898Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8902075Z auto tmp1 = static_cast(0.5); 2023-01-11T21:41:26.8902231Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8902401Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8902570Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8902718Z auto tmp5 = tmp4 * tmp1; 2023-01-11T21:41:26.8902890Z auto tmp6 = static_cast(tmp5); 2023-01-11T21:41:26.8903211Z auto tmp7 = static_cast(i3); 2023-01-11T21:41:26.8903363Z auto tmp8 = tmp7 * tmp1; 2023-01-11T21:41:26.8903523Z auto tmp9 = static_cast(tmp8); 2023-01-11T21:41:26.8903724Z auto tmp10 = in_ptr0[tmp9 + (39*tmp6) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:41:26.8903895Z out_ptr0[i3 + (78*i2) + (5928*i1) + (438672*i0)] = tmp10; 2023-01-11T21:41:26.8904074Z out_ptr1[i3 + (78*i2) + (5928*i1) + (438672*i0)] = tmp10; 2023-01-11T21:41:26.8904183Z } 2023-01-11T21:41:26.8904291Z } 2023-01-11T21:41:26.8904376Z } 2023-01-11T21:41:26.8904547Z } 2023-01-11T21:41:26.8904663Z } 2023-01-11T21:41:26.8904762Z } 2023-01-11T21:41:26.8904892Z #pragma omp for 2023-01-11T21:41:26.8905020Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8905116Z { 2023-01-11T21:41:26.8905224Z #pragma GCC ivdep 2023-01-11T21:41:26.8905353Z for(long i1=0; i1<70; i1+=1) 2023-01-11T21:41:26.8905450Z { 2023-01-11T21:41:26.8905576Z #pragma GCC ivdep 2023-01-11T21:41:26.8905710Z for(long i2=0; i2<75; i2+=1) 2023-01-11T21:41:26.8905809Z { 2023-01-11T21:41:26.8905920Z #pragma GCC ivdep 2023-01-11T21:41:26.8906061Z for(long i3=0; i3<80; i3+=1) 2023-01-11T21:41:26.8906163Z { 2023-01-11T21:41:26.8906267Z { 2023-01-11T21:41:26.8906373Z { 2023-01-11T21:41:26.8906549Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8906734Z auto tmp1 = static_cast(0.5285714285714286); 2023-01-11T21:41:26.8906872Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8907045Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8907215Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8907399Z auto tmp5 = static_cast(0.5066666666666667); 2023-01-11T21:41:26.8907549Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8907718Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.8907884Z auto tmp8 = static_cast(i3); 2023-01-11T21:41:26.8908060Z auto tmp9 = static_cast(0.4875); 2023-01-11T21:41:26.8908196Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.8908377Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8908581Z auto tmp12 = in_ptr0[tmp11 + (39*tmp7) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:41:26.8908757Z out_ptr2[i3 + (80*i2) + (6000*i1) + (420000*i0)] = tmp12; 2023-01-11T21:41:26.8908864Z } 2023-01-11T21:41:26.8908967Z } 2023-01-11T21:41:26.8909072Z } 2023-01-11T21:41:26.8909171Z } 2023-01-11T21:41:26.8909255Z } 2023-01-11T21:41:26.8909351Z } 2023-01-11T21:41:26.8909471Z #pragma omp for 2023-01-11T21:41:26.8909597Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8909697Z { 2023-01-11T21:41:26.8909818Z #pragma GCC ivdep 2023-01-11T21:41:26.8909934Z for(long i1=0; i1<45; i1+=1) 2023-01-11T21:41:26.8910032Z { 2023-01-11T21:41:26.8910157Z #pragma GCC ivdep 2023-01-11T21:41:26.8910299Z for(long i2=0; i2<74; i2+=1) 2023-01-11T21:41:26.8910399Z { 2023-01-11T21:41:26.8910528Z #pragma GCC ivdep 2023-01-11T21:41:26.8910767Z for(long i3=0; i3<103; i3+=1) 2023-01-11T21:41:26.8910856Z { 2023-01-11T21:41:26.8910963Z { 2023-01-11T21:41:26.8911069Z { 2023-01-11T21:41:26.8911237Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8911422Z auto tmp1 = static_cast(0.8222222222222222); 2023-01-11T21:41:26.8911574Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8911741Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8911894Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8912073Z auto tmp5 = static_cast(0.5135135135135135); 2023-01-11T21:41:26.8912285Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8912472Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.8912642Z auto tmp8 = static_cast(i3); 2023-01-11T21:41:26.8912821Z auto tmp9 = static_cast(0.3786407766990291); 2023-01-11T21:41:26.8912973Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.8913149Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8913333Z auto tmp12 = in_ptr0[tmp11 + (39*tmp7) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:41:26.8913512Z out_ptr3[i3 + (103*i2) + (7622*i1) + (342990*i0)] = tmp12; 2023-01-11T21:41:26.8913622Z } 2023-01-11T21:41:26.8913725Z } 2023-01-11T21:41:26.8913828Z } 2023-01-11T21:41:26.8913926Z } 2023-01-11T21:41:26.8914033Z } 2023-01-11T21:41:26.8914112Z } 2023-01-11T21:41:26.8914234Z #pragma omp for 2023-01-11T21:41:26.8914366Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8914462Z { 2023-01-11T21:41:26.8914586Z #pragma GCC ivdep 2023-01-11T21:41:26.8914713Z for(long i1=0; i1<36; i1+=1) 2023-01-11T21:41:26.8914809Z { 2023-01-11T21:41:26.8914920Z #pragma GCC ivdep 2023-01-11T21:41:26.8915057Z for(long i2=0; i2<39; i2+=1) 2023-01-11T21:41:26.8915156Z { 2023-01-11T21:41:26.8915282Z #pragma GCC ivdep 2023-01-11T21:41:26.8915424Z for(long i3=0; i3<40; i3+=1) 2023-01-11T21:41:26.8915527Z { 2023-01-11T21:41:26.8915637Z { 2023-01-11T21:41:26.8915731Z { 2023-01-11T21:41:26.8915902Z auto tmp0 = static_cast(i1); 2023-01-11T21:41:26.8916092Z auto tmp1 = static_cast(1.0277777777777777); 2023-01-11T21:41:26.8916248Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8916426Z auto tmp3 = static_cast(tmp2); 2023-01-11T21:41:26.8916594Z auto tmp4 = static_cast(i2); 2023-01-11T21:41:26.8916772Z auto tmp5 = static_cast(0.9743589743589743); 2023-01-11T21:41:26.8916907Z auto tmp6 = tmp4 * tmp5; 2023-01-11T21:41:26.8917079Z auto tmp7 = static_cast(tmp6); 2023-01-11T21:41:26.8917243Z auto tmp8 = static_cast(i3); 2023-01-11T21:41:26.8917419Z auto tmp9 = static_cast(0.975); 2023-01-11T21:41:26.8917569Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.8917746Z auto tmp11 = static_cast(tmp10); 2023-01-11T21:41:26.8917943Z auto tmp12 = in_ptr0[tmp11 + (39*tmp7) + (1482*tmp3) + (54834*i0)]; 2023-01-11T21:41:26.8918239Z out_ptr4[i3 + (40*i2) + (1560*i1) + (56160*i0)] = tmp12; 2023-01-11T21:41:26.8918332Z } 2023-01-11T21:41:26.8918433Z } 2023-01-11T21:41:26.8918535Z } 2023-01-11T21:41:26.8918632Z } 2023-01-11T21:41:26.8918731Z } 2023-01-11T21:41:26.8918827Z } 2023-01-11T21:41:26.8918919Z } 2023-01-11T21:41:26.8918999Z } 2023-01-11T21:41:26.8919156Z ''') 2023-01-11T21:41:26.8919166Z 2023-01-11T21:41:26.8919172Z 2023-01-11T21:41:26.8919324Z async_compile.wait(globals()) 2023-01-11T21:41:26.8919438Z del async_compile 2023-01-11T21:41:26.8919446Z 2023-01-11T21:41:26.8919556Z def call(args): 2023-01-11T21:41:26.8919665Z arg0_1, = args 2023-01-11T21:41:26.8919772Z args.clear() 2023-01-11T21:41:26.8920223Z buf0 = empty_strided((2, 4, 74, 76, 78), (1754688, 438672, 5928, 78, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8920639Z buf4 = empty_strided((2, 4, 74, 76, 78), (1754688, 438672, 5928, 78, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8921024Z buf1 = empty_strided((2, 4, 70, 75, 80), (1680000, 420000, 6000, 80, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8921412Z buf2 = empty_strided((2, 4, 45, 74, 103), (1371960, 342990, 7622, 103, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8921788Z buf3 = empty_strided((2, 4, 36, 39, 40), (224640, 56160, 1560, 40, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8922160Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr())) 2023-01-11T21:41:26.8922268Z del arg0_1 2023-01-11T21:41:26.8922419Z return (buf0, buf1, buf2, buf3, buf4, ) 2023-01-11T21:41:26.8922433Z 2023-01-11T21:41:26.8922439Z 2023-01-11T21:41:26.8922556Z if __name__ == "__main__": 2023-01-11T21:41:26.8922721Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8922925Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8923316Z arg0_1 = rand_strided((2, 4, 37, 38, 39), (219336, 54834, 1482, 39, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8923487Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8923496Z 2023-01-11T21:41:26.8923602Z ok (2.374s) 2023-01-11T21:41:26.8924353Z test_var_mean_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8924557Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8925001Z [2023-01-11 21:39:16,769] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 482 2023-01-11T21:41:26.8925015Z 2023-01-11T21:41:26.8925162Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8925273Z import torch 2023-01-11T21:41:26.8925369Z import random 2023-01-11T21:41:26.8925548Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8925737Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8925745Z 2023-01-11T21:41:26.8925866Z aten = torch.ops.aten 2023-01-11T21:41:26.8926076Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8926219Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8926227Z 2023-01-11T21:41:26.8926233Z 2023-01-11T21:41:26.8926466Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8926790Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8926964Z extern "C" void kernel(float* __restrict__ in_out_ptr0, 2023-01-11T21:41:26.8927121Z float* __restrict__ in_out_ptr1, 2023-01-11T21:41:26.8927379Z float* __restrict__ in_out_ptr2, 2023-01-11T21:41:26.8927537Z float* __restrict__ in_out_ptr3, 2023-01-11T21:41:26.8927699Z const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8927850Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8928001Z float* __restrict__ out_ptr3) 2023-01-11T21:41:26.8928082Z { 2023-01-11T21:41:26.8928218Z auto out_ptr1 = in_out_ptr0; 2023-01-11T21:41:26.8928352Z auto out_ptr2 = in_out_ptr1; 2023-01-11T21:41:26.8928483Z auto out_ptr4 = in_out_ptr2; 2023-01-11T21:41:26.8928611Z auto out_ptr5 = in_out_ptr3; 2023-01-11T21:41:26.8928766Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8928864Z { 2023-01-11T21:41:26.8928967Z #pragma omp for 2023-01-11T21:41:26.8929321Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8929429Z { 2023-01-11T21:41:26.8929526Z { 2023-01-11T21:41:26.8929843Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8929967Z float tmp1 = 0; 2023-01-11T21:41:26.8930160Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8930281Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8930381Z { 2023-01-11T21:41:26.8930605Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8930731Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8930837Z } 2023-01-11T21:41:26.8931151Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8931343Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8931480Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8931568Z { 2023-01-11T21:41:26.8931717Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8931836Z tmp1 += tmp0; 2023-01-11T21:41:26.8931937Z } 2023-01-11T21:41:26.8932065Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.8932162Z } 2023-01-11T21:41:26.8932258Z } 2023-01-11T21:41:26.8932364Z #pragma omp for 2023-01-11T21:41:26.8932491Z for(long i0=0; i0<8; i0+=1) 2023-01-11T21:41:26.8932585Z { 2023-01-11T21:41:26.8932685Z { 2023-01-11T21:41:26.8932988Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8933111Z float tmp6 = 0; 2023-01-11T21:41:26.8933302Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8933417Z float tmp7 = 0; 2023-01-11T21:41:26.8933606Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.8933747Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.8933847Z { 2023-01-11T21:41:26.8934071Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i1)); 2023-01-11T21:41:26.8934273Z auto tmp1 = at::vec::Vectorized(out_ptr0[i0]); 2023-01-11T21:41:26.8934490Z auto tmp2 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.8934633Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8934871Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8935019Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8935147Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8935271Z tmp7_vec += tmp0; 2023-01-11T21:41:26.8935371Z } 2023-01-11T21:41:26.8935687Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8936069Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.8936285Z #pragma omp simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.8936407Z for(long i1=8; i1<8; i1+=1) 2023-01-11T21:41:26.8936507Z { 2023-01-11T21:41:26.8936657Z auto tmp0 = in_ptr0[i1 + (8*i0)]; 2023-01-11T21:41:26.8936800Z auto tmp1 = out_ptr0[i0]; 2023-01-11T21:41:26.8936960Z auto tmp2 = static_cast(8); 2023-01-11T21:41:26.8937099Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8937339Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8937529Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8937659Z tmp6 += tmp5; 2023-01-11T21:41:26.8937779Z tmp7 += tmp0; 2023-01-11T21:41:26.8937884Z } 2023-01-11T21:41:26.8938010Z out_ptr1[i0] = tmp6; 2023-01-11T21:41:26.8938133Z out_ptr2[i0] = tmp7; 2023-01-11T21:41:26.8938232Z } 2023-01-11T21:41:26.8938311Z } 2023-01-11T21:41:26.8938431Z #pragma omp for 2023-01-11T21:41:26.8938558Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.8938658Z { 2023-01-11T21:41:26.8938874Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr1 + 8*i0); 2023-01-11T21:41:26.8939082Z auto tmp1 = at::vec::Vectorized(static_cast(7)); 2023-01-11T21:41:26.8939215Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8939344Z tmp2.store(in_out_ptr0 + 8*i0); 2023-01-11T21:41:26.8939443Z } 2023-01-11T21:41:26.8939590Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8939722Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.8939820Z { 2023-01-11T21:41:26.8939953Z auto tmp0 = out_ptr1[i0]; 2023-01-11T21:41:26.8940113Z auto tmp1 = static_cast(7); 2023-01-11T21:41:26.8940225Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8940352Z in_out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8940451Z } 2023-01-11T21:41:26.8940570Z #pragma omp for 2023-01-11T21:41:26.8940695Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.8940792Z { 2023-01-11T21:41:26.8941001Z auto tmp0 = at::vec::Vectorized::loadu(out_ptr2 + 8*i0); 2023-01-11T21:41:26.8941195Z auto tmp1 = at::vec::Vectorized(static_cast(8)); 2023-01-11T21:41:26.8941329Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8941474Z tmp2.store(in_out_ptr1 + 8*i0); 2023-01-11T21:41:26.8941570Z } 2023-01-11T21:41:26.8941720Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.8941852Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.8941949Z { 2023-01-11T21:41:26.8942066Z auto tmp0 = out_ptr2[i0]; 2023-01-11T21:41:26.8942228Z auto tmp1 = static_cast(8); 2023-01-11T21:41:26.8942358Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8942483Z in_out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.8942579Z } 2023-01-11T21:41:26.8942698Z #pragma omp for 2023-01-11T21:41:26.8942824Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8942906Z { 2023-01-11T21:41:26.8943006Z { 2023-01-11T21:41:26.8943401Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8943530Z float tmp1 = 0; 2023-01-11T21:41:26.8943726Z auto tmp1_vec = at::vec::Vectorized(tmp1); 2023-01-11T21:41:26.8943860Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.8943964Z { 2023-01-11T21:41:26.8944105Z for(long i2=0; i2<1; i2+=1) 2023-01-11T21:41:26.8944197Z { 2023-01-11T21:41:26.8944526Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i2) + (32*i1)); 2023-01-11T21:41:26.8944659Z tmp1_vec += tmp0; 2023-01-11T21:41:26.8944762Z } 2023-01-11T21:41:26.8945076Z tmp1 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp1_vec); 2023-01-11T21:41:26.8945266Z #pragma omp simd simdlen(4) reduction(+:tmp1) 2023-01-11T21:41:26.8945406Z for(long i2=8; i2<8; i2+=1) 2023-01-11T21:41:26.8945508Z { 2023-01-11T21:41:26.8945658Z auto tmp0 = in_ptr0[i2 + (8*i0) + (32*i1)]; 2023-01-11T21:41:26.8945781Z tmp1 += tmp0; 2023-01-11T21:41:26.8945884Z } 2023-01-11T21:41:26.8946051Z } 2023-01-11T21:41:26.8946194Z out_ptr3[i0] = tmp1; 2023-01-11T21:41:26.8946298Z } 2023-01-11T21:41:26.8946381Z } 2023-01-11T21:41:26.8946499Z #pragma omp for 2023-01-11T21:41:26.8946626Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8946725Z { 2023-01-11T21:41:26.8946824Z { 2023-01-11T21:41:26.8947120Z #pragma omp declare reduction(+:at::vec::Vectorized:omp_out += omp_in) initializer(omp_priv={{0}}) 2023-01-11T21:41:26.8947244Z float tmp6 = 0; 2023-01-11T21:41:26.8947431Z auto tmp6_vec = at::vec::Vectorized(tmp6); 2023-01-11T21:41:26.8947539Z float tmp7 = 0; 2023-01-11T21:41:26.8947726Z auto tmp7_vec = at::vec::Vectorized(tmp7); 2023-01-11T21:41:26.8947862Z for(long i1=0; i1<2; i1+=1) 2023-01-11T21:41:26.8947964Z { 2023-01-11T21:41:26.8948107Z for(long i2=0; i2<1; i2+=1) 2023-01-11T21:41:26.8948212Z { 2023-01-11T21:41:26.8948445Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i0) + (8*i2) + (32*i1)); 2023-01-11T21:41:26.8948641Z auto tmp1 = at::vec::Vectorized(out_ptr3[i0]); 2023-01-11T21:41:26.8948859Z auto tmp2 = at::vec::Vectorized(static_cast(16)); 2023-01-11T21:41:26.8949009Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8949273Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8949421Z auto tmp5 = tmp4.pow(2); 2023-01-11T21:41:26.8949551Z tmp6_vec += tmp5; 2023-01-11T21:41:26.8949678Z tmp7_vec += tmp0; 2023-01-11T21:41:26.8949782Z } 2023-01-11T21:41:26.8950089Z tmp6 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp6_vec); 2023-01-11T21:41:26.8950394Z tmp7 = at::vec::vec_reduce_all([](at::vec::Vectorized& x, at::vec::Vectorized&y) {return x + y;}, tmp7_vec); 2023-01-11T21:41:26.8950623Z #pragma omp simd simdlen(4) reduction(+:tmp6) reduction(+:tmp7) 2023-01-11T21:41:26.8950761Z for(long i2=8; i2<8; i2+=1) 2023-01-11T21:41:26.8950862Z { 2023-01-11T21:41:26.8951029Z auto tmp0 = in_ptr0[i2 + (8*i0) + (32*i1)]; 2023-01-11T21:41:26.8951174Z auto tmp1 = out_ptr3[i0]; 2023-01-11T21:41:26.8951339Z auto tmp2 = static_cast(16); 2023-01-11T21:41:26.8951464Z auto tmp3 = tmp1 / tmp2; 2023-01-11T21:41:26.8951711Z auto tmp4 = tmp0 - tmp3; 2023-01-11T21:41:26.8951854Z auto tmp5 = tmp4 * tmp4; 2023-01-11T21:41:26.8951977Z tmp6 += tmp5; 2023-01-11T21:41:26.8952100Z tmp7 += tmp0; 2023-01-11T21:41:26.8952207Z } 2023-01-11T21:41:26.8952304Z } 2023-01-11T21:41:26.8952505Z out_ptr4[i0] = tmp6; 2023-01-11T21:41:26.8952631Z out_ptr5[i0] = tmp7; 2023-01-11T21:41:26.8952730Z } 2023-01-11T21:41:26.8952829Z } 2023-01-11T21:41:26.8952951Z #pragma omp for 2023-01-11T21:41:26.8953077Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8953174Z { 2023-01-11T21:41:26.8953259Z { 2023-01-11T21:41:26.8953358Z { 2023-01-11T21:41:26.8953501Z auto tmp0 = out_ptr4[i0]; 2023-01-11T21:41:26.8953660Z auto tmp1 = static_cast(15); 2023-01-11T21:41:26.8953803Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8953942Z in_out_ptr2[i0] = tmp2; 2023-01-11T21:41:26.8954042Z } 2023-01-11T21:41:26.8954126Z } 2023-01-11T21:41:26.8954292Z } 2023-01-11T21:41:26.8954430Z #pragma omp for 2023-01-11T21:41:26.8954557Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.8954660Z { 2023-01-11T21:41:26.8954763Z { 2023-01-11T21:41:26.8954848Z { 2023-01-11T21:41:26.8954990Z auto tmp0 = out_ptr5[i0]; 2023-01-11T21:41:26.8955153Z auto tmp1 = static_cast(16); 2023-01-11T21:41:26.8955294Z auto tmp2 = tmp0 / tmp1; 2023-01-11T21:41:26.8955433Z in_out_ptr3[i0] = tmp2; 2023-01-11T21:41:26.8955533Z } 2023-01-11T21:41:26.8955633Z } 2023-01-11T21:41:26.8955716Z } 2023-01-11T21:41:26.8955809Z } 2023-01-11T21:41:26.8955898Z } 2023-01-11T21:41:26.8956045Z ''') 2023-01-11T21:41:26.8956057Z 2023-01-11T21:41:26.8956062Z 2023-01-11T21:41:26.8956206Z async_compile.wait(globals()) 2023-01-11T21:41:26.8956320Z del async_compile 2023-01-11T21:41:26.8956329Z 2023-01-11T21:41:26.8956441Z def call(args): 2023-01-11T21:41:26.8956548Z arg0_1, = args 2023-01-11T21:41:26.8956647Z args.clear() 2023-01-11T21:41:26.8957009Z buf0 = empty_strided((1, 2, 4, 1), (8, 4, 1, 8), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8957342Z buf1 = empty_strided((1, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8957664Z buf2 = empty_strided((1, 2, 4), (8, 4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8957796Z buf3 = buf1; del buf1 # reuse 2023-01-11T21:41:26.8957925Z buf4 = buf2; del buf2 # reuse 2023-01-11T21:41:26.8958257Z buf5 = empty_strided((1, 1, 4, 1), (4, 4, 1, 4), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8958556Z buf6 = empty_strided((1, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8958869Z buf7 = empty_strided((1, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8959001Z buf8 = buf6; del buf6 # reuse 2023-01-11T21:41:26.8959135Z buf9 = buf7; del buf7 # reuse 2023-01-11T21:41:26.8959544Z kernel_cpp_0(c_void_p(buf3.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf8.data_ptr()), c_void_p(buf9.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:41:26.8959654Z del arg0_1 2023-01-11T21:41:26.8959794Z return (buf3, buf4, buf8, buf9, ) 2023-01-11T21:41:26.8959803Z 2023-01-11T21:41:26.8959809Z 2023-01-11T21:41:26.8959924Z if __name__ == "__main__": 2023-01-11T21:41:26.8960088Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8960287Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8960639Z arg0_1 = rand_strided((1, 2, 4, 8), (64, 32, 8, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8960812Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.8961261Z [2023-01-11 21:39:18,384] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 482 2023-01-11T21:41:26.8961270Z 2023-01-11T21:41:26.8961378Z ok (1.638s) 2023-01-11T21:41:26.8962131Z test_vdd_clamp_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8962426Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8962864Z [2023-01-11 21:39:18,422] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 483 2023-01-11T21:41:26.8963303Z [2023-01-11 21:39:19,914] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 483 2023-01-11T21:41:26.8963314Z 2023-01-11T21:41:26.8963446Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8963554Z import torch 2023-01-11T21:41:26.8963732Z import random 2023-01-11T21:41:26.8963924Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8964109Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8964123Z 2023-01-11T21:41:26.8964244Z aten = torch.ops.aten 2023-01-11T21:41:26.8964455Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8964585Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8964610Z 2023-01-11T21:41:26.8964616Z 2023-01-11T21:41:26.8964833Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8965155Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8965343Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8965498Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.8965647Z bool* __restrict__ out_ptr1) 2023-01-11T21:41:26.8965744Z { 2023-01-11T21:41:26.8965899Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8965985Z { 2023-01-11T21:41:26.8966104Z #pragma omp for 2023-01-11T21:41:26.8966231Z for(long i0=0; i0<16; i0+=1) 2023-01-11T21:41:26.8966334Z { 2023-01-11T21:41:26.8966431Z { 2023-01-11T21:41:26.8966532Z { 2023-01-11T21:41:26.8966678Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.8966826Z auto tmp1 = static_cast(3.0); 2023-01-11T21:41:26.8967034Z auto tmp2 = (tmp1 != tmp1) ? tmp1 : std::max(tmp0, tmp1); 2023-01-11T21:41:26.8967194Z auto tmp3 = static_cast(3); 2023-01-11T21:41:26.8967337Z auto tmp4 = tmp0 >= tmp3; 2023-01-11T21:41:26.8967468Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.8967599Z out_ptr1[i0] = tmp4; 2023-01-11T21:41:26.8967703Z } 2023-01-11T21:41:26.8967788Z } 2023-01-11T21:41:26.8967883Z } 2023-01-11T21:41:26.8967978Z } 2023-01-11T21:41:26.8968071Z } 2023-01-11T21:41:26.8968223Z ''') 2023-01-11T21:41:26.8968233Z 2023-01-11T21:41:26.8968239Z 2023-01-11T21:41:26.8968383Z async_compile.wait(globals()) 2023-01-11T21:41:26.8968504Z del async_compile 2023-01-11T21:41:26.8968512Z 2023-01-11T21:41:26.8968606Z def call(args): 2023-01-11T21:41:26.8968723Z primals_1, = args 2023-01-11T21:41:26.8968832Z args.clear() 2023-01-11T21:41:26.8969289Z buf0 = empty_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8969600Z buf1 = empty_strided((16, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.8969864Z kernel_cpp_0(c_void_p(primals_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf1.data_ptr())) 2023-01-11T21:41:26.8969976Z del primals_1 2023-01-11T21:41:26.8970080Z return (buf0, buf1, ) 2023-01-11T21:41:26.8970106Z 2023-01-11T21:41:26.8970112Z 2023-01-11T21:41:26.8970211Z if __name__ == "__main__": 2023-01-11T21:41:26.8970390Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8970600Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8970938Z primals_1 = rand_strided((16, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8971236Z print_performance(lambda: call([primals_1])) 2023-01-11T21:41:26.8971245Z 2023-01-11T21:41:26.8971346Z ok (1.529s) 2023-01-11T21:41:26.8972107Z test_vertical_fusion1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8972303Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8972742Z [2023-01-11 21:39:19,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 484 2023-01-11T21:41:26.8973251Z [2023-01-11 21:39:21,464] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 484 2023-01-11T21:41:26.8973287Z 2023-01-11T21:41:26.8973424Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8973532Z import torch 2023-01-11T21:41:26.8973641Z import random 2023-01-11T21:41:26.8973821Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8974013Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8974022Z 2023-01-11T21:41:26.8974143Z aten = torch.ops.aten 2023-01-11T21:41:26.8974349Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8974478Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8974486Z 2023-01-11T21:41:26.8974492Z 2023-01-11T21:41:26.8974723Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8975045Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8975240Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8975406Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8975563Z const float* __restrict__ in_ptr2, 2023-01-11T21:41:26.8975721Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8975815Z { 2023-01-11T21:41:26.8975951Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8976047Z { 2023-01-11T21:41:26.8976168Z #pragma omp for 2023-01-11T21:41:26.8976297Z for(long i0=0; i0<41616; i0+=1) 2023-01-11T21:41:26.8976396Z { 2023-01-11T21:41:26.8976521Z for(long i1=0; i1<3; i1+=1) 2023-01-11T21:41:26.8976608Z { 2023-01-11T21:41:26.8976848Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (26*i0)); 2023-01-11T21:41:26.8977069Z auto tmp8 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (26*i0)); 2023-01-11T21:41:26.8977289Z auto tmp15 = at::vec::Vectorized::loadu(in_ptr2 + 8*i1); 2023-01-11T21:41:26.8977699Z auto tmp1 = at::vec::Vectorized(static_cast(-1.061519070296458e-11)); 2023-01-11T21:41:26.8977843Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8978219Z auto tmp3 = at::vec::Vectorized(static_cast(-1.988366587925593e-08)); 2023-01-11T21:41:26.8978355Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8978491Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:41:26.8978854Z auto tmp6 = at::vec::Vectorized(static_cast(-3.087032500374211e-07)); 2023-01-11T21:41:26.8978994Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.8979366Z auto tmp9 = at::vec::Vectorized(static_cast(1.55093272922008e-10)); 2023-01-11T21:41:26.8979505Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.8979644Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:41:26.8979802Z auto tmp12 = tmp11.reciprocal(); 2023-01-11T21:41:26.8980023Z auto tmp13 = at::vec::Vectorized(static_cast(1.0)); 2023-01-11T21:41:26.8980165Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:41:26.8980396Z auto tmp16 = tmp11 * tmp15; 2023-01-11T21:41:26.8980534Z auto tmp17 = tmp14 + tmp16; 2023-01-11T21:41:26.8980694Z tmp17.store(out_ptr0 + (8*i1) + (26*i0)); 2023-01-11T21:41:26.8980792Z } 2023-01-11T21:41:26.8980938Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.8981069Z for(long i1=24; i1<26; i1+=1) 2023-01-11T21:41:26.8981167Z { 2023-01-11T21:41:26.8981298Z auto tmp0 = in_ptr0[i1 + (26*i0)]; 2023-01-11T21:41:26.8981445Z auto tmp8 = in_ptr1[i1 + (26*i0)]; 2023-01-11T21:41:26.8981580Z auto tmp15 = in_ptr2[i1]; 2023-01-11T21:41:26.8981890Z auto tmp1 = static_cast(-1.061519070296458e-11); 2023-01-11T21:41:26.8982094Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.8982400Z auto tmp3 = static_cast(-1.988366587925593e-08); 2023-01-11T21:41:26.8982541Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.8982657Z auto tmp5 = tmp0 * tmp4; 2023-01-11T21:41:26.8982947Z auto tmp6 = static_cast(-3.087032500374211e-07); 2023-01-11T21:41:26.8983117Z auto tmp7 = tmp5 + tmp6; 2023-01-11T21:41:26.8983466Z auto tmp9 = static_cast(1.55093272922008e-10); 2023-01-11T21:41:26.8983602Z auto tmp10 = tmp8 * tmp9; 2023-01-11T21:41:26.8983739Z auto tmp11 = tmp7 + tmp10; 2023-01-11T21:41:26.8983866Z auto tmp12 = 1 / tmp11; 2023-01-11T21:41:26.8984013Z auto tmp13 = static_cast(1.0); 2023-01-11T21:41:26.8984152Z auto tmp14 = tmp12 * tmp13; 2023-01-11T21:41:26.8984291Z auto tmp16 = tmp11 * tmp15; 2023-01-11T21:41:26.8984437Z auto tmp17 = tmp14 + tmp16; 2023-01-11T21:41:26.8984576Z out_ptr0[i1 + (26*i0)] = tmp17; 2023-01-11T21:41:26.8984673Z } 2023-01-11T21:41:26.8984776Z } 2023-01-11T21:41:26.8984855Z } 2023-01-11T21:41:26.8984945Z } 2023-01-11T21:41:26.8985084Z ''') 2023-01-11T21:41:26.8985095Z 2023-01-11T21:41:26.8985100Z 2023-01-11T21:41:26.8985246Z async_compile.wait(globals()) 2023-01-11T21:41:26.8985362Z del async_compile 2023-01-11T21:41:26.8985369Z 2023-01-11T21:41:26.8985477Z def call(args): 2023-01-11T21:41:26.8985603Z arg0_1, arg1_1, arg2_1 = args 2023-01-11T21:41:26.8985717Z args.clear() 2023-01-11T21:41:26.8986066Z buf0 = empty_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8986363Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(arg2_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.8986470Z del arg0_1 2023-01-11T21:41:26.8986573Z del arg1_1 2023-01-11T21:41:26.8986683Z del arg2_1 2023-01-11T21:41:26.8986794Z return (buf0, ) 2023-01-11T21:41:26.8986802Z 2023-01-11T21:41:26.8986809Z 2023-01-11T21:41:26.8986933Z if __name__ == "__main__": 2023-01-11T21:41:26.8987098Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.8987297Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.8987657Z arg0_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8988006Z arg1_1 = rand_strided((204, 204, 26), (5304, 26, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8988315Z arg2_1 = rand_strided((26, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.8988507Z print_performance(lambda: call([arg0_1, arg1_1, arg2_1])) 2023-01-11T21:41:26.8988516Z 2023-01-11T21:41:26.8988618Z ok (1.587s) 2023-01-11T21:41:26.8989370Z test_views1_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8989669Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8990110Z [2023-01-11 21:39:21,520] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 485 2023-01-11T21:41:26.8990535Z [2023-01-11 21:39:23,014] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 485 2023-01-11T21:41:26.8991222Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8991483Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8991930Z [2023-01-11 21:39:23,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 486 2023-01-11T21:41:26.8992378Z [2023-01-11 21:39:24,667] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 486 2023-01-11T21:41:26.8993065Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8993260Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8993681Z [2023-01-11 21:39:24,685] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 487 2023-01-11T21:41:26.8994119Z [2023-01-11 21:39:26,323] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 487 2023-01-11T21:41:26.8994807Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8995002Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8995429Z [2023-01-11 21:39:26,345] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 488 2023-01-11T21:41:26.8995857Z [2023-01-11 21:39:27,974] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 488 2023-01-11T21:41:26.8996553Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.8996752Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.8997178Z [2023-01-11 21:39:27,993] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 489 2023-01-11T21:41:26.8997189Z 2023-01-11T21:41:26.8997338Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.8997448Z import torch 2023-01-11T21:41:26.8997560Z import random 2023-01-11T21:41:26.8997745Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.8997933Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.8997942Z 2023-01-11T21:41:26.8998049Z aten = torch.ops.aten 2023-01-11T21:41:26.8998261Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.8998410Z async_compile = AsyncCompile() 2023-01-11T21:41:26.8998418Z 2023-01-11T21:41:26.8998425Z 2023-01-11T21:41:26.8998662Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.8999087Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.8999276Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.8999438Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.8999594Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.8999674Z { 2023-01-11T21:41:26.8999826Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.8999921Z { 2023-01-11T21:41:26.9000044Z #pragma omp for 2023-01-11T21:41:26.9000170Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.9000267Z { 2023-01-11T21:41:26.9000482Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9000743Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9000890Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9001031Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9001134Z } 2023-01-11T21:41:26.9001288Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9001416Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:41:26.9001513Z { 2023-01-11T21:41:26.9001628Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9001757Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9001885Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9002010Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9002107Z } 2023-01-11T21:41:26.9002201Z } 2023-01-11T21:41:26.9002277Z } 2023-01-11T21:41:26.9002421Z ''') 2023-01-11T21:41:26.9002431Z 2023-01-11T21:41:26.9002437Z 2023-01-11T21:41:26.9002579Z async_compile.wait(globals()) 2023-01-11T21:41:26.9002690Z del async_compile 2023-01-11T21:41:26.9002698Z 2023-01-11T21:41:26.9002807Z def call(args): 2023-01-11T21:41:26.9002929Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9003039Z args.clear() 2023-01-11T21:41:26.9003370Z buf0 = empty_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9003617Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9003721Z del arg0_1 2023-01-11T21:41:26.9003822Z del arg1_1 2023-01-11T21:41:26.9003934Z return (buf0, ) 2023-01-11T21:41:26.9003943Z 2023-01-11T21:41:26.9003949Z 2023-01-11T21:41:26.9004066Z if __name__ == "__main__": 2023-01-11T21:41:26.9004244Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9004438Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9004773Z arg0_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9005083Z arg1_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9005267Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9005277Z 2023-01-11T21:41:26.9005283Z 2023-01-11T21:41:26.9005432Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9005544Z import torch 2023-01-11T21:41:26.9005644Z import random 2023-01-11T21:41:26.9005794Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9005952Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9005960Z 2023-01-11T21:41:26.9006087Z aten = torch.ops.aten 2023-01-11T21:41:26.9006296Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9006442Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9006452Z 2023-01-11T21:41:26.9006458Z 2023-01-11T21:41:26.9006693Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9007027Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9007224Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9007398Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9007561Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9007658Z { 2023-01-11T21:41:26.9007885Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9007984Z { 2023-01-11T21:41:26.9008111Z #pragma omp for 2023-01-11T21:41:26.9008247Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.9008348Z { 2023-01-11T21:41:26.9008572Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9008784Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9008989Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9009271Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9009412Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9009567Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9009674Z } 2023-01-11T21:41:26.9009831Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9010065Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:41:26.9010158Z { 2023-01-11T21:41:26.9010299Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9010439Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9010608Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9010753Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9010897Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9011023Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9011116Z } 2023-01-11T21:41:26.9011217Z } 2023-01-11T21:41:26.9011313Z } 2023-01-11T21:41:26.9011466Z ''') 2023-01-11T21:41:26.9011474Z 2023-01-11T21:41:26.9011480Z 2023-01-11T21:41:26.9011625Z async_compile.wait(globals()) 2023-01-11T21:41:26.9011748Z del async_compile 2023-01-11T21:41:26.9011759Z 2023-01-11T21:41:26.9011871Z def call(args): 2023-01-11T21:41:26.9011980Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9012100Z args.clear() 2023-01-11T21:41:26.9012431Z buf0 = empty_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9012703Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9012825Z del arg0_1 2023-01-11T21:41:26.9012933Z del arg1_1 2023-01-11T21:41:26.9013056Z return (buf0, ) 2023-01-11T21:41:26.9013064Z 2023-01-11T21:41:26.9013070Z 2023-01-11T21:41:26.9013179Z if __name__ == "__main__": 2023-01-11T21:41:26.9013369Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9013567Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9013893Z arg0_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9014226Z arg1_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9014418Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9014426Z 2023-01-11T21:41:26.9014432Z 2023-01-11T21:41:26.9014588Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9014701Z import torch 2023-01-11T21:41:26.9014804Z import random 2023-01-11T21:41:26.9014994Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9015194Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9015202Z 2023-01-11T21:41:26.9015330Z aten = torch.ops.aten 2023-01-11T21:41:26.9015546Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9015698Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9015709Z 2023-01-11T21:41:26.9015715Z 2023-01-11T21:41:26.9015934Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9016272Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9016453Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9016623Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9016785Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9016893Z { 2023-01-11T21:41:26.9017054Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9017156Z { 2023-01-11T21:41:26.9017388Z #pragma omp for 2023-01-11T21:41:26.9017503Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9017611Z { 2023-01-11T21:41:26.9017835Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9018052Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9018192Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9018343Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9018455Z } 2023-01-11T21:41:26.9018611Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9018734Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9018840Z { 2023-01-11T21:41:26.9018978Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9019120Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9019350Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9019485Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9019575Z } 2023-01-11T21:41:26.9019689Z } 2023-01-11T21:41:26.9019784Z } 2023-01-11T21:41:26.9019927Z ''') 2023-01-11T21:41:26.9019936Z 2023-01-11T21:41:26.9019942Z 2023-01-11T21:41:26.9020092Z async_compile.wait(globals()) 2023-01-11T21:41:26.9020211Z del async_compile 2023-01-11T21:41:26.9020221Z 2023-01-11T21:41:26.9020337Z def call(args): 2023-01-11T21:41:26.9020459Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9020561Z args.clear() 2023-01-11T21:41:26.9020956Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9021223Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9021336Z del arg0_1 2023-01-11T21:41:26.9021449Z del arg1_1 2023-01-11T21:41:26.9021567Z return (buf0, ) 2023-01-11T21:41:26.9021576Z 2023-01-11T21:41:26.9021582Z 2023-01-11T21:41:26.9021715Z if __name__ == "__main__": 2023-01-11T21:41:26.9021890Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9022101Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9022431Z arg0_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9022818Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9023005Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9023014Z 2023-01-11T21:41:26.9023020Z 2023-01-11T21:41:26.9023252Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9023371Z import torch 2023-01-11T21:41:26.9023490Z import random 2023-01-11T21:41:26.9023668Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9023867Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9023879Z 2023-01-11T21:41:26.9024009Z aten = torch.ops.aten 2023-01-11T21:41:26.9024238Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9024398Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9024412Z 2023-01-11T21:41:26.9024418Z 2023-01-11T21:41:26.9024653Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9024988Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9025188Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9025340Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9025498Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9025601Z { 2023-01-11T21:41:26.9025759Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9025857Z { 2023-01-11T21:41:26.9025988Z #pragma omp for 2023-01-11T21:41:26.9026123Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9026214Z { 2023-01-11T21:41:26.9026445Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9026659Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9026960Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9027103Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9027241Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9027392Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9027501Z } 2023-01-11T21:41:26.9027637Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9027778Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9027879Z { 2023-01-11T21:41:26.9028020Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9028156Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9028317Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9028453Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9028576Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9028766Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9028881Z } 2023-01-11T21:41:26.9028983Z } 2023-01-11T21:41:26.9029079Z } 2023-01-11T21:41:26.9029225Z ''') 2023-01-11T21:41:26.9029234Z 2023-01-11T21:41:26.9029239Z 2023-01-11T21:41:26.9029387Z async_compile.wait(globals()) 2023-01-11T21:41:26.9029498Z del async_compile 2023-01-11T21:41:26.9029509Z 2023-01-11T21:41:26.9029623Z def call(args): 2023-01-11T21:41:26.9029746Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9029864Z args.clear() 2023-01-11T21:41:26.9030266Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9030522Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9030639Z del arg0_1 2023-01-11T21:41:26.9030734Z del arg1_1 2023-01-11T21:41:26.9030850Z return (buf0, ) 2023-01-11T21:41:26.9030857Z 2023-01-11T21:41:26.9030865Z 2023-01-11T21:41:26.9030989Z if __name__ == "__main__": 2023-01-11T21:41:26.9031188Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9031396Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9031728Z arg0_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9032121Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9032307Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9032316Z 2023-01-11T21:41:26.9032761Z [2023-01-11 21:39:28,002] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 489 2023-01-11T21:41:26.9033473Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9033686Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9034131Z [2023-01-11 21:39:28,021] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 490 2023-01-11T21:41:26.9034588Z [2023-01-11 21:39:28,033] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 490 2023-01-11T21:41:26.9035300Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9035504Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9035943Z [2023-01-11 21:39:28,054] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 491 2023-01-11T21:41:26.9036404Z [2023-01-11 21:39:29,586] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 491 2023-01-11T21:41:26.9037210Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9037415Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9037856Z [2023-01-11 21:39:29,606] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 492 2023-01-11T21:41:26.9038276Z [2023-01-11 21:39:31,270] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 492 2023-01-11T21:41:26.9039043Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9039258Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9039689Z [2023-01-11 21:39:31,287] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 493 2023-01-11T21:41:26.9039699Z 2023-01-11T21:41:26.9039855Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9039974Z import torch 2023-01-11T21:41:26.9040089Z import random 2023-01-11T21:41:26.9040284Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9040484Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9040492Z 2023-01-11T21:41:26.9040601Z aten = torch.ops.aten 2023-01-11T21:41:26.9040830Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9040980Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9040989Z 2023-01-11T21:41:26.9040996Z 2023-01-11T21:41:26.9041235Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9041565Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9041765Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9041933Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9042094Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9042178Z { 2023-01-11T21:41:26.9042342Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9042440Z { 2023-01-11T21:41:26.9042569Z #pragma omp for 2023-01-11T21:41:26.9042703Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9042809Z { 2023-01-11T21:41:26.9043029Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9043250Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9043375Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9043524Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9043632Z } 2023-01-11T21:41:26.9043787Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9043929Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9044039Z { 2023-01-11T21:41:26.9044158Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9044301Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9044437Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9044570Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9044676Z } 2023-01-11T21:41:26.9044777Z } 2023-01-11T21:41:26.9044872Z } 2023-01-11T21:41:26.9045002Z ''') 2023-01-11T21:41:26.9045011Z 2023-01-11T21:41:26.9045017Z 2023-01-11T21:41:26.9045172Z async_compile.wait(globals()) 2023-01-11T21:41:26.9045298Z del async_compile 2023-01-11T21:41:26.9045306Z 2023-01-11T21:41:26.9045427Z def call(args): 2023-01-11T21:41:26.9045549Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9045671Z args.clear() 2023-01-11T21:41:26.9046170Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9046434Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9046534Z del arg0_1 2023-01-11T21:41:26.9046643Z del arg1_1 2023-01-11T21:41:26.9046764Z return (buf0, ) 2023-01-11T21:41:26.9046773Z 2023-01-11T21:41:26.9046779Z 2023-01-11T21:41:26.9046903Z if __name__ == "__main__": 2023-01-11T21:41:26.9047092Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9047298Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9047670Z arg0_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9048110Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9048293Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9048309Z 2023-01-11T21:41:26.9048315Z 2023-01-11T21:41:26.9048475Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9048587Z import torch 2023-01-11T21:41:26.9048707Z import random 2023-01-11T21:41:26.9048894Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9049238Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9049248Z 2023-01-11T21:41:26.9049380Z aten = torch.ops.aten 2023-01-11T21:41:26.9049605Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9049738Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9049751Z 2023-01-11T21:41:26.9049758Z 2023-01-11T21:41:26.9049991Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9050320Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9050523Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9050697Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9050870Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9050969Z { 2023-01-11T21:41:26.9051118Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9051221Z { 2023-01-11T21:41:26.9051349Z #pragma omp for 2023-01-11T21:41:26.9051483Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9051587Z { 2023-01-11T21:41:26.9051813Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9052024Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9052243Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9052371Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9052507Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9052664Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9052774Z } 2023-01-11T21:41:26.9052928Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9053072Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9053175Z { 2023-01-11T21:41:26.9053292Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9053427Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9053590Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9053733Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9053870Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9054001Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9054102Z } 2023-01-11T21:41:26.9054189Z } 2023-01-11T21:41:26.9054292Z } 2023-01-11T21:41:26.9054436Z ''') 2023-01-11T21:41:26.9054446Z 2023-01-11T21:41:26.9054451Z 2023-01-11T21:41:26.9054596Z async_compile.wait(globals()) 2023-01-11T21:41:26.9054717Z del async_compile 2023-01-11T21:41:26.9054726Z 2023-01-11T21:41:26.9054841Z def call(args): 2023-01-11T21:41:26.9054966Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9055071Z args.clear() 2023-01-11T21:41:26.9055467Z buf0 = empty_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9055842Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9055958Z del arg0_1 2023-01-11T21:41:26.9056070Z del arg1_1 2023-01-11T21:41:26.9056186Z return (buf0, ) 2023-01-11T21:41:26.9056194Z 2023-01-11T21:41:26.9056201Z 2023-01-11T21:41:26.9056323Z if __name__ == "__main__": 2023-01-11T21:41:26.9056497Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9056699Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9057065Z arg0_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9057516Z arg1_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9057716Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9057724Z 2023-01-11T21:41:26.9057735Z 2023-01-11T21:41:26.9057890Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9058010Z import torch 2023-01-11T21:41:26.9058135Z import random 2023-01-11T21:41:26.9058307Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9058507Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9058515Z 2023-01-11T21:41:26.9058647Z aten = torch.ops.aten 2023-01-11T21:41:26.9058869Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9059018Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9059027Z 2023-01-11T21:41:26.9059033Z 2023-01-11T21:41:26.9059257Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9059589Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9059785Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9059958Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9060104Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9060210Z { 2023-01-11T21:41:26.9060375Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9060477Z { 2023-01-11T21:41:26.9060605Z #pragma omp for 2023-01-11T21:41:26.9060743Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9060831Z { 2023-01-11T21:41:26.9061053Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9061275Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9061414Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9061566Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9061670Z } 2023-01-11T21:41:26.9061833Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9061975Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9062067Z { 2023-01-11T21:41:26.9062207Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9062344Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9062487Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9062620Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9062725Z } 2023-01-11T21:41:26.9062808Z } 2023-01-11T21:41:26.9062907Z } 2023-01-11T21:41:26.9063046Z ''') 2023-01-11T21:41:26.9063054Z 2023-01-11T21:41:26.9063061Z 2023-01-11T21:41:26.9063287Z async_compile.wait(globals()) 2023-01-11T21:41:26.9063410Z del async_compile 2023-01-11T21:41:26.9063418Z 2023-01-11T21:41:26.9063536Z def call(args): 2023-01-11T21:41:26.9063662Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9063786Z args.clear() 2023-01-11T21:41:26.9064126Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9064395Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9064519Z del arg0_1 2023-01-11T21:41:26.9064629Z del arg1_1 2023-01-11T21:41:26.9064749Z return (buf0, ) 2023-01-11T21:41:26.9064837Z 2023-01-11T21:41:26.9064843Z 2023-01-11T21:41:26.9064968Z if __name__ == "__main__": 2023-01-11T21:41:26.9065156Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9065343Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9065694Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9066047Z arg1_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9066236Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9066244Z 2023-01-11T21:41:26.9066250Z 2023-01-11T21:41:26.9066412Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9066534Z import torch 2023-01-11T21:41:26.9066650Z import random 2023-01-11T21:41:26.9066839Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9067071Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9067099Z 2023-01-11T21:41:26.9067213Z aten = torch.ops.aten 2023-01-11T21:41:26.9067435Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9067588Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9067597Z 2023-01-11T21:41:26.9067602Z 2023-01-11T21:41:26.9067837Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9068170Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9068362Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9068532Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9068694Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9068781Z { 2023-01-11T21:41:26.9068943Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9069042Z { 2023-01-11T21:41:26.9069170Z #pragma omp for 2023-01-11T21:41:26.9069311Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9069423Z { 2023-01-11T21:41:26.9069627Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9069849Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9070065Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9070204Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9070344Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9070494Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9070597Z } 2023-01-11T21:41:26.9070758Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9070884Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9070984Z { 2023-01-11T21:41:26.9071122Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9071258Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9071422Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9071561Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9071701Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9071826Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9071926Z } 2023-01-11T21:41:26.9072028Z } 2023-01-11T21:41:26.9072130Z } 2023-01-11T21:41:26.9072270Z ''') 2023-01-11T21:41:26.9072279Z 2023-01-11T21:41:26.9072286Z 2023-01-11T21:41:26.9072431Z async_compile.wait(globals()) 2023-01-11T21:41:26.9072553Z del async_compile 2023-01-11T21:41:26.9072561Z 2023-01-11T21:41:26.9072658Z def call(args): 2023-01-11T21:41:26.9072782Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9072897Z args.clear() 2023-01-11T21:41:26.9073242Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9073509Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9073624Z del arg0_1 2023-01-11T21:41:26.9073731Z del arg1_1 2023-01-11T21:41:26.9073838Z return (buf0, ) 2023-01-11T21:41:26.9073848Z 2023-01-11T21:41:26.9073867Z 2023-01-11T21:41:26.9073977Z if __name__ == "__main__": 2023-01-11T21:41:26.9074251Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9074451Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9074787Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9075142Z arg1_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9075325Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9075333Z 2023-01-11T21:41:26.9075781Z [2023-01-11 21:39:32,923] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 493 2023-01-11T21:41:26.9076544Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9076757Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9077185Z [2023-01-11 21:39:32,941] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 494 2023-01-11T21:41:26.9077624Z [2023-01-11 21:39:34,458] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 494 2023-01-11T21:41:26.9078331Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9078536Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9078976Z [2023-01-11 21:39:34,475] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 495 2023-01-11T21:41:26.9079423Z [2023-01-11 21:39:34,484] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 495 2023-01-11T21:41:26.9080125Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9080330Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9080773Z [2023-01-11 21:39:34,502] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 496 2023-01-11T21:41:26.9081222Z [2023-01-11 21:39:34,524] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 496 2023-01-11T21:41:26.9081922Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9082130Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9082546Z [2023-01-11 21:39:34,539] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 497 2023-01-11T21:41:26.9082560Z 2023-01-11T21:41:26.9082712Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9082833Z import torch 2023-01-11T21:41:26.9082956Z import random 2023-01-11T21:41:26.9083149Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9083344Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9083352Z 2023-01-11T21:41:26.9083483Z aten = torch.ops.aten 2023-01-11T21:41:26.9083685Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9083915Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9083923Z 2023-01-11T21:41:26.9083931Z 2023-01-11T21:41:26.9084154Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9084486Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9084681Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9084848Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9085011Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9085110Z { 2023-01-11T21:41:26.9085259Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9085362Z { 2023-01-11T21:41:26.9085490Z #pragma omp for 2023-01-11T21:41:26.9085627Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9085729Z { 2023-01-11T21:41:26.9086003Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9086226Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9086360Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9086510Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9086614Z } 2023-01-11T21:41:26.9086773Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9086908Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9087009Z { 2023-01-11T21:41:26.9087150Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9087265Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9087403Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9087541Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9087647Z } 2023-01-11T21:41:26.9087748Z } 2023-01-11T21:41:26.9087848Z } 2023-01-11T21:41:26.9087989Z ''') 2023-01-11T21:41:26.9087999Z 2023-01-11T21:41:26.9088005Z 2023-01-11T21:41:26.9088137Z async_compile.wait(globals()) 2023-01-11T21:41:26.9088259Z del async_compile 2023-01-11T21:41:26.9088267Z 2023-01-11T21:41:26.9088379Z def call(args): 2023-01-11T21:41:26.9088508Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9088626Z args.clear() 2023-01-11T21:41:26.9088951Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9089343Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9089462Z del arg0_1 2023-01-11T21:41:26.9089557Z del arg1_1 2023-01-11T21:41:26.9089670Z return (buf0, ) 2023-01-11T21:41:26.9089683Z 2023-01-11T21:41:26.9089689Z 2023-01-11T21:41:26.9089812Z if __name__ == "__main__": 2023-01-11T21:41:26.9090004Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9090206Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9090527Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9090795Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9090933Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9090959Z 2023-01-11T21:41:26.9090964Z 2023-01-11T21:41:26.9091073Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9091164Z import torch 2023-01-11T21:41:26.9091257Z import random 2023-01-11T21:41:26.9091409Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9091566Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9091573Z 2023-01-11T21:41:26.9091675Z aten = torch.ops.aten 2023-01-11T21:41:26.9091848Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9091954Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9091960Z 2023-01-11T21:41:26.9091979Z 2023-01-11T21:41:26.9092146Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9092410Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9092567Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9092703Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9092928Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9093014Z { 2023-01-11T21:41:26.9093144Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9093209Z { 2023-01-11T21:41:26.9093311Z #pragma omp for 2023-01-11T21:41:26.9093422Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9093505Z { 2023-01-11T21:41:26.9093688Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9093861Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9094035Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9094133Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9094243Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9094407Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9094494Z } 2023-01-11T21:41:26.9094619Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9094732Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9094816Z { 2023-01-11T21:41:26.9094912Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9095020Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9095149Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9095260Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9095369Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9095477Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9095561Z } 2023-01-11T21:41:26.9095628Z } 2023-01-11T21:41:26.9095706Z } 2023-01-11T21:41:26.9095818Z ''') 2023-01-11T21:41:26.9095824Z 2023-01-11T21:41:26.9095829Z 2023-01-11T21:41:26.9095947Z async_compile.wait(globals()) 2023-01-11T21:41:26.9096045Z del async_compile 2023-01-11T21:41:26.9096051Z 2023-01-11T21:41:26.9096148Z def call(args): 2023-01-11T21:41:26.9096248Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9096327Z args.clear() 2023-01-11T21:41:26.9096593Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9096806Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9096896Z del arg0_1 2023-01-11T21:41:26.9096984Z del arg1_1 2023-01-11T21:41:26.9097078Z return (buf0, ) 2023-01-11T21:41:26.9097085Z 2023-01-11T21:41:26.9097090Z 2023-01-11T21:41:26.9097192Z if __name__ == "__main__": 2023-01-11T21:41:26.9097341Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9097488Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9097767Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9098029Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9098183Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9098190Z 2023-01-11T21:41:26.9098195Z 2023-01-11T21:41:26.9098317Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9098415Z import torch 2023-01-11T21:41:26.9098508Z import random 2023-01-11T21:41:26.9098658Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9098800Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9098807Z 2023-01-11T21:41:26.9098907Z aten = torch.ops.aten 2023-01-11T21:41:26.9099079Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9099200Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9099207Z 2023-01-11T21:41:26.9099212Z 2023-01-11T21:41:26.9099395Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9099654Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9099808Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9099948Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9100065Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9100185Z { 2023-01-11T21:41:26.9100313Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9100395Z { 2023-01-11T21:41:26.9100497Z #pragma omp for 2023-01-11T21:41:26.9100606Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9100688Z { 2023-01-11T21:41:26.9100850Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9101019Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9101132Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9101250Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9101334Z } 2023-01-11T21:41:26.9101459Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9101573Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9101640Z { 2023-01-11T21:41:26.9101784Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9101896Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9102004Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9102113Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9102196Z } 2023-01-11T21:41:26.9102276Z } 2023-01-11T21:41:26.9102340Z } 2023-01-11T21:41:26.9102448Z ''') 2023-01-11T21:41:26.9102455Z 2023-01-11T21:41:26.9102459Z 2023-01-11T21:41:26.9102576Z async_compile.wait(globals()) 2023-01-11T21:41:26.9102672Z del async_compile 2023-01-11T21:41:26.9102679Z 2023-01-11T21:41:26.9102773Z def call(args): 2023-01-11T21:41:26.9102873Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9102967Z args.clear() 2023-01-11T21:41:26.9103296Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9103511Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9103601Z del arg0_1 2023-01-11T21:41:26.9103693Z del arg1_1 2023-01-11T21:41:26.9103788Z return (buf0, ) 2023-01-11T21:41:26.9103794Z 2023-01-11T21:41:26.9103799Z 2023-01-11T21:41:26.9103902Z if __name__ == "__main__": 2023-01-11T21:41:26.9104052Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9104213Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9104515Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9104790Z arg1_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9104942Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9104949Z 2023-01-11T21:41:26.9104954Z 2023-01-11T21:41:26.9105078Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9105169Z import torch 2023-01-11T21:41:26.9105261Z import random 2023-01-11T21:41:26.9105414Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9105573Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9105581Z 2023-01-11T21:41:26.9105668Z aten = torch.ops.aten 2023-01-11T21:41:26.9105841Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9105966Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9105973Z 2023-01-11T21:41:26.9105978Z 2023-01-11T21:41:26.9106159Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9106417Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9106574Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9106708Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9106842Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9106908Z { 2023-01-11T21:41:26.9107035Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9107116Z { 2023-01-11T21:41:26.9107220Z #pragma omp for 2023-01-11T21:41:26.9107329Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9107416Z { 2023-01-11T21:41:26.9107592Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9107810Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9107983Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9108097Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9108206Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9108325Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9108409Z } 2023-01-11T21:41:26.9108532Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9108631Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9108713Z { 2023-01-11T21:41:26.9108825Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9108934Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9109065Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9109207Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9109320Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9109412Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9109498Z } 2023-01-11T21:41:26.9109579Z } 2023-01-11T21:41:26.9109658Z } 2023-01-11T21:41:26.9109766Z ''') 2023-01-11T21:41:26.9109773Z 2023-01-11T21:41:26.9109778Z 2023-01-11T21:41:26.9109897Z async_compile.wait(globals()) 2023-01-11T21:41:26.9109995Z del async_compile 2023-01-11T21:41:26.9110002Z 2023-01-11T21:41:26.9110081Z def call(args): 2023-01-11T21:41:26.9110179Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9110270Z args.clear() 2023-01-11T21:41:26.9110546Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9110758Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9110848Z del arg0_1 2023-01-11T21:41:26.9110935Z del arg1_1 2023-01-11T21:41:26.9111016Z return (buf0, ) 2023-01-11T21:41:26.9111039Z 2023-01-11T21:41:26.9111044Z 2023-01-11T21:41:26.9111130Z if __name__ == "__main__": 2023-01-11T21:41:26.9111278Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9111442Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9111751Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9112028Z arg1_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9112177Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9112184Z 2023-01-11T21:41:26.9112550Z [2023-01-11 21:39:36,068] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 497 2023-01-11T21:41:26.9113115Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9113282Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9113620Z [2023-01-11 21:39:36,087] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 498 2023-01-11T21:41:26.9113978Z [2023-01-11 21:39:37,836] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 498 2023-01-11T21:41:26.9114538Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9114702Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9115056Z [2023-01-11 21:39:37,855] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 499 2023-01-11T21:41:26.9115416Z [2023-01-11 21:39:37,865] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 499 2023-01-11T21:41:26.9116027Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9116190Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9116538Z [2023-01-11 21:39:37,884] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 500 2023-01-11T21:41:26.9116891Z [2023-01-11 21:39:37,899] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 500 2023-01-11T21:41:26.9117485Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9117655Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9117984Z [2023-01-11 21:39:37,917] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 501 2023-01-11T21:41:26.9118005Z 2023-01-11T21:41:26.9118113Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9118208Z import torch 2023-01-11T21:41:26.9118300Z import random 2023-01-11T21:41:26.9118453Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9118610Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9118617Z 2023-01-11T21:41:26.9118722Z aten = torch.ops.aten 2023-01-11T21:41:26.9118897Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9119006Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9119013Z 2023-01-11T21:41:26.9119018Z 2023-01-11T21:41:26.9119200Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9119460Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9119615Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9119751Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9119882Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9119961Z { 2023-01-11T21:41:26.9120090Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9120159Z { 2023-01-11T21:41:26.9120258Z #pragma omp for 2023-01-11T21:41:26.9120364Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9120446Z { 2023-01-11T21:41:26.9120626Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9120802Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9120918Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9121026Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9121107Z } 2023-01-11T21:41:26.9121230Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9121337Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.9121419Z { 2023-01-11T21:41:26.9121529Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9121638Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9121734Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9121836Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9121917Z } 2023-01-11T21:41:26.9121997Z } 2023-01-11T21:41:26.9122073Z } 2023-01-11T21:41:26.9122181Z ''') 2023-01-11T21:41:26.9122188Z 2023-01-11T21:41:26.9122193Z 2023-01-11T21:41:26.9122298Z async_compile.wait(globals()) 2023-01-11T21:41:26.9126671Z del async_compile 2023-01-11T21:41:26.9126679Z 2023-01-11T21:41:26.9126774Z def call(args): 2023-01-11T21:41:26.9126948Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9127042Z args.clear() 2023-01-11T21:41:26.9127327Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9127544Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9127633Z del arg0_1 2023-01-11T21:41:26.9127707Z del arg1_1 2023-01-11T21:41:26.9127806Z return (buf0, ) 2023-01-11T21:41:26.9127812Z 2023-01-11T21:41:26.9127818Z 2023-01-11T21:41:26.9127918Z if __name__ == "__main__": 2023-01-11T21:41:26.9128069Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9128233Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9128518Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9128819Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9128976Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9128987Z 2023-01-11T21:41:26.9128992Z 2023-01-11T21:41:26.9129242Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9129339Z import torch 2023-01-11T21:41:26.9129433Z import random 2023-01-11T21:41:26.9129584Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9129743Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9129750Z 2023-01-11T21:41:26.9129855Z aten = torch.ops.aten 2023-01-11T21:41:26.9130031Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9130138Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9130159Z 2023-01-11T21:41:26.9130164Z 2023-01-11T21:41:26.9130333Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9130594Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9130752Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9130891Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9131024Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9131105Z { 2023-01-11T21:41:26.9131234Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9131301Z { 2023-01-11T21:41:26.9131400Z #pragma omp for 2023-01-11T21:41:26.9131508Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9131591Z { 2023-01-11T21:41:26.9131774Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9131948Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9132122Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9132236Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9132333Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9132462Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9132546Z } 2023-01-11T21:41:26.9132669Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9132783Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.9132866Z { 2023-01-11T21:41:26.9132962Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9133069Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9133199Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9133310Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9133417Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9133524Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9133607Z } 2023-01-11T21:41:26.9133676Z } 2023-01-11T21:41:26.9133754Z } 2023-01-11T21:41:26.9133861Z ''') 2023-01-11T21:41:26.9133867Z 2023-01-11T21:41:26.9133872Z 2023-01-11T21:41:26.9133990Z async_compile.wait(globals()) 2023-01-11T21:41:26.9134087Z del async_compile 2023-01-11T21:41:26.9134094Z 2023-01-11T21:41:26.9134185Z def call(args): 2023-01-11T21:41:26.9134288Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9134382Z args.clear() 2023-01-11T21:41:26.9134636Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9134922Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9135015Z del arg0_1 2023-01-11T21:41:26.9135109Z del arg1_1 2023-01-11T21:41:26.9135220Z return (buf0, ) 2023-01-11T21:41:26.9135226Z 2023-01-11T21:41:26.9135230Z 2023-01-11T21:41:26.9135310Z if __name__ == "__main__": 2023-01-11T21:41:26.9135425Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9135536Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9135752Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9135949Z arg1_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9136107Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9136111Z 2023-01-11T21:41:26.9136116Z 2023-01-11T21:41:26.9136211Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9136283Z import torch 2023-01-11T21:41:26.9136351Z import random 2023-01-11T21:41:26.9136465Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9136571Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9136577Z 2023-01-11T21:41:26.9136654Z aten = torch.ops.aten 2023-01-11T21:41:26.9136785Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9136875Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9136881Z 2023-01-11T21:41:26.9136885Z 2023-01-11T21:41:26.9137018Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9137221Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9137336Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9137442Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9137528Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9137590Z { 2023-01-11T21:41:26.9137686Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9137748Z { 2023-01-11T21:41:26.9137824Z #pragma omp for 2023-01-11T21:41:26.9137904Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.9137965Z { 2023-01-11T21:41:26.9138087Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9138215Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9138303Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9138394Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9138458Z } 2023-01-11T21:41:26.9138551Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9138631Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:41:26.9138680Z { 2023-01-11T21:41:26.9138763Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9138843Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9138922Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9139004Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9139063Z } 2023-01-11T21:41:26.9139121Z } 2023-01-11T21:41:26.9139167Z } 2023-01-11T21:41:26.9139246Z ''') 2023-01-11T21:41:26.9139251Z 2023-01-11T21:41:26.9139255Z 2023-01-11T21:41:26.9139342Z async_compile.wait(globals()) 2023-01-11T21:41:26.9139413Z del async_compile 2023-01-11T21:41:26.9139418Z 2023-01-11T21:41:26.9139486Z def call(args): 2023-01-11T21:41:26.9139559Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9139628Z args.clear() 2023-01-11T21:41:26.9139810Z buf0 = empty_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9139971Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9140040Z del arg0_1 2023-01-11T21:41:26.9140104Z del arg1_1 2023-01-11T21:41:26.9140175Z return (buf0, ) 2023-01-11T21:41:26.9140181Z 2023-01-11T21:41:26.9140185Z 2023-01-11T21:41:26.9140259Z if __name__ == "__main__": 2023-01-11T21:41:26.9140408Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9140529Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9140714Z arg0_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9140907Z arg1_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9141020Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9141025Z 2023-01-11T21:41:26.9141028Z 2023-01-11T21:41:26.9141119Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9141186Z import torch 2023-01-11T21:41:26.9141255Z import random 2023-01-11T21:41:26.9141367Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9141487Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9141492Z 2023-01-11T21:41:26.9141585Z aten = torch.ops.aten 2023-01-11T21:41:26.9141720Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9141812Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9141818Z 2023-01-11T21:41:26.9141822Z 2023-01-11T21:41:26.9141954Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9142155Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9142272Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9142373Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9142470Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9142517Z { 2023-01-11T21:41:26.9142611Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9142674Z { 2023-01-11T21:41:26.9142748Z #pragma omp for 2023-01-11T21:41:26.9142827Z for(long i0=0; i0<4; i0+=1) 2023-01-11T21:41:26.9142887Z { 2023-01-11T21:41:26.9143023Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9143214Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9143354Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9143438Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9143521Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9143609Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9143670Z } 2023-01-11T21:41:26.9143764Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9143834Z for(long i0=32; i0<35; i0+=1) 2023-01-11T21:41:26.9143895Z { 2023-01-11T21:41:26.9143976Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9144058Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9144155Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9144236Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9144319Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9144386Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9144446Z } 2023-01-11T21:41:26.9144508Z } 2023-01-11T21:41:26.9144566Z } 2023-01-11T21:41:26.9144647Z ''') 2023-01-11T21:41:26.9144652Z 2023-01-11T21:41:26.9144656Z 2023-01-11T21:41:26.9144744Z async_compile.wait(globals()) 2023-01-11T21:41:26.9144814Z del async_compile 2023-01-11T21:41:26.9144819Z 2023-01-11T21:41:26.9144876Z def call(args): 2023-01-11T21:41:26.9144947Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9145016Z args.clear() 2023-01-11T21:41:26.9145209Z buf0 = empty_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9145369Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9145436Z del arg0_1 2023-01-11T21:41:26.9145500Z del arg1_1 2023-01-11T21:41:26.9145557Z return (buf0, ) 2023-01-11T21:41:26.9145574Z 2023-01-11T21:41:26.9145578Z 2023-01-11T21:41:26.9145643Z if __name__ == "__main__": 2023-01-11T21:41:26.9145755Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9145912Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9146109Z arg0_1 = rand_strided((5, 7), (7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9146300Z arg1_1 = rand_strided((35, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9146413Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9146418Z 2023-01-11T21:41:26.9146688Z [2023-01-11 21:39:37,925] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 501 2023-01-11T21:41:26.9147144Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9147273Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9147523Z [2023-01-11 21:39:37,945] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 502 2023-01-11T21:41:26.9147787Z [2023-01-11 21:39:37,976] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 502 2023-01-11T21:41:26.9148211Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9148336Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9148594Z [2023-01-11 21:39:37,995] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 503 2023-01-11T21:41:26.9148857Z [2023-01-11 21:39:38,008] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 503 2023-01-11T21:41:26.9149279Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9149401Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9149654Z [2023-01-11 21:39:38,030] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 504 2023-01-11T21:41:26.9149913Z [2023-01-11 21:39:38,081] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 504 2023-01-11T21:41:26.9150335Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9150460Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9150706Z [2023-01-11 21:39:38,101] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 505 2023-01-11T21:41:26.9150729Z 2023-01-11T21:41:26.9150852Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9150961Z import torch 2023-01-11T21:41:26.9151072Z import random 2023-01-11T21:41:26.9151265Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9151457Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9151466Z 2023-01-11T21:41:26.9151595Z aten = torch.ops.aten 2023-01-11T21:41:26.9151814Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9151944Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9151952Z 2023-01-11T21:41:26.9151959Z 2023-01-11T21:41:26.9152296Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9152623Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9152817Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9152982Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9153143Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9153241Z { 2023-01-11T21:41:26.9153396Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9153484Z { 2023-01-11T21:41:26.9153611Z #pragma omp for 2023-01-11T21:41:26.9153740Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9153848Z { 2023-01-11T21:41:26.9154072Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9154377Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9154535Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9154670Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9154771Z } 2023-01-11T21:41:26.9154925Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9155064Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9155169Z { 2023-01-11T21:41:26.9155307Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9155445Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9155564Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9155693Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9155791Z } 2023-01-11T21:41:26.9155893Z } 2023-01-11T21:41:26.9155987Z } 2023-01-11T21:41:26.9156146Z ''') 2023-01-11T21:41:26.9156160Z 2023-01-11T21:41:26.9156165Z 2023-01-11T21:41:26.9156312Z async_compile.wait(globals()) 2023-01-11T21:41:26.9156416Z del async_compile 2023-01-11T21:41:26.9156424Z 2023-01-11T21:41:26.9156544Z def call(args): 2023-01-11T21:41:26.9156677Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9156792Z args.clear() 2023-01-11T21:41:26.9157144Z buf0 = empty_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9157399Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9157515Z del arg0_1 2023-01-11T21:41:26.9157604Z del arg1_1 2023-01-11T21:41:26.9157717Z return (buf0, ) 2023-01-11T21:41:26.9157729Z 2023-01-11T21:41:26.9157734Z 2023-01-11T21:41:26.9157858Z if __name__ == "__main__": 2023-01-11T21:41:26.9158039Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9158238Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9158644Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9158982Z arg1_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9159166Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9159176Z 2023-01-11T21:41:26.9159188Z 2023-01-11T21:41:26.9159323Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9159439Z import torch 2023-01-11T21:41:26.9159558Z import random 2023-01-11T21:41:26.9159744Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9159937Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9159945Z 2023-01-11T21:41:26.9160071Z aten = torch.ops.aten 2023-01-11T21:41:26.9160277Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9160427Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9160436Z 2023-01-11T21:41:26.9160442Z 2023-01-11T21:41:26.9160673Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9161003Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9161198Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9161369Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9161527Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9161760Z { 2023-01-11T21:41:26.9161925Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9162007Z { 2023-01-11T21:41:26.9162127Z #pragma omp for 2023-01-11T21:41:26.9162266Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9162369Z { 2023-01-11T21:41:26.9162590Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9162806Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9163015Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9163153Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9163272Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9163414Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9163520Z } 2023-01-11T21:41:26.9163789Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9163950Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9164064Z { 2023-01-11T21:41:26.9164199Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9164322Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9164484Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9164618Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9164750Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9164877Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9164986Z } 2023-01-11T21:41:26.9165069Z } 2023-01-11T21:41:26.9165169Z } 2023-01-11T21:41:26.9165336Z ''') 2023-01-11T21:41:26.9165348Z 2023-01-11T21:41:26.9165355Z 2023-01-11T21:41:26.9165504Z async_compile.wait(globals()) 2023-01-11T21:41:26.9165623Z del async_compile 2023-01-11T21:41:26.9165632Z 2023-01-11T21:41:26.9165745Z def call(args): 2023-01-11T21:41:26.9165866Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9165989Z args.clear() 2023-01-11T21:41:26.9166326Z buf0 = empty_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9166594Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9166708Z del arg0_1 2023-01-11T21:41:26.9166817Z del arg1_1 2023-01-11T21:41:26.9166936Z return (buf0, ) 2023-01-11T21:41:26.9166946Z 2023-01-11T21:41:26.9166952Z 2023-01-11T21:41:26.9167075Z if __name__ == "__main__": 2023-01-11T21:41:26.9167256Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9167434Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9167844Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9168183Z arg1_1 = rand_strided((5040, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9168372Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9168387Z 2023-01-11T21:41:26.9168393Z 2023-01-11T21:41:26.9168543Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9168673Z import torch 2023-01-11T21:41:26.9168791Z import random 2023-01-11T21:41:26.9168976Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9169288Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9169321Z 2023-01-11T21:41:26.9169437Z aten = torch.ops.aten 2023-01-11T21:41:26.9169652Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9169801Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9169808Z 2023-01-11T21:41:26.9169814Z 2023-01-11T21:41:26.9170058Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9170381Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9170569Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9170743Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9170901Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9170983Z { 2023-01-11T21:41:26.9171300Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9171401Z { 2023-01-11T21:41:26.9171526Z #pragma omp for 2023-01-11T21:41:26.9171657Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9171761Z { 2023-01-11T21:41:26.9171966Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9172185Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9172322Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9172474Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9172579Z } 2023-01-11T21:41:26.9172730Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9172866Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9172971Z { 2023-01-11T21:41:26.9173093Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9173337Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9173489Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9173625Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9173732Z } 2023-01-11T21:41:26.9173831Z } 2023-01-11T21:41:26.9173910Z } 2023-01-11T21:41:26.9174064Z ''') 2023-01-11T21:41:26.9174073Z 2023-01-11T21:41:26.9174079Z 2023-01-11T21:41:26.9174233Z async_compile.wait(globals()) 2023-01-11T21:41:26.9174354Z del async_compile 2023-01-11T21:41:26.9174362Z 2023-01-11T21:41:26.9174477Z def call(args): 2023-01-11T21:41:26.9174601Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9174723Z args.clear() 2023-01-11T21:41:26.9175104Z buf0 = empty_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9175348Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9175460Z del arg0_1 2023-01-11T21:41:26.9175570Z del arg1_1 2023-01-11T21:41:26.9175697Z return (buf0, ) 2023-01-11T21:41:26.9175705Z 2023-01-11T21:41:26.9175710Z 2023-01-11T21:41:26.9175835Z if __name__ == "__main__": 2023-01-11T21:41:26.9176024Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9176221Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9176607Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9176980Z arg1_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9177170Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9177180Z 2023-01-11T21:41:26.9177186Z 2023-01-11T21:41:26.9177335Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9177454Z import torch 2023-01-11T21:41:26.9177566Z import random 2023-01-11T21:41:26.9177752Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9177951Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9177960Z 2023-01-11T21:41:26.9178084Z aten = torch.ops.aten 2023-01-11T21:41:26.9178284Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9178437Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9178446Z 2023-01-11T21:41:26.9178452Z 2023-01-11T21:41:26.9178704Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9179028Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9179219Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9179385Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9179544Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9179629Z { 2023-01-11T21:41:26.9179785Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9179885Z { 2023-01-11T21:41:26.9180010Z #pragma omp for 2023-01-11T21:41:26.9180141Z for(long i0=0; i0<630; i0+=1) 2023-01-11T21:41:26.9180249Z { 2023-01-11T21:41:26.9180474Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9180812Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9181008Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9181143Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9181280Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9181427Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9181528Z } 2023-01-11T21:41:26.9181680Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9181819Z for(long i0=5040; i0<5040; i0+=1) 2023-01-11T21:41:26.9181906Z { 2023-01-11T21:41:26.9182042Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9182178Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9182341Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9182475Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9182690Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9182841Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9182934Z } 2023-01-11T21:41:26.9183041Z } 2023-01-11T21:41:26.9183211Z } 2023-01-11T21:41:26.9183363Z ''') 2023-01-11T21:41:26.9183372Z 2023-01-11T21:41:26.9183378Z 2023-01-11T21:41:26.9183526Z async_compile.wait(globals()) 2023-01-11T21:41:26.9183648Z del async_compile 2023-01-11T21:41:26.9183655Z 2023-01-11T21:41:26.9183764Z def call(args): 2023-01-11T21:41:26.9183872Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9183986Z args.clear() 2023-01-11T21:41:26.9184366Z buf0 = empty_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9184625Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9184734Z del arg0_1 2023-01-11T21:41:26.9184840Z del arg1_1 2023-01-11T21:41:26.9184964Z return (buf0, ) 2023-01-11T21:41:26.9184979Z 2023-01-11T21:41:26.9184986Z 2023-01-11T21:41:26.9185109Z if __name__ == "__main__": 2023-01-11T21:41:26.9185281Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9185484Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9185891Z arg0_1 = rand_strided((2, 3, 4, 5, 6, 7), (2520, 840, 210, 42, 7, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9186255Z arg1_1 = rand_strided((6, 4, 5, 42), (840, 210, 42, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9186439Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9186448Z 2023-01-11T21:41:26.9186902Z [2023-01-11 21:39:38,110] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 505 2023-01-11T21:41:26.9187593Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9187804Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9188254Z [2023-01-11 21:39:38,131] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 506 2023-01-11T21:41:26.9188689Z [2023-01-11 21:39:38,157] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 506 2023-01-11T21:41:26.9189381Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9189591Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9190053Z [2023-01-11 21:39:38,174] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 507 2023-01-11T21:41:26.9190629Z [2023-01-11 21:39:38,182] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 507 2023-01-11T21:41:26.9191314Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9191519Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9191969Z [2023-01-11 21:39:38,207] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 508 2023-01-11T21:41:26.9192496Z [2023-01-11 21:39:38,218] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 508 2023-01-11T21:41:26.9193198Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9193405Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9193853Z [2023-01-11 21:39:38,236] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 509 2023-01-11T21:41:26.9193864Z 2023-01-11T21:41:26.9193997Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9194114Z import torch 2023-01-11T21:41:26.9194229Z import random 2023-01-11T21:41:26.9194415Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9194609Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9194617Z 2023-01-11T21:41:26.9194747Z aten = torch.ops.aten 2023-01-11T21:41:26.9194965Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9195120Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9195130Z 2023-01-11T21:41:26.9195136Z 2023-01-11T21:41:26.9195368Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9195692Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9195883Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9196052Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9196215Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9196313Z { 2023-01-11T21:41:26.9196473Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9196555Z { 2023-01-11T21:41:26.9196682Z #pragma omp for 2023-01-11T21:41:26.9196812Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9196917Z { 2023-01-11T21:41:26.9197148Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9197362Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9197506Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9197647Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9197736Z } 2023-01-11T21:41:26.9197894Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9198034Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9198136Z { 2023-01-11T21:41:26.9198273Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9198411Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9198527Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9198658Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9198759Z } 2023-01-11T21:41:26.9198858Z } 2023-01-11T21:41:26.9198952Z } 2023-01-11T21:41:26.9199105Z ''') 2023-01-11T21:41:26.9199116Z 2023-01-11T21:41:26.9199124Z 2023-01-11T21:41:26.9199281Z async_compile.wait(globals()) 2023-01-11T21:41:26.9199389Z del async_compile 2023-01-11T21:41:26.9199415Z 2023-01-11T21:41:26.9199516Z def call(args): 2023-01-11T21:41:26.9199766Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9199885Z args.clear() 2023-01-11T21:41:26.9200231Z buf0 = empty_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9200488Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9200604Z del arg0_1 2023-01-11T21:41:26.9200716Z del arg1_1 2023-01-11T21:41:26.9200820Z return (buf0, ) 2023-01-11T21:41:26.9200829Z 2023-01-11T21:41:26.9200834Z 2023-01-11T21:41:26.9200958Z if __name__ == "__main__": 2023-01-11T21:41:26.9201140Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9201337Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9201700Z arg0_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9202125Z arg1_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9202324Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9202341Z 2023-01-11T21:41:26.9202347Z 2023-01-11T21:41:26.9202498Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9202596Z import torch 2023-01-11T21:41:26.9202711Z import random 2023-01-11T21:41:26.9202895Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9203090Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9203097Z 2023-01-11T21:41:26.9203225Z aten = torch.ops.aten 2023-01-11T21:41:26.9203438Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9203584Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9203592Z 2023-01-11T21:41:26.9203599Z 2023-01-11T21:41:26.9203847Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9204159Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9204353Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9204519Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9204689Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9204785Z { 2023-01-11T21:41:26.9204943Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9205042Z { 2023-01-11T21:41:26.9205155Z #pragma omp for 2023-01-11T21:41:26.9205291Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9205393Z { 2023-01-11T21:41:26.9205614Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9205824Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9206036Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9206172Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9206304Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9206440Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9206541Z } 2023-01-11T21:41:26.9206698Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9206842Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9206945Z { 2023-01-11T21:41:26.9207077Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9207192Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9207354Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9207488Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9207621Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9207751Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9207846Z } 2023-01-11T21:41:26.9207946Z } 2023-01-11T21:41:26.9208023Z } 2023-01-11T21:41:26.9208181Z ''') 2023-01-11T21:41:26.9208192Z 2023-01-11T21:41:26.9208198Z 2023-01-11T21:41:26.9208348Z async_compile.wait(globals()) 2023-01-11T21:41:26.9208465Z del async_compile 2023-01-11T21:41:26.9208472Z 2023-01-11T21:41:26.9208593Z def call(args): 2023-01-11T21:41:26.9208715Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9208826Z args.clear() 2023-01-11T21:41:26.9209431Z buf0 = empty_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9209681Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9209799Z del arg0_1 2023-01-11T21:41:26.9209909Z del arg1_1 2023-01-11T21:41:26.9210028Z return (buf0, ) 2023-01-11T21:41:26.9210036Z 2023-01-11T21:41:26.9210042Z 2023-01-11T21:41:26.9210164Z if __name__ == "__main__": 2023-01-11T21:41:26.9210347Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9210547Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9210898Z arg0_1 = rand_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9211236Z arg1_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9211550Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9211567Z 2023-01-11T21:41:26.9211580Z 2023-01-11T21:41:26.9211744Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9211859Z import torch 2023-01-11T21:41:26.9211977Z import random 2023-01-11T21:41:26.9212162Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9212354Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9212365Z 2023-01-11T21:41:26.9212470Z aten = torch.ops.aten 2023-01-11T21:41:26.9212688Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9212832Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9212840Z 2023-01-11T21:41:26.9212846Z 2023-01-11T21:41:26.9213101Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9213426Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9213615Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9213786Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9213951Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9214042Z { 2023-01-11T21:41:26.9214200Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9214298Z { 2023-01-11T21:41:26.9214422Z #pragma omp for 2023-01-11T21:41:26.9214551Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9214653Z { 2023-01-11T21:41:26.9214882Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9215075Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9215213Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9215355Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9215462Z } 2023-01-11T21:41:26.9215617Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9215745Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9215849Z { 2023-01-11T21:41:26.9215973Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9216113Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9216251Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9216382Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9216483Z } 2023-01-11T21:41:26.9216583Z } 2023-01-11T21:41:26.9216678Z } 2023-01-11T21:41:26.9216812Z ''') 2023-01-11T21:41:26.9216821Z 2023-01-11T21:41:26.9216827Z 2023-01-11T21:41:26.9216975Z async_compile.wait(globals()) 2023-01-11T21:41:26.9217093Z del async_compile 2023-01-11T21:41:26.9217103Z 2023-01-11T21:41:26.9217217Z def call(args): 2023-01-11T21:41:26.9217339Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9217455Z args.clear() 2023-01-11T21:41:26.9217818Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9218072Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9218167Z del arg0_1 2023-01-11T21:41:26.9218283Z del arg1_1 2023-01-11T21:41:26.9218400Z return (buf0, ) 2023-01-11T21:41:26.9218408Z 2023-01-11T21:41:26.9218532Z 2023-01-11T21:41:26.9218668Z if __name__ == "__main__": 2023-01-11T21:41:26.9218853Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9219053Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9219404Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9219735Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9219920Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9219930Z 2023-01-11T21:41:26.9219936Z 2023-01-11T21:41:26.9220085Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9220195Z import torch 2023-01-11T21:41:26.9220310Z import random 2023-01-11T21:41:26.9220490Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9220763Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9220776Z 2023-01-11T21:41:26.9220916Z aten = torch.ops.aten 2023-01-11T21:41:26.9221113Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9221267Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9221276Z 2023-01-11T21:41:26.9221281Z 2023-01-11T21:41:26.9221522Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9221843Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9222035Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9222196Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9222355Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9222456Z { 2023-01-11T21:41:26.9222597Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9222694Z { 2023-01-11T21:41:26.9222823Z #pragma omp for 2023-01-11T21:41:26.9222959Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9223068Z { 2023-01-11T21:41:26.9223368Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9223592Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9223788Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9223926Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9224063Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9224214Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9224313Z } 2023-01-11T21:41:26.9224465Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9224595Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9224682Z { 2023-01-11T21:41:26.9224821Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9224953Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9225116Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9225256Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9225390Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9225517Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9225609Z } 2023-01-11T21:41:26.9225710Z } 2023-01-11T21:41:26.9225807Z } 2023-01-11T21:41:26.9225965Z ''') 2023-01-11T21:41:26.9225976Z 2023-01-11T21:41:26.9225982Z 2023-01-11T21:41:26.9226132Z async_compile.wait(globals()) 2023-01-11T21:41:26.9226248Z del async_compile 2023-01-11T21:41:26.9226256Z 2023-01-11T21:41:26.9226371Z def call(args): 2023-01-11T21:41:26.9226477Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9226591Z args.clear() 2023-01-11T21:41:26.9226947Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9227212Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9227329Z del arg0_1 2023-01-11T21:41:26.9227436Z del arg1_1 2023-01-11T21:41:26.9227549Z return (buf0, ) 2023-01-11T21:41:26.9227564Z 2023-01-11T21:41:26.9227571Z 2023-01-11T21:41:26.9227697Z if __name__ == "__main__": 2023-01-11T21:41:26.9227867Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9228203Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9228545Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9228887Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9229072Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9229082Z 2023-01-11T21:41:26.9229533Z [2023-01-11 21:39:38,248] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 509 2023-01-11T21:41:26.9230316Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9230545Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9231007Z [2023-01-11 21:39:38,269] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 510 2023-01-11T21:41:26.9231393Z [2023-01-11 21:39:38,281] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 510 2023-01-11T21:41:26.9232096Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9232292Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9232734Z [2023-01-11 21:39:38,299] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 511 2023-01-11T21:41:26.9233171Z [2023-01-11 21:39:38,312] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 511 2023-01-11T21:41:26.9233879Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9234076Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9234505Z [2023-01-11 21:39:38,331] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 512 2023-01-11T21:41:26.9234936Z [2023-01-11 21:39:38,345] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 512 2023-01-11T21:41:26.9234945Z 2023-01-11T21:41:26.9235101Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9235217Z import torch 2023-01-11T21:41:26.9235312Z import random 2023-01-11T21:41:26.9235500Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9235694Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9235702Z 2023-01-11T21:41:26.9235825Z aten = torch.ops.aten 2023-01-11T21:41:26.9236037Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9236184Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9236192Z 2023-01-11T21:41:26.9236198Z 2023-01-11T21:41:26.9236420Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9236746Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9236920Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9237085Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9237246Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9237342Z { 2023-01-11T21:41:26.9237499Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9237675Z { 2023-01-11T21:41:26.9237799Z #pragma omp for 2023-01-11T21:41:26.9237916Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9238016Z { 2023-01-11T21:41:26.9238233Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9238445Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9238581Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9238724Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9238826Z } 2023-01-11T21:41:26.9238962Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9239096Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9239193Z { 2023-01-11T21:41:26.9239329Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9239461Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9239645Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9239780Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9239868Z } 2023-01-11T21:41:26.9239962Z } 2023-01-11T21:41:26.9240056Z } 2023-01-11T21:41:26.9240192Z ''') 2023-01-11T21:41:26.9240201Z 2023-01-11T21:41:26.9240208Z 2023-01-11T21:41:26.9240348Z async_compile.wait(globals()) 2023-01-11T21:41:26.9240466Z del async_compile 2023-01-11T21:41:26.9240474Z 2023-01-11T21:41:26.9240584Z def call(args): 2023-01-11T21:41:26.9240688Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9240800Z args.clear() 2023-01-11T21:41:26.9241180Z buf0 = empty_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9241439Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9241549Z del arg0_1 2023-01-11T21:41:26.9241655Z del arg1_1 2023-01-11T21:41:26.9241766Z return (buf0, ) 2023-01-11T21:41:26.9241779Z 2023-01-11T21:41:26.9241785Z 2023-01-11T21:41:26.9241903Z if __name__ == "__main__": 2023-01-11T21:41:26.9242071Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9242270Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9242606Z arg0_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9242981Z arg1_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9243165Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9243173Z 2023-01-11T21:41:26.9243179Z 2023-01-11T21:41:26.9243326Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9243437Z import torch 2023-01-11T21:41:26.9243550Z import random 2023-01-11T21:41:26.9243715Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9243908Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9243915Z 2023-01-11T21:41:26.9244043Z aten = torch.ops.aten 2023-01-11T21:41:26.9244256Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9244403Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9244418Z 2023-01-11T21:41:26.9244424Z 2023-01-11T21:41:26.9244645Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9244972Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9245161Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9245310Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9245467Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9245566Z { 2023-01-11T21:41:26.9245727Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9245824Z { 2023-01-11T21:41:26.9245947Z #pragma omp for 2023-01-11T21:41:26.9246078Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9246165Z { 2023-01-11T21:41:26.9246388Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9246597Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9246883Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9247017Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9247151Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9247296Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9247394Z } 2023-01-11T21:41:26.9247531Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9247668Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9247772Z { 2023-01-11T21:41:26.9247909Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9248043Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9248201Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9248318Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9248448Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9248626Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9248732Z } 2023-01-11T21:41:26.9248830Z } 2023-01-11T21:41:26.9248928Z } 2023-01-11T21:41:26.9249214Z ''') 2023-01-11T21:41:26.9249224Z 2023-01-11T21:41:26.9249230Z 2023-01-11T21:41:26.9249361Z async_compile.wait(globals()) 2023-01-11T21:41:26.9249476Z del async_compile 2023-01-11T21:41:26.9249484Z 2023-01-11T21:41:26.9249594Z def call(args): 2023-01-11T21:41:26.9249711Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9249823Z args.clear() 2023-01-11T21:41:26.9250201Z buf0 = empty_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9250468Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9250580Z del arg0_1 2023-01-11T21:41:26.9250671Z del arg1_1 2023-01-11T21:41:26.9250781Z return (buf0, ) 2023-01-11T21:41:26.9250788Z 2023-01-11T21:41:26.9250794Z 2023-01-11T21:41:26.9250917Z if __name__ == "__main__": 2023-01-11T21:41:26.9251100Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9251304Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9251639Z arg0_1 = rand_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9252009Z arg1_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9252194Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9252203Z 2023-01-11T21:41:26.9252209Z 2023-01-11T21:41:26.9252345Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9252454Z import torch 2023-01-11T21:41:26.9252563Z import random 2023-01-11T21:41:26.9252750Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9252942Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9252951Z 2023-01-11T21:41:26.9253075Z aten = torch.ops.aten 2023-01-11T21:41:26.9253293Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9253439Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9253449Z 2023-01-11T21:41:26.9253459Z 2023-01-11T21:41:26.9253665Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9253990Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9254181Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9254346Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9254502Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9254598Z { 2023-01-11T21:41:26.9254754Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9254836Z { 2023-01-11T21:41:26.9254957Z #pragma omp for 2023-01-11T21:41:26.9255087Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9255184Z { 2023-01-11T21:41:26.9255405Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9255619Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9255757Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9256011Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9256095Z } 2023-01-11T21:41:26.9256243Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9256373Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.9256471Z { 2023-01-11T21:41:26.9256603Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9256734Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9256852Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9256977Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9257073Z } 2023-01-11T21:41:26.9257169Z } 2023-01-11T21:41:26.9257263Z } 2023-01-11T21:41:26.9257394Z ''') 2023-01-11T21:41:26.9257402Z 2023-01-11T21:41:26.9257408Z 2023-01-11T21:41:26.9257549Z async_compile.wait(globals()) 2023-01-11T21:41:26.9257647Z del async_compile 2023-01-11T21:41:26.9257736Z 2023-01-11T21:41:26.9257837Z def call(args): 2023-01-11T21:41:26.9257953Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9258070Z args.clear() 2023-01-11T21:41:26.9258419Z buf0 = empty_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9258679Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9258788Z del arg0_1 2023-01-11T21:41:26.9258893Z del arg1_1 2023-01-11T21:41:26.9258990Z return (buf0, ) 2023-01-11T21:41:26.9258999Z 2023-01-11T21:41:26.9259005Z 2023-01-11T21:41:26.9259126Z if __name__ == "__main__": 2023-01-11T21:41:26.9259307Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9259503Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9259833Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9260177Z arg1_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9260359Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9260367Z 2023-01-11T21:41:26.9260378Z 2023-01-11T21:41:26.9260528Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9260626Z import torch 2023-01-11T21:41:26.9260735Z import random 2023-01-11T21:41:26.9260919Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9261112Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9261120Z 2023-01-11T21:41:26.9261244Z aten = torch.ops.aten 2023-01-11T21:41:26.9261456Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9261603Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9261611Z 2023-01-11T21:41:26.9261617Z 2023-01-11T21:41:26.9261835Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9262141Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9262337Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9262502Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9262662Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9262759Z { 2023-01-11T21:41:26.9262915Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9263012Z { 2023-01-11T21:41:26.9263195Z #pragma omp for 2023-01-11T21:41:26.9263332Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9263433Z { 2023-01-11T21:41:26.9263650Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9263860Z auto tmp3 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9264068Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9264203Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9264336Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9264469Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9264571Z } 2023-01-11T21:41:26.9264721Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9264853Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.9265026Z { 2023-01-11T21:41:26.9265163Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9265279Z auto tmp3 = in_ptr1[i0]; 2023-01-11T21:41:26.9265438Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9265568Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9265700Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9265829Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9265929Z } 2023-01-11T21:41:26.9266023Z } 2023-01-11T21:41:26.9266103Z } 2023-01-11T21:41:26.9266241Z ''') 2023-01-11T21:41:26.9266251Z 2023-01-11T21:41:26.9266258Z 2023-01-11T21:41:26.9266398Z async_compile.wait(globals()) 2023-01-11T21:41:26.9266515Z del async_compile 2023-01-11T21:41:26.9266523Z 2023-01-11T21:41:26.9266634Z def call(args): 2023-01-11T21:41:26.9266753Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9266918Z args.clear() 2023-01-11T21:41:26.9267272Z buf0 = empty_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9267520Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9267628Z del arg0_1 2023-01-11T21:41:26.9267732Z del arg1_1 2023-01-11T21:41:26.9267847Z return (buf0, ) 2023-01-11T21:41:26.9267854Z 2023-01-11T21:41:26.9267860Z 2023-01-11T21:41:26.9267979Z if __name__ == "__main__": 2023-01-11T21:41:26.9268160Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9268359Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9268667Z arg0_1 = rand_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9269010Z arg1_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9269191Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9269203Z 2023-01-11T21:41:26.9269306Z ok (16.844s) 2023-01-11T21:41:26.9270069Z test_views2_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9270279Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9270711Z [2023-01-11 21:39:38,362] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 513 2023-01-11T21:41:26.9271152Z [2023-01-11 21:39:39,936] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 513 2023-01-11T21:41:26.9271857Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9272059Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9272483Z [2023-01-11 21:39:39,956] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 514 2023-01-11T21:41:26.9272912Z [2023-01-11 21:39:41,549] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 514 2023-01-11T21:41:26.9273612Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9273816Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9274240Z [2023-01-11 21:39:41,565] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 515 2023-01-11T21:41:26.9274756Z [2023-01-11 21:39:43,095] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 515 2023-01-11T21:41:26.9275451Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9275647Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9276070Z [2023-01-11 21:39:43,114] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 516 2023-01-11T21:41:26.9276557Z [2023-01-11 21:39:44,796] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 516 2023-01-11T21:41:26.9277262Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9277460Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9277889Z [2023-01-11 21:39:44,813] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 517 2023-01-11T21:41:26.9277898Z 2023-01-11T21:41:26.9278036Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9278148Z import torch 2023-01-11T21:41:26.9278258Z import random 2023-01-11T21:41:26.9278445Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9278642Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9278651Z 2023-01-11T21:41:26.9278776Z aten = torch.ops.aten 2023-01-11T21:41:26.9278995Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9279142Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9279151Z 2023-01-11T21:41:26.9279157Z 2023-01-11T21:41:26.9279364Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9279689Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9279879Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9280036Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9280135Z { 2023-01-11T21:41:26.9280292Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9280389Z { 2023-01-11T21:41:26.9280496Z #pragma omp for 2023-01-11T21:41:26.9280625Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9280723Z { 2023-01-11T21:41:26.9280945Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9281159Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9281297Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9281441Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9281526Z } 2023-01-11T21:41:26.9281676Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9281806Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.9281908Z { 2023-01-11T21:41:26.9282039Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9282197Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9282330Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9282445Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9282544Z } 2023-01-11T21:41:26.9282640Z } 2023-01-11T21:41:26.9282734Z } 2023-01-11T21:41:26.9282864Z ''') 2023-01-11T21:41:26.9282873Z 2023-01-11T21:41:26.9282879Z 2023-01-11T21:41:26.9283027Z async_compile.wait(globals()) 2023-01-11T21:41:26.9283141Z del async_compile 2023-01-11T21:41:26.9283149Z 2023-01-11T21:41:26.9283330Z def call(args): 2023-01-11T21:41:26.9283425Z arg0_1, = args 2023-01-11T21:41:26.9283533Z args.clear() 2023-01-11T21:41:26.9283860Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9284072Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9284179Z del arg0_1 2023-01-11T21:41:26.9284291Z return (buf0, ) 2023-01-11T21:41:26.9284299Z 2023-01-11T21:41:26.9284305Z 2023-01-11T21:41:26.9284422Z if __name__ == "__main__": 2023-01-11T21:41:26.9284589Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9284785Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9285134Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9285360Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9285372Z 2023-01-11T21:41:26.9285377Z 2023-01-11T21:41:26.9285528Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9285647Z import torch 2023-01-11T21:41:26.9285759Z import random 2023-01-11T21:41:26.9285943Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9286121Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9286129Z 2023-01-11T21:41:26.9286252Z aten = torch.ops.aten 2023-01-11T21:41:26.9286462Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9286607Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9286615Z 2023-01-11T21:41:26.9286621Z 2023-01-11T21:41:26.9286844Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9287170Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9287361Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9287522Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9287601Z { 2023-01-11T21:41:26.9287753Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9287852Z { 2023-01-11T21:41:26.9287973Z #pragma omp for 2023-01-11T21:41:26.9288101Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9288201Z { 2023-01-11T21:41:26.9288417Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9288617Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.9288752Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.9288960Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9289221Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9289368Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9289467Z } 2023-01-11T21:41:26.9289620Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9289736Z for(long i0=16; i0<16; i0+=1) 2023-01-11T21:41:26.9289839Z { 2023-01-11T21:41:26.9289972Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9290131Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.9290268Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.9290424Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.9290559Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9290673Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9290770Z } 2023-01-11T21:41:26.9290868Z } 2023-01-11T21:41:26.9290963Z } 2023-01-11T21:41:26.9291096Z ''') 2023-01-11T21:41:26.9291104Z 2023-01-11T21:41:26.9291110Z 2023-01-11T21:41:26.9291253Z async_compile.wait(globals()) 2023-01-11T21:41:26.9291370Z del async_compile 2023-01-11T21:41:26.9291378Z 2023-01-11T21:41:26.9291475Z def call(args): 2023-01-11T21:41:26.9291583Z arg0_1, = args 2023-01-11T21:41:26.9291695Z args.clear() 2023-01-11T21:41:26.9292022Z buf0 = empty_strided((4, 4), (4, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9292241Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9292348Z del arg0_1 2023-01-11T21:41:26.9292568Z return (buf0, ) 2023-01-11T21:41:26.9292575Z 2023-01-11T21:41:26.9292580Z 2023-01-11T21:41:26.9292685Z if __name__ == "__main__": 2023-01-11T21:41:26.9292827Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9292993Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9293318Z arg0_1 = rand_strided((2, 2, 2, 2), (8, 4, 2, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9293504Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9293514Z 2023-01-11T21:41:26.9293521Z 2023-01-11T21:41:26.9293683Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9293803Z import torch 2023-01-11T21:41:26.9293927Z import random 2023-01-11T21:41:26.9294111Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9294322Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9294394Z 2023-01-11T21:41:26.9294533Z aten = torch.ops.aten 2023-01-11T21:41:26.9294766Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9294930Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9294938Z 2023-01-11T21:41:26.9294945Z 2023-01-11T21:41:26.9295191Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9295549Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9295755Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9295925Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9296015Z { 2023-01-11T21:41:26.9296183Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9296288Z { 2023-01-11T21:41:26.9296422Z #pragma omp for 2023-01-11T21:41:26.9296564Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9296674Z { 2023-01-11T21:41:26.9296898Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9297134Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9297283Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9297442Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9297551Z } 2023-01-11T21:41:26.9297716Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9297866Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9297971Z { 2023-01-11T21:41:26.9298101Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9298268Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9298417Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9298553Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9298661Z } 2023-01-11T21:41:26.9298767Z } 2023-01-11T21:41:26.9298854Z } 2023-01-11T21:41:26.9299001Z ''') 2023-01-11T21:41:26.9299010Z 2023-01-11T21:41:26.9299017Z 2023-01-11T21:41:26.9299175Z async_compile.wait(globals()) 2023-01-11T21:41:26.9299304Z del async_compile 2023-01-11T21:41:26.9299313Z 2023-01-11T21:41:26.9299435Z def call(args): 2023-01-11T21:41:26.9299557Z arg0_1, = args 2023-01-11T21:41:26.9299684Z args.clear() 2023-01-11T21:41:26.9300048Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9300269Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9300383Z del arg0_1 2023-01-11T21:41:26.9300503Z return (buf0, ) 2023-01-11T21:41:26.9300512Z 2023-01-11T21:41:26.9300519Z 2023-01-11T21:41:26.9300646Z if __name__ == "__main__": 2023-01-11T21:41:26.9300846Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9301058Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9301471Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9301661Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9301670Z 2023-01-11T21:41:26.9301681Z 2023-01-11T21:41:26.9301831Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9301951Z import torch 2023-01-11T21:41:26.9302159Z import random 2023-01-11T21:41:26.9302359Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9302569Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9302577Z 2023-01-11T21:41:26.9302709Z aten = torch.ops.aten 2023-01-11T21:41:26.9302940Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9303086Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9303112Z 2023-01-11T21:41:26.9303188Z 2023-01-11T21:41:26.9303417Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9303771Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9303978Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9304148Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9304253Z { 2023-01-11T21:41:26.9304486Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9304595Z { 2023-01-11T21:41:26.9304712Z #pragma omp for 2023-01-11T21:41:26.9304859Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9304966Z { 2023-01-11T21:41:26.9305200Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9305436Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.9305584Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.9305817Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9305962Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9306104Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9306214Z } 2023-01-11T21:41:26.9306379Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9306528Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9306637Z { 2023-01-11T21:41:26.9306786Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9306942Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.9307092Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.9307264Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.9307409Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9307547Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9307657Z } 2023-01-11T21:41:26.9307764Z } 2023-01-11T21:41:26.9307850Z } 2023-01-11T21:41:26.9308001Z ''') 2023-01-11T21:41:26.9308011Z 2023-01-11T21:41:26.9308018Z 2023-01-11T21:41:26.9308176Z async_compile.wait(globals()) 2023-01-11T21:41:26.9308304Z del async_compile 2023-01-11T21:41:26.9308313Z 2023-01-11T21:41:26.9308437Z def call(args): 2023-01-11T21:41:26.9308559Z arg0_1, = args 2023-01-11T21:41:26.9308686Z args.clear() 2023-01-11T21:41:26.9309051Z buf0 = empty_strided((10, 100), (100, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9309274Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9309389Z del arg0_1 2023-01-11T21:41:26.9309510Z return (buf0, ) 2023-01-11T21:41:26.9309523Z 2023-01-11T21:41:26.9309530Z 2023-01-11T21:41:26.9309657Z if __name__ == "__main__": 2023-01-11T21:41:26.9309855Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9310073Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9310488Z arg0_1 = rand_strided((10, 1, 10, 1, 10), (100, 100, 10, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9310662Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9310686Z 2023-01-11T21:41:26.9311164Z [2023-01-11 21:39:44,821] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 517 2023-01-11T21:41:26.9311945Z /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9312272Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9312742Z [2023-01-11 21:39:44,838] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 518 2023-01-11T21:41:26.9313223Z [2023-01-11 21:39:44,846] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 518 2023-01-11T21:41:26.9313233Z 2023-01-11T21:41:26.9313395Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9313523Z import torch 2023-01-11T21:41:26.9313650Z import random 2023-01-11T21:41:26.9313850Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9314047Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9314056Z 2023-01-11T21:41:26.9314188Z aten = torch.ops.aten 2023-01-11T21:41:26.9314475Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9314643Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9314653Z 2023-01-11T21:41:26.9314664Z 2023-01-11T21:41:26.9314907Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9315263Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9315471Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9315644Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9315734Z { 2023-01-11T21:41:26.9315903Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9316010Z { 2023-01-11T21:41:26.9316144Z #pragma omp for 2023-01-11T21:41:26.9316286Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9316397Z { 2023-01-11T21:41:26.9316632Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9316851Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9317003Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9317161Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9317277Z } 2023-01-11T21:41:26.9317441Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9317587Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9317695Z { 2023-01-11T21:41:26.9317829Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9318000Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9318146Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9318284Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9318398Z } 2023-01-11T21:41:26.9318500Z } 2023-01-11T21:41:26.9318600Z } 2023-01-11T21:41:26.9318733Z ''') 2023-01-11T21:41:26.9318741Z 2023-01-11T21:41:26.9318748Z 2023-01-11T21:41:26.9318901Z async_compile.wait(globals()) 2023-01-11T21:41:26.9319027Z del async_compile 2023-01-11T21:41:26.9319036Z 2023-01-11T21:41:26.9319157Z def call(args): 2023-01-11T21:41:26.9319280Z arg0_1, = args 2023-01-11T21:41:26.9319405Z args.clear() 2023-01-11T21:41:26.9319790Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9320013Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9320134Z del arg0_1 2023-01-11T21:41:26.9320258Z return (buf0, ) 2023-01-11T21:41:26.9320267Z 2023-01-11T21:41:26.9320274Z 2023-01-11T21:41:26.9320402Z if __name__ == "__main__": 2023-01-11T21:41:26.9320603Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9320816Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9321180Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9321367Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9321376Z 2023-01-11T21:41:26.9321383Z 2023-01-11T21:41:26.9321546Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9321651Z import torch 2023-01-11T21:41:26.9321776Z import random 2023-01-11T21:41:26.9321979Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9322268Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9322276Z 2023-01-11T21:41:26.9322409Z aten = torch.ops.aten 2023-01-11T21:41:26.9322640Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9322798Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9322807Z 2023-01-11T21:41:26.9322813Z 2023-01-11T21:41:26.9323044Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9323403Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9323609Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9323779Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9323883Z { 2023-01-11T21:41:26.9324054Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9324158Z { 2023-01-11T21:41:26.9324335Z #pragma omp for 2023-01-11T21:41:26.9324490Z for(long i0=0; i0<125; i0+=1) 2023-01-11T21:41:26.9324597Z { 2023-01-11T21:41:26.9324839Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9325071Z auto tmp1 = at::vec::Vectorized(static_cast(2)); 2023-01-11T21:41:26.9325219Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.9325452Z auto tmp3 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9325597Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9325742Z tmp4.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9325850Z } 2023-01-11T21:41:26.9326014Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9326162Z for(long i0=1000; i0<1000; i0+=1) 2023-01-11T21:41:26.9326272Z { 2023-01-11T21:41:26.9326416Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9326591Z auto tmp1 = static_cast(2); 2023-01-11T21:41:26.9326725Z auto tmp2 = tmp0 * tmp1; 2023-01-11T21:41:26.9326893Z auto tmp3 = static_cast(1); 2023-01-11T21:41:26.9327043Z auto tmp4 = tmp2 + tmp3; 2023-01-11T21:41:26.9327181Z out_ptr0[i0] = tmp4; 2023-01-11T21:41:26.9327290Z } 2023-01-11T21:41:26.9327394Z } 2023-01-11T21:41:26.9327484Z } 2023-01-11T21:41:26.9327629Z ''') 2023-01-11T21:41:26.9327637Z 2023-01-11T21:41:26.9327643Z 2023-01-11T21:41:26.9327799Z async_compile.wait(globals()) 2023-01-11T21:41:26.9327923Z del async_compile 2023-01-11T21:41:26.9327932Z 2023-01-11T21:41:26.9328064Z def call(args): 2023-01-11T21:41:26.9328183Z arg0_1, = args 2023-01-11T21:41:26.9328305Z args.clear() 2023-01-11T21:41:26.9328681Z buf0 = empty_strided((10, 5, 20), (100, 20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9328895Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9329137Z del arg0_1 2023-01-11T21:41:26.9329268Z return (buf0, ) 2023-01-11T21:41:26.9329277Z 2023-01-11T21:41:26.9329283Z 2023-01-11T21:41:26.9329412Z if __name__ == "__main__": 2023-01-11T21:41:26.9329615Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9329828Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9330199Z arg0_1 = rand_strided((50, 20), (20, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9330385Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9330393Z 2023-01-11T21:41:26.9330491Z ok (6.501s) 2023-01-11T21:41:26.9331324Z test_views3_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9331547Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9332019Z [2023-01-11 21:39:44,907] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 519 2023-01-11T21:41:26.9332606Z [2023-01-11 21:39:46,486] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 519 2023-01-11T21:41:26.9332616Z 2023-01-11T21:41:26.9332781Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9332902Z import torch 2023-01-11T21:41:26.9333027Z import random 2023-01-11T21:41:26.9333227Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9333421Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9333430Z 2023-01-11T21:41:26.9333566Z aten = torch.ops.aten 2023-01-11T21:41:26.9333802Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9333964Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9333972Z 2023-01-11T21:41:26.9333979Z 2023-01-11T21:41:26.9334291Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9334653Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9334863Z extern "C" void kernel(const long* __restrict__ in_ptr0, 2023-01-11T21:41:26.9335042Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9335199Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9335301Z { 2023-01-11T21:41:26.9335473Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9335579Z { 2023-01-11T21:41:26.9335711Z #pragma omp for 2023-01-11T21:41:26.9335855Z for(long i0=0; i0<744; i0+=1) 2023-01-11T21:41:26.9335966Z { 2023-01-11T21:41:26.9336090Z #pragma GCC ivdep 2023-01-11T21:41:26.9336235Z for(long i1=0; i1<192; i1+=1) 2023-01-11T21:41:26.9336346Z { 2023-01-11T21:41:26.9336462Z { 2023-01-11T21:41:26.9336577Z { 2023-01-11T21:41:26.9336758Z auto tmp0 = in_ptr0[(3*i0) + (i1 / 64)]; 2023-01-11T21:41:26.9336946Z auto tmp1 = in_ptr1[(64*tmp0) + (i1 % 64)]; 2023-01-11T21:41:26.9337101Z out_ptr0[i1 + (192*i0)] = tmp1; 2023-01-11T21:41:26.9337216Z } 2023-01-11T21:41:26.9337326Z } 2023-01-11T21:41:26.9337435Z } 2023-01-11T21:41:26.9337545Z } 2023-01-11T21:41:26.9337653Z } 2023-01-11T21:41:26.9337742Z } 2023-01-11T21:41:26.9337888Z ''') 2023-01-11T21:41:26.9337897Z 2023-01-11T21:41:26.9337903Z 2023-01-11T21:41:26.9338061Z async_compile.wait(globals()) 2023-01-11T21:41:26.9338186Z del async_compile 2023-01-11T21:41:26.9338194Z 2023-01-11T21:41:26.9338313Z def call(args): 2023-01-11T21:41:26.9338443Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9338563Z args.clear() 2023-01-11T21:41:26.9338978Z buf0 = empty_strided((1, 12, 62, 192), (142848, 11904, 192, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9339247Z kernel_cpp_0(c_void_p(arg1_1.data_ptr()), c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9339363Z del arg0_1 2023-01-11T21:41:26.9339481Z del arg1_1 2023-01-11T21:41:26.9339608Z return (buf0, ) 2023-01-11T21:41:26.9339617Z 2023-01-11T21:41:26.9339623Z 2023-01-11T21:41:26.9339753Z if __name__ == "__main__": 2023-01-11T21:41:26.9339950Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9340165Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9340533Z arg0_1 = rand_strided((64, 64), (64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9340866Z arg1_1 = rand_strided((2232, ), (1, ), device='cpu', dtype=torch.int64) 2023-01-11T21:41:26.9341069Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9341078Z 2023-01-11T21:41:26.9341191Z ok (1.641s) 2023-01-11T21:41:26.9341827Z test_zero_dim_reductions_cpu (__main__.CpuTests) ... [2023-01-11 21:39:46,550] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 520 2023-01-11T21:41:26.9342305Z [2023-01-11 21:39:48,166] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 520 2023-01-11T21:41:26.9342806Z [2023-01-11 21:39:48,231] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 521 2023-01-11T21:41:26.9343247Z [2023-01-11 21:39:48,238] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 521 2023-01-11T21:41:26.9343254Z 2023-01-11T21:41:26.9343386Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9343478Z import torch 2023-01-11T21:41:26.9343563Z import random 2023-01-11T21:41:26.9343718Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9343879Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9343886Z 2023-01-11T21:41:26.9343993Z aten = torch.ops.aten 2023-01-11T21:41:26.9344167Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9344336Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9344344Z 2023-01-11T21:41:26.9344349Z 2023-01-11T21:41:26.9344538Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9344789Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9344936Z extern "C" void kernel(bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.9345018Z { 2023-01-11T21:41:26.9345121Z #pragma GCC ivdep 2023-01-11T21:41:26.9345227Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9345308Z { 2023-01-11T21:41:26.9345392Z { 2023-01-11T21:41:26.9345461Z { 2023-01-11T21:41:26.9345597Z auto tmp0 = static_cast(false); 2023-01-11T21:41:26.9345708Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.9345819Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.9345904Z } 2023-01-11T21:41:26.9345986Z } 2023-01-11T21:41:26.9346066Z } 2023-01-11T21:41:26.9346130Z } 2023-01-11T21:41:26.9346234Z ''') 2023-01-11T21:41:26.9346241Z 2023-01-11T21:41:26.9346249Z 2023-01-11T21:41:26.9346369Z async_compile.wait(globals()) 2023-01-11T21:41:26.9346468Z del async_compile 2023-01-11T21:41:26.9346478Z 2023-01-11T21:41:26.9346570Z def call(args): 2023-01-11T21:41:26.9346661Z arg0_1, = args 2023-01-11T21:41:26.9346758Z args.clear() 2023-01-11T21:41:26.9347002Z buf0 = empty_strided((2, 1), (1, 1), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.9347138Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9347233Z return (buf0, ) 2023-01-11T21:41:26.9347240Z 2023-01-11T21:41:26.9347245Z 2023-01-11T21:41:26.9347343Z if __name__ == "__main__": 2023-01-11T21:41:26.9347491Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9347653Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9347920Z arg0_1 = rand_strided((2, 0), (1, 1), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.9348062Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9348069Z 2023-01-11T21:41:26.9348078Z 2023-01-11T21:41:26.9348200Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9348279Z import torch 2023-01-11T21:41:26.9348373Z import random 2023-01-11T21:41:26.9348525Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9348682Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9348688Z 2023-01-11T21:41:26.9348789Z aten = torch.ops.aten 2023-01-11T21:41:26.9348963Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9349084Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9349090Z 2023-01-11T21:41:26.9349095Z 2023-01-11T21:41:26.9349261Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9349524Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9349671Z extern "C" void kernel(bool* __restrict__ out_ptr0) 2023-01-11T21:41:26.9349751Z { 2023-01-11T21:41:26.9349850Z #pragma GCC ivdep 2023-01-11T21:41:26.9349959Z for(long i0=0; i0<2; i0+=1) 2023-01-11T21:41:26.9350040Z { 2023-01-11T21:41:26.9350109Z { 2023-01-11T21:41:26.9350193Z { 2023-01-11T21:41:26.9350377Z auto tmp0 = static_cast(false); 2023-01-11T21:41:26.9350489Z auto tmp1 = tmp0 == 0; 2023-01-11T21:41:26.9350601Z out_ptr0[i0] = tmp1; 2023-01-11T21:41:26.9350686Z } 2023-01-11T21:41:26.9350769Z } 2023-01-11T21:41:26.9350834Z } 2023-01-11T21:41:26.9350912Z } 2023-01-11T21:41:26.9351024Z ''') 2023-01-11T21:41:26.9351031Z 2023-01-11T21:41:26.9351036Z 2023-01-11T21:41:26.9351160Z async_compile.wait(globals()) 2023-01-11T21:41:26.9351255Z del async_compile 2023-01-11T21:41:26.9351262Z 2023-01-11T21:41:26.9351352Z def call(args): 2023-01-11T21:41:26.9351443Z arg0_1, = args 2023-01-11T21:41:26.9351524Z args.clear() 2023-01-11T21:41:26.9351776Z buf0 = empty_strided((2, ), (1, ), device='cpu', dtype=torch.bool) 2023-01-11T21:41:26.9351942Z kernel_cpp_0(c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9352042Z return (buf0, ) 2023-01-11T21:41:26.9352049Z 2023-01-11T21:41:26.9352054Z 2023-01-11T21:41:26.9352157Z if __name__ == "__main__": 2023-01-11T21:41:26.9352306Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9352466Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9352733Z arg0_1 = rand_strided((2, 0), (1, 1), device='cpu', dtype=torch.float16) 2023-01-11T21:41:26.9352859Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9352866Z 2023-01-11T21:41:26.9352953Z ok (1.751s) 2023-01-11T21:41:26.9353566Z test_zeros_cpu (__main__.CpuTests) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9353733Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9354085Z [2023-01-11 21:39:48,348] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 522 2023-01-11T21:41:26.9354448Z [2023-01-11 21:39:49,959] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 522 2023-01-11T21:41:26.9354455Z 2023-01-11T21:41:26.9354578Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9354670Z import torch 2023-01-11T21:41:26.9354763Z import random 2023-01-11T21:41:26.9354899Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9355056Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9355063Z 2023-01-11T21:41:26.9355166Z aten = torch.ops.aten 2023-01-11T21:41:26.9355341Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9355462Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9355469Z 2023-01-11T21:41:26.9355477Z 2023-01-11T21:41:26.9355659Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9355919Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9356082Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9356198Z float* __restrict__ out_ptr0, 2023-01-11T21:41:26.9356330Z float* __restrict__ out_ptr1, 2023-01-11T21:41:26.9356455Z float* __restrict__ out_ptr2, 2023-01-11T21:41:26.9356580Z float* __restrict__ out_ptr3, 2023-01-11T21:41:26.9356704Z float* __restrict__ out_ptr4, 2023-01-11T21:41:26.9356826Z float* __restrict__ out_ptr5) 2023-01-11T21:41:26.9356906Z { 2023-01-11T21:41:26.9357020Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9357101Z { 2023-01-11T21:41:26.9357205Z #pragma omp for 2023-01-11T21:41:26.9357316Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9357400Z { 2023-01-11T21:41:26.9357583Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9357812Z auto tmp1 = at::vec::Vectorized(static_cast(1)); 2023-01-11T21:41:26.9357925Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9358033Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9358153Z tmp2.store(out_ptr1 + 8*i0); 2023-01-11T21:41:26.9358235Z } 2023-01-11T21:41:26.9358360Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9358467Z for(long i0=8; i0<8; i0+=1) 2023-01-11T21:41:26.9358551Z { 2023-01-11T21:41:26.9358649Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9358780Z auto tmp1 = static_cast(1); 2023-01-11T21:41:26.9358890Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9358998Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9359101Z out_ptr1[i0] = tmp2; 2023-01-11T21:41:26.9359220Z } 2023-01-11T21:41:26.9359328Z #pragma omp for 2023-01-11T21:41:26.9359423Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:41:26.9359509Z { 2023-01-11T21:41:26.9359685Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:41:26.9359807Z tmp0.store(out_ptr2 + 8*i0); 2023-01-11T21:41:26.9359891Z } 2023-01-11T21:41:26.9360014Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9360130Z for(long i0=32768; i0<32768; i0+=1) 2023-01-11T21:41:26.9360198Z { 2023-01-11T21:41:26.9360325Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.9360429Z out_ptr2[i0] = tmp0; 2023-01-11T21:41:26.9360511Z } 2023-01-11T21:41:26.9360611Z #pragma omp for 2023-01-11T21:41:26.9360718Z for(long i0=0; i0<4096; i0+=1) 2023-01-11T21:41:26.9360800Z { 2023-01-11T21:41:26.9360960Z auto tmp0 = at::vec::Vectorized(static_cast(0)); 2023-01-11T21:41:26.9361083Z tmp0.store(out_ptr3 + 8*i0); 2023-01-11T21:41:26.9361168Z } 2023-01-11T21:41:26.9361292Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9361412Z for(long i0=32768; i0<32768; i0+=1) 2023-01-11T21:41:26.9361495Z { 2023-01-11T21:41:26.9361627Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.9361718Z out_ptr3[i0] = tmp0; 2023-01-11T21:41:26.9361798Z } 2023-01-11T21:41:26.9361898Z #pragma omp for 2023-01-11T21:41:26.9362008Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.9362091Z { 2023-01-11T21:41:26.9362176Z { 2023-01-11T21:41:26.9362261Z { 2023-01-11T21:41:26.9362384Z auto tmp0 = static_cast(0); 2023-01-11T21:41:26.9362495Z out_ptr4[i0] = tmp0; 2023-01-11T21:41:26.9362582Z } 2023-01-11T21:41:26.9362666Z } 2023-01-11T21:41:26.9362749Z } 2023-01-11T21:41:26.9362854Z #pragma omp for 2023-01-11T21:41:26.9362946Z for(long i0=0; i0<6; i0+=1) 2023-01-11T21:41:26.9363028Z { 2023-01-11T21:41:26.9363118Z { 2023-01-11T21:41:26.9363204Z { 2023-01-11T21:41:26.9363344Z auto tmp0 = static_cast(3.1416); 2023-01-11T21:41:26.9363455Z out_ptr5[i0] = tmp0; 2023-01-11T21:41:26.9363540Z } 2023-01-11T21:41:26.9363609Z } 2023-01-11T21:41:26.9363689Z } 2023-01-11T21:41:26.9363770Z } 2023-01-11T21:41:26.9363848Z } 2023-01-11T21:41:26.9363955Z ''') 2023-01-11T21:41:26.9363963Z 2023-01-11T21:41:26.9363968Z 2023-01-11T21:41:26.9364085Z async_compile.wait(globals()) 2023-01-11T21:41:26.9364182Z del async_compile 2023-01-11T21:41:26.9364189Z 2023-01-11T21:41:26.9364267Z def call(args): 2023-01-11T21:41:26.9364357Z arg0_1, = args 2023-01-11T21:41:26.9364451Z args.clear() 2023-01-11T21:41:26.9364716Z buf0 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9364975Z buf4 = empty_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9365318Z buf1 = empty_strided((1, 8, 64, 64), (32768, 4096, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9365618Z buf2 = empty_strided((1, 8, 64, 64), (32768, 4096, 64, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9365880Z buf3 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9366132Z buf5 = empty_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9366472Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(buf0.data_ptr()), c_void_p(buf4.data_ptr()), c_void_p(buf1.data_ptr()), c_void_p(buf2.data_ptr()), c_void_p(buf3.data_ptr()), c_void_p(buf5.data_ptr())) 2023-01-11T21:41:26.9366562Z del arg0_1 2023-01-11T21:41:26.9366696Z return (buf0, buf1, buf2, buf3, buf4, buf5, ) 2023-01-11T21:41:26.9366704Z 2023-01-11T21:41:26.9366709Z 2023-01-11T21:41:26.9366839Z if __name__ == "__main__": 2023-01-11T21:41:26.9366993Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9367158Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9367417Z arg0_1 = rand_strided((8, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9367544Z print_performance(lambda: call([arg0_1])) 2023-01-11T21:41:26.9367564Z 2023-01-11T21:41:26.9367640Z ok (1.723s) 2023-01-11T21:41:26.9367802Z test_print_pow (__main__.ExprPrinterTests) ... ok (0.004s) 2023-01-11T21:41:26.9368456Z test_cpu_broadcast1_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9368623Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9368976Z [2023-01-11 21:39:49,980] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 523 2023-01-11T21:41:26.9369465Z [2023-01-11 21:39:49,987] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 523 2023-01-11T21:41:26.9369472Z 2023-01-11T21:41:26.9369594Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9369686Z import torch 2023-01-11T21:41:26.9369780Z import random 2023-01-11T21:41:26.9369919Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9370076Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9370082Z 2023-01-11T21:41:26.9370183Z aten = torch.ops.aten 2023-01-11T21:41:26.9370358Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9370480Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9370487Z 2023-01-11T21:41:26.9370492Z 2023-01-11T21:41:26.9370679Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9370938Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9371100Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9371225Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9371353Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9371431Z { 2023-01-11T21:41:26.9371557Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9371636Z { 2023-01-11T21:41:26.9371738Z #pragma omp for 2023-01-11T21:41:26.9371846Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9371915Z { 2023-01-11T21:41:26.9372091Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9372263Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9372374Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9372495Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9372577Z } 2023-01-11T21:41:26.9372700Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9372856Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9372939Z { 2023-01-11T21:41:26.9373049Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9373158Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9373268Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9373374Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9373456Z } 2023-01-11T21:41:26.9373525Z } 2023-01-11T21:41:26.9373603Z } 2023-01-11T21:41:26.9373711Z ''') 2023-01-11T21:41:26.9373717Z 2023-01-11T21:41:26.9373722Z 2023-01-11T21:41:26.9373838Z async_compile.wait(globals()) 2023-01-11T21:41:26.9373937Z del async_compile 2023-01-11T21:41:26.9373943Z 2023-01-11T21:41:26.9374035Z def call(args): 2023-01-11T21:41:26.9374137Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9374218Z args.clear() 2023-01-11T21:41:26.9374523Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9374742Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9374836Z del arg0_1 2023-01-11T21:41:26.9374924Z del arg1_1 2023-01-11T21:41:26.9375019Z return (buf0, ) 2023-01-11T21:41:26.9375025Z 2023-01-11T21:41:26.9375031Z 2023-01-11T21:41:26.9375128Z if __name__ == "__main__": 2023-01-11T21:41:26.9375262Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9375424Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9375688Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9375953Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9376104Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9376110Z 2023-01-11T21:41:26.9376198Z ok (0.021s) 2023-01-11T21:41:26.9376850Z test_cpu_broadcast1_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9377021Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9377372Z [2023-01-11 21:39:50,000] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 524 2023-01-11T21:41:26.9377734Z [2023-01-11 21:39:51,535] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 524 2023-01-11T21:41:26.9377742Z 2023-01-11T21:41:26.9377851Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9377944Z import torch 2023-01-11T21:41:26.9378039Z import random 2023-01-11T21:41:26.9378192Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9378354Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9378361Z 2023-01-11T21:41:26.9378467Z aten = torch.ops.aten 2023-01-11T21:41:26.9378644Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9378749Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9378771Z 2023-01-11T21:41:26.9378776Z 2023-01-11T21:41:26.9378945Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9379205Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9379362Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9379497Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9379626Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9379708Z { 2023-01-11T21:41:26.9379836Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9379903Z { 2023-01-11T21:41:26.9380007Z #pragma omp for 2023-01-11T21:41:26.9380117Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9380198Z { 2023-01-11T21:41:26.9380349Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9380433Z { 2023-01-11T21:41:26.9380610Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i1); 2023-01-11T21:41:26.9380763Z auto tmp1 = at::vec::Vectorized(in_ptr1[i0]); 2023-01-11T21:41:26.9380878Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9381011Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9381095Z } 2023-01-11T21:41:26.9381217Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9381328Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9381411Z { 2023-01-11T21:41:26.9381509Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9381620Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9381730Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9381882Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9381969Z } 2023-01-11T21:41:26.9382058Z } 2023-01-11T21:41:26.9382140Z } 2023-01-11T21:41:26.9382206Z } 2023-01-11T21:41:26.9382313Z ''') 2023-01-11T21:41:26.9382319Z 2023-01-11T21:41:26.9382324Z 2023-01-11T21:41:26.9382440Z async_compile.wait(globals()) 2023-01-11T21:41:26.9382536Z del async_compile 2023-01-11T21:41:26.9382544Z 2023-01-11T21:41:26.9382635Z def call(args): 2023-01-11T21:41:26.9382735Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9382828Z args.clear() 2023-01-11T21:41:26.9383099Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9383405Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9383494Z del arg0_1 2023-01-11T21:41:26.9383582Z del arg1_1 2023-01-11T21:41:26.9383676Z return (buf0, ) 2023-01-11T21:41:26.9383682Z 2023-01-11T21:41:26.9383690Z 2023-01-11T21:41:26.9383790Z if __name__ == "__main__": 2023-01-11T21:41:26.9383941Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9384107Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9384357Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9384638Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9384791Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9384798Z 2023-01-11T21:41:26.9384885Z ok (1.549s) 2023-01-11T21:41:26.9385542Z test_cpu_broadcast1_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9385708Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9386063Z [2023-01-11 21:39:51,550] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 525 2023-01-11T21:41:26.9386424Z [2023-01-11 21:39:53,053] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 525 2023-01-11T21:41:26.9386431Z 2023-01-11T21:41:26.9386555Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9386649Z import torch 2023-01-11T21:41:26.9386733Z import random 2023-01-11T21:41:26.9386884Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9387041Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9387048Z 2023-01-11T21:41:26.9387150Z aten = torch.ops.aten 2023-01-11T21:41:26.9387325Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9387447Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9387457Z 2023-01-11T21:41:26.9387462Z 2023-01-11T21:41:26.9387644Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9387904Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9388088Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9388226Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9388354Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9388433Z { 2023-01-11T21:41:26.9388562Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9388641Z { 2023-01-11T21:41:26.9388744Z #pragma omp for 2023-01-11T21:41:26.9388850Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9388931Z { 2023-01-11T21:41:26.9389070Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9389188Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.9389308Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9389399Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9389461Z } 2023-01-11T21:41:26.9389544Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9389623Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9389683Z { 2023-01-11T21:41:26.9389767Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9389847Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9389927Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9390004Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9390052Z } 2023-01-11T21:41:26.9390110Z } 2023-01-11T21:41:26.9390167Z } 2023-01-11T21:41:26.9390250Z ''') 2023-01-11T21:41:26.9390255Z 2023-01-11T21:41:26.9390259Z 2023-01-11T21:41:26.9390347Z async_compile.wait(globals()) 2023-01-11T21:41:26.9390417Z del async_compile 2023-01-11T21:41:26.9390422Z 2023-01-11T21:41:26.9390489Z def call(args): 2023-01-11T21:41:26.9390550Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9390620Z args.clear() 2023-01-11T21:41:26.9390813Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9390976Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9391043Z del arg0_1 2023-01-11T21:41:26.9391108Z del arg1_1 2023-01-11T21:41:26.9391178Z return (buf0, ) 2023-01-11T21:41:26.9391183Z 2023-01-11T21:41:26.9391188Z 2023-01-11T21:41:26.9391249Z if __name__ == "__main__": 2023-01-11T21:41:26.9391361Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9391480Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9391672Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9391860Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9391972Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9391977Z 2023-01-11T21:41:26.9392044Z ok (1.518s) 2023-01-11T21:41:26.9392534Z test_cpu_broadcast1_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9392661Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9392916Z [2023-01-11 21:39:53,069] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 526 2023-01-11T21:41:26.9393167Z [2023-01-11 21:39:54,606] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 526 2023-01-11T21:41:26.9393172Z 2023-01-11T21:41:26.9393264Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9393331Z import torch 2023-01-11T21:41:26.9393400Z import random 2023-01-11T21:41:26.9393514Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9393632Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9393665Z 2023-01-11T21:41:26.9393742Z aten = torch.ops.aten 2023-01-11T21:41:26.9393860Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9393949Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9393954Z 2023-01-11T21:41:26.9393958Z 2023-01-11T21:41:26.9394091Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9394291Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9394405Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9394507Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9394602Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9394660Z { 2023-01-11T21:41:26.9394743Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9394832Z { 2023-01-11T21:41:26.9394909Z #pragma omp for 2023-01-11T21:41:26.9394989Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9395051Z { 2023-01-11T21:41:26.9395131Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9395194Z { 2023-01-11T21:41:26.9395316Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i1); 2023-01-11T21:41:26.9395455Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9395541Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9395641Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9395702Z } 2023-01-11T21:41:26.9395791Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9395873Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9395922Z { 2023-01-11T21:41:26.9396005Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9396100Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9396183Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9396273Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9396336Z } 2023-01-11T21:41:26.9396398Z } 2023-01-11T21:41:26.9396445Z } 2023-01-11T21:41:26.9396501Z } 2023-01-11T21:41:26.9396581Z ''') 2023-01-11T21:41:26.9396585Z 2023-01-11T21:41:26.9396589Z 2023-01-11T21:41:26.9396676Z async_compile.wait(globals()) 2023-01-11T21:41:26.9396747Z del async_compile 2023-01-11T21:41:26.9396753Z 2023-01-11T21:41:26.9396821Z def call(args): 2023-01-11T21:41:26.9396894Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9396952Z args.clear() 2023-01-11T21:41:26.9397148Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9397306Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9397373Z del arg0_1 2023-01-11T21:41:26.9397438Z del arg1_1 2023-01-11T21:41:26.9397509Z return (buf0, ) 2023-01-11T21:41:26.9397514Z 2023-01-11T21:41:26.9397518Z 2023-01-11T21:41:26.9397592Z if __name__ == "__main__": 2023-01-11T21:41:26.9397705Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9397814Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9398004Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9398199Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9398312Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9398317Z 2023-01-11T21:41:26.9398380Z ok (1.553s) 2023-01-11T21:41:26.9398873Z test_cpu_broadcast1_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9398998Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9399292Z [2023-01-11 21:39:54,621] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 527 2023-01-11T21:41:26.9399556Z [2023-01-11 21:39:56,162] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 527 2023-01-11T21:41:26.9399562Z 2023-01-11T21:41:26.9399654Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9399711Z import torch 2023-01-11T21:41:26.9399778Z import random 2023-01-11T21:41:26.9399889Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9400008Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9400013Z 2023-01-11T21:41:26.9400088Z aten = torch.ops.aten 2023-01-11T21:41:26.9400218Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9400335Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9400340Z 2023-01-11T21:41:26.9400344Z 2023-01-11T21:41:26.9400479Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9400672Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9400788Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9400890Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9400989Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9401047Z { 2023-01-11T21:41:26.9401142Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9401201Z { 2023-01-11T21:41:26.9401263Z #pragma omp for 2023-01-11T21:41:26.9401343Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9401404Z { 2023-01-11T21:41:26.9401481Z #pragma GCC ivdep 2023-01-11T21:41:26.9401564Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9401626Z { 2023-01-11T21:41:26.9401678Z { 2023-01-11T21:41:26.9401742Z { 2023-01-11T21:41:26.9401834Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9401936Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9402045Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9402136Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9402230Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9402295Z } 2023-01-11T21:41:26.9402345Z } 2023-01-11T21:41:26.9402405Z } 2023-01-11T21:41:26.9402464Z } 2023-01-11T21:41:26.9402522Z } 2023-01-11T21:41:26.9402579Z } 2023-01-11T21:41:26.9402656Z ''') 2023-01-11T21:41:26.9402662Z 2023-01-11T21:41:26.9402666Z 2023-01-11T21:41:26.9402753Z async_compile.wait(globals()) 2023-01-11T21:41:26.9402811Z del async_compile 2023-01-11T21:41:26.9402816Z 2023-01-11T21:41:26.9402885Z def call(args): 2023-01-11T21:41:26.9402958Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9403027Z args.clear() 2023-01-11T21:41:26.9403229Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9403391Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9403458Z del arg0_1 2023-01-11T21:41:26.9403511Z del arg1_1 2023-01-11T21:41:26.9403580Z return (buf0, ) 2023-01-11T21:41:26.9403585Z 2023-01-11T21:41:26.9403589Z 2023-01-11T21:41:26.9403662Z if __name__ == "__main__": 2023-01-11T21:41:26.9403773Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9403897Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9404088Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9404285Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9404399Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9404403Z 2023-01-11T21:41:26.9404456Z ok (1.555s) 2023-01-11T21:41:26.9404985Z test_cpu_broadcast1_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9405111Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9405367Z [2023-01-11 21:39:56,176] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 528 2023-01-11T21:41:26.9405629Z [2023-01-11 21:39:57,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 528 2023-01-11T21:41:26.9405634Z 2023-01-11T21:41:26.9405754Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9405824Z import torch 2023-01-11T21:41:26.9405892Z import random 2023-01-11T21:41:26.9406005Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9406113Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9406120Z 2023-01-11T21:41:26.9406194Z aten = torch.ops.aten 2023-01-11T21:41:26.9406325Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9406413Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9406418Z 2023-01-11T21:41:26.9406423Z 2023-01-11T21:41:26.9406555Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9406756Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9406872Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9406972Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9407056Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9407115Z { 2023-01-11T21:41:26.9407211Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9407270Z { 2023-01-11T21:41:26.9407345Z #pragma omp for 2023-01-11T21:41:26.9407427Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9407487Z { 2023-01-11T21:41:26.9407537Z { 2023-01-11T21:41:26.9407599Z { 2023-01-11T21:41:26.9407688Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9407777Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9407881Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9407970Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9408053Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9408106Z } 2023-01-11T21:41:26.9408165Z } 2023-01-11T21:41:26.9408224Z } 2023-01-11T21:41:26.9408282Z } 2023-01-11T21:41:26.9408338Z } 2023-01-11T21:41:26.9408417Z ''') 2023-01-11T21:41:26.9408422Z 2023-01-11T21:41:26.9408426Z 2023-01-11T21:41:26.9408514Z async_compile.wait(globals()) 2023-01-11T21:41:26.9408573Z del async_compile 2023-01-11T21:41:26.9408578Z 2023-01-11T21:41:26.9408647Z def call(args): 2023-01-11T21:41:26.9408720Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9408788Z args.clear() 2023-01-11T21:41:26.9408982Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9409330Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9409434Z del arg0_1 2023-01-11T21:41:26.9409501Z del arg1_1 2023-01-11T21:41:26.9409574Z return (buf0, ) 2023-01-11T21:41:26.9409579Z 2023-01-11T21:41:26.9409583Z 2023-01-11T21:41:26.9409658Z if __name__ == "__main__": 2023-01-11T21:41:26.9409772Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9409893Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9410092Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9410281Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9410456Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9410462Z 2023-01-11T21:41:26.9410514Z ok (1.571s) 2023-01-11T21:41:26.9411002Z test_cpu_broadcast1_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9411129Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9411389Z [2023-01-11 21:39:57,756] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 529 2023-01-11T21:41:26.9411689Z [2023-01-11 21:39:59,473] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 529 2023-01-11T21:41:26.9411695Z 2023-01-11T21:41:26.9411792Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9411861Z import torch 2023-01-11T21:41:26.9411930Z import random 2023-01-11T21:41:26.9412044Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9412151Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9412156Z 2023-01-11T21:41:26.9412232Z aten = torch.ops.aten 2023-01-11T21:41:26.9412364Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9412454Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9412460Z 2023-01-11T21:41:26.9412464Z 2023-01-11T21:41:26.9412600Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9412802Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9412919Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9413025Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9413111Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9413173Z { 2023-01-11T21:41:26.9413269Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9413330Z { 2023-01-11T21:41:26.9413407Z #pragma omp for 2023-01-11T21:41:26.9413488Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9413550Z { 2023-01-11T21:41:26.9413618Z #pragma GCC ivdep 2023-01-11T21:41:26.9413702Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9413765Z { 2023-01-11T21:41:26.9413828Z { 2023-01-11T21:41:26.9413894Z { 2023-01-11T21:41:26.9413987Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9414092Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9414174Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9414271Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9414336Z } 2023-01-11T21:41:26.9414398Z } 2023-01-11T21:41:26.9414461Z } 2023-01-11T21:41:26.9414521Z } 2023-01-11T21:41:26.9414567Z } 2023-01-11T21:41:26.9414625Z } 2023-01-11T21:41:26.9414704Z ''') 2023-01-11T21:41:26.9414709Z 2023-01-11T21:41:26.9414713Z 2023-01-11T21:41:26.9414799Z async_compile.wait(globals()) 2023-01-11T21:41:26.9414868Z del async_compile 2023-01-11T21:41:26.9414873Z 2023-01-11T21:41:26.9414941Z def call(args): 2023-01-11T21:41:26.9415013Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9415083Z args.clear() 2023-01-11T21:41:26.9415269Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9415432Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9415497Z del arg0_1 2023-01-11T21:41:26.9415562Z del arg1_1 2023-01-11T21:41:26.9415631Z return (buf0, ) 2023-01-11T21:41:26.9415639Z 2023-01-11T21:41:26.9415643Z 2023-01-11T21:41:26.9415717Z if __name__ == "__main__": 2023-01-11T21:41:26.9415827Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9415966Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9416163Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9416357Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9416470Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9416475Z 2023-01-11T21:41:26.9416541Z ok (1.741s) 2023-01-11T21:41:26.9417067Z test_cpu_broadcast1_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9417195Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9417456Z [2023-01-11 21:39:59,496] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 530 2023-01-11T21:41:26.9417717Z [2023-01-11 21:40:01,048] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 530 2023-01-11T21:41:26.9417723Z 2023-01-11T21:41:26.9417815Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9417870Z import torch 2023-01-11T21:41:26.9417938Z import random 2023-01-11T21:41:26.9418049Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9418173Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9418178Z 2023-01-11T21:41:26.9418254Z aten = torch.ops.aten 2023-01-11T21:41:26.9418385Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9418474Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9418481Z 2023-01-11T21:41:26.9418485Z 2023-01-11T21:41:26.9418618Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9418812Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9418927Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9419028Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9419123Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9419180Z { 2023-01-11T21:41:26.9419276Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9419334Z { 2023-01-11T21:41:26.9419397Z #pragma omp for 2023-01-11T21:41:26.9419478Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9419538Z { 2023-01-11T21:41:26.9419618Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9419679Z { 2023-01-11T21:41:26.9419808Z auto tmp0 = at::vec::Vectorized(in_ptr0[i0]); 2023-01-11T21:41:26.9419950Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9420025Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9420128Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9420189Z } 2023-01-11T21:41:26.9420278Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9420359Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9420419Z { 2023-01-11T21:41:26.9420501Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9420583Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9420666Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9420755Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9420819Z } 2023-01-11T21:41:26.9420878Z } 2023-01-11T21:41:26.9420940Z } 2023-01-11T21:41:26.9420996Z } 2023-01-11T21:41:26.9421062Z ''') 2023-01-11T21:41:26.9421067Z 2023-01-11T21:41:26.9421071Z 2023-01-11T21:41:26.9421161Z async_compile.wait(globals()) 2023-01-11T21:41:26.9421232Z del async_compile 2023-01-11T21:41:26.9421237Z 2023-01-11T21:41:26.9421338Z def call(args): 2023-01-11T21:41:26.9421411Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9421481Z args.clear() 2023-01-11T21:41:26.9421680Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9421840Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9421895Z del arg0_1 2023-01-11T21:41:26.9421958Z del arg1_1 2023-01-11T21:41:26.9422027Z return (buf0, ) 2023-01-11T21:41:26.9422032Z 2023-01-11T21:41:26.9422036Z 2023-01-11T21:41:26.9422109Z if __name__ == "__main__": 2023-01-11T21:41:26.9422218Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9422338Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9422584Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9422772Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9422888Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9422893Z 2023-01-11T21:41:26.9422957Z ok (1.574s) 2023-01-11T21:41:26.9423543Z test_cpu_broadcast2_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9423672Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9423934Z [2023-01-11 21:40:01,063] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 531 2023-01-11T21:41:26.9424199Z [2023-01-11 21:40:02,597] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 531 2023-01-11T21:41:26.9424205Z 2023-01-11T21:41:26.9424298Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9424367Z import torch 2023-01-11T21:41:26.9424435Z import random 2023-01-11T21:41:26.9424534Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9424653Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9424658Z 2023-01-11T21:41:26.9424734Z aten = torch.ops.aten 2023-01-11T21:41:26.9424866Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9424955Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9424960Z 2023-01-11T21:41:26.9424964Z 2023-01-11T21:41:26.9425096Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9425298Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9425413Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9425507Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9425604Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9425667Z { 2023-01-11T21:41:26.9425761Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9425820Z { 2023-01-11T21:41:26.9425894Z #pragma omp for 2023-01-11T21:41:26.9425974Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9426023Z { 2023-01-11T21:41:26.9426103Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9426165Z { 2023-01-11T21:41:26.9426294Z auto tmp0 = at::vec::Vectorized(in_ptr0[i0]); 2023-01-11T21:41:26.9426424Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i1); 2023-01-11T21:41:26.9426510Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9426612Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9426662Z } 2023-01-11T21:41:26.9426754Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9426836Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9426900Z { 2023-01-11T21:41:26.9427019Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9427101Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9427184Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9427262Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9427323Z } 2023-01-11T21:41:26.9427383Z } 2023-01-11T21:41:26.9427444Z } 2023-01-11T21:41:26.9427501Z } 2023-01-11T21:41:26.9427580Z ''') 2023-01-11T21:41:26.9427586Z 2023-01-11T21:41:26.9427590Z 2023-01-11T21:41:26.9427676Z async_compile.wait(globals()) 2023-01-11T21:41:26.9427736Z del async_compile 2023-01-11T21:41:26.9427741Z 2023-01-11T21:41:26.9427809Z def call(args): 2023-01-11T21:41:26.9427882Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9427949Z args.clear() 2023-01-11T21:41:26.9428187Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9428349Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9428418Z del arg0_1 2023-01-11T21:41:26.9428471Z del arg1_1 2023-01-11T21:41:26.9428539Z return (buf0, ) 2023-01-11T21:41:26.9428544Z 2023-01-11T21:41:26.9428548Z 2023-01-11T21:41:26.9428621Z if __name__ == "__main__": 2023-01-11T21:41:26.9428732Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9428850Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9429054Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9429292Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9429405Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9429410Z 2023-01-11T21:41:26.9429463Z ok (1.548s) 2023-01-11T21:41:26.9429957Z test_cpu_broadcast2_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9430085Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9430340Z [2023-01-11 21:40:02,611] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 532 2023-01-11T21:41:26.9430601Z [2023-01-11 21:40:02,619] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 532 2023-01-11T21:41:26.9430606Z 2023-01-11T21:41:26.9430697Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9430764Z import torch 2023-01-11T21:41:26.9430832Z import random 2023-01-11T21:41:26.9430945Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9431053Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9431069Z 2023-01-11T21:41:26.9431133Z aten = torch.ops.aten 2023-01-11T21:41:26.9431266Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9431355Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9431360Z 2023-01-11T21:41:26.9431365Z 2023-01-11T21:41:26.9431498Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9431700Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9431815Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9431916Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9432001Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9432059Z { 2023-01-11T21:41:26.9432153Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9432211Z { 2023-01-11T21:41:26.9432284Z #pragma omp for 2023-01-11T21:41:26.9432366Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9432426Z { 2023-01-11T21:41:26.9432546Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9432707Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9432790Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9432879Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9432941Z } 2023-01-11T21:41:26.9433033Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9433111Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9433160Z { 2023-01-11T21:41:26.9433240Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9433319Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9433399Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9433476Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9433536Z } 2023-01-11T21:41:26.9433594Z } 2023-01-11T21:41:26.9433638Z } 2023-01-11T21:41:26.9433748Z ''') 2023-01-11T21:41:26.9433754Z 2023-01-11T21:41:26.9433758Z 2023-01-11T21:41:26.9433846Z async_compile.wait(globals()) 2023-01-11T21:41:26.9433918Z del async_compile 2023-01-11T21:41:26.9433923Z 2023-01-11T21:41:26.9433992Z def call(args): 2023-01-11T21:41:26.9434064Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9434133Z args.clear() 2023-01-11T21:41:26.9434327Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9434487Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9434556Z del arg0_1 2023-01-11T21:41:26.9434621Z del arg1_1 2023-01-11T21:41:26.9434689Z return (buf0, ) 2023-01-11T21:41:26.9434694Z 2023-01-11T21:41:26.9434698Z 2023-01-11T21:41:26.9434771Z if __name__ == "__main__": 2023-01-11T21:41:26.9434880Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9434999Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9435194Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9435394Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9435507Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9435512Z 2023-01-11T21:41:26.9435576Z ok (0.021s) 2023-01-11T21:41:26.9436067Z test_cpu_broadcast2_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9436192Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9436448Z [2023-01-11 21:40:02,631] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 533 2023-01-11T21:41:26.9436713Z [2023-01-11 21:40:02,639] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 533 2023-01-11T21:41:26.9436720Z 2023-01-11T21:41:26.9436812Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9436879Z import torch 2023-01-11T21:41:26.9436935Z import random 2023-01-11T21:41:26.9437047Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9437164Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9437169Z 2023-01-11T21:41:26.9437244Z aten = torch.ops.aten 2023-01-11T21:41:26.9437373Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9437462Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9437467Z 2023-01-11T21:41:26.9437472Z 2023-01-11T21:41:26.9437603Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9437806Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9437913Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9438015Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9438143Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9438201Z { 2023-01-11T21:41:26.9438295Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9438353Z { 2023-01-11T21:41:26.9438428Z #pragma omp for 2023-01-11T21:41:26.9438496Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9438556Z { 2023-01-11T21:41:26.9438688Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9438806Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.9438888Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9438979Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9439040Z } 2023-01-11T21:41:26.9439120Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9439227Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9439290Z { 2023-01-11T21:41:26.9439372Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9439453Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9439532Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9439609Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9439658Z } 2023-01-11T21:41:26.9439716Z } 2023-01-11T21:41:26.9439776Z } 2023-01-11T21:41:26.9439854Z ''') 2023-01-11T21:41:26.9439859Z 2023-01-11T21:41:26.9439863Z 2023-01-11T21:41:26.9439951Z async_compile.wait(globals()) 2023-01-11T21:41:26.9440021Z del async_compile 2023-01-11T21:41:26.9440026Z 2023-01-11T21:41:26.9440094Z def call(args): 2023-01-11T21:41:26.9440155Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9440223Z args.clear() 2023-01-11T21:41:26.9440426Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9440588Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9440654Z del arg0_1 2023-01-11T21:41:26.9440719Z del arg1_1 2023-01-11T21:41:26.9440791Z return (buf0, ) 2023-01-11T21:41:26.9440796Z 2023-01-11T21:41:26.9440801Z 2023-01-11T21:41:26.9440874Z if __name__ == "__main__": 2023-01-11T21:41:26.9440972Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9441092Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9441298Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9441486Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9441598Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9441603Z 2023-01-11T21:41:26.9441668Z ok (0.020s) 2023-01-11T21:41:26.9442156Z test_cpu_broadcast2_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9442282Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9442538Z [2023-01-11 21:40:02,651] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 534 2023-01-11T21:41:26.9442791Z [2023-01-11 21:40:02,659] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 534 2023-01-11T21:41:26.9442796Z 2023-01-11T21:41:26.9442887Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9442955Z import torch 2023-01-11T21:41:26.9443023Z import random 2023-01-11T21:41:26.9443136Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9443254Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9443259Z 2023-01-11T21:41:26.9443340Z aten = torch.ops.aten 2023-01-11T21:41:26.9443471Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9443593Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9443598Z 2023-01-11T21:41:26.9443603Z 2023-01-11T21:41:26.9443736Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9443937Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9444051Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9444153Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9444248Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9444307Z { 2023-01-11T21:41:26.9444390Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9444449Z { 2023-01-11T21:41:26.9444524Z #pragma omp for 2023-01-11T21:41:26.9444604Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9444665Z { 2023-01-11T21:41:26.9444774Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9444837Z { 2023-01-11T21:41:26.9444953Z auto tmp0 = at::vec::Vectorized(in_ptr0[i0]); 2023-01-11T21:41:26.9445095Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9445181Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9445283Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9445346Z } 2023-01-11T21:41:26.9445436Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9445517Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9445566Z { 2023-01-11T21:41:26.9445648Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9445742Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9445825Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9445914Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9445975Z } 2023-01-11T21:41:26.9446038Z } 2023-01-11T21:41:26.9446087Z } 2023-01-11T21:41:26.9446143Z } 2023-01-11T21:41:26.9446222Z ''') 2023-01-11T21:41:26.9446230Z 2023-01-11T21:41:26.9446234Z 2023-01-11T21:41:26.9446320Z async_compile.wait(globals()) 2023-01-11T21:41:26.9446391Z del async_compile 2023-01-11T21:41:26.9446396Z 2023-01-11T21:41:26.9446464Z def call(args): 2023-01-11T21:41:26.9446537Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9446606Z args.clear() 2023-01-11T21:41:26.9446801Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9446962Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9447028Z del arg0_1 2023-01-11T21:41:26.9447092Z del arg1_1 2023-01-11T21:41:26.9447162Z return (buf0, ) 2023-01-11T21:41:26.9447167Z 2023-01-11T21:41:26.9447171Z 2023-01-11T21:41:26.9447245Z if __name__ == "__main__": 2023-01-11T21:41:26.9447358Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9447466Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9447672Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9447872Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9447984Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9447990Z 2023-01-11T21:41:26.9448055Z ok (0.020s) 2023-01-11T21:41:26.9448547Z test_cpu_broadcast2_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9448673Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9448932Z [2023-01-11 21:40:02,672] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 535 2023-01-11T21:41:26.9449453Z [2023-01-11 21:40:04,181] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 535 2023-01-11T21:41:26.9449460Z 2023-01-11T21:41:26.9449555Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9449612Z import torch 2023-01-11T21:41:26.9449681Z import random 2023-01-11T21:41:26.9449793Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9449912Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9449916Z 2023-01-11T21:41:26.9449991Z aten = torch.ops.aten 2023-01-11T21:41:26.9450122Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9450211Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9450217Z 2023-01-11T21:41:26.9450221Z 2023-01-11T21:41:26.9450357Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9450605Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9450729Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9450835Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9450933Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9450993Z { 2023-01-11T21:41:26.9451087Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9451147Z { 2023-01-11T21:41:26.9451210Z #pragma omp for 2023-01-11T21:41:26.9451290Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9451350Z { 2023-01-11T21:41:26.9451427Z #pragma GCC ivdep 2023-01-11T21:41:26.9451511Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9451571Z { 2023-01-11T21:41:26.9451636Z { 2023-01-11T21:41:26.9451690Z { 2023-01-11T21:41:26.9451782Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9451886Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9451994Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9452087Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9452181Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9452243Z } 2023-01-11T21:41:26.9452295Z } 2023-01-11T21:41:26.9452355Z } 2023-01-11T21:41:26.9452415Z } 2023-01-11T21:41:26.9452475Z } 2023-01-11T21:41:26.9452531Z } 2023-01-11T21:41:26.9452609Z ''') 2023-01-11T21:41:26.9452614Z 2023-01-11T21:41:26.9452618Z 2023-01-11T21:41:26.9452706Z async_compile.wait(globals()) 2023-01-11T21:41:26.9452765Z del async_compile 2023-01-11T21:41:26.9452770Z 2023-01-11T21:41:26.9452838Z def call(args): 2023-01-11T21:41:26.9452913Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9452980Z args.clear() 2023-01-11T21:41:26.9453190Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9453352Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9453423Z del arg0_1 2023-01-11T21:41:26.9453475Z del arg1_1 2023-01-11T21:41:26.9453544Z return (buf0, ) 2023-01-11T21:41:26.9453549Z 2023-01-11T21:41:26.9453553Z 2023-01-11T21:41:26.9453627Z if __name__ == "__main__": 2023-01-11T21:41:26.9453738Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9453856Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9454059Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9454253Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9454366Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9454370Z 2023-01-11T21:41:26.9454423Z ok (1.523s) 2023-01-11T21:41:26.9454909Z test_cpu_broadcast2_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9455089Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9455346Z [2023-01-11 21:40:04,202] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 536 2023-01-11T21:41:26.9455610Z [2023-01-11 21:40:05,764] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 536 2023-01-11T21:41:26.9455616Z 2023-01-11T21:41:26.9455708Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9455776Z import torch 2023-01-11T21:41:26.9455845Z import random 2023-01-11T21:41:26.9455958Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9456092Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9456097Z 2023-01-11T21:41:26.9456176Z aten = torch.ops.aten 2023-01-11T21:41:26.9456308Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9456398Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9456403Z 2023-01-11T21:41:26.9456407Z 2023-01-11T21:41:26.9456539Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9456742Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9456859Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9456958Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9457043Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9457102Z { 2023-01-11T21:41:26.9457197Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9457256Z { 2023-01-11T21:41:26.9457330Z #pragma omp for 2023-01-11T21:41:26.9457412Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9457494Z { 2023-01-11T21:41:26.9457594Z #pragma GCC ivdep 2023-01-11T21:41:26.9457739Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9457848Z { 2023-01-11T21:41:26.9457957Z { 2023-01-11T21:41:26.9458068Z { 2023-01-11T21:41:26.9458226Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9458382Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9458551Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9458706Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9458867Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9458982Z } 2023-01-11T21:41:26.9459093Z } 2023-01-11T21:41:26.9459201Z } 2023-01-11T21:41:26.9459307Z } 2023-01-11T21:41:26.9459395Z } 2023-01-11T21:41:26.9459500Z } 2023-01-11T21:41:26.9459643Z ''') 2023-01-11T21:41:26.9459651Z 2023-01-11T21:41:26.9459659Z 2023-01-11T21:41:26.9459816Z async_compile.wait(globals()) 2023-01-11T21:41:26.9459949Z del async_compile 2023-01-11T21:41:26.9459957Z 2023-01-11T21:41:26.9460077Z def call(args): 2023-01-11T21:41:26.9460206Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9460314Z args.clear() 2023-01-11T21:41:26.9460683Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9460965Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9461081Z del arg0_1 2023-01-11T21:41:26.9461196Z del arg1_1 2023-01-11T21:41:26.9461317Z return (buf0, ) 2023-01-11T21:41:26.9461325Z 2023-01-11T21:41:26.9461332Z 2023-01-11T21:41:26.9461460Z if __name__ == "__main__": 2023-01-11T21:41:26.9461655Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9461858Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9462229Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9462624Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9462825Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9462834Z 2023-01-11T21:41:26.9462946Z ok (1.610s) 2023-01-11T21:41:26.9463887Z test_cpu_broadcast2_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9464101Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9464605Z [2023-01-11 21:40:05,810] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 537 2023-01-11T21:41:26.9465093Z [2023-01-11 21:40:07,481] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 537 2023-01-11T21:41:26.9465107Z 2023-01-11T21:41:26.9465257Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9465379Z import torch 2023-01-11T21:41:26.9465500Z import random 2023-01-11T21:41:26.9465704Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9465918Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9465927Z 2023-01-11T21:41:26.9466061Z aten = torch.ops.aten 2023-01-11T21:41:26.9466299Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9466445Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9466469Z 2023-01-11T21:41:26.9466476Z 2023-01-11T21:41:26.9466706Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9467070Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9467283Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9467463Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9467635Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9467736Z { 2023-01-11T21:41:26.9467907Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9467996Z { 2023-01-11T21:41:26.9468129Z #pragma omp for 2023-01-11T21:41:26.9468269Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9468375Z { 2023-01-11T21:41:26.9468511Z #pragma GCC ivdep 2023-01-11T21:41:26.9468656Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9468768Z { 2023-01-11T21:41:26.9468863Z { 2023-01-11T21:41:26.9468975Z { 2023-01-11T21:41:26.9469141Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9469318Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9469481Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9469640Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9469752Z } 2023-01-11T21:41:26.9469853Z } 2023-01-11T21:41:26.9469958Z } 2023-01-11T21:41:26.9470065Z } 2023-01-11T21:41:26.9470169Z } 2023-01-11T21:41:26.9470270Z } 2023-01-11T21:41:26.9470410Z ''') 2023-01-11T21:41:26.9470419Z 2023-01-11T21:41:26.9470426Z 2023-01-11T21:41:26.9470582Z async_compile.wait(globals()) 2023-01-11T21:41:26.9470691Z del async_compile 2023-01-11T21:41:26.9470699Z 2023-01-11T21:41:26.9470819Z def call(args): 2023-01-11T21:41:26.9470946Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9471067Z args.clear() 2023-01-11T21:41:26.9471443Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9471722Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9471837Z del arg0_1 2023-01-11T21:41:26.9471941Z del arg1_1 2023-01-11T21:41:26.9472063Z return (buf0, ) 2023-01-11T21:41:26.9472072Z 2023-01-11T21:41:26.9472140Z 2023-01-11T21:41:26.9472276Z if __name__ == "__main__": 2023-01-11T21:41:26.9472474Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9472691Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9473065Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9473424Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9473626Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9473636Z 2023-01-11T21:41:26.9473735Z ok (1.688s) 2023-01-11T21:41:26.9474705Z test_cpu_broadcast2_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9474932Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9475404Z [2023-01-11 21:40:07,496] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 538 2023-01-11T21:41:26.9475890Z [2023-01-11 21:40:07,506] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 538 2023-01-11T21:41:26.9475899Z 2023-01-11T21:41:26.9476062Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9476182Z import torch 2023-01-11T21:41:26.9476303Z import random 2023-01-11T21:41:26.9476503Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9476700Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9476724Z 2023-01-11T21:41:26.9476844Z aten = torch.ops.aten 2023-01-11T21:41:26.9477086Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9477246Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9477261Z 2023-01-11T21:41:26.9477268Z 2023-01-11T21:41:26.9477508Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9477874Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9478082Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9478258Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9478425Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9478516Z { 2023-01-11T21:41:26.9478690Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9478797Z { 2023-01-11T21:41:26.9478929Z #pragma omp for 2023-01-11T21:41:26.9479068Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9479180Z { 2023-01-11T21:41:26.9479309Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9479416Z { 2023-01-11T21:41:26.9479663Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i1); 2023-01-11T21:41:26.9479911Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9480069Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9480242Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9480351Z } 2023-01-11T21:41:26.9480510Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9480641Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9480748Z { 2023-01-11T21:41:26.9480895Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9481058Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9481207Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9481361Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9481469Z } 2023-01-11T21:41:26.9481563Z } 2023-01-11T21:41:26.9481666Z } 2023-01-11T21:41:26.9481770Z } 2023-01-11T21:41:26.9481910Z ''') 2023-01-11T21:41:26.9481919Z 2023-01-11T21:41:26.9481926Z 2023-01-11T21:41:26.9482145Z async_compile.wait(globals()) 2023-01-11T21:41:26.9482272Z del async_compile 2023-01-11T21:41:26.9482280Z 2023-01-11T21:41:26.9482401Z def call(args): 2023-01-11T21:41:26.9482513Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9482635Z args.clear() 2023-01-11T21:41:26.9483013Z buf0 = empty_strided((1, 10, 10), (100, 1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9483295Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9483414Z del arg0_1 2023-01-11T21:41:26.9483528Z del arg1_1 2023-01-11T21:41:26.9483650Z return (buf0, ) 2023-01-11T21:41:26.9483658Z 2023-01-11T21:41:26.9483665Z 2023-01-11T21:41:26.9483780Z if __name__ == "__main__": 2023-01-11T21:41:26.9483980Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9484241Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9484617Z arg0_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9484977Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9485178Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9485187Z 2023-01-11T21:41:26.9485302Z ok (0.024s) 2023-01-11T21:41:26.9486218Z test_cpu_broadcast3_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9486439Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9486896Z [2023-01-11 21:40:07,518] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 539 2023-01-11T21:41:26.9487380Z [2023-01-11 21:40:09,165] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 539 2023-01-11T21:41:26.9487393Z 2023-01-11T21:41:26.9487558Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9487679Z import torch 2023-01-11T21:41:26.9487801Z import random 2023-01-11T21:41:26.9488002Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9488215Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9488224Z 2023-01-11T21:41:26.9488358Z aten = torch.ops.aten 2023-01-11T21:41:26.9488579Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9488738Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9488747Z 2023-01-11T21:41:26.9488753Z 2023-01-11T21:41:26.9488994Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9489477Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9489681Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9489855Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9490020Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9490122Z { 2023-01-11T21:41:26.9490268Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9490371Z { 2023-01-11T21:41:26.9490499Z #pragma omp for 2023-01-11T21:41:26.9490637Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9490743Z { 2023-01-11T21:41:26.9490961Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:41:26.9491191Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9491322Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9491478Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9491586Z } 2023-01-11T21:41:26.9491752Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9491896Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9492003Z { 2023-01-11T21:41:26.9492146Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9492375Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9492520Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9492657Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9492763Z } 2023-01-11T21:41:26.9492867Z } 2023-01-11T21:41:26.9492968Z } 2023-01-11T21:41:26.9493112Z ''') 2023-01-11T21:41:26.9493122Z 2023-01-11T21:41:26.9493129Z 2023-01-11T21:41:26.9493272Z async_compile.wait(globals()) 2023-01-11T21:41:26.9493399Z del async_compile 2023-01-11T21:41:26.9493408Z 2023-01-11T21:41:26.9493526Z def call(args): 2023-01-11T21:41:26.9493655Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9493776Z args.clear() 2023-01-11T21:41:26.9494126Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9494464Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9494571Z del arg0_1 2023-01-11T21:41:26.9494686Z del arg1_1 2023-01-11T21:41:26.9494816Z return (buf0, ) 2023-01-11T21:41:26.9494825Z 2023-01-11T21:41:26.9494833Z 2023-01-11T21:41:26.9494966Z if __name__ == "__main__": 2023-01-11T21:41:26.9495164Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9495381Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9495728Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9496076Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9496260Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9496283Z 2023-01-11T21:41:26.9496383Z ok (1.660s) 2023-01-11T21:41:26.9497303Z test_cpu_broadcast3_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9497525Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9497998Z [2023-01-11 21:40:09,186] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 540 2023-01-11T21:41:26.9498475Z [2023-01-11 21:40:09,197] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 540 2023-01-11T21:41:26.9498484Z 2023-01-11T21:41:26.9498647Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9498769Z import torch 2023-01-11T21:41:26.9498891Z import random 2023-01-11T21:41:26.9499078Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9499287Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9499296Z 2023-01-11T21:41:26.9499436Z aten = torch.ops.aten 2023-01-11T21:41:26.9499671Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9499834Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9499843Z 2023-01-11T21:41:26.9499850Z 2023-01-11T21:41:26.9500091Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9500458Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9500666Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9500844Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9500999Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9501102Z { 2023-01-11T21:41:26.9501275Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9501380Z { 2023-01-11T21:41:26.9501512Z #pragma omp for 2023-01-11T21:41:26.9501650Z for(long i0=0; i0<1; i0+=1) 2023-01-11T21:41:26.9501745Z { 2023-01-11T21:41:26.9501965Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:41:26.9502191Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9502422Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9502580Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9502724Z } 2023-01-11T21:41:26.9502888Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9503028Z for(long i0=8; i0<10; i0+=1) 2023-01-11T21:41:26.9503183Z { 2023-01-11T21:41:26.9503329Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9503469Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9503608Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9503741Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9503847Z } 2023-01-11T21:41:26.9503933Z } 2023-01-11T21:41:26.9504033Z } 2023-01-11T21:41:26.9504170Z ''') 2023-01-11T21:41:26.9504179Z 2023-01-11T21:41:26.9504186Z 2023-01-11T21:41:26.9504383Z async_compile.wait(globals()) 2023-01-11T21:41:26.9504512Z del async_compile 2023-01-11T21:41:26.9504522Z 2023-01-11T21:41:26.9504643Z def call(args): 2023-01-11T21:41:26.9504776Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9504900Z args.clear() 2023-01-11T21:41:26.9505258Z buf0 = empty_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9505541Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9505660Z del arg0_1 2023-01-11T21:41:26.9505774Z del arg1_1 2023-01-11T21:41:26.9505895Z return (buf0, ) 2023-01-11T21:41:26.9505904Z 2023-01-11T21:41:26.9505912Z 2023-01-11T21:41:26.9506041Z if __name__ == "__main__": 2023-01-11T21:41:26.9506241Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9506442Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9506786Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9507155Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9507357Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9507369Z 2023-01-11T21:41:26.9507482Z ok (0.031s) 2023-01-11T21:41:26.9508395Z test_cpu_broadcast3_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9508612Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9509089Z [2023-01-11 21:40:09,211] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 541 2023-01-11T21:41:26.9509569Z [2023-01-11 21:40:10,723] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 541 2023-01-11T21:41:26.9509579Z 2023-01-11T21:41:26.9509742Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9509850Z import torch 2023-01-11T21:41:26.9509971Z import random 2023-01-11T21:41:26.9510171Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9510384Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9510393Z 2023-01-11T21:41:26.9510528Z aten = torch.ops.aten 2023-01-11T21:41:26.9510764Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9510890Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9510898Z 2023-01-11T21:41:26.9510903Z 2023-01-11T21:41:26.9511085Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9511332Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9511486Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9511629Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9511758Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9511896Z { 2023-01-11T21:41:26.9511977Z { 2023-01-11T21:41:26.9512059Z { 2023-01-11T21:41:26.9512156Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9512264Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9512375Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9512480Z out_ptr0[0] = tmp2; 2023-01-11T21:41:26.9512563Z } 2023-01-11T21:41:26.9512645Z } 2023-01-11T21:41:26.9512724Z } 2023-01-11T21:41:26.9512817Z ''') 2023-01-11T21:41:26.9512823Z 2023-01-11T21:41:26.9512828Z 2023-01-11T21:41:26.9512943Z async_compile.wait(globals()) 2023-01-11T21:41:26.9513039Z del async_compile 2023-01-11T21:41:26.9513045Z 2023-01-11T21:41:26.9513137Z def call(args): 2023-01-11T21:41:26.9513236Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9513329Z args.clear() 2023-01-11T21:41:26.9513631Z buf0 = empty_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9513830Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9513926Z del arg0_1 2023-01-11T21:41:26.9514015Z del arg1_1 2023-01-11T21:41:26.9514107Z return (buf0, ) 2023-01-11T21:41:26.9514114Z 2023-01-11T21:41:26.9514119Z 2023-01-11T21:41:26.9514218Z if __name__ == "__main__": 2023-01-11T21:41:26.9514367Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9514528Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9514790Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9515038Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9515187Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9515194Z 2023-01-11T21:41:26.9515280Z ok (1.526s) 2023-01-11T21:41:26.9515928Z test_cpu_broadcast3_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9516096Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9516448Z [2023-01-11 21:40:10,737] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 542 2023-01-11T21:41:26.9516810Z [2023-01-11 21:40:12,425] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 542 2023-01-11T21:41:26.9516817Z 2023-01-11T21:41:26.9516941Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9517035Z import torch 2023-01-11T21:41:26.9517114Z import random 2023-01-11T21:41:26.9517265Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9517424Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9517431Z 2023-01-11T21:41:26.9517540Z aten = torch.ops.aten 2023-01-11T21:41:26.9517715Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9517836Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9517843Z 2023-01-11T21:41:26.9517847Z 2023-01-11T21:41:26.9518030Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9518291Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9518433Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9518567Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9518698Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9518775Z { 2023-01-11T21:41:26.9518906Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9518989Z { 2023-01-11T21:41:26.9519092Z #pragma omp for 2023-01-11T21:41:26.9519190Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.9519273Z { 2023-01-11T21:41:26.9519439Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:41:26.9519650Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9519761Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9519881Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9519964Z } 2023-01-11T21:41:26.9520074Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9520185Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.9520268Z { 2023-01-11T21:41:26.9520378Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9520488Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9520597Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9520702Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9520769Z } 2023-01-11T21:41:26.9520847Z } 2023-01-11T21:41:26.9520924Z } 2023-01-11T21:41:26.9521065Z ''') 2023-01-11T21:41:26.9521073Z 2023-01-11T21:41:26.9521078Z 2023-01-11T21:41:26.9521197Z async_compile.wait(globals()) 2023-01-11T21:41:26.9521297Z del async_compile 2023-01-11T21:41:26.9521304Z 2023-01-11T21:41:26.9521395Z def call(args): 2023-01-11T21:41:26.9521480Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9521572Z args.clear() 2023-01-11T21:41:26.9521844Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9522057Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9522147Z del arg0_1 2023-01-11T21:41:26.9522233Z del arg1_1 2023-01-11T21:41:26.9522326Z return (buf0, ) 2023-01-11T21:41:26.9522332Z 2023-01-11T21:41:26.9522337Z 2023-01-11T21:41:26.9522435Z if __name__ == "__main__": 2023-01-11T21:41:26.9522571Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9522730Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9522997Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9523268Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9523423Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9523429Z 2023-01-11T21:41:26.9523516Z ok (1.702s) 2023-01-11T21:41:26.9524160Z test_cpu_broadcast3_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9524323Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9524680Z [2023-01-11 21:40:12,441] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 543 2023-01-11T21:41:26.9525028Z [2023-01-11 21:40:14,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 543 2023-01-11T21:41:26.9525054Z 2023-01-11T21:41:26.9525164Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9525255Z import torch 2023-01-11T21:41:26.9525347Z import random 2023-01-11T21:41:26.9525498Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9525655Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9525662Z 2023-01-11T21:41:26.9525764Z aten = torch.ops.aten 2023-01-11T21:41:26.9525942Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9526048Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9526054Z 2023-01-11T21:41:26.9526074Z 2023-01-11T21:41:26.9526244Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9526506Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9526666Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9526806Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9526977Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9527057Z { 2023-01-11T21:41:26.9527187Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9527254Z { 2023-01-11T21:41:26.9527355Z #pragma omp for 2023-01-11T21:41:26.9527465Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:41:26.9527549Z { 2023-01-11T21:41:26.9527633Z { 2023-01-11T21:41:26.9527726Z { 2023-01-11T21:41:26.9527829Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9527948Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.9528087Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9528210Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9528320Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9528442Z } 2023-01-11T21:41:26.9528531Z } 2023-01-11T21:41:26.9528598Z } 2023-01-11T21:41:26.9528679Z } 2023-01-11T21:41:26.9528761Z } 2023-01-11T21:41:26.9528866Z ''') 2023-01-11T21:41:26.9528873Z 2023-01-11T21:41:26.9528878Z 2023-01-11T21:41:26.9528996Z async_compile.wait(globals()) 2023-01-11T21:41:26.9529311Z del async_compile 2023-01-11T21:41:26.9529319Z 2023-01-11T21:41:26.9529411Z def call(args): 2023-01-11T21:41:26.9529512Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9529591Z args.clear() 2023-01-11T21:41:26.9529864Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9530078Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9530166Z del arg0_1 2023-01-11T21:41:26.9530254Z del arg1_1 2023-01-11T21:41:26.9530349Z return (buf0, ) 2023-01-11T21:41:26.9530355Z 2023-01-11T21:41:26.9530360Z 2023-01-11T21:41:26.9530460Z if __name__ == "__main__": 2023-01-11T21:41:26.9530602Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9530764Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9531032Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9531300Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9531453Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9531459Z 2023-01-11T21:41:26.9531547Z ok (1.698s) 2023-01-11T21:41:26.9532188Z test_cpu_broadcast3_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9532360Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9532710Z [2023-01-11 21:40:14,139] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 544 2023-01-11T21:41:26.9533075Z [2023-01-11 21:40:15,839] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 544 2023-01-11T21:41:26.9533083Z 2023-01-11T21:41:26.9533194Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9533285Z import torch 2023-01-11T21:41:26.9533380Z import random 2023-01-11T21:41:26.9533531Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9533687Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9533693Z 2023-01-11T21:41:26.9533795Z aten = torch.ops.aten 2023-01-11T21:41:26.9533970Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9534074Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9534080Z 2023-01-11T21:41:26.9534097Z 2023-01-11T21:41:26.9534270Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9534529Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9534750Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9534885Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9535013Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9535093Z { 2023-01-11T21:41:26.9535255Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9535324Z { 2023-01-11T21:41:26.9535424Z #pragma omp for 2023-01-11T21:41:26.9535534Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9535618Z { 2023-01-11T21:41:26.9535705Z { 2023-01-11T21:41:26.9535793Z { 2023-01-11T21:41:26.9535914Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9536021Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9542382Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9542612Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9542733Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9542827Z } 2023-01-11T21:41:26.9542912Z } 2023-01-11T21:41:26.9542981Z } 2023-01-11T21:41:26.9543064Z } 2023-01-11T21:41:26.9543220Z } 2023-01-11T21:41:26.9543347Z ''') 2023-01-11T21:41:26.9543355Z 2023-01-11T21:41:26.9543360Z 2023-01-11T21:41:26.9543481Z async_compile.wait(globals()) 2023-01-11T21:41:26.9543579Z del async_compile 2023-01-11T21:41:26.9543586Z 2023-01-11T21:41:26.9543678Z def call(args): 2023-01-11T21:41:26.9543778Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9543857Z args.clear() 2023-01-11T21:41:26.9544129Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9544347Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9544439Z del arg0_1 2023-01-11T21:41:26.9544527Z del arg1_1 2023-01-11T21:41:26.9544624Z return (buf0, ) 2023-01-11T21:41:26.9544631Z 2023-01-11T21:41:26.9544636Z 2023-01-11T21:41:26.9544739Z if __name__ == "__main__": 2023-01-11T21:41:26.9544880Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9545042Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9545307Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9545567Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9545720Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9545728Z 2023-01-11T21:41:26.9545814Z ok (1.715s) 2023-01-11T21:41:26.9546468Z test_cpu_broadcast3_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9546639Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9546995Z [2023-01-11 21:40:15,855] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 545 2023-01-11T21:41:26.9547359Z [2023-01-11 21:40:17,390] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 545 2023-01-11T21:41:26.9547367Z 2023-01-11T21:41:26.9547477Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9547567Z import torch 2023-01-11T21:41:26.9547657Z import random 2023-01-11T21:41:26.9547810Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9547967Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9547974Z 2023-01-11T21:41:26.9548076Z aten = torch.ops.aten 2023-01-11T21:41:26.9548251Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9548361Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9548381Z 2023-01-11T21:41:26.9548387Z 2023-01-11T21:41:26.9548659Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9548919Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9549077Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9549214Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9549346Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9549428Z { 2023-01-11T21:41:26.9549556Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9549624Z { 2023-01-11T21:41:26.9549725Z #pragma omp for 2023-01-11T21:41:26.9549837Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9549921Z { 2023-01-11T21:41:26.9550027Z #pragma GCC ivdep 2023-01-11T21:41:26.9550138Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9550225Z { 2023-01-11T21:41:26.9550332Z { 2023-01-11T21:41:26.9550426Z { 2023-01-11T21:41:26.9550550Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9550691Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9550814Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9550939Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9551028Z } 2023-01-11T21:41:26.9551100Z } 2023-01-11T21:41:26.9551183Z } 2023-01-11T21:41:26.9551265Z } 2023-01-11T21:41:26.9551345Z } 2023-01-11T21:41:26.9551422Z } 2023-01-11T21:41:26.9551528Z ''') 2023-01-11T21:41:26.9551534Z 2023-01-11T21:41:26.9551539Z 2023-01-11T21:41:26.9551657Z async_compile.wait(globals()) 2023-01-11T21:41:26.9551739Z del async_compile 2023-01-11T21:41:26.9551746Z 2023-01-11T21:41:26.9551839Z def call(args): 2023-01-11T21:41:26.9551940Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9552035Z args.clear() 2023-01-11T21:41:26.9552308Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9552527Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9552616Z del arg0_1 2023-01-11T21:41:26.9552693Z del arg1_1 2023-01-11T21:41:26.9552785Z return (buf0, ) 2023-01-11T21:41:26.9552791Z 2023-01-11T21:41:26.9552796Z 2023-01-11T21:41:26.9552894Z if __name__ == "__main__": 2023-01-11T21:41:26.9553046Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9553206Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9553465Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9553735Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9553886Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9553894Z 2023-01-11T21:41:26.9553971Z ok (1.551s) 2023-01-11T21:41:26.9554629Z test_cpu_broadcast3_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9554798Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9555153Z [2023-01-11 21:40:17,405] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 546 2023-01-11T21:41:26.9555533Z [2023-01-11 21:40:17,413] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 546 2023-01-11T21:41:26.9555541Z 2023-01-11T21:41:26.9555641Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9555709Z import torch 2023-01-11T21:41:26.9555779Z import random 2023-01-11T21:41:26.9555892Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9555999Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9556040Z 2023-01-11T21:41:26.9556119Z aten = torch.ops.aten 2023-01-11T21:41:26.9556252Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9556342Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9556347Z 2023-01-11T21:41:26.9556351Z 2023-01-11T21:41:26.9556488Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9556690Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9556808Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9556909Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9556996Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9557055Z { 2023-01-11T21:41:26.9557151Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9557244Z { 2023-01-11T21:41:26.9557323Z #pragma omp for 2023-01-11T21:41:26.9557404Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.9557467Z { 2023-01-11T21:41:26.9557582Z auto tmp0 = at::vec::Vectorized(in_ptr0[0]); 2023-01-11T21:41:26.9557713Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9557797Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9557886Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9557950Z } 2023-01-11T21:41:26.9558042Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9558122Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.9558171Z { 2023-01-11T21:41:26.9558251Z auto tmp0 = in_ptr0[0]; 2023-01-11T21:41:26.9558333Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9558414Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9558492Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9558556Z } 2023-01-11T21:41:26.9558614Z } 2023-01-11T21:41:26.9558660Z } 2023-01-11T21:41:26.9558738Z ''') 2023-01-11T21:41:26.9558745Z 2023-01-11T21:41:26.9558750Z 2023-01-11T21:41:26.9558836Z async_compile.wait(globals()) 2023-01-11T21:41:26.9558908Z del async_compile 2023-01-11T21:41:26.9558913Z 2023-01-11T21:41:26.9558982Z def call(args): 2023-01-11T21:41:26.9559056Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9559124Z args.clear() 2023-01-11T21:41:26.9559312Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9559474Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9559539Z del arg0_1 2023-01-11T21:41:26.9559603Z del arg1_1 2023-01-11T21:41:26.9559673Z return (buf0, ) 2023-01-11T21:41:26.9559679Z 2023-01-11T21:41:26.9559683Z 2023-01-11T21:41:26.9559756Z if __name__ == "__main__": 2023-01-11T21:41:26.9559869Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9559991Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9560174Z arg0_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9560377Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9560488Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9560493Z 2023-01-11T21:41:26.9560557Z ok (0.023s) 2023-01-11T21:41:26.9561046Z test_cpu_dense_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9561170Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9561429Z [2023-01-11 21:40:17,427] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 547 2023-01-11T21:41:26.9561745Z [2023-01-11 21:40:18,949] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 547 2023-01-11T21:41:26.9561751Z 2023-01-11T21:41:26.9561844Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9561901Z import torch 2023-01-11T21:41:26.9561969Z import random 2023-01-11T21:41:26.9562082Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9562200Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9562205Z 2023-01-11T21:41:26.9562279Z aten = torch.ops.aten 2023-01-11T21:41:26.9562410Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9562499Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9562503Z 2023-01-11T21:41:26.9562508Z 2023-01-11T21:41:26.9562639Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9562857Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9562977Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9563082Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9563179Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9563239Z { 2023-01-11T21:41:26.9563334Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9563394Z { 2023-01-11T21:41:26.9563457Z #pragma omp for 2023-01-11T21:41:26.9563538Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9563599Z { 2023-01-11T21:41:26.9563681Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9563743Z { 2023-01-11T21:41:26.9563884Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9564018Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i1); 2023-01-11T21:41:26.9564107Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9564197Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9564260Z } 2023-01-11T21:41:26.9564353Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9564435Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9564497Z { 2023-01-11T21:41:26.9564591Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9564675Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9564746Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9564836Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9564896Z } 2023-01-11T21:41:26.9564957Z } 2023-01-11T21:41:26.9565016Z } 2023-01-11T21:41:26.9565074Z } 2023-01-11T21:41:26.9565140Z ''') 2023-01-11T21:41:26.9565145Z 2023-01-11T21:41:26.9565162Z 2023-01-11T21:41:26.9565237Z async_compile.wait(globals()) 2023-01-11T21:41:26.9565307Z del async_compile 2023-01-11T21:41:26.9565312Z 2023-01-11T21:41:26.9565383Z def call(args): 2023-01-11T21:41:26.9565457Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9565527Z args.clear() 2023-01-11T21:41:26.9565727Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9565888Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9565943Z del arg0_1 2023-01-11T21:41:26.9566008Z del arg1_1 2023-01-11T21:41:26.9566077Z return (buf0, ) 2023-01-11T21:41:26.9566083Z 2023-01-11T21:41:26.9566087Z 2023-01-11T21:41:26.9566161Z if __name__ == "__main__": 2023-01-11T21:41:26.9566271Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9566392Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9566591Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9566784Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9566887Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9566893Z 2023-01-11T21:41:26.9566958Z ok (1.536s) 2023-01-11T21:41:26.9567475Z test_cpu_dense_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9567600Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9567860Z [2023-01-11 21:40:18,966] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 548 2023-01-11T21:41:26.9568125Z [2023-01-11 21:40:20,826] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 548 2023-01-11T21:41:26.9568131Z 2023-01-11T21:41:26.9568249Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9568319Z import torch 2023-01-11T21:41:26.9568389Z import random 2023-01-11T21:41:26.9568490Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9568609Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9568614Z 2023-01-11T21:41:26.9568689Z aten = torch.ops.aten 2023-01-11T21:41:26.9568819Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9568907Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9568912Z 2023-01-11T21:41:26.9568917Z 2023-01-11T21:41:26.9569202Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9569475Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9569596Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9569686Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9569782Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9569844Z { 2023-01-11T21:41:26.9569940Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9570001Z { 2023-01-11T21:41:26.9570078Z #pragma omp for 2023-01-11T21:41:26.9570159Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9570209Z { 2023-01-11T21:41:26.9570289Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9570351Z { 2023-01-11T21:41:26.9570493Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9570617Z auto tmp1 = at::vec::Vectorized(in_ptr1[i0]); 2023-01-11T21:41:26.9570702Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9570803Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9570854Z } 2023-01-11T21:41:26.9570944Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9571024Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9571084Z { 2023-01-11T21:41:26.9571181Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9571263Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9571348Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9571426Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9571486Z } 2023-01-11T21:41:26.9571546Z } 2023-01-11T21:41:26.9571605Z } 2023-01-11T21:41:26.9571661Z } 2023-01-11T21:41:26.9571743Z ''') 2023-01-11T21:41:26.9571748Z 2023-01-11T21:41:26.9571752Z 2023-01-11T21:41:26.9571838Z async_compile.wait(globals()) 2023-01-11T21:41:26.9571897Z del async_compile 2023-01-11T21:41:26.9571912Z 2023-01-11T21:41:26.9571969Z def call(args): 2023-01-11T21:41:26.9572041Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9572109Z args.clear() 2023-01-11T21:41:26.9572317Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9572480Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9572550Z del arg0_1 2023-01-11T21:41:26.9572615Z del arg1_1 2023-01-11T21:41:26.9572673Z return (buf0, ) 2023-01-11T21:41:26.9572733Z 2023-01-11T21:41:26.9572737Z 2023-01-11T21:41:26.9572816Z if __name__ == "__main__": 2023-01-11T21:41:26.9572931Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9573053Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9573254Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9573459Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9573572Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9573577Z 2023-01-11T21:41:26.9573641Z ok (1.878s) 2023-01-11T21:41:26.9574154Z test_cpu_dense_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9574285Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9574545Z [2023-01-11 21:40:20,849] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 549 2023-01-11T21:41:26.9574809Z [2023-01-11 21:40:22,566] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 549 2023-01-11T21:41:26.9574814Z 2023-01-11T21:41:26.9574906Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9574974Z import torch 2023-01-11T21:41:26.9575044Z import random 2023-01-11T21:41:26.9575157Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9575275Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9575280Z 2023-01-11T21:41:26.9575345Z aten = torch.ops.aten 2023-01-11T21:41:26.9575477Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9575568Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9575576Z 2023-01-11T21:41:26.9575580Z 2023-01-11T21:41:26.9575715Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9575917Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9576034Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9576134Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9576230Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9576277Z { 2023-01-11T21:41:26.9576372Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9576431Z { 2023-01-11T21:41:26.9576506Z #pragma omp for 2023-01-11T21:41:26.9576585Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.9576646Z { 2023-01-11T21:41:26.9576782Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9576888Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.9576973Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9577061Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9577122Z } 2023-01-11T21:41:26.9577214Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9577293Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.9577353Z { 2023-01-11T21:41:26.9577422Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9577501Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9577580Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9577658Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9577717Z } 2023-01-11T21:41:26.9577777Z } 2023-01-11T21:41:26.9577822Z } 2023-01-11T21:41:26.9577899Z ''') 2023-01-11T21:41:26.9577903Z 2023-01-11T21:41:26.9577907Z 2023-01-11T21:41:26.9577995Z async_compile.wait(globals()) 2023-01-11T21:41:26.9578068Z del async_compile 2023-01-11T21:41:26.9578072Z 2023-01-11T21:41:26.9578140Z def call(args): 2023-01-11T21:41:26.9578213Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9578319Z args.clear() 2023-01-11T21:41:26.9578519Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9578666Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9578732Z del arg0_1 2023-01-11T21:41:26.9578796Z del arg1_1 2023-01-11T21:41:26.9578866Z return (buf0, ) 2023-01-11T21:41:26.9578871Z 2023-01-11T21:41:26.9578875Z 2023-01-11T21:41:26.9578947Z if __name__ == "__main__": 2023-01-11T21:41:26.9579059Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9579179Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9579382Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9579589Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9579705Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9579712Z 2023-01-11T21:41:26.9579776Z ok (1.739s) 2023-01-11T21:41:26.9580259Z test_cpu_dense_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9580383Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9580638Z [2023-01-11 21:40:22,581] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 550 2023-01-11T21:41:26.9580902Z [2023-01-11 21:40:22,589] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 550 2023-01-11T21:41:26.9580910Z 2023-01-11T21:41:26.9581000Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9581068Z import torch 2023-01-11T21:41:26.9581127Z import random 2023-01-11T21:41:26.9581239Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9581357Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9581361Z 2023-01-11T21:41:26.9581438Z aten = torch.ops.aten 2023-01-11T21:41:26.9581567Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9581656Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9581662Z 2023-01-11T21:41:26.9581666Z 2023-01-11T21:41:26.9581799Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9582000Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9582105Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9582206Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9582307Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9582364Z { 2023-01-11T21:41:26.9582458Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9582519Z { 2023-01-11T21:41:26.9582593Z #pragma omp for 2023-01-11T21:41:26.9582662Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.9582721Z { 2023-01-11T21:41:26.9582854Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9582981Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9583065Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9583233Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9583300Z } 2023-01-11T21:41:26.9583383Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9583465Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.9583525Z { 2023-01-11T21:41:26.9583606Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9583688Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9583765Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9583843Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9583929Z } 2023-01-11T21:41:26.9583988Z } 2023-01-11T21:41:26.9584044Z } 2023-01-11T21:41:26.9584125Z ''') 2023-01-11T21:41:26.9584130Z 2023-01-11T21:41:26.9584134Z 2023-01-11T21:41:26.9584221Z async_compile.wait(globals()) 2023-01-11T21:41:26.9584291Z del async_compile 2023-01-11T21:41:26.9584296Z 2023-01-11T21:41:26.9584364Z def call(args): 2023-01-11T21:41:26.9584425Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9584492Z args.clear() 2023-01-11T21:41:26.9584692Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9584853Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9584920Z del arg0_1 2023-01-11T21:41:26.9584985Z del arg1_1 2023-01-11T21:41:26.9585055Z return (buf0, ) 2023-01-11T21:41:26.9585090Z 2023-01-11T21:41:26.9585094Z 2023-01-11T21:41:26.9585169Z if __name__ == "__main__": 2023-01-11T21:41:26.9585271Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9585393Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9585591Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9585790Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9585903Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9585908Z 2023-01-11T21:41:26.9585973Z ok (0.022s) 2023-01-11T21:41:26.9586458Z test_cpu_dense_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9586585Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9586846Z [2023-01-11 21:40:22,604] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 551 2023-01-11T21:41:26.9587096Z [2023-01-11 21:40:24,150] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 551 2023-01-11T21:41:26.9587113Z 2023-01-11T21:41:26.9587193Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9587260Z import torch 2023-01-11T21:41:26.9587328Z import random 2023-01-11T21:41:26.9587440Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9587559Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9587564Z 2023-01-11T21:41:26.9587640Z aten = torch.ops.aten 2023-01-11T21:41:26.9587771Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9587848Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9587856Z 2023-01-11T21:41:26.9587870Z 2023-01-11T21:41:26.9587990Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9588195Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9588311Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9588415Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9588514Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9588572Z { 2023-01-11T21:41:26.9588668Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9588715Z { 2023-01-11T21:41:26.9588790Z #pragma omp for 2023-01-11T21:41:26.9588869Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:41:26.9588929Z { 2023-01-11T21:41:26.9588990Z { 2023-01-11T21:41:26.9589053Z { 2023-01-11T21:41:26.9589132Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9589224Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.9589331Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9589419Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9589533Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9589595Z } 2023-01-11T21:41:26.9589657Z } 2023-01-11T21:41:26.9589704Z } 2023-01-11T21:41:26.9589763Z } 2023-01-11T21:41:26.9589819Z } 2023-01-11T21:41:26.9589897Z ''') 2023-01-11T21:41:26.9589902Z 2023-01-11T21:41:26.9589907Z 2023-01-11T21:41:26.9589993Z async_compile.wait(globals()) 2023-01-11T21:41:26.9590063Z del async_compile 2023-01-11T21:41:26.9590068Z 2023-01-11T21:41:26.9590136Z def call(args): 2023-01-11T21:41:26.9590208Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9590267Z args.clear() 2023-01-11T21:41:26.9590465Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9590653Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9590723Z del arg0_1 2023-01-11T21:41:26.9590793Z del arg1_1 2023-01-11T21:41:26.9590863Z return (buf0, ) 2023-01-11T21:41:26.9590868Z 2023-01-11T21:41:26.9590872Z 2023-01-11T21:41:26.9590946Z if __name__ == "__main__": 2023-01-11T21:41:26.9591045Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9591166Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9591364Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9591560Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9591672Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9591676Z 2023-01-11T21:41:26.9591741Z ok (1.561s) 2023-01-11T21:41:26.9592222Z test_cpu_dense_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9592349Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9592608Z [2023-01-11 21:40:24,165] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 552 2023-01-11T21:41:26.9592871Z [2023-01-11 21:40:25,716] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 552 2023-01-11T21:41:26.9592876Z 2023-01-11T21:41:26.9592956Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9593025Z import torch 2023-01-11T21:41:26.9593092Z import random 2023-01-11T21:41:26.9593204Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9593321Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9593326Z 2023-01-11T21:41:26.9593404Z aten = torch.ops.aten 2023-01-11T21:41:26.9593535Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9593612Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9593619Z 2023-01-11T21:41:26.9593635Z 2023-01-11T21:41:26.9593757Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9593959Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9594075Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9594174Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9594272Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9594331Z { 2023-01-11T21:41:26.9594426Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9594473Z { 2023-01-11T21:41:26.9594548Z #pragma omp for 2023-01-11T21:41:26.9594628Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9594689Z { 2023-01-11T21:41:26.9594766Z #pragma GCC ivdep 2023-01-11T21:41:26.9594851Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9594912Z { 2023-01-11T21:41:26.9594997Z { 2023-01-11T21:41:26.9595061Z { 2023-01-11T21:41:26.9595164Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9595255Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9595361Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9595450Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9595544Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9595596Z } 2023-01-11T21:41:26.9595657Z } 2023-01-11T21:41:26.9595718Z } 2023-01-11T21:41:26.9595777Z } 2023-01-11T21:41:26.9595836Z } 2023-01-11T21:41:26.9595892Z } 2023-01-11T21:41:26.9595958Z ''') 2023-01-11T21:41:26.9595963Z 2023-01-11T21:41:26.9595977Z 2023-01-11T21:41:26.9596081Z async_compile.wait(globals()) 2023-01-11T21:41:26.9596154Z del async_compile 2023-01-11T21:41:26.9596159Z 2023-01-11T21:41:26.9596227Z def call(args): 2023-01-11T21:41:26.9596303Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9596371Z args.clear() 2023-01-11T21:41:26.9596569Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9596729Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9596784Z del arg0_1 2023-01-11T21:41:26.9596845Z del arg1_1 2023-01-11T21:41:26.9596914Z return (buf0, ) 2023-01-11T21:41:26.9596919Z 2023-01-11T21:41:26.9596923Z 2023-01-11T21:41:26.9596997Z if __name__ == "__main__": 2023-01-11T21:41:26.9597109Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9597228Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9597427Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9597618Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9597719Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9597726Z 2023-01-11T21:41:26.9597791Z ok (1.567s) 2023-01-11T21:41:26.9598271Z test_cpu_dense_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9598395Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9598651Z [2023-01-11 21:40:25,734] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 553 2023-01-11T21:41:26.9598916Z [2023-01-11 21:40:27,577] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 553 2023-01-11T21:41:26.9598923Z 2023-01-11T21:41:26.9599013Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9599084Z import torch 2023-01-11T21:41:26.9599151Z import random 2023-01-11T21:41:26.9599252Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9599371Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9599377Z 2023-01-11T21:41:26.9599452Z aten = torch.ops.aten 2023-01-11T21:41:26.9599582Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9599671Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9599676Z 2023-01-11T21:41:26.9599681Z 2023-01-11T21:41:26.9599813Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9600013Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9600128Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9600219Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9600316Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9600376Z { 2023-01-11T21:41:26.9600612Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9600670Z { 2023-01-11T21:41:26.9600745Z #pragma omp for 2023-01-11T21:41:26.9600828Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9600877Z { 2023-01-11T21:41:26.9600955Z #pragma GCC ivdep 2023-01-11T21:41:26.9601037Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9601098Z { 2023-01-11T21:41:26.9601160Z { 2023-01-11T21:41:26.9601224Z { 2023-01-11T21:41:26.9601325Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9601417Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9601510Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9601604Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9601697Z } 2023-01-11T21:41:26.9601761Z } 2023-01-11T21:41:26.9601822Z } 2023-01-11T21:41:26.9601873Z } 2023-01-11T21:41:26.9601932Z } 2023-01-11T21:41:26.9601989Z } 2023-01-11T21:41:26.9602067Z ''') 2023-01-11T21:41:26.9602072Z 2023-01-11T21:41:26.9602076Z 2023-01-11T21:41:26.9602164Z async_compile.wait(globals()) 2023-01-11T21:41:26.9602233Z del async_compile 2023-01-11T21:41:26.9602239Z 2023-01-11T21:41:26.9602306Z def call(args): 2023-01-11T21:41:26.9602379Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9602436Z args.clear() 2023-01-11T21:41:26.9602634Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9602793Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9602860Z del arg0_1 2023-01-11T21:41:26.9602925Z del arg1_1 2023-01-11T21:41:26.9602994Z return (buf0, ) 2023-01-11T21:41:26.9602998Z 2023-01-11T21:41:26.9603005Z 2023-01-11T21:41:26.9603081Z if __name__ == "__main__": 2023-01-11T21:41:26.9603180Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9603302Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9603500Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9603693Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9603805Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9603810Z 2023-01-11T21:41:26.9603875Z ok (1.861s) 2023-01-11T21:41:26.9604367Z test_cpu_dense_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9604490Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9604749Z [2023-01-11 21:40:27,593] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 554 2023-01-11T21:41:26.9605012Z [2023-01-11 21:40:29,165] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 554 2023-01-11T21:41:26.9605018Z 2023-01-11T21:41:26.9605097Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9605163Z import torch 2023-01-11T21:41:26.9605233Z import random 2023-01-11T21:41:26.9605343Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9605460Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9605465Z 2023-01-11T21:41:26.9605540Z aten = torch.ops.aten 2023-01-11T21:41:26.9605670Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9605748Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9605764Z 2023-01-11T21:41:26.9605771Z 2023-01-11T21:41:26.9605891Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9606092Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9606239Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9606340Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9606438Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9606496Z { 2023-01-11T21:41:26.9606592Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9606639Z { 2023-01-11T21:41:26.9606717Z #pragma omp for 2023-01-11T21:41:26.9606795Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9606855Z { 2023-01-11T21:41:26.9606932Z #pragma GCC ivdep 2023-01-11T21:41:26.9607014Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9607075Z { 2023-01-11T21:41:26.9607126Z { 2023-01-11T21:41:26.9607189Z { 2023-01-11T21:41:26.9607316Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9607418Z auto tmp1 = in_ptr1[i0 + (10*i1)]; 2023-01-11T21:41:26.9607512Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9607609Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9607673Z } 2023-01-11T21:41:26.9607723Z } 2023-01-11T21:41:26.9607783Z } 2023-01-11T21:41:26.9607843Z } 2023-01-11T21:41:26.9607902Z } 2023-01-11T21:41:26.9607958Z } 2023-01-11T21:41:26.9608033Z ''') 2023-01-11T21:41:26.9608038Z 2023-01-11T21:41:26.9608042Z 2023-01-11T21:41:26.9608127Z async_compile.wait(globals()) 2023-01-11T21:41:26.9608186Z del async_compile 2023-01-11T21:41:26.9608191Z 2023-01-11T21:41:26.9608258Z def call(args): 2023-01-11T21:41:26.9608330Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9608399Z args.clear() 2023-01-11T21:41:26.9608599Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9608760Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9608828Z del arg0_1 2023-01-11T21:41:26.9608882Z del arg1_1 2023-01-11T21:41:26.9608951Z return (buf0, ) 2023-01-11T21:41:26.9608956Z 2023-01-11T21:41:26.9608960Z 2023-01-11T21:41:26.9609168Z if __name__ == "__main__": 2023-01-11T21:41:26.9609349Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9609480Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9609686Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9609882Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9609997Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9610003Z 2023-01-11T21:41:26.9610056Z ok (1.588s) 2023-01-11T21:41:26.9610548Z test_cpu_double_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9610678Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9610937Z [2023-01-11 21:40:29,187] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 555 2023-01-11T21:41:26.9611201Z [2023-01-11 21:40:31,145] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 555 2023-01-11T21:41:26.9611206Z 2023-01-11T21:41:26.9611299Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9611368Z import torch 2023-01-11T21:41:26.9611440Z import random 2023-01-11T21:41:26.9611556Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9611662Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9611667Z 2023-01-11T21:41:26.9611804Z aten = torch.ops.aten 2023-01-11T21:41:26.9611935Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9612025Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9612031Z 2023-01-11T21:41:26.9612035Z 2023-01-11T21:41:26.9612168Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9612372Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9612491Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9612593Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9612680Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9612739Z { 2023-01-11T21:41:26.9612835Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9612895Z { 2023-01-11T21:41:26.9612969Z #pragma omp for 2023-01-11T21:41:26.9613085Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9613149Z { 2023-01-11T21:41:26.9613216Z #pragma GCC ivdep 2023-01-11T21:41:26.9613302Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9613365Z { 2023-01-11T21:41:26.9613429Z { 2023-01-11T21:41:26.9613503Z { 2023-01-11T21:41:26.9613603Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9613759Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9613856Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9613948Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9614041Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9614105Z } 2023-01-11T21:41:26.9614166Z } 2023-01-11T21:41:26.9614227Z } 2023-01-11T21:41:26.9614286Z } 2023-01-11T21:41:26.9614333Z } 2023-01-11T21:41:26.9614391Z } 2023-01-11T21:41:26.9614470Z ''') 2023-01-11T21:41:26.9614475Z 2023-01-11T21:41:26.9614479Z 2023-01-11T21:41:26.9614568Z async_compile.wait(globals()) 2023-01-11T21:41:26.9614636Z del async_compile 2023-01-11T21:41:26.9614642Z 2023-01-11T21:41:26.9614712Z def call(args): 2023-01-11T21:41:26.9614783Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9614841Z args.clear() 2023-01-11T21:41:26.9615040Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9615200Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9615267Z del arg0_1 2023-01-11T21:41:26.9615331Z del arg1_1 2023-01-11T21:41:26.9615400Z return (buf0, ) 2023-01-11T21:41:26.9615405Z 2023-01-11T21:41:26.9615409Z 2023-01-11T21:41:26.9615483Z if __name__ == "__main__": 2023-01-11T21:41:26.9615593Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9615705Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9615902Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9616096Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9616208Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9616212Z 2023-01-11T21:41:26.9616277Z ok (1.979s) 2023-01-11T21:41:26.9616768Z test_cpu_double_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9616893Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9617154Z [2023-01-11 21:40:31,165] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 556 2023-01-11T21:41:26.9617417Z [2023-01-11 21:40:33,228] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 556 2023-01-11T21:41:26.9617450Z 2023-01-11T21:41:26.9617532Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9617601Z import torch 2023-01-11T21:41:26.9617668Z import random 2023-01-11T21:41:26.9617781Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9617898Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9617903Z 2023-01-11T21:41:26.9617980Z aten = torch.ops.aten 2023-01-11T21:41:26.9618108Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9618200Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9618205Z 2023-01-11T21:41:26.9618209Z 2023-01-11T21:41:26.9618330Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9618562Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9618683Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9618785Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9618884Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9618943Z { 2023-01-11T21:41:26.9619037Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9619084Z { 2023-01-11T21:41:26.9619159Z #pragma omp for 2023-01-11T21:41:26.9619238Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9619299Z { 2023-01-11T21:41:26.9619377Z #pragma GCC ivdep 2023-01-11T21:41:26.9619461Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9619522Z { 2023-01-11T21:41:26.9619573Z { 2023-01-11T21:41:26.9619637Z { 2023-01-11T21:41:26.9619739Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9619831Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9619941Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9620031Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9620126Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9620178Z } 2023-01-11T21:41:26.9620239Z } 2023-01-11T21:41:26.9620300Z } 2023-01-11T21:41:26.9620360Z } 2023-01-11T21:41:26.9620419Z } 2023-01-11T21:41:26.9620476Z } 2023-01-11T21:41:26.9620541Z ''') 2023-01-11T21:41:26.9620557Z 2023-01-11T21:41:26.9620561Z 2023-01-11T21:41:26.9620636Z async_compile.wait(globals()) 2023-01-11T21:41:26.9620705Z del async_compile 2023-01-11T21:41:26.9620710Z 2023-01-11T21:41:26.9620777Z def call(args): 2023-01-11T21:41:26.9620849Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9620918Z args.clear() 2023-01-11T21:41:26.9621128Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9621294Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9621349Z del arg0_1 2023-01-11T21:41:26.9621416Z del arg1_1 2023-01-11T21:41:26.9621485Z return (buf0, ) 2023-01-11T21:41:26.9621490Z 2023-01-11T21:41:26.9621494Z 2023-01-11T21:41:26.9621569Z if __name__ == "__main__": 2023-01-11T21:41:26.9621679Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9621800Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9621996Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9622202Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9622303Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9622308Z 2023-01-11T21:41:26.9622373Z ok (2.083s) 2023-01-11T21:41:26.9622863Z test_cpu_double_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9623017Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9623354Z [2023-01-11 21:40:33,247] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 557 2023-01-11T21:41:26.9623625Z [2023-01-11 21:40:35,200] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 557 2023-01-11T21:41:26.9623631Z 2023-01-11T21:41:26.9623723Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9623793Z import torch 2023-01-11T21:41:26.9623862Z import random 2023-01-11T21:41:26.9623964Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9624083Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9624124Z 2023-01-11T21:41:26.9624203Z aten = torch.ops.aten 2023-01-11T21:41:26.9624334Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9624427Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9624431Z 2023-01-11T21:41:26.9624436Z 2023-01-11T21:41:26.9624569Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9624773Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9624890Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9624993Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9625080Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9625137Z { 2023-01-11T21:41:26.9625232Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9625291Z { 2023-01-11T21:41:26.9625367Z #pragma omp for 2023-01-11T21:41:26.9625448Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:41:26.9625496Z { 2023-01-11T21:41:26.9625560Z { 2023-01-11T21:41:26.9625621Z { 2023-01-11T21:41:26.9625711Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9625802Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9625908Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9625997Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9626068Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9626130Z } 2023-01-11T21:41:26.9626194Z } 2023-01-11T21:41:26.9626254Z } 2023-01-11T21:41:26.9626312Z } 2023-01-11T21:41:26.9626370Z } 2023-01-11T21:41:26.9626446Z ''') 2023-01-11T21:41:26.9626451Z 2023-01-11T21:41:26.9626456Z 2023-01-11T21:41:26.9626531Z async_compile.wait(globals()) 2023-01-11T21:41:26.9626601Z del async_compile 2023-01-11T21:41:26.9626606Z 2023-01-11T21:41:26.9626675Z def call(args): 2023-01-11T21:41:26.9626747Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9626818Z args.clear() 2023-01-11T21:41:26.9627018Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9627180Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9627235Z del arg0_1 2023-01-11T21:41:26.9627300Z del arg1_1 2023-01-11T21:41:26.9627369Z return (buf0, ) 2023-01-11T21:41:26.9627374Z 2023-01-11T21:41:26.9627378Z 2023-01-11T21:41:26.9627451Z if __name__ == "__main__": 2023-01-11T21:41:26.9627562Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9627682Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9627881Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9628070Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9628171Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9628187Z 2023-01-11T21:41:26.9628243Z ok (1.972s) 2023-01-11T21:41:26.9628726Z test_cpu_double_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9628882Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9629144Z [2023-01-11 21:40:35,215] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 558 2023-01-11T21:41:26.9629407Z [2023-01-11 21:40:36,722] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 558 2023-01-11T21:41:26.9629413Z 2023-01-11T21:41:26.9629504Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9629572Z import torch 2023-01-11T21:41:26.9629640Z import random 2023-01-11T21:41:26.9629767Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9629887Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9629894Z 2023-01-11T21:41:26.9629971Z aten = torch.ops.aten 2023-01-11T21:41:26.9630103Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9630193Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9630197Z 2023-01-11T21:41:26.9630202Z 2023-01-11T21:41:26.9630336Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9630541Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9630659Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9630762Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9630848Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9630907Z { 2023-01-11T21:41:26.9631003Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9631064Z { 2023-01-11T21:41:26.9631139Z #pragma omp for 2023-01-11T21:41:26.9631220Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:41:26.9631272Z { 2023-01-11T21:41:26.9631333Z { 2023-01-11T21:41:26.9631394Z { 2023-01-11T21:41:26.9631484Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9631572Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9631679Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9631767Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9631841Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9631904Z } 2023-01-11T21:41:26.9631966Z } 2023-01-11T21:41:26.9632027Z } 2023-01-11T21:41:26.9632085Z } 2023-01-11T21:41:26.9632142Z } 2023-01-11T21:41:26.9632219Z ''') 2023-01-11T21:41:26.9632225Z 2023-01-11T21:41:26.9632229Z 2023-01-11T21:41:26.9632303Z async_compile.wait(globals()) 2023-01-11T21:41:26.9632376Z del async_compile 2023-01-11T21:41:26.9632381Z 2023-01-11T21:41:26.9632450Z def call(args): 2023-01-11T21:41:26.9632525Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9632598Z args.clear() 2023-01-11T21:41:26.9632796Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9632958Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9633027Z del arg0_1 2023-01-11T21:41:26.9633080Z del arg1_1 2023-01-11T21:41:26.9633147Z return (buf0, ) 2023-01-11T21:41:26.9633152Z 2023-01-11T21:41:26.9633156Z 2023-01-11T21:41:26.9633228Z if __name__ == "__main__": 2023-01-11T21:41:26.9633340Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9633460Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9633658Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9633856Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9633959Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9634002Z 2023-01-11T21:41:26.9634056Z ok (1.521s) 2023-01-11T21:41:26.9634543Z test_cpu_double_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9634666Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9634923Z [2023-01-11 21:40:36,737] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 559 2023-01-11T21:41:26.9635190Z [2023-01-11 21:40:38,303] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 559 2023-01-11T21:41:26.9635245Z 2023-01-11T21:41:26.9635340Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9635409Z import torch 2023-01-11T21:41:26.9635481Z import random 2023-01-11T21:41:26.9635595Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9635702Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9635707Z 2023-01-11T21:41:26.9635784Z aten = torch.ops.aten 2023-01-11T21:41:26.9635915Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9636006Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9636011Z 2023-01-11T21:41:26.9636015Z 2023-01-11T21:41:26.9636150Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9636352Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9636473Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9636576Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9636666Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9636726Z { 2023-01-11T21:41:26.9636822Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9636884Z { 2023-01-11T21:41:26.9636961Z #pragma omp for 2023-01-11T21:41:26.9637043Z for(long i0=0; i0<100; i0+=1) 2023-01-11T21:41:26.9637109Z { 2023-01-11T21:41:26.9637160Z { 2023-01-11T21:41:26.9637223Z { 2023-01-11T21:41:26.9637314Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9637401Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9637487Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9637569Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9637621Z } 2023-01-11T21:41:26.9637684Z } 2023-01-11T21:41:26.9637743Z } 2023-01-11T21:41:26.9637802Z } 2023-01-11T21:41:26.9637859Z } 2023-01-11T21:41:26.9637936Z ''') 2023-01-11T21:41:26.9637941Z 2023-01-11T21:41:26.9637948Z 2023-01-11T21:41:26.9638039Z async_compile.wait(globals()) 2023-01-11T21:41:26.9638096Z del async_compile 2023-01-11T21:41:26.9638114Z 2023-01-11T21:41:26.9638171Z def call(args): 2023-01-11T21:41:26.9638244Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9638315Z args.clear() 2023-01-11T21:41:26.9638514Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9638675Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9638742Z del arg0_1 2023-01-11T21:41:26.9638806Z del arg1_1 2023-01-11T21:41:26.9638865Z return (buf0, ) 2023-01-11T21:41:26.9638870Z 2023-01-11T21:41:26.9638874Z 2023-01-11T21:41:26.9638946Z if __name__ == "__main__": 2023-01-11T21:41:26.9639058Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9639179Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9639379Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9639575Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9639729Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9639734Z 2023-01-11T21:41:26.9639797Z ok (1.582s) 2023-01-11T21:41:26.9640267Z test_cpu_double_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9640393Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9640649Z [2023-01-11 21:40:38,322] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 560 2023-01-11T21:41:26.9640940Z [2023-01-11 21:40:39,853] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 560 2023-01-11T21:41:26.9640946Z 2023-01-11T21:41:26.9641041Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9641111Z import torch 2023-01-11T21:41:26.9641180Z import random 2023-01-11T21:41:26.9641292Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9641410Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9641415Z 2023-01-11T21:41:26.9641480Z aten = torch.ops.aten 2023-01-11T21:41:26.9641608Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9641698Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9641703Z 2023-01-11T21:41:26.9641707Z 2023-01-11T21:41:26.9641841Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9642041Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9642158Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9642261Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9642358Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9642407Z { 2023-01-11T21:41:26.9642501Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9642562Z { 2023-01-11T21:41:26.9642637Z #pragma omp for 2023-01-11T21:41:26.9642716Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9642777Z { 2023-01-11T21:41:26.9642853Z #pragma GCC ivdep 2023-01-11T21:41:26.9642926Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9642986Z { 2023-01-11T21:41:26.9643049Z { 2023-01-11T21:41:26.9643115Z { 2023-01-11T21:41:26.9643217Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9643310Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9643407Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9643500Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9643594Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9643660Z } 2023-01-11T21:41:26.9643722Z } 2023-01-11T21:41:26.9643784Z } 2023-01-11T21:41:26.9643844Z } 2023-01-11T21:41:26.9643891Z } 2023-01-11T21:41:26.9643948Z } 2023-01-11T21:41:26.9644025Z ''') 2023-01-11T21:41:26.9644030Z 2023-01-11T21:41:26.9644034Z 2023-01-11T21:41:26.9644122Z async_compile.wait(globals()) 2023-01-11T21:41:26.9644191Z del async_compile 2023-01-11T21:41:26.9644196Z 2023-01-11T21:41:26.9644265Z def call(args): 2023-01-11T21:41:26.9644339Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9644396Z args.clear() 2023-01-11T21:41:26.9644595Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9644756Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9644823Z del arg0_1 2023-01-11T21:41:26.9644891Z del arg1_1 2023-01-11T21:41:26.9644962Z return (buf0, ) 2023-01-11T21:41:26.9644967Z 2023-01-11T21:41:26.9645001Z 2023-01-11T21:41:26.9645077Z if __name__ == "__main__": 2023-01-11T21:41:26.9645189Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9645299Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9645497Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9645686Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9645798Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9645803Z 2023-01-11T21:41:26.9645868Z ok (1.550s) 2023-01-11T21:41:26.9646390Z test_cpu_double_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9646520Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9646779Z [2023-01-11 21:40:39,870] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 561 2023-01-11T21:41:26.9647041Z [2023-01-11 21:40:41,767] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 561 2023-01-11T21:41:26.9647046Z 2023-01-11T21:41:26.9647138Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9647195Z import torch 2023-01-11T21:41:26.9647265Z import random 2023-01-11T21:41:26.9647378Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9647498Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9647503Z 2023-01-11T21:41:26.9647579Z aten = torch.ops.aten 2023-01-11T21:41:26.9647712Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9647800Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9647805Z 2023-01-11T21:41:26.9647811Z 2023-01-11T21:41:26.9647943Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9648134Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9648251Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9648353Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9648448Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9648507Z { 2023-01-11T21:41:26.9648602Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9648662Z { 2023-01-11T21:41:26.9648725Z #pragma omp for 2023-01-11T21:41:26.9648805Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9648866Z { 2023-01-11T21:41:26.9648943Z #pragma GCC ivdep 2023-01-11T21:41:26.9649150Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9649250Z { 2023-01-11T21:41:26.9649331Z { 2023-01-11T21:41:26.9649401Z { 2023-01-11T21:41:26.9649507Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9649609Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9649718Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9649809Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9649903Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9649967Z } 2023-01-11T21:41:26.9650017Z } 2023-01-11T21:41:26.9650077Z } 2023-01-11T21:41:26.9650138Z } 2023-01-11T21:41:26.9650196Z } 2023-01-11T21:41:26.9650252Z } 2023-01-11T21:41:26.9650333Z ''') 2023-01-11T21:41:26.9650339Z 2023-01-11T21:41:26.9650343Z 2023-01-11T21:41:26.9650430Z async_compile.wait(globals()) 2023-01-11T21:41:26.9650488Z del async_compile 2023-01-11T21:41:26.9650495Z 2023-01-11T21:41:26.9650563Z def call(args): 2023-01-11T21:41:26.9650636Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9650762Z args.clear() 2023-01-11T21:41:26.9650963Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9651122Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9651189Z del arg0_1 2023-01-11T21:41:26.9651242Z del arg1_1 2023-01-11T21:41:26.9651311Z return (buf0, ) 2023-01-11T21:41:26.9651317Z 2023-01-11T21:41:26.9651321Z 2023-01-11T21:41:26.9651396Z if __name__ == "__main__": 2023-01-11T21:41:26.9651507Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9651628Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9651823Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9652054Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9652168Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9652174Z 2023-01-11T21:41:26.9652230Z ok (1.914s) 2023-01-11T21:41:26.9652719Z test_cpu_double_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9652842Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9653099Z [2023-01-11 21:40:41,787] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 562 2023-01-11T21:41:26.9653362Z [2023-01-11 21:40:43,294] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 562 2023-01-11T21:41:26.9653369Z 2023-01-11T21:41:26.9653460Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9653528Z import torch 2023-01-11T21:41:26.9653597Z import random 2023-01-11T21:41:26.9653710Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9653816Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9653821Z 2023-01-11T21:41:26.9653896Z aten = torch.ops.aten 2023-01-11T21:41:26.9654026Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9654118Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9654123Z 2023-01-11T21:41:26.9654127Z 2023-01-11T21:41:26.9654259Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9654460Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9654577Z extern "C" void kernel(const double* __restrict__ in_ptr0, 2023-01-11T21:41:26.9654679Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9654767Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9654824Z { 2023-01-11T21:41:26.9654922Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9654985Z { 2023-01-11T21:41:26.9655060Z #pragma omp for 2023-01-11T21:41:26.9655140Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9655201Z { 2023-01-11T21:41:26.9655266Z #pragma GCC ivdep 2023-01-11T21:41:26.9655348Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9655410Z { 2023-01-11T21:41:26.9655472Z { 2023-01-11T21:41:26.9655536Z { 2023-01-11T21:41:26.9655635Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9655734Z auto tmp1 = in_ptr1[i0 + (10*i1)]; 2023-01-11T21:41:26.9655832Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9655923Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9656019Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9656084Z } 2023-01-11T21:41:26.9656145Z } 2023-01-11T21:41:26.9656236Z } 2023-01-11T21:41:26.9656296Z } 2023-01-11T21:41:26.9656343Z } 2023-01-11T21:41:26.9656400Z } 2023-01-11T21:41:26.9656479Z ''') 2023-01-11T21:41:26.9656485Z 2023-01-11T21:41:26.9656489Z 2023-01-11T21:41:26.9656577Z async_compile.wait(globals()) 2023-01-11T21:41:26.9656646Z del async_compile 2023-01-11T21:41:26.9656651Z 2023-01-11T21:41:26.9656718Z def call(args): 2023-01-11T21:41:26.9656791Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9656849Z args.clear() 2023-01-11T21:41:26.9657044Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9657205Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9657271Z del arg0_1 2023-01-11T21:41:26.9657337Z del arg1_1 2023-01-11T21:41:26.9657405Z return (buf0, ) 2023-01-11T21:41:26.9657438Z 2023-01-11T21:41:26.9657443Z 2023-01-11T21:41:26.9657519Z if __name__ == "__main__": 2023-01-11T21:41:26.9657621Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9657743Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9657943Z arg0_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9658136Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9658250Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9658255Z 2023-01-11T21:41:26.9658319Z ok (1.528s) 2023-01-11T21:41:26.9658803Z test_cpu_int_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9658928Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9659190Z [2023-01-11 21:40:43,314] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 563 2023-01-11T21:41:26.9659454Z [2023-01-11 21:40:44,788] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 563 2023-01-11T21:41:26.9659459Z 2023-01-11T21:41:26.9659539Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9659606Z import torch 2023-01-11T21:41:26.9659673Z import random 2023-01-11T21:41:26.9659786Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9659903Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9659908Z 2023-01-11T21:41:26.9659984Z aten = torch.ops.aten 2023-01-11T21:41:26.9660114Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9660191Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9660210Z 2023-01-11T21:41:26.9660214Z 2023-01-11T21:41:26.9660335Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9660539Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9660652Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9660757Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9660852Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9660912Z { 2023-01-11T21:41:26.9661006Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9661054Z { 2023-01-11T21:41:26.9661128Z #pragma omp for 2023-01-11T21:41:26.9661207Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9661267Z { 2023-01-11T21:41:26.9661327Z { 2023-01-11T21:41:26.9661388Z { 2023-01-11T21:41:26.9661478Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9661558Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.9661661Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9661752Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9661865Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9661928Z } 2023-01-11T21:41:26.9661990Z } 2023-01-11T21:41:26.9662049Z } 2023-01-11T21:41:26.9662097Z } 2023-01-11T21:41:26.9662152Z } 2023-01-11T21:41:26.9662230Z ''') 2023-01-11T21:41:26.9662236Z 2023-01-11T21:41:26.9662240Z 2023-01-11T21:41:26.9662327Z async_compile.wait(globals()) 2023-01-11T21:41:26.9662396Z del async_compile 2023-01-11T21:41:26.9662401Z 2023-01-11T21:41:26.9662469Z def call(args): 2023-01-11T21:41:26.9662542Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9662598Z args.clear() 2023-01-11T21:41:26.9662792Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9662980Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9663050Z del arg0_1 2023-01-11T21:41:26.9663115Z del arg1_1 2023-01-11T21:41:26.9663270Z return (buf0, ) 2023-01-11T21:41:26.9663279Z 2023-01-11T21:41:26.9663283Z 2023-01-11T21:41:26.9663359Z if __name__ == "__main__": 2023-01-11T21:41:26.9663473Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9663583Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9663776Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9663966Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9664079Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9664084Z 2023-01-11T21:41:26.9664146Z ok (1.493s) 2023-01-11T21:41:26.9664630Z test_cpu_int_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9664756Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9665012Z [2023-01-11 21:40:44,803] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 564 2023-01-11T21:41:26.9665277Z [2023-01-11 21:40:46,674] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 564 2023-01-11T21:41:26.9665282Z 2023-01-11T21:41:26.9665362Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9665429Z import torch 2023-01-11T21:41:26.9665498Z import random 2023-01-11T21:41:26.9665609Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9665724Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9665729Z 2023-01-11T21:41:26.9665805Z aten = torch.ops.aten 2023-01-11T21:41:26.9665937Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9666025Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9666032Z 2023-01-11T21:41:26.9666036Z 2023-01-11T21:41:26.9666155Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9666358Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9666469Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9666571Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9666668Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9666725Z { 2023-01-11T21:41:26.9666820Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9666868Z { 2023-01-11T21:41:26.9666941Z #pragma omp for 2023-01-11T21:41:26.9667020Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9667082Z { 2023-01-11T21:41:26.9667159Z #pragma GCC ivdep 2023-01-11T21:41:26.9667243Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9667304Z { 2023-01-11T21:41:26.9667355Z { 2023-01-11T21:41:26.9667459Z { 2023-01-11T21:41:26.9667550Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9667640Z auto tmp2 = in_ptr1[i0]; 2023-01-11T21:41:26.9667745Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9667834Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9667928Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9667981Z } 2023-01-11T21:41:26.9668042Z } 2023-01-11T21:41:26.9668102Z } 2023-01-11T21:41:26.9668163Z } 2023-01-11T21:41:26.9668220Z } 2023-01-11T21:41:26.9668276Z } 2023-01-11T21:41:26.9668341Z ''') 2023-01-11T21:41:26.9668358Z 2023-01-11T21:41:26.9668362Z 2023-01-11T21:41:26.9668436Z async_compile.wait(globals()) 2023-01-11T21:41:26.9668534Z del async_compile 2023-01-11T21:41:26.9668540Z 2023-01-11T21:41:26.9668610Z def call(args): 2023-01-11T21:41:26.9668682Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9668751Z args.clear() 2023-01-11T21:41:26.9668959Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9669120Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9669174Z del arg0_1 2023-01-11T21:41:26.9669238Z del arg1_1 2023-01-11T21:41:26.9669307Z return (buf0, ) 2023-01-11T21:41:26.9669312Z 2023-01-11T21:41:26.9669316Z 2023-01-11T21:41:26.9669389Z if __name__ == "__main__": 2023-01-11T21:41:26.9669499Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9669618Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9669806Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9670014Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9670115Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9670121Z 2023-01-11T21:41:26.9670186Z ok (1.886s) 2023-01-11T21:41:26.9670669Z test_cpu_int_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9670794Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9671054Z [2023-01-11 21:40:46,689] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 565 2023-01-11T21:41:26.9671316Z [2023-01-11 21:40:48,456] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 565 2023-01-11T21:41:26.9671322Z 2023-01-11T21:41:26.9671413Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9671483Z import torch 2023-01-11T21:41:26.9671552Z import random 2023-01-11T21:41:26.9671652Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9671770Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9671774Z 2023-01-11T21:41:26.9671850Z aten = torch.ops.aten 2023-01-11T21:41:26.9671979Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9672067Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9672072Z 2023-01-11T21:41:26.9672077Z 2023-01-11T21:41:26.9672209Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9672409Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9672522Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9672614Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9672714Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9672771Z { 2023-01-11T21:41:26.9672897Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9672955Z { 2023-01-11T21:41:26.9673029Z #pragma omp for 2023-01-11T21:41:26.9673109Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9673159Z { 2023-01-11T21:41:26.9673217Z { 2023-01-11T21:41:26.9673280Z { 2023-01-11T21:41:26.9673369Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9673456Z auto tmp2 = in_ptr1[0]; 2023-01-11T21:41:26.9673558Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9673647Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9673717Z out_ptr0[i0] = tmp3; 2023-01-11T21:41:26.9673779Z } 2023-01-11T21:41:26.9673839Z } 2023-01-11T21:41:26.9673898Z } 2023-01-11T21:41:26.9673956Z } 2023-01-11T21:41:26.9674040Z } 2023-01-11T21:41:26.9674119Z ''') 2023-01-11T21:41:26.9674124Z 2023-01-11T21:41:26.9674128Z 2023-01-11T21:41:26.9674204Z async_compile.wait(globals()) 2023-01-11T21:41:26.9674275Z del async_compile 2023-01-11T21:41:26.9674280Z 2023-01-11T21:41:26.9674347Z def call(args): 2023-01-11T21:41:26.9674419Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9674485Z args.clear() 2023-01-11T21:41:26.9674677Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9674835Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9674890Z del arg0_1 2023-01-11T21:41:26.9674955Z del arg1_1 2023-01-11T21:41:26.9675025Z return (buf0, ) 2023-01-11T21:41:26.9675030Z 2023-01-11T21:41:26.9675034Z 2023-01-11T21:41:26.9675106Z if __name__ == "__main__": 2023-01-11T21:41:26.9675216Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9675337Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9675525Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9675718Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9675820Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9675825Z 2023-01-11T21:41:26.9675889Z ok (1.782s) 2023-01-11T21:41:26.9676367Z test_cpu_int_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9676492Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9676753Z [2023-01-11 21:40:48,472] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 566 2023-01-11T21:41:26.9677011Z [2023-01-11 21:40:50,800] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 566 2023-01-11T21:41:26.9677018Z 2023-01-11T21:41:26.9677111Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9677178Z import torch 2023-01-11T21:41:26.9677246Z import random 2023-01-11T21:41:26.9677346Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9677463Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9677467Z 2023-01-11T21:41:26.9677543Z aten = torch.ops.aten 2023-01-11T21:41:26.9677671Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9677760Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9677765Z 2023-01-11T21:41:26.9677769Z 2023-01-11T21:41:26.9677899Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9678103Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9678217Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9678309Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9678447Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9678504Z { 2023-01-11T21:41:26.9678603Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9678663Z { 2023-01-11T21:41:26.9678736Z #pragma omp for 2023-01-11T21:41:26.9678814Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9678864Z { 2023-01-11T21:41:26.9678940Z #pragma GCC ivdep 2023-01-11T21:41:26.9679023Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9679085Z { 2023-01-11T21:41:26.9679149Z { 2023-01-11T21:41:26.9679212Z { 2023-01-11T21:41:26.9679304Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9679393Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9679524Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9679619Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9679714Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9679777Z } 2023-01-11T21:41:26.9679840Z } 2023-01-11T21:41:26.9679900Z } 2023-01-11T21:41:26.9679949Z } 2023-01-11T21:41:26.9680005Z } 2023-01-11T21:41:26.9680063Z } 2023-01-11T21:41:26.9680138Z ''') 2023-01-11T21:41:26.9680143Z 2023-01-11T21:41:26.9680148Z 2023-01-11T21:41:26.9680235Z async_compile.wait(globals()) 2023-01-11T21:41:26.9680304Z del async_compile 2023-01-11T21:41:26.9680309Z 2023-01-11T21:41:26.9680376Z def call(args): 2023-01-11T21:41:26.9680438Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9680505Z args.clear() 2023-01-11T21:41:26.9680702Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9680863Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9680930Z del arg0_1 2023-01-11T21:41:26.9680993Z del arg1_1 2023-01-11T21:41:26.9681064Z return (buf0, ) 2023-01-11T21:41:26.9681069Z 2023-01-11T21:41:26.9681076Z 2023-01-11T21:41:26.9681149Z if __name__ == "__main__": 2023-01-11T21:41:26.9681248Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9681366Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9681557Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9681756Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9681868Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9681873Z 2023-01-11T21:41:26.9681937Z ok (2.345s) 2023-01-11T21:41:26.9682420Z test_cpu_int_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9682547Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9682805Z [2023-01-11 21:40:50,821] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 567 2023-01-11T21:41:26.9683056Z [2023-01-11 21:40:52,932] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 567 2023-01-11T21:41:26.9683073Z 2023-01-11T21:41:26.9683152Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9683221Z import torch 2023-01-11T21:41:26.9683294Z import random 2023-01-11T21:41:26.9683406Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9683524Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9683529Z 2023-01-11T21:41:26.9683608Z aten = torch.ops.aten 2023-01-11T21:41:26.9683737Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9683815Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9683848Z 2023-01-11T21:41:26.9683852Z 2023-01-11T21:41:26.9683988Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9684191Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9684303Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9684408Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9684504Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9684562Z { 2023-01-11T21:41:26.9684645Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9684703Z { 2023-01-11T21:41:26.9684778Z #pragma omp for 2023-01-11T21:41:26.9684856Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9684916Z { 2023-01-11T21:41:26.9685033Z #pragma GCC ivdep 2023-01-11T21:41:26.9685117Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9685167Z { 2023-01-11T21:41:26.9685232Z { 2023-01-11T21:41:26.9685296Z { 2023-01-11T21:41:26.9685388Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9685489Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9685597Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9685688Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9685769Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9685832Z } 2023-01-11T21:41:26.9685894Z } 2023-01-11T21:41:26.9685955Z } 2023-01-11T21:41:26.9686015Z } 2023-01-11T21:41:26.9686077Z } 2023-01-11T21:41:26.9686134Z } 2023-01-11T21:41:26.9686200Z ''') 2023-01-11T21:41:26.9686205Z 2023-01-11T21:41:26.9686209Z 2023-01-11T21:41:26.9686299Z async_compile.wait(globals()) 2023-01-11T21:41:26.9686369Z del async_compile 2023-01-11T21:41:26.9686375Z 2023-01-11T21:41:26.9686443Z def call(args): 2023-01-11T21:41:26.9686518Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9686588Z args.clear() 2023-01-11T21:41:26.9686785Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9686933Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9686999Z del arg0_1 2023-01-11T21:41:26.9687065Z del arg1_1 2023-01-11T21:41:26.9687134Z return (buf0, ) 2023-01-11T21:41:26.9687138Z 2023-01-11T21:41:26.9687143Z 2023-01-11T21:41:26.9687215Z if __name__ == "__main__": 2023-01-11T21:41:26.9687325Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9687443Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9687634Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9687822Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9687934Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9687942Z 2023-01-11T21:41:26.9688005Z ok (2.131s) 2023-01-11T21:41:26.9688481Z test_cpu_int_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9688605Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9688861Z [2023-01-11 21:40:52,948] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 568 2023-01-11T21:41:26.9689317Z [2023-01-11 21:40:55,152] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 568 2023-01-11T21:41:26.9689326Z 2023-01-11T21:41:26.9689433Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9689564Z import torch 2023-01-11T21:41:26.9689621Z import random 2023-01-11T21:41:26.9689734Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9689850Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9689855Z 2023-01-11T21:41:26.9689933Z aten = torch.ops.aten 2023-01-11T21:41:26.9690063Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9690152Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9690158Z 2023-01-11T21:41:26.9690162Z 2023-01-11T21:41:26.9690296Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9690497Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9690613Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9690702Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9690832Z int* __restrict__ out_ptr0) 2023-01-11T21:41:26.9690894Z { 2023-01-11T21:41:26.9690991Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9691049Z { 2023-01-11T21:41:26.9691124Z #pragma omp for 2023-01-11T21:41:26.9691192Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9691252Z { 2023-01-11T21:41:26.9691312Z { 2023-01-11T21:41:26.9691373Z { 2023-01-11T21:41:26.9691462Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9691550Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9691637Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9691708Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9691770Z } 2023-01-11T21:41:26.9691830Z } 2023-01-11T21:41:26.9691887Z } 2023-01-11T21:41:26.9691945Z } 2023-01-11T21:41:26.9692001Z } 2023-01-11T21:41:26.9692078Z ''') 2023-01-11T21:41:26.9692084Z 2023-01-11T21:41:26.9692090Z 2023-01-11T21:41:26.9692165Z async_compile.wait(globals()) 2023-01-11T21:41:26.9692235Z del async_compile 2023-01-11T21:41:26.9692242Z 2023-01-11T21:41:26.9692309Z def call(args): 2023-01-11T21:41:26.9692382Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9692450Z args.clear() 2023-01-11T21:41:26.9692640Z buf0 = empty_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9692801Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9692856Z del arg0_1 2023-01-11T21:41:26.9692920Z del arg1_1 2023-01-11T21:41:26.9692990Z return (buf0, ) 2023-01-11T21:41:26.9692996Z 2023-01-11T21:41:26.9693000Z 2023-01-11T21:41:26.9693072Z if __name__ == "__main__": 2023-01-11T21:41:26.9693180Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9693299Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9693489Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9693676Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9693781Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9693796Z 2023-01-11T21:41:26.9693849Z ok (2.219s) 2023-01-11T21:41:26.9694327Z test_cpu_int_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9694451Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9694714Z [2023-01-11 21:40:55,172] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 569 2023-01-11T21:41:26.9694978Z [2023-01-11 21:40:56,810] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 569 2023-01-11T21:41:26.9694984Z 2023-01-11T21:41:26.9695107Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9695176Z import torch 2023-01-11T21:41:26.9695246Z import random 2023-01-11T21:41:26.9695347Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9695467Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9695473Z 2023-01-11T21:41:26.9695550Z aten = torch.ops.aten 2023-01-11T21:41:26.9695680Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9695769Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9695775Z 2023-01-11T21:41:26.9695779Z 2023-01-11T21:41:26.9695913Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9696115Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9696227Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9696364Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9696452Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9696514Z { 2023-01-11T21:41:26.9696607Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9696667Z { 2023-01-11T21:41:26.9696741Z #pragma omp for 2023-01-11T21:41:26.9696822Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9696873Z { 2023-01-11T21:41:26.9696951Z #pragma GCC ivdep 2023-01-11T21:41:26.9697035Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9697097Z { 2023-01-11T21:41:26.9697160Z { 2023-01-11T21:41:26.9697226Z { 2023-01-11T21:41:26.9697318Z auto tmp0 = in_ptr0[i1]; 2023-01-11T21:41:26.9697410Z auto tmp2 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9697517Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9697611Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9697705Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9697772Z } 2023-01-11T21:41:26.9697834Z } 2023-01-11T21:41:26.9697895Z } 2023-01-11T21:41:26.9697945Z } 2023-01-11T21:41:26.9698004Z } 2023-01-11T21:41:26.9698061Z } 2023-01-11T21:41:26.9698139Z ''') 2023-01-11T21:41:26.9698144Z 2023-01-11T21:41:26.9698148Z 2023-01-11T21:41:26.9698234Z async_compile.wait(globals()) 2023-01-11T21:41:26.9698305Z del async_compile 2023-01-11T21:41:26.9698310Z 2023-01-11T21:41:26.9698378Z def call(args): 2023-01-11T21:41:26.9698441Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9698509Z args.clear() 2023-01-11T21:41:26.9698708Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9698869Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9698935Z del arg0_1 2023-01-11T21:41:26.9699002Z del arg1_1 2023-01-11T21:41:26.9699071Z return (buf0, ) 2023-01-11T21:41:26.9699076Z 2023-01-11T21:41:26.9699083Z 2023-01-11T21:41:26.9699156Z if __name__ == "__main__": 2023-01-11T21:41:26.9699256Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9699373Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9699563Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9699760Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9699871Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9699876Z 2023-01-11T21:41:26.9699941Z ok (1.658s) 2023-01-11T21:41:26.9700426Z test_cpu_int_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9700581Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9700837Z [2023-01-11 21:40:56,825] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 570 2023-01-11T21:41:26.9701086Z [2023-01-11 21:40:58,437] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 570 2023-01-11T21:41:26.9701103Z 2023-01-11T21:41:26.9701182Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9701248Z import torch 2023-01-11T21:41:26.9701316Z import random 2023-01-11T21:41:26.9701426Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9701543Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9701548Z 2023-01-11T21:41:26.9701625Z aten = torch.ops.aten 2023-01-11T21:41:26.9701782Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9701862Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9701867Z 2023-01-11T21:41:26.9701873Z 2023-01-11T21:41:26.9702003Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9702204Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9702316Z extern "C" void kernel(const int* __restrict__ in_ptr0, 2023-01-11T21:41:26.9702419Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9702514Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9702573Z { 2023-01-11T21:41:26.9702666Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9702714Z { 2023-01-11T21:41:26.9702788Z #pragma omp for 2023-01-11T21:41:26.9702869Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9702928Z { 2023-01-11T21:41:26.9703004Z #pragma GCC ivdep 2023-01-11T21:41:26.9703086Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9703213Z { 2023-01-11T21:41:26.9703284Z { 2023-01-11T21:41:26.9703348Z { 2023-01-11T21:41:26.9703445Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9703545Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9703652Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9703741Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9703823Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9703887Z } 2023-01-11T21:41:26.9703948Z } 2023-01-11T21:41:26.9704009Z } 2023-01-11T21:41:26.9704068Z } 2023-01-11T21:41:26.9704126Z } 2023-01-11T21:41:26.9704182Z } 2023-01-11T21:41:26.9704251Z ''') 2023-01-11T21:41:26.9704256Z 2023-01-11T21:41:26.9704261Z 2023-01-11T21:41:26.9704349Z async_compile.wait(globals()) 2023-01-11T21:41:26.9704419Z del async_compile 2023-01-11T21:41:26.9704426Z 2023-01-11T21:41:26.9704498Z def call(args): 2023-01-11T21:41:26.9704571Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9704640Z args.clear() 2023-01-11T21:41:26.9704842Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9705001Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9705055Z del arg0_1 2023-01-11T21:41:26.9705120Z del arg1_1 2023-01-11T21:41:26.9705191Z return (buf0, ) 2023-01-11T21:41:26.9705196Z 2023-01-11T21:41:26.9705200Z 2023-01-11T21:41:26.9705274Z if __name__ == "__main__": 2023-01-11T21:41:26.9705383Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9705502Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9705691Z arg0_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9705876Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9705992Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9705997Z 2023-01-11T21:41:26.9706099Z ok (1.627s) 2023-01-11T21:41:26.9706588Z test_cpu_strided_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9706711Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9706966Z [2023-01-11 21:40:58,451] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 571 2023-01-11T21:41:26.9707225Z [2023-01-11 21:40:59,965] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 571 2023-01-11T21:41:26.9707230Z 2023-01-11T21:41:26.9707349Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9707421Z import torch 2023-01-11T21:41:26.9707488Z import random 2023-01-11T21:41:26.9707590Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9707707Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9707713Z 2023-01-11T21:41:26.9707789Z aten = torch.ops.aten 2023-01-11T21:41:26.9707918Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9708004Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9708009Z 2023-01-11T21:41:26.9708014Z 2023-01-11T21:41:26.9708147Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9708349Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9708465Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9708556Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9708654Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9708712Z { 2023-01-11T21:41:26.9708809Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9708870Z { 2023-01-11T21:41:26.9708944Z #pragma omp for 2023-01-11T21:41:26.9709023Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9709073Z { 2023-01-11T21:41:26.9709149Z #pragma GCC ivdep 2023-01-11T21:41:26.9709232Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9709294Z { 2023-01-11T21:41:26.9709355Z { 2023-01-11T21:41:26.9709418Z { 2023-01-11T21:41:26.9709511Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9709602Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9709693Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9709786Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9709850Z } 2023-01-11T21:41:26.9709911Z } 2023-01-11T21:41:26.9709973Z } 2023-01-11T21:41:26.9710022Z } 2023-01-11T21:41:26.9710080Z } 2023-01-11T21:41:26.9710137Z } 2023-01-11T21:41:26.9710219Z ''') 2023-01-11T21:41:26.9710225Z 2023-01-11T21:41:26.9710229Z 2023-01-11T21:41:26.9710316Z async_compile.wait(globals()) 2023-01-11T21:41:26.9710387Z del async_compile 2023-01-11T21:41:26.9710392Z 2023-01-11T21:41:26.9710458Z def call(args): 2023-01-11T21:41:26.9710520Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9710588Z args.clear() 2023-01-11T21:41:26.9710788Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9710946Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9711016Z del arg0_1 2023-01-11T21:41:26.9711081Z del arg1_1 2023-01-11T21:41:26.9711150Z return (buf0, ) 2023-01-11T21:41:26.9711156Z 2023-01-11T21:41:26.9711159Z 2023-01-11T21:41:26.9711233Z if __name__ == "__main__": 2023-01-11T21:41:26.9711336Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9711456Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9711687Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9711877Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9711988Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9711993Z 2023-01-11T21:41:26.9712058Z ok (1.528s) 2023-01-11T21:41:26.9712544Z test_cpu_strided_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9712693Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9712952Z [2023-01-11 21:40:59,980] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 572 2023-01-11T21:41:26.9713205Z [2023-01-11 21:41:01,690] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 572 2023-01-11T21:41:26.9713221Z 2023-01-11T21:41:26.9713300Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9713367Z import torch 2023-01-11T21:41:26.9713433Z import random 2023-01-11T21:41:26.9713542Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9713659Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9713664Z 2023-01-11T21:41:26.9713739Z aten = torch.ops.aten 2023-01-11T21:41:26.9713869Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9713946Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9713950Z 2023-01-11T21:41:26.9713965Z 2023-01-11T21:41:26.9714084Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9714286Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9714403Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9714508Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9714602Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9714659Z { 2023-01-11T21:41:26.9714754Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9714802Z { 2023-01-11T21:41:26.9714875Z #pragma omp for 2023-01-11T21:41:26.9714955Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9715014Z { 2023-01-11T21:41:26.9715089Z #pragma GCC ivdep 2023-01-11T21:41:26.9715171Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9715221Z { 2023-01-11T21:41:26.9715283Z { 2023-01-11T21:41:26.9715348Z { 2023-01-11T21:41:26.9715451Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9715542Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9715633Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9715729Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9715782Z } 2023-01-11T21:41:26.9715840Z } 2023-01-11T21:41:26.9715901Z } 2023-01-11T21:41:26.9715960Z } 2023-01-11T21:41:26.9716018Z } 2023-01-11T21:41:26.9716073Z } 2023-01-11T21:41:26.9716149Z ''') 2023-01-11T21:41:26.9716155Z 2023-01-11T21:41:26.9716159Z 2023-01-11T21:41:26.9716234Z async_compile.wait(globals()) 2023-01-11T21:41:26.9716303Z del async_compile 2023-01-11T21:41:26.9716309Z 2023-01-11T21:41:26.9716376Z def call(args): 2023-01-11T21:41:26.9716453Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9716521Z args.clear() 2023-01-11T21:41:26.9716727Z buf0 = empty_strided((1, 10, 10), (100, 10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9716891Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9716957Z del arg0_1 2023-01-11T21:41:26.9717051Z del arg1_1 2023-01-11T21:41:26.9717119Z return (buf0, ) 2023-01-11T21:41:26.9717125Z 2023-01-11T21:41:26.9717129Z 2023-01-11T21:41:26.9717202Z if __name__ == "__main__": 2023-01-11T21:41:26.9717312Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9717432Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9717629Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9717836Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9717937Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9717953Z 2023-01-11T21:41:26.9718006Z ok (1.725s) 2023-01-11T21:41:26.9718529Z test_cpu_strided_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9718657Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9718915Z [2023-01-11 21:41:01,705] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 573 2023-01-11T21:41:26.9719175Z [2023-01-11 21:41:03,388] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 573 2023-01-11T21:41:26.9719181Z 2023-01-11T21:41:26.9719271Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9719338Z import torch 2023-01-11T21:41:26.9719407Z import random 2023-01-11T21:41:26.9719519Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9719628Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9719633Z 2023-01-11T21:41:26.9719709Z aten = torch.ops.aten 2023-01-11T21:41:26.9719841Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9719932Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9719937Z 2023-01-11T21:41:26.9719941Z 2023-01-11T21:41:26.9720074Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9720274Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9720387Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9720489Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9720575Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9720633Z { 2023-01-11T21:41:26.9720727Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9720784Z { 2023-01-11T21:41:26.9720856Z #pragma omp for 2023-01-11T21:41:26.9720937Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9721000Z { 2023-01-11T21:41:26.9721065Z #pragma GCC ivdep 2023-01-11T21:41:26.9721147Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9721215Z { 2023-01-11T21:41:26.9721277Z { 2023-01-11T21:41:26.9721341Z { 2023-01-11T21:41:26.9721445Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9721524Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9721616Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9721709Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9721778Z } 2023-01-11T21:41:26.9721838Z } 2023-01-11T21:41:26.9721897Z } 2023-01-11T21:41:26.9721957Z } 2023-01-11T21:41:26.9722004Z } 2023-01-11T21:41:26.9722060Z } 2023-01-11T21:41:26.9722137Z ''') 2023-01-11T21:41:26.9722142Z 2023-01-11T21:41:26.9722146Z 2023-01-11T21:41:26.9722234Z async_compile.wait(globals()) 2023-01-11T21:41:26.9722304Z del async_compile 2023-01-11T21:41:26.9722310Z 2023-01-11T21:41:26.9722379Z def call(args): 2023-01-11T21:41:26.9722501Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9722569Z args.clear() 2023-01-11T21:41:26.9722758Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9722919Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9722987Z del arg0_1 2023-01-11T21:41:26.9723051Z del arg1_1 2023-01-11T21:41:26.9723121Z return (buf0, ) 2023-01-11T21:41:26.9723125Z 2023-01-11T21:41:26.9723129Z 2023-01-11T21:41:26.9723204Z if __name__ == "__main__": 2023-01-11T21:41:26.9723316Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9723425Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9723623Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9723846Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9723961Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9723969Z 2023-01-11T21:41:26.9724033Z ok (1.698s) 2023-01-11T21:41:26.9724513Z test_cpu_strided_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9724638Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9724894Z [2023-01-11 21:41:03,403] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 574 2023-01-11T21:41:26.9725160Z [2023-01-11 21:41:05,822] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 574 2023-01-11T21:41:26.9725165Z 2023-01-11T21:41:26.9725257Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9725315Z import torch 2023-01-11T21:41:26.9725383Z import random 2023-01-11T21:41:26.9725495Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9725611Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9725617Z 2023-01-11T21:41:26.9725693Z aten = torch.ops.aten 2023-01-11T21:41:26.9725822Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9725911Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9725916Z 2023-01-11T21:41:26.9725920Z 2023-01-11T21:41:26.9726052Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9726241Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9726371Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9726474Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9726567Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9726625Z { 2023-01-11T21:41:26.9726721Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9726779Z { 2023-01-11T21:41:26.9726842Z #pragma omp for 2023-01-11T21:41:26.9726922Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9726982Z { 2023-01-11T21:41:26.9727060Z #pragma GCC ivdep 2023-01-11T21:41:26.9727142Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9727203Z { 2023-01-11T21:41:26.9727254Z { 2023-01-11T21:41:26.9727313Z { 2023-01-11T21:41:26.9727412Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9727512Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9727603Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9727697Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9727762Z } 2023-01-11T21:41:26.9727824Z } 2023-01-11T21:41:26.9727874Z } 2023-01-11T21:41:26.9727968Z } 2023-01-11T21:41:26.9728027Z } 2023-01-11T21:41:26.9728083Z } 2023-01-11T21:41:26.9728163Z ''') 2023-01-11T21:41:26.9728168Z 2023-01-11T21:41:26.9728172Z 2023-01-11T21:41:26.9728258Z async_compile.wait(globals()) 2023-01-11T21:41:26.9728316Z del async_compile 2023-01-11T21:41:26.9728333Z 2023-01-11T21:41:26.9728389Z def call(args): 2023-01-11T21:41:26.9728462Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9728530Z args.clear() 2023-01-11T21:41:26.9728728Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9728890Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9728956Z del arg0_1 2023-01-11T21:41:26.9729144Z del arg1_1 2023-01-11T21:41:26.9729236Z return (buf0, ) 2023-01-11T21:41:26.9729247Z 2023-01-11T21:41:26.9729320Z 2023-01-11T21:41:26.9729411Z if __name__ == "__main__": 2023-01-11T21:41:26.9729526Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9729649Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9729852Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9730045Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9730157Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9730162Z 2023-01-11T21:41:26.9730226Z ok (2.435s) 2023-01-11T21:41:26.9730704Z test_cpu_strided_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9730830Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9731094Z [2023-01-11 21:41:05,848] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 575 2023-01-11T21:41:26.9731356Z [2023-01-11 21:41:07,732] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 575 2023-01-11T21:41:26.9731362Z 2023-01-11T21:41:26.9731454Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9731526Z import torch 2023-01-11T21:41:26.9731593Z import random 2023-01-11T21:41:26.9731706Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9731824Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9731829Z 2023-01-11T21:41:26.9731893Z aten = torch.ops.aten 2023-01-11T21:41:26.9732023Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9732112Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9732117Z 2023-01-11T21:41:26.9732124Z 2023-01-11T21:41:26.9732259Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9732460Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9732579Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9732684Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9732782Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9732829Z { 2023-01-11T21:41:26.9732923Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9732981Z { 2023-01-11T21:41:26.9733055Z #pragma omp for 2023-01-11T21:41:26.9733135Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9733195Z { 2023-01-11T21:41:26.9733271Z #pragma GCC ivdep 2023-01-11T21:41:26.9733343Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9733404Z { 2023-01-11T21:41:26.9733468Z { 2023-01-11T21:41:26.9733534Z { 2023-01-11T21:41:26.9733640Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9733737Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9733882Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9733964Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9734056Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9734119Z } 2023-01-11T21:41:26.9734181Z } 2023-01-11T21:41:26.9734241Z } 2023-01-11T21:41:26.9734300Z } 2023-01-11T21:41:26.9734347Z } 2023-01-11T21:41:26.9734406Z } 2023-01-11T21:41:26.9734487Z ''') 2023-01-11T21:41:26.9734492Z 2023-01-11T21:41:26.9734496Z 2023-01-11T21:41:26.9734582Z async_compile.wait(globals()) 2023-01-11T21:41:26.9734652Z del async_compile 2023-01-11T21:41:26.9734656Z 2023-01-11T21:41:26.9734724Z def call(args): 2023-01-11T21:41:26.9734796Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9734903Z args.clear() 2023-01-11T21:41:26.9735095Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9735262Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9735329Z del arg0_1 2023-01-11T21:41:26.9735393Z del arg1_1 2023-01-11T21:41:26.9735463Z return (buf0, ) 2023-01-11T21:41:26.9735468Z 2023-01-11T21:41:26.9735472Z 2023-01-11T21:41:26.9735545Z if __name__ == "__main__": 2023-01-11T21:41:26.9735656Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9735776Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9735962Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9736155Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9736269Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9736273Z 2023-01-11T21:41:26.9736340Z ok (1.911s) 2023-01-11T21:41:26.9736822Z test_cpu_strided_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9736947Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9737205Z [2023-01-11 21:41:07,760] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 576 2023-01-11T21:41:26.9737467Z [2023-01-11 21:41:10,205] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 576 2023-01-11T21:41:26.9737473Z 2023-01-11T21:41:26.9737564Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9737621Z import torch 2023-01-11T21:41:26.9737691Z import random 2023-01-11T21:41:26.9737801Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9737919Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9737927Z 2023-01-11T21:41:26.9738003Z aten = torch.ops.aten 2023-01-11T21:41:26.9738133Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9738224Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9738229Z 2023-01-11T21:41:26.9738233Z 2023-01-11T21:41:26.9738364Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9738556Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9738673Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9738773Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9738869Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9738927Z { 2023-01-11T21:41:26.9739023Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9739086Z { 2023-01-11T21:41:26.9739149Z #pragma omp for 2023-01-11T21:41:26.9739230Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9739322Z { 2023-01-11T21:41:26.9739399Z #pragma GCC ivdep 2023-01-11T21:41:26.9739482Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9739542Z { 2023-01-11T21:41:26.9739603Z { 2023-01-11T21:41:26.9739656Z { 2023-01-11T21:41:26.9739760Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9739851Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9739958Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9740048Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9740141Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9740205Z } 2023-01-11T21:41:26.9740255Z } 2023-01-11T21:41:26.9740316Z } 2023-01-11T21:41:26.9740402Z } 2023-01-11T21:41:26.9740462Z } 2023-01-11T21:41:26.9740519Z } 2023-01-11T21:41:26.9740597Z ''') 2023-01-11T21:41:26.9740604Z 2023-01-11T21:41:26.9740608Z 2023-01-11T21:41:26.9740696Z async_compile.wait(globals()) 2023-01-11T21:41:26.9740759Z del async_compile 2023-01-11T21:41:26.9740766Z 2023-01-11T21:41:26.9740871Z def call(args): 2023-01-11T21:41:26.9740995Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9741121Z args.clear() 2023-01-11T21:41:26.9741492Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9741786Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9741907Z del arg0_1 2023-01-11T21:41:26.9742013Z del arg1_1 2023-01-11T21:41:26.9742139Z return (buf0, ) 2023-01-11T21:41:26.9742148Z 2023-01-11T21:41:26.9742155Z 2023-01-11T21:41:26.9742288Z if __name__ == "__main__": 2023-01-11T21:41:26.9742504Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9742727Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9743114Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9743546Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9743753Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9743763Z 2023-01-11T21:41:26.9743864Z ok (2.473s) 2023-01-11T21:41:26.9744796Z test_cpu_strided_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9745025Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9745547Z [2023-01-11 21:41:10,225] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 577 2023-01-11T21:41:26.9746062Z [2023-01-11 21:41:13,124] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 577 2023-01-11T21:41:26.9746073Z 2023-01-11T21:41:26.9746241Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9746367Z import torch 2023-01-11T21:41:26.9746495Z import random 2023-01-11T21:41:26.9746703Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9746908Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9746931Z 2023-01-11T21:41:26.9747064Z aten = torch.ops.aten 2023-01-11T21:41:26.9747304Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9747469Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9747479Z 2023-01-11T21:41:26.9747487Z 2023-01-11T21:41:26.9747752Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9748120Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9748289Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9748540Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9748656Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9748737Z { 2023-01-11T21:41:26.9748867Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9748947Z { 2023-01-11T21:41:26.9749048Z #pragma omp for 2023-01-11T21:41:26.9749156Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9749240Z { 2023-01-11T21:41:26.9749331Z #pragma GCC ivdep 2023-01-11T21:41:26.9749440Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9749526Z { 2023-01-11T21:41:26.9749612Z { 2023-01-11T21:41:26.9749699Z { 2023-01-11T21:41:26.9749838Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9750014Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9750127Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9750254Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9750344Z } 2023-01-11T21:41:26.9750429Z } 2023-01-11T21:41:26.9750514Z } 2023-01-11T21:41:26.9750596Z } 2023-01-11T21:41:26.9750677Z } 2023-01-11T21:41:26.9750741Z } 2023-01-11T21:41:26.9750856Z ''') 2023-01-11T21:41:26.9750863Z 2023-01-11T21:41:26.9750868Z 2023-01-11T21:41:26.9750987Z async_compile.wait(globals()) 2023-01-11T21:41:26.9751082Z del async_compile 2023-01-11T21:41:26.9751089Z 2023-01-11T21:41:26.9751181Z def call(args): 2023-01-11T21:41:26.9751278Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9751371Z args.clear() 2023-01-11T21:41:26.9751634Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9751849Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9751940Z del arg0_1 2023-01-11T21:41:26.9752031Z del arg1_1 2023-01-11T21:41:26.9752125Z return (buf0, ) 2023-01-11T21:41:26.9752132Z 2023-01-11T21:41:26.9752137Z 2023-01-11T21:41:26.9752235Z if __name__ == "__main__": 2023-01-11T21:41:26.9752387Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9752546Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9752805Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9753079Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9753253Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9753262Z 2023-01-11T21:41:26.9753366Z ok (2.920s) 2023-01-11T21:41:26.9754125Z test_cpu_strided_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9754351Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9754796Z [2023-01-11 21:41:13,147] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 578 2023-01-11T21:41:26.9755235Z [2023-01-11 21:41:15,587] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 578 2023-01-11T21:41:26.9755247Z 2023-01-11T21:41:26.9755388Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9755478Z import torch 2023-01-11T21:41:26.9755581Z import random 2023-01-11T21:41:26.9755744Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9755918Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9755935Z 2023-01-11T21:41:26.9756050Z aten = torch.ops.aten 2023-01-11T21:41:26.9756242Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9756497Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9756507Z 2023-01-11T21:41:26.9756513Z 2023-01-11T21:41:26.9756744Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9757010Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9757181Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9757329Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9757472Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9757561Z { 2023-01-11T21:41:26.9757706Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9757797Z { 2023-01-11T21:41:26.9757895Z #pragma omp for 2023-01-11T21:41:26.9758018Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9758107Z { 2023-01-11T21:41:26.9758320Z #pragma GCC ivdep 2023-01-11T21:41:26.9758467Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9758571Z { 2023-01-11T21:41:26.9758664Z { 2023-01-11T21:41:26.9758755Z { 2023-01-11T21:41:26.9758929Z auto tmp0 = in_ptr0[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9759099Z auto tmp1 = in_ptr1[i0 + (10*i1)]; 2023-01-11T21:41:26.9759255Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9759407Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9759515Z } 2023-01-11T21:41:26.9759618Z } 2023-01-11T21:41:26.9759703Z } 2023-01-11T21:41:26.9759801Z } 2023-01-11T21:41:26.9759900Z } 2023-01-11T21:41:26.9759999Z } 2023-01-11T21:41:26.9760183Z ''') 2023-01-11T21:41:26.9760193Z 2023-01-11T21:41:26.9760200Z 2023-01-11T21:41:26.9760369Z async_compile.wait(globals()) 2023-01-11T21:41:26.9760502Z del async_compile 2023-01-11T21:41:26.9760513Z 2023-01-11T21:41:26.9760614Z def call(args): 2023-01-11T21:41:26.9760745Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9760874Z args.clear() 2023-01-11T21:41:26.9761274Z buf0 = empty_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9761561Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9761683Z del arg0_1 2023-01-11T21:41:26.9761793Z del arg1_1 2023-01-11T21:41:26.9761892Z return (buf0, ) 2023-01-11T21:41:26.9761920Z 2023-01-11T21:41:26.9761928Z 2023-01-11T21:41:26.9762038Z if __name__ == "__main__": 2023-01-11T21:41:26.9762231Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9762437Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9762872Z arg0_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9763313Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9763538Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9763560Z 2023-01-11T21:41:26.9763679Z ok (2.463s) 2023-01-11T21:41:26.9764553Z test_cpu_transposed_broadcast1 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9764828Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9765350Z [2023-01-11 21:41:15,607] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 579 2023-01-11T21:41:26.9765761Z [2023-01-11 21:41:15,617] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 579 2023-01-11T21:41:26.9765770Z 2023-01-11T21:41:26.9765896Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9766100Z import torch 2023-01-11T21:41:26.9766195Z import random 2023-01-11T21:41:26.9766349Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9766509Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9766516Z 2023-01-11T21:41:26.9766618Z aten = torch.ops.aten 2023-01-11T21:41:26.9766780Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9766901Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9766909Z 2023-01-11T21:41:26.9766914Z 2023-01-11T21:41:26.9767102Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9767364Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9767519Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9767655Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9767835Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9767917Z { 2023-01-11T21:41:26.9768043Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9768127Z { 2023-01-11T21:41:26.9768234Z #pragma omp for 2023-01-11T21:41:26.9768345Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9768433Z { 2023-01-11T21:41:26.9768546Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9768623Z { 2023-01-11T21:41:26.9768828Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9769154Z auto tmp1 = at::vec::Vectorized(in_ptr1[i0]); 2023-01-11T21:41:26.9769453Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9769655Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9769776Z } 2023-01-11T21:41:26.9769965Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9770256Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9770395Z { 2023-01-11T21:41:26.9770623Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9770839Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9771053Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9771273Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9771430Z } 2023-01-11T21:41:26.9771565Z } 2023-01-11T21:41:26.9771668Z } 2023-01-11T21:41:26.9771784Z } 2023-01-11T21:41:26.9771949Z ''') 2023-01-11T21:41:26.9771959Z 2023-01-11T21:41:26.9771966Z 2023-01-11T21:41:26.9772128Z async_compile.wait(globals()) 2023-01-11T21:41:26.9772258Z del async_compile 2023-01-11T21:41:26.9772267Z 2023-01-11T21:41:26.9772390Z def call(args): 2023-01-11T21:41:26.9772524Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9772637Z args.clear() 2023-01-11T21:41:26.9773001Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9773298Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9773445Z del arg0_1 2023-01-11T21:41:26.9773612Z del arg1_1 2023-01-11T21:41:26.9773779Z return (buf0, ) 2023-01-11T21:41:26.9773789Z 2023-01-11T21:41:26.9773797Z 2023-01-11T21:41:26.9773980Z if __name__ == "__main__": 2023-01-11T21:41:26.9774225Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9774518Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9774990Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9775410Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9775617Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9775626Z 2023-01-11T21:41:26.9775741Z ok (0.027s) 2023-01-11T21:41:26.9776653Z test_cpu_transposed_broadcast2 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9777034Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9777642Z [2023-01-11 21:41:15,632] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 580 2023-01-11T21:41:26.9778284Z [2023-01-11 21:41:15,641] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 580 2023-01-11T21:41:26.9778297Z 2023-01-11T21:41:26.9778493Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9778647Z import torch 2023-01-11T21:41:26.9778790Z import random 2023-01-11T21:41:26.9778994Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9779283Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9779295Z 2023-01-11T21:41:26.9779439Z aten = torch.ops.aten 2023-01-11T21:41:26.9779676Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9779826Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9779852Z 2023-01-11T21:41:26.9779859Z 2023-01-11T21:41:26.9780094Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9780506Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9780782Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9781016Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9781234Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9781377Z { 2023-01-11T21:41:26.9781610Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9781734Z { 2023-01-11T21:41:26.9781920Z #pragma omp for 2023-01-11T21:41:26.9782120Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9782259Z { 2023-01-11T21:41:26.9782406Z for(long i1=0; i1<1; i1+=1) 2023-01-11T21:41:26.9782524Z { 2023-01-11T21:41:26.9782791Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9783020Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i1); 2023-01-11T21:41:26.9783259Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9783445Z tmp2.store(out_ptr0 + (8*i1) + (10*i0)); 2023-01-11T21:41:26.9783564Z } 2023-01-11T21:41:26.9783729Z #pragma omp simd simdlen(4) 2023-01-11T21:41:26.9783880Z for(long i1=8; i1<10; i1+=1) 2023-01-11T21:41:26.9784025Z { 2023-01-11T21:41:26.9784219Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9784426Z auto tmp1 = in_ptr1[i1]; 2023-01-11T21:41:26.9784627Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9784849Z out_ptr0[i1 + (10*i0)] = tmp2; 2023-01-11T21:41:26.9785000Z } 2023-01-11T21:41:26.9785145Z } 2023-01-11T21:41:26.9785293Z } 2023-01-11T21:41:26.9785424Z } 2023-01-11T21:41:26.9785617Z ''') 2023-01-11T21:41:26.9785628Z 2023-01-11T21:41:26.9785638Z 2023-01-11T21:41:26.9785832Z async_compile.wait(globals()) 2023-01-11T21:41:26.9785967Z del async_compile 2023-01-11T21:41:26.9785976Z 2023-01-11T21:41:26.9786105Z def call(args): 2023-01-11T21:41:26.9786239Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9786368Z args.clear() 2023-01-11T21:41:26.9786764Z buf0 = empty_strided((1, 10, 10), (100, 1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9787040Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9787160Z del arg0_1 2023-01-11T21:41:26.9787283Z del arg1_1 2023-01-11T21:41:26.9787416Z return (buf0, ) 2023-01-11T21:41:26.9787427Z 2023-01-11T21:41:26.9787433Z 2023-01-11T21:41:26.9787616Z if __name__ == "__main__": 2023-01-11T21:41:26.9787876Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9788153Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9788703Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9789191Z arg1_1 = rand_strided((1, 10, 1), (10, 1, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9789419Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9789430Z 2023-01-11T21:41:26.9789549Z ok (0.024s) 2023-01-11T21:41:26.9790455Z test_cpu_transposed_broadcast3 (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9790737Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9791306Z [2023-01-11 21:41:15,655] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 581 2023-01-11T21:41:26.9791954Z [2023-01-11 21:41:15,663] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 581 2023-01-11T21:41:26.9791967Z 2023-01-11T21:41:26.9792200Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9792366Z import torch 2023-01-11T21:41:26.9792513Z import random 2023-01-11T21:41:26.9792764Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9792980Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9792989Z 2023-01-11T21:41:26.9793131Z aten = torch.ops.aten 2023-01-11T21:41:26.9793371Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9793537Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9793546Z 2023-01-11T21:41:26.9793554Z 2023-01-11T21:41:26.9793815Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9794178Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9794394Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9794644Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9794865Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9795014Z { 2023-01-11T21:41:26.9795247Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9795395Z { 2023-01-11T21:41:26.9795582Z #pragma omp for 2023-01-11T21:41:26.9795755Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.9795902Z { 2023-01-11T21:41:26.9796215Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9796444Z auto tmp1 = at::vec::Vectorized(in_ptr1[0]); 2023-01-11T21:41:26.9796598Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9796769Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9796883Z } 2023-01-11T21:41:26.9797033Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9797180Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.9797302Z { 2023-01-11T21:41:26.9797455Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9797601Z auto tmp1 = in_ptr1[0]; 2023-01-11T21:41:26.9797753Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9797910Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9798024Z } 2023-01-11T21:41:26.9798169Z } 2023-01-11T21:41:26.9798316Z } 2023-01-11T21:41:26.9798519Z ''') 2023-01-11T21:41:26.9798534Z 2023-01-11T21:41:26.9798541Z 2023-01-11T21:41:26.9798756Z async_compile.wait(globals()) 2023-01-11T21:41:26.9798929Z del async_compile 2023-01-11T21:41:26.9798940Z 2023-01-11T21:41:26.9799111Z def call(args): 2023-01-11T21:41:26.9799265Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9799423Z args.clear() 2023-01-11T21:41:26.9799877Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9800174Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9800382Z del arg0_1 2023-01-11T21:41:26.9800497Z del arg1_1 2023-01-11T21:41:26.9800626Z return (buf0, ) 2023-01-11T21:41:26.9800635Z 2023-01-11T21:41:26.9800642Z 2023-01-11T21:41:26.9800775Z if __name__ == "__main__": 2023-01-11T21:41:26.9800964Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9801186Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9801616Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9802074Z arg1_1 = rand_strided((1, ), (1, ), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9802330Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9802340Z 2023-01-11T21:41:26.9802493Z ok (0.022s) 2023-01-11T21:41:26.9803629Z test_cpu_transposed_dense (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9803866Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9804349Z [2023-01-11 21:41:15,679] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 582 2023-01-11T21:41:26.9804826Z [2023-01-11 21:41:17,263] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 582 2023-01-11T21:41:26.9804836Z 2023-01-11T21:41:26.9805038Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9805208Z import torch 2023-01-11T21:41:26.9805380Z import random 2023-01-11T21:41:26.9805643Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9805928Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9805946Z 2023-01-11T21:41:26.9806124Z aten = torch.ops.aten 2023-01-11T21:41:26.9806429Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9806625Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9806635Z 2023-01-11T21:41:26.9806646Z 2023-01-11T21:41:26.9806923Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9807276Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9807491Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9807680Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9807855Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9807963Z { 2023-01-11T21:41:26.9808112Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9808227Z { 2023-01-11T21:41:26.9808371Z #pragma omp for 2023-01-11T21:41:26.9808569Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9808703Z { 2023-01-11T21:41:26.9808903Z #pragma GCC ivdep 2023-01-11T21:41:26.9809253Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9809386Z { 2023-01-11T21:41:26.9809538Z { 2023-01-11T21:41:26.9809692Z { 2023-01-11T21:41:26.9809933Z auto tmp0 = in_ptr0[i0 + (10*i1)]; 2023-01-11T21:41:26.9810166Z auto tmp1 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9810367Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9810540Z out_ptr0[i0 + (10*i1)] = tmp2; 2023-01-11T21:41:26.9810646Z } 2023-01-11T21:41:26.9810762Z } 2023-01-11T21:41:26.9810874Z } 2023-01-11T21:41:26.9810987Z } 2023-01-11T21:41:26.9811093Z } 2023-01-11T21:41:26.9811201Z } 2023-01-11T21:41:26.9811356Z ''') 2023-01-11T21:41:26.9811372Z 2023-01-11T21:41:26.9811379Z 2023-01-11T21:41:26.9811513Z async_compile.wait(globals()) 2023-01-11T21:41:26.9811642Z del async_compile 2023-01-11T21:41:26.9811754Z 2023-01-11T21:41:26.9811882Z def call(args): 2023-01-11T21:41:26.9812025Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9812193Z args.clear() 2023-01-11T21:41:26.9812672Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9813046Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9813180Z del arg0_1 2023-01-11T21:41:26.9813346Z del arg1_1 2023-01-11T21:41:26.9813513Z return (buf0, ) 2023-01-11T21:41:26.9813528Z 2023-01-11T21:41:26.9813538Z 2023-01-11T21:41:26.9813712Z if __name__ == "__main__": 2023-01-11T21:41:26.9813955Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9814178Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9814627Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9814993Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9815191Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9815201Z 2023-01-11T21:41:26.9815318Z ok (1.601s) 2023-01-11T21:41:26.9816389Z test_cpu_transposed_double (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9816682Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9817302Z [2023-01-11 21:41:17,285] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 583 2023-01-11T21:41:26.9817816Z [2023-01-11 21:41:19,792] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 583 2023-01-11T21:41:26.9817833Z 2023-01-11T21:41:26.9818002Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9818129Z import torch 2023-01-11T21:41:26.9818263Z import random 2023-01-11T21:41:26.9818460Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9818678Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9818688Z 2023-01-11T21:41:26.9818823Z aten = torch.ops.aten 2023-01-11T21:41:26.9819105Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9819326Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9819337Z 2023-01-11T21:41:26.9819347Z 2023-01-11T21:41:26.9819662Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9820137Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9820422Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9820663Z const double* __restrict__ in_ptr1, 2023-01-11T21:41:26.9820867Z double* __restrict__ out_ptr0) 2023-01-11T21:41:26.9820976Z { 2023-01-11T21:41:26.9821150Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9821263Z { 2023-01-11T21:41:26.9821400Z #pragma omp for 2023-01-11T21:41:26.9821549Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9821648Z { 2023-01-11T21:41:26.9821791Z #pragma GCC ivdep 2023-01-11T21:41:26.9821949Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9822064Z { 2023-01-11T21:41:26.9822180Z { 2023-01-11T21:41:26.9822300Z { 2023-01-11T21:41:26.9822527Z auto tmp0 = in_ptr0[i0 + (10*i1)]; 2023-01-11T21:41:26.9822731Z auto tmp2 = in_ptr1[i1 + (10*i0)]; 2023-01-11T21:41:26.9823009Z auto tmp1 = static_cast(tmp0); 2023-01-11T21:41:26.9823312Z auto tmp3 = tmp1 + tmp2; 2023-01-11T21:41:26.9823537Z out_ptr0[i0 + (10*i1)] = tmp3; 2023-01-11T21:41:26.9823797Z } 2023-01-11T21:41:26.9823947Z } 2023-01-11T21:41:26.9824080Z } 2023-01-11T21:41:26.9824213Z } 2023-01-11T21:41:26.9824337Z } 2023-01-11T21:41:26.9824457Z } 2023-01-11T21:41:26.9824617Z ''') 2023-01-11T21:41:26.9824628Z 2023-01-11T21:41:26.9824635Z 2023-01-11T21:41:26.9824797Z async_compile.wait(globals()) 2023-01-11T21:41:26.9824929Z del async_compile 2023-01-11T21:41:26.9824939Z 2023-01-11T21:41:26.9825062Z def call(args): 2023-01-11T21:41:26.9825180Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9825300Z args.clear() 2023-01-11T21:41:26.9825675Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9826042Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9826208Z del arg0_1 2023-01-11T21:41:26.9826370Z del arg1_1 2023-01-11T21:41:26.9826528Z return (buf0, ) 2023-01-11T21:41:26.9826549Z 2023-01-11T21:41:26.9826557Z 2023-01-11T21:41:26.9826741Z if __name__ == "__main__": 2023-01-11T21:41:26.9826985Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9827270Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9827742Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9828118Z arg1_1 = rand_strided((10, 10), (10, 1), device='cpu', dtype=torch.float64) 2023-01-11T21:41:26.9828323Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9828333Z 2023-01-11T21:41:26.9828452Z ok (2.528s) 2023-01-11T21:41:26.9829357Z test_cpu_transposed_int (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9829646Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9830243Z [2023-01-11 21:41:19,810] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 584 2023-01-11T21:41:26.9830868Z [2023-01-11 21:41:22,144] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 584 2023-01-11T21:41:26.9830902Z 2023-01-11T21:41:26.9831106Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9831251Z import torch 2023-01-11T21:41:26.9831389Z import random 2023-01-11T21:41:26.9831600Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9831813Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9831823Z 2023-01-11T21:41:26.9831966Z aten = torch.ops.aten 2023-01-11T21:41:26.9832202Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9832353Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9832368Z 2023-01-11T21:41:26.9832391Z 2023-01-11T21:41:26.9832627Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9833039Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9833314Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9833556Z const int* __restrict__ in_ptr1, 2023-01-11T21:41:26.9833792Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9833936Z { 2023-01-11T21:41:26.9834168Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9834294Z { 2023-01-11T21:41:26.9834478Z #pragma omp for 2023-01-11T21:41:26.9834663Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9834789Z { 2023-01-11T21:41:26.9834935Z #pragma GCC ivdep 2023-01-11T21:41:26.9835099Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9835199Z { 2023-01-11T21:41:26.9835313Z { 2023-01-11T21:41:26.9835503Z { 2023-01-11T21:41:26.9835688Z auto tmp0 = in_ptr0[i1 + (10*i0)]; 2023-01-11T21:41:26.9835858Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9836055Z auto tmp2 = static_cast(tmp1); 2023-01-11T21:41:26.9836218Z auto tmp3 = tmp0 + tmp2; 2023-01-11T21:41:26.9836382Z out_ptr0[i1 + (10*i0)] = tmp3; 2023-01-11T21:41:26.9836539Z } 2023-01-11T21:41:26.9836680Z } 2023-01-11T21:41:26.9836832Z } 2023-01-11T21:41:26.9836979Z } 2023-01-11T21:41:26.9837125Z } 2023-01-11T21:41:26.9837260Z } 2023-01-11T21:41:26.9837446Z ''') 2023-01-11T21:41:26.9837463Z 2023-01-11T21:41:26.9837473Z 2023-01-11T21:41:26.9837682Z async_compile.wait(globals()) 2023-01-11T21:41:26.9837921Z del async_compile 2023-01-11T21:41:26.9837940Z 2023-01-11T21:41:26.9838099Z def call(args): 2023-01-11T21:41:26.9838265Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9838406Z args.clear() 2023-01-11T21:41:26.9838784Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9839074Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9839180Z del arg0_1 2023-01-11T21:41:26.9839298Z del arg1_1 2023-01-11T21:41:26.9839427Z return (buf0, ) 2023-01-11T21:41:26.9839437Z 2023-01-11T21:41:26.9839444Z 2023-01-11T21:41:26.9839578Z if __name__ == "__main__": 2023-01-11T21:41:26.9839772Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9840043Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9840513Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9840939Z arg1_1 = rand_strided((10, ), (1, ), device='cpu', dtype=torch.int32) 2023-01-11T21:41:26.9841200Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9841220Z 2023-01-11T21:41:26.9841372Z ok (2.353s) 2023-01-11T21:41:26.9842361Z test_cpu_transposed_strided (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9842591Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9843082Z [2023-01-11 21:41:22,168] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 585 2023-01-11T21:41:26.9843659Z [2023-01-11 21:41:24,551] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 585 2023-01-11T21:41:26.9843674Z 2023-01-11T21:41:26.9843897Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9844063Z import torch 2023-01-11T21:41:26.9844229Z import random 2023-01-11T21:41:26.9844469Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9844754Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9844766Z 2023-01-11T21:41:26.9844955Z aten = torch.ops.aten 2023-01-11T21:41:26.9845252Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9845427Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9845437Z 2023-01-11T21:41:26.9845443Z 2023-01-11T21:41:26.9845695Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9846052Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9846268Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9846434Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9846613Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9846723Z { 2023-01-11T21:41:26.9847045Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9847189Z { 2023-01-11T21:41:26.9847369Z #pragma omp for 2023-01-11T21:41:26.9847560Z for(long i0=0; i0<10; i0+=1) 2023-01-11T21:41:26.9847696Z { 2023-01-11T21:41:26.9847884Z #pragma GCC ivdep 2023-01-11T21:41:26.9848076Z for(long i1=0; i1<10; i1+=1) 2023-01-11T21:41:26.9848226Z { 2023-01-11T21:41:26.9848375Z { 2023-01-11T21:41:26.9848537Z { 2023-01-11T21:41:26.9848730Z auto tmp0 = in_ptr0[i0 + (10*i1)]; 2023-01-11T21:41:26.9848926Z auto tmp1 = in_ptr1[(2*i1) + (30*i0)]; 2023-01-11T21:41:26.9849268Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9849446Z out_ptr0[i0 + (10*i1)] = tmp2; 2023-01-11T21:41:26.9849661Z } 2023-01-11T21:41:26.9849781Z } 2023-01-11T21:41:26.9849885Z } 2023-01-11T21:41:26.9849981Z } 2023-01-11T21:41:26.9850092Z } 2023-01-11T21:41:26.9850200Z } 2023-01-11T21:41:26.9850360Z ''') 2023-01-11T21:41:26.9850371Z 2023-01-11T21:41:26.9850378Z 2023-01-11T21:41:26.9850548Z async_compile.wait(globals()) 2023-01-11T21:41:26.9850703Z del async_compile 2023-01-11T21:41:26.9850720Z 2023-01-11T21:41:26.9850877Z def call(args): 2023-01-11T21:41:26.9851057Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9851208Z args.clear() 2023-01-11T21:41:26.9851688Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9852060Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9852225Z del arg0_1 2023-01-11T21:41:26.9852368Z del arg1_1 2023-01-11T21:41:26.9852506Z return (buf0, ) 2023-01-11T21:41:26.9852516Z 2023-01-11T21:41:26.9852523Z 2023-01-11T21:41:26.9852668Z if __name__ == "__main__": 2023-01-11T21:41:26.9852860Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9853087Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9853462Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9853835Z arg1_1 = rand_strided((10, 10), (30, 2), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9854064Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9854075Z 2023-01-11T21:41:26.9854233Z ok (2.408s) 2023-01-11T21:41:26.9855387Z test_cpu_transposed_transposed (__main__.SweepInputsCpuTest) ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor.py:246: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:26.9855689Z buffer = torch.as_strided(x, (x.storage().size(),), (1,), 0).clone() 2023-01-11T21:41:26.9856220Z [2023-01-11 21:41:24,579] torch._inductor.compile_fx: [INFO] Step 1: torchinductor compiling FORWARDS graph 586 2023-01-11T21:41:26.9856691Z [2023-01-11 21:41:24,594] torch._inductor.compile_fx: [INFO] Step 1: torchinductor done compiling FORWARDS graph 586 2023-01-11T21:41:26.9856719Z 2023-01-11T21:41:26.9856872Z from ctypes import c_void_p, c_long 2023-01-11T21:41:26.9856997Z import torch 2023-01-11T21:41:26.9857123Z import random 2023-01-11T21:41:26.9857330Z from torch import empty_strided, as_strided, device 2023-01-11T21:41:26.9857566Z from torch._inductor.codecache import AsyncCompile 2023-01-11T21:41:26.9857578Z 2023-01-11T21:41:26.9857755Z aten = torch.ops.aten 2023-01-11T21:41:26.9858053Z assert_size_stride = torch._C._dynamo.guards.assert_size_stride 2023-01-11T21:41:26.9858248Z async_compile = AsyncCompile() 2023-01-11T21:41:26.9858260Z 2023-01-11T21:41:26.9858295Z 2023-01-11T21:41:26.9858599Z kernel_cpp_0 = async_compile.cpp(''' 2023-01-11T21:41:26.9859075Z #include "/tmp/torchinductor_jenkins/77/c7773nj5pwikpmm2pwa62rcudlf7p3if7eyqb5k4sjsvewwje4le.h" 2023-01-11T21:41:26.9859447Z extern "C" void kernel(const float* __restrict__ in_ptr0, 2023-01-11T21:41:26.9859635Z const float* __restrict__ in_ptr1, 2023-01-11T21:41:26.9859810Z float* __restrict__ out_ptr0) 2023-01-11T21:41:26.9859917Z { 2023-01-11T21:41:26.9860093Z #pragma omp parallel num_threads(4) 2023-01-11T21:41:26.9860195Z { 2023-01-11T21:41:26.9860330Z #pragma omp for 2023-01-11T21:41:26.9860480Z for(long i0=0; i0<12; i0+=1) 2023-01-11T21:41:26.9860592Z { 2023-01-11T21:41:26.9860846Z auto tmp0 = at::vec::Vectorized::loadu(in_ptr0 + 8*i0); 2023-01-11T21:41:26.9861140Z auto tmp1 = at::vec::Vectorized::loadu(in_ptr1 + 8*i0); 2023-01-11T21:41:26.9861394Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9861594Z tmp2.store(out_ptr0 + 8*i0); 2023-01-11T21:41:26.9861741Z } 2023-01-11T21:41:26.9861972Z #pragma omp for simd simdlen(4) 2023-01-11T21:41:26.9862167Z for(long i0=96; i0<100; i0+=1) 2023-01-11T21:41:26.9862314Z { 2023-01-11T21:41:26.9862519Z auto tmp0 = in_ptr0[i0]; 2023-01-11T21:41:26.9862713Z auto tmp1 = in_ptr1[i0]; 2023-01-11T21:41:26.9862868Z auto tmp2 = tmp0 + tmp1; 2023-01-11T21:41:26.9863022Z out_ptr0[i0] = tmp2; 2023-01-11T21:41:26.9863211Z } 2023-01-11T21:41:26.9863327Z } 2023-01-11T21:41:26.9863435Z } 2023-01-11T21:41:26.9863605Z ''') 2023-01-11T21:41:26.9863616Z 2023-01-11T21:41:26.9863623Z 2023-01-11T21:41:26.9863784Z async_compile.wait(globals()) 2023-01-11T21:41:26.9863899Z del async_compile 2023-01-11T21:41:26.9863909Z 2023-01-11T21:41:26.9864033Z def call(args): 2023-01-11T21:41:26.9864166Z arg0_1, arg1_1 = args 2023-01-11T21:41:26.9864297Z args.clear() 2023-01-11T21:41:26.9864719Z buf0 = empty_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9865109Z kernel_cpp_0(c_void_p(arg0_1.data_ptr()), c_void_p(arg1_1.data_ptr()), c_void_p(buf0.data_ptr())) 2023-01-11T21:41:26.9865273Z del arg0_1 2023-01-11T21:41:26.9865411Z del arg1_1 2023-01-11T21:41:26.9865575Z return (buf0, ) 2023-01-11T21:41:26.9865587Z 2023-01-11T21:41:26.9865598Z 2023-01-11T21:41:26.9865770Z if __name__ == "__main__": 2023-01-11T21:41:26.9866028Z from torch._dynamo.testing import rand_strided 2023-01-11T21:41:26.9866313Z from torch._inductor.utils import print_performance 2023-01-11T21:41:26.9866701Z arg0_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9867066Z arg1_1 = rand_strided((10, 10), (1, 10), device='cpu', dtype=torch.float32) 2023-01-11T21:41:26.9867269Z print_performance(lambda: call([arg0_1, arg1_1])) 2023-01-11T21:41:26.9867280Z 2023-01-11T21:41:26.9867385Z ok (0.043s) 2023-01-11T21:41:26.9867651Z test_indexing_join (__main__.TestIndexingSimplification) ... ok (0.112s) 2023-01-11T21:41:26.9867949Z test_indexing_simplification (__main__.TestIndexingSimplification) ... ok (0.104s) 2023-01-11T21:41:26.9867958Z 2023-01-11T21:41:26.9868433Z ---------------------------------------------------------------------- 2023-01-11T21:41:26.9868635Z Ran 362 tests in 1070.250s 2023-01-11T21:41:26.9868649Z 2023-01-11T21:41:26.9868810Z OK (skipped=17) 2023-01-11T21:41:26.9868822Z 2023-01-11T21:41:26.9869018Z Generating XML reports... 2023-01-11T21:41:26.9869757Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-CPUReproTests-20230111212334.xml 2023-01-11T21:41:26.9870313Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-CpuTests-20230111212334.xml 2023-01-11T21:41:26.9870889Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-ExprPrinterTests-20230111212334.xml 2023-01-11T21:41:26.9871495Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-SweepInputsCpuTest-20230111212334.xml 2023-01-11T21:41:26.9872375Z Generated XML report: test-reports/python-unittest/inductor.test_torchinductor/TEST-TestIndexingSimplification-20230111212334.xml 2023-01-11T21:41:26.9872389Z 2023-01-11T21:41:26.9873140Z ##[endgroup] 2023-01-11T21:41:26.9873812Z FINISHED PRINTING LOG FILE of inductor/test_torchinductor (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_9_sfivr0) 2023-01-11T21:41:26.9873822Z 2023-01-11T21:41:29.2129251Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:29.3188395Z Ignoring disabled issues: [] 2023-01-11T21:41:29.3480709Z Running test_mkldnn_verbose ... [2023-01-11 21:41:29.347613] 2023-01-11T21:41:29.3483656Z Executing ['/opt/conda/bin/python', '-bb', 'test_mkldnn_verbose.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:41:29.348022] 2023-01-11T21:41:35.4445714Z 2023-01-11T21:41:35.4446226Z Expand the folded group to see the log file of test_mkldnn_verbose 2023-01-11T21:41:35.4447365Z ##[group]PRINTING LOG FILE of test_mkldnn_verbose (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_verbose_h35cuz8n) 2023-01-11T21:41:35.4447815Z 2023-01-11T21:41:35.4447951Z Running tests... 2023-01-11T21:41:35.4448636Z ---------------------------------------------------------------------- 2023-01-11T21:41:35.4449469Z Test results will be stored in test-reports/python-unittest/test_mkldnn_verbose 2023-01-11T21:41:35.4449949Z test_verbose_off (__main__.TestMKLDNNVerbose) ... ok (1.889s) 2023-01-11T21:41:35.4450244Z test_verbose_on (__main__.TestMKLDNNVerbose) ... ok (1.462s) 2023-01-11T21:41:35.4450454Z 2023-01-11T21:41:35.4450727Z ---------------------------------------------------------------------- 2023-01-11T21:41:35.4450963Z Ran 2 tests in 3.351s 2023-01-11T21:41:35.4451079Z 2023-01-11T21:41:35.4451140Z OK 2023-01-11T21:41:35.4451230Z 2023-01-11T21:41:35.4451317Z Generating XML reports... 2023-01-11T21:41:35.4451734Z Generated XML report: test-reports/python-unittest/test_mkldnn_verbose/TEST-TestMKLDNNVerbose-20230111214131.xml 2023-01-11T21:41:35.4451982Z 2023-01-11T21:41:35.4452225Z ##[endgroup] 2023-01-11T21:41:35.4452621Z FINISHED PRINTING LOG FILE of test_mkldnn_verbose (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_verbose_h35cuz8n) 2023-01-11T21:41:35.4452843Z 2023-01-11T21:41:37.7417542Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:37.8266691Z Ignoring disabled issues: [] 2023-01-11T21:41:37.8425642Z Running test_model_dump ... [2023-01-11 21:41:37.842219] 2023-01-11T21:41:37.8427507Z Executing ['/opt/conda/bin/python', '-bb', 'test_model_dump.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:41:37.842512] 2023-01-11T21:41:40.9781298Z 2023-01-11T21:41:40.9781812Z Expand the folded group to see the log file of test_model_dump 2023-01-11T21:41:40.9783068Z ##[group]PRINTING LOG FILE of test_model_dump (/var/lib/jenkins/workspace/test/test-reports/test_model_dump_1n2pnhij) 2023-01-11T21:41:40.9783681Z 2023-01-11T21:41:40.9783862Z Running tests... 2023-01-11T21:41:40.9784689Z ---------------------------------------------------------------------- 2023-01-11T21:41:40.9785577Z Test results will be stored in test-reports/python-unittest/test_model_dump 2023-01-11T21:41:40.9786272Z test_inline_skeleton (__main__.TestModelDump) ... ok (0.232s) 2023-01-11T21:41:40.9786886Z test_invalid_json (__main__.TestModelDump) ... ok (0.019s) 2023-01-11T21:41:40.9787453Z test_main (__main__.TestModelDump) ... ok (0.015s) 2023-01-11T21:41:40.9788042Z test_memory_computation (__main__.TestModelDump) ... skip: Webdriver not requested (0.001s) 2023-01-11T21:41:40.9788690Z test_model_with_lists (__main__.TestModelDump) ... ok (0.004s) 2023-01-11T21:41:40.9789274Z test_optimized_quantized_model (__main__.TestModelDump) ... ok (0.478s) 2023-01-11T21:41:40.9789896Z test_quantized_model (__main__.TestModelDump) ... ok (0.348s) 2023-01-11T21:41:40.9790522Z test_scripted_model (__main__.TestModelDump) ... ok (0.020s) 2023-01-11T21:41:40.9791426Z test_traced_model (__main__.TestModelDump) ... ok (0.032s) 2023-01-11T21:41:40.9791757Z 2023-01-11T21:41:40.9792253Z ---------------------------------------------------------------------- 2023-01-11T21:41:40.9792817Z Ran 9 tests in 1.149s 2023-01-11T21:41:40.9793078Z 2023-01-11T21:41:40.9793241Z OK (skipped=1) 2023-01-11T21:41:40.9793489Z 2023-01-11T21:41:40.9793666Z Generating XML reports... 2023-01-11T21:41:40.9794544Z Generated XML report: test-reports/python-unittest/test_model_dump/TEST-TestModelDump-20230111214139.xml 2023-01-11T21:41:40.9794942Z 2023-01-11T21:41:40.9795363Z ##[endgroup] 2023-01-11T21:41:40.9796035Z FINISHED PRINTING LOG FILE of test_model_dump (/var/lib/jenkins/workspace/test/test-reports/test_model_dump_1n2pnhij) 2023-01-11T21:41:40.9796415Z 2023-01-11T21:41:44.0227795Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:44.1238069Z Ignoring disabled issues: [] 2023-01-11T21:41:44.1562070Z Running test_module_init ... [2023-01-11 21:41:44.155755] 2023-01-11T21:41:44.1564167Z Executing ['/opt/conda/bin/python', '-bb', 'test_module_init.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:41:44.156123] 2023-01-11T21:41:46.2773412Z 2023-01-11T21:41:46.2773939Z Expand the folded group to see the log file of test_module_init 2023-01-11T21:41:46.2775091Z ##[group]PRINTING LOG FILE of test_module_init (/var/lib/jenkins/workspace/test/test-reports/test_module_init_s9462x0e) 2023-01-11T21:41:46.2775448Z 2023-01-11T21:41:46.2775584Z Running tests... 2023-01-11T21:41:46.2776265Z ---------------------------------------------------------------------- 2023-01-11T21:41:46.2776573Z 2023-01-11T21:41:46.2776917Z ---------------------------------------------------------------------- 2023-01-11T21:41:46.2777353Z Ran 0 tests in 0.000s 2023-01-11T21:41:46.2777546Z 2023-01-11T21:41:46.2777654Z OK 2023-01-11T21:41:46.2777854Z 2023-01-11T21:41:46.2778009Z Generating XML reports... 2023-01-11T21:41:46.2778555Z Test results will be stored in test-reports/python-unittest/test_module_init 2023-01-11T21:41:46.2778832Z 2023-01-11T21:41:46.2779176Z ##[endgroup] 2023-01-11T21:41:46.2779574Z FINISHED PRINTING LOG FILE of test_module_init (/var/lib/jenkins/workspace/test/test-reports/test_module_init_s9462x0e) 2023-01-11T21:41:46.2779790Z 2023-01-11T21:41:49.2136405Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:49.3352685Z Ignoring disabled issues: [] 2023-01-11T21:41:49.3658169Z Running test_monitor ... [2023-01-11 21:41:49.365292] 2023-01-11T21:41:49.3660338Z Executing ['/opt/conda/bin/python', '-bb', 'test_monitor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:41:49.365721] 2023-01-11T21:41:51.8227624Z 2023-01-11T21:41:51.8228115Z Expand the folded group to see the log file of test_monitor 2023-01-11T21:41:51.8229182Z ##[group]PRINTING LOG FILE of test_monitor (/var/lib/jenkins/workspace/test/test-reports/test_monitor_56qdajuw) 2023-01-11T21:41:51.8229596Z 2023-01-11T21:41:51.8229723Z Running tests... 2023-01-11T21:41:51.8230320Z ---------------------------------------------------------------------- 2023-01-11T21:41:51.8230996Z Test results will be stored in test-reports/python-unittest/test_monitor 2023-01-11T21:41:51.8231516Z test_event_handler (__main__.TestMonitor) ... ok (0.234s) 2023-01-11T21:41:51.8231952Z test_fixed_count_stat (__main__.TestMonitor) ... ok (0.001s) 2023-01-11T21:41:51.8232420Z test_interval_stat (__main__.TestMonitor) ... ok (0.002s) 2023-01-11T21:41:51.8232829Z test_log_event (__main__.TestMonitor) ... ok (0.001s) 2023-01-11T21:41:51.8233319Z test_event_handler (__main__.TestMonitorTensorboard) ... ok (0.180s) 2023-01-11T21:41:51.8233628Z 2023-01-11T21:41:51.8233977Z ---------------------------------------------------------------------- 2023-01-11T21:41:51.8234399Z Ran 5 tests in 0.419s 2023-01-11T21:41:51.8234607Z 2023-01-11T21:41:51.8234718Z OK 2023-01-11T21:41:51.8234880Z 2023-01-11T21:41:51.8235018Z Generating XML reports... 2023-01-11T21:41:51.8236001Z Generated XML report: test-reports/python-unittest/test_monitor/TEST-TestMonitor-20230111214151.xml 2023-01-11T21:41:51.8236931Z Generated XML report: test-reports/python-unittest/test_monitor/TEST-TestMonitorTensorboard-20230111214151.xml 2023-01-11T21:41:51.8237359Z 2023-01-11T21:41:51.8237742Z ##[endgroup] 2023-01-11T21:41:51.8238259Z FINISHED PRINTING LOG FILE of test_monitor (/var/lib/jenkins/workspace/test/test-reports/test_monitor_56qdajuw) 2023-01-11T21:41:51.8238554Z 2023-01-11T21:41:54.6854123Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:41:54.8107327Z Ignoring disabled issues: [] 2023-01-11T21:41:54.8365912Z Running test_namedtensor ... [2023-01-11 21:41:54.836243] 2023-01-11T21:41:54.8368768Z Executing ['/opt/conda/bin/python', '-bb', 'test_namedtensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:41:54.836567] 2023-01-11T21:41:57.9884657Z 2023-01-11T21:41:57.9888748Z Expand the folded group to see the log file of test_namedtensor 2023-01-11T21:41:57.9889882Z ##[group]PRINTING LOG FILE of test_namedtensor (/var/lib/jenkins/workspace/test/test-reports/test_namedtensor_79wml2do) 2023-01-11T21:41:57.9890276Z 2023-01-11T21:41:57.9890500Z Running tests... 2023-01-11T21:41:57.9891172Z ---------------------------------------------------------------------- 2023-01-11T21:41:57.9891855Z Test results will be stored in test-reports/python-unittest/test_namedtensor 2023-01-11T21:41:57.9892468Z test_aaa_must_run_first_check_experimental_warning (__main__.TestNamedTensor) ... ok (0.002s) 2023-01-11T21:41:57.9893020Z test_addcmul_addcdiv (__main__.TestNamedTensor) ... ok (0.002s) 2023-01-11T21:41:57.9893418Z test_addmm (__main__.TestNamedTensor) ... ok (0.007s) 2023-01-11T21:41:57.9893802Z test_addmv (__main__.TestNamedTensor) ... ok (0.002s) 2023-01-11T21:41:57.9894178Z test_align_as (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9894576Z test_align_tensors (__main__.TestNamedTensor) ... skip: Not implemented yet (0.001s) 2023-01-11T21:41:57.9895058Z test_align_tensors_two_inputs (__main__.TestNamedTensor) ... skip: Not implemented yet (0.002s) 2023-01-11T21:41:57.9895479Z test_align_to (__main__.TestNamedTensor) ... ok (0.009s) 2023-01-11T21:41:57.9895870Z test_align_to_ellipsis (__main__.TestNamedTensor) ... ok (0.010s) 2023-01-11T21:41:57.9896240Z test_any_all (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9896607Z test_as_strided (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9897019Z test_as_strided_cuda (__main__.TestNamedTensor) ... skip: no CUDA (0.000s) 2023-01-11T21:41:57.9897684Z test_autograd_ignores_names (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9898360Z test_autograd_smoke (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9899064Z test_autograd_warns_named_grad (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9899759Z test_bernoulli (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9900408Z test_big_tensor_repr_has_names (__main__.TestNamedTensor) ... ok (0.018s) 2023-01-11T21:41:57.9901078Z test_binary_ops (__main__.TestNamedTensor) ... ok (0.340s) 2023-01-11T21:41:57.9901698Z test_bitwise_not (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9902305Z test_bmm (__main__.TestNamedTensor) ... ok (0.019s) 2023-01-11T21:41:57.9902880Z test_cat (__main__.TestNamedTensor) ... ok (0.015s) 2023-01-11T21:41:57.9903551Z test_cdist (__main__.TestNamedTensor) ... ok (0.002s) 2023-01-11T21:41:57.9904152Z test_comparison_ops (__main__.TestNamedTensor) ... ok (0.005s) 2023-01-11T21:41:57.9904809Z test_copy_transpose (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9905444Z test_cummax_cummin (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9906043Z test_detach (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9906650Z test_diagonal (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9907225Z test_dot (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9908074Z test_equal (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9908655Z test_expand (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9909295Z test_factory_coverage (__main__.TestNamedTensor) ... ok (0.004s) 2023-01-11T21:41:57.9909964Z test_factory_edge_cases (__main__.TestNamedTensor) ... ok (0.020s) 2023-01-11T21:41:57.9910553Z test_flatten (__main__.TestNamedTensor) ... ok (0.010s) 2023-01-11T21:41:57.9911167Z test_flatten_nodims (__main__.TestNamedTensor) ... ok (0.003s) 2023-01-11T21:41:57.9911790Z test_has_names (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9912389Z test_index_fill (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9914121Z test_info_smoke (__main__.TestNamedTensor) ... /var/lib/jenkins/workspace/test/test_namedtensor.py:617: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:57.9915537Z tensor.storage() 2023-01-11T21:41:57.9916895Z /var/lib/jenkins/workspace/test/test_namedtensor.py:619: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:57.9918154Z tensor.storage_type() 2023-01-11T21:41:57.9920136Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:57.9921621Z if self.device.type not in ['cpu', 'cuda']: 2023-01-11T21:41:57.9923535Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:962: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:41:57.9925057Z module = torch if self.device.type == 'cpu' else torch.cuda 2023-01-11T21:41:57.9925576Z ok (0.001s) 2023-01-11T21:41:57.9926093Z test_logcumsumexp (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9926719Z test_logical_not (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9927352Z test_logical_ops (__main__.TestNamedTensor) ... ok (0.002s) 2023-01-11T21:41:57.9927999Z test_masked_fill (__main__.TestNamedTensor) ... ok (0.014s) 2023-01-11T21:41:57.9928629Z test_masked_select (__main__.TestNamedTensor) ... ok (0.006s) 2023-01-11T21:41:57.9929301Z test_matmul (__main__.TestNamedTensor) ... ok (0.021s) 2023-01-11T21:41:57.9929912Z test_max_pooling (__main__.TestNamedTensor) ... ok (0.003s) 2023-01-11T21:41:57.9930627Z test_max_pooling_without_names_does_not_warn (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9931302Z test_mm (__main__.TestNamedTensor) ... ok (0.007s) 2023-01-11T21:41:57.9931864Z test_mv (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9932499Z test_no_jit_script_support (__main__.TestNamedTensor) ... ok (0.047s) 2023-01-11T21:41:57.9933175Z test_no_jit_tracer_support (__main__.TestNamedTensor) ... ok (0.012s) 2023-01-11T21:41:57.9933888Z test_no_multiprocessing_support (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9934585Z test_no_pickle_support (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9935256Z test_no_save_support (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9935946Z test_noncontig_contiguous (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9936785Z test_none_names_refcount (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9937484Z test_nyi_dimname_overload_msg (__main__.TestNamedTensor) ... ok (0.003s) 2023-01-11T21:41:57.9938167Z test_out_fn_semantics (__main__.TestNamedTensor) ... ok (0.021s) 2023-01-11T21:41:57.9938852Z test_pow_special (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9939502Z test_py3_ellipsis (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9940153Z test_reduction_fns (__main__.TestNamedTensor) ... ok (0.106s) 2023-01-11T21:41:57.9940788Z test_refine_names (__main__.TestNamedTensor) ... ok (0.009s) 2023-01-11T21:41:57.9941390Z test_rename (__main__.TestNamedTensor) ... ok (0.008s) 2023-01-11T21:41:57.9941994Z test_rename_ (__main__.TestNamedTensor) ... ok (0.006s) 2023-01-11T21:41:57.9942760Z test_rename_globber (__main__.TestNamedTensor) ... ok (0.003s) 2023-01-11T21:41:57.9943504Z test_rename_rename_map (__main__.TestNamedTensor) ... ok (0.002s) 2023-01-11T21:41:57.9944119Z test_repr (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9944711Z test_resize (__main__.TestNamedTensor) ... ok (0.007s) 2023-01-11T21:41:57.9945318Z test_select (__main__.TestNamedTensor) ... ok (0.003s) 2023-01-11T21:41:57.9945953Z test_select_cuda (__main__.TestNamedTensor) ... skip: no CUDA (0.000s) 2023-01-11T21:41:57.9946662Z test_set_names_property (__main__.TestNamedTensor) ... ok (0.005s) 2023-01-11T21:41:57.9947287Z test_size (__main__.TestNamedTensor) ... ok (0.007s) 2023-01-11T21:41:57.9947932Z test_split_fns_propagates_names (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9948593Z test_squeeze (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9949183Z test_stride (__main__.TestNamedTensor) ... ok (0.007s) 2023-01-11T21:41:57.9949814Z test_tensor_from_lists (__main__.TestNamedTensor) ... ok (0.003s) 2023-01-11T21:41:57.9951152Z test_tensor_from_named_tensor (__main__.TestNamedTensor) ... /var/lib/jenkins/workspace/test/test_namedtensor.py:516: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:41:57.9952363Z tensor = torch.tensor(x) 2023-01-11T21:41:57.9953498Z /var/lib/jenkins/workspace/test/test_namedtensor.py:522: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:41:57.9954579Z tensor = torch.tensor(x, names=None) 2023-01-11T21:41:57.9955690Z /var/lib/jenkins/workspace/test/test_namedtensor.py:527: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:41:57.9956903Z tensor = torch.tensor(x, names=('N', 'C')) 2023-01-11T21:41:57.9957369Z ok (0.003s) 2023-01-11T21:41:57.9957893Z test_tensor_from_numpy (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9959240Z test_tensor_from_tensor (__main__.TestNamedTensor) ... /var/lib/jenkins/workspace/test/test_namedtensor.py:511: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:41:57.9960459Z tensor = torch.tensor(x, names=names) 2023-01-11T21:41:57.9960938Z ok (0.001s) 2023-01-11T21:41:57.9961461Z test_tensor_grad_is_unnamed (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9962149Z test_transpose_variants (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9962792Z test_trivial (__main__.TestNamedTensor) ... ok (0.000s) 2023-01-11T21:41:57.9963486Z test_unary_propagate_names_fns (__main__.TestNamedTensor) ... ok (0.018s) 2023-01-11T21:41:57.9964132Z test_unflatten (__main__.TestNamedTensor) ... ok (0.016s) 2023-01-11T21:41:57.9964905Z test_unsupported_op_error_msg (__main__.TestNamedTensor) ... ok (0.010s) 2023-01-11T21:41:57.9965685Z test_using_seen_interned_string_doesnt_bump_refcount (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9966538Z test_using_unseen_interned_string_bumps_refcount_permanently (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9967376Z test_using_unseen_uninterned_string_refcounts (__main__.TestNamedTensor) ... ok (0.001s) 2023-01-11T21:41:57.9967800Z 2023-01-11T21:41:57.9968255Z ---------------------------------------------------------------------- 2023-01-11T21:41:57.9968804Z Ran 86 tests in 0.857s 2023-01-11T21:41:57.9969030Z 2023-01-11T21:41:57.9969293Z OK (skipped=4) 2023-01-11T21:41:57.9969540Z 2023-01-11T21:41:57.9969737Z Generating XML reports... 2023-01-11T21:41:57.9970838Z Generated XML report: test-reports/python-unittest/test_namedtensor/TEST-TestNamedTensor-20230111214156.xml 2023-01-11T21:41:57.9971424Z 2023-01-11T21:41:57.9971949Z ##[endgroup] 2023-01-11T21:41:57.9972799Z FINISHED PRINTING LOG FILE of test_namedtensor (/var/lib/jenkins/workspace/test/test-reports/test_namedtensor_79wml2do) 2023-01-11T21:41:57.9973310Z 2023-01-11T21:42:00.0887760Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:00.1737578Z Ignoring disabled issues: [] 2023-01-11T21:42:00.1896108Z Running test_native_functions ... [2023-01-11 21:42:00.189268] 2023-01-11T21:42:00.1898290Z Executing ['/opt/conda/bin/python', '-bb', 'test_native_functions.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:00.189508] 2023-01-11T21:42:02.6648501Z 2023-01-11T21:42:02.6649947Z Expand the folded group to see the log file of test_native_functions 2023-01-11T21:42:02.6651383Z ##[group]PRINTING LOG FILE of test_native_functions (/var/lib/jenkins/workspace/test/test-reports/test_native_functions_z3hrc8il) 2023-01-11T21:42:02.6651811Z 2023-01-11T21:42:02.6652073Z Running tests... 2023-01-11T21:42:02.6652787Z ---------------------------------------------------------------------- 2023-01-11T21:42:02.6653544Z Test results will be stored in test-reports/python-unittest/test_native_functions 2023-01-11T21:42:02.6654164Z test_intlist_error_with_overload (__main__.TestNativeFunctions) ... ok (0.258s) 2023-01-11T21:42:02.6655152Z test_optional_filled_intlist (__main__.TestNativeFunctions) ... pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6656043Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6656824Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6657595Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6658374Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6659150Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6659833Z pad(): argument 'pad' (position 2) must be tuple of ints, not str 2023-01-11T21:42:02.6660230Z ok (0.056s) 2023-01-11T21:42:02.6660688Z test_optional_floatlist (__main__.TestNativeFunctions) ... ok (0.011s) 2023-01-11T21:42:02.6661267Z test_optional_floatlist_invalid (__main__.TestNativeFunctions) ... ok (0.010s) 2023-01-11T21:42:02.6661832Z test_optional_intlist (__main__.TestNativeFunctions) ... ok (0.010s) 2023-01-11T21:42:02.6662411Z test_optional_intlist_invalid (__main__.TestNativeFunctions) ... ok (0.009s) 2023-01-11T21:42:02.6662975Z test_string_defaults (__main__.TestNativeFunctions) ... ok (0.006s) 2023-01-11T21:42:02.6664059Z test_symintlist_error (__main__.TestNativeFunctions) ... pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6664905Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6665994Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6666787Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6667517Z pad(): argument 'pad' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6668281Z pad(): argument 'pad' (position 2) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6668977Z pad(): argument 'pad' (position 2) must be tuple of ints, not str 2023-01-11T21:42:02.6669405Z ok (0.016s) 2023-01-11T21:42:02.6670234Z test_symintlist_error_with_overload (__main__.TestNativeFunctions) ... view() received an invalid combination of arguments - got (tuple), but expected one of: 2023-01-11T21:42:02.6671027Z * (torch.dtype dtype) 2023-01-11T21:42:02.6671669Z didn't match because some of the arguments have invalid types: (!tuple of (str,)!) 2023-01-11T21:42:02.6672132Z * (tuple of ints size) 2023-01-11T21:42:02.6672755Z didn't match because some of the arguments have invalid types: (!tuple of (str,)!) 2023-01-11T21:42:02.6673105Z 2023-01-11T21:42:02.6673518Z view(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6674267Z view() received an invalid combination of arguments - got (tuple), but expected one of: 2023-01-11T21:42:02.6674739Z * (torch.dtype dtype) 2023-01-11T21:42:02.6675366Z didn't match because some of the arguments have invalid types: (!tuple of (str, int)!) 2023-01-11T21:42:02.6675844Z * (tuple of ints size) 2023-01-11T21:42:02.6676467Z didn't match because some of the arguments have invalid types: (!tuple of (str, int)!) 2023-01-11T21:42:02.6676811Z 2023-01-11T21:42:02.6677243Z view() received an invalid combination of arguments - got (list), but expected one of: 2023-01-11T21:42:02.6677722Z * (torch.dtype dtype) 2023-01-11T21:42:02.6678343Z didn't match because some of the arguments have invalid types: (!list of [str]!) 2023-01-11T21:42:02.6678797Z * (tuple of ints size) 2023-01-11T21:42:02.6679399Z didn't match because some of the arguments have invalid types: (!list of [str]!) 2023-01-11T21:42:02.6679733Z 2023-01-11T21:42:02.6680154Z view(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6680872Z view() received an invalid combination of arguments - got (list), but expected one of: 2023-01-11T21:42:02.6681349Z * (torch.dtype dtype) 2023-01-11T21:42:02.6681991Z didn't match because some of the arguments have invalid types: (!list of [str, int]!) 2023-01-11T21:42:02.6682442Z * (tuple of ints size) 2023-01-11T21:42:02.6683071Z didn't match because some of the arguments have invalid types: (!list of [str, int]!) 2023-01-11T21:42:02.6683414Z 2023-01-11T21:42:02.6683847Z view() received an invalid combination of arguments - got (str), but expected one of: 2023-01-11T21:42:02.6684332Z * (torch.dtype dtype) 2023-01-11T21:42:02.6684918Z didn't match because some of the arguments have invalid types: (!str!) 2023-01-11T21:42:02.6685377Z * (tuple of ints size) 2023-01-11T21:42:02.6685963Z didn't match because some of the arguments have invalid types: (!str!) 2023-01-11T21:42:02.6686274Z 2023-01-11T21:42:02.6686387Z ok (0.016s) 2023-01-11T21:42:02.6687307Z test_symintlist_error_with_overload_but_is_unique (__main__.TestNativeFunctions) ... set_() received an invalid combination of arguments - got (Tensor, int, tuple), but expected one of: 2023-01-11T21:42:02.6687924Z * () 2023-01-11T21:42:02.6688244Z * (torch.Storage source) 2023-01-11T21:42:02.6688728Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6689360Z * (Tensor source) 2023-01-11T21:42:02.6689838Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6690156Z 2023-01-11T21:42:02.6690581Z set_(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6691549Z set_() received an invalid combination of arguments - got (Tensor, int, tuple), but expected one of: 2023-01-11T21:42:02.6692020Z * () 2023-01-11T21:42:02.6692341Z * (torch.Storage source) 2023-01-11T21:42:02.6692825Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6693298Z * (Tensor source) 2023-01-11T21:42:02.6693770Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6694064Z 2023-01-11T21:42:02.6694542Z set_() received an invalid combination of arguments - got (Tensor, int, list), but expected one of: 2023-01-11T21:42:02.6695005Z * () 2023-01-11T21:42:02.6695323Z * (torch.Storage source) 2023-01-11T21:42:02.6695938Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6696405Z * (Tensor source) 2023-01-11T21:42:02.6696874Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6697196Z 2023-01-11T21:42:02.6697618Z set_(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6698382Z set_() received an invalid combination of arguments - got (Tensor, int, list), but expected one of: 2023-01-11T21:42:02.6698846Z * () 2023-01-11T21:42:02.6699169Z * (torch.Storage source) 2023-01-11T21:42:02.6699644Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6700105Z * (Tensor source) 2023-01-11T21:42:02.6700567Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6700888Z 2023-01-11T21:42:02.6701335Z set_() received an invalid combination of arguments - got (Tensor, int, str), but expected one of: 2023-01-11T21:42:02.6701806Z * () 2023-01-11T21:42:02.6702142Z * (torch.Storage source) 2023-01-11T21:42:02.6702644Z * (torch.Storage source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6703175Z * (Tensor source) 2023-01-11T21:42:02.6703628Z * (Tensor source, int storage_offset, tuple of ints size, tuple of ints stride) 2023-01-11T21:42:02.6703958Z 2023-01-11T21:42:02.6704087Z ok (0.016s) 2023-01-11T21:42:02.6704929Z test_vararg_symintlist_error (__main__.TestNativeFunctions) ... rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6705780Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6706550Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6707338Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6708086Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6708855Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6709659Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6710437Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6711188Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6711936Z rand() received an invalid combination of arguments - got (str, int), but expected one of: 2023-01-11T21:42:02.6712763Z * (tuple of ints size, *, torch.Generator generator, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6713693Z * (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6714545Z * (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6715496Z * (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6715935Z 2023-01-11T21:42:02.6716406Z rand(): argument 'size' (position 1) must be tuple of ints, but found element of type str at pos 0 2023-01-11T21:42:02.6717141Z rand(): argument 'size' must be tuple of ints, but found element of type str at pos 2 2023-01-11T21:42:02.6717896Z rand() received an invalid combination of arguments - got (str, int), but expected one of: 2023-01-11T21:42:02.6718710Z * (tuple of ints size, *, torch.Generator generator, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6719738Z * (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6720581Z * (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6721391Z * (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6721832Z 2023-01-11T21:42:02.6722295Z rand() received an invalid combination of arguments - got (str, str, str), but expected one of: 2023-01-11T21:42:02.6723104Z * (tuple of ints size, *, torch.Generator generator, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6724025Z * (tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6724852Z * (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6725682Z * (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad) 2023-01-11T21:42:02.6726125Z 2023-01-11T21:42:02.6726247Z ok (0.032s) 2023-01-11T21:42:02.6726441Z 2023-01-11T21:42:02.6726834Z ---------------------------------------------------------------------- 2023-01-11T21:42:02.6727257Z Ran 11 tests in 0.440s 2023-01-11T21:42:02.6727469Z 2023-01-11T21:42:02.6727586Z OK 2023-01-11T21:42:02.6727761Z 2023-01-11T21:42:02.6727918Z Generating XML reports... 2023-01-11T21:42:02.6728747Z Generated XML report: test-reports/python-unittest/test_native_functions/TEST-TestNativeFunctions-20230111214201.xml 2023-01-11T21:42:02.6729367Z 2023-01-11T21:42:02.6729910Z ##[endgroup] 2023-01-11T21:42:02.6730692Z FINISHED PRINTING LOG FILE of test_native_functions (/var/lib/jenkins/workspace/test/test-reports/test_native_functions_z3hrc8il) 2023-01-11T21:42:02.6731130Z 2023-01-11T21:42:04.6942486Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:04.7768527Z Ignoring disabled issues: [] 2023-01-11T21:42:04.7929821Z Running test_native_mha ... [2023-01-11 21:42:04.792734] 2023-01-11T21:42:04.7932147Z Executing ['/opt/conda/bin/python', '-bb', 'test_native_mha.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:04.792998] 2023-01-11T21:42:06.7780412Z 2023-01-11T21:42:06.7781004Z Expand the folded group to see the log file of test_native_mha 2023-01-11T21:42:06.7782215Z ##[group]PRINTING LOG FILE of test_native_mha (/var/lib/jenkins/workspace/test/test-reports/test_native_mha_mbkhf_t8) 2023-01-11T21:42:06.7782770Z 2023-01-11T21:42:06.7782937Z Running tests... 2023-01-11T21:42:06.7783836Z ---------------------------------------------------------------------- 2023-01-11T21:42:06.7784270Z 2023-01-11T21:42:06.7784735Z ---------------------------------------------------------------------- 2023-01-11T21:42:06.7785523Z Ran 0 tests in 0.000s 2023-01-11T21:42:06.7785789Z 2023-01-11T21:42:06.7785924Z OK 2023-01-11T21:42:06.7786134Z 2023-01-11T21:42:06.7786333Z Generating XML reports... 2023-01-11T21:42:06.7787104Z Test results will be stored in test-reports/python-unittest/test_native_mha 2023-01-11T21:42:06.7787548Z 2023-01-11T21:42:06.7788083Z ##[endgroup] 2023-01-11T21:42:06.7789009Z FINISHED PRINTING LOG FILE of test_native_mha (/var/lib/jenkins/workspace/test/test-reports/test_native_mha_mbkhf_t8) 2023-01-11T21:42:06.7789530Z 2023-01-11T21:42:08.9163846Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:09.0019228Z Ignoring disabled issues: [] 2023-01-11T21:42:09.0180248Z Running test_nestedtensor ... [2023-01-11 21:42:09.017620] 2023-01-11T21:42:09.0182643Z Executing ['/opt/conda/bin/python', '-bb', 'test_nestedtensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:09.017903] 2023-01-11T21:42:11.4659616Z 2023-01-11T21:42:11.4660102Z Expand the folded group to see the log file of test_mkldnn_fusion 2023-01-11T21:42:11.4661094Z ##[group]PRINTING LOG FILE of test_mkldnn_fusion (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_fusion_vjzokc9j) 2023-01-11T21:42:11.4661337Z 2023-01-11T21:42:11.4661412Z Running tests... 2023-01-11T21:42:11.4661866Z ---------------------------------------------------------------------- 2023-01-11T21:42:11.4662267Z Test results will be stored in test-reports/python-unittest/test_mkldnn_fusion 2023-01-11T21:42:11.4662677Z test_conv_binary_fusion_ops (__main__.TestMkldnnFusion) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.002s) 2023-01-11T21:42:11.4663049Z test_conv_unary_fusion_nnc (__main__.TestMkldnnFusion) ... ok (0.791s) 2023-01-11T21:42:11.4663540Z test_conv_unary_fusion_ops (__main__.TestMkldnnFusion) ... ok (54.549s) 2023-01-11T21:42:11.4664022Z test_linear_binary_fusion_ops (__main__.TestMkldnnFusion) ... ok (0.027s) 2023-01-11T21:42:11.4664557Z test_linear_unary_fusion_ops (__main__.TestMkldnnFusion) ... ok (0.022s) 2023-01-11T21:42:11.4665031Z test_single_conv (__main__.TestMkldnnFusion) ... ok (1.268s) 2023-01-11T21:42:11.4665520Z test_unsupported_conv (__main__.TestMkldnnFusion) ... ok (11.138s) 2023-01-11T21:42:11.4665809Z 2023-01-11T21:42:11.4666169Z ---------------------------------------------------------------------- 2023-01-11T21:42:11.4666600Z Ran 7 tests in 67.795s 2023-01-11T21:42:11.4666819Z 2023-01-11T21:42:11.4666938Z OK (skipped=1) 2023-01-11T21:42:11.4667047Z 2023-01-11T21:42:11.4667131Z Generating XML reports... 2023-01-11T21:42:11.4667564Z Generated XML report: test-reports/python-unittest/test_mkldnn_fusion/TEST-TestMkldnnFusion-20230111214103.xml 2023-01-11T21:42:11.4667796Z 2023-01-11T21:42:11.4668029Z ##[endgroup] 2023-01-11T21:42:11.4668408Z FINISHED PRINTING LOG FILE of test_mkldnn_fusion (/var/lib/jenkins/workspace/test/test-reports/test_mkldnn_fusion_vjzokc9j) 2023-01-11T21:42:11.4668628Z 2023-01-11T21:42:11.5399377Z 2023-01-11T21:42:11.5399885Z Expand the folded group to see the log file of test_nestedtensor 2023-01-11T21:42:11.5400882Z ##[group]PRINTING LOG FILE of test_nestedtensor (/var/lib/jenkins/workspace/test/test-reports/test_nestedtensor_90mlron8) 2023-01-11T21:42:11.5401273Z 2023-01-11T21:42:11.5401404Z Running tests... 2023-01-11T21:42:11.5402060Z ---------------------------------------------------------------------- 2023-01-11T21:42:11.5402763Z Test results will be stored in test-reports/python-unittest/test_nestedtensor 2023-01-11T21:42:11.5403752Z test_2d_nested_tensor_batch_size_2_max_seq_len_3_vocab_size_10 (__main__.TestNestedTensor) ... /var/lib/jenkins/workspace/test/test_nestedtensor.py:113: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:42:11.5404420Z nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64) 2023-01-11T21:42:11.5404670Z ok (0.003s) 2023-01-11T21:42:11.5405137Z test_2d_nested_tensor_batch_size_2_max_seq_len_3_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5405548Z test_2d_nested_tensor_batch_size_2_max_seq_len_5_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5405897Z test_2d_nested_tensor_batch_size_2_max_seq_len_5_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5406280Z test_2d_nested_tensor_batch_size_4_max_seq_len_3_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5406628Z test_2d_nested_tensor_batch_size_4_max_seq_len_3_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5407016Z test_2d_nested_tensor_batch_size_4_max_seq_len_5_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5407427Z test_2d_nested_tensor_batch_size_4_max_seq_len_5_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5407803Z test_3d_nested_tensor_batch_size_2_max_seq_len_3_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5408153Z test_3d_nested_tensor_batch_size_2_max_seq_len_3_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5408535Z test_3d_nested_tensor_batch_size_2_max_seq_len_5_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5408863Z test_3d_nested_tensor_batch_size_2_max_seq_len_5_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5409433Z test_3d_nested_tensor_batch_size_4_max_seq_len_3_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5409778Z test_3d_nested_tensor_batch_size_4_max_seq_len_3_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5410173Z test_3d_nested_tensor_batch_size_4_max_seq_len_5_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5410501Z test_3d_nested_tensor_batch_size_4_max_seq_len_5_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5410938Z test_3d_nested_tensor_float_batch_size_2_max_seq_len_3_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5411300Z test_3d_nested_tensor_float_batch_size_2_max_seq_len_3_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5411709Z test_3d_nested_tensor_float_batch_size_2_max_seq_len_5_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5412047Z test_3d_nested_tensor_float_batch_size_2_max_seq_len_5_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5412449Z test_3d_nested_tensor_float_batch_size_4_max_seq_len_3_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5412802Z test_3d_nested_tensor_float_batch_size_4_max_seq_len_3_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5413209Z test_3d_nested_tensor_float_batch_size_4_max_seq_len_5_vocab_size_10 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5413547Z test_3d_nested_tensor_float_batch_size_4_max_seq_len_5_vocab_size_20 (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5413905Z test_copy_ (__main__.TestNestedTensor) ... ok (0.009s) 2023-01-11T21:42:11.5414178Z test_default_nested_tensor (__main__.TestNestedTensor) ... ok (0.003s) 2023-01-11T21:42:11.5414496Z test_dim (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5414737Z test_fill_ (__main__.TestNestedTensor) ... ok (0.006s) 2023-01-11T21:42:11.5414995Z test_is_contiguous (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5415314Z test_nested_namespace (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5415581Z test_nested_tensor (__main__.TestNestedTensor) ... ok (0.003s) 2023-01-11T21:42:11.5415874Z test_nested_tensor_matching_dim (__main__.TestNestedTensor) ... ok (0.006s) 2023-01-11T21:42:11.5416188Z test_numel (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5416430Z test_ones_like (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5416804Z test_repr_string (__main__.TestNestedTensor) ... ok (0.003s) 2023-01-11T21:42:11.5417063Z test_size (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5417315Z test_size_dim (__main__.TestNestedTensor) ... ok (0.006s) 2023-01-11T21:42:11.5417608Z test_stride (__main__.TestNestedTensor) ... ok (0.002s) 2023-01-11T21:42:11.5417855Z test_to (__main__.TestNestedTensor) ... ok (0.003s) 2023-01-11T21:42:11.5418138Z test_to_padded_tensor_on_empty_tensor (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5418452Z test_unbind_0 (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5418705Z test_unbind_1 (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5418999Z test_unbind_3 (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5419290Z test_unbind_4 (__main__.TestNestedTensor) ... ok (0.001s) 2023-01-11T21:42:11.5419546Z test_unbind_dim (__main__.TestNestedTensor) ... ok (0.003s) 2023-01-11T21:42:11.5419733Z 2023-01-11T21:42:11.5419967Z ---------------------------------------------------------------------- 2023-01-11T21:42:11.5420209Z Ran 45 tests in 0.109s 2023-01-11T21:42:11.5420310Z 2023-01-11T21:42:11.5420369Z OK 2023-01-11T21:42:11.5420499Z 2023-01-11T21:42:11.5420590Z Generating XML reports... 2023-01-11T21:42:11.5421019Z Generated XML report: test-reports/python-unittest/test_nestedtensor/TEST-TestNestedTensor-20230111214211.xml 2023-01-11T21:42:11.5421301Z 2023-01-11T21:42:11.5421539Z ##[endgroup] 2023-01-11T21:42:11.5421938Z FINISHED PRINTING LOG FILE of test_nestedtensor (/var/lib/jenkins/workspace/test/test-reports/test_nestedtensor_90mlron8) 2023-01-11T21:42:11.5422190Z 2023-01-11T21:42:13.3659388Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:13.4131516Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:13.4311528Z Ignoring disabled issues: [] 2023-01-11T21:42:13.4469821Z Running test_numba_integration ... [2023-01-11 21:42:13.446715] 2023-01-11T21:42:13.4472469Z Executing ['/opt/conda/bin/python', '-bb', 'test_numba_integration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:13.446951] 2023-01-11T21:42:13.4780464Z Ignoring disabled issues: [] 2023-01-11T21:42:13.4940160Z Running test_numpy_interop ... [2023-01-11 21:42:13.493680] 2023-01-11T21:42:13.4941334Z Executing ['/opt/conda/bin/python', '-bb', 'test_numpy_interop.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:13.493927] 2023-01-11T21:42:15.3924022Z 2023-01-11T21:42:15.3924424Z Expand the folded group to see the log file of test_numpy_interop 2023-01-11T21:42:15.3925076Z ##[group]PRINTING LOG FILE of test_numpy_interop (/var/lib/jenkins/workspace/test/test-reports/test_numpy_interop_ylhwuspw) 2023-01-11T21:42:15.3925321Z 2023-01-11T21:42:15.3925410Z Running tests... 2023-01-11T21:42:15.3925824Z ---------------------------------------------------------------------- 2023-01-11T21:42:15.3926007Z 2023-01-11T21:42:15.3926190Z ---------------------------------------------------------------------- 2023-01-11T21:42:15.3926428Z Ran 0 tests in 0.000s 2023-01-11T21:42:15.3926541Z 2023-01-11T21:42:15.3926602Z OK 2023-01-11T21:42:15.3926692Z 2023-01-11T21:42:15.3926779Z Generating XML reports... 2023-01-11T21:42:15.3927097Z Test results will be stored in test-reports/python-unittest/test_numpy_interop 2023-01-11T21:42:15.3927277Z 2023-01-11T21:42:15.3927491Z ##[endgroup] 2023-01-11T21:42:15.3927881Z FINISHED PRINTING LOG FILE of test_numpy_interop (/var/lib/jenkins/workspace/test/test-reports/test_numpy_interop_ylhwuspw) 2023-01-11T21:42:15.3928086Z 2023-01-11T21:42:15.3940041Z 2023-01-11T21:42:15.3940335Z Expand the folded group to see the log file of test_numba_integration 2023-01-11T21:42:15.3941192Z ##[group]PRINTING LOG FILE of test_numba_integration (/var/lib/jenkins/workspace/test/test-reports/test_numba_integration_c0b5lclq) 2023-01-11T21:42:15.3941545Z 2023-01-11T21:42:15.3941814Z Running tests... 2023-01-11T21:42:15.3942158Z ---------------------------------------------------------------------- 2023-01-11T21:42:15.3942536Z Test results will be stored in test-reports/python-unittest/test_numba_integration 2023-01-11T21:42:15.3942850Z test_active_device (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3943298Z 'as_cuda_array' tensor device must match active numba context. ... skip: No cuda (0.001s) 2023-01-11T21:42:15.3943581Z test_array_adaptor (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3943879Z Torch __cuda_array_adaptor__ exposes tensor data to numba.cuda. ... skip: No cuda (0.001s) 2023-01-11T21:42:15.3944180Z test_conversion_errors (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3944490Z Numba properly detects array interface for tensor.Tensor variants. ... skip: No cuda (0.001s) 2023-01-11T21:42:15.3944863Z test_cuda_array_interface (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3945169Z torch.Tensor exposes __cuda_array_interface__ for cuda tensors. ... skip: No cuda (0.001s) 2023-01-11T21:42:15.3945476Z test_from_cuda_array_interface (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3945891Z torch.as_tensor() and torch.tensor() supports the __cuda_array_interface__ protocol. ... skip: Test is temporary disabled, see https://github.com/pytorch/pytorch/issues/54418 (0.001s) 2023-01-11T21:42:15.3946306Z test_from_cuda_array_interface_active_device (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3946710Z torch.as_tensor() tensor device must match active numba context. ... skip: Test is temporary disabled, see https://github.com/pytorch/pytorch/issues/54418 (0.001s) 2023-01-11T21:42:15.3947108Z test_from_cuda_array_interface_inferred_strides (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3947442Z torch.as_tensor(numba_ary) should have correct inferred (contiguous) strides ... skip: No cuda (0.000s) 2023-01-11T21:42:15.3947771Z test_from_cuda_array_interface_lifetime (__main__.TestNumbaIntegration) 2023-01-11T21:42:15.3948203Z torch.as_tensor(obj) tensor grabs a reference to obj so that the lifetime of obj exceeds the tensor ... skip: Test is temporary disabled, see https://github.com/pytorch/pytorch/issues/54418 (0.000s) 2023-01-11T21:42:15.3948481Z 2023-01-11T21:42:15.3948686Z ---------------------------------------------------------------------- 2023-01-11T21:42:15.3948914Z Ran 8 tests in 0.007s 2023-01-11T21:42:15.3949024Z 2023-01-11T21:42:15.3949096Z OK (skipped=8) 2023-01-11T21:42:15.3949201Z 2023-01-11T21:42:15.3949284Z Generating XML reports... 2023-01-11T21:42:15.3949720Z Generated XML report: test-reports/python-unittest/test_numba_integration/TEST-TestNumbaIntegration-20230111214215.xml 2023-01-11T21:42:15.3949956Z 2023-01-11T21:42:15.3950180Z ##[endgroup] 2023-01-11T21:42:15.3950589Z FINISHED PRINTING LOG FILE of test_numba_integration (/var/lib/jenkins/workspace/test/test-reports/test_numba_integration_c0b5lclq) 2023-01-11T21:42:15.3950818Z 2023-01-11T21:42:17.2298805Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:17.2602644Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:17.2948587Z Ignoring disabled issues: [] 2023-01-11T21:42:17.3106632Z Running test_nvfuser_dynamo ... [2023-01-11 21:42:17.310412] 2023-01-11T21:42:17.3109400Z Executing ['/opt/conda/bin/python', '-bb', 'test_nvfuser_dynamo.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:17.310665] 2023-01-11T21:42:17.3246190Z Ignoring disabled issues: [] 2023-01-11T21:42:17.3403243Z Running test_nvfuser_frontend ... [2023-01-11 21:42:17.340128] 2023-01-11T21:42:17.3405892Z Executing ['/opt/conda/bin/python', '-bb', 'test_nvfuser_frontend.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:17.340376] 2023-01-11T21:42:18.9293422Z 2023-01-11T21:42:18.9293836Z Expand the folded group to see the log file of test_nvfuser_frontend 2023-01-11T21:42:18.9294574Z ##[group]PRINTING LOG FILE of test_nvfuser_frontend (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_frontend_2by9bfbt) 2023-01-11T21:42:18.9295025Z 2023-01-11T21:42:18.9295101Z Running tests... 2023-01-11T21:42:18.9295496Z ---------------------------------------------------------------------- 2023-01-11T21:42:18.9295970Z test_basic (__main__.TestNvFuserFrontend) ... Test results will be stored in test-reports/python-unittest/test_nvfuser_frontend 2023-01-11T21:42:18.9296267Z skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9296536Z test_basic_fp16 (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9296863Z test_broadcast_mixing (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9297194Z test_cast_double_to_half (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9297591Z test_explicit_broadcast_input (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9297941Z test_implicit_broadcast_input (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9298283Z test_ops_broadcast (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.000s) 2023-01-11T21:42:18.9298595Z test_prim_layer_norm_fwd (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.003s) 2023-01-11T21:42:18.9298920Z test_prim_rms_norm_fwd (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:18.9299244Z test_promote_to_double (__main__.TestNvFuserFrontend) ... skip: requires CUDA (0.000s) 2023-01-11T21:42:18.9299423Z 2023-01-11T21:42:18.9299626Z ---------------------------------------------------------------------- 2023-01-11T21:42:18.9299851Z Ran 10 tests in 0.009s 2023-01-11T21:42:18.9299961Z 2023-01-11T21:42:18.9300033Z OK (skipped=10) 2023-01-11T21:42:18.9300138Z 2023-01-11T21:42:18.9300221Z Generating XML reports... 2023-01-11T21:42:18.9300650Z Generated XML report: test-reports/python-unittest/test_nvfuser_frontend/TEST-TestNvFuserFrontend-20230111214218.xml 2023-01-11T21:42:18.9300897Z 2023-01-11T21:42:18.9301126Z ##[endgroup] 2023-01-11T21:42:18.9301527Z FINISHED PRINTING LOG FILE of test_nvfuser_frontend (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_frontend_2by9bfbt) 2023-01-11T21:42:18.9301750Z 2023-01-11T21:42:19.1210499Z 2023-01-11T21:42:19.1210938Z Expand the folded group to see the log file of test_nvfuser_dynamo 2023-01-11T21:42:19.1211819Z ##[group]PRINTING LOG FILE of test_nvfuser_dynamo (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_dynamo_ppkzyqgh) 2023-01-11T21:42:19.1212384Z 2023-01-11T21:42:19.1212548Z Running tests... 2023-01-11T21:42:19.1213352Z ---------------------------------------------------------------------- 2023-01-11T21:42:19.1214465Z test_basic (__main__.TestNvFuserDynamo) ... Test results will be stored in test-reports/python-unittest/test_nvfuser_dynamo 2023-01-11T21:42:19.1215183Z skip: requires CUDA (0.001s) 2023-01-11T21:42:19.1215899Z test_batch_norm_implicit_dtype_promotion (__main__.TestNvFuserDynamo) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:19.1216747Z test_dtype_correctness (__main__.TestNvFuserDynamo) ... skip: requires CUDA (0.000s) 2023-01-11T21:42:19.1217499Z test_min_cut (__main__.TestNvFuserDynamo) ... skip: requires CUDA (0.001s) 2023-01-11T21:42:19.1217907Z 2023-01-11T21:42:19.1218378Z ---------------------------------------------------------------------- 2023-01-11T21:42:19.1218959Z Ran 4 tests in 0.003s 2023-01-11T21:42:19.1219226Z 2023-01-11T21:42:19.1219387Z OK (skipped=4) 2023-01-11T21:42:19.1219647Z 2023-01-11T21:42:19.1219835Z Generating XML reports... 2023-01-11T21:42:19.1220834Z Generated XML report: test-reports/python-unittest/test_nvfuser_dynamo/TEST-TestNvFuserDynamo-20230111214218.xml 2023-01-11T21:42:19.1221439Z 2023-01-11T21:42:19.1221963Z ##[endgroup] 2023-01-11T21:42:19.1222921Z FINISHED PRINTING LOG FILE of test_nvfuser_dynamo (/var/lib/jenkins/workspace/test/test-reports/test_nvfuser_dynamo_ppkzyqgh) 2023-01-11T21:42:19.1223573Z 2023-01-11T21:42:20.8025328Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:20.8672013Z Ignoring disabled issues: [] 2023-01-11T21:42:20.8832150Z Running test_openmp ... [2023-01-11 21:42:20.882882] 2023-01-11T21:42:20.8833545Z Executing ['/opt/conda/bin/python', '-bb', 'test_openmp.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:20.883132] 2023-01-11T21:42:21.0119035Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:21.0763855Z Ignoring disabled issues: [] 2023-01-11T21:42:21.0921496Z Running test_optim ... [2023-01-11 21:42:21.091860] 2023-01-11T21:42:21.0923774Z Executing ['/opt/conda/bin/python', '-bb', 'test_optim.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:21.092115] 2023-01-11T21:42:26.0681016Z 2023-01-11T21:42:26.0681631Z Expand the folded group to see the log file of test_openmp 2023-01-11T21:42:26.0682623Z ##[group]PRINTING LOG FILE of test_openmp (/var/lib/jenkins/workspace/test/test-reports/test_openmp_po8kp7nj) 2023-01-11T21:42:26.0682875Z 2023-01-11T21:42:26.0682939Z Running tests... 2023-01-11T21:42:26.0683397Z ---------------------------------------------------------------------- 2023-01-11T21:42:26.0683776Z Test results will be stored in test-reports/python-unittest/test_openmp 2023-01-11T21:42:26.0684105Z test_n_threads (__main__.TestOpenMP_ParallelFor) 2023-01-11T21:42:26.0684363Z Make sure there is no memory leak with many threads ... ok (1.396s) 2023-01-11T21:42:26.0684626Z test_one_thread (__main__.TestOpenMP_ParallelFor) 2023-01-11T21:42:26.0685048Z Make sure there is no memory leak with one thread: issue gh-32284 ... ok (2.093s) 2023-01-11T21:42:26.0685220Z 2023-01-11T21:42:26.0685407Z ---------------------------------------------------------------------- 2023-01-11T21:42:26.0685698Z Ran 2 tests in 3.489s 2023-01-11T21:42:26.0685810Z 2023-01-11T21:42:26.0685869Z OK 2023-01-11T21:42:26.0685963Z 2023-01-11T21:42:26.0686046Z Generating XML reports... 2023-01-11T21:42:26.0686490Z Generated XML report: test-reports/python-unittest/test_openmp/TEST-TestOpenMP_ParallelFor-20230111214222.xml 2023-01-11T21:42:26.0686722Z 2023-01-11T21:42:26.0686948Z ##[endgroup] 2023-01-11T21:42:26.0687365Z FINISHED PRINTING LOG FILE of test_openmp (/var/lib/jenkins/workspace/test/test-reports/test_openmp_po8kp7nj) 2023-01-11T21:42:26.0687564Z 2023-01-11T21:42:27.8904212Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:27.9542884Z Ignoring disabled issues: [] 2023-01-11T21:42:27.9700781Z Running test_package ... [2023-01-11 21:42:27.969831] 2023-01-11T21:42:27.9703112Z Executing ['/opt/conda/bin/python', '-bb', 'test_package.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:27.970059] 2023-01-11T21:42:31.8324364Z 2023-01-11T21:42:31.8325127Z Expand the folded group to see the log file of test_package 2023-01-11T21:42:31.8326187Z ##[group]PRINTING LOG FILE of test_package (/var/lib/jenkins/workspace/test/test-reports/test_package_0slox5a_) 2023-01-11T21:42:31.8326693Z 2023-01-11T21:42:31.8326842Z Running tests... 2023-01-11T21:42:31.8327432Z ---------------------------------------------------------------------- 2023-01-11T21:42:31.8328209Z Test results will be stored in test-reports/python-unittest/test_package 2023-01-11T21:42:31.8330817Z test_trace_dependencies (test_analyze.TestAnalyze) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/81213 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.205s) 2023-01-11T21:42:31.8332052Z test_allow_empty_with_error (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8332672Z If an error occurs during packaging, it should not be shadowed by the allow_empty error. ... ok (0.002s) 2023-01-11T21:42:31.8333295Z test_broken_dependency (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8333882Z A unpackageable dependency should raise a PackagingError. ... ok (0.002s) 2023-01-11T21:42:31.8334717Z test_deny (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8335147Z Test marking packages as "deny" during export. ... ok (0.002s) 2023-01-11T21:42:31.8335679Z test_deny_glob (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8336267Z Test marking packages as "deny" using globs instead of package names. ... ok (0.002s) 2023-01-11T21:42:31.8336881Z test_extern (test_dependency_api.TestDependencyAPI) ... ok (0.001s) 2023-01-11T21:42:31.8337414Z test_extern_glob (test_dependency_api.TestDependencyAPI) ... ok (0.002s) 2023-01-11T21:42:31.8337988Z test_extern_glob_allow_empty (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8338576Z Test that an error is thrown when a extern glob is specified with allow_empty=True ... ok (0.001s) 2023-01-11T21:42:31.8339371Z test_externing_c_extension (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8341425Z Externing c extensions modules should allow us to still access them especially those found in torch._C. ... /opt/conda/lib/python3.10/site-packages/torch/package/package_exporter.py:900: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8342753Z storage_type_str = obj.pickle_storage_type() 2023-01-11T21:42:31.8344250Z /opt/conda/lib/python3.10/site-packages/torch/package/package_exporter.py:903: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8345101Z storage_numel = obj.size() 2023-01-11T21:42:31.8346541Z /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8347538Z return self.fget.__get__(instance, owner)() 2023-01-11T21:42:31.8347889Z ok (0.007s) 2023-01-11T21:42:31.8348320Z test_implicit_intern (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8348882Z The save_module APIs should implicitly intern the module being saved. ... ok (0.001s) 2023-01-11T21:42:31.8349475Z test_intern_error (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8350058Z Failure to handle all dependencies should lead to an error. ... ok (0.002s) 2023-01-11T21:42:31.8350618Z test_invalid_import (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8351347Z An incorrectly-formed import should raise a PackagingError. ... ok (0.001s) 2023-01-11T21:42:31.8351940Z test_mock (test_dependency_api.TestDependencyAPI) ... ok (0.002s) 2023-01-11T21:42:31.8352490Z test_mock_glob (test_dependency_api.TestDependencyAPI) ... ok (0.002s) 2023-01-11T21:42:31.8353076Z test_mock_glob_allow_empty (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8353584Z Test that an error is thrown when a mock glob is specified with allow_empty=True ... ok (0.001s) 2023-01-11T21:42:31.8354299Z test_pickle_mocked (test_dependency_api.TestDependencyAPI) ... ok (0.001s) 2023-01-11T21:42:31.8354941Z test_pickle_mocked_all (test_dependency_api.TestDependencyAPI) ... ok (0.001s) 2023-01-11T21:42:31.8355504Z test_repackage_mocked_module (test_dependency_api.TestDependencyAPI) 2023-01-11T21:42:31.8356302Z Re-packaging a package that contains a mocked module should work correctly. ... ok (0.003s) 2023-01-11T21:42:31.8356958Z test_extern_and_mock_hook (test_dependency_hooks.TestDependencyHooks) ... ok (0.001s) 2023-01-11T21:42:31.8357557Z test_multiple_extern_hooks (test_dependency_hooks.TestDependencyHooks) ... ok (0.001s) 2023-01-11T21:42:31.8358354Z test_multiple_mock_hooks (test_dependency_hooks.TestDependencyHooks) ... ok (0.001s) 2023-01-11T21:42:31.8358982Z test_remove_hooks (test_dependency_hooks.TestDependencyHooks) ... ok (0.001s) 2023-01-11T21:42:31.8359630Z test_single_hook (test_dependency_hooks.TestDependencyHooks) ... ok (0.001s) 2023-01-11T21:42:31.8360171Z test_all_paths (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8360708Z test_contains (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8361174Z test_contains_non_hashable (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8361607Z test_edges (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8362040Z test_forward_closure (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8362583Z test_iter (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8362998Z test_node_attr_update (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8363454Z test_node_attrs (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8363920Z test_predecessor_not_in_graph (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8364560Z test_predecessors (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8365056Z test_successor_not_in_graph (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8365598Z test_successors (test_digraph.TestDiGraph) ... ok (0.001s) 2023-01-11T21:42:31.8366144Z test_importer_access (test_directory_reader.DirectoryReaderTest) ... ok (0.003s) 2023-01-11T21:42:31.8366725Z test_loading_has_record (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8367409Z Test DirectoryReader's has_record(). ... ok (0.003s) 2023-01-11T21:42:31.8367969Z test_loading_module (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8368547Z Test basic saving and loading of a packages from a DirectoryReader. ... ok (0.003s) 2023-01-11T21:42:31.8369327Z test_loading_pickle (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8370142Z Test basic saving and loading of modules and pickles from a DirectoryReader. ... skip: Does not work with latest TorchVision, see https://github.com/pytorch/pytorch/issues/81115 (0.001s) 2023-01-11T21:42:31.8370987Z test_package_resource_access (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8371510Z Packaged modules should be able to use the importlib.resources API to access ... ok (0.003s) 2023-01-11T21:42:31.8372176Z test_resource_access_by_path (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8372832Z Tests that packaged code can used importlib.resources.path. ... ok (0.004s) 2023-01-11T21:42:31.8373420Z test_resource_reader (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8373960Z Tests DirectoryReader as the base for get_resource_reader. ... ok (0.005s) 2023-01-11T21:42:31.8374556Z test_scriptobject_failure_message (test_directory_reader.DirectoryReaderTest) 2023-01-11T21:42:31.8375162Z Test basic saving and loading of a ScriptModule in a directory. ... ok (0.011s) 2023-01-11T21:42:31.8375676Z test_exclude (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8376200Z test_exclude_from_all (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8376728Z test_invalid_raw (test_glob_group.TestGlobGroup) ... ok (0.000s) 2023-01-11T21:42:31.8377297Z test_list_include_exclude (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8377854Z test_one_star (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8378473Z test_one_star_middle (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8378977Z test_one_star_multiple_in_component (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8379473Z test_one_star_partial (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8379975Z test_one_star_partial_extension (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8380621Z test_raw_two_star (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8381040Z test_two_star (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8381481Z test_two_star_end (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8381947Z test_two_star_middle (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8382561Z test_two_star_multiple (test_glob_group.TestGlobGroup) ... ok (0.001s) 2023-01-11T21:42:31.8383182Z test_ordered_importer_basic (test_importer.TestImporter) ... ok (0.001s) 2023-01-11T21:42:31.8383745Z test_ordered_importer_whichmodule (test_importer.TestImporter) 2023-01-11T21:42:31.8384480Z OrderedImporter's implementation of whichmodule should try each ... ok (0.001s) 2023-01-11T21:42:31.8385253Z test_package_importer_whichmodule_no_dunder_module (test_importer.TestImporter) 2023-01-11T21:42:31.8385892Z Exercise corner case where we try to pickle an object whose ... ok (0.001s) 2023-01-11T21:42:31.8386489Z test_single_ordered_importer (test_importer.TestImporter) ... ok (0.001s) 2023-01-11T21:42:31.8387032Z test_sys_importer (test_importer.TestImporter) ... ok (0.001s) 2023-01-11T21:42:31.8387590Z test_sys_importer_roundtrip (test_importer.TestImporter) ... ok (0.001s) 2023-01-11T21:42:31.8388164Z test_load_bc_packages_fx_module (test_load_bc_packages.TestLoadBCPackages) 2023-01-11T21:42:31.8388728Z Tests for backwards compatible fx module ... ok (0.012s) 2023-01-11T21:42:31.8389281Z test_load_bc_packages_nn_module (test_load_bc_packages.TestLoadBCPackages) 2023-01-11T21:42:31.8389740Z Tests for backwards compatible nn module ... ok (0.008s) 2023-01-11T21:42:31.8390364Z test_load_bc_packages_torchscript_module (test_load_bc_packages.TestLoadBCPackages) 2023-01-11T21:42:31.8391002Z Tests for backwards compatible torchscript module ... ok (0.041s) 2023-01-11T21:42:31.8391523Z test_demangle_base (test_mangling.TestMangling) 2023-01-11T21:42:31.8392077Z Demangling a mangle parent directly should currently return an empty string. ... ok (0.001s) 2023-01-11T21:42:31.8392676Z test_demangler_multiple_manglers (test_mangling.TestMangling) 2023-01-11T21:42:31.8393276Z PackageDemangler should be able to demangle name generated by any PackageMangler. ... ok (0.001s) 2023-01-11T21:42:31.8393855Z test_is_mangled (test_mangling.TestMangling) ... ok (0.001s) 2023-01-11T21:42:31.8394391Z test_mangle_empty_errors (test_mangling.TestMangling) ... ok (0.001s) 2023-01-11T21:42:31.8394903Z test_mangle_prefix (test_mangling.TestMangling) ... ok (0.001s) 2023-01-11T21:42:31.8395441Z test_mangler_is_consistent (test_mangling.TestMangling) 2023-01-11T21:42:31.8396017Z Mangling the same name twice should produce the same result. ... ok (0.001s) 2023-01-11T21:42:31.8396561Z test_package_mangler (test_mangling.TestMangling) ... ok (0.001s) 2023-01-11T21:42:31.8397139Z test_roundtrip_mangling (test_mangling.TestMangling) ... ok (0.001s) 2023-01-11T21:42:31.8397593Z test_unique_manglers (test_mangling.TestMangling) 2023-01-11T21:42:31.8398095Z Each mangler instance should generate a unique mangled name for a given input. ... ok (0.001s) 2023-01-11T21:42:31.8398580Z test_unique_module_names (test_mangling.TestMangling) ... ok (0.002s) 2023-01-11T21:42:31.8399017Z test_dunder_package_present (test_misc.TestMisc) 2023-01-11T21:42:31.8399649Z The attribute '__torch_package__' should be populated on imported modules. ... ok (0.001s) 2023-01-11T21:42:31.8400123Z test_dunder_package_works_from_package (test_misc.TestMisc) 2023-01-11T21:42:31.8400905Z The attribute '__torch_package__' should be accessible from within ... ok (0.002s) 2023-01-11T21:42:31.8401411Z test_exporter_content_lists (test_misc.TestMisc) 2023-01-11T21:42:31.8402075Z Test content list API for PackageExporter's contained modules. ... ok (0.003s) 2023-01-11T21:42:31.8402558Z test_file_structure (test_misc.TestMisc) 2023-01-11T21:42:31.8403245Z Tests package's Directory structure representation of a zip file. Ensures ... ok (0.003s) 2023-01-11T21:42:31.8403959Z test_file_structure_has_file (test_misc.TestMisc) 2023-01-11T21:42:31.8404520Z Test Directory's has_file() method. ... ok (0.001s) 2023-01-11T21:42:31.8404933Z test_inspect_class (test_misc.TestMisc) 2023-01-11T21:42:31.8405422Z Should be able to retrieve source for a packaged class. ... ok (0.002s) 2023-01-11T21:42:31.8405886Z test_is_from_package (test_misc.TestMisc) 2023-01-11T21:42:31.8406361Z is_from_package should work for objects and modules ... ok (0.001s) 2023-01-11T21:42:31.8406866Z test_load_python_version_from_package (test_misc.TestMisc) 2023-01-11T21:42:31.8407418Z Tests loading a package with a python version embdded ... ok (0.002s) 2023-01-11T21:42:31.8407868Z test_loaders_that_remap_files_work_ok (test_misc.TestMisc) ... ok (0.002s) 2023-01-11T21:42:31.8408409Z test_python_version (test_misc.TestMisc) 2023-01-11T21:42:31.8409311Z Tests that the current python version is stored in the package and is available ... ok (0.002s) 2023-01-11T21:42:31.8409854Z test_std_lib_sys_hackery_checks (test_misc.TestMisc) 2023-01-11T21:42:31.8410379Z The standard library performs sys.module assignment hackery which ... ok (0.003s) 2023-01-11T21:42:31.8411128Z test_model_save (test_model.ModelTest) ... skip: Does not work with recent torchvision, see https://github.com/pytorch/pytorch/issues/81115 (0.001s) 2023-01-11T21:42:31.8411957Z test_resnet (test_model.ModelTest) ... skip: Does not work with recent torchvision, see https://github.com/pytorch/pytorch/issues/81115 (0.001s) 2023-01-11T21:42:31.8412797Z test_script_resnet (test_model.ModelTest) ... skip: Does not work with recent torchvision, see https://github.com/pytorch/pytorch/issues/81115 (0.001s) 2023-01-11T21:42:31.8413517Z test_package_fx_custom_tracer (test_package_fx.TestPackageFX) ... ok (0.009s) 2023-01-11T21:42:31.8414131Z test_package_fx_package (test_package_fx.TestPackageFX) ... ok (0.017s) 2023-01-11T21:42:31.8414783Z test_package_fx_simple (test_package_fx.TestPackageFX) ... ok (0.005s) 2023-01-11T21:42:31.8415256Z test_package_fx_with_imports (test_package_fx.TestPackageFX) ... ok (0.005s) 2023-01-11T21:42:31.8415744Z test_package_then_fx (test_package_fx.TestPackageFX) ... ok (0.004s) 2023-01-11T21:42:31.8416253Z test_different_package_interface (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8416730Z Test a case where the interface defined in the package is ... ok (0.012s) 2023-01-11T21:42:31.8417229Z test_different_package_script_class (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8417732Z Test a case where the script class defined in the package is ... ok (0.006s) 2023-01-11T21:42:31.8418247Z test_load_shared_scriptmodules (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8418884Z Test loading of single ScriptModule shared by multiple eager ... ok (0.008s) 2023-01-11T21:42:31.8419460Z test_load_shared_tensors (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8420682Z Test tensors shared across eager and ScriptModules on load ... /var/lib/jenkins/workspace/test/package/test_package_script.py:547: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8421799Z shared_tensor.storage()._cdata, 2023-01-11T21:42:31.8422864Z /var/lib/jenkins/workspace/test/package/test_package_script.py:548: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8423977Z scripted_mod_0.tensor.storage()._cdata, 2023-01-11T21:42:31.8425032Z /var/lib/jenkins/workspace/test/package/test_package_script.py:551: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8426154Z shared_tensor.storage()._cdata, 2023-01-11T21:42:31.8427337Z /var/lib/jenkins/workspace/test/package/test_package_script.py:552: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8428298Z scripted_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8429453Z /var/lib/jenkins/workspace/test/package/test_package_script.py:565: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8430448Z loaded_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8431500Z /var/lib/jenkins/workspace/test/package/test_package_script.py:566: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8432572Z loaded_mod_1.sub_mod_0.tensor.storage()._cdata, 2023-01-11T21:42:31.8433616Z /var/lib/jenkins/workspace/test/package/test_package_script.py:569: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8434470Z loaded_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8435355Z /var/lib/jenkins/workspace/test/package/test_package_script.py:570: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8436238Z loaded_mod_1.sub_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8436656Z ok (0.008s) 2023-01-11T21:42:31.8437114Z test_load_shared_tensors_repackaged (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8438371Z Test tensors shared across eager and ScriptModules on load ... /var/lib/jenkins/workspace/test/package/test_package_script.py:619: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8439486Z loaded_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8440590Z /var/lib/jenkins/workspace/test/package/test_package_script.py:620: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8441602Z loaded_mod_1.sub_mod_0.tensor.storage()._cdata, 2023-01-11T21:42:31.8442668Z /var/lib/jenkins/workspace/test/package/test_package_script.py:623: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8443644Z loaded_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8444977Z /var/lib/jenkins/workspace/test/package/test_package_script.py:624: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:42:31.8445958Z loaded_mod_1.sub_mod_1.tensor.storage()._cdata, 2023-01-11T21:42:31.8446329Z ok (0.011s) 2023-01-11T21:42:31.8446790Z test_mixing_packaged_and_inline_modules (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8447397Z Test saving inline and imported modules in same package with ... ok (0.047s) 2023-01-11T21:42:31.8447990Z test_mixing_packaged_and_inline_modules_shared_code (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8448740Z Test saving inline and imported modules in same package that ... ok (0.854s) 2023-01-11T21:42:31.8449496Z test_package_interface (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8450102Z Packaging an interface class should work correctly. ... ok (0.040s) 2023-01-11T21:42:31.8450732Z test_package_script_class (test_package_script.TestPackageScript) ... ok (0.004s) 2023-01-11T21:42:31.8451333Z test_package_script_class_referencing_self (test_package_script.TestPackageScript) ... ok (0.013s) 2023-01-11T21:42:31.8451909Z test_save_eager_mods_sharing_scriptmodule (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8452420Z Test saving of single ScriptModule shared by multiple ... ok (0.005s) 2023-01-11T21:42:31.8452917Z test_save_independent_scriptmodules (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8453419Z Test to verify saving multiple ScriptModules with completely ... ok (0.008s) 2023-01-11T21:42:31.8453934Z test_save_repeat_scriptmodules (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8454515Z Test to verify saving multiple different modules and ... ok (0.042s) 2023-01-11T21:42:31.8455061Z test_save_scriptmodule (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8455570Z Test basic saving of ScriptModule. ... ok (0.004s) 2023-01-11T21:42:31.8456062Z test_save_scriptmodule_file (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8456585Z Test basic saving of ScriptModule in file. ... ok (0.004s) 2023-01-11T21:42:31.8457147Z test_save_scriptmodule_only_necessary_code (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8457761Z Test to verify when saving multiple packages with same CU ... ok (0.332s) 2023-01-11T21:42:31.8458384Z test_save_scriptmodule_with_submods (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8458954Z Test basic saving of ScriptModule with submodule. ... ok (0.007s) 2023-01-11T21:42:31.8459543Z test_save_scriptmodules_in_container (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8460142Z Test saving of ScriptModules inside of container. Checks that relations ... ok (0.035s) 2023-01-11T21:42:31.8460790Z test_save_scriptmodules_submod_redefinition (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8461453Z Test to verify saving multiple ScriptModules with same top module ... ok (0.012s) 2023-01-11T21:42:31.8461925Z test_save_shared_tensors (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8462617Z Test tensors shared across eager and ScriptModules are serialized once. ... ok (0.007s) 2023-01-11T21:42:31.8463387Z test_saving_and_scripting_packaged_mod (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8463947Z Test scripting a module loaded from a package ... ok (0.008s) 2023-01-11T21:42:31.8464475Z test_scriptmodules_repeat_save (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8465056Z Test to verify saving and loading same ScriptModule object works ... ok (0.010s) 2023-01-11T21:42:31.8465634Z test_tensor_sharing_pickle (test_package_script.TestPackageScript) 2023-01-11T21:42:31.8466178Z Test that saving a ScriptModule and a separately saving a tensor ... ok (0.004s) 2023-01-11T21:42:31.8466988Z test_repackage_import_indirectly_via_parent_module (test_repackage.TestRepackage) ... ok (0.005s) 2023-01-11T21:42:31.8467645Z test_importer_access (test_resources.TestResources) ... ok (0.002s) 2023-01-11T21:42:31.8468233Z test_package_resource_access (test_resources.TestResources) 2023-01-11T21:42:31.8468876Z Packaged modules should be able to use the importlib.resources API to access ... ok (0.001s) 2023-01-11T21:42:31.8469402Z test_resource_access_by_path (test_resources.TestResources) 2023-01-11T21:42:31.8469896Z Tests that packaged code can used importlib.resources.path. ... ok (0.002s) 2023-01-11T21:42:31.8470357Z test_resource_reader (test_resources.TestResources) 2023-01-11T21:42:31.8470818Z Test compliance with the get_resource_reader importlib API. ... ok (0.003s) 2023-01-11T21:42:31.8471429Z test_bad_dunder_imports (test_save_load.TestSaveLoad) 2023-01-11T21:42:31.8472043Z Test to ensure bad __imports__ don't cause PackageExporter to fail. ... ok (0.001s) 2023-01-11T21:42:31.8472633Z test_dunder_imports (test_save_load.TestSaveLoad) ... ok (0.003s) 2023-01-11T21:42:31.8473163Z test_exporting_mismatched_code (test_save_load.TestSaveLoad) 2023-01-11T21:42:31.8473772Z If an object with the same qualified name is loaded from different ... ok (0.004s) 2023-01-11T21:42:31.8474285Z test_pickle (test_save_load.TestSaveLoad) ... ok (0.002s) 2023-01-11T21:42:31.8474777Z test_save_imported_module (test_save_load.TestSaveLoad) 2023-01-11T21:42:31.8475318Z Saving a module that came from another PackageImporter should work. ... ok (0.002s) 2023-01-11T21:42:31.8475950Z test_save_imported_module_using_package_importer (test_save_load.TestSaveLoad) 2023-01-11T21:42:31.8476796Z Exercise a corner case: re-packaging a module that uses `torch_package_importer` ... ok (0.002s) 2023-01-11T21:42:31.8477377Z test_save_module (test_save_load.TestSaveLoad) ... ok (0.002s) 2023-01-11T21:42:31.8477917Z test_save_module_binary (test_save_load.TestSaveLoad) ... ok (0.001s) 2023-01-11T21:42:31.8478433Z test_saving_source (test_save_load.TestSaveLoad) ... ok (0.004s) 2023-01-11T21:42:31.8478948Z test_saving_string (test_save_load.TestSaveLoad) ... ok (0.001s) 2023-01-11T21:42:31.8479310Z 2023-01-11T21:42:31.8479658Z ---------------------------------------------------------------------- 2023-01-11T21:42:31.8480032Z Ran 133 tests in 1.949s 2023-01-11T21:42:31.8480298Z 2023-01-11T21:42:31.8480422Z OK (skipped=5) 2023-01-11T21:42:31.8480622Z 2023-01-11T21:42:31.8480782Z Generating XML reports... 2023-01-11T21:42:31.8481671Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_dependency_api.TestDependencyAPI-20230111214229.xml 2023-01-11T21:42:31.8482746Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_dependency_hooks.TestDependencyHooks-20230111214229.xml 2023-01-11T21:42:31.8483782Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_digraph.TestDiGraph-20230111214229.xml 2023-01-11T21:42:31.8484835Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_directory_reader.DirectoryReaderTest-20230111214229.xml 2023-01-11T21:42:31.8485937Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_glob_group.TestGlobGroup-20230111214229.xml 2023-01-11T21:42:31.8487029Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_importer.TestImporter-20230111214229.xml 2023-01-11T21:42:31.8487979Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_load_bc_packages.TestLoadBCPackages-20230111214229.xml 2023-01-11T21:42:31.8488900Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_mangling.TestMangling-20230111214229.xml 2023-01-11T21:42:31.8489877Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_misc.TestMisc-20230111214229.xml 2023-01-11T21:42:31.8490811Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_package_fx.TestPackageFX-20230111214229.xml 2023-01-11T21:42:31.8492050Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_package_script.TestPackageScript-20230111214229.xml 2023-01-11T21:42:31.8493088Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_repackage.TestRepackage-20230111214229.xml 2023-01-11T21:42:31.8494131Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_resources.TestResources-20230111214229.xml 2023-01-11T21:42:31.8495157Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_save_load.TestSaveLoad-20230111214229.xml 2023-01-11T21:42:31.8496162Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_analyze.TestAnalyze-20230111214229.xml 2023-01-11T21:42:31.8497122Z Generated XML report: test-reports/python-unittest/test_package/TEST-test_model.ModelTest-20230111214229.xml 2023-01-11T21:42:31.8497596Z 2023-01-11T21:42:31.8498152Z ##[endgroup] 2023-01-11T21:42:31.8498994Z FINISHED PRINTING LOG FILE of test_package (/var/lib/jenkins/workspace/test/test-reports/test_package_0slox5a_) 2023-01-11T21:42:31.8499431Z 2023-01-11T21:42:33.9652039Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:34.0589807Z Ignoring disabled issues: [] 2023-01-11T21:42:34.0785446Z Running test_per_overload_api ... [2023-01-11 21:42:34.078173] 2023-01-11T21:42:34.0786789Z Executing ['/opt/conda/bin/python', '-bb', 'test_per_overload_api.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:34.078422] 2023-01-11T21:42:36.4365184Z 2023-01-11T21:42:36.4366342Z Expand the folded group to see the log file of test_per_overload_api 2023-01-11T21:42:36.4367188Z ##[group]PRINTING LOG FILE of test_per_overload_api (/var/lib/jenkins/workspace/test/test-reports/test_per_overload_api_ksrmkocj) 2023-01-11T21:42:36.4367513Z 2023-01-11T21:42:36.4367608Z Running tests... 2023-01-11T21:42:36.4368113Z ---------------------------------------------------------------------- 2023-01-11T21:42:36.4368859Z Test results will be stored in test-reports/python-unittest/test_per_overload_api 2023-01-11T21:42:36.4369456Z test_basics_opoverload (__main__.TestPerOverloadAPI) ... ok (0.356s) 2023-01-11T21:42:36.4369840Z test_basics_opoverloadpacket (__main__.TestPerOverloadAPI) ... ok (0.002s) 2023-01-11T21:42:36.4370223Z test_decompose (__main__.TestPerOverloadAPI) ... ok (0.002s) 2023-01-11T21:42:36.4370424Z 2023-01-11T21:42:36.4370686Z ---------------------------------------------------------------------- 2023-01-11T21:42:36.4370992Z Ran 3 tests in 0.360s 2023-01-11T21:42:36.4371150Z 2023-01-11T21:42:36.4371214Z OK 2023-01-11T21:42:36.4371330Z 2023-01-11T21:42:36.4371435Z Generating XML reports... 2023-01-11T21:42:36.4371999Z Generated XML report: test-reports/python-unittest/test_per_overload_api/TEST-TestPerOverloadAPI-20230111214235.xml 2023-01-11T21:42:36.4372316Z 2023-01-11T21:42:36.4372581Z ##[endgroup] 2023-01-11T21:42:36.4373109Z FINISHED PRINTING LOG FILE of test_per_overload_api (/var/lib/jenkins/workspace/test/test-reports/test_per_overload_api_ksrmkocj) 2023-01-11T21:42:36.4373405Z 2023-01-11T21:42:38.4491052Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:38.5137500Z Ignoring disabled issues: [] 2023-01-11T21:42:38.5300675Z Running test_pruning_op ... [2023-01-11 21:42:38.529760] 2023-01-11T21:42:38.5302715Z Executing ['/opt/conda/bin/python', '-bb', 'test_pruning_op.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:38.530035] 2023-01-11T21:42:40.3589369Z 2023-01-11T21:42:40.3590021Z Expand the folded group to see the log file of test_pruning_op 2023-01-11T21:42:40.3590988Z ##[group]PRINTING LOG FILE of test_pruning_op (/var/lib/jenkins/workspace/test/test-reports/test_pruning_op_djq56_pm) 2023-01-11T21:42:40.3591279Z 2023-01-11T21:42:40.3591688Z ##[endgroup] 2023-01-11T21:42:40.3592461Z FINISHED PRINTING LOG FILE of test_pruning_op (/var/lib/jenkins/workspace/test/test-reports/test_pruning_op_djq56_pm) 2023-01-11T21:42:40.3592746Z 2023-01-11T21:42:42.3542678Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:42.4188544Z Ignoring disabled issues: [] 2023-01-11T21:42:42.4352848Z Running test_pytree ... [2023-01-11 21:42:42.435029] 2023-01-11T21:42:42.4355449Z Executing ['/opt/conda/bin/python', '-bb', 'test_pytree.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:42.435287] 2023-01-11T21:42:44.3042512Z 2023-01-11T21:42:44.3043091Z Expand the folded group to see the log file of test_pytree 2023-01-11T21:42:44.3044279Z ##[group]PRINTING LOG FILE of test_pytree (/var/lib/jenkins/workspace/test/test-reports/test_pytree_cg04g9nu) 2023-01-11T21:42:44.3044695Z 2023-01-11T21:42:44.3044831Z Running tests... 2023-01-11T21:42:44.3045426Z ---------------------------------------------------------------------- 2023-01-11T21:42:44.3046076Z Test results will be stored in test-reports/python-unittest/test_pytree 2023-01-11T21:42:44.3046424Z test_broadcast_to_and_flatten (__main__.TestPytree) ... ok (0.222s) 2023-01-11T21:42:44.3046718Z test_flatten_unflatten_dict (__main__.TestPytree) ... ok (0.003s) 2023-01-11T21:42:44.3046992Z test_flatten_unflatten_leaf (__main__.TestPytree) ... ok (0.002s) 2023-01-11T21:42:44.3047253Z test_flatten_unflatten_list (__main__.TestPytree) ... ok (0.002s) 2023-01-11T21:42:44.3047536Z test_flatten_unflatten_namedtuple (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3047821Z test_flatten_unflatten_nested (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3048090Z test_flatten_unflatten_odict (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3048379Z test_flatten_unflatten_return_type_max (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3048674Z test_flatten_unflatten_return_type_min (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3048963Z test_flatten_unflatten_tuple (__main__.TestPytree) ... ok (0.002s) 2023-01-11T21:42:44.3049452Z test_tree_all_any (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3049707Z test_tree_only (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3049952Z test_treemap (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3050195Z test_treespec_equality (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3050451Z test_treespec_repr (__main__.TestPytree) ... ok (0.001s) 2023-01-11T21:42:44.3050596Z 2023-01-11T21:42:44.3050814Z ---------------------------------------------------------------------- 2023-01-11T21:42:44.3051054Z Ran 15 tests in 0.240s 2023-01-11T21:42:44.3051154Z 2023-01-11T21:42:44.3051213Z OK 2023-01-11T21:42:44.3051304Z 2023-01-11T21:42:44.3051387Z Generating XML reports... 2023-01-11T21:42:44.3051790Z Generated XML report: test-reports/python-unittest/test_pytree/TEST-TestPytree-20230111214243.xml 2023-01-11T21:42:44.3052008Z 2023-01-11T21:42:44.3052257Z ##[endgroup] 2023-01-11T21:42:44.3052633Z FINISHED PRINTING LOG FILE of test_pytree (/var/lib/jenkins/workspace/test/test-reports/test_pytree_cg04g9nu) 2023-01-11T21:42:44.3052841Z 2023-01-11T21:42:46.1140337Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:42:46.1784757Z Ignoring disabled issues: [] 2023-01-11T21:42:46.1946613Z Running test_quantization ... [2023-01-11 21:42:46.194427] 2023-01-11T21:42:46.1949350Z Executing ['/opt/conda/bin/python', '-bb', 'test_quantization.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:42:46.194685] 2023-01-11T21:43:49.4435672Z 2023-01-11T21:43:49.4439934Z Expand the folded group to see the log file of test_optim 2023-01-11T21:43:49.4444678Z ##[group]PRINTING LOG FILE of test_optim (/var/lib/jenkins/workspace/test/test-reports/test_optim_kd7_d0t4) 2023-01-11T21:43:49.4448810Z 2023-01-11T21:43:49.4449406Z Running tests... 2023-01-11T21:43:49.4490235Z ---------------------------------------------------------------------- 2023-01-11T21:43:49.4490804Z Test results will be stored in test-reports/python-unittest/test_optim 2023-01-11T21:43:49.4491233Z test_adadelta (__main__.TestDifferentiableOptimizer) ... ok (0.252s) 2023-01-11T21:43:49.4491883Z test_adagrad (__main__.TestDifferentiableOptimizer) ... ok (0.006s) 2023-01-11T21:43:49.4492297Z test_adam (__main__.TestDifferentiableOptimizer) ... ok (0.014s) 2023-01-11T21:43:49.4492811Z test_adamax (__main__.TestDifferentiableOptimizer) ... ok (0.010s) 2023-01-11T21:43:49.4493261Z test_adamw (__main__.TestDifferentiableOptimizer) ... ok (0.014s) 2023-01-11T21:43:49.4493714Z test_asgd (__main__.TestDifferentiableOptimizer) ... ok (0.005s) 2023-01-11T21:43:49.4494170Z test_nadam (__main__.TestDifferentiableOptimizer) ... ok (0.013s) 2023-01-11T21:43:49.4494611Z test_radam (__main__.TestDifferentiableOptimizer) ... ok (0.009s) 2023-01-11T21:43:49.4495073Z test_rmsprop (__main__.TestDifferentiableOptimizer) ... ok (0.013s) 2023-01-11T21:43:49.4495534Z test_rprop (__main__.TestDifferentiableOptimizer) ... ok (0.010s) 2023-01-11T21:43:49.4496074Z test_sgd (__main__.TestDifferentiableOptimizer) ... ok (0.004s) 2023-01-11T21:43:49.4496559Z test_CosineAnnealingWarmRestarts_lr1_T_mult_1 (__main__.TestLRScheduler) ... ok (0.007s) 2023-01-11T21:43:49.4497098Z test_CosineAnnealingWarmRestarts_lr1_T_mult_2 (__main__.TestLRScheduler) ... ok (0.007s) 2023-01-11T21:43:49.4497625Z test_CosineAnnealingWarmRestarts_lr1_T_mult_4 (__main__.TestLRScheduler) ... ok (0.007s) 2023-01-11T21:43:49.4498116Z test_CosineAnnealingWarmRestarts_lr2 (__main__.TestLRScheduler) ... ok (0.057s) 2023-01-11T21:43:49.4498757Z test_CosineAnnealingWarmRestarts_lr3 (__main__.TestLRScheduler) ... ok (0.004s) 2023-01-11T21:43:49.4499270Z test_CosineAnnealingWarmRestarts_lr_state_dict (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4500950Z test_chained_lr1 (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4501959Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4502288Z ok (0.002s) 2023-01-11T21:43:49.4502582Z test_chained_lr2 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4502952Z test_chained_lr2_get_last_lr_before_step (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4503395Z test_chained_lr3 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4503749Z test_chained_lr4 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4504083Z test_chained_lr5 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4504454Z test_closed_form_constantlr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4504842Z test_closed_form_cos_anneal_lr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4505237Z test_closed_form_exp_lr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4505599Z test_closed_form_linearlr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4505985Z test_closed_form_multi_step_lr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4506367Z test_closed_form_poly_lr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4506726Z test_closed_form_step_lr (__main__.TestLRScheduler) ... ok (0.006s) 2023-01-11T21:43:49.4508226Z test_compound_cosanneal_and_exp_lr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4509283Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4509615Z ok (0.002s) 2023-01-11T21:43:49.4509944Z test_compound_cosanneal_and_linearlr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4510351Z test_compound_cosanneal_and_multistep_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4510776Z test_compound_cosanneal_and_step_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4511182Z test_compound_exp_and_linearlr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4511577Z test_compound_exp_and_multistep_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4511996Z test_compound_linearlr_and_multistep_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4512454Z test_compound_reduce_lr_on_plateau1 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4512865Z test_compound_reduce_lr_on_plateau2 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4513250Z test_compound_reduce_lr_on_plateau3 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4513646Z test_compound_reduce_lr_on_plateau4 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4514054Z test_compound_reduce_lr_on_plateau5 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4514448Z test_compound_step_and_constantlr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4514842Z test_compound_step_and_exp_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4515241Z test_compound_step_and_multistep_lr (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4515617Z test_constantlr (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4516000Z test_constantlr_is_constant_for_constant_epoch (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4516410Z test_constantlr_with_epoch (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4517859Z test_cos_anneal_lr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4518824Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4519132Z ok (0.001s) 2023-01-11T21:43:49.4519432Z test_cos_anneal_lr_continue (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4519808Z test_cosine_lr_state_dict (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4520170Z test_cosine_then_cyclic (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4520604Z test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4521032Z test_cycle_lr_exp_range_mode (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4521424Z test_cycle_lr_exp_range_mode_one_lr (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4521824Z test_cycle_lr_exp_range_mode_step_size_up_down (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4522221Z test_cycle_lr_invalid_mode (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4522616Z test_cycle_lr_removed_after_out_of_scope (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4523027Z test_cycle_lr_scale_fn_restored_from_state_dict (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4523439Z test_cycle_lr_state_dict_picklable (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4523833Z test_cycle_lr_triangular2_mode (__main__.TestLRScheduler) ... ok (0.004s) 2023-01-11T21:43:49.4524231Z test_cycle_lr_triangular2_mode_one_lr (__main__.TestLRScheduler) ... ok (0.004s) 2023-01-11T21:43:49.4524679Z test_cycle_lr_triangular2_mode_step_size_up_down (__main__.TestLRScheduler) ... ok (0.004s) 2023-01-11T21:43:49.4525095Z test_cycle_lr_triangular_mode (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4525489Z test_cycle_lr_triangular_mode_one_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4525909Z test_cycle_lr_triangular_mode_one_lr_no_momentum (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4526328Z test_cycle_lr_triangular_mode_step_size_up_down (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4526727Z test_cycle_lr_with_adam (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4527122Z test_cycle_lr_with_momentumless_optimizer (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4527558Z test_error_when_getlr_has_epoch (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4527920Z test_exp_lr (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4528278Z test_exp_step_lr_state_dict (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4528679Z test_exponential_lr_is_constant_for_constant_epoch (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4529212Z test_get_last_lr_constantlr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4529600Z test_get_last_lr_linearlr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4529980Z test_get_last_lr_multi_step_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4531538Z test_get_last_lr_sequentiallr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:152: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose. 2023-01-11T21:43:49.4532539Z warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning) 2023-01-11T21:43:49.4532826Z ok (0.002s) 2023-01-11T21:43:49.4533239Z test_get_last_lr_step_lr (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4534912Z test_lambda_lr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4536020Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4536392Z ok (0.002s) 2023-01-11T21:43:49.4536743Z test_lambda_lr_state_dict_fn (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4537207Z test_lambda_lr_state_dict_obj (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4537677Z test_linear_linearlr_is_constant_for_constant_epoch (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4539394Z test_linearlr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4540516Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4540994Z ok (0.002s) 2023-01-11T21:43:49.4541404Z test_linearlr_start_factor_limits1 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4541804Z test_linearlr_start_factor_limits2 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4542196Z test_linearlr_with_epoch (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4543788Z test_multi_step_lr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4544817Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4545129Z ok (0.001s) 2023-01-11T21:43:49.4545436Z test_multi_step_lr_state_dict (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4545821Z test_multi_step_lr_with_epoch (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4547267Z test_multiplicative_lr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4548219Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4548554Z ok (0.002s) 2023-01-11T21:43:49.4548862Z test_new_pattern_no_warning (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4549266Z test_new_pattern_no_warning_with_arg (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4549690Z test_new_pattern_no_warning_with_overridden_optim_step (__main__.TestLRScheduler) ... ok (0.005s) 2023-01-11T21:43:49.4550115Z test_no_cyclic_references (__main__.TestLRScheduler) ... ok (0.107s) 2023-01-11T21:43:49.4550515Z test_no_cyclic_references_in_step (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4550893Z test_old_pattern_warning (__main__.TestLRScheduler) ... ok (0.004s) 2023-01-11T21:43:49.4551284Z test_old_pattern_warning_resuming (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4551703Z test_old_pattern_warning_resuming_with_arg (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4552121Z test_old_pattern_warning_with_arg (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4552535Z test_old_pattern_warning_with_overridden_optim_step (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4552987Z test_onecycle_lr_cannot_calculate_total_steps (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4553411Z test_onecycle_lr_cosine_annealing (__main__.TestLRScheduler) ... ok (0.003s) 2023-01-11T21:43:49.4553810Z test_onecycle_lr_invalid_anneal_strategy (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4554223Z test_onecycle_lr_invalid_pct_start (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4554626Z test_onecycle_lr_linear_annealing (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4555060Z test_onecycle_lr_linear_annealing_three_phases (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4556508Z test_poly_lr (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4557508Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4557835Z ok (0.001s) 2023-01-11T21:43:49.4558177Z test_polynomial_lr_is_constant_for_constant_epoch (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4558575Z test_reduce_lr_on_plateau1 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4558953Z test_reduce_lr_on_plateau2 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4559331Z test_reduce_lr_on_plateau3 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4559709Z test_reduce_lr_on_plateau4 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4560113Z test_reduce_lr_on_plateau5 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4560493Z test_reduce_lr_on_plateau6 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4560872Z test_reduce_lr_on_plateau7 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4561230Z test_reduce_lr_on_plateau8 (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4561624Z test_reduce_lr_on_plateau_state_dict (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4563075Z test_sequentiallr1 (__main__.TestLRScheduler) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4564042Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4565495Z /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:152: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose. 2023-01-11T21:43:49.4566420Z warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning) 2023-01-11T21:43:49.4566700Z ok (0.002s) 2023-01-11T21:43:49.4566998Z test_sequentiallr2 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4567365Z test_sequentiallr3 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4567711Z test_sequentiallr4 (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4568060Z test_step_lr (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4568453Z test_step_lr_is_constant_for_constant_epoch (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4568842Z test_step_lr_state_dict (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4569315Z test_swa_lr_state_dict (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4569721Z test_swalr_cosine_anneal_after_multiplicative (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4570123Z test_swalr_hypers (__main__.TestLRScheduler) ... ok (0.001s) 2023-01-11T21:43:49.4570505Z test_swalr_linear_anneal_after_multiplicative (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4570901Z test_swalr_no_anneal (__main__.TestLRScheduler) ... ok (0.002s) 2023-01-11T21:43:49.4572316Z test_adadelta (__main__.TestOptim) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4573343Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4573801Z ok (2.787s) 2023-01-11T21:43:49.4574135Z test_adadelta_complex (__main__.TestOptim) ... ok (0.005s) 2023-01-11T21:43:49.4574518Z test_adagrad (__main__.TestOptim) ... ok (3.882s) 2023-01-11T21:43:49.4574886Z test_adagrad_complex (__main__.TestOptim) ... ok (0.007s) 2023-01-11T21:43:49.4575288Z test_adagrad_sparse (__main__.TestOptim) ... ok (11.745s) 2023-01-11T21:43:49.4575661Z test_adam (__main__.TestOptim) ... ok (10.661s) 2023-01-11T21:43:49.4576023Z test_adamax (__main__.TestOptim) ... ok (3.445s) 2023-01-11T21:43:49.4576440Z test_adamw (__main__.TestOptim) ... ok (3.120s) 2023-01-11T21:43:49.4576794Z test_asgd (__main__.TestOptim) ... ok (4.054s) 2023-01-11T21:43:49.4577208Z test_duplicate_params_in_param_group (__main__.TestOptim) ... ok (0.001s) 2023-01-11T21:43:49.4577613Z test_empty_grad (__main__.TestOptim) ... ok (0.010s) 2023-01-11T21:43:49.4578075Z test_functional_fused_adam_with_foundinf (__main__.TestOptim) ... skip: CUDA is required. (0.001s) 2023-01-11T21:43:49.4578542Z test_fused_optimizers (__main__.TestOptim) ... ok (0.001s) 2023-01-11T21:43:49.4578931Z test_invalid_param_type (__main__.TestOptim) ... ok (0.001s) 2023-01-11T21:43:49.4579310Z test_lbfgs (__main__.TestOptim) ... ok (0.409s) 2023-01-11T21:43:49.4579688Z test_lbfgs_return_type (__main__.TestOptim) ... ok (0.002s) 2023-01-11T21:43:49.4580105Z test_multi_tensor_optimizers (__main__.TestOptim) ... ok (0.002s) 2023-01-11T21:43:49.4581639Z test_nadam (__main__.TestOptim) ... /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate 2023-01-11T21:43:49.4582602Z warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " 2023-01-11T21:43:49.4582934Z ok (1.516s) 2023-01-11T21:43:49.4583272Z test_no_grad_for_all_params (__main__.TestOptim) ... ok (0.002s) 2023-01-11T21:43:49.4583605Z test_post_hook (__main__.TestOptim) ... ok (0.001s) 2023-01-11T21:43:49.4583940Z test_pre_and_post_hook (__main__.TestOptim) ... ok (0.002s) 2023-01-11T21:43:49.4584280Z test_pre_hook (__main__.TestOptim) ... ok (0.001s) 2023-01-11T21:43:49.4584579Z test_radam (__main__.TestOptim) ... ok (1.730s) 2023-01-11T21:43:49.4584894Z test_rmsprop (__main__.TestOptim) ... ok (7.933s) 2023-01-11T21:43:49.4585209Z test_rprop (__main__.TestOptim) ... ok (3.329s) 2023-01-11T21:43:49.4585509Z test_sgd (__main__.TestOptim) ... ok (8.703s) 2023-01-11T21:43:49.4585827Z test_sgd_complex (__main__.TestOptim) ... ok (0.019s) 2023-01-11T21:43:49.4586158Z test_sgd_sparse (__main__.TestOptim) ... ok (18.576s) 2023-01-11T21:43:49.4586491Z test_sparse_adam (__main__.TestOptim) ... ok (2.881s) 2023-01-11T21:43:49.4586833Z test_averaged_model_all_devices (__main__.TestSWAUtils) ... ok (0.012s) 2023-01-11T21:43:49.4587239Z test_averaged_model_exponential (__main__.TestSWAUtils) ... ok (0.010s) 2023-01-11T21:43:49.4587649Z test_averaged_model_exponential_buffers (__main__.TestSWAUtils) ... ok (0.006s) 2023-01-11T21:43:49.4588038Z test_averaged_model_mixed_device (__main__.TestSWAUtils) ... ok (0.001s) 2023-01-11T21:43:49.4588447Z test_averaged_model_state_dict (__main__.TestSWAUtils) ... ok (0.005s) 2023-01-11T21:43:49.4588876Z test_bn_update_eval_momentum (__main__.TestSWAUtils) ... ok (0.142s) 2023-01-11T21:43:49.4589239Z test_update_bn_cnn (__main__.TestSWAUtils) ... ok (0.652s) 2023-01-11T21:43:49.4589645Z test_update_bn_dnn (__main__.TestSWAUtils) ... ok (0.023s) 2023-01-11T21:43:49.4589844Z 2023-01-11T21:43:49.4590124Z ---------------------------------------------------------------------- 2023-01-11T21:43:49.4590449Z Ran 166 tests in 86.466s 2023-01-11T21:43:49.4590605Z 2023-01-11T21:43:49.4590688Z OK (skipped=1) 2023-01-11T21:43:49.4590831Z 2023-01-11T21:43:49.4590944Z Generating XML reports... 2023-01-11T21:43:49.4591530Z Generated XML report: test-reports/python-unittest/test_optim/TEST-TestDifferentiableOptimizer-20230111214222.xml 2023-01-11T21:43:49.4592232Z Generated XML report: test-reports/python-unittest/test_optim/TEST-TestLRScheduler-20230111214222.xml 2023-01-11T21:43:49.4592850Z Generated XML report: test-reports/python-unittest/test_optim/TEST-TestOptim-20230111214222.xml 2023-01-11T21:43:49.4593516Z Generated XML report: test-reports/python-unittest/test_optim/TEST-TestSWAUtils-20230111214222.xml 2023-01-11T21:43:49.4593802Z 2023-01-11T21:43:49.4594188Z ##[endgroup] 2023-01-11T21:43:49.4594672Z FINISHED PRINTING LOG FILE of test_optim (/var/lib/jenkins/workspace/test/test-reports/test_optim_kd7_d0t4) 2023-01-11T21:43:49.4594943Z 2023-01-11T21:43:51.4473549Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:43:51.5126749Z Ignoring disabled issues: [] 2023-01-11T21:43:51.5295461Z Running test_schema_check ... [2023-01-11 21:43:51.529159] 2023-01-11T21:43:51.5296449Z Executing ['/opt/conda/bin/python', '-bb', 'test_schema_check.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:43:51.529437] 2023-01-11T21:43:54.6754241Z 2023-01-11T21:43:54.6754743Z Expand the folded group to see the log file of test_schema_check 2023-01-11T21:43:54.6755788Z ##[group]PRINTING LOG FILE of test_schema_check (/var/lib/jenkins/workspace/test/test-reports/test_schema_check_wlot4cyh) 2023-01-11T21:43:54.6756167Z 2023-01-11T21:43:54.6756290Z Running tests... 2023-01-11T21:43:54.6756766Z ---------------------------------------------------------------------- 2023-01-11T21:43:54.6757362Z Test results will be stored in test-reports/python-unittest/test_schema_check 2023-01-11T21:43:54.6757718Z test_alias_check_fail_multiple_operators (__main__.TestSchemaCheck) ... ok (0.004s) 2023-01-11T21:43:54.6758215Z test_alias_check_fail_multiple_operators_centered (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6758634Z test_alias_check_fail_outputs_unexpectedly_aliasing (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6758966Z test_alias_check_fail_simple (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6759277Z test_is_alias_of_basic (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6759605Z test_is_alias_of_empty_container (__main__.TestSchemaCheck) ... ok (0.004s) 2023-01-11T21:43:54.6759892Z test_mutation_check_fail (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6760261Z test_mutation_check_fail_multiple_operators (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6760565Z test_overlaps_basic (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6810448Z test_overlaps_empty_container (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6811149Z test_schema_check_mode_empty_list_input (__main__.TestSchemaCheck) ... ok (0.009s) 2023-01-11T21:43:54.6811732Z test_schema_check_mode_functionality (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6812287Z test_schema_check_mode_functionality_aliasing_inputs (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6812998Z test_schema_check_mode_functionality_default_replaced (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6813747Z test_schema_check_mode_functionality_device_input (__main__.TestSchemaCheck) ... ok (0.005s) 2023-01-11T21:43:54.6814485Z test_schema_check_mode_functionality_kwarg_tensor (__main__.TestSchemaCheck) ... ok (0.005s) 2023-01-11T21:43:54.6815205Z test_schema_check_mode_functionality_list_input (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6816162Z test_schema_check_mode_functionality_mutable_inputs (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6816916Z test_schema_check_mode_functionality_nested_training_op (__main__.TestSchemaCheck) ... ok (0.011s) 2023-01-11T21:43:54.6817650Z test_schema_check_mode_functionality_training_op (__main__.TestSchemaCheck) ... ok (0.011s) 2023-01-11T21:43:54.6818380Z test_schema_check_mode_functionality_wildcard_after (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6819123Z test_schema_check_mode_functionality_with_multiple_outputs (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6821098Z test_schema_check_mode_functionality_with_multiple_outputs_aliasing (__main__.TestSchemaCheck) ... /var/lib/jenkins/workspace/test/test_schema_check.py:278: UserWarning: An output with one or more elements was resized since it had shape [1, 1, 3], which does not match the required output shape [1, 3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:43:54.6822834Z torch.aminmax(x, dim=0, out=[actual, actual]) 2023-01-11T21:43:54.6823318Z ok (0.002s) 2023-01-11T21:43:54.6823882Z test_schema_check_mode_mutated_aliasing_aliasing_inputs (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6851083Z test_schema_check_mode_mutated_aliasing_aliasing_outputs (__main__.TestSchemaCheck) ... /var/lib/jenkins/workspace/test/test_schema_check.py:180: UserWarning: An output with one or more elements was resized since it had shape [1, 1, 3], which does not match the required output shape [1, 3]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:43:54.6852281Z torch.aminmax(x, dim=0, out=[actual, actual]) 2023-01-11T21:43:54.6852589Z ok (0.002s) 2023-01-11T21:43:54.6852992Z test_schema_check_mode_mutated_aliasing_as_strided (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6853504Z test_schema_check_mode_mutated_aliasing_multiple_outputs (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6854015Z test_schema_check_mode_mutated_aliasing_mutation (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6854497Z test_schema_check_mode_mutated_aliasing_none (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6854977Z test_schema_check_mode_mutated_aliasing_resize_ (__main__.TestSchemaCheck) ... ok (0.001s) 2023-01-11T21:43:54.6855453Z test_schema_check_mode_operator_order (__main__.TestSchemaCheck) ... ok (0.005s) 2023-01-11T21:43:54.6855948Z test_schema_check_mode_operator_order_without_grad (__main__.TestSchemaCheck) ... ok (0.005s) 2023-01-11T21:43:54.6856387Z test_schema_info_bind_basic (__main__.TestSchemaCheck) ... ok (0.002s) 2023-01-11T21:43:54.6856624Z 2023-01-11T21:43:54.6857010Z ---------------------------------------------------------------------- 2023-01-11T21:43:54.6857349Z Ran 33 tests in 0.095s 2023-01-11T21:43:54.6857516Z 2023-01-11T21:43:54.6857597Z OK 2023-01-11T21:43:54.6857714Z 2023-01-11T21:43:54.6857841Z Generating XML reports... 2023-01-11T21:43:54.6858493Z Generated XML report: test-reports/python-unittest/test_schema_check/TEST-TestSchemaCheck-20230111214354.xml 2023-01-11T21:43:54.6858830Z 2023-01-11T21:43:54.6859242Z ##[endgroup] 2023-01-11T21:43:54.6859794Z FINISHED PRINTING LOG FILE of test_schema_check (/var/lib/jenkins/workspace/test/test-reports/test_schema_check_wlot4cyh) 2023-01-11T21:43:54.6860095Z 2023-01-11T21:43:56.5235054Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:43:56.5879930Z Ignoring disabled issues: [] 2023-01-11T21:43:56.6045217Z Running test_serialization ... [2023-01-11 21:43:56.604262] 2023-01-11T21:43:56.6047900Z Executing ['/opt/conda/bin/python', '-bb', 'test_serialization.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:43:56.604516] 2023-01-11T21:44:29.0644349Z 2023-01-11T21:44:29.0644885Z Expand the folded group to see the log file of test_serialization 2023-01-11T21:44:29.0645888Z ##[group]PRINTING LOG FILE of test_serialization (/var/lib/jenkins/workspace/test/test-reports/test_serialization_a68we09r) 2023-01-11T21:44:29.0646272Z 2023-01-11T21:44:29.0649487Z Running tests... 2023-01-11T21:44:29.0650108Z ---------------------------------------------------------------------- 2023-01-11T21:44:29.0651028Z Test results will be stored in test-reports/python-unittest/test_serialization 2023-01-11T21:44:29.0651546Z test_load_error_msg (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0651855Z test_load_nonexistent_device (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0654634Z test_load_python2_unicode_module (__main__.TestOldSerialization) ... ok (0.082s) 2023-01-11T21:44:29.0654972Z test_load_unicode_error_msg (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0655650Z test_save_different_dtype_error (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:719: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0656275Z torch.save([a.storage(), a.imag], f) 2023-01-11T21:44:29.0656822Z /var/lib/jenkins/workspace/test/test_serialization.py:722: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0657346Z torch.save([a, a.imag.storage()], f) 2023-01-11T21:44:29.0657871Z /var/lib/jenkins/workspace/test/test_serialization.py:725: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0665264Z torch.save([a.storage(), a.imag.storage()], f) 2023-01-11T21:44:29.0665869Z /var/lib/jenkins/workspace/test/test_serialization.py:729: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0666449Z wrap_storage=a.storage().untyped(), 2023-01-11T21:44:29.0760996Z /var/lib/jenkins/workspace/test/test_serialization.py:728: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0761845Z s_bytes = torch.TypedStorage( 2023-01-11T21:44:29.0762683Z /var/lib/jenkins/workspace/test/test_serialization.py:736: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0763460Z torch.save([a.storage(), s_bytes], f) 2023-01-11T21:44:29.0763739Z ok (0.002s) 2023-01-11T21:44:29.0764834Z test_save_different_dtype_unallocated (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:697: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0766042Z wrap_storage=a.storage().untyped(), 2023-01-11T21:44:29.0766857Z /var/lib/jenkins/workspace/test/test_serialization.py:696: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0767749Z s = torch.TypedStorage( 2023-01-11T21:44:29.0769268Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0770107Z device=typed_storage.device, 2023-01-11T21:44:29.0772066Z /var/lib/jenkins/workspace/test/test_serialization.py:700: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0772860Z save_load_check(a.storage(), s) 2023-01-11T21:44:29.0773136Z ok (0.179s) 2023-01-11T21:44:29.0773960Z test_serialization (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:85: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0774780Z b += [a[0].storage()] # 4 2023-01-11T21:44:29.0775568Z /var/lib/jenkins/workspace/test/test_serialization.py:86: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0776466Z b += [a[0].reshape(-1)[1:4].storage()] # 5 2023-01-11T21:44:29.0777259Z /var/lib/jenkins/workspace/test/test_serialization.py:88: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0778207Z t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0780657Z /var/lib/jenkins/workspace/test/test_serialization.py:89: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0781659Z t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0782516Z /var/lib/jenkins/workspace/test/test_serialization.py:90: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0783520Z b += [(t1.storage(), t1.storage(), t2.storage())] # 7 2023-01-11T21:44:29.0784319Z /var/lib/jenkins/workspace/test/test_serialization.py:91: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0785223Z b += [a[0].reshape(-1)[0:2].storage()] # 8 2023-01-11T21:44:29.0786175Z /var/lib/jenkins/workspace/test/test_serialization.py:104: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0787012Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0787826Z /var/lib/jenkins/workspace/test/test_serialization.py:110: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0788607Z self.assertEqual(c[4][i + 1], c[5][i]) 2023-01-11T21:44:29.0790952Z /var/lib/jenkins/workspace/test/test_serialization.py:120: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0791789Z self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) 2023-01-11T21:44:29.0792086Z ok (0.007s) 2023-01-11T21:44:29.0792882Z test_serialization_backwards_compat (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:403: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0793726Z b += [a[0].storage()] 2023-01-11T21:44:29.0795614Z /var/lib/jenkins/workspace/test/test_serialization.py:404: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0796547Z b += [a[0].reshape(-1)[1:4].clone().storage()] 2023-01-11T21:44:29.0797377Z /var/lib/jenkins/workspace/test/test_serialization.py:416: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0798194Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0799054Z /var/lib/jenkins/workspace/test/test_serialization.py:426: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0800012Z return (self.new_tensor.storage(), 2023-01-11T21:44:29.0800801Z /var/lib/jenkins/workspace/test/test_serialization.py:446: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0801724Z self.assertEqual(x.storage(), load_x.storage()) 2023-01-11T21:44:29.0802063Z ok (0.017s) 2023-01-11T21:44:29.0803384Z test_serialization_backwards_compat_safe (__main__.TestOldSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0804264Z return self.fget.__get__(instance, owner)() 2023-01-11T21:44:29.0804538Z ok (0.005s) 2023-01-11T21:44:29.0804972Z test_serialization_container (__main__.TestOldSerialization) ... ok (0.009s) 2023-01-11T21:44:29.0805447Z test_serialization_container_filelike (__main__.TestOldSerialization) ... ok (0.008s) 2023-01-11T21:44:29.0805985Z test_serialization_dill (__main__.TestOldSerialization) ... skip: "dill" not found or not correct version (0.001s) 2023-01-11T21:44:29.0806565Z test_serialization_dill_version_not_supported (__main__.TestOldSerialization) ... skip: "dill" not found or is correct version (0.000s) 2023-01-11T21:44:29.0807095Z test_serialization_fake_zip (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0808093Z test_serialization_filelike (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:85: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0808900Z b += [a[0].storage()] # 4 2023-01-11T21:44:29.0809862Z /var/lib/jenkins/workspace/test/test_serialization.py:86: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0810763Z b += [a[0].reshape(-1)[1:4].storage()] # 5 2023-01-11T21:44:29.0811540Z /var/lib/jenkins/workspace/test/test_serialization.py:88: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0812470Z t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0813334Z /var/lib/jenkins/workspace/test/test_serialization.py:89: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0814316Z t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0815150Z /var/lib/jenkins/workspace/test/test_serialization.py:90: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0815924Z b += [(t1.storage(), t1.storage(), t2.storage())] # 7 2023-01-11T21:44:29.0816832Z /var/lib/jenkins/workspace/test/test_serialization.py:91: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0818011Z b += [a[0].reshape(-1)[0:2].storage()] # 8 2023-01-11T21:44:29.0819173Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0820037Z device=typed_storage.device, 2023-01-11T21:44:29.0821010Z /var/lib/jenkins/workspace/test/test_serialization.py:104: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0821895Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0822754Z /var/lib/jenkins/workspace/test/test_serialization.py:110: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0823626Z self.assertEqual(c[4][i + 1], c[5][i]) 2023-01-11T21:44:29.0824441Z /var/lib/jenkins/workspace/test/test_serialization.py:120: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0825237Z self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) 2023-01-11T21:44:29.0825567Z ok (0.003s) 2023-01-11T21:44:29.0825970Z test_serialization_filelike_api_requirements (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0826997Z test_serialization_filelike_exceptions (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:616: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0827867Z s = torch.CharStorage(s_data) 2023-01-11T21:44:29.0828167Z ok (0.001s) 2023-01-11T21:44:29.0828522Z test_serialization_filelike_missing_attrs (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0828971Z test_serialization_filelike_stress (__main__.TestOldSerialization) ... ok (0.338s) 2023-01-11T21:44:29.0829464Z test_serialization_filelike_uses_readinto (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0829972Z test_serialization_gzip (__main__.TestOldSerialization) ... ok (0.004s) 2023-01-11T21:44:29.0830437Z test_serialization_map_location (__main__.TestOldSerialization) ... ok (0.016s) 2023-01-11T21:44:29.0830895Z test_serialization_offset (__main__.TestOldSerialization) ... ok (7.430s) 2023-01-11T21:44:29.0831410Z test_serialization_offset_filelike_weights_only_False (__main__.TestOldSerialization) ... ok (6.931s) 2023-01-11T21:44:29.0832940Z test_serialization_offset_filelike_weights_only_True (__main__.TestOldSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0833866Z return self.fget.__get__(instance, owner)() 2023-01-11T21:44:29.0834270Z ok (6.921s) 2023-01-11T21:44:29.0834639Z test_serialization_offset_gzip (__main__.TestOldSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0835101Z test_serialization_safe (__main__.TestOldSerialization) ... ok (0.008s) 2023-01-11T21:44:29.0835541Z test_serialization_save_warnings (__main__.TestOldSerialization) ... ok (0.003s) 2023-01-11T21:44:29.0836517Z test_serialization_sparse (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:85: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0837482Z b += [a[0].storage()] # 4 2023-01-11T21:44:29.0838269Z /var/lib/jenkins/workspace/test/test_serialization.py:86: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0839128Z b += [a[0].reshape(-1)[1:4].storage()] # 5 2023-01-11T21:44:29.0839888Z /var/lib/jenkins/workspace/test/test_serialization.py:88: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0840853Z t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0841739Z /var/lib/jenkins/workspace/test/test_serialization.py:89: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0842704Z t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0843582Z /var/lib/jenkins/workspace/test/test_serialization.py:90: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0844362Z b += [(t1.storage(), t1.storage(), t2.storage())] # 7 2023-01-11T21:44:29.0845160Z /var/lib/jenkins/workspace/test/test_serialization.py:91: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0846029Z b += [a[0].reshape(-1)[0:2].storage()] # 8 2023-01-11T21:44:29.0847201Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0848014Z device=typed_storage.device, 2023-01-11T21:44:29.0848843Z /var/lib/jenkins/workspace/test/test_serialization.py:104: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0849839Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0850860Z /var/lib/jenkins/workspace/test/test_serialization.py:110: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0851667Z self.assertEqual(c[4][i + 1], c[5][i]) 2023-01-11T21:44:29.0852481Z /var/lib/jenkins/workspace/test/test_serialization.py:120: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0853365Z self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) 2023-01-11T21:44:29.0853704Z ok (0.006s) 2023-01-11T21:44:29.0854654Z test_serialization_sparse_bsc_invalid (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:391: UserWarning: Sparse BSC tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T21:44:29.0855651Z lambda x: x.to_sparse_bsc(1, 1), torch.Tensor.ccol_indices, torch.Tensor.row_indices) 2023-01-11T21:44:29.0856158Z /opt/conda/lib/python3.10/unittest/case.py:172: FutureWarning: Possible nested set at position 14 2023-01-11T21:44:29.0856609Z expected_regex = re.compile(expected_regex) 2023-01-11T21:44:29.0856919Z ok (0.008s) 2023-01-11T21:44:29.0857321Z test_serialization_sparse_bsr_invalid (__main__.TestOldSerialization) ... ok (0.007s) 2023-01-11T21:44:29.0857813Z test_serialization_sparse_csc_invalid (__main__.TestOldSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0858314Z test_serialization_sparse_csr_invalid (__main__.TestOldSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0858808Z test_serialization_sparse_invalid (__main__.TestOldSerialization) ... ok (0.004s) 2023-01-11T21:44:29.0860201Z test_serialization_sparse_safe (__main__.TestOldSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0861092Z return self.fget.__get__(instance, owner)() 2023-01-11T21:44:29.0861460Z ok (0.008s) 2023-01-11T21:44:29.0862341Z test_serialization_storage_slice (__main__.TestOldSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:651: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0863325Z self.assertEqual(s1[0], 0) 2023-01-11T21:44:29.0864074Z /var/lib/jenkins/workspace/test/test_serialization.py:652: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0864825Z self.assertEqual(s2[0], 0) 2023-01-11T21:44:29.0865620Z /var/lib/jenkins/workspace/test/test_serialization.py:653: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0866527Z self.assertEqual(s1.data_ptr() + 4, s2.data_ptr()) 2023-01-11T21:44:29.0866843Z ok (0.001s) 2023-01-11T21:44:29.0867195Z test_serialization_zipfile_utils (__main__.TestOldSerialization) ... ok (0.004s) 2023-01-11T21:44:29.0867656Z test_serialize_device (__main__.TestOldSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0868085Z test_load_error_msg (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0868492Z test_load_nonexistent_device (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0868938Z test_load_python2_unicode_module (__main__.TestSerialization) ... ok (0.008s) 2023-01-11T21:44:29.0869381Z test_load_unicode_error_msg (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0869932Z test_meta_serialization_weights_only_False (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0870445Z test_meta_serialization_weights_only_True (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0870942Z test_pathlike_serialization_weights_only_False (__main__.TestSerialization) ... ok (0.008s) 2023-01-11T21:44:29.0872413Z test_pathlike_serialization_weights_only_True (__main__.TestSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0873299Z return self.fget.__get__(instance, owner)() 2023-01-11T21:44:29.0873592Z ok (0.007s) 2023-01-11T21:44:29.0874447Z test_save_different_dtype_error (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:719: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0875293Z torch.save([a.storage(), a.imag], f) 2023-01-11T21:44:29.0876092Z /var/lib/jenkins/workspace/test/test_serialization.py:722: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0876838Z torch.save([a, a.imag.storage()], f) 2023-01-11T21:44:29.0877621Z /var/lib/jenkins/workspace/test/test_serialization.py:725: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0878393Z torch.save([a.storage(), a.imag.storage()], f) 2023-01-11T21:44:29.0879198Z /var/lib/jenkins/workspace/test/test_serialization.py:729: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0879961Z wrap_storage=a.storage().untyped(), 2023-01-11T21:44:29.0880681Z /var/lib/jenkins/workspace/test/test_serialization.py:728: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0881463Z s_bytes = torch.TypedStorage( 2023-01-11T21:44:29.0882251Z /var/lib/jenkins/workspace/test/test_serialization.py:736: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0883129Z torch.save([a.storage(), s_bytes], f) 2023-01-11T21:44:29.0883415Z ok (0.002s) 2023-01-11T21:44:29.0884268Z test_save_different_dtype_unallocated (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:697: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0885190Z wrap_storage=a.storage().untyped(), 2023-01-11T21:44:29.0886003Z /var/lib/jenkins/workspace/test/test_serialization.py:696: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0886761Z s = torch.TypedStorage( 2023-01-11T21:44:29.0887927Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0888683Z device=typed_storage.device, 2023-01-11T21:44:29.0889651Z /var/lib/jenkins/workspace/test/test_serialization.py:700: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0890409Z save_load_check(a.storage(), s) 2023-01-11T21:44:29.0890673Z ok (0.216s) 2023-01-11T21:44:29.0891483Z test_serialization (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:85: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0892258Z b += [a[0].storage()] # 4 2023-01-11T21:44:29.0893048Z /var/lib/jenkins/workspace/test/test_serialization.py:86: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0893923Z b += [a[0].reshape(-1)[1:4].storage()] # 5 2023-01-11T21:44:29.0894735Z /var/lib/jenkins/workspace/test/test_serialization.py:88: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0895651Z t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0896518Z /var/lib/jenkins/workspace/test/test_serialization.py:89: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0897579Z t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0898428Z /var/lib/jenkins/workspace/test/test_serialization.py:90: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0899197Z b += [(t1.storage(), t1.storage(), t2.storage())] # 7 2023-01-11T21:44:29.0900086Z /var/lib/jenkins/workspace/test/test_serialization.py:91: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0900980Z b += [a[0].reshape(-1)[0:2].storage()] # 8 2023-01-11T21:44:29.0901756Z /var/lib/jenkins/workspace/test/test_serialization.py:104: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0902589Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0903513Z /var/lib/jenkins/workspace/test/test_serialization.py:110: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0904303Z self.assertEqual(c[4][i + 1], c[5][i]) 2023-01-11T21:44:29.0905165Z /var/lib/jenkins/workspace/test/test_serialization.py:120: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0905960Z self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) 2023-01-11T21:44:29.0906285Z ok (0.008s) 2023-01-11T21:44:29.0906623Z test_serialization_2gb_file (__main__.TestSerialization) ... ok (7.625s) 2023-01-11T21:44:29.0907630Z test_serialization_backwards_compat (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:403: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0908480Z b += [a[0].storage()] 2023-01-11T21:44:29.0909259Z /var/lib/jenkins/workspace/test/test_serialization.py:404: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0910181Z b += [a[0].reshape(-1)[1:4].clone().storage()] 2023-01-11T21:44:29.0911030Z /var/lib/jenkins/workspace/test/test_serialization.py:416: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0911907Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0912835Z /var/lib/jenkins/workspace/test/test_serialization.py:426: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0913752Z return (self.new_tensor.storage(), 2023-01-11T21:44:29.0914585Z /var/lib/jenkins/workspace/test/test_serialization.py:446: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0915370Z self.assertEqual(x.storage(), load_x.storage()) 2023-01-11T21:44:29.0915692Z ok (0.008s) 2023-01-11T21:44:29.0916172Z test_serialization_backwards_compat_safe (__main__.TestSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0916736Z test_serialization_dill (__main__.TestSerialization) ... skip: "dill" not found or not correct version (0.001s) 2023-01-11T21:44:29.0917344Z test_serialization_dill_version_not_supported (__main__.TestSerialization) ... skip: "dill" not found or is correct version (0.000s) 2023-01-11T21:44:29.0917899Z test_serialization_efficient_zerotensor_weights_only_False (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0918457Z test_serialization_efficient_zerotensor_weights_only_True (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0918996Z test_serialization_fake_zip (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0919452Z test_serialization_filelike (__main__.TestSerialization) ... ok (0.003s) 2023-01-11T21:44:29.0919921Z test_serialization_filelike_api_requirements (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0920854Z test_serialization_filelike_exceptions (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:616: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0921716Z s = torch.CharStorage(s_data) 2023-01-11T21:44:29.0921981Z ok (0.003s) 2023-01-11T21:44:29.0922341Z test_serialization_filelike_missing_attrs (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0922818Z test_serialization_filelike_stress (__main__.TestSerialization) ... ok (0.465s) 2023-01-11T21:44:29.0923279Z test_serialization_filelike_uses_readinto (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0923739Z test_serialization_gzip (__main__.TestSerialization) ... ok (0.005s) 2023-01-11T21:44:29.0924179Z test_serialization_map_location (__main__.TestSerialization) ... ok (0.004s) 2023-01-11T21:44:29.0924664Z test_serialization_math_bits_weights_only_False (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0925151Z test_serialization_math_bits_weights_only_True (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0925626Z test_serialization_offset_gzip (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0926074Z test_serialization_python_attr (__main__.TestSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0926497Z test_serialization_safe (__main__.TestSerialization) ... ok (0.008s) 2023-01-11T21:44:29.0926934Z test_serialization_save_warnings (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0927896Z test_serialization_sparse (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:85: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0928716Z b += [a[0].storage()] # 4 2023-01-11T21:44:29.0929755Z /var/lib/jenkins/workspace/test/test_serialization.py:86: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0930610Z b += [a[0].reshape(-1)[1:4].storage()] # 5 2023-01-11T21:44:29.0931398Z /var/lib/jenkins/workspace/test/test_serialization.py:88: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0932485Z t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0933360Z /var/lib/jenkins/workspace/test/test_serialization.py:89: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0934321Z t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,)) 2023-01-11T21:44:29.0935176Z /var/lib/jenkins/workspace/test/test_serialization.py:90: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0935981Z b += [(t1.storage(), t1.storage(), t2.storage())] # 7 2023-01-11T21:44:29.0936795Z /var/lib/jenkins/workspace/test/test_serialization.py:91: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0937682Z b += [a[0].reshape(-1)[0:2].storage()] # 8 2023-01-11T21:44:29.0938841Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0939597Z device=typed_storage.device, 2023-01-11T21:44:29.0940393Z /var/lib/jenkins/workspace/test/test_serialization.py:104: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0941250Z self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0) 2023-01-11T21:44:29.0942109Z /var/lib/jenkins/workspace/test/test_serialization.py:110: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0942876Z self.assertEqual(c[4][i + 1], c[5][i]) 2023-01-11T21:44:29.0943793Z /var/lib/jenkins/workspace/test/test_serialization.py:120: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0944651Z self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) 2023-01-11T21:44:29.0945110Z ok (0.007s) 2023-01-11T21:44:29.0945489Z test_serialization_sparse_bsc_invalid (__main__.TestSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0945965Z test_serialization_sparse_bsr_invalid (__main__.TestSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0946451Z test_serialization_sparse_csc_invalid (__main__.TestSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0946928Z test_serialization_sparse_csr_invalid (__main__.TestSerialization) ... ok (0.006s) 2023-01-11T21:44:29.0947388Z test_serialization_sparse_invalid (__main__.TestSerialization) ... ok (0.004s) 2023-01-11T21:44:29.0948899Z test_serialization_sparse_safe (__main__.TestSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0949712Z return self.fget.__get__(instance, owner)() 2023-01-11T21:44:29.0949981Z ok (0.008s) 2023-01-11T21:44:29.0950862Z test_serialization_storage_slice (__main__.TestSerialization) ... /var/lib/jenkins/workspace/test/test_serialization.py:651: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0951672Z self.assertEqual(s1[0], 0) 2023-01-11T21:44:29.0952512Z /var/lib/jenkins/workspace/test/test_serialization.py:652: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0953273Z self.assertEqual(s2[0], 0) 2023-01-11T21:44:29.0954079Z /var/lib/jenkins/workspace/test/test_serialization.py:653: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:44:29.0954872Z self.assertEqual(s1.data_ptr() + 4, s2.data_ptr()) 2023-01-11T21:44:29.0955173Z ok (0.001s) 2023-01-11T21:44:29.0956255Z test_serialization_zipfile_actually_jit (__main__.TestSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/serialization.py:801: UserWarning: 'torch.load' received a zip file that looks like a TorchScript archive dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to silence this warning) 2023-01-11T21:44:29.0957184Z warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive" 2023-01-11T21:44:29.0957579Z ok (0.013s) 2023-01-11T21:44:29.0957914Z test_serialization_zipfile_utils (__main__.TestSerialization) ... ok (0.004s) 2023-01-11T21:44:29.0958400Z test_serialization_zipfile_weights_only_False (__main__.TestSerialization) ... ok (0.007s) 2023-01-11T21:44:29.0958906Z test_serialization_zipfile_weights_only_True (__main__.TestSerialization) ... ok (0.010s) 2023-01-11T21:44:29.0959340Z test_serialize_device (__main__.TestSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0959766Z test_weights_only_assert (__main__.TestSerialization) ... Hello World! 2023-01-11T21:44:29.0960104Z ok (0.001s) 2023-01-11T21:44:29.0960474Z test_cloned_deepcopy_requires_grad_False (__main__.TestSubclassSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0961013Z test_cloned_deepcopy_requires_grad_True (__main__.TestSubclassSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0961507Z test_empty_class_serialization (__main__.TestSubclassSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0962083Z test_tensor_subclass_deepcopy (__main__.TestSubclassSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0962595Z test_tensor_subclass_getstate_overwrite (__main__.TestSubclassSerialization) ... ok (0.002s) 2023-01-11T21:44:29.0963130Z test_tensor_subclass_wrapper_serialization (__main__.TestSubclassSerialization) ... ok (0.001s) 2023-01-11T21:44:29.0963429Z 2023-01-11T21:44:29.0963761Z ---------------------------------------------------------------------- 2023-01-11T21:44:29.0964117Z Ran 91 tests in 30.520s 2023-01-11T21:44:29.0964269Z 2023-01-11T21:44:29.0964371Z OK (skipped=4) 2023-01-11T21:44:29.0964527Z 2023-01-11T21:44:29.0964647Z Generating XML reports... 2023-01-11T21:44:29.0965299Z Generated XML report: test-reports/python-unittest/test_serialization/TEST-TestOldSerialization-20230111214358.xml 2023-01-11T21:44:29.0966149Z Generated XML report: test-reports/python-unittest/test_serialization/TEST-TestSerialization-20230111214358.xml 2023-01-11T21:44:29.0966990Z Generated XML report: test-reports/python-unittest/test_serialization/TEST-TestSubclassSerialization-20230111214358.xml 2023-01-11T21:44:29.0967370Z 2023-01-11T21:44:29.0967843Z ##[endgroup] 2023-01-11T21:44:29.0968407Z FINISHED PRINTING LOG FILE of test_serialization (/var/lib/jenkins/workspace/test/test-reports/test_serialization_a68we09r) 2023-01-11T21:44:29.0968735Z 2023-01-11T21:44:30.9573997Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:44:31.0298549Z Ignoring disabled issues: [] 2023-01-11T21:44:31.2345929Z Running test_set_default_mobile_cpu_allocator ... [2023-01-11 21:44:31.234180] 2023-01-11T21:44:31.2347101Z Executing ['/opt/conda/bin/python', '-bb', 'test_set_default_mobile_cpu_allocator.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:44:31.234462] 2023-01-11T21:44:33.1579143Z 2023-01-11T21:44:33.1579749Z Expand the folded group to see the log file of test_set_default_mobile_cpu_allocator 2023-01-11T21:44:33.1580926Z ##[group]PRINTING LOG FILE of test_set_default_mobile_cpu_allocator (/var/lib/jenkins/workspace/test/test-reports/test_set_default_mobile_cpu_allocator_2wfbbpqw) 2023-01-11T21:44:33.1581222Z 2023-01-11T21:44:33.1581297Z Running tests... 2023-01-11T21:44:33.1581697Z ---------------------------------------------------------------------- 2023-01-11T21:44:33.1582117Z Test results will be stored in test-reports/python-unittest/test_set_default_mobile_cpu_allocator 2023-01-11T21:44:33.1582477Z test_exception (__main__.TestSetDefaultMobileCPUAllocator) ... ok (0.232s) 2023-01-11T21:44:33.1582820Z test_no_exception (__main__.TestSetDefaultMobileCPUAllocator) ... ok (0.001s) 2023-01-11T21:44:33.1583067Z 2023-01-11T21:44:33.1583251Z ---------------------------------------------------------------------- 2023-01-11T21:44:33.1583494Z Ran 2 tests in 0.233s 2023-01-11T21:44:33.1583612Z 2023-01-11T21:44:33.1583677Z OK 2023-01-11T21:44:33.1583769Z 2023-01-11T21:44:33.1583840Z Generating XML reports... 2023-01-11T21:44:33.1584354Z Generated XML report: test-reports/python-unittest/test_set_default_mobile_cpu_allocator/TEST-TestSetDefaultMobileCPUAllocator-20230111214432.xml 2023-01-11T21:44:33.1584654Z 2023-01-11T21:44:33.1584873Z ##[endgroup] 2023-01-11T21:44:33.1585320Z FINISHED PRINTING LOG FILE of test_set_default_mobile_cpu_allocator (/var/lib/jenkins/workspace/test/test-reports/test_set_default_mobile_cpu_allocator_2wfbbpqw) 2023-01-11T21:44:33.1585564Z 2023-01-11T21:44:34.9877150Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:44:35.0524684Z Ignoring disabled issues: [] 2023-01-11T21:44:35.0691371Z Running test_shape_ops ... [2023-01-11 21:44:35.068853] 2023-01-11T21:44:35.0693290Z Executing ['/opt/conda/bin/python', '-bb', 'test_shape_ops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:44:35.069118] 2023-01-11T21:44:36.9180970Z 2023-01-11T21:44:36.9181520Z Expand the folded group to see the log file of test_shape_ops 2023-01-11T21:44:36.9182576Z ##[group]PRINTING LOG FILE of test_shape_ops (/var/lib/jenkins/workspace/test/test-reports/test_shape_ops_5rtyveps) 2023-01-11T21:44:36.9183338Z 2023-01-11T21:44:36.9183471Z Running tests... 2023-01-11T21:44:36.9183979Z ---------------------------------------------------------------------- 2023-01-11T21:44:36.9184152Z 2023-01-11T21:44:36.9184399Z ---------------------------------------------------------------------- 2023-01-11T21:44:36.9184830Z Ran 0 tests in 0.000s 2023-01-11T21:44:36.9185041Z 2023-01-11T21:44:36.9185146Z OK 2023-01-11T21:44:36.9185232Z 2023-01-11T21:44:36.9185317Z Generating XML reports... 2023-01-11T21:44:36.9185649Z Test results will be stored in test-reports/python-unittest/test_shape_ops 2023-01-11T21:44:36.9185827Z 2023-01-11T21:44:36.9186048Z ##[endgroup] 2023-01-11T21:44:36.9186502Z FINISHED PRINTING LOG FILE of test_shape_ops (/var/lib/jenkins/workspace/test/test-reports/test_shape_ops_5rtyveps) 2023-01-11T21:44:36.9186717Z 2023-01-11T21:44:38.7518554Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:44:38.8162545Z Ignoring disabled issues: [] 2023-01-11T21:44:38.8329743Z Running test_subclass ... [2023-01-11 21:44:38.832686] 2023-01-11T21:44:38.8331786Z Executing ['/opt/conda/bin/python', '-bb', 'test_subclass.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:44:38.832934] 2023-01-11T21:44:40.8166468Z 2023-01-11T21:44:40.8166993Z Expand the folded group to see the log file of test_subclass 2023-01-11T21:44:40.8168072Z ##[group]PRINTING LOG FILE of test_subclass (/var/lib/jenkins/workspace/test/test-reports/test_subclass_ip78gh3i) 2023-01-11T21:44:40.8168428Z 2023-01-11T21:44:40.8168541Z Running tests... 2023-01-11T21:44:40.8169342Z ---------------------------------------------------------------------- 2023-01-11T21:44:40.8170052Z Test results will be stored in test-reports/python-unittest/test_subclass 2023-01-11T21:44:40.8170810Z test_deepcopy_base_tensor_as_param_False (__main__.TestSubclass) ... ok (0.222s) 2023-01-11T21:44:40.8171544Z test_deepcopy_base_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8172382Z test_deepcopy_diag_tensor_below_as_param_False (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8173148Z test_deepcopy_diag_tensor_below_as_param_True (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8173923Z test_deepcopy_logging_tensor_as_param_False (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8174671Z test_deepcopy_logging_tensor_as_param_True (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8175442Z test_deepcopy_non_wrapper_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8176241Z test_deepcopy_non_wrapper_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8177027Z test_deepcopy_sparse_tensor_as_param_False (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8177782Z test_deepcopy_sparse_tensor_as_param_True (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8178551Z test_lazy_module_base_tensor (__main__.TestSubclass) ... expected failure (0.001s) 2023-01-11T21:44:40.8180278Z test_lazy_module_diag_tensor_below (__main__.TestSubclass) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:44:40.8181634Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:44:40.8182235Z expected failure (0.002s) 2023-01-11T21:44:40.8182827Z test_lazy_module_logging_tensor (__main__.TestSubclass) ... expected failure (0.001s) 2023-01-11T21:44:40.8183721Z test_lazy_module_non_wrapper_tensor (__main__.TestSubclass) ... expected failure (0.001s) 2023-01-11T21:44:40.8184512Z test_lazy_module_sparse_tensor (__main__.TestSubclass) ... expected failure (0.002s) 2023-01-11T21:44:40.8185257Z test_module_optimization_base_tensor (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8186259Z test_module_optimization_diag_tensor_below (__main__.TestSubclass) ... ok (0.006s) 2023-01-11T21:44:40.8187029Z test_module_optimization_logging_tensor (__main__.TestSubclass) ... ok (0.004s) 2023-01-11T21:44:40.8187764Z test_module_optimization_non_wrapper_tensor (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8188512Z test_module_optimization_sparse_tensor (__main__.TestSubclass) ... ok (0.007s) 2023-01-11T21:44:40.8189354Z test_non_rewrapping_torch_dispatch_subclass_as_parameter_throws_for_detach (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8190256Z test_param_invariants_base_tensor_tensor_requires_grad_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8191092Z test_param_invariants_base_tensor_tensor_requires_grad_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8192106Z test_param_invariants_diag_tensor_below_tensor_requires_grad_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8192996Z test_param_invariants_diag_tensor_below_tensor_requires_grad_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8193889Z test_param_invariants_logging_tensor_tensor_requires_grad_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8194737Z test_param_invariants_logging_tensor_tensor_requires_grad_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8195572Z test_param_invariants_non_wrapper_tensor_tensor_requires_grad_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8196494Z test_param_invariants_non_wrapper_tensor_tensor_requires_grad_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8197378Z test_param_invariants_sparse_tensor_tensor_requires_grad_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8198222Z test_param_invariants_sparse_tensor_tensor_requires_grad_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8199105Z test_parametrization_base_tensor_leave_parametrized_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8199978Z test_parametrization_base_tensor_leave_parametrized_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8200853Z test_parametrization_diag_tensor_below_leave_parametrized_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8201729Z test_parametrization_diag_tensor_below_leave_parametrized_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8202629Z test_parametrization_logging_tensor_leave_parametrized_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8203539Z test_parametrization_logging_tensor_leave_parametrized_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8204440Z test_parametrization_non_wrapper_tensor_leave_parametrized_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8205346Z test_parametrization_non_wrapper_tensor_leave_parametrized_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8206196Z test_parametrization_sparse_tensor_leave_parametrized_False (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8207066Z test_parametrization_sparse_tensor_leave_parametrized_True (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8207862Z test_repr_base_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8208576Z test_repr_base_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8209507Z test_repr_diag_tensor_below_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8210251Z test_repr_diag_tensor_below_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8210990Z test_repr_logging_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8211708Z test_repr_logging_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8212441Z test_repr_non_wrapper_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8213210Z test_repr_non_wrapper_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8214069Z test_repr_sparse_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8214786Z test_repr_sparse_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8215534Z test_serialization_base_tensor_as_param_False (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8216321Z test_serialization_base_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8217119Z test_serialization_diag_tensor_below_as_param_False (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8217938Z test_serialization_diag_tensor_below_as_param_True (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8218737Z test_serialization_logging_tensor_as_param_False (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8219639Z test_serialization_logging_tensor_as_param_True (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8220452Z test_serialization_non_wrapper_tensor_as_param_False (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8221260Z test_serialization_non_wrapper_tensor_as_param_True (__main__.TestSubclass) ... ok (0.002s) 2023-01-11T21:44:40.8222032Z test_serialization_sparse_tensor_as_param_False (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8222831Z test_serialization_sparse_tensor_as_param_True (__main__.TestSubclass) ... ok (0.003s) 2023-01-11T21:44:40.8223720Z test_type_propagation_base_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8224497Z test_type_propagation_base_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8225297Z test_type_propagation_diag_tensor_below_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8226116Z test_type_propagation_diag_tensor_below_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8226938Z test_type_propagation_logging_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8227726Z test_type_propagation_logging_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8228559Z test_type_propagation_non_wrapper_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8229399Z test_type_propagation_non_wrapper_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8230205Z test_type_propagation_sparse_tensor_as_param_False (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8231011Z test_type_propagation_sparse_tensor_as_param_True (__main__.TestSubclass) ... ok (0.001s) 2023-01-11T21:44:40.8231463Z 2023-01-11T21:44:40.8231952Z ---------------------------------------------------------------------- 2023-01-11T21:44:40.8232509Z Ran 71 tests in 0.337s 2023-01-11T21:44:40.8232772Z 2023-01-11T21:44:40.8232950Z OK (expected failures=5) 2023-01-11T21:44:40.8233223Z 2023-01-11T21:44:40.8233577Z Generating XML reports... 2023-01-11T21:44:40.8234534Z Generated XML report: test-reports/python-unittest/test_subclass/TEST-TestSubclass-20230111214440.xml 2023-01-11T21:44:40.8235095Z 2023-01-11T21:44:40.8235654Z ##[endgroup] 2023-01-11T21:44:40.8236558Z FINISHED PRINTING LOG FILE of test_subclass (/var/lib/jenkins/workspace/test/test-reports/test_subclass_ip78gh3i) 2023-01-11T21:44:40.8237078Z 2023-01-11T21:44:42.6635648Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:44:42.7275649Z Ignoring disabled issues: [] 2023-01-11T21:44:42.7440270Z Running test_tensorboard ... [2023-01-11 21:44:42.743789] 2023-01-11T21:44:42.7442469Z Executing ['/opt/conda/bin/python', '-bb', 'test_tensorboard.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:44:42.744029] 2023-01-11T21:45:08.3922665Z 2023-01-11T21:45:08.3923221Z Expand the folded group to see the log file of test_tensorboard 2023-01-11T21:45:08.3924239Z ##[group]PRINTING LOG FILE of test_tensorboard (/var/lib/jenkins/workspace/test/test-reports/test_tensorboard_sdo47tmx) 2023-01-11T21:45:08.3924892Z 2023-01-11T21:45:08.3925732Z Running tests... 2023-01-11T21:45:08.3926322Z ---------------------------------------------------------------------- 2023-01-11T21:45:08.3926780Z Test results will be stored in test-reports/python-unittest/test_tensorboard 2023-01-11T21:45:08.3927249Z test_embedding (__main__.TestTensorBoardEmbedding) ... warning: Embedding dir exists, did you set global_step for add_embedding()? 2023-01-11T21:45:08.3927600Z ok (0.037s) 2023-01-11T21:45:08.3927922Z test_embedding_64 (__main__.TestTensorBoardEmbedding) ... warning: Embedding dir exists, did you set global_step for add_embedding()? 2023-01-11T21:45:08.3928259Z ok (0.017s) 2023-01-11T21:45:08.3928504Z test_figure (__main__.TestTensorBoardFigure) ... skip: no matplotlib (0.001s) 2023-01-11T21:45:08.3929124Z test_figure_list (__main__.TestTensorBoardFigure) ... skip: no matplotlib (0.001s) 2023-01-11T21:45:08.3929497Z test_caffe2_np (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.000s) 2023-01-11T21:45:08.3929869Z test_caffe2_np_expect_fail (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.000s) 2023-01-11T21:45:08.3930210Z test_caffe2_simple_cnnmodel (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.001s) 2023-01-11T21:45:08.3930600Z test_caffe2_simple_model (__main__.TestTensorBoardNumpy) ... skip: no caffe2 (0.001s) 2023-01-11T21:45:08.3930918Z test_pytorch_np_expect_fail (__main__.TestTensorBoardNumpy) ... ok (0.000s) 2023-01-11T21:45:08.3931281Z test_scalar (__main__.TestTensorBoardNumpy) ... ok (0.001s) 2023-01-11T21:45:08.3931576Z test_pytorch_autograd_np (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.000s) 2023-01-11T21:45:08.3931981Z test_pytorch_histogram (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.007s) 2023-01-11T21:45:08.3932325Z test_pytorch_histogram_raw (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.009s) 2023-01-11T21:45:08.3932716Z test_pytorch_np (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.001s) 2023-01-11T21:45:08.3933028Z test_pytorch_write (__main__.TestTensorBoardPyTorchNumpy) ... ok (0.005s) 2023-01-11T21:45:08.3933357Z test_mlp_graph (__main__.TestTensorBoardPytorchGraph) ... ok (0.078s) 2023-01-11T21:45:08.3933731Z test_nested_nn_squential (__main__.TestTensorBoardPytorchGraph) ... ok (0.072s) 2023-01-11T21:45:08.3934043Z test_pytorch_graph (__main__.TestTensorBoardPytorchGraph) ... ok (0.024s) 2023-01-11T21:45:08.3935216Z test_pytorch_graph_dict_input (__main__.TestTensorBoardPytorchGraph) ... Encountering a dict at the output of the tracer might cause the trace to be incorrect, this is only valid if the container structure does not change based on the module's inputs. Consider using a constant container instead (e.g. for `list`, use a `tuple` instead. for `dict`, use a `NamedTuple` instead). If you absolutely need this and know the side effects, pass strict=False to trace() to allow this behavior. 2023-01-11T21:45:08.3935999Z Error occurs, No graph saved 2023-01-11T21:45:08.3936186Z ok (0.034s) 2023-01-11T21:45:08.3936452Z test_torchvision_smoke (__main__.TestTensorBoardPytorchGraph) ... ok (22.881s) 2023-01-11T21:45:08.3936870Z test_wrong_input_size (__main__.TestTensorBoardPytorchGraph) ... mat1 and mat2 shapes cannot be multiplied (1x9 and 3x5) 2023-01-11T21:45:08.3937173Z Error occurs, No graph saved 2023-01-11T21:45:08.3937422Z ok (0.016s) 2023-01-11T21:45:08.3937681Z test_audio (__main__.TestTensorBoardSummary) ... warning: audio amplitude out of range, auto clipped. 2023-01-11T21:45:08.3937938Z ok (0.015s) 2023-01-11T21:45:08.3938239Z test_custom_scalars (__main__.TestTensorBoardSummary) ... ok (0.000s) 2023-01-11T21:45:08.3938539Z test_empty_input (__main__.TestTensorBoardSummary) ... ok (0.000s) 2023-01-11T21:45:08.3938854Z test_float32_image (__main__.TestTensorBoardSummary) 2023-01-11T21:45:08.3939170Z Tests that float32 image (pixel values in [0, 1]) are scaled correctly ... ok (0.001s) 2023-01-11T21:45:08.3939472Z test_histogram_auto (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3939914Z test_histogram_doane (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3940216Z test_histogram_fd (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3940573Z test_hparams_bool (__main__.TestTensorBoardSummary) ... ok (0.003s) 2023-01-11T21:45:08.3940880Z test_hparams_domain_discrete (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T21:45:08.3941238Z test_hparams_number (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T21:45:08.3941546Z test_hparams_smoke (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T21:45:08.3941840Z test_hparams_string (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3942273Z test_hparams_wrong_parameter (__main__.TestTensorBoardSummary) ... parameter: hparam_dict should be a dictionary, nothing logged. 2023-01-11T21:45:08.3942687Z parameter: metric_dict should be a dictionary, nothing logged. 2023-01-11T21:45:08.3942958Z ok (0.009s) 2023-01-11T21:45:08.3943275Z test_image_with_3_channel_batched (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3943660Z test_image_with_boxes (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3943968Z test_image_with_one_channel (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T21:45:08.3944353Z test_image_with_one_channel_batched (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3944665Z test_image_without_channel (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T21:45:08.3944964Z test_list_input (__main__.TestTensorBoardSummary) ... ok (0.000s) 2023-01-11T21:45:08.3945321Z test_mesh (__main__.TestTensorBoardSummary) ... ok (0.003s) 2023-01-11T21:45:08.3945594Z test_scalar_new_style (__main__.TestTensorBoardSummary) ... ok (0.001s) 2023-01-11T21:45:08.3945948Z test_text (__main__.TestTensorBoardSummary) ... ok (0.002s) 2023-01-11T21:45:08.3946220Z test_uint8_image (__main__.TestTensorBoardSummary) 2023-01-11T21:45:08.3946507Z Tests that uint8 image (pixel values in [0, 255]) is not changed ... ok (0.000s) 2023-01-11T21:45:08.3946852Z test_video (__main__.TestTensorBoardSummary) ... ok (0.000s) 2023-01-11T21:45:08.3947143Z test_pathlib (__main__.TestTensorBoardSummaryWriter) ... ok (0.002s) 2023-01-11T21:45:08.3947536Z test_summary_writer_close (__main__.TestTensorBoardSummaryWriter) ... ok (0.005s) 2023-01-11T21:45:08.3947863Z test_summary_writer_ctx (__main__.TestTensorBoardSummaryWriter) ... ok (0.004s) 2023-01-11T21:45:08.3948253Z test_convert_to_HWC_dtype_remains_same (__main__.TestTensorBoardUtils) ... ok (0.001s) 2023-01-11T21:45:08.3948569Z test_numpy_vid_uint8 (__main__.TestTensorBoardUtils) ... ok (0.015s) 2023-01-11T21:45:08.3948860Z test_prepare_video (__main__.TestTensorBoardUtils) ... ok (0.087s) 2023-01-11T21:45:08.3949200Z test_to_HWC (__main__.TestTensorBoardUtils) ... ok (0.001s) 2023-01-11T21:45:08.3949498Z test_writer (__main__.TestTensorBoardWriter) ... add_video needs package moviepy 2023-01-11T21:45:08.3949802Z ok (0.056s) 2023-01-11T21:45:08.3949897Z 2023-01-11T21:45:08.3950128Z ---------------------------------------------------------------------- 2023-01-11T21:45:08.3950367Z Ran 53 tests in 23.414s 2023-01-11T21:45:08.3950537Z 2023-01-11T21:45:08.3950621Z OK (skipped=6) 2023-01-11T21:45:08.3950730Z 2023-01-11T21:45:08.3950803Z Generating XML reports... 2023-01-11T21:45:08.3951302Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardEmbedding-20230111214444.xml 2023-01-11T21:45:08.3951876Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardNumpy-20230111214444.xml 2023-01-11T21:45:08.3952516Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPyTorchNumpy-20230111214444.xml 2023-01-11T21:45:08.3953159Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPytorchGraph-20230111214444.xml 2023-01-11T21:45:08.3953790Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummary-20230111214444.xml 2023-01-11T21:45:08.3954482Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummaryWriter-20230111214444.xml 2023-01-11T21:45:08.3955043Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardUtils-20230111214444.xml 2023-01-11T21:45:08.3955648Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardWriter-20230111214444.xml 2023-01-11T21:45:08.3956254Z Generated XML report: test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardFigure-20230111214444.xml 2023-01-11T21:45:08.3956496Z 2023-01-11T21:45:08.3956884Z ##[endgroup] 2023-01-11T21:45:08.3957313Z FINISHED PRINTING LOG FILE of test_tensorboard (/var/lib/jenkins/workspace/test/test-reports/test_tensorboard_sdo47tmx) 2023-01-11T21:45:08.3957606Z 2023-01-11T21:45:10.2157119Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:10.2794548Z Ignoring disabled issues: [] 2023-01-11T21:45:10.2960743Z Running test_tensorexpr_pybind ... [2023-01-11 21:45:10.295803] 2023-01-11T21:45:10.2962621Z Executing ['/opt/conda/bin/python', '-bb', 'test_tensorexpr_pybind.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:10.296048] 2023-01-11T21:45:12.6475948Z 2023-01-11T21:45:12.6476541Z Expand the folded group to see the log file of test_tensorexpr_pybind 2023-01-11T21:45:12.6477257Z ##[group]PRINTING LOG FILE of test_tensorexpr_pybind (/var/lib/jenkins/workspace/test/test-reports/test_tensorexpr_pybind_mox3utv2) 2023-01-11T21:45:12.6477498Z 2023-01-11T21:45:12.6477628Z Running tests... 2023-01-11T21:45:12.6478043Z ---------------------------------------------------------------------- 2023-01-11T21:45:12.6478494Z Test results will be stored in test-reports/python-unittest/test_tensorexpr_pybind 2023-01-11T21:45:12.6478815Z test_unary_ops (__main__.TestExprHandlePyBind) ... ok (0.227s) 2023-01-11T21:45:12.6479147Z test_alloc_in_loop (__main__.TestTensorExprPyBind) ... ok (0.025s) 2023-01-11T21:45:12.6479434Z test_call_raw (__main__.TestTensorExprPyBind) ... ok (0.001s) 2023-01-11T21:45:12.6479717Z test_dtype_error (__main__.TestTensorExprPyBind) ... ok (0.001s) 2023-01-11T21:45:12.6480051Z test_dynamic_shape (__main__.TestTensorExprPyBind) ... ok (0.002s) 2023-01-11T21:45:12.6480350Z test_dynamic_shape_2d (__main__.TestTensorExprPyBind) ... ok (0.002s) 2023-01-11T21:45:12.6480663Z test_external_calls (__main__.TestTensorExprPyBind) ... ok (0.001s) 2023-01-11T21:45:12.6480976Z test_kernel_shape_prop (__main__.TestTensorExprPyBind) ... ok (0.162s) 2023-01-11T21:45:12.6481283Z test_kernel_shape_prop_module (__main__.TestTensorExprPyBind) ... ok (0.040s) 2023-01-11T21:45:12.6481640Z test_kernel_with_custom_lowering (__main__.TestTensorExprPyBind) ... ok (0.026s) 2023-01-11T21:45:12.6481953Z test_kernel_with_expand (__main__.TestTensorExprPyBind) ... ok (0.026s) 2023-01-11T21:45:12.6482302Z test_kernel_with_permute (__main__.TestTensorExprPyBind) ... ok (0.060s) 2023-01-11T21:45:12.6482616Z test_kernel_with_scalar_inputs (__main__.TestTensorExprPyBind) ... ok (0.022s) 2023-01-11T21:45:12.6482926Z test_kernel_with_t (__main__.TestTensorExprPyBind) ... ok (0.028s) 2023-01-11T21:45:12.6483249Z test_kernel_with_tensor_inputs (__main__.TestTensorExprPyBind) ... ok (0.026s) 2023-01-11T21:45:12.6483557Z test_kernel_with_transpose (__main__.TestTensorExprPyBind) ... ok (0.028s) 2023-01-11T21:45:12.6483890Z test_simple_sum (__main__.TestTensorExprPyBind) ... ok (0.001s) 2023-01-11T21:45:12.6484049Z 2023-01-11T21:45:12.6484253Z ---------------------------------------------------------------------- 2023-01-11T21:45:12.6484542Z Ran 17 tests in 0.678s 2023-01-11T21:45:12.6484657Z 2023-01-11T21:45:12.6484718Z OK 2023-01-11T21:45:12.6484796Z 2023-01-11T21:45:12.6484883Z Generating XML reports... 2023-01-11T21:45:12.6485387Z Generated XML report: test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestExprHandlePyBind-20230111214511.xml 2023-01-11T21:45:12.6486198Z Generated XML report: test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestTensorExprPyBind-20230111214511.xml 2023-01-11T21:45:12.6486451Z 2023-01-11T21:45:12.6486690Z ##[endgroup] 2023-01-11T21:45:12.6487131Z FINISHED PRINTING LOG FILE of test_tensorexpr_pybind (/var/lib/jenkins/workspace/test/test-reports/test_tensorexpr_pybind_mox3utv2) 2023-01-11T21:45:12.6487365Z 2023-01-11T21:45:14.4219441Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:14.4860360Z Ignoring disabled issues: [] 2023-01-11T21:45:14.5027497Z Running test_type_hints ... [2023-01-11 21:45:14.502506] 2023-01-11T21:45:14.5029853Z Executing ['/opt/conda/bin/python', '-bb', 'test_type_hints.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:14.502739] 2023-01-11T21:45:16.1352400Z 2023-01-11T21:45:16.1352890Z Expand the folded group to see the log file of test_type_hints 2023-01-11T21:45:16.1353680Z ##[group]PRINTING LOG FILE of test_type_hints (/var/lib/jenkins/workspace/test/test-reports/test_type_hints_kktf7y8g) 2023-01-11T21:45:16.1354212Z 2023-01-11T21:45:16.1354528Z Running tests... 2023-01-11T21:45:16.1355391Z ---------------------------------------------------------------------- 2023-01-11T21:45:16.1356275Z Test results will be stored in test-reports/python-unittest/test_type_hints 2023-01-11T21:45:16.1356950Z test_doc_examples (__main__.TestTypeHints) 2023-01-11T21:45:16.1357735Z Run documentation examples through mypy. ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:45:16.1358279Z 2023-01-11T21:45:16.1371357Z ---------------------------------------------------------------------- 2023-01-11T21:45:16.1371834Z Ran 1 test in 0.001s 2023-01-11T21:45:16.1372074Z 2023-01-11T21:45:16.1372190Z OK (skipped=1) 2023-01-11T21:45:16.1372361Z 2023-01-11T21:45:16.1372451Z Generating XML reports... 2023-01-11T21:45:16.1373044Z Generated XML report: test-reports/python-unittest/test_type_hints/TEST-TestTypeHints-20230111214515.xml 2023-01-11T21:45:16.1373430Z 2023-01-11T21:45:16.1374031Z ##[endgroup] 2023-01-11T21:45:16.1374454Z FINISHED PRINTING LOG FILE of test_type_hints (/var/lib/jenkins/workspace/test/test-reports/test_type_hints_kktf7y8g) 2023-01-11T21:45:16.1374673Z 2023-01-11T21:45:17.9657285Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:18.0298108Z Ignoring disabled issues: [] 2023-01-11T21:45:18.0463406Z Running test_type_info ... [2023-01-11 21:45:18.046104] 2023-01-11T21:45:18.0465625Z Executing ['/opt/conda/bin/python', '-bb', 'test_type_info.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:18.046352] 2023-01-11T21:45:19.8896833Z 2023-01-11T21:45:19.8897338Z Expand the folded group to see the log file of test_type_info 2023-01-11T21:45:19.8898327Z ##[group]PRINTING LOG FILE of test_type_info (/var/lib/jenkins/workspace/test/test-reports/test_type_info_f162gzqz) 2023-01-11T21:45:19.8898772Z 2023-01-11T21:45:19.8898886Z Running tests... 2023-01-11T21:45:19.8899447Z ---------------------------------------------------------------------- 2023-01-11T21:45:19.8899993Z Test results will be stored in test-reports/python-unittest/test_type_info 2023-01-11T21:45:19.8900272Z test_finfo (__main__.TestDTypeInfo) ... ok (0.223s) 2023-01-11T21:45:19.8900519Z test_iinfo (__main__.TestDTypeInfo) ... ok (0.002s) 2023-01-11T21:45:19.8900812Z test_invalid_input (__main__.TestDTypeInfo) ... ok (0.001s) 2023-01-11T21:45:19.8901100Z 2023-01-11T21:45:19.8901427Z ---------------------------------------------------------------------- 2023-01-11T21:45:19.8901783Z Ran 3 tests in 0.225s 2023-01-11T21:45:19.8901916Z 2023-01-11T21:45:19.8901995Z OK 2023-01-11T21:45:19.8902093Z 2023-01-11T21:45:19.8902178Z Generating XML reports... 2023-01-11T21:45:19.8902592Z Generated XML report: test-reports/python-unittest/test_type_info/TEST-TestDTypeInfo-20230111214519.xml 2023-01-11T21:45:19.8902868Z 2023-01-11T21:45:19.8903381Z ##[endgroup] 2023-01-11T21:45:19.8903799Z FINISHED PRINTING LOG FILE of test_type_info (/var/lib/jenkins/workspace/test/test-reports/test_type_info_f162gzqz) 2023-01-11T21:45:19.8904009Z 2023-01-11T21:45:21.6926127Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:21.7566355Z Ignoring disabled issues: [] 2023-01-11T21:45:21.7735222Z Running test_type_promotion ... [2023-01-11 21:45:21.773304] 2023-01-11T21:45:21.7737657Z Executing ['/opt/conda/bin/python', '-bb', 'test_type_promotion.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:21.773534] 2023-01-11T21:45:23.5779915Z 2023-01-11T21:45:23.5780443Z Expand the folded group to see the log file of test_type_promotion 2023-01-11T21:45:23.5781771Z ##[group]PRINTING LOG FILE of test_type_promotion (/var/lib/jenkins/workspace/test/test-reports/test_type_promotion_60hwuhrv) 2023-01-11T21:45:23.5782187Z 2023-01-11T21:45:23.5782311Z Running tests... 2023-01-11T21:45:23.5782908Z ---------------------------------------------------------------------- 2023-01-11T21:45:23.5783272Z 2023-01-11T21:45:23.5783608Z ---------------------------------------------------------------------- 2023-01-11T21:45:23.5784001Z Ran 0 tests in 0.000s 2023-01-11T21:45:23.5784186Z 2023-01-11T21:45:23.5784281Z OK 2023-01-11T21:45:23.5784417Z 2023-01-11T21:45:23.5784559Z Generating XML reports... 2023-01-11T21:45:23.5785130Z Test results will be stored in test-reports/python-unittest/test_type_promotion 2023-01-11T21:45:23.5785444Z 2023-01-11T21:45:23.5785821Z ##[endgroup] 2023-01-11T21:45:23.5786494Z FINISHED PRINTING LOG FILE of test_type_promotion (/var/lib/jenkins/workspace/test/test-reports/test_type_promotion_60hwuhrv) 2023-01-11T21:45:23.5786879Z 2023-01-11T21:45:25.4286636Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:25.4925797Z Ignoring disabled issues: [] 2023-01-11T21:45:25.5092542Z Running test_unary_ufuncs ... [2023-01-11 21:45:25.508987] 2023-01-11T21:45:25.5094680Z Executing ['/opt/conda/bin/python', '-bb', 'test_unary_ufuncs.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:25.509221] 2023-01-11T21:45:27.9800250Z 2023-01-11T21:45:27.9803555Z Expand the folded group to see the log file of test_unary_ufuncs 2023-01-11T21:45:27.9804221Z ##[group]PRINTING LOG FILE of test_unary_ufuncs (/var/lib/jenkins/workspace/test/test-reports/test_unary_ufuncs_zxvoawu1) 2023-01-11T21:45:27.9804462Z 2023-01-11T21:45:27.9804537Z Running tests... 2023-01-11T21:45:27.9804916Z ---------------------------------------------------------------------- 2023-01-11T21:45:27.9805087Z 2023-01-11T21:45:27.9805284Z ---------------------------------------------------------------------- 2023-01-11T21:45:27.9805527Z Ran 0 tests in 0.000s 2023-01-11T21:45:27.9805642Z 2023-01-11T21:45:27.9805703Z OK 2023-01-11T21:45:27.9805782Z 2023-01-11T21:45:27.9805880Z Generating XML reports... 2023-01-11T21:45:27.9806213Z Test results will be stored in test-reports/python-unittest/test_unary_ufuncs 2023-01-11T21:45:27.9806408Z 2023-01-11T21:45:27.9806621Z ##[endgroup] 2023-01-11T21:45:27.9806998Z FINISHED PRINTING LOG FILE of test_unary_ufuncs (/var/lib/jenkins/workspace/test/test-reports/test_unary_ufuncs_zxvoawu1) 2023-01-11T21:45:27.9807215Z 2023-01-11T21:45:29.8324881Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:29.8970790Z Ignoring disabled issues: [] 2023-01-11T21:45:29.9140541Z Running test_view_ops ... [2023-01-11 21:45:29.913828] 2023-01-11T21:45:29.9143309Z Executing ['/opt/conda/bin/python', '-bb', 'test_view_ops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:29.914065] 2023-01-11T21:45:31.8467769Z 2023-01-11T21:45:31.8468486Z Expand the folded group to see the log file of test_view_ops 2023-01-11T21:45:31.8469758Z ##[group]PRINTING LOG FILE of test_view_ops (/var/lib/jenkins/workspace/test/test-reports/test_view_ops_17g8ds2_) 2023-01-11T21:45:31.8470179Z 2023-01-11T21:45:31.8470319Z Running tests... 2023-01-11T21:45:31.8471254Z ---------------------------------------------------------------------- 2023-01-11T21:45:31.8471518Z 2023-01-11T21:45:31.8471725Z ---------------------------------------------------------------------- 2023-01-11T21:45:31.8471967Z Ran 0 tests in 0.000s 2023-01-11T21:45:31.8472081Z 2023-01-11T21:45:31.8472129Z OK 2023-01-11T21:45:31.8472223Z 2023-01-11T21:45:31.8472308Z Generating XML reports... 2023-01-11T21:45:31.8472635Z Test results will be stored in test-reports/python-unittest/test_view_ops 2023-01-11T21:45:31.8472819Z 2023-01-11T21:45:31.8473040Z ##[endgroup] 2023-01-11T21:45:31.8473430Z FINISHED PRINTING LOG FILE of test_view_ops (/var/lib/jenkins/workspace/test/test-reports/test_view_ops_17g8ds2_) 2023-01-11T21:45:31.8473639Z 2023-01-11T21:45:33.6930012Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:33.7778960Z Ignoring disabled issues: [] 2023-01-11T21:45:33.8021284Z Running test_vulkan ... [2023-01-11 21:45:33.801740] 2023-01-11T21:45:33.8022575Z Executing ['/opt/conda/bin/python', '-bb', 'test_vulkan.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:33.801995] 2023-01-11T21:45:35.5121640Z 2023-01-11T21:45:35.5122159Z Expand the folded group to see the log file of test_vulkan 2023-01-11T21:45:35.5123197Z ##[group]PRINTING LOG FILE of test_vulkan (/var/lib/jenkins/workspace/test/test-reports/test_vulkan_i4ux6pic) 2023-01-11T21:45:35.5123586Z 2023-01-11T21:45:35.5123954Z Running tests... 2023-01-11T21:45:35.5124852Z ---------------------------------------------------------------------- 2023-01-11T21:45:35.5125751Z test_conv (__main__.TestVulkanRewritePass) ... Test results will be stored in test-reports/python-unittest/test_vulkan 2023-01-11T21:45:35.5126229Z skip: Vulkan backend must be available for these tests. (0.003s) 2023-01-11T21:45:35.5126438Z 2023-01-11T21:45:35.5126770Z ---------------------------------------------------------------------- 2023-01-11T21:45:35.5127184Z Ran 1 test in 0.003s 2023-01-11T21:45:35.5127389Z 2023-01-11T21:45:35.5127503Z OK (skipped=1) 2023-01-11T21:45:35.5127689Z 2023-01-11T21:45:35.5127835Z Generating XML reports... 2023-01-11T21:45:35.5128600Z Generated XML report: test-reports/python-unittest/test_vulkan/TEST-TestVulkanRewritePass-20230111214535.xml 2023-01-11T21:45:35.5129175Z 2023-01-11T21:45:35.5129482Z ##[endgroup] 2023-01-11T21:45:35.5129852Z FINISHED PRINTING LOG FILE of test_vulkan (/var/lib/jenkins/workspace/test/test-reports/test_vulkan_i4ux6pic) 2023-01-11T21:45:35.5130104Z 2023-01-11T21:45:37.4348036Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:37.5168118Z Ignoring disabled issues: [] 2023-01-11T21:45:37.5335624Z Running test_weak ... [2023-01-11 21:45:37.533368] 2023-01-11T21:45:37.5338807Z Executing ['/opt/conda/bin/python', '-bb', 'test_weak.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:37.533612] 2023-01-11T21:45:43.0566974Z 2023-01-11T21:45:43.0567483Z Expand the folded group to see the log file of test_weak 2023-01-11T21:45:43.0568415Z ##[group]PRINTING LOG FILE of test_weak (/var/lib/jenkins/workspace/test/test-reports/test_weak_2e50y3ph) 2023-01-11T21:45:43.0568615Z 2023-01-11T21:45:43.0568717Z Running tests... 2023-01-11T21:45:43.0569284Z ---------------------------------------------------------------------- 2023-01-11T21:45:43.0569662Z Test results will be stored in test-reports/python-unittest/test_weak 2023-01-11T21:45:43.0569965Z test_bool (__main__.WeakKeyDictionaryTestCase) ... ok (0.225s) 2023-01-11T21:45:43.0570254Z test_constructor (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0570552Z test_get (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0570841Z test_getitem (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0571126Z test_items (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0571409Z test_keys (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0571864Z test_len (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0572134Z test_pop (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0572423Z test_popitem (__main__.WeakKeyDictionaryTestCase) ... ok (0.000s) 2023-01-11T21:45:43.0572713Z test_read (__main__.WeakKeyDictionaryTestCase) ... ok (0.002s) 2023-01-11T21:45:43.0573006Z test_setdefault (__main__.WeakKeyDictionaryTestCase) ... ok (0.000s) 2023-01-11T21:45:43.0573291Z test_update (__main__.WeakKeyDictionaryTestCase) ... ok (0.004s) 2023-01-11T21:45:43.0573580Z test_values (__main__.WeakKeyDictionaryTestCase) ... ok (0.001s) 2023-01-11T21:45:43.0573870Z test_write (__main__.WeakKeyDictionaryTestCase) ... ok (0.006s) 2023-01-11T21:45:43.0574141Z test_make_weak_keyed_dict_from_dict (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0574491Z test_make_weak_keyed_dict_from_weak_keyed_dict (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0574785Z test_make_weak_keyed_dict_repr (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0575051Z test_threaded_weak_key_dict_copy (__main__.WeakTest) ... ok (1.412s) 2023-01-11T21:45:43.0575336Z test_threaded_weak_key_dict_deepcopy (__main__.WeakTest) ... ok (2.086s) 2023-01-11T21:45:43.0575616Z test_weak_keyed_bad_delitem (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0575875Z test_weak_keyed_delitem (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0576122Z test_weak_keyed_dict_popitem (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0576402Z test_weak_keyed_dict_setdefault (__main__.WeakTest) ... ok (0.000s) 2023-01-11T21:45:43.0576670Z test_weak_keyed_dict_update (__main__.WeakTest) ... ok (0.001s) 2023-01-11T21:45:43.0576926Z test_weak_keyed_union_operators (__main__.WeakTest) ... ok (0.002s) 2023-01-11T21:45:43.0577082Z 2023-01-11T21:45:43.0577286Z ---------------------------------------------------------------------- 2023-01-11T21:45:43.0577525Z Ran 25 tests in 3.750s 2023-01-11T21:45:43.0577638Z 2023-01-11T21:45:43.0577699Z OK 2023-01-11T21:45:43.0577778Z 2023-01-11T21:45:43.0577861Z Generating XML reports... 2023-01-11T21:45:43.0578302Z Generated XML report: test-reports/python-unittest/test_weak/TEST-WeakKeyDictionaryTestCase-20230111214538.xml 2023-01-11T21:45:43.0578798Z Generated XML report: test-reports/python-unittest/test_weak/TEST-WeakTest-20230111214538.xml 2023-01-11T21:45:43.0579003Z 2023-01-11T21:45:43.0579240Z ##[endgroup] 2023-01-11T21:45:43.0579601Z FINISHED PRINTING LOG FILE of test_weak (/var/lib/jenkins/workspace/test/test-reports/test_weak_2e50y3ph) 2023-01-11T21:45:43.0579801Z 2023-01-11T21:45:45.3062060Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:45.3900125Z Ignoring disabled issues: [] 2023-01-11T21:45:45.4069700Z Running test_xnnpack_integration ... [2023-01-11 21:45:45.406656] 2023-01-11T21:45:45.4071299Z Executing ['/opt/conda/bin/python', '-bb', 'test_xnnpack_integration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:45:45.406910] 2023-01-11T21:45:57.4192590Z 2023-01-11T21:45:57.4193286Z Expand the folded group to see the log file of test_xnnpack_integration 2023-01-11T21:45:57.4194632Z ##[group]PRINTING LOG FILE of test_xnnpack_integration (/var/lib/jenkins/workspace/test/test-reports/test_xnnpack_integration_nydseh_3) 2023-01-11T21:45:57.4195232Z 2023-01-11T21:45:57.4195356Z Running tests... 2023-01-11T21:45:57.4196057Z ---------------------------------------------------------------------- 2023-01-11T21:45:57.4196708Z Test results will be stored in test-reports/python-unittest/test_xnnpack_integration 2023-01-11T21:45:57.4197364Z test_conv1d_basic (__main__.TestXNNPACKConv1dTransformPass) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.003s) 2023-01-11T21:45:57.4198126Z test_conv1d_with_relu_fc (__main__.TestXNNPACKConv1dTransformPass) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.003s) 2023-01-11T21:45:57.4198675Z test_conv2d (__main__.TestXNNPACKOps) ... ok (1.367s) 2023-01-11T21:45:57.4199357Z test_conv2d_transpose (__main__.TestXNNPACKOps) ... ok (1.722s) 2023-01-11T21:45:57.4199943Z test_linear (__main__.TestXNNPACKOps) ... skip: Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488 (0.001s) 2023-01-11T21:45:57.4200496Z test_linear_1d_input (__main__.TestXNNPACKOps) ... ok (0.256s) 2023-01-11T21:45:57.4200972Z test_decomposed_linear (__main__.TestXNNPACKRewritePass) ... ok (0.149s) 2023-01-11T21:45:57.4201442Z test_linear (__main__.TestXNNPACKRewritePass) ... ok (0.995s) 2023-01-11T21:45:57.4202047Z test_combined_model (__main__.TestXNNPACKSerDes) ... skip: Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488 (0.004s) 2023-01-11T21:45:57.4202597Z test_conv2d (__main__.TestXNNPACKSerDes) ... ok (2.370s) 2023-01-11T21:45:57.4203176Z test_conv2d_transpose (__main__.TestXNNPACKSerDes) ... ok (2.691s) 2023-01-11T21:45:57.4203786Z test_linear (__main__.TestXNNPACKSerDes) ... skip: Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488 (0.001s) 2023-01-11T21:45:57.4204170Z 2023-01-11T21:45:57.4204533Z ---------------------------------------------------------------------- 2023-01-11T21:45:57.4204900Z Ran 12 tests in 9.563s 2023-01-11T21:45:57.4205077Z 2023-01-11T21:45:57.4205184Z OK (skipped=5) 2023-01-11T21:45:57.4205347Z 2023-01-11T21:45:57.4205478Z Generating XML reports... 2023-01-11T21:45:57.4206166Z Generated XML report: test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKOps-20230111214547.xml 2023-01-11T21:45:57.4207069Z Generated XML report: test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKRewritePass-20230111214547.xml 2023-01-11T21:45:57.4207980Z Generated XML report: test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKSerDes-20230111214547.xml 2023-01-11T21:45:57.4208923Z Generated XML report: test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKConv1dTransformPass-20230111214547.xml 2023-01-11T21:45:57.4209601Z 2023-01-11T21:45:57.4210033Z ##[endgroup] 2023-01-11T21:45:57.4210732Z FINISHED PRINTING LOG FILE of test_xnnpack_integration (/var/lib/jenkins/workspace/test/test-reports/test_xnnpack_integration_nydseh_3) 2023-01-11T21:45:57.4211108Z 2023-01-11T21:45:59.7113091Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:45:59.7986078Z Ignoring disabled issues: [] 2023-01-11T21:56:51.6099039Z 2023-01-11T21:56:51.6101183Z Expand the folded group to see the log file of test_quantization 2023-01-11T21:56:51.6102263Z ##[group]PRINTING LOG FILE of test_quantization (/var/lib/jenkins/workspace/test/test-reports/test_quantization_i5v0je0n) 2023-01-11T21:56:51.6106431Z /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py:180: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment. 2023-01-11T21:56:51.6108027Z warnings.warn('Lazy modules are a new feature under heavy development ' 2023-01-11T21:56:51.6108328Z 2023-01-11T21:56:51.6108439Z Running tests... 2023-01-11T21:56:51.6109046Z ---------------------------------------------------------------------- 2023-01-11T21:56:51.6109661Z Test results will be stored in test-reports/python-unittest/test_quantization 2023-01-11T21:56:51.6110317Z test_modules_import_nn_intrinsic (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.009s) 2023-01-11T21:56:51.6111153Z test_modules_import_nn_intrinsic_qat (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.001s) 2023-01-11T21:56:51.6111646Z test_modules_import_nn_intrinsic_quantized (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.001s) 2023-01-11T21:56:51.6112307Z test_modules_intrinsic_qat_conv_fused (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.001s) 2023-01-11T21:56:51.6112894Z test_modules_intrinsic_qat_linear_fused (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.000s) 2023-01-11T21:56:51.6113753Z test_modules_intrinsic_qat_linear_relu (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.000s) 2023-01-11T21:56:51.6114278Z test_modules_intrinsic_quantized_bn_relu (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.000s) 2023-01-11T21:56:51.6114900Z test_modules_intrinsic_quantized_conv_relu (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.000s) 2023-01-11T21:56:51.6115571Z test_modules_intrinsic_quantized_linear_relu (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.000s) 2023-01-11T21:56:51.6116161Z test_modules_nn_intrinsic_fused (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.001s) 2023-01-11T21:56:51.6116850Z test_package_import_nn_intrinsic (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) ... ok (0.000s) 2023-01-11T21:56:51.6117339Z test_package_import_nn_intrinsic_modules (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) 2023-01-11T21:56:51.6117732Z Tests the migration of the torch.nn.intrinsic.modules ... ok (0.001s) 2023-01-11T21:56:51.6118112Z test_package_import_nn_intrinsic_qat (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) 2023-01-11T21:56:51.6118469Z Tests the migration of the torch.nn.intrinsic.modules ... ok (0.001s) 2023-01-11T21:56:51.6118849Z test_package_import_nn_intrinsic_quantized (quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic) 2023-01-11T21:56:51.6119230Z Tests the migration of the torch.nn.intrinsic.quantized ... ok (0.001s) 2023-01-11T21:56:51.6119593Z test_functional_import (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) 2023-01-11T21:56:51.6119945Z Tests the migration of the torch.nn.quantized.functional ... ok (0.001s) 2023-01-11T21:56:51.6120322Z test_import_nn_qat_conv (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6120765Z test_import_nn_qat_dynamic_linear (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6121321Z test_import_nn_qat_embedding_ops (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6121763Z test_import_nn_qat_linear (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6122214Z test_import_nn_quantizable_activation (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6122665Z test_import_nn_quantizable_rnn (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6123108Z test_import_nn_quantized_dynamic_import (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6123554Z test_modules_activation (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6123986Z test_modules_batchnorm (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6124407Z test_modules_conv (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6124815Z test_modules_dropout (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6125250Z test_modules_embedding_ops (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6125695Z test_modules_functional_modules (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6126128Z test_modules_import (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6126532Z test_modules_linear (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6127007Z test_modules_normalization (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6127432Z test_modules_utils (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6127853Z test_package_import_nn_qat (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6128273Z test_package_import_nn_qat_dynamic (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) 2023-01-11T21:56:51.6128629Z Tests the migration of the torch.nn.qat.modules ... ok (0.001s) 2023-01-11T21:56:51.6128991Z test_package_import_nn_qat_modules (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) 2023-01-11T21:56:51.6129660Z Tests the migration of the torch.nn.qat.modules ... ok (0.001s) 2023-01-11T21:56:51.6130187Z test_package_import_nn_quantizable (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6130809Z test_package_import_nn_quantizable_modules (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) 2023-01-11T21:56:51.6131330Z Tests the migration of the torch.nn.quantizable.modules ... ok (0.001s) 2023-01-11T21:56:51.6131878Z test_package_import_nn_quantized (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.001s) 2023-01-11T21:56:51.6132643Z test_package_import_nn_quantized_dynamic (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) ... ok (0.000s) 2023-01-11T21:56:51.6133416Z test_package_import_nn_quantized_dynamic_modules (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) 2023-01-11T21:56:51.6134039Z Tests the migration of the torch.nn.quantized.modules ... ok (0.001s) 2023-01-11T21:56:51.6134629Z test_package_import_nn_quantized_modules (quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized) 2023-01-11T21:56:51.6135243Z Tests the migration of the torch.nn.quantized.modules ... ok (0.001s) 2023-01-11T21:56:51.6135876Z test_function_import_fake_quantize (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6136670Z test_function_import_fuse_modules (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6137496Z test_function_import_fuser_method_mappings (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6138116Z test_function_import_observer (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6138820Z test_function_import_qconfig (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6139515Z test_function_import_quant_type (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6140229Z test_function_import_quantization_mappings (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6140943Z test_function_import_quantize (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6141643Z test_function_import_quantize_jit (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6142375Z test_function_import_stubs (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6142954Z test_function_import_utils (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.001s) 2023-01-11T21:56:51.6143613Z test_package_import_fake_quantize (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6144323Z test_package_import_fuse_modules (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6145166Z test_package_import_fuser_method_mappings (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6145961Z test_package_import_observer (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6146462Z test_package_import_qconfig (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6147231Z test_package_import_quant_type (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6148082Z test_package_import_quantization_mappings (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6148769Z test_package_import_quantize (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6149388Z test_package_import_quantize_jit (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6149942Z test_package_import_stubs (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6150446Z test_package_import_utils (quantization.ao_migration.test_quantization.TestAOMigrationQuantization) ... ok (0.000s) 2023-01-11T21:56:51.6150949Z test_function_import_fx (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6151576Z test_function_import_fx_convert (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6152063Z test_function_import_fx_equalize (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6152568Z test_function_import_fx_fuse (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6153087Z test_function_import_fx_fusion_patterns (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6153603Z test_function_import_fx_graph_module (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6154102Z test_function_import_fx_match_utils (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6154621Z test_function_import_fx_pattern_utils (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6155133Z test_function_import_fx_prepare (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6155672Z test_function_import_fx_quantization_patterns (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6156154Z test_function_import_fx_utils (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6168232Z test_function_import_quantize_fx (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.001s) 2023-01-11T21:56:51.6168685Z test_package_import_fx (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6169347Z test_package_import_fx_convert (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6169807Z test_package_import_fx_equalize (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6170262Z test_package_import_fx_fuse (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6170700Z test_package_import_fx_fusion_patterns (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6171277Z test_package_import_fx_graph_module (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6171727Z test_package_import_fx_match_utils (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6172177Z test_package_import_fx_pattern_utils (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6172616Z test_package_import_fx_prepare (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6173130Z test_package_import_fx_quantization_patterns (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6173581Z test_package_import_fx_utils (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6174026Z test_package_import_quantize_fx (quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx) ... ok (0.000s) 2023-01-11T21:56:51.6174430Z test_backend_config_from_dict (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.004s) 2023-01-11T21:56:51.6174841Z test_backend_config_set_backend_pattern_config (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6175244Z test_backend_config_set_name (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6175631Z test_backend_config_to_dict (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.002s) 2023-01-11T21:56:51.6176019Z test_backend_op_config_add_dtype_config (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6176422Z test_backend_op_config_from_dict (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.002s) 2023-01-11T21:56:51.6176832Z test_backend_op_config_set_extra_inputs_getter (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6177243Z test_backend_op_config_set_fused_module (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6177632Z test_backend_op_config_set_fuser_method (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6178051Z test_backend_op_config_set_input_output_observed (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6178471Z test_backend_op_config_set_input_type_to_index (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6178909Z test_backend_op_config_set_num_tensor_args_to_observation_type (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6179330Z test_backend_op_config_set_observation_type (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6179740Z test_backend_op_config_set_qat_module (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6180160Z test_backend_op_config_set_reference_quantized_module (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6180578Z test_backend_op_config_set_root_module (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6180972Z test_backend_op_config_set_root_node_getter (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6181371Z test_backend_op_config_to_dict (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.002s) 2023-01-11T21:56:51.6181807Z test_dtype_config_from_dict (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6182259Z test_dtype_config_to_dict (quantization.core.test_backend_config.TestBackendConfig) ... ok (0.001s) 2023-01-11T21:56:51.6182727Z test_conv_chain (quantization.eager.test_bias_correction_eager.TestBiasCorrectionEager) ... ok (1.533s) 2023-01-11T21:56:51.6183203Z test_linear_chain (quantization.eager.test_bias_correction_eager.TestBiasCorrectionEager) ... ok (0.762s) 2023-01-11T21:56:51.6183607Z test_compare_tensor_scalar (quantization.core.test_quantized_op.TestComparatorOps) ... ok (0.598s) 2023-01-11T21:56:51.6184069Z test_compare_tensor_tensor (quantization.core.test_quantized_op.TestComparatorOps) ... ok (0.237s) 2023-01-11T21:56:51.6184480Z test_erase_class_tensor_shapes (quantization.jit.test_deprecated_jit_quant.TestDeprecatedJitQuantized) ... ok (0.017s) 2023-01-11T21:56:51.6184913Z test_quantization_modules (quantization.jit.test_deprecated_jit_quant.TestDeprecatedJitQuantized) ... ok (0.098s) 2023-01-11T21:56:51.6186658Z test_rnn_cell_quantized (quantization.jit.test_deprecated_jit_quant.TestDeprecatedJitQuantized) ... /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:510: UserWarning: quantize_rnn_cell_modules function has been deprecated. Please use torch.ao.quantization.quantize_dynamic API instead. 2023-01-11T21:56:51.6187235Z warnings.warn("quantize_rnn_cell_modules function has been deprecated. " 2023-01-11T21:56:51.6187895Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:100: UserWarning: torch.jit.QuantizedRNNCellBase is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic.RNNCell instead. 2023-01-11T21:56:51.6188333Z warnings.warn( 2023-01-11T21:56:51.6188935Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:213: UserWarning: torch.jit.QuantizedLSTMCell is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic.LSTMCell instead. 2023-01-11T21:56:51.6189360Z warnings.warn( 2023-01-11T21:56:51.6189934Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:236: UserWarning: torch.jit.QuantizedGRUCell is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic.GRUCell instead. 2023-01-11T21:56:51.6190356Z warnings.warn( 2023-01-11T21:56:51.6190945Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:178: UserWarning: torch.jit.QuantizedRNNCell is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic.RNNCell instead. 2023-01-11T21:56:51.6191357Z warnings.warn( 2023-01-11T21:56:51.6191511Z ok (0.114s) 2023-01-11T21:56:51.6192186Z test_rnn_quantized (quantization.jit.test_deprecated_jit_quant.TestDeprecatedJitQuantized) ... /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:556: UserWarning: quantize_rnn_modules function has been deprecated. Please use torch.ao.quantization.quantize_dynamic API instead. 2023-01-11T21:56:51.6192739Z warnings.warn("quantize_rnn_modules function has been deprecated. " 2023-01-11T21:56:51.6193366Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:264: UserWarning: torch.jit.QuantizedRNNBase is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic instead. 2023-01-11T21:56:51.6193758Z warnings.warn( 2023-01-11T21:56:51.6194336Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:369: UserWarning: torch.jit.QuantizedLSTM is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic.LSTM instead. 2023-01-11T21:56:51.6194738Z warnings.warn( 2023-01-11T21:56:51.6195306Z /opt/conda/lib/python3.10/site-packages/torch/jit/quantized.py:449: UserWarning: torch.jit.QuantizedGRU is deprecated and will be removed in an upcoming PyTorch release. Please use the torch.ao.nn.quantized.dynamic.GRU instead. 2023-01-11T21:56:51.6195694Z warnings.warn( 2023-01-11T21:56:51.6195863Z ok (0.099s) 2023-01-11T21:56:51.6196255Z test_device_affinity (quantization.core.test_workflow_module.TestDistributed) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:56:51.6196693Z test_fake_quant_preserves_buffers (quantization.core.test_workflow_module.TestDistributed) 2023-01-11T21:56:51.6197034Z Tests that fake quant only modifies buffers in place. Note: this is important ... ok (0.003s) 2023-01-11T21:56:51.6197383Z test_observers_preserve_buffers (quantization.core.test_workflow_module.TestDistributed) 2023-01-11T21:56:51.6197728Z Tests that observers only modify buffers in place. Note: this is important ... ok (0.009s) 2023-01-11T21:56:51.6198070Z test_qat_convbn_fused_syncbn_replacement (quantization.core.test_workflow_module.TestDistributed) 2023-01-11T21:56:51.6198858Z Tests that SyncBatchNorm replacement works for fused ConvBN. ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch. 2023-01-11T21:56:51.6199303Z warnings.warn( 2023-01-11T21:56:51.6199470Z ok (0.006s) 2023-01-11T21:56:51.6199718Z test_qat_data_parallel (quantization.core.test_workflow_module.TestDistributed) 2023-01-11T21:56:51.6200145Z Tests that doing QAT in nn.DataParallel does not crash. ... skip: multi-GPU not supported (0.001s) 2023-01-11T21:56:51.6200508Z test_syncbn_preserves_qconfig (quantization.core.test_workflow_module.TestDistributed) 2023-01-11T21:56:51.6200835Z Makes sure that if a BatchNorm is not fused and a qconfig exists, ... ok (0.001s) 2023-01-11T21:56:51.6201337Z test_cell_api (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... [W qlinear_dynamic.cpp:247] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function operator()) 2023-01-11T21:56:51.6202321Z /opt/conda/lib/python3.10/site-packages/torch/_utils.py:309: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6202830Z device=storage.device, 2023-01-11T21:56:51.6203009Z ok (1.021s) 2023-01-11T21:56:51.6203718Z test_dynamic_conv1d (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py:59: UserWarning: The current implementation of the DynamicQuantizedConv1d module has poor numerical accuracy and its use is not recommended 2023-01-11T21:56:51.6204218Z warnings.warn( 2023-01-11T21:56:51.6204559Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6205398Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:471: UserWarning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/quantized/cpu/qconv_dynamic.cpp:82.) 2023-01-11T21:56:51.6205882Z return callable(*args, **kwargs) 2023-01-11T21:56:51.6206223Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6206701Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6207170Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6207636Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6208126Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6208598Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6209210Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6209683Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6210186Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6210654Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6211130Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6211595Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6212061Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6212514Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6212976Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6213289Z ok (1.539s) 2023-01-11T21:56:51.6214026Z test_dynamic_conv2d (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py:124: UserWarning: The current implementation of the DynamicQuantizedConv2d module has poor numerical accuracy and its use is not recommended 2023-01-11T21:56:51.6214519Z warnings.warn( 2023-01-11T21:56:51.6214858Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6215337Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6215805Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6216272Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6216723Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6217292Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6217760Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6218227Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6218719Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6219178Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6219651Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6220142Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6220606Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6221058Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6221527Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6221991Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6222294Z ok (1.296s) 2023-01-11T21:56:51.6223086Z test_dynamic_conv3d (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py:189: UserWarning: The current implementation of the DynamicQuantizedConv3d module has poor numerical accuracy and its use is not recommended 2023-01-11T21:56:51.6223593Z warnings.warn( 2023-01-11T21:56:51.6223763Z ok (0.432s) 2023-01-11T21:56:51.6224589Z test_dynamic_convtranspose1d (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py:259: UserWarning: The current implementation of the DynamicQuantizedConvTranpose1d module has poor numerical accuracy and its use is not recommended 2023-01-11T21:56:51.6225107Z warnings.warn( 2023-01-11T21:56:51.6225446Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6225926Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6226395Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6226849Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6227313Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6227786Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6228257Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6228725Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6229215Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6229688Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6230150Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6230654Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6231110Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6231574Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6232042Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6232509Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6232813Z ok (1.217s) 2023-01-11T21:56:51.6233570Z test_dynamic_convtranspose2d (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py:320: UserWarning: The current implementation of the DynamicQuantizedConvTranpose2d module has poor numerical accuracy and its use is not recommended 2023-01-11T21:56:51.6234105Z warnings.warn( 2023-01-11T21:56:51.6234441Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6234920Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6235376Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6235843Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6236317Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6236782Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6237244Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6237694Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6238162Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6238628Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6239123Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6239575Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6240034Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6240531Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6240996Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6241463Z [W qconv_dynamic.cpp:82] Warning: Currently, qnnpack incorrectly ignores reduce_range when it is set to true; this may change in a future release. (function apply_dynamic) 2023-01-11T21:56:51.6241753Z ok (1.209s) 2023-01-11T21:56:51.6242518Z test_dynamic_convtranspose3d (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py:381: UserWarning: The current implementation of the DynamicQuantizedConvTranpose3d module has poor numerical accuracy and its use is not recommended 2023-01-11T21:56:51.6243048Z warnings.warn( 2023-01-11T21:56:51.6243216Z ok (0.504s) 2023-01-11T21:56:51.6243496Z test_gru_api (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... ok (0.335s) 2023-01-11T21:56:51.6243901Z test_linear_api (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... ok (23.224s) 2023-01-11T21:56:51.6244306Z test_lstm_api (quantization.core.test_quantized_module.TestDynamicQuantizedModule) ... ok (3.824s) 2023-01-11T21:56:51.6244682Z test_dynamic_conv1d (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.045s) 2023-01-11T21:56:51.6245064Z test_dynamic_conv2d (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.043s) 2023-01-11T21:56:51.6245442Z test_dynamic_conv3d (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.051s) 2023-01-11T21:56:51.6245834Z test_dynamic_convtranspose1d (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.047s) 2023-01-11T21:56:51.6246233Z test_dynamic_convtranspose2d (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.049s) 2023-01-11T21:56:51.6246640Z test_dynamic_convtranspose3d (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.015s) 2023-01-11T21:56:51.6247141Z test_linear_prepack_fp16_numerics (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6247609Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6247945Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6248288Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6248625Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6248950Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6249431Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6249772Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6250174Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6250496Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6250836Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6251173Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6251508Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6251829Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6252174Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6252548Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6252871Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6253211Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6253547Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6253791Z ok (0.141s) 2023-01-11T21:56:51.6254050Z test_qlinear (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (2.384s) 2023-01-11T21:56:51.6254440Z test_qlinear_dynamic_fp16 (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.130s) 2023-01-11T21:56:51.6254830Z test_qlinear_legacy (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (0.237s) 2023-01-11T21:56:51.6255193Z test_qlstmGRU (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (9.472s) 2023-01-11T21:56:51.6255565Z test_qrnncell (quantization.core.test_quantized_op.TestDynamicQuantizedOps) ... ok (11.554s) 2023-01-11T21:56:51.6255922Z test_converged (quantization.eager.test_equalize_eager.TestEqualizeEager) 2023-01-11T21:56:51.6256231Z Sanity checks on _equalize.converged working ... ok (0.002s) 2023-01-11T21:56:51.6256539Z test_cross_layer_equalization (quantization.eager.test_equalize_eager.TestEqualizeEager) 2023-01-11T21:56:51.6256886Z applies _equalize.cross_layer_equalization on two modules and checks ... ok (0.002s) 2023-01-11T21:56:51.6257215Z test_equalize (quantization.eager.test_equalize_eager.TestEqualizeEager) 2023-01-11T21:56:51.6257523Z First checks to see if _equalize.equalize can handle multiple ... ok (0.014s) 2023-01-11T21:56:51.6257859Z test_equalize_fused_convrelu (quantization.eager.test_equalize_eager.TestEqualizeEager) 2023-01-11T21:56:51.6258186Z Checks to see if eager mode equalization supports fused ... ok (0.028s) 2023-01-11T21:56:51.6258521Z test_equalize_fused_linearrelu (quantization.eager.test_equalize_eager.TestEqualizeEager) 2023-01-11T21:56:51.6258835Z Checks to see if eager mode equalization supports fused ... ok (0.022s) 2023-01-11T21:56:51.6259163Z test_input_weight_eq_observer (quantization.fx.test_equalize_fx.TestEqualizeFx) ... ok (0.233s) 2023-01-11T21:56:51.6259536Z test_input_weight_equalization_activation_values (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6260313Z After applying the equalization functions check if the input ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py:1435: UserWarning: Passing a QConfig dictionary to prepare is deprecated and will not be supported in a future version. Please pass in a QConfigMapping instead. 2023-01-11T21:56:51.6260777Z warnings.warn( 2023-01-11T21:56:51.6261380Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py:1441: UserWarning: Passing a QConfig dictionary to prepare for equalization is deprecated and will not be supported in a future version. Please pass in a QConfigMapping instead. 2023-01-11T21:56:51.6261793Z warnings.warn( 2023-01-11T21:56:51.6261948Z ok (0.073s) 2023-01-11T21:56:51.6262252Z test_input_weight_equalization_branching (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6262947Z Tests that graphs containing branches are prepared correctly. ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py:712: UserWarning: Cannot equalize linear1 because it is part of a branch. 2023-01-11T21:56:51.6263322Z warnings.warn( 2023-01-11T21:56:51.6263739Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py:712: UserWarning: Cannot equalize linear2 because it is part of a branch. 2023-01-11T21:56:51.6264048Z warnings.warn( 2023-01-11T21:56:51.6264216Z ok (0.022s) 2023-01-11T21:56:51.6264470Z test_input_weight_equalization_convert (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6265316Z Tests that the modified model for equalization (before quantization) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node linear1_packed_weight_0 target linear1_packed_weight_0 linear1_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6265935Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6266616Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node linear2_packed_weight_0 target linear2_packed_weight_0 linear2_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6267167Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6267826Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node linear_packed_weight_0 target linear_packed_weight_0 linear_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6268378Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6269045Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node conv1_packed_weight_0 target conv1_packed_weight_0 conv1_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6269589Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6270257Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node conv2_packed_weight_0 target conv2_packed_weight_0 conv2_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6270784Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6271443Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node conv_packed_weight_0 target conv_packed_weight_0 conv_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6271986Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6272219Z ok (1.972s) 2023-01-11T21:56:51.6272493Z test_input_weight_equalization_equalization_scales (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6272853Z After applying the equalization functions, check if the equalization ... ok (0.065s) 2023-01-11T21:56:51.6273194Z test_input_weight_equalization_graphs (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6273833Z Tests that the modified model for equalization has the same graph ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py:302: UserWarning: must run observer before calling calculate_qparams. Returning default values. 2023-01-11T21:56:51.6274223Z warnings.warn( 2023-01-11T21:56:51.6274750Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_equalize.py:190: UserWarning: Must run observer before calling calculate_equalization_scale. Returning default equalization scale torch.tensor(1). 2023-01-11T21:56:51.6275156Z warnings.warn( 2023-01-11T21:56:51.6275683Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_equalize.py:102: UserWarning: Must call calculate_equalization_scale before calling calculate_scaled_minmax. Will not scale the next quantization observer. 2023-01-11T21:56:51.6276060Z warnings.warn( 2023-01-11T21:56:51.6276510Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py:310: UserWarning: must run observer before calling calculate_qparams. Returning default values. 2023-01-11T21:56:51.6276832Z warnings.warn( 2023-01-11T21:56:51.6276985Z ok (0.494s) 2023-01-11T21:56:51.6277284Z test_input_weight_equalization_prepare (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6277617Z Tests that graphs created after prepare_fx is as expected ... ok (0.213s) 2023-01-11T21:56:51.6277938Z test_input_weight_equalization_results (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6278267Z Tests that for small models, the results of quantized models that ... ok (0.237s) 2023-01-11T21:56:51.6278605Z test_input_weight_equalization_weights_bias (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6278947Z After applying the equalization functions check if the weights and ... ok (0.069s) 2023-01-11T21:56:51.6279259Z test_selective_equalization (quantization.fx.test_equalize_fx.TestEqualizeFx) 2023-01-11T21:56:51.6279576Z Tests that we are able to run numeric suite on the equalized model ... ok (0.234s) 2023-01-11T21:56:51.6279917Z test_dict_return_type (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.079s) 2023-01-11T21:56:51.6280288Z test_matching_failure_node_count (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.045s) 2023-01-11T21:56:51.6280682Z test_matching_failure_node_type (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.035s) 2023-01-11T21:56:51.6281038Z test_methods (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) 2023-01-11T21:56:51.6281335Z Verify that graph matching works on methods ... ok (0.049s) 2023-01-11T21:56:51.6281642Z test_nodes_before_cat (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.076s) 2023-01-11T21:56:51.6282424Z test_nodes_with_equal_types_get_matched (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py:1204: UserWarning: must run observer before calling calculate_qparams. Returning default scale and zero point 2023-01-11T21:56:51.6282884Z warnings.warn( 2023-01-11T21:56:51.6283053Z ok (0.115s) 2023-01-11T21:56:51.6283313Z test_op_relationship_mapping (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) 2023-01-11T21:56:51.6283643Z Tests that the mapping of op relationships is complete. ... ok (0.007s) 2023-01-11T21:56:51.6283976Z test_results_order (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.172s) 2023-01-11T21:56:51.6284781Z test_simple_fun (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_0 target _packed_weight_0 _packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6285388Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6285622Z ok (0.079s) 2023-01-11T21:56:51.6285886Z test_simple_fusion (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.078s) 2023-01-11T21:56:51.6286231Z test_simple_mod (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.058s) 2023-01-11T21:56:51.6286592Z test_simple_mod_multi (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.066s) 2023-01-11T21:56:51.6286985Z test_simple_tensor_ops (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) ... ok (0.175s) 2023-01-11T21:56:51.6287345Z test_user_defined_function (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher) 2023-01-11T21:56:51.6287661Z Verify that graph matching works on user defined functions ... ok (0.043s) 2023-01-11T21:56:51.6288411Z test_mobilenet_v2 (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcherModels) ... /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. 2023-01-11T21:56:51.6288877Z warnings.warn( 2023-01-11T21:56:51.6289716Z /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`. 2023-01-11T21:56:51.6290131Z warnings.warn(msg) 2023-01-11T21:56:51.6290306Z ok (3.117s) 2023-01-11T21:56:51.6290587Z test_mobilenet_v2_qat (quantization.fx.test_numeric_suite_fx.TestFXGraphMatcherModels) ... ok (3.823s) 2023-01-11T21:56:51.6291007Z test_add_loggers_cuda (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:56:51.6291956Z test_add_mul_inputs_activations (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. 2023-01-11T21:56:51.6292624Z warnings.warn("The TorchScript type system doesn't support " 2023-01-11T21:56:51.6292843Z ok (2.718s) 2023-01-11T21:56:51.6293158Z test_add_shadow_loggers_cuda (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:56:51.6294048Z test_add_shadow_loggers_fun_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_1 target _packed_weight_1 _packed_weight_1 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6294694Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6294929Z ok (0.791s) 2023-01-11T21:56:51.6295224Z test_add_shadow_loggers_fun_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.327s) 2023-01-11T21:56:51.6295625Z test_add_shadow_loggers_meth_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6296023Z Verify that add_loggers works on methods ... skipping shadow loggers for node_b: str, start_node_a: str, unknown dtype cast 2023-01-11T21:56:51.6296475Z skipping shadow loggers for node_b: torch.ao.quantization.observer.FixedQParamsObserver, start_node_a: str, unknown dtype cast 2023-01-11T21:56:51.6296876Z skipping shadow loggers for node_b: str, start_node_a: str, unknown dtype cast 2023-01-11T21:56:51.6297093Z ok (0.121s) 2023-01-11T21:56:51.6297390Z test_add_shadow_loggers_mod_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.742s) 2023-01-11T21:56:51.6297806Z test_add_shadow_loggers_mod_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.449s) 2023-01-11T21:56:51.6298222Z test_extend_logger_results_with_comparison (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.073s) 2023-01-11T21:56:51.6299109Z test_extract_weights_conv_fun_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_2 target _packed_weight_2 _packed_weight_2 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6299807Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6300449Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_3 target _packed_weight_3 _packed_weight_3 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6300977Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6301637Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_4 target _packed_weight_4 _packed_weight_4 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6302164Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6302877Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_5 target _packed_weight_5 _packed_weight_5 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6303414Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6303637Z ok (0.693s) 2023-01-11T21:56:51.6303936Z test_extract_weights_conv_fun_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.806s) 2023-01-11T21:56:51.6304378Z test_extract_weights_cuda (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:56:51.6304811Z test_extract_weights_dynamic (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.133s) 2023-01-11T21:56:51.6305210Z test_extract_weights_fqn (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.076s) 2023-01-11T21:56:51.6305627Z test_extract_weights_linear_fun_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.379s) 2023-01-11T21:56:51.6306047Z test_extract_weights_linear_fun_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.389s) 2023-01-11T21:56:51.6306466Z test_extract_weights_mod_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.805s) 2023-01-11T21:56:51.6306861Z test_extract_weights_mod_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.959s) 2023-01-11T21:56:51.6307264Z test_fp16_shadows_fp32 (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.053s) 2023-01-11T21:56:51.6307884Z test_int8_shadows_fp32_coverage (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... skipping shadow loggers for node_b: torch.nn.modules.pooling.AdaptiveAvgPool2d, start_node_a: torch.nn.modules.pooling.AdaptiveAvgPool2d, unknown dtype cast 2023-01-11T21:56:51.6308597Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch.nn.modules.pooling.AdaptiveAvgPool2d, unknown dtype cast 2023-01-11T21:56:51.6309125Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.mul, start_node_a: torch._ops.quantized.PyCapsule.mul, unsupported 2023-01-11T21:56:51.6309637Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._ops.quantized.PyCapsule.mul, unknown dtype cast 2023-01-11T21:56:51.6310148Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._ops.quantized.PyCapsule.add_relu, unsupported 2023-01-11T21:56:51.6310665Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._ops.quantized.PyCapsule.add_relu, unknown dtype cast 2023-01-11T21:56:51.6311005Z ok (0.156s) 2023-01-11T21:56:51.6311299Z test_int8_shadows_fp32_simple (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.191s) 2023-01-11T21:56:51.6311749Z test_int8_shadows_int8_fun (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.104s) 2023-01-11T21:56:51.6312150Z test_int8_shadows_int8_mod (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.081s) 2023-01-11T21:56:51.6312529Z test_layer_names (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.332s) 2023-01-11T21:56:51.6312930Z test_linear_fp16_activations (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.301s) 2023-01-11T21:56:51.6313347Z test_linear_fp16_shadow_activations (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.393s) 2023-01-11T21:56:51.6313846Z test_linear_fp16_vs_linear_fp16_shadow_activations (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.051s) 2023-01-11T21:56:51.6314260Z test_linear_fp16_weights (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.160s) 2023-01-11T21:56:51.6314665Z test_linear_kwargs_shadow (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.045s) 2023-01-11T21:56:51.6315080Z test_loggers_preserve_qat_numerics (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.184s) 2023-01-11T21:56:51.6315477Z test_logging_inputs (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6315939Z Verifies that logging inputs works correctly ... skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6316457Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6316764Z ok (0.589s) 2023-01-11T21:56:51.6317044Z test_match_activations_fqn (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.079s) 2023-01-11T21:56:51.6317459Z test_match_activations_fun_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.611s) 2023-01-11T21:56:51.6317868Z test_match_activations_fun_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.384s) 2023-01-11T21:56:51.6318275Z test_match_activations_meth_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6318587Z Verify that add_loggers works on methods ... ok (0.144s) 2023-01-11T21:56:51.6318923Z test_match_activations_mod_ptq (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (1.015s) 2023-01-11T21:56:51.6319334Z test_match_activations_mod_qat (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.278s) 2023-01-11T21:56:51.6319843Z test_mul_add_cat_stack_skips_shadowing (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... skipping shadow loggers for node_b: _operator.mul, start_node_a: _operator.mul, unsupported 2023-01-11T21:56:51.6320374Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: _operator.mul, unsupported 2023-01-11T21:56:51.6320855Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.mul, start_node_a: torch._VariableFunctionsClass.mul, unsupported 2023-01-11T21:56:51.6321362Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch._VariableFunctionsClass.mul, unsupported 2023-01-11T21:56:51.6321804Z skipping shadow loggers for node_b: _operator.add, start_node_a: _operator.add, unsupported 2023-01-11T21:56:51.6322210Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: _operator.add, unsupported 2023-01-11T21:56:51.6322689Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6323191Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6323732Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6324193Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.stack, start_node_a: torch._VariableFunctionsClass.stack, unsupported 2023-01-11T21:56:51.6324638Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.mul, start_node_a: _operator.mul, unsupported 2023-01-11T21:56:51.6325079Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.mul, start_node_a: torch._VariableFunctionsClass.mul, unsupported 2023-01-11T21:56:51.6325516Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: _operator.add, unsupported 2023-01-11T21:56:51.6325969Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6326435Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6326904Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.stack, start_node_a: torch._VariableFunctionsClass.stack, unsupported 2023-01-11T21:56:51.6327215Z ok (1.165s) 2023-01-11T21:56:51.6327487Z test_op_io_dtype_coverage (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6327840Z Tests that all the ops quantization cares about have input and output ... ok (0.009s) 2023-01-11T21:56:51.6328208Z test_op_with_either_fp32_or_int8_input (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6328713Z Verify that shadowing works with ops which accept either fp32 or ... skipping shadow loggers for node_b: torch.nn.modules.activation.ReLU, start_node_a: torch.nn.modules.activation.ReLU, unknown dtype cast 2023-01-11T21:56:51.6329440Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch.nn.modules.activation.ReLU, unknown dtype cast 2023-01-11T21:56:51.6329941Z skipping shadow loggers for node_b: torch.nn.functional.relu, start_node_a: torch.nn.functional.relu, unknown dtype cast 2023-01-11T21:56:51.6330422Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch.nn.functional.relu, unknown dtype cast 2023-01-11T21:56:51.6330931Z skipping shadow loggers for node_b: torch.nn.modules.activation.ReLU, start_node_a: torch.nn.modules.activation.ReLU, unknown dtype cast 2023-01-11T21:56:51.6331374Z skipping shadow loggers for node_b: torch.nn.functional.relu, start_node_a: torch.nn.functional.relu, unknown dtype cast 2023-01-11T21:56:51.6331662Z ok (0.499s) 2023-01-11T21:56:51.6332120Z test_op_with_only_kwargs_skips_shadowing (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6332723Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.stack, start_node_a: torch._VariableFunctionsClass.stack, unsupported 2023-01-11T21:56:51.6333181Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6333649Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.stack, start_node_a: torch._VariableFunctionsClass.stack, unsupported 2023-01-11T21:56:51.6333957Z ok (0.255s) 2023-01-11T21:56:51.6334240Z test_ops_with_same_fp32_and_int8_signature (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6334601Z Verifies that we can match pairs of ops which have the same aten ... ok (2.805s) 2023-01-11T21:56:51.6334966Z test_shadow_activations_fqn (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.176s) 2023-01-11T21:56:51.6335445Z test_shadow_loggers_preserve_qat_numerics (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.091s) 2023-01-11T21:56:51.6335867Z test_unsupported_op_copy_skips_shadowing (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6336383Z Copying a `call_function` node is not implemented, test that this ... skipping shadow loggers for node_b: torch.nn.functional.layer_norm, start_node_a: torch.nn.functional.layer_norm, unhandled logic in subgraph copy 2023-01-11T21:56:51.6336967Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch.nn.functional.layer_norm, unhandled logic in subgraph copy 2023-01-11T21:56:51.6337542Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.layer_norm, start_node_a: torch.nn.functional.layer_norm, unhandled logic in subgraph copy 2023-01-11T21:56:51.6337861Z ok (0.406s) 2023-01-11T21:56:51.6338141Z test_user_defined_function (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6338619Z Verify that NS APIs work on user defined functions ... skipping shadow loggers for node_b: torch._C._nn.linear, start_node_a: quantization.fx.test_numeric_suite_fx._wrapped_linear, unknown dtype cast 2023-01-11T21:56:51.6339182Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: quantization.fx.test_numeric_suite_fx._wrapped_linear, unknown dtype cast 2023-01-11T21:56:51.6339531Z ok (0.296s) 2023-01-11T21:56:51.6339801Z test_user_module (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) 2023-01-11T21:56:51.6340558Z For user defined modules, ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py:148: UserWarning: Passing a prepare_custom_config_dict to prepare is deprecated and will not be supported in a future version. Please pass in a PrepareCustomConfig instead. 2023-01-11T21:56:51.6340990Z warnings.warn( 2023-01-11T21:56:51.6341147Z ok (0.171s) 2023-01-11T21:56:51.6341446Z test_user_module_scriptable (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs) ... ok (0.194s) 2023-01-11T21:56:51.6341878Z test_compare_activations_conv (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (1.102s) 2023-01-11T21:56:51.6342313Z test_compare_activations_linear (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (0.485s) 2023-01-11T21:56:51.6343372Z test_compare_activations_lstm_dynamic (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/reference/modules/rnn.py:320: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:56:51.6344018Z torch.tensor(weight_qparams["scale"], dtype=torch.float, device=device)) 2023-01-11T21:56:51.6344730Z /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/reference/modules/rnn.py:323: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:56:51.6345246Z torch.tensor(weight_qparams["zero_point"], dtype=torch.int, device=device)) 2023-01-11T21:56:51.6345469Z ok (0.223s) 2023-01-11T21:56:51.6345784Z test_compare_shadow_activations_conv (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (1.160s) 2023-01-11T21:56:51.6346248Z test_compare_shadow_activations_linear (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (0.594s) 2023-01-11T21:56:51.6346717Z test_compare_shadow_activations_lstm_dynamic (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (0.130s) 2023-01-11T21:56:51.6347157Z test_compare_weights_conv (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (0.661s) 2023-01-11T21:56:51.6347627Z test_compare_weights_linear (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (0.399s) 2023-01-11T21:56:51.6348069Z test_compare_weights_lstm_dynamic (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (0.219s) 2023-01-11T21:56:51.6348658Z test_mobilenet_v2 (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6349267Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6349795Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6350298Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6350797Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6351282Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6351780Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6352273Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6352770Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6353255Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6353748Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6354250Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6354745Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6355239Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6355717Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6356213Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6356706Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6357203Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6357689Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6358180Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6358708Z skipping shadow loggers for node_b: torch.nn.functional.adaptive_avg_pool2d, start_node_a: torch.nn.functional.adaptive_avg_pool2d, unhandled logic in subgraph copy 2023-01-11T21:56:51.6359259Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch.nn.functional.adaptive_avg_pool2d, unhandled logic in subgraph copy 2023-01-11T21:56:51.6359802Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6360270Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6360737Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6361201Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6361650Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6362130Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6362591Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6363053Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6363503Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6363964Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6364457Z skipping shadow loggers for node_b: torch.nn.functional.adaptive_avg_pool2d, start_node_a: torch.nn.functional.adaptive_avg_pool2d, unhandled logic in subgraph copy 2023-01-11T21:56:51.6364793Z ok (10.020s) 2023-01-11T21:56:51.6365228Z test_resnet18 (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6365844Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6366344Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6366844Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6367326Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6367827Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6368327Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6368827Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6369470Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6369964Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6370459Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6370956Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6371433Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6371987Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6372482Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.add, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6372976Z skipping shadow loggers for node_b: torch.ao.quantization.observer.MinMaxObserver, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6373464Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6373973Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6374443Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6374915Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6375373Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6375846Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6376312Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6376776Z skipping shadow loggers for node_b: torch._ops.quantized.PyCapsule.add_relu, start_node_a: torch._VariableFunctionsClass.add, unsupported 2023-01-11T21:56:51.6377310Z skipping shadow loggers for node_b: torch.nn.modules.pooling.AdaptiveAvgPool2d, start_node_a: torch.nn.modules.pooling.AdaptiveAvgPool2d, unknown dtype cast 2023-01-11T21:56:51.6377848Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.flatten, start_node_a: torch._VariableFunctionsClass.flatten, unknown dtype cast 2023-01-11T21:56:51.6378175Z ok (4.234s) 2023-01-11T21:56:51.6378496Z test_sparsenn_compare_activations (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... ok (6.290s) 2023-01-11T21:56:51.6379109Z test_sparsenn_shadow (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels) ... skipping shadow loggers for node_b: torch.nn.modules.sparse.EmbeddingBag, start_node_a: torch.nn.modules.sparse.EmbeddingBag, unknown dtype cast 2023-01-11T21:56:51.6379794Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch.nn.modules.sparse.EmbeddingBag, unknown dtype cast 2023-01-11T21:56:51.6380324Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6380821Z skipping shadow loggers for node_b: torch.nn.modules.sparse.EmbeddingBag, start_node_a: torch.nn.modules.sparse.EmbeddingBag, unknown dtype cast 2023-01-11T21:56:51.6381314Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6381797Z skipping shadow loggers for node_b: torch.nn.modules.sparse.EmbeddingBag, start_node_a: torch.nn.modules.sparse.EmbeddingBag, unknown dtype cast 2023-01-11T21:56:51.6382354Z skipping shadow loggers for node_b: torch.ao.quantization.observer.HistogramObserver, start_node_a: torch.nn.modules.sparse.EmbeddingBag, unknown dtype cast 2023-01-11T21:56:51.6382963Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6383460Z skipping shadow loggers for node_b: torch.nn.modules.sparse.EmbeddingBag, start_node_a: torch.nn.modules.sparse.EmbeddingBag, unknown dtype cast 2023-01-11T21:56:51.6383985Z skipping shadow loggers for node_b: torch._VariableFunctionsClass.cat, start_node_a: torch._VariableFunctionsClass.cat, unsupported 2023-01-11T21:56:51.6384291Z ok (7.001s) 2023-01-11T21:56:51.6384707Z test_conv_bn_relu_mod (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6385095Z ok (0.068s) 2023-01-11T21:56:51.6385377Z test_custom_functions_and_tracer (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... working 2023-01-11T21:56:51.6385653Z working 2023-01-11T21:56:51.6385813Z GraphModule( 2023-01-11T21:56:51.6386016Z (fc1): Linear(in_features=2, out_features=2, bias=True) 2023-01-11T21:56:51.6386292Z (fc2): Linear(in_features=2, out_features=2, bias=True) 2023-01-11T21:56:51.6386565Z (shadow_0_0): OutputLogger(ref_name=model, model_name=subgraph_0_0, 2023-01-11T21:56:51.6386808Z prev_node_name=fc1, ref_node_name=fc1, 2023-01-11T21:56:51.6387063Z ref_node_target_type=torch.nn.modules.linear.Linear 2023-01-11T21:56:51.6387324Z results_type=node_output, index_within_arg=0, 2023-01-11T21:56:51.6387522Z index_of_arg=0, fqn=fc1) 2023-01-11T21:56:51.6387723Z (shadow_wrapper_0_1): GraphModule( 2023-01-11T21:56:51.6388041Z (mod_0): QuantizedLinear(in_features=2, out_features=2, scale=0.019699348136782646, zero_point=58, qscheme=torch.per_tensor_affine) 2023-01-11T21:56:51.6388348Z (shadow_0_1): OutputComparisonLogger 2023-01-11T21:56:51.6388524Z ) 2023-01-11T21:56:51.6388745Z (shadow_1_0): OutputLogger(ref_name=model, model_name=subgraph_1_0, 2023-01-11T21:56:51.6388997Z prev_node_name=fc2, ref_node_name=fc2, 2023-01-11T21:56:51.6389236Z ref_node_target_type=torch.nn.modules.linear.Linear 2023-01-11T21:56:51.6389499Z results_type=node_output, index_within_arg=0, 2023-01-11T21:56:51.6389710Z index_of_arg=0, fqn=fc2) 2023-01-11T21:56:51.6389902Z (shadow_wrapper_1_1): GraphModule( 2023-01-11T21:56:51.6390216Z (mod_0): QuantizedLinear(in_features=2, out_features=2, scale=0.01274071168154478, zero_point=96, qscheme=torch.per_tensor_affine) 2023-01-11T21:56:51.6390519Z (shadow_1_1): OutputComparisonLogger 2023-01-11T21:56:51.6390696Z ) 2023-01-11T21:56:51.6390840Z ) 2023-01-11T21:56:51.6390930Z 2023-01-11T21:56:51.6390936Z 2023-01-11T21:56:51.6390940Z 2023-01-11T21:56:51.6391016Z def forward(self, x): 2023-01-11T21:56:51.6391195Z fc1 = self.fc1(x) 2023-01-11T21:56:51.6391412Z shadow_wrapper_0_1 = self.shadow_wrapper_0_1(fc1, x); x = None 2023-01-11T21:56:51.6391649Z shadow_0_0 = self.shadow_0_0(fc1) 2023-01-11T21:56:51.6391841Z fc2 = self.fc2(fc1) 2023-01-11T21:56:51.6392059Z shadow_wrapper_1_1 = self.shadow_wrapper_1_1(fc2, fc1); fc1 = None 2023-01-11T21:56:51.6392297Z shadow_1_0 = self.shadow_1_0(fc2) 2023-01-11T21:56:51.6392484Z return fc2 2023-01-11T21:56:51.6392628Z 2023-01-11T21:56:51.6392849Z # To see more debug info, please use `graph_module.print_readable()` 2023-01-11T21:56:51.6393217Z `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6393505Z ok (0.065s) 2023-01-11T21:56:51.6394672Z test_functions (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:813: UserWarning: QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize for fixed qparams ops, ignoring QConfig(activation=functools.partial(, quant_min=0, quant_max=127){}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){}). 2023-01-11T21:56:51.6395619Z Please use torch.ao.quantization.get_default_qconfig_mapping or torch.ao.quantization.get_default_qat_qconfig_mapping. Example: 2023-01-11T21:56:51.6396018Z qconfig_mapping = get_default_qconfig_mapping("fbgemm") 2023-01-11T21:56:51.6396295Z model = prepare_fx(model, qconfig_mapping, example_inputs) 2023-01-11T21:56:51.6396617Z warnings.warn(("QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize " 2023-01-11T21:56:51.6397028Z `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6397320Z ok (0.234s) 2023-01-11T21:56:51.6397731Z test_linear_mod (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6398106Z ok (0.030s) 2023-01-11T21:56:51.6398557Z test_linear_relu_mod (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6398949Z ok (0.094s) 2023-01-11T21:56:51.6399262Z test_logger_enabled_and_save_activations_flags (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... ok (0.043s) 2023-01-11T21:56:51.6399788Z test_mobilenet_v2 (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6400176Z ok (3.743s) 2023-01-11T21:56:51.6400574Z test_partial_qconfig_mapping (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... unable to find at least one qconfig for node %fc : [#users=1] = call_module[target=fc](args = (%x,), kwargs = {}), skipping 2023-01-11T21:56:51.6401091Z unable to find at least one qconfig for node %add : [#users=1] = call_function[target=operator.add](args = (%relu, %relu), kwargs = {}), skipping 2023-01-11T21:56:51.6401510Z `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6401797Z ok (0.174s) 2023-01-11T21:56:51.6402114Z test_qconfig_multi_mapping_deduplication (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... ok (0.001s) 2023-01-11T21:56:51.6402676Z test_qconfig_multi_mapping_end_to_end (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6403070Z ok (0.071s) 2023-01-11T21:56:51.6403497Z test_qconfig_multi_mapping_from_list (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6403902Z ok (0.070s) 2023-01-11T21:56:51.6404210Z test_qconfig_multi_mapping_insert_padding (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... ok (0.001s) 2023-01-11T21:56:51.6404760Z test_qconfig_multi_mapping_ordering (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... `print_tabular` relies on the library `tabulate`, which could not be found on this machine. Run `pip install tabulate` to install the library. 2023-01-11T21:56:51.6405164Z ok (0.092s) 2023-01-11T21:56:51.6405459Z test_qconfig_multi_mapping_repr (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... ok (0.001s) 2023-01-11T21:56:51.6405900Z test_qconfig_multi_mapping_retroactive_padding (quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows) ... ok (0.001s) 2023-01-11T21:56:51.6406309Z test_fq_module_per_channel (quantization.core.test_workflow_module.TestFakeQuantize) ... ok (0.192s) 2023-01-11T21:56:51.6406703Z test_fq_serializable_per_channel (quantization.core.test_workflow_module.TestFakeQuantize) ... ok (0.003s) 2023-01-11T21:56:51.6407129Z test_quant_min_max_override (quantization.core.test_workflow_module.TestFakeQuantize) ... ok (0.001s) 2023-01-11T21:56:51.6407489Z test_backward_per_channel (quantization.core.test_workflow_ops.TestFakeQuantizeOps) 2023-01-11T21:56:51.6407892Z Tests the backward method. ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.100s) 2023-01-11T21:56:51.6408314Z test_backward_per_channel_cachemask_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.018s) 2023-01-11T21:56:51.6408763Z test_backward_per_channel_cachemask_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.000s) 2023-01-11T21:56:51.6409297Z test_backward_per_tensor (quantization.core.test_workflow_ops.TestFakeQuantizeOps) 2023-01-11T21:56:51.6409682Z Tests the backward method. ... skip: temporarily disable the test (0.004s) 2023-01-11T21:56:51.6410045Z test_backward_per_tensor_cachemask_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.013s) 2023-01-11T21:56:51.6410493Z test_backward_per_tensor_cachemask_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.000s) 2023-01-11T21:56:51.6410900Z test_fake_quant_control (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.009s) 2023-01-11T21:56:51.6411302Z test_fake_quant_per_channel_qparam_range (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.375s) 2023-01-11T21:56:51.6411736Z test_fake_quant_preserves_qparam_shapes_for_activations (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.005s) 2023-01-11T21:56:51.6412154Z test_fixed_qparams_fq_module (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.109s) 2023-01-11T21:56:51.6412882Z test_forward_backward_per_tensor_with_amp (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... /opt/conda/lib/python3.10/site-packages/torch/amp/autocast_mode.py:204: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling 2023-01-11T21:56:51.6413482Z warnings.warn('User provided device_type of \'cuda\', but CUDA is not available. Disabling') 2023-01-11T21:56:51.6413742Z ok (0.007s) 2023-01-11T21:56:51.6414012Z test_forward_per_channel (quantization.core.test_workflow_ops.TestFakeQuantizeOps) 2023-01-11T21:56:51.6414352Z Tests the forward path of the FakeQuantizePerTensorAffine op. ... ok (0.133s) 2023-01-11T21:56:51.6414731Z test_forward_per_channel_cachemask_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.017s) 2023-01-11T21:56:51.6415175Z test_forward_per_channel_cachemask_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.000s) 2023-01-11T21:56:51.6415630Z test_forward_per_channel_half_precision_numerics (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.016s) 2023-01-11T21:56:51.6416009Z test_forward_per_tensor (quantization.core.test_workflow_ops.TestFakeQuantizeOps) 2023-01-11T21:56:51.6416361Z Tests the forward path of the FakeQuantizePerTensorAffine op. ... ok (0.101s) 2023-01-11T21:56:51.6416738Z test_forward_per_tensor_cachemask_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.014s) 2023-01-11T21:56:51.6417164Z test_forward_per_tensor_cachemask_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.000s) 2023-01-11T21:56:51.6417607Z test_forward_per_tensor_half_precision_numerics (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.006s) 2023-01-11T21:56:51.6418014Z test_fq_module_per_tensor (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.152s) 2023-01-11T21:56:51.6418408Z test_fq_serializable_per_tensor (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.008s) 2023-01-11T21:56:51.6418897Z test_learnable_backward_per_channel_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.004s) 2023-01-11T21:56:51.6419480Z test_learnable_backward_per_channel_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.003s) 2023-01-11T21:56:51.6419925Z test_learnable_backward_per_tensor_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.357s) 2023-01-11T21:56:51.6420373Z test_learnable_backward_per_tensor_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.003s) 2023-01-11T21:56:51.6420793Z test_learnable_forward_per_channel_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.157s) 2023-01-11T21:56:51.6421262Z test_learnable_forward_per_channel_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.003s) 2023-01-11T21:56:51.6421803Z test_learnable_forward_per_tensor_cpu (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.003s) 2023-01-11T21:56:51.6422337Z test_learnable_forward_per_tensor_cuda (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... skip: No gpu is not available. (0.003s) 2023-01-11T21:56:51.6422822Z test_numerical_consistency_per_channel (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.094s) 2023-01-11T21:56:51.6423223Z test_numerical_consistency_per_tensor (quantization.core.test_workflow_ops.TestFakeQuantizeOps) ... ok (0.040s) 2023-01-11T21:56:51.6423604Z test_forward_hooks_preserved (quantization.eager.test_fuse_eager.TestFuseEager) 2023-01-11T21:56:51.6423946Z Test case that checks whether forward pre hooks of the first module and ... ok (0.019s) 2023-01-11T21:56:51.6424291Z test_fuse_function_customization (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.002s) 2023-01-11T21:56:51.6424657Z test_fuse_module_eval (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.083s) 2023-01-11T21:56:51.6425016Z test_fuse_module_train (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.563s) 2023-01-11T21:56:51.6425374Z test_fusion_conv_with_bias (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.067s) 2023-01-11T21:56:51.6425732Z test_fusion_convtranspose_bn_eval (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.006s) 2023-01-11T21:56:51.6426098Z test_fusion_linear_bn_eval (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.003s) 2023-01-11T21:56:51.6426470Z test_fusion_sequential_model_eval (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (1.624s) 2023-01-11T21:56:51.6426848Z test_fusion_sequential_model_train (quantization.eager.test_fuse_eager.TestFuseEager) ... ok (0.365s) 2023-01-11T21:56:51.6427305Z test_fuse_addtional_fuser_method (quantization.fx.test_quantize_fx.TestFuseFx) ... skip: Temporarily skipping the test case, will enable after the simplepattern format is supported (0.002s) 2023-01-11T21:56:51.6427745Z test_fuse_conv_bn_relu (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.054s) 2023-01-11T21:56:51.6428086Z test_fuse_convtranspose_bn_eval (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.016s) 2023-01-11T21:56:51.6428428Z test_fuse_custom_pattern (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.017s) 2023-01-11T21:56:51.6428749Z test_fuse_linear_bn_eval (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.012s) 2023-01-11T21:56:51.6429092Z test_fuse_linear_bn_leaky_relu_onednn (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.020s) 2023-01-11T21:56:51.6429455Z test_fuse_linear_tanh_for_onednn_backend (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.010s) 2023-01-11T21:56:51.6429786Z test_fuse_module_relu (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.015s) 2023-01-11T21:56:51.6430119Z test_fusion_pattern_with_matchallnode (quantization.fx.test_quantize_fx.TestFuseFx) 2023-01-11T21:56:51.6430463Z This test tests that the node matched by MatchAllNode will be regared as an input ... ok (0.005s) 2023-01-11T21:56:51.6430843Z test_fusion_pattern_with_multiple_inputs (quantization.fx.test_quantize_fx.TestFuseFx) 2023-01-11T21:56:51.6431153Z This test tests two keys in backend_config: root_node_getter and ... ok (0.005s) 2023-01-11T21:56:51.6431498Z test_linear_bn_leaky_relu_not_fused_by_default (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.010s) 2023-01-11T21:56:51.6431864Z test_linear_tanh_not_fused_by_default (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.004s) 2023-01-11T21:56:51.6432204Z test_problematic_fuse_example (quantization.fx.test_quantize_fx.TestFuseFx) ... ok (0.013s) 2023-01-11T21:56:51.6432532Z test_qconfig_fused_module (quantization.fx.test_quantize_fx.TestFuseFx) 2023-01-11T21:56:51.6432834Z TODO: add test for all fused modules ... ok (0.036s) 2023-01-11T21:56:51.6433175Z test_fused_backward_op_fake_quant_off (quantization.core.test_workflow_ops.TestFusedObsFakeQuant) ... ok (0.005s) 2023-01-11T21:56:51.6433578Z test_fused_obs_fake_quant_backward_op (quantization.core.test_workflow_ops.TestFusedObsFakeQuant) ... ok (0.005s) 2023-01-11T21:56:51.6433977Z test_fused_obs_fake_quant_moving_avg (quantization.core.test_workflow_ops.TestFusedObsFakeQuant) 2023-01-11T21:56:51.6434331Z Tests the case where we call the fused_obs_fake_quant op multiple times ... ok (0.011s) 2023-01-11T21:56:51.6434697Z test_fused_obs_fake_quant_moving_avg_per_channel (quantization.core.test_workflow_ops.TestFusedObsFakeQuant) 2023-01-11T21:56:51.6435048Z Tests the case where we call the fused_obs_fake_quant op multiple times ... ok (0.038s) 2023-01-11T21:56:51.6435436Z test_compare_fused_obs_fq_oss_module (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.009s) 2023-01-11T21:56:51.6435885Z test_default_fused_qat_config (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.015s) 2023-01-11T21:56:51.6436306Z test_embedding_bag_qat_config (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.018s) 2023-01-11T21:56:51.6436743Z test_embedding_qat_config (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.048s) 2023-01-11T21:56:51.6437171Z test_fused_mod_per_channel (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.025s) 2023-01-11T21:56:51.6437597Z test_fused_mod_reduce_range (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.001s) 2023-01-11T21:56:51.6438011Z test_fused_obs_fq_module (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.005s) 2023-01-11T21:56:51.6438440Z test_fused_obs_fq_moving_avg_module (quantization.core.test_workflow_module.TestFusedObsFakeQuantModule) ... ok (0.007s) 2023-01-11T21:56:51.6438853Z test_quantized_add_relu_fusion (quantization.jit.test_fusion_passes.TestFusionPasses) ... ok (0.019s) 2023-01-11T21:56:51.6439299Z test_input_weight_equalization_determine_points (quantization.fx.test_model_report_fx.TestFxDetectInputWeightEqualization) ... ok (0.054s) 2023-01-11T21:56:51.6439782Z test_input_weight_equalization_report_gen (quantization.fx.test_model_report_fx.TestFxDetectInputWeightEqualization) ... ok (0.048s) 2023-01-11T21:56:51.6440266Z test_input_weight_equalization_report_gen_empty (quantization.fx.test_model_report_fx.TestFxDetectInputWeightEqualization) ... ok (0.012s) 2023-01-11T21:56:51.6440706Z test_all_outlier_report_gen (quantization.fx.test_model_report_fx.TestFxDetectOutliers) ... ok (0.022s) 2023-01-11T21:56:51.6441122Z test_multiple_run_consistent_spike_outlier_report_gen (quantization.fx.test_model_report_fx.TestFxDetectOutliers) ... ok (0.105s) 2023-01-11T21:56:51.6441516Z test_no_outlier_report_gen (quantization.fx.test_model_report_fx.TestFxDetectOutliers) ... ok (0.025s) 2023-01-11T21:56:51.6441913Z test_outlier_detection_determine_points (quantization.fx.test_model_report_fx.TestFxDetectOutliers) ... ok (0.160s) 2023-01-11T21:56:51.6442331Z test_constructor (quantization.fx.test_model_report_fx.TestFxModelReportClass) 2023-01-11T21:56:51.6442649Z Tests the constructor of the ModelReport class. ... ok (0.015s) 2023-01-11T21:56:51.6442980Z test_equalization_mapping_generation (quantization.fx.test_model_report_fx.TestFxModelReportClass) 2023-01-11T21:56:51.6443322Z Tests for generation of qconfigs by ModelReport API ... ok (0.053s) 2023-01-11T21:56:51.6443647Z test_generate_report (quantization.fx.test_model_report_fx.TestFxModelReportClass) 2023-01-11T21:56:51.6444273Z Tests model_report.generate_model_report to ensure report generation ... /var/lib/jenkins/workspace/test/quantization/fx/test_model_report_fx.py:1061: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:56:51.6444840Z example_input = torch.tensor(torch.randint(100, (1, 3, 3, 3)), dtype=torch.float) 2023-01-11T21:56:51.6445077Z ok (0.147s) 2023-01-11T21:56:51.6445347Z test_generate_visualizer (quantization.fx.test_model_report_fx.TestFxModelReportClass) 2023-01-11T21:56:51.6445713Z Tests that the ModelReport class can properly create the ModelReportVisualizer instance ... ok (0.033s) 2023-01-11T21:56:51.6446099Z test_prepare_model_callibration (quantization.fx.test_model_report_fx.TestFxModelReportClass) 2023-01-11T21:56:51.6446483Z Tests model_report.prepare_detailed_calibration that prepares the model for callibration ... ok (0.025s) 2023-01-11T21:56:51.6446865Z test_qconfig_mapping_generation (quantization.fx.test_model_report_fx.TestFxModelReportClass) 2023-01-11T21:56:51.6447185Z Tests for generation of qconfigs by ModelReport API ... ok (0.058s) 2023-01-11T21:56:51.6447567Z test_nested_detection_case (quantization.fx.test_model_report_fx.TestFxModelReportDetectDynamicStatic) ... ok (0.048s) 2023-01-11T21:56:51.6448005Z test_conv_sub_class_considered (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.023s) 2023-01-11T21:56:51.6448430Z test_fusion_layer_in_sequential (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.019s) 2023-01-11T21:56:51.6448842Z test_multi_linear_model_without_per_channel (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.016s) 2023-01-11T21:56:51.6449372Z test_multiple_q_config_options (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.019s) 2023-01-11T21:56:51.6449788Z test_qat_aware_model_example (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.011s) 2023-01-11T21:56:51.6450188Z test_sequential_model_format (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.021s) 2023-01-11T21:56:51.6450582Z test_simple_conv (quantization.fx.test_model_report_fx.TestFxModelReportDetector) ... ok (0.012s) 2023-01-11T21:56:51.6450976Z test_observer_after_relu (quantization.fx.test_model_report_fx.TestFxModelReportObserver) ... ok (0.019s) 2023-01-11T21:56:51.6451388Z test_random_epochs_and_batches (quantization.fx.test_model_report_fx.TestFxModelReportObserver) ... ok (0.114s) 2023-01-11T21:56:51.6451781Z test_single_batch_of_ones (quantization.fx.test_model_report_fx.TestFxModelReportObserver) ... ok (0.003s) 2023-01-11T21:56:51.6452179Z test_zero_tensor_errors (quantization.fx.test_model_report_fx.TestFxModelReportObserver) ... ok (0.013s) 2023-01-11T21:56:51.6452586Z test_generate_tables_match_with_report (quantization.fx.test_model_report_fx.TestFxModelReportVisualizer) 2023-01-11T21:56:51.6452911Z Tests the generate_table_view() ... ok (0.031s) 2023-01-11T21:56:51.6453219Z test_generate_tables_no_match (quantization.fx.test_model_report_fx.TestFxModelReportVisualizer) 2023-01-11T21:56:51.6453528Z Tests the generate_table_view() ... ok (0.029s) 2023-01-11T21:56:51.6453863Z test_generate_tables_single_feat_match (quantization.fx.test_model_report_fx.TestFxModelReportVisualizer) 2023-01-11T21:56:51.6454169Z Tests the generate_table_view() ... ok (0.028s) 2023-01-11T21:56:51.6454536Z test_get_modules_and_features (quantization.fx.test_model_report_fx.TestFxModelReportVisualizer) 2023-01-11T21:56:51.6454901Z Tests the get_all_unique_module_fqns and get_all_unique_feature_names methods of ... ok (0.029s) 2023-01-11T21:56:51.6455277Z test_histogram_observer (quantization.core.test_workflow_module.TestHistogramObserver) ... ok (21.038s) 2023-01-11T21:56:51.6455686Z test_histogram_observer_against_reference (quantization.core.test_workflow_module.TestHistogramObserver) ... ok (4.482s) 2023-01-11T21:56:51.6456123Z test_histogram_observer_correct_numel (quantization.core.test_workflow_module.TestHistogramObserver) ... ok (0.003s) 2023-01-11T21:56:51.6456541Z test_histogram_observer_extreme_inputs (quantization.core.test_workflow_module.TestHistogramObserver) 2023-01-11T21:56:51.6456937Z Ensures that the HistogramObserver is able to work correctly in ... ok (0.001s) 2023-01-11T21:56:51.6457304Z test_histogram_observer_one_sided (quantization.core.test_workflow_module.TestHistogramObserver) ... ok (0.210s) 2023-01-11T21:56:51.6457725Z test_histogram_observer_same_inputs (quantization.core.test_workflow_module.TestHistogramObserver) ... ok (0.666s) 2023-01-11T21:56:51.6458132Z test_observer_scriptable (quantization.core.test_workflow_module.TestHistogramObserver) ... ok (0.458s) 2023-01-11T21:56:51.6458538Z test_fake_quant_true_quant_compare (quantization.eager.test_model_numerics.TestModelNumericsEager) ... ok (0.166s) 2023-01-11T21:56:51.6458970Z test_float_quant_compare_per_channel (quantization.eager.test_model_numerics.TestModelNumericsEager) ... ok (0.027s) 2023-01-11T21:56:51.6459401Z test_float_quant_compare_per_tensor (quantization.eager.test_model_numerics.TestModelNumericsEager) ... ok (0.137s) 2023-01-11T21:56:51.6459845Z test_weight_only_activation_only_fakequant (quantization.eager.test_model_numerics.TestModelNumericsEager) ... ok (0.202s) 2023-01-11T21:56:51.6460275Z test_compare_model_outputs_conv_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.170s) 2023-01-11T21:56:51.6460724Z test_compare_model_outputs_functional_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.176s) 2023-01-11T21:56:51.6461174Z test_compare_model_outputs_linear_dynamic (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.027s) 2023-01-11T21:56:51.6461615Z test_compare_model_outputs_linear_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.770s) 2023-01-11T21:56:51.6462037Z test_compare_model_outputs_lstm_dynamic (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.068s) 2023-01-11T21:56:51.6462464Z test_compare_model_stub_conv_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.220s) 2023-01-11T21:56:51.6462994Z test_compare_model_stub_functional_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.177s) 2023-01-11T21:56:51.6463445Z test_compare_model_stub_linear_dynamic (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.028s) 2023-01-11T21:56:51.6463865Z test_compare_model_stub_linear_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.727s) 2023-01-11T21:56:51.6464296Z test_compare_model_stub_lstm_dynamic (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.068s) 2023-01-11T21:56:51.6464723Z test_compare_model_stub_partial (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.715s) 2023-01-11T21:56:51.6465154Z test_compare_model_stub_submodule_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.042s) 2023-01-11T21:56:51.6465572Z test_compare_weights_conv_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.115s) 2023-01-11T21:56:51.6465999Z test_compare_weights_linear_dynamic (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.012s) 2023-01-11T21:56:51.6466466Z test_compare_weights_linear_static (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.709s) 2023-01-11T21:56:51.6466893Z test_compare_weights_lstm_dynamic (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... ok (0.066s) 2023-01-11T21:56:51.6468022Z test_mobilenet_v2 (quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager) ... /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=MobileNet_V2_Weights.IMAGENET1K_V1`. You can also use `weights=MobileNet_V2_Weights.DEFAULT` to get the most up-to-date weights. 2023-01-11T21:56:51.6468711Z warnings.warn(msg) 2023-01-11T21:56:51.6469196Z Downloading: "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth" to /var/lib/jenkins/.cache/torch/hub/checkpoints/mobilenet_v2-b0353104.pth 2023-01-11T21:56:51.6469460Z 2023-01-11T21:56:51.6469548Z 0%| | 0.00/13.6M [00:00, quant_min=0, quant_max=63, dtype=torch.quint8){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2cf800b80>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2cf800b80>}) 2023-01-11T21:56:51.6543269Z warnings.warn(("QConfig %s quantization range must fall within the backend's:\n" 2023-01-11T21:56:51.6543789Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:783: UserWarning: QConfig activation quantization range must fall within the backend's: 2023-01-11T21:56:51.6545131Z QConfig range = (0, 255), BackendConfig range = (0, 31), ignoring QConfig(activation=functools.partial(, dtype=torch.quint8){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2cf800b80>}, weight=functools.partial(, quant_min=-128, quant_max=127, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2cf800b80>}) 2023-01-11T21:56:51.6546039Z warnings.warn(("QConfig %s quantization range must fall within the backend's:\n" 2023-01-11T21:56:51.6546862Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:779: UserWarning: QConfig activation must specify 'quant_min' and 'quant_max', ignoring QConfig(activation=, weight=) 2023-01-11T21:56:51.6547540Z warnings.warn("QConfig %s must specify 'quant_min' and 'quant_max', ignoring %s" % 2023-01-11T21:56:51.6547788Z ok (0.033s) 2023-01-11T21:56:51.6548033Z test_backend_config_scale_min (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6549646Z Test QConfig eps validation against the BackendConfig's min scale value. ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:794: UserWarning: QConfig activation eps (tensor([6.1035e-05])) must be greater than or equal to the backend's min scale value (0.000244140625), ignoring QConfig(activation=functools.partial(, dtype=torch.quint8, eps=6.103515625e-05){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2ddba2830>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2ddba2830>}) 2023-01-11T21:56:51.6550712Z warnings.warn(("QConfig %s eps (%s) must be greater than or equal to " 2023-01-11T21:56:51.6552214Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:794: UserWarning: QConfig activation eps (tensor([1.1921e-07])) must be greater than or equal to the backend's min scale value (0.000244140625), ignoring QConfig(activation=functools.partial(, dtype=torch.quint8){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2ddba3eb0>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, eps=6.103515625e-05){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2ddba3eb0>}) 2023-01-11T21:56:51.6553180Z warnings.warn(("QConfig %s eps (%s) must be greater than or equal to " 2023-01-11T21:56:51.6554116Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:791: UserWarning: QConfig activation must specify 'eps', ignoring QConfig(activation=functools.partial(, scale=1.0, zero_point=0){}, weight=functools.partial(, scale=1.0, zero_point=0){}) 2023-01-11T21:56:51.6554869Z warnings.warn("QConfig %s must specify 'eps', ignoring %s" % (debug_string, qconfig)) 2023-01-11T21:56:51.6555109Z ok (0.044s) 2023-01-11T21:56:51.6555376Z test_change_backend_config_for_fixed_qparam_ops (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6555733Z Making sure we can skip validation of qconfigs for fixedqparam ops based ... ok (0.007s) 2023-01-11T21:56:51.6556083Z test_channel_shuffle_lowering (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.072s) 2023-01-11T21:56:51.6556405Z test_conv_bn_relu (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6556784Z Tests fusion and quantization for "Conv - Bn" and "Conv - Bn - ReLU" ... ok (1.253s) 2023-01-11T21:56:51.6557109Z test_conv_linear_not_reference (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6557394Z Test quantizing conv and linear ... ok (1.832s) 2023-01-11T21:56:51.6557664Z test_conv_linear_reference (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6557983Z Test quantizing functional conv and linear with reference option ... ok (1.628s) 2023-01-11T21:56:51.6558310Z test_conv_lowering (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.070s) 2023-01-11T21:56:51.6558650Z test_convert_custom_config_from_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6559054Z test_convert_custom_config_set_observed_to_quantized_mapping (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6559474Z test_convert_custom_config_set_preserved_attributes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6559864Z test_convert_custom_config_to_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6560648Z test_convert_qconfig_mapping (quantization.fx.test_quantize_fx.TestQuantizeFx) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/convert.py:886: UserWarning: Passing a QConfig dictionary to convert is deprecated and will not be supported in a future version. Please pass in a QConfigMapping instead. 2023-01-11T21:56:51.6561130Z warnings.warn( 2023-01-11T21:56:51.6561746Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node mods1_1_packed_weight_0 target mods1_1_packed_weight_0 mods1_1_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6562296Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6562998Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node mods1_0_packed_weight_0 target mods1_0_packed_weight_0 mods1_0_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6563533Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6563770Z ok (0.100s) 2023-01-11T21:56:51.6564044Z test_convtranspose_per_channel_fails_early (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6564460Z Verifies that attempting to quantize a ConvTranspose module with per-Channel ... ok (0.011s) 2023-01-11T21:56:51.6564813Z test_copy_node_has_shared_actpp_instance (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6565160Z Test the output of CopyNode to have the same ... ok (0.041s) 2023-01-11T21:56:51.6565470Z test_custom_module_class (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.087s) 2023-01-11T21:56:51.6565820Z test_custom_module_class_input_has_multiple_users (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6566159Z Tests that the flow still works when the input of custom module ... ok (0.025s) 2023-01-11T21:56:51.6566504Z test_deepcopy_preserve_attributes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.014s) 2023-01-11T21:56:51.6566878Z test_default_qconfig_mapping_override_global (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.012s) 2023-01-11T21:56:51.6567249Z test_default_quant_after_none_qconfig (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6567564Z Make sure default quant is inserted properly ... ok (0.019s) 2023-01-11T21:56:51.6567851Z test_dequantize (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6568138Z Test to make sure dequantize node are placed before ... ok (0.226s) 2023-01-11T21:56:51.6568432Z test_dict_output (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6568740Z Make sure quantization runs for models with dictionary output ... ok (0.019s) 2023-01-11T21:56:51.6569180Z test_dynamic_linear_input_multiple_use (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6569505Z Tests input for dynamic linear being used by multiple ops ... ok (0.042s) 2023-01-11T21:56:51.6569830Z test_dynamic_quant_fp16 (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.055s) 2023-01-11T21:56:51.6570179Z test_dynamic_quant_weight_observer (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6570480Z Test that weight observer is run in convert step ... ok (0.015s) 2023-01-11T21:56:51.6570781Z test_dynamic_with_fusion (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6571576Z Tests that dynamic quantization APIs work with Linear + Relu fusion ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node mods2_packed_weight_0 target mods2_packed_weight_0 mods2_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6572199Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6572423Z ok (0.055s) 2023-01-11T21:56:51.6572687Z test_dynamic_with_fusion_multiple_uses (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6573026Z Tests that dynamic quantization APIs work with Linear + Relu fusion ... ok (0.041s) 2023-01-11T21:56:51.6573176Z test_fold_quant_dequant (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6573353Z Test that the sequence of quant-dequant nodes in the ... ok (0.022s) 2023-01-11T21:56:51.6573523Z test_fp32_input_fp32_output (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.021s) 2023-01-11T21:56:51.6573702Z test_fp32_input_quantized_output (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.020s) 2023-01-11T21:56:51.6573840Z test_fp32_sum (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6574101Z Verifies that fp32 sum works correctly if it's before or after ... ok (0.050s) 2023-01-11T21:56:51.6574276Z test_fuse_custom_config_from_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6574468Z test_fuse_custom_config_set_preserved_attributes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6574639Z test_fuse_custom_config_to_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6574805Z test_fused_module_qat_swap (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6574954Z test_fusion_pattern_unquantized (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6575137Z Ensure that leaving a possible fusion pattern of multiple nodes ... ok (0.142s) 2023-01-11T21:56:51.6575310Z test_get_default_qconfig_valid_backend (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6575487Z Checks that AssertionError is raised when non expected backend input is specified ... ok (0.001s) 2023-01-11T21:56:51.6575667Z test_get_executorch_backend_config (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6575829Z test_getattr_with_nontensor_result (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6575970Z Verifies that binary ops get quantized correctly if some ... ok (0.051s) 2023-01-11T21:56:51.6576126Z test_linear_bn (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.748s) 2023-01-11T21:56:51.6576271Z test_linear_leaky_relu_lowering (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6576460Z Test fusion and lowering of Linear - (bn -) LeakyReLU ... ok (0.046s) 2023-01-11T21:56:51.6576617Z test_linear_qint8_activation (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6576752Z Test support for qint8 activation in reference pattern ... ok (0.015s) 2023-01-11T21:56:51.6576903Z test_linear_tanh_lowering (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6577072Z Test fusion and lowering of Linear - Tanh ... ok (0.023s) 2023-01-11T21:56:51.6577260Z test_masked_fill_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6577425Z test_match_pattern_with_multiple_args (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6577554Z Test that we can match a pattern that has multiple arguments ... ok (0.008s) 2023-01-11T21:56:51.6577717Z test_mul_add_fp16_config (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.028s) 2023-01-11T21:56:51.6577893Z test_no_obs_between_unmatched_node_and_copy_node (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6578036Z Verifies that an observer is not inserted between an unmatched ... ok (0.018s) 2023-01-11T21:56:51.6578201Z test_non_traceable_module (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.013s) 2023-01-11T21:56:51.6578339Z test_not_used (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6578446Z Test quantizing a not used value ... ok (0.014s) 2023-01-11T21:56:51.6578588Z test_observer_fqn (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6578749Z Test to make sure the observer FQN is based on the quantizable op/module that it is observing ... ok (0.023s) 2023-01-11T21:56:51.6578901Z test_output_lists_and_dicts (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6579049Z Verify that specifying complicated output types does not crash. ... ok (0.017s) 2023-01-11T21:56:51.6579217Z test_packed_weight_fused_op (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.031s) 2023-01-11T21:56:51.6579359Z test_pattern_match (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6579457Z test MatchAllNode with ... ok (0.006s) 2023-01-11T21:56:51.6579624Z test_pattern_match_constant (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.005s) 2023-01-11T21:56:51.6579840Z test_permute_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6580021Z test_prepare_custom_config_from_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6580211Z test_prepare_custom_config_set_float_to_observed_mapping (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6580409Z test_prepare_custom_config_set_input_quantized_indexes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6580611Z test_prepare_custom_config_set_non_traceable_module_classes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6580836Z test_prepare_custom_config_set_non_traceable_module_names (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6581035Z test_prepare_custom_config_set_output_quantized_indexes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6581235Z test_prepare_custom_config_set_preserved_attributes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6581431Z test_prepare_custom_config_set_standalone_module_class (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6581626Z test_prepare_custom_config_set_standalone_module_name (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6581801Z test_prepare_custom_config_to_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6581945Z test_prepare_mode (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.052s) 2023-01-11T21:56:51.6582104Z test_prepared_model_deepcopy (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6582253Z Ensures that copy.deepcopy works correctly on a prepared model. ... ok (0.019s) 2023-01-11T21:56:51.6582419Z test_preserve_attributes (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.016s) 2023-01-11T21:56:51.6582568Z test_preserve_qconfig (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6582727Z Test to make sure the temporary config option to preserve qconfig attributes ... ok (0.021s) 2023-01-11T21:56:51.6582941Z test_preserve_tuple (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6583058Z Test tuple input type is preserved ... ok (0.013s) 2023-01-11T21:56:51.6583237Z test_propagate_dtypes_for_known_nodes_dict_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.023s) 2023-01-11T21:56:51.6583440Z test_propagate_dtypes_for_known_nodes_dict_split_tuple_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6583644Z test_propagate_dtypes_for_known_nodes_dict_tuple_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.023s) 2023-01-11T21:56:51.6583838Z test_propagate_dtypes_for_known_nodes_list_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6584034Z test_propagate_dtypes_for_known_nodes_split_list_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.021s) 2023-01-11T21:56:51.6584231Z test_propagate_dtypes_for_known_nodes_split_tuple_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6584422Z test_propagate_dtypes_for_known_nodes_tuple_args (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.021s) 2023-01-11T21:56:51.6584582Z test_qat_and_script (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.208s) 2023-01-11T21:56:51.6584884Z test_qat_prepare_device_affinity (quantization.fx.test_quantize_fx.TestQuantizeFx) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:56:51.6585049Z test_qat_skip_untraced (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.027s) 2023-01-11T21:56:51.6585202Z test_qconfig_dict_setup (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.280s) 2023-01-11T21:56:51.6585411Z test_qconfig_dict_with_fused_modules (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.112s) 2023-01-11T21:56:51.6585574Z test_qconfig_for_call_func (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.031s) 2023-01-11T21:56:51.6585741Z test_qconfig_for_call_method (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.057s) 2023-01-11T21:56:51.6585901Z test_qconfig_function (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.017s) 2023-01-11T21:56:51.6586075Z test_qconfig_mapping_from_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6586239Z test_qconfig_mapping_repr (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6586414Z test_qconfig_mapping_set_global (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.001s) 2023-01-11T21:56:51.6586619Z test_qconfig_mapping_set_module_name (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6586806Z test_qconfig_mapping_set_module_name_object_type_order (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.003s) 2023-01-11T21:56:51.6586990Z test_qconfig_mapping_set_module_name_regex (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6587168Z test_qconfig_mapping_set_object_type (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6587336Z test_qconfig_mapping_to_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.002s) 2023-01-11T21:56:51.6587518Z test_qconfig_module_name_object_type_order (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.072s) 2023-01-11T21:56:51.6587688Z test_qconfig_module_name_regex (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.023s) 2023-01-11T21:56:51.6587853Z test_qconfig_module_type (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.024s) 2023-01-11T21:56:51.6588009Z test_qconfig_none (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.019s) 2023-01-11T21:56:51.6588176Z test_qconfig_precedence (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.018s) 2023-01-11T21:56:51.6588331Z test_qconfig_qat_module_type (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.031s) 2023-01-11T21:56:51.6588488Z test_qnnpack_backend_config (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6588664Z Test whether default QNNPACK QConfigs are compatible with the QNNPACK BackendConfig. ... ok (1.056s) 2023-01-11T21:56:51.6588823Z test_qparams_buffers (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.050s) 2023-01-11T21:56:51.6588969Z test_qparams_fqn (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6589096Z Test that the FQN of input_scale/zero_point is set ... ok (0.029s) 2023-01-11T21:56:51.6589260Z test_quant_output_always_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6589396Z If the output is hardcoded to be quantized, ensure that ... ok (0.095s) 2023-01-11T21:56:51.6589560Z test_quantized_input_fp32_output (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.020s) 2023-01-11T21:56:51.6589740Z test_quantized_input_quantized_output (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.019s) 2023-01-11T21:56:51.6589892Z test_quantized_model_type (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6590042Z Test state_dict and deepcopy works properly in the quantized model ... ok (0.042s) 2023-01-11T21:56:51.6590186Z test_ref_conv_module (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6590316Z Make sure the numerics for models with ref conv module ... ok (0.142s) 2023-01-11T21:56:51.6590465Z test_ref_linear_module (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6590599Z Make sure the numerics for models with ref linear module ... ok (0.047s) 2023-01-11T21:56:51.6590751Z test_register_patterns (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.003s) 2023-01-11T21:56:51.6590939Z test_relu_lowering (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.019s) 2023-01-11T21:56:51.6591098Z test_remove_qconfig (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.015s) 2023-01-11T21:56:51.6591282Z test_repeat_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.021s) 2023-01-11T21:56:51.6591446Z test_reroute_tuple_getitem_patterns (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6591613Z The following graph should redirect the output to `b`. After the transformation, ... ok (0.002s) 2023-01-11T21:56:51.6591796Z test_reshape_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.020s) 2023-01-11T21:56:51.6591949Z test_return_none (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.012s) 2023-01-11T21:56:51.6592144Z test_reuse_input_qconfig (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.237s) 2023-01-11T21:56:51.6592302Z test_save_observer_state_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.584s) 2023-01-11T21:56:51.6592462Z test_sequential (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.327s) 2023-01-11T21:56:51.6592624Z test_shape_followed_by_quantized_op (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6592744Z Make sure that shape does not dequantize ... ok (0.026s) 2023-01-11T21:56:51.6592920Z test_size_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.018s) 2023-01-11T21:56:51.6593095Z test_stack_trace_preserved_linear (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.023s) 2023-01-11T21:56:51.6593276Z test_standalone_module_float_interface (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.116s) 2023-01-11T21:56:51.6593467Z test_standalone_module_quantized_interface (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.114s) 2023-01-11T21:56:51.6593596Z test_state_dict (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6593725Z Make sure packed params appear in state_dict ... ok (0.083s) 2023-01-11T21:56:51.6593869Z test_static_lstm (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6594040Z Test statically quantized custom module LSTM followed by ops that consume individual ... ok (0.261s) 2023-01-11T21:56:51.6594198Z test_static_lstm_consume_tuple (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6594364Z Test statically quantized custom module LSTM followed by a module that consumes the ... ok (0.243s) 2023-01-11T21:56:51.6594533Z test_static_lstm_with_custom_fixed_qparams (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6594698Z Test statically quantized LSTM with custom fixed qparams assigned to each of the ... ok (0.069s) 2023-01-11T21:56:51.6594842Z test_sub_scalar (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.018s) 2023-01-11T21:56:51.6595011Z test_symmetric_qnnpack_qconfig_mapping (quantization.fx.test_quantize_fx.TestQuantizeFx) 2023-01-11T21:56:51.6595207Z Test whether `torch.ao.quantization.qconfig_mapping._get_symmetric_qnnpack_qconfig_mapping` ... ok (0.502s) 2023-01-11T21:56:51.6595400Z test_torch_transpose_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.024s) 2023-01-11T21:56:51.6595591Z test_torch_unsqueeze_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6595763Z test_trace_quantize_per_tensor (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.017s) 2023-01-11T21:56:51.6595950Z test_transpose_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.022s) 2023-01-11T21:56:51.6596142Z test_unsqueeze__nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.021s) 2023-01-11T21:56:51.6596328Z test_unsqueeze_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.141s) 2023-01-11T21:56:51.6596524Z test_view_nontensor_args_not_observed (quantization.fx.test_quantize_fx.TestQuantizeFx) ... ok (0.033s) 2023-01-11T21:56:51.6596694Z test_model_dropout (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... ok (1.622s) 2023-01-11T21:56:51.6596923Z test_prepare_serialize_switch_device_convert (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... skip: gpu is not available. (0.001s) 2023-01-11T21:56:51.6597104Z test_qat_embedding_linear (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... ok (0.608s) 2023-01-11T21:56:51.6597287Z test_qat_embeddingbag_linear (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... ok (0.646s) 2023-01-11T21:56:51.6597466Z test_qat_functional_linear (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... ok (0.299s) 2023-01-11T21:56:51.6597886Z test_resnet18_ddp (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... skip: TODO: Test is always failing - https://github.com/pytorch/pytorch/issues/54979 (0.001s) 2023-01-11T21:56:51.6598059Z test_resnet_base (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... ok (1.284s) 2023-01-11T21:56:51.6598267Z test_static_gpu_convert_basic (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... skip: gpu is not available. (0.001s) 2023-01-11T21:56:51.6598482Z test_switch_device_prepare_convert (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... skip: gpu is not available. (0.001s) 2023-01-11T21:56:51.6598671Z test_torchvision (quantization.fx.test_quantize_fx.TestQuantizeFxModels) ... skip: skip for now since tbb failed (0.001s) 2023-01-11T21:56:51.6598827Z test_add (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (7.739s) 2023-01-11T21:56:51.6598986Z test_add_relu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (7.989s) 2023-01-11T21:56:51.6599169Z test_add_relu_multiple_uses_of_relu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.037s) 2023-01-11T21:56:51.6599332Z test_ave_pool_with_custom_cfg (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6599467Z A test that checks correct patterns are produced for ... ok (0.016s) 2023-01-11T21:56:51.6599695Z test_bmm (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.001s) 2023-01-11T21:56:51.6599853Z test_bmm_int_reference (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6600057Z int8 is not supported for bmm so we won't produce reference ... ok (0.013s) 2023-01-11T21:56:51.6600197Z test_boolean_tensor (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6600388Z Make sure we don't insert observer for boolean Tensors ... ok (0.015s) 2023-01-11T21:56:51.6600529Z test_cat (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6600663Z quantization of the output of cat will depend on the ... ok (1.251s) 2023-01-11T21:56:51.6600818Z test_chunk (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.020s) 2023-01-11T21:56:51.6600976Z test_clamp (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (1.880s) 2023-01-11T21:56:51.6601138Z test_conv_module (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.582s) 2023-01-11T21:56:51.6601307Z test_conv_transpose_1d (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (1.092s) 2023-01-11T21:56:51.6601460Z test_conv_transpose_2d (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.340s) 2023-01-11T21:56:51.6601618Z test_copy_node_fp32_input (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6601761Z CopyNode works for both fp32 and int8 inputs, this is a test to make ... ok (0.017s) 2023-01-11T21:56:51.6601983Z test_div (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.000s) 2023-01-11T21:56:51.6602136Z test_elu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.897s) 2023-01-11T21:56:51.6602297Z test_embedding (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.083s) 2023-01-11T21:56:51.6602494Z test_embedding_bag (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.075s) 2023-01-11T21:56:51.6602663Z test_fixed_qparams_ops (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.473s) 2023-01-11T21:56:51.6602823Z test_fixed_qparams_ops_fp16 (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.033s) 2023-01-11T21:56:51.6602995Z test_fixed_qparams_ops_qint8 (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.044s) 2023-01-11T21:56:51.6603166Z test_fixed_qparams_ops_wrong_qconfig (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6604608Z Test that wrong qconfigs for fixed qparams ops results in the ops not being quantized. ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:813: UserWarning: QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize for fixed qparams ops, ignoring QConfig(activation=functools.partial(, quant_min=0, quant_max=127){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2dc06a710>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2dc06a710>}). 2023-01-11T21:56:51.6604839Z Please use torch.ao.quantization.get_default_qconfig_mapping or torch.ao.quantization.get_default_qat_qconfig_mapping. Example: 2023-01-11T21:56:51.6604963Z qconfig_mapping = get_default_qconfig_mapping("fbgemm") 2023-01-11T21:56:51.6605092Z model = prepare_fx(model, qconfig_mapping, example_inputs) 2023-01-11T21:56:51.6605280Z warnings.warn(("QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize " 2023-01-11T21:56:51.6606547Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:813: UserWarning: QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize for fixed qparams ops, ignoring QConfig(activation=functools.partial(, quant_min=0, quant_max=127){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2dc06beb0>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2dc06beb0>}). 2023-01-11T21:56:51.6606772Z Please use torch.ao.quantization.get_default_qconfig_mapping or torch.ao.quantization.get_default_qat_qconfig_mapping. Example: 2023-01-11T21:56:51.6606897Z qconfig_mapping = get_default_qconfig_mapping("fbgemm") 2023-01-11T21:56:51.6607027Z model = prepare_fx(model, qconfig_mapping, example_inputs) 2023-01-11T21:56:51.6607214Z warnings.warn(("QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize " 2023-01-11T21:56:51.6608467Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:813: UserWarning: QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize for fixed qparams ops, ignoring QConfig(activation=functools.partial(, quant_min=0, quant_max=127){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2dc06a560>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2dc06a560>}). 2023-01-11T21:56:51.6608691Z Please use torch.ao.quantization.get_default_qconfig_mapping or torch.ao.quantization.get_default_qat_qconfig_mapping. Example: 2023-01-11T21:56:51.6608844Z qconfig_mapping = get_default_qconfig_mapping("fbgemm") 2023-01-11T21:56:51.6608971Z model = prepare_fx(model, qconfig_mapping, example_inputs) 2023-01-11T21:56:51.6609288Z warnings.warn(("QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize " 2023-01-11T21:56:51.6610611Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py:813: UserWarning: QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize for fixed qparams ops, ignoring QConfig(activation=functools.partial(, quant_min=0, quant_max=127){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2ddaca290>}, weight=functools.partial(, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric){'factory_kwargs': .get_factory_kwargs_based_on_module_device at 0x7fe2ddaca290>}). 2023-01-11T21:56:51.6610858Z Please use torch.ao.quantization.get_default_qconfig_mapping or torch.ao.quantization.get_default_qat_qconfig_mapping. Example: 2023-01-11T21:56:51.6610971Z qconfig_mapping = get_default_qconfig_mapping("fbgemm") 2023-01-11T21:56:51.6611103Z model = prepare_fx(model, qconfig_mapping, example_inputs) 2023-01-11T21:56:51.6611289Z warnings.warn(("QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize " 2023-01-11T21:56:51.6611357Z ok (0.027s) 2023-01-11T21:56:51.6611527Z test_float_functional (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.092s) 2023-01-11T21:56:51.6611698Z test_functional_conv (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (14.528s) 2023-01-11T21:56:51.6611871Z test_functional_linear (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (18.847s) 2023-01-11T21:56:51.6612079Z test_gelu_normal (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: TODO: reenable with backend_config api (0.000s) 2023-01-11T21:56:51.6612307Z test_gelu_reference (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.001s) 2023-01-11T21:56:51.6612467Z test_general_shape_ops (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6612597Z A test that checks dequantize will be swapped for ... ok (0.215s) 2023-01-11T21:56:51.6612753Z test_general_value_ops (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6612887Z A test that checks correct patterns are produced for ... ok (0.064s) 2023-01-11T21:56:51.6613032Z test_getitem (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6613190Z Make sure we only insert observer for getitem if the following node is matched ... ok (0.045s) 2023-01-11T21:56:51.6613353Z test_hardswish (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.883s) 2023-01-11T21:56:51.6613501Z test_instance_norm (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (3.643s) 2023-01-11T21:56:51.6613669Z test_int8_input_no_unnecessary_fq (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6613804Z If the inputs to the graph are quantized and the only node ... ok (0.014s) 2023-01-11T21:56:51.6613963Z test_layer_norm (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.692s) 2023-01-11T21:56:51.6614122Z test_leaky_relu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.763s) 2023-01-11T21:56:51.6614292Z test_linear_dynamic_fp16 (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.401s) 2023-01-11T21:56:51.6614453Z test_linear_module (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (5.721s) 2023-01-11T21:56:51.6614623Z test_linear_static_fp16 (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.510s) 2023-01-11T21:56:51.6614860Z test_mish_reference (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.001s) 2023-01-11T21:56:51.6615038Z test_mul (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (7.747s) 2023-01-11T21:56:51.6615199Z test_mul_relu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (7.986s) 2023-01-11T21:56:51.6615371Z test_multiple_qconfigs_for_single_value (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6615490Z Test multiple qconfigs for a single value ... ok (0.019s) 2023-01-11T21:56:51.6616132Z test_norm_weight_bias (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node mods1_packed_weight_0 target mods1_packed_weight_0 mods1_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6616376Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6616445Z ok (1.585s) 2023-01-11T21:56:51.6616602Z test_prelu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.461s) 2023-01-11T21:56:51.6616763Z test_qbatch_norm (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.446s) 2023-01-11T21:56:51.6616915Z test_qbatch_norm_relu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (1.836s) 2023-01-11T21:56:51.6617072Z test_qmatmul (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (2.194s) 2023-01-11T21:56:51.6617241Z test_quantized_add_qat (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.027s) 2023-01-11T21:56:51.6617401Z test_quantized_conv_relu (quantization.fx.test_quantize_fx.TestQuantizeFxOps) 2023-01-11T21:56:51.6617525Z tests for conv1d_relu/conv2d_relu/conv3d_relu ... ok (2.392s) 2023-01-11T21:56:51.6617695Z test_quantized_mul_qat (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.027s) 2023-01-11T21:56:51.6617868Z test_ref_pattern_multi_use (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.025s) 2023-01-11T21:56:51.6618033Z test_reshape_fp16 (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (0.028s) 2023-01-11T21:56:51.6618169Z test_rnn (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (5.088s) 2023-01-11T21:56:51.6618326Z test_rnn_cell (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... ok (3.021s) 2023-01-11T21:56:51.6618560Z test_silu_reference (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.001s) 2023-01-11T21:56:51.6618768Z test_softmax_normal (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: TODO: reenable with backend_config api (0.000s) 2023-01-11T21:56:51.6619011Z test_softmax_reference (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.001s) 2023-01-11T21:56:51.6619235Z test_sub (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.000s) 2023-01-11T21:56:51.6619452Z test_sum (quantization.fx.test_quantize_fx.TestQuantizeFxOps) ... skip: This is no longer needed right now, can enable later with new api (0.000s) 2023-01-11T21:56:51.6619606Z test_conv (quantization.jit.test_quantize_jit.TestQuantizeJit) ... ok (2.174s) 2023-01-11T21:56:51.6619763Z test_conv_bn (quantization.jit.test_quantize_jit.TestQuantizeJit) ... ok (0.366s) 2023-01-11T21:56:51.6620113Z test_conv_transpose (quantization.jit.test_quantize_jit.TestQuantizeJit) ... [W insert_observers.cpp:1580] Warning: prim::Loop is not yet supported in quantization, please make sure nothing needs to be quantized in the loop (function operator()) 2023-01-11T21:56:51.6620181Z ok (0.575s) 2023-01-11T21:56:51.6620431Z test_linear_dynamic_fp16 (quantization.jit.test_quantize_jit.TestQuantizeJit) ... [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6620602Z [W QuantUtils.h:215] Warning: FOUND weight out of range (function HandleWeightsSaturation) 2023-01-11T21:56:51.6620706Z ok (0.032s) 2023-01-11T21:56:51.6621824Z test_nested (quantization.jit.test_quantize_jit.TestQuantizeJit) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:818: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at /var/lib/jenkins/workspace/build/aten/src/ATen/core/TensorBody.h:485.) 2023-01-11T21:56:51.6621912Z if param.grad is not None: 2023-01-11T21:56:51.6622006Z ok (1.164s) 2023-01-11T21:56:51.6622184Z test_observer_with_ignored_function (quantization.jit.test_quantize_jit.TestQuantizeJit) 2023-01-11T21:56:51.6622326Z Test observers with ignored function and make sure it works in ... ok (1.330s) 2023-01-11T21:56:51.6623005Z test_single_linear (quantization.jit.test_quantize_jit.TestQuantizeJit) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch. 2023-01-11T21:56:51.6623083Z warnings.warn( 2023-01-11T21:56:51.6623137Z ok (4.618s) 2023-01-11T21:56:51.6623314Z test_single_linear_dynamic (quantization.jit.test_quantize_jit.TestQuantizeJit) ... ok (0.133s) 2023-01-11T21:56:51.6623476Z test_skip_quant (quantization.jit.test_quantize_jit.TestQuantizeJit) ... ok (5.371s) 2023-01-11T21:56:51.6623647Z test_cat_linear (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (0.089s) 2023-01-11T21:56:51.6623811Z test_clamp (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (3.902s) 2023-01-11T21:56:51.6623997Z test_conv_with_benchmark_flag (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (0.296s) 2023-01-11T21:56:51.6624164Z test_dequantize_tuple (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6624295Z Make sure dequantize can support Tuple of tensor ... ok (1.417s) 2023-01-11T21:56:51.6624455Z test_elu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (15.697s) 2023-01-11T21:56:51.6624608Z test_general_shape_ops (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6624738Z A test that checks dequantize will be swapped for ... ok (0.119s) 2023-01-11T21:56:51.6624900Z test_general_value_ops (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6625035Z A test that checks correct patterns are produced for ... ok (0.328s) 2023-01-11T21:56:51.6625204Z test_group_norm (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (12.738s) 2023-01-11T21:56:51.6625374Z test_hardswish (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (12.174s) 2023-01-11T21:56:51.6625681Z test_instance_norm (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6625899Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6626106Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6626299Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6626514Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6626754Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6626956Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6627168Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6627375Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6627634Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6627848Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6628055Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6628261Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6628467Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6628672Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6628860Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6629066Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6629270Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6629471Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6629678Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6629880Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6630083Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6630289Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6630491Z [W observer.py:1204] Warning: must run observer before calling calculate_qparams. Returning default scale and zero point (function ) 2023-01-11T21:56:51.6630560Z ok (13.129s) 2023-01-11T21:56:51.6630732Z test_layer_norm (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (13.058s) 2023-01-11T21:56:51.6630885Z test_linear (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (19.277s) 2023-01-11T21:56:51.6631088Z test_qbatch_norm (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (8.989s) 2023-01-11T21:56:51.6631284Z test_qbatch_norm_relu_BNFuncInplaceRelu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (5.922s) 2023-01-11T21:56:51.6631473Z test_qbatch_norm_relu_BNFuncRelu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (5.932s) 2023-01-11T21:56:51.6631655Z test_qbatch_norm_relu_BNRelu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (11.952s) 2023-01-11T21:56:51.6631825Z test_quantized_add (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (5.574s) 2023-01-11T21:56:51.6631992Z test_quantized_add_alpha (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6632125Z Test quant fusion for multiple aten::add using same ... ok (2.894s) 2023-01-11T21:56:51.6632327Z test_quantized_add_relu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (9.961s) 2023-01-11T21:56:51.6632487Z test_quantized_add_relu_alpha (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6632624Z Test quant fusion for multiple aten::add using same ... ok (21.133s) 2023-01-11T21:56:51.6632801Z test_quantized_add_scalar (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (2.892s) 2023-01-11T21:56:51.6632984Z test_quantized_add_scalar_relu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (6.358s) 2023-01-11T21:56:51.6633144Z test_quantized_cat (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6633280Z quantization of the output of cat will be depend on the ... ok (2.297s) 2023-01-11T21:56:51.6633450Z test_quantized_conv (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (3.519s) 2023-01-11T21:56:51.6633613Z test_quantized_conv_relu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) 2023-01-11T21:56:51.6633730Z tests for conv1d_relu/conv2d_relu/conv3d_relu ... ok (14.079s) 2023-01-11T21:56:51.6633900Z test_quantized_mul (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (1.965s) 2023-01-11T21:56:51.6634074Z test_quantized_mul_relu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (9.980s) 2023-01-11T21:56:51.6634253Z test_quantized_mul_scalar (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (1.801s) 2023-01-11T21:56:51.6634435Z test_quantized_mul_scalar_relu (quantization.jit.test_quantize_jit.TestQuantizeJitOps) ... ok (6.411s) 2023-01-11T21:56:51.6634606Z test_conv_trace (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.051s) 2023-01-11T21:56:51.6634793Z test_convtranspose_trace (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.051s) 2023-01-11T21:56:51.6634972Z test_dedup_module_uses (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.006s) 2023-01-11T21:56:51.6635138Z test_finalize_debug (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.100s) 2023-01-11T21:56:51.6635322Z test_finalize_for_linear (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.074s) 2023-01-11T21:56:51.6635505Z test_foldbn_complex_cases (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.765s) 2023-01-11T21:56:51.6635684Z test_foldbn_in_submodule (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.065s) 2023-01-11T21:56:51.6635852Z test_foldbn_no_fusion (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6636073Z Test that we don't fuse the cases when module type does not match ... ok (0.007s) 2023-01-11T21:56:51.6636262Z test_foldbn_shared_classtype (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.583s) 2023-01-11T21:56:51.6636436Z test_foldbn_trivial (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.054s) 2023-01-11T21:56:51.6636622Z test_foldbn_trivial_nobias (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.054s) 2023-01-11T21:56:51.6636781Z test_fuse_linear (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.040s) 2023-01-11T21:56:51.6636988Z test_inplace_option (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.169s) 2023-01-11T21:56:51.6637166Z test_insert_observers (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.029s) 2023-01-11T21:56:51.6637360Z test_insert_observers_child_qconfig (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.036s) 2023-01-11T21:56:51.6637545Z test_insert_observers_for_general_ops (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6637741Z Make sure we skip observers for ops that doesn't require ... ok (0.029s) 2023-01-11T21:56:51.6637927Z test_insert_observers_for_if (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.101s) 2023-01-11T21:56:51.6638157Z test_insert_observers_for_if_consistent_observation (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6638281Z check quantization for if works as long as ... ok (0.266s) 2023-01-11T21:56:51.6638459Z test_insert_observers_for_nested_if (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.102s) 2023-01-11T21:56:51.6638661Z test_insert_observers_for_reused_weight (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.025s) 2023-01-11T21:56:51.6638851Z test_insert_observers_interface (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.070s) 2023-01-11T21:56:51.6639056Z test_insert_observers_interface_unshare_type (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.255s) 2023-01-11T21:56:51.6639249Z test_insert_observers_propagate_observed (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6639394Z Make sure we propagate observed property through general ops ... ok (0.035s) 2023-01-11T21:56:51.6639613Z test_insert_observers_propagate_observed_for_function (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.042s) 2023-01-11T21:56:51.6639817Z test_insert_observers_propagate_observed_in_submodule (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6639963Z Make sure we propagate observed property through general ops ... ok (0.038s) 2023-01-11T21:56:51.6640149Z test_insert_observers_shared_class_type (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.034s) 2023-01-11T21:56:51.6640337Z test_insert_observers_skip_values (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.121s) 2023-01-11T21:56:51.6640529Z test_insert_observers_weight_dtype (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.029s) 2023-01-11T21:56:51.6640710Z test_insert_quant_dequant (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.175s) 2023-01-11T21:56:51.6640913Z test_insert_quant_dequant_shared_class_type (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.174s) 2023-01-11T21:56:51.6641096Z test_interface_with_fork (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.079s) 2023-01-11T21:56:51.6641270Z test_module_list (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.087s) 2023-01-11T21:56:51.6641443Z test_quantize_fork_wait (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6641699Z Tests the case where fork and wait calls are in different subgraphs ... [W utils.py:310] Warning: must run observer before calling calculate_qparams. Returning default values. (function ) 2023-01-11T21:56:51.6641754Z ok (0.071s) 2023-01-11T21:56:51.6641947Z test_replicate_dequant_same_value (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.074s) 2023-01-11T21:56:51.6642132Z test_replicate_dequantize (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.008s) 2023-01-11T21:56:51.6642329Z test_replicate_dequantize_in_block (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.008s) 2023-01-11T21:56:51.6642506Z test_replicate_quantize_for_if (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) 2023-01-11T21:56:51.6642776Z We want to move quantize nodes for output of prim::If ... [W utils.py:310] Warning: must run observer before calling calculate_qparams. Returning default values. (function ) 2023-01-11T21:56:51.6642960Z [W utils.py:310] Warning: must run observer before calling calculate_qparams. Returning default values. (function ) 2023-01-11T21:56:51.6643136Z [W utils.py:310] Warning: must run observer before calling calculate_qparams. Returning default values. (function ) 2023-01-11T21:56:51.6643308Z [W utils.py:310] Warning: must run observer before calling calculate_qparams. Returning default values. (function ) 2023-01-11T21:56:51.6643361Z ok (0.085s) 2023-01-11T21:56:51.6643555Z test_skip_dequant_constant_prop (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.082s) 2023-01-11T21:56:51.6643784Z test_swap_functional_linear (quantization.jit.test_quantize_jit.TestQuantizeJitPasses) ... ok (0.007s) 2023-01-11T21:56:51.6644594Z test_resnet18 (quantization.fx.test_quantize_pt2e.TestQuantizePT2EModels) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/_pt2e/utils.py:101: UserWarning: Attempted to insert a get_attr Node with no underlying reference in the owning GraphModule! Call GraphModule.add_submodule to add the necessary submodule, GraphModule.add_parameter to add the necessary Parameter, or nn.Module.register_buffer to add the necessary buffer 2023-01-11T21:56:51.6644708Z get_bias_node = m.graph.get_attr(bias_attr_name) 2023-01-11T21:56:51.6644776Z ok (3.785s) 2023-01-11T21:56:51.6645010Z test_benchmark (quantization.core.test_quantized_op.TestQuantizedConv) ... skip: used for local benchmarking, comment when we want to run it (0.002s) 2023-01-11T21:56:51.6645181Z test_conv_reorder_issue_onednn (quantization.core.test_quantized_op.TestQuantizedConv) 2023-01-11T21:56:51.6645327Z Ensure reorder failure issue in conv is fixed for onednn backend. ... ok (0.007s) 2023-01-11T21:56:51.6645492Z test_qconv1d (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (1.749s) 2023-01-11T21:56:51.6645677Z test_qconv1d_cudnn (quantization.core.test_quantized_op.TestQuantizedConv) ... skip: cudnn is not enabled. (0.005s) 2023-01-11T21:56:51.6645846Z test_qconv1d_unpack (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (0.853s) 2023-01-11T21:56:51.6646008Z test_qconv2d (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (5.975s) 2023-01-11T21:56:51.6646208Z test_qconv2d_cudnn (quantization.core.test_quantized_op.TestQuantizedConv) ... skip: cudnn is not enabled. (0.005s) 2023-01-11T21:56:51.6646378Z test_qconv2d_unpack (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (1.003s) 2023-01-11T21:56:51.6646541Z test_qconv3d (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (1.240s) 2023-01-11T21:56:51.6646716Z test_qconv3d_unpack (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (0.661s) 2023-01-11T21:56:51.6646891Z test_qconv_transpose1d (quantization.core.test_quantized_op.TestQuantizedConv) ... ok (1.544s) 2023-01-11T21:56:51.6647167Z test_qconv_transpose2d (quantization.core.test_quantized_op.TestQuantizedConv) ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.004s) 2023-01-11T21:56:51.6647429Z test_qconv_transpose3d (quantization.core.test_quantized_op.TestQuantizedConv) ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.003s) 2023-01-11T21:56:51.6647619Z test_embedding (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... ok (0.267s) 2023-01-11T21:56:51.6647805Z test_embedding_2d_indices (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) 2023-01-11T21:56:51.6647946Z Tests the case where 2D indices are passed into the operator ... ok (0.003s) 2023-01-11T21:56:51.6648143Z test_embedding_bag_2bit (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... ok (0.122s) 2023-01-11T21:56:51.6648369Z test_embedding_bag_2bit_unpack (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... skip: Test needs Caffe2 (0.000s) 2023-01-11T21:56:51.6648590Z test_embedding_bag_2d_indices (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) 2023-01-11T21:56:51.6648730Z Tests the case where 2D indices are passed into the operator ... ok (0.004s) 2023-01-11T21:56:51.6648921Z test_embedding_bag_4bit (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... ok (0.192s) 2023-01-11T21:56:51.6649238Z test_embedding_bag_4bit_unpack (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... skip: Test needs Caffe2 (0.000s) 2023-01-11T21:56:51.6649427Z test_embedding_bag_byte (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... ok (0.195s) 2023-01-11T21:56:51.6649706Z test_embedding_bag_byte_unpack (quantization.core.test_quantized_op.TestQuantizedEmbeddingOps) ... skip: Test needs Caffe2 (0.000s) 2023-01-11T21:56:51.6649916Z test_conv1d_api (quantization.core.test_quantized_functional.TestQuantizedFunctionalOps) ... ok (0.312s) 2023-01-11T21:56:51.6650124Z test_conv2d_api (quantization.core.test_quantized_functional.TestQuantizedFunctionalOps) ... ok (0.258s) 2023-01-11T21:56:51.6650330Z test_conv3d_api (quantization.core.test_quantized_functional.TestQuantizedFunctionalOps) ... ok (0.206s) 2023-01-11T21:56:51.6651052Z test_grid_sample (quantization.core.test_quantized_functional.TestQuantizedFunctionalOps) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:4235: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. 2023-01-11T21:56:51.6651130Z warnings.warn( 2023-01-11T21:56:51.6651198Z ok (0.057s) 2023-01-11T21:56:51.6651403Z test_relu_api (quantization.core.test_quantized_functional.TestQuantizedFunctionalOps) ... ok (0.001s) 2023-01-11T21:56:51.6651558Z test_qlinear (quantization.core.test_quantized_op.TestQuantizedLinear) ... ok (1.730s) 2023-01-11T21:56:51.6651766Z test_qlinear_cudnn (quantization.core.test_quantized_op.TestQuantizedLinear) ... skip: cudnn is not enabled. (0.006s) 2023-01-11T21:56:51.6651945Z test_qlinear_leaky_relu (quantization.core.test_quantized_op.TestQuantizedLinear) ... ok (1.029s) 2023-01-11T21:56:51.6652117Z test_qlinear_relu (quantization.core.test_quantized_op.TestQuantizedLinear) ... ok (1.697s) 2023-01-11T21:56:51.6652289Z test_qlinear_tanh (quantization.core.test_quantized_op.TestQuantizedLinear) ... ok (0.529s) 2023-01-11T21:56:51.6652466Z test_qlinear_unpack (quantization.core.test_quantized_op.TestQuantizedLinear) ... ok (0.413s) 2023-01-11T21:56:51.6652679Z test_qlinear_with_input_q_dq_qweight_dq_output_fp32 (quantization.core.test_quantized_op.TestQuantizedLinear) ... ok (0.284s) 2023-01-11T21:56:51.6652855Z test_adaptive_avg_pool (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.629s) 2023-01-11T21:56:51.6653039Z test_adaptive_avg_pool2d_nhwc (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.076s) 2023-01-11T21:56:51.6653211Z test_adaptive_avg_pool3d_ndhwc (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.072s) 2023-01-11T21:56:51.6653381Z test_add_scalar_relu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.193s) 2023-01-11T21:56:51.6653544Z test_advanced_indexing (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6653686Z Verifies that the x[:, [0], :, :] syntax works for quantized tensors. ... ok (0.006s) 2023-01-11T21:56:51.6653842Z test_avg_pool2d (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6654023Z Note: we currently cannot test the divisor_override, because quantized op will clamp the result ... ok (1.171s) 2023-01-11T21:56:51.6654180Z test_avg_pool2d_nhwc (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6654360Z Note: 1) we currently cannot test the divisor_override, because quantized op will clamp the result ... ok (1.116s) 2023-01-11T21:56:51.6654536Z test_avg_pool3d (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6654715Z Note: we currently cannot test the divisor_override, because quantized op will clamp the result ... ok (4.682s) 2023-01-11T21:56:51.6654868Z test_avg_pool3d_nhwc (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6655048Z Note: 1) we currently cannot test the divisor_override, because quantized op will clamp the result ... ok (6.672s) 2023-01-11T21:56:51.6655216Z test_batch_norm (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.591s) 2023-01-11T21:56:51.6655385Z test_batch_norm_relu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.654s) 2023-01-11T21:56:51.6655571Z test_cat (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.361s) 2023-01-11T21:56:51.6655737Z test_cat_nhwc (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.275s) 2023-01-11T21:56:51.6655910Z test_channel_shuffle (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (1.709s) 2023-01-11T21:56:51.6656503Z test_custom_module_lstm (quantization.core.test_quantized_op.TestQuantizedOps) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to specify the range for observers. reduce_range will be deprecated in a future release of PyTorch. 2023-01-11T21:56:51.6656580Z warnings.warn( 2023-01-11T21:56:51.6656648Z ok (41.148s) 2023-01-11T21:56:51.6657230Z test_custom_module_multi_head_attention (quantization.core.test_quantized_op.TestQuantizedOps) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py:1204: UserWarning: must run observer before calling calculate_qparams. Returning default scale and zero point 2023-01-11T21:56:51.6657304Z warnings.warn( 2023-01-11T21:56:51.6657373Z ok (10.949s) 2023-01-11T21:56:51.6657879Z test_empty_batch (quantization.core.test_quantized_op.TestQuantizedOps) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:4022: UserWarning: nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead. 2023-01-11T21:56:51.6658074Z warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.") 2023-01-11T21:56:51.6658141Z ok (0.025s) 2023-01-11T21:56:51.6658290Z test_equal (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.182s) 2023-01-11T21:56:51.6658455Z test_group_norm (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (6.184s) 2023-01-11T21:56:51.6658619Z test_hardswish (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.542s) 2023-01-11T21:56:51.6658786Z test_hardtanh (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.498s) 2023-01-11T21:56:51.6658954Z test_instance_norm (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (1.557s) 2023-01-11T21:56:51.6659112Z test_interpolate (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6659257Z This test cover upsample_nearest2d and upsample_bilinear2d ... ok (3.808s) 2023-01-11T21:56:51.6659414Z test_interpolate3d (quantization.core.test_quantized_op.TestQuantizedOps) 2023-01-11T21:56:51.6659525Z This test cover upsample_nearest3d ... ok (18.528s) 2023-01-11T21:56:51.6659676Z test_leaky_relu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.023s) 2023-01-11T21:56:51.6659857Z test_leaky_relu_observed_output (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.588s) 2023-01-11T21:56:51.6660029Z test_linear_bias_unpack (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.003s) 2023-01-11T21:56:51.6660192Z test_max_pool1d (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.241s) 2023-01-11T21:56:51.6660356Z test_max_pool2d (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.566s) 2023-01-11T21:56:51.6660585Z test_max_pool2d_cudnn (quantization.core.test_quantized_op.TestQuantizedOps) ... skip: cudnn is not enabled. (0.005s) 2023-01-11T21:56:51.6660753Z test_max_pool2d_nhwc (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.530s) 2023-01-11T21:56:51.6660908Z test_mean (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.414s) 2023-01-11T21:56:51.6661061Z test_mul_scalar_relu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.417s) 2023-01-11T21:56:51.6661638Z test_qadd_broadcast (quantization.core.test_quantized_op.TestQuantizedOps) ... [W Resize.cpp:33] Warning: An output with one or more elements was resized since it had shape [1, 1, 4, 4], which does not match the required output shape [2, 1, 4, 4]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (function _resize_output_check) 2023-01-11T21:56:51.6661709Z ok (0.002s) 2023-01-11T21:56:51.6661906Z test_qadd_relu_cudnn (quantization.core.test_quantized_op.TestQuantizedOps) ... skip: cudnn is not enabled. (0.001s) 2023-01-11T21:56:51.6662108Z test_qadd_relu_cudnn_nhwc (quantization.core.test_quantized_op.TestQuantizedOps) ... skip: cudnn is not enabled. (0.001s) 2023-01-11T21:56:51.6662293Z test_qadd_relu_different_qparams (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.005s) 2023-01-11T21:56:51.6662470Z test_qadd_relu_same_qparams (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.005s) 2023-01-11T21:56:51.6662628Z test_qcelu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.143s) 2023-01-11T21:56:51.6662850Z test_qclamp (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.650s) 2023-01-11T21:56:51.6663013Z test_qelu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.183s) 2023-01-11T21:56:51.6663157Z test_qgelu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.052s) 2023-01-11T21:56:51.6663328Z test_qhardsigmoid (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.440s) 2023-01-11T21:56:51.6663493Z test_qlayer_norm (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.104s) 2023-01-11T21:56:51.6663654Z test_qmatmul (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.186s) 2023-01-11T21:56:51.6663823Z test_qmul_broadcast (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.002s) 2023-01-11T21:56:51.6664009Z test_qmul_relu_different_qparams (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.005s) 2023-01-11T21:56:51.6664185Z test_qmul_relu_same_qparams (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.452s) 2023-01-11T21:56:51.6664348Z test_qprelu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.053s) 2023-01-11T21:56:51.6664507Z test_qrelu (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (2.164s) 2023-01-11T21:56:51.6664653Z test_qrelu6 (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.278s) 2023-01-11T21:56:51.6664817Z test_qsoftmax (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.160s) 2023-01-11T21:56:51.6664987Z test_qsoftmax_qnnpack (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.192s) 2023-01-11T21:56:51.6665248Z test_qtanh (quantization.core.test_quantized_op.TestQuantizedOps) ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.005s) 2023-01-11T21:56:51.6665414Z test_qthreshold (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.155s) 2023-01-11T21:56:51.6665850Z test_qtopk (quantization.core.test_quantized_op.TestQuantizedOps) ... /var/lib/jenkins/workspace/test/quantization/core/test_quantized_op.py:1999: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:56:51.6665978Z indices = torch.tensor(X).long() 2023-01-11T21:56:51.6666046Z ok (0.161s) 2023-01-11T21:56:51.6666226Z test_quantized_mean_qnnpack (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.017s) 2023-01-11T21:56:51.6666376Z test_sigmoid (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.187s) 2023-01-11T21:56:51.6666552Z test_sigmoid_non_observed (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (0.805s) 2023-01-11T21:56:51.6666706Z test_std (quantization.core.test_quantized_op.TestQuantizedOps) ... ok (1.541s) 2023-01-11T21:56:51.6666890Z test_bfp16_quantize (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6667206Z test_choose_qparams (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: this is broken without changes to any relevant code, we need to remove hypothesis testing in CI (0.004s) 2023-01-11T21:56:51.6667406Z test_choose_qparams_optimized (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.012s) 2023-01-11T21:56:51.6667580Z test_clone (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6667816Z test_compare_per_channel_device_numerics (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: CUDA is not available (0.001s) 2023-01-11T21:56:51.6668047Z test_compare_per_tensor_device_numerics (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: CUDA is not available (0.001s) 2023-01-11T21:56:51.6668278Z test_cuda_quantization_does_not_pin_memory (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: CUDA is not available (0.000s) 2023-01-11T21:56:51.6668477Z test_decomposed_dequantize_per_channel (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6668685Z test_decomposed_dequantize_per_tensor (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6668890Z test_decomposed_dynamic_quant_pattern (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6669093Z test_decomposed_quantize_per_channel (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6669293Z test_decomposed_quantize_per_tensor (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6669480Z test_dequantize_fp16_cpu (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6669694Z test_dequantize_fp16_cuda (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.000s) 2023-01-11T21:56:51.6670103Z test_fp16_saturate_op (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... /var/lib/jenkins/workspace/test/quantization/core/test_quantized_tensor.py:1390: UserWarning: FOUND weight out of range (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/quantized/cpu/QuantUtils.h:215.) 2023-01-11T21:56:51.6670202Z y = torch._saturate_weight_to_fp16(x) 2023-01-11T21:56:51.6670268Z ok (0.001s) 2023-01-11T21:56:51.6670444Z test_jit_serialization (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.008s) 2023-01-11T21:56:51.6670644Z test_per_channel_qtensor_creation_cpu (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6670874Z test_per_channel_qtensor_creation_cuda (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.000s) 2023-01-11T21:56:51.6671080Z test_per_channel_qtensor_to_memory_format (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6671297Z test_per_channel_to_device (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.001s) 2023-01-11T21:56:51.6671499Z test_per_tensor_qtensor_to_memory_format (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6671742Z test_per_tensor_to_device (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.001s) 2023-01-11T21:56:51.6672556Z test_pickle_checkpoint_qtensor (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:309: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6672641Z device=storage.device, 2023-01-11T21:56:51.6673295Z /opt/conda/lib/python3.10/site-packages/torch/_utils.py:330: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6673382Z device=storage.device, 2023-01-11T21:56:51.6673437Z ok (0.008s) 2023-01-11T21:56:51.6673625Z test_qscheme_pickle (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.003s) 2023-01-11T21:56:51.6673826Z test_qtensor_channel_float_assignment (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.079s) 2023-01-11T21:56:51.6674005Z test_qtensor_copy (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.016s) 2023-01-11T21:56:51.6674187Z test_qtensor_cpu (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.007s) 2023-01-11T21:56:51.6674370Z test_qtensor_creation (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.004s) 2023-01-11T21:56:51.6674577Z test_qtensor_cuda (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.000s) 2023-01-11T21:56:51.6674757Z test_qtensor_dtypes (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6674949Z test_qtensor_fill_per_channel (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.005s) 2023-01-11T21:56:51.6675134Z test_qtensor_fill_per_channel_nhwc (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.009s) 2023-01-11T21:56:51.6675324Z test_qtensor_fill_per_tensor (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.005s) 2023-01-11T21:56:51.6675514Z test_qtensor_fill_per_tensor_nhwc (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.010s) 2023-01-11T21:56:51.6675704Z test_qtensor_float_assignment (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.003s) 2023-01-11T21:56:51.6675894Z test_qtensor_index_put_cpu (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.011s) 2023-01-11T21:56:51.6676112Z test_qtensor_index_put_cuda (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.000s) 2023-01-11T21:56:51.6676305Z test_qtensor_index_select_cpu (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6676527Z test_qtensor_index_select_cuda (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.000s) 2023-01-11T21:56:51.6676712Z test_qtensor_int_repr (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6677268Z test_qtensor_legacy_new_failure (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... /var/lib/jenkins/workspace/test/quantization/core/test_quantized_tensor.py:410: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6677404Z self.assertRaises(RuntimeError, lambda: qr.new(r.storage())) 2023-01-11T21:56:51.6677491Z ok (0.006s) 2023-01-11T21:56:51.6678031Z test_qtensor_load_save (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... /var/lib/jenkins/workspace/test/quantization/core/test_quantized_tensor.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6678173Z self.assertEqual(qr2.storage().data_ptr(), qrv2.storage().data_ptr()) 2023-01-11T21:56:51.6678241Z ok (0.009s) 2023-01-11T21:56:51.6678434Z test_qtensor_masked_fill_cpu (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.011s) 2023-01-11T21:56:51.6678680Z test_qtensor_masked_fill_cuda (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: No gpu is available. (0.000s) 2023-01-11T21:56:51.6678882Z test_qtensor_per_channel_load_save (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.007s) 2023-01-11T21:56:51.6679081Z test_qtensor_per_channel_permute (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.009s) 2023-01-11T21:56:51.6679263Z test_qtensor_permute (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.008s) 2023-01-11T21:56:51.6679441Z test_qtensor_quant_dequant (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.002s) 2023-01-11T21:56:51.6679640Z test_qtensor_quantize_per_channel (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (9.190s) 2023-01-11T21:56:51.6679821Z test_qtensor_reshape (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.003s) 2023-01-11T21:56:51.6680250Z test_qtensor_resize (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... /opt/conda/lib/python3.10/site-packages/torch/_tensor.py:767: UserWarning: non-inplace resize is deprecated 2023-01-11T21:56:51.6680417Z warnings.warn("non-inplace resize is deprecated") 2023-01-11T21:56:51.6680483Z ok (0.003s) 2023-01-11T21:56:51.6681033Z test_qtensor_sub_byte_aligned_cols (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... /var/lib/jenkins/workspace/test/quantization/core/test_quantized_tensor.py:290: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6681222Z self.assertEqual(qr.storage().size(), rows * math.ceil(cols / elements_per_byte), f"with {dtype}, {elements_per_byte}") 2023-01-11T21:56:51.6681659Z /var/lib/jenkins/workspace/test/quantization/core/test_quantized_tensor.py:299: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6681853Z self.assertEqual(q.storage().size(), math.ceil(num_elements / elements_per_byte), f"with {dtype}, {elements_per_byte}") 2023-01-11T21:56:51.6681922Z ok (0.006s) 2023-01-11T21:56:51.6682125Z test_qtensor_sub_byte_not_aligned_cols (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.004s) 2023-01-11T21:56:51.6682300Z test_qtensor_unsqueeze (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.013s) 2023-01-11T21:56:51.6682479Z test_qtensor_view (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.008s) 2023-01-11T21:56:51.6682691Z test_quant_pin_memory (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... skip: CUDA is not available (0.000s) 2023-01-11T21:56:51.6682896Z test_quantize_per_channel_float_qparams (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (9.176s) 2023-01-11T21:56:51.6683118Z test_quantize_per_channel_sub_byte (quantization.core.test_quantized_tensor.TestQuantizedTensor) 2023-01-11T21:56:51.6683336Z Tests the per channel quantization scheme for 4-bit qtensors. ... ok (0.308s) 2023-01-11T21:56:51.6683510Z test_repeat (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6683702Z test_torch_qtensor_deepcopy (quantization.core.test_quantized_tensor.TestQuantizedTensor) ... ok (0.001s) 2023-01-11T21:56:51.6683911Z test_observer_scriptable (quantization.core.test_workflow_module.TestRecordHistogramObserver) ... ok (0.014s) 2023-01-11T21:56:51.6684098Z test_record_observer (quantization.core.test_workflow_module.TestRecordHistogramObserver) ... ok (0.008s) 2023-01-11T21:56:51.6684301Z test_rnn (quantization.core.test_quantized_module.TestReferenceQuantizedModule) 2023-01-11T21:56:51.6684448Z Checks the rnn reference quantized modules has correct numerics ... ok (0.011s) 2023-01-11T21:56:51.6684632Z test_rnn_cell (quantization.core.test_quantized_module.TestReferenceQuantizedModule) 2023-01-11T21:56:51.6684784Z Checks the rnn cell reference quantized modules has correct numerics ... ok (0.007s) 2023-01-11T21:56:51.6684963Z test_sparse (quantization.core.test_quantized_module.TestReferenceQuantizedModule) 2023-01-11T21:56:51.6685065Z Embedding and EmbeddingBag ... ok (0.004s) 2023-01-11T21:56:51.6685243Z test_conv2d (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.059s) 2023-01-11T21:56:51.6685418Z test_conv2d_graph (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.021s) 2023-01-11T21:56:51.6685607Z test_conv2d_graph_v2 (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.019s) 2023-01-11T21:56:51.6685796Z test_conv2d_graph_v3 (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.020s) 2023-01-11T21:56:51.6685984Z test_conv2d_nobias (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.048s) 2023-01-11T21:56:51.6686179Z test_conv2d_nobias_graph (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.021s) 2023-01-11T21:56:51.6686376Z test_conv2d_nobias_graph_v2 (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.019s) 2023-01-11T21:56:51.6686569Z test_conv2d_nobias_graph_v3 (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.018s) 2023-01-11T21:56:51.6686751Z test_conv2d_relu (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.049s) 2023-01-11T21:56:51.6686927Z test_conv3d (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.015s) 2023-01-11T21:56:51.6687100Z test_conv3d_relu (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.016s) 2023-01-11T21:56:51.6687294Z test_default_qat_qconfig (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.010s) 2023-01-11T21:56:51.6687474Z test_linear (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.043s) 2023-01-11T21:56:51.6687666Z test_linear_dynamic (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.060s) 2023-01-11T21:56:51.6687851Z test_linear_relu (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.043s) 2023-01-11T21:56:51.6688688Z test_linear_relu_package_quantization_transforms (quantization.bc.test_backward_compatibility.TestSerialization) ... /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6688797Z return self.fget.__get__(instance, owner)() 2023-01-11T21:56:51.6689388Z /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py:1435: UserWarning: Passing a QConfig dictionary to prepare is deprecated and will not be supported in a future version. Please pass in a QConfigMapping instead. 2023-01-11T21:56:51.6689515Z warnings.warn( 2023-01-11T21:56:51.6690022Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node child_packed_weight_0 target child_packed_weight_0 child_packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6690233Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6690698Z /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:1346: UserWarning: Node _packed_weight_0 target _packed_weight_0 _packed_weight_0 of does not reference an nn.Module, nn.Parameter, or buffer, which is what 'get_attr' Nodes typically target 2023-01-11T21:56:51.6690959Z warnings.warn(f'Node {node} target {node.target} {atom} of {seen_qualname} does ' 2023-01-11T21:56:51.6691030Z ok (0.377s) 2023-01-11T21:56:51.6691217Z test_lstm (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.037s) 2023-01-11T21:56:51.6691415Z test_per_channel_observer (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.004s) 2023-01-11T21:56:51.6691610Z test_per_tensor_observer (quantization.bc.test_backward_compatibility.TestSerialization) ... ok (0.002s) 2023-01-11T21:56:51.6691792Z test_batch_norm2d (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6691922Z Tests the correctness of the batchnorm2d module. ... ok (0.002s) 2023-01-11T21:56:51.6692466Z test_batch_norm2d_serialization (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py:310: UserWarning: must run observer before calling calculate_qparams. Returning default values. 2023-01-11T21:56:51.6692530Z warnings.warn( 2023-01-11T21:56:51.6692594Z ok (0.008s) 2023-01-11T21:56:51.6692777Z test_batch_norm3d (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6692905Z Tests the correctness of the batchnorm3d module. ... ok (0.002s) 2023-01-11T21:56:51.6693115Z test_batch_norm3d_serialization (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.008s) 2023-01-11T21:56:51.6693298Z test_channel_shuffle (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6693431Z Tests the correctness of the ChannelShuffle module. ... ok (0.018s) 2023-01-11T21:56:51.6693623Z test_conv1d_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (5.650s) 2023-01-11T21:56:51.6693796Z test_conv2d_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (4.237s) 2023-01-11T21:56:51.6693980Z test_conv3d_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.539s) 2023-01-11T21:56:51.6694157Z test_dropout (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6694279Z Tests the correctness of the dropout module. ... ok (0.001s) 2023-01-11T21:56:51.6694490Z test_dropout_serialization (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.005s) 2023-01-11T21:56:51.6694660Z test_elu (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6694775Z Tests the correctness of the ELU module. ... ok (0.002s) 2023-01-11T21:56:51.6694972Z test_embedding_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (6.041s) 2023-01-11T21:56:51.6695159Z test_embedding_bag_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6695317Z Test execution and serialization for dynamic quantized embedding_bag modules on int8 ... ok (6.314s) 2023-01-11T21:56:51.6695494Z test_group_norm (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6695618Z Tests the correctness of the groupnorm module. ... ok (0.003s) 2023-01-11T21:56:51.6695826Z test_instance_norm (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6695961Z Tests the correctness of the instancenorm{n}d modules. ... ok (0.007s) 2023-01-11T21:56:51.6696138Z test_layer_norm (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6696259Z Tests the correctness of the layernorm module. ... ok (0.003s) 2023-01-11T21:56:51.6696455Z test_leaky_relu (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.002s) 2023-01-11T21:56:51.6697290Z test_linear (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... /opt/conda/lib/python3.10/site-packages/torch/package/package_exporter.py:900: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6697406Z storage_type_str = obj.pickle_storage_type() 2023-01-11T21:56:51.6698067Z /opt/conda/lib/python3.10/site-packages/torch/package/package_exporter.py:903: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:56:51.6698153Z storage_numel = obj.size() 2023-01-11T21:56:51.6698221Z ok (22.240s) 2023-01-11T21:56:51.6698409Z test_linear_leaky_relu (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6698574Z test API functionality for nn.intrinsic.quantized.linear_leaky_relu ... ok (10.941s) 2023-01-11T21:56:51.6698772Z test_linear_relu (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (21.256s) 2023-01-11T21:56:51.6698952Z test_linear_tanh (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6699109Z test API functionality for nn.intrinsic.quantized.linear_tanh ... ok (5.394s) 2023-01-11T21:56:51.6699273Z test_pool_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) 2023-01-11T21:56:51.6699392Z Tests the correctness of the pool module. ... ok (0.013s) 2023-01-11T21:56:51.6699579Z test_prelu (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.002s) 2023-01-11T21:56:51.6699780Z test_quant_dequant_api (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.002s) 2023-01-11T21:56:51.6699964Z test_relu (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.001s) 2023-01-11T21:56:51.6700153Z test_sigmoid (quantization.core.test_quantized_module.TestStaticQuantizedModule) ... ok (0.002s) 2023-01-11T21:56:51.6700360Z test_subgraph_rewriter_annotations_int (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (5.033s) 2023-01-11T21:56:51.6700586Z test_subgraph_rewriter_correct_output_replacement (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.400s) 2023-01-11T21:56:51.6700797Z test_subgraph_rewriter_graph_argument_order (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.050s) 2023-01-11T21:56:51.6701036Z test_subgraph_rewriter_internal_pattern_nodes_cannot_have_users_that_are_not_matched (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.036s) 2023-01-11T21:56:51.6701248Z test_subgraph_rewriter_multiple_pattern_match (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.045s) 2023-01-11T21:56:51.6701460Z test_subgraph_rewriter_pattern_is_entire_graph (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.044s) 2023-01-11T21:56:51.6701712Z test_subgraph_rewriter_pattern_output_pattern_node_can_have_users_that_are_not_matched (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.044s) 2023-01-11T21:56:51.6701948Z test_subgraph_rewriter_placeholder_matching (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) 2023-01-11T21:56:51.6702092Z This tests that a placeholder Node can be matched to a Node with ... ok (0.044s) 2023-01-11T21:56:51.6702299Z test_subgraph_rewriter_preserves_logic (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.044s) 2023-01-11T21:56:51.6702522Z test_subgraph_rewriter_replaces_referenced_submodules (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.035s) 2023-01-11T21:56:51.6702868Z test_subgraph_rewriter_single_pattern_match (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.044s) 2023-01-11T21:56:51.6703113Z test_subgraph_rewriter_traced_as_callable (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.045s) 2023-01-11T21:56:51.6703343Z test_subgraph_rewriter_with_oneliner_pattern (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.043s) 2023-01-11T21:56:51.6703630Z test_subgraph_writer_replace_consecutive_submodules (quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.044s) 2023-01-11T21:56:51.6703833Z test_get_fqn_to_example_inputs_complex_args (quantization.core.test_utils.TestUtils) 2023-01-11T21:56:51.6704024Z Test that we can record complex example inputs such as lists and dicts ... ok (0.006s) 2023-01-11T21:56:51.6704219Z test_get_fqn_to_example_inputs_default_kwargs (quantization.core.test_utils.TestUtils) 2023-01-11T21:56:51.6704414Z Test that we can get example inputs for functions with default keyword arguments ... ok (0.006s) 2023-01-11T21:56:51.6704594Z test_get_fqn_to_example_inputs_simple (quantization.core.test_utils.TestUtils) ... ok (0.006s) 2023-01-11T21:56:51.6704916Z test_quantize_weight_clamping_per_channel (quantization.core.test_utils.TestUtils) 2023-01-11T21:56:51.6705116Z Test quant_{min, max} from per channel observer is honored by `_quantize_weight` method ... ok (0.002s) 2023-01-11T21:56:51.6705266Z test_quantize_weight_clamping_per_tensor (quantization.core.test_utils.TestUtils) 2023-01-11T21:56:51.6705461Z Test quant_{min, max} from per tensor observer is honored by `_quantize_weight` method ... ok (0.002s) 2023-01-11T21:56:51.6705473Z 2023-01-11T21:56:51.6705715Z ---------------------------------------------------------------------- 2023-01-11T21:56:51.6705833Z Ran 1001 tests in 842.182s 2023-01-11T21:56:51.6705838Z 2023-01-11T21:56:51.6705938Z OK (skipped=62) 2023-01-11T21:56:51.6705943Z 2023-01-11T21:56:51.6706056Z Generating XML reports... 2023-01-11T21:56:51.6706502Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic-20230111214248.xml 2023-01-11T21:56:51.6706966Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized-20230111214248.xml 2023-01-11T21:56:51.6707409Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_quantization.TestAOMigrationQuantization-20230111214248.xml 2023-01-11T21:56:51.6707875Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx-20230111214248.xml 2023-01-11T21:56:51.6708230Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_backend_config.TestBackendConfig-20230111214248.xml 2023-01-11T21:56:51.6708655Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_bias_correction_eager.TestBiasCorrectionEager-20230111214248.xml 2023-01-11T21:56:51.6709047Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestComparatorOps-20230111214248.xml 2023-01-11T21:56:51.6709476Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_deprecated_jit_quant.TestDeprecatedJitQuantized-20230111214248.xml 2023-01-11T21:56:51.6709900Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestDistributed-20230111214248.xml 2023-01-11T21:56:51.6710329Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_module.TestDynamicQuantizedModule-20230111214248.xml 2023-01-11T21:56:51.6710778Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestDynamicQuantizedOps-20230111214248.xml 2023-01-11T21:56:51.6711180Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_equalize_eager.TestEqualizeEager-20230111214248.xml 2023-01-11T21:56:51.6711580Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_equalize_fx.TestEqualizeFx-20230111214248.xml 2023-01-11T21:56:51.6711970Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher-20230111214248.xml 2023-01-11T21:56:51.6712380Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXGraphMatcherModels-20230111214248.xml 2023-01-11T21:56:51.6712750Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs-20230111214248.xml 2023-01-11T21:56:51.6713185Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels-20230111214248.xml 2023-01-11T21:56:51.6713592Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows-20230111214248.xml 2023-01-11T21:56:51.6713985Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestFakeQuantize-20230111214248.xml 2023-01-11T21:56:51.6714444Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_ops.TestFakeQuantizeOps-20230111214248.xml 2023-01-11T21:56:51.6714820Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_fuse_eager.TestFuseEager-20230111214248.xml 2023-01-11T21:56:51.6715175Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestFuseFx-20230111214248.xml 2023-01-11T21:56:51.6715572Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_ops.TestFusedObsFakeQuant-20230111214248.xml 2023-01-11T21:56:51.6715997Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestFusedObsFakeQuantModule-20230111214248.xml 2023-01-11T21:56:51.6716383Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_fusion_passes.TestFusionPasses-20230111214248.xml 2023-01-11T21:56:51.6716826Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxDetectInputWeightEqualization-20230111214248.xml 2023-01-11T21:56:51.6717224Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxDetectOutliers-20230111214248.xml 2023-01-11T21:56:51.6717582Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportClass-20230111214248.xml 2023-01-11T21:56:51.6718045Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportDetectDynamicStatic-20230111214248.xml 2023-01-11T21:56:51.6718457Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportDetector-20230111214248.xml 2023-01-11T21:56:51.6718859Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportObserver-20230111214248.xml 2023-01-11T21:56:51.6719299Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportVisualizer-20230111214248.xml 2023-01-11T21:56:51.6719705Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestHistogramObserver-20230111214248.xml 2023-01-11T21:56:51.6720133Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_model_numerics.TestModelNumericsEager-20230111214248.xml 2023-01-11T21:56:51.6720545Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager-20230111214248.xml 2023-01-11T21:56:51.6720979Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestObserver-20230111214248.xml 2023-01-11T21:56:51.6721374Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestPadding-20230111214248.xml 2023-01-11T21:56:51.6721750Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQNNPackOps-20230111214248.xml 2023-01-11T21:56:51.6722090Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_docs.TestQuantizationDocs-20230111214248.xml 2023-01-11T21:56:51.6722497Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeDynamicJitOps-20230111214248.xml 2023-01-11T21:56:51.6722912Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeDynamicJitPasses-20230111214248.xml 2023-01-11T21:56:51.6723328Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_ptq.TestQuantizeEagerOps-20230111214248.xml 2023-01-11T21:56:51.6723760Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_ptq.TestQuantizeEagerPTQDynamic-20230111214248.xml 2023-01-11T21:56:51.6724179Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_ptq.TestQuantizeEagerPTQStatic-20230111214248.xml 2023-01-11T21:56:51.6724580Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_qat.TestQuantizeEagerQAT-20230111214248.xml 2023-01-11T21:56:51.6725031Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_qat.TestQuantizeEagerQATNumerics-20230111214248.xml 2023-01-11T21:56:51.6725398Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestQuantizeFx-20230111214248.xml 2023-01-11T21:56:51.6725784Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestQuantizeFxModels-20230111214248.xml 2023-01-11T21:56:51.6726166Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestQuantizeFxOps-20230111214248.xml 2023-01-11T21:56:51.6726544Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeJit-20230111214248.xml 2023-01-11T21:56:51.6726888Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeJitOps-20230111214248.xml 2023-01-11T21:56:51.6727278Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeJitPasses-20230111214248.xml 2023-01-11T21:56:51.6727705Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_pt2e.TestQuantizePT2EModels-20230111214248.xml 2023-01-11T21:56:51.6728116Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedConv-20230111214248.xml 2023-01-11T21:56:51.6728542Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedEmbeddingOps-20230111214248.xml 2023-01-11T21:56:51.6728989Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_functional.TestQuantizedFunctionalOps-20230111214248.xml 2023-01-11T21:56:51.6729496Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedLinear-20230111214248.xml 2023-01-11T21:56:51.6737704Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedOps-20230111214248.xml 2023-01-11T21:56:51.6738200Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_tensor.TestQuantizedTensor-20230111214248.xml 2023-01-11T21:56:51.6738618Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestRecordHistogramObserver-20230111214248.xml 2023-01-11T21:56:51.6739023Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_module.TestReferenceQuantizedModule-20230111214248.xml 2023-01-11T21:56:51.6739411Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.bc.test_backward_compatibility.TestSerialization-20230111214248.xml 2023-01-11T21:56:51.6739803Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_module.TestStaticQuantizedModule-20230111214248.xml 2023-01-11T21:56:51.6740173Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter-20230111214248.xml 2023-01-11T21:56:51.6740501Z Generated XML report: test-reports/python-unittest/test_quantization/TEST-quantization.core.test_utils.TestUtils-20230111214248.xml 2023-01-11T21:56:51.6740509Z 2023-01-11T21:56:51.6740836Z ##[endgroup] 2023-01-11T21:56:51.6741130Z FINISHED PRINTING LOG FILE of test_quantization (/var/lib/jenkins/workspace/test/test-reports/test_quantization_i5v0je0n) 2023-01-11T21:56:51.6741136Z 2023-01-11T21:56:51.9597950Z Running inductor/test_torchinductor_opinfo ... [2023-01-11 21:56:51.959426] 2023-01-11T21:56:53.5492081Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:56:53.5632112Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:56:53.6177195Z Ignoring disabled issues: [] 2023-01-11T21:56:53.6276301Z Ignoring disabled issues: [] 2023-01-11T21:56:53.6600973Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_torchinductor_opinfo.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=0', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:56:53.659757] 2023-01-11T21:56:53.6602670Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_torchinductor_opinfo.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=1', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:56:53.659777] 2023-01-11T21:57:02.9615427Z 2023-01-11T21:57:02.9616025Z Expand the folded group to see the log file of inductor/test_torchinductor_opinfo 2023-01-11T21:57:02.9617191Z ##[group]PRINTING LOG FILE of inductor/test_torchinductor_opinfo (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_opinfo_2ge6id92) 2023-01-11T21:57:02.9618051Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:57:02.9618956Z Test results will be stored in test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-43da9767f75f5d75.xml 2023-01-11T21:57:02.9619828Z ============================= test session starts ============================== 2023-01-11T21:57:02.9620457Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:57:02.9620897Z cachedir: .pytest_cache 2023-01-11T21:57:02.9621609Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T21:57:02.9622223Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:57:02.9623070Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:57:02.9624416Z collecting ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py:0: PytestCollectionWarning: cannot collect test class 'TestExpect' because it has a __new__ constructor (from: test/inductor/test_torchinductor_opinfo.py) 2023-01-11T21:57:02.9625146Z collected 0 items 2023-01-11T21:57:02.9625452Z Running 0 items in this shard: 2023-01-11T21:57:02.9625672Z 2023-01-11T21:57:02.9625858Z =============================== warnings summary =============================== 2023-01-11T21:57:02.9626474Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T21:57:02.9627395Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T21:57:02.9628018Z self._mark_plugins_for_rewrite(hook) 2023-01-11T21:57:02.9628251Z 2023-01-11T21:57:02.9628644Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T21:57:02.9629650Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-43da9767f75f5d75.xml - 2023-01-11T21:57:02.9630311Z ============================== 1 warning in 0.25s ============================== 2023-01-11T21:57:02.9630828Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T21:57:02.9631176Z 2023-01-11T21:57:02.9631597Z ##[endgroup] 2023-01-11T21:57:02.9632404Z FINISHED PRINTING LOG FILE of inductor/test_torchinductor_opinfo (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_opinfo_2ge6id92) 2023-01-11T21:57:02.9632860Z 2023-01-11T21:57:08.2005621Z 2023-01-11T21:57:08.2006223Z Expand the folded group to see the log file of inductor/test_torchinductor_opinfo 2023-01-11T21:57:08.2007443Z ##[group]PRINTING LOG FILE of inductor/test_torchinductor_opinfo (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_opinfo_y22owck4) 2023-01-11T21:57:08.2008201Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:57:08.2008728Z Test results will be stored in test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-c75b30b3898389b7.xml 2023-01-11T21:57:08.2009237Z ============================= test session starts ============================== 2023-01-11T21:57:08.2009608Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:57:08.2009861Z cachedir: .pytest_cache 2023-01-11T21:57:08.2010275Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T21:57:08.2010614Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:57:08.2011035Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:57:08.2011715Z collecting ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py:0: PytestCollectionWarning: cannot collect test class 'TestExpect' because it has a __new__ constructor (from: test/inductor/test_torchinductor_opinfo.py) 2023-01-11T21:57:08.2012130Z collected 0 items 2023-01-11T21:57:08.2012307Z Running 0 items in this shard: 2023-01-11T21:57:08.2012429Z 2023-01-11T21:57:08.2012717Z =============================== warnings summary =============================== 2023-01-11T21:57:08.2013078Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T21:57:08.2013597Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T21:57:08.2013973Z self._mark_plugins_for_rewrite(hook) 2023-01-11T21:57:08.2014103Z 2023-01-11T21:57:08.2014328Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T21:57:08.2014896Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-c75b30b3898389b7.xml - 2023-01-11T21:57:08.2015341Z ============================== 1 warning in 0.03s ============================== 2023-01-11T21:57:08.2015633Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T21:57:08.2015829Z 2023-01-11T21:57:08.2016073Z ##[endgroup] 2023-01-11T21:57:08.2016523Z FINISHED PRINTING LOG FILE of inductor/test_torchinductor_opinfo (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_opinfo_y22owck4) 2023-01-11T21:57:08.2016765Z 2023-01-11T21:57:08.5378194Z Executing ['/opt/conda/bin/python', '-bb', 'inductor/test_torchinductor_opinfo.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '-k=_linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:57:08.537288] 2023-01-11T21:57:17.4885640Z 2023-01-11T21:57:17.4886192Z Expand the folded group to see the log file of inductor/test_torchinductor_opinfo 2023-01-11T21:57:17.4887301Z ##[group]PRINTING LOG FILE of inductor/test_torchinductor_opinfo (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_opinfo_tylrswaw) 2023-01-11T21:57:17.4888228Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:57:17.4889336Z Test results will be stored in test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-775c9b995ca41897.xml 2023-01-11T21:57:17.4889898Z ============================= test session starts ============================== 2023-01-11T21:57:17.4890264Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T21:57:17.4890506Z cachedir: .pytest_cache 2023-01-11T21:57:17.4890918Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T21:57:17.4891271Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T21:57:17.4891726Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T21:57:17.4892884Z collecting ... /var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py:0: PytestCollectionWarning: cannot collect test class 'TestExpect' because it has a __new__ constructor (from: test/inductor/test_torchinductor_opinfo.py) 2023-01-11T21:57:17.4893388Z collected 0 items 2023-01-11T21:57:17.4893681Z Running 0 items in this shard: 2023-01-11T21:57:17.4893845Z 2023-01-11T21:57:17.4894018Z =============================== warnings summary =============================== 2023-01-11T21:57:17.4894650Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T21:57:17.4895218Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T21:57:17.4895573Z self._mark_plugins_for_rewrite(hook) 2023-01-11T21:57:17.4895705Z 2023-01-11T21:57:17.4895938Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T21:57:17.4896499Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-775c9b995ca41897.xml - 2023-01-11T21:57:17.4897074Z ============================== 1 warning in 0.03s ============================== 2023-01-11T21:57:17.4897376Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T21:57:17.4897570Z 2023-01-11T21:57:17.4897823Z ##[endgroup] 2023-01-11T21:57:17.4898275Z FINISHED PRINTING LOG FILE of inductor/test_torchinductor_opinfo (/var/lib/jenkins/workspace/test/test-reports/inductor-test_torchinductor_opinfo_tylrswaw) 2023-01-11T21:57:17.4898530Z 2023-01-11T21:57:17.4898697Z Running test_autograd ... [2023-01-11 21:57:17.489032] 2023-01-11T21:57:17.4899158Z Executing ['/opt/conda/bin/python', '-bb', 'test_autograd.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:57:17.489246] 2023-01-11T21:57:36.5694419Z 2023-01-11T21:57:36.5695144Z Expand the folded group to see the log file of test_autograd 2023-01-11T21:57:36.5696103Z ##[group]PRINTING LOG FILE of test_autograd (/var/lib/jenkins/workspace/test/test-reports/test_autograd_uadvh1se) 2023-01-11T21:57:36.5696460Z 2023-01-11T21:57:36.5696566Z Running tests... 2023-01-11T21:57:36.5697137Z ---------------------------------------------------------------------- 2023-01-11T21:57:36.5697714Z Test results will be stored in test-reports/python-unittest/test_autograd 2023-01-11T21:57:36.5698260Z test_backward_out_of_context (__main__.TestAllowMutationOnSaved) ... ok (0.003s) 2023-01-11T21:57:36.5698760Z test_basic (__main__.TestAllowMutationOnSaved) ... ok (0.007s) 2023-01-11T21:57:36.5699231Z test_disallow_nesting (__main__.TestAllowMutationOnSaved) ... ok (0.001s) 2023-01-11T21:57:36.5699725Z test_double_backward (__main__.TestAllowMutationOnSaved) ... ok (0.002s) 2023-01-11T21:57:36.5700229Z test_save_base_and_modify_view (__main__.TestAllowMutationOnSaved) ... ok (0.001s) 2023-01-11T21:57:36.5700778Z test_save_view_modify_base (__main__.TestAllowMutationOnSaved) ... ok (0.001s) 2023-01-11T21:57:36.5701257Z test_saved_but_not_anymore (__main__.TestAllowMutationOnSaved) ... ok (0.002s) 2023-01-11T21:57:36.5701808Z test_saved_same_tensor_different_versions (__main__.TestAllowMutationOnSaved) ... ok (0.001s) 2023-01-11T21:57:36.5702335Z test_saved_same_tensor_many_times (__main__.TestAllowMutationOnSaved) ... ok (0.001s) 2023-01-11T21:57:36.5702866Z test_views (__main__.TestAllowMutationOnSaved) ... ok (0.007s) 2023-01-11T21:57:36.5703295Z test_with_math_views (__main__.TestAllowMutationOnSaved) ... ok (0.002s) 2023-01-11T21:57:36.5703737Z test_with_out_variant (__main__.TestAllowMutationOnSaved) ... ok (0.001s) 2023-01-11T21:57:36.5704209Z test_access_saved_tensor_twice_without_recomputation_works (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5706322Z test_accumulate_grad (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/__init__.py:197: UserWarning: Using backward() with create_graph=True will create a reference cycle between the parameter and its gradient which can cause a memory leak. We recommend using autograd.grad when creating the graph to avoid this. If you have to use this function, make sure to reset the .grad fields of your parameters to None after use to break the cycle and avoid the leak. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/autograd/engine.cpp:1134.) 2023-01-11T21:57:36.5707713Z Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 2023-01-11T21:57:36.5708085Z ok (0.002s) 2023-01-11T21:57:36.5708400Z test_accumulate_grad_tensor_reference (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5708859Z test_accumulate_grad_with_zero_numel_grad (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5709605Z test_anomaly_assign_parent_cleanup (__main__.TestAutograd) ... /var/lib/jenkins/workspace/test/test_autograd.py:4090: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging. 2023-01-11T21:57:36.5710221Z with detect_anomaly(): 2023-01-11T21:57:36.5710645Z ok (0.001s) 2023-01-11T21:57:36.5710956Z test_anomaly_detect_nan (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5711364Z test_anomaly_grad_warnings (__main__.TestAutograd) ... ok (0.013s) 2023-01-11T21:57:36.5711777Z test_anomaly_mode_no_check_nan (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5712225Z test_attribute_deletion (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5712634Z test_autograd_function_extension_enabled_by_default (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5713127Z test_autograd_function_extension_feature_flag (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5713603Z test_autograd_inplace_view_of_view (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5714082Z test_autograd_inplace_views_creation_meta (__main__.TestAutograd) ... ok (0.220s) 2023-01-11T21:57:36.5714670Z test_autograd_inplace_views_cross_dtype (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5715162Z test_autograd_multiple_views_python (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5715671Z test_autograd_python_custom_function_inplace (__main__.TestAutograd) ... ok (0.008s) 2023-01-11T21:57:36.5716247Z test_autograd_simple_views_python (__main__.TestAutograd) ... ok (0.069s) 2023-01-11T21:57:36.5716801Z test_autograd_views_codegen (__main__.TestAutograd) ... ok (0.017s) 2023-01-11T21:57:36.5717284Z test_backward (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5717744Z test_backward_badcalls (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5718199Z test_backward_copy (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5718660Z test_backward_create_graph_warns (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5719157Z test_backward_no_grad (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5719668Z test_backward_twice_retained_graph_with_saved_values (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5720221Z test_backward_twice_retained_graph_without_saved_values (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5720796Z test_backward_twice_with_saved_values (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5721327Z test_backward_twice_without_saved_values (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5721838Z test_backward_with_inputs (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5722298Z test_backward_with_nonleaf_inputs (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5723656Z test_calculate_shape_util (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/nested/__init__.py:58: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:57:36.5724613Z return torch._nested_tensor_from_tensor_list(tensor_list, dtype, None, device, None) 2023-01-11T21:57:36.5725025Z ok (0.001s) 2023-01-11T21:57:36.5725407Z test_callback_adds_callback (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5725895Z test_cant_create_saved_tensors (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5726383Z test_checkpoint_valid_reset_on_error (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5727018Z test_checkpointing (__main__.TestAutograd) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:57:36.5727614Z test_checkpointing_non_reentrant_autocast_cpu (__main__.TestAutograd) 2023-01-11T21:57:36.5728353Z Test that autocast args such as the dtype are preserved during non-reentrant ... ok (0.002s) 2023-01-11T21:57:36.5728916Z test_checkpointing_non_reentrant_autocast_gpu (__main__.TestAutograd) 2023-01-11T21:57:36.5729724Z Test that autocast args/kwargs such as the dtype are preserved during ... skip: Test requires CUDA bf16 support (0.000s) 2023-01-11T21:57:36.5730374Z test_checkpointing_without_reentrant_arbitrary_input_output (__main__.TestAutograd) 2023-01-11T21:57:36.5731127Z Ensures checkpointing without reentrant autograd works with functions ... ok (0.002s) 2023-01-11T21:57:36.5731694Z test_checkpointing_without_reentrant_correct_grad (__main__.TestAutograd) 2023-01-11T21:57:36.5732225Z Verifies that correct gradients are calculated for checkpoint ... ok (0.002s) 2023-01-11T21:57:36.5732840Z test_checkpointing_without_reentrant_custom_function_works (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5733491Z test_checkpointing_without_reentrant_dataparallel (__main__.TestAutograd) 2023-01-11T21:57:36.5734082Z Verifies gradient correctness when checkpoint without reentrant autograd ... ok (0.002s) 2023-01-11T21:57:36.5734720Z test_checkpointing_without_reentrant_detached_tensor_use_reentrant_False (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5735514Z test_checkpointing_without_reentrant_detached_tensor_use_reentrant_True (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5736157Z test_checkpointing_without_reentrant_input_requires_grad_False (__main__.TestAutograd) 2023-01-11T21:57:36.5736842Z Basic test for checkpoint without reentrant autograd. ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:57:36.5737488Z test_checkpointing_without_reentrant_input_requires_grad_True (__main__.TestAutograd) 2023-01-11T21:57:36.5738165Z Basic test for checkpoint without reentrant autograd. ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:57:36.5738873Z test_checkpointing_without_reentrant_memory_savings (__main__.TestAutograd) ... skip: Test requires CUDA (0.001s) 2023-01-11T21:57:36.5739490Z test_checkpointing_without_reentrant_parameter_used_in_an_out (__main__.TestAutograd) 2023-01-11T21:57:36.5740059Z Ensures that gradient hooks are only called once per tensor. ... ok (0.001s) 2023-01-11T21:57:36.5740593Z test_copy_slices_graph_task_updates (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5741169Z test_create_graph_and_full_backward_hook_cycle (__main__.TestAutograd) ... ok (0.403s) 2023-01-11T21:57:36.5741745Z test_current_graph_task_execution_order (__main__.TestAutograd) ... ok (0.010s) 2023-01-11T21:57:36.5742248Z test_current_graph_task_id (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5742790Z test_current_node (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5743278Z test_custom_autograd_no_early_free (__main__.TestAutograd) ... ok (0.008s) 2023-01-11T21:57:36.5743811Z test_custom_autograd_repeated_grad_grad (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5744320Z test_custom_function_cycle (__main__.TestAutograd) ... ok (0.127s) 2023-01-11T21:57:36.5744804Z test_custom_function_error (__main__.TestAutograd) ... ok (0.066s) 2023-01-11T21:57:36.5745291Z test_custom_function_exception (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5745840Z test_custom_function_forward_mode_forward_is_no_op (__main__.TestAutograd) ... ok (0.021s) 2023-01-11T21:57:36.5746392Z test_custom_function_forward_mode_inplace_checks (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5746970Z test_custom_function_forward_mode_non_differentiable (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5747547Z test_custom_function_forward_mode_non_tensor_before_tensor_args (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5748135Z test_custom_function_forward_mode_view_checks (__main__.TestAutograd) ... ok (0.013s) 2023-01-11T21:57:36.5748700Z test_custom_function_forward_mode_wrong_formula (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5749242Z test_custom_function_local_inplace (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5749793Z test_custom_function_mark_dirty_not_differentiable (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5750339Z test_custom_function_no_tensors (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5750886Z test_custom_function_non_tensor_inputs_outputs (__main__.TestAutograd) ... ok (0.009s) 2023-01-11T21:57:36.5751511Z test_custom_function_return_view_in_nograd (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5752047Z test_custom_function_save_for_forward (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5752567Z test_custom_function_saved_tensors (__main__.TestAutograd) ... ok (0.005s) 2023-01-11T21:57:36.5753112Z test_custom_function_setup_context_multi_input (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5753667Z test_custom_function_setup_context_multi_output (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5754234Z test_custom_function_setup_context_simple (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5754746Z test_deep_reentrant (__main__.TestAutograd) ... ok (0.209s) 2023-01-11T21:57:36.5755334Z test_default_saved_variable_hooks_double_backward (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5755827Z test_dep_nograd (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5756294Z test_dependent_backward (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5756735Z test_detach (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5757132Z test_detach_base (__main__.TestAutograd) 2023-01-11T21:57:36.5757550Z detaching base does not detach view ... ok (0.001s) 2023-01-11T21:57:36.5758063Z test_detach_then_inplace_raises_in_autograd (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5759013Z test_diagonal_expanded_v (__main__.TestAutograd) ... /var/lib/jenkins/workspace/test/test_autograd.py:2510: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). 2023-01-11T21:57:36.5759910Z v_expanded = torch.tensor(value).expand(10) 2023-01-11T21:57:36.5760274Z ok (0.001s) 2023-01-11T21:57:36.5760621Z test_dir (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5761052Z test_disabling_saved_tensor_hooks (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5761607Z test_disabling_saved_tensor_hooks_nested (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5762123Z test_dont_materialize_grads (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5762603Z test_duplicate_backward_root (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5763067Z test_first_grad_fn_access_in_no_grad_mode (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5763549Z test_free_deep_graph (__main__.TestAutograd) ... ok (1.754s) 2023-01-11T21:57:36.5764019Z test_free_deep_graph_complicated (__main__.TestAutograd) ... ok (1.197s) 2023-01-11T21:57:36.5764515Z test_free_deep_graph_pyfunction (__main__.TestAutograd) ... ok (1.645s) 2023-01-11T21:57:36.5765045Z test_full_backward_hook_double_backward (__main__.TestAutograd) ... ok (0.065s) 2023-01-11T21:57:36.5765492Z test_function (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5765912Z test_function_returns_input (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5766368Z test_function_returns_undefined_tensor (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5766823Z test_gc_in_destructor (__main__.TestAutograd) 2023-01-11T21:57:36.5767336Z Previously, if a Function destructor triggered a garbage collection, ... ok (0.621s) 2023-01-11T21:57:36.5767843Z test_grad (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5768661Z test_grad_badcalls (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5769251Z test_grad_batched_grad (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5769695Z test_grad_empty_inputs (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5770162Z test_grad_fn_attr_bindings (__main__.TestAutograd) ... ok (0.017s) 2023-01-11T21:57:36.5770642Z test_grad_fn_badcalls (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5771093Z test_grad_fn_prehooks (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5771717Z test_grad_fn_prehooks_multiple_outputs (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5772254Z test_grad_fn_prehooks_remove_hooks (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5772765Z test_grad_mode_class_decoration (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5773277Z test_grad_mode_restored_reentrant (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5775671Z test_grad_nonleaf (__main__.TestAutograd) ... /var/lib/jenkins/workspace/test/test_autograd.py:776: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at /var/lib/jenkins/workspace/build/aten/src/ATen/core/TensorBody.h:485.) 2023-01-11T21:57:36.5777074Z self.assertIsNone(x.grad) 2023-01-11T21:57:36.5777396Z ok (0.003s) 2023-01-11T21:57:36.5777761Z test_grad_nonleaf_many_outputs (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5780020Z test_grad_nonleaf_register_hook (__main__.TestAutograd) ... /var/lib/jenkins/workspace/test/test_autograd.py:828: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at /var/lib/jenkins/workspace/build/aten/src/ATen/core/TensorBody.h:485.) 2023-01-11T21:57:36.5781448Z self.assertIsNone(x_list[0].grad) 2023-01-11T21:57:36.5783569Z /var/lib/jenkins/workspace/test/test_autograd.py:835: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at /var/lib/jenkins/workspace/build/aten/src/ATen/core/TensorBody.h:485.) 2023-01-11T21:57:36.5784916Z self.assertIsNone(x_list[i].grad) 2023-01-11T21:57:36.5785246Z ok (0.002s) 2023-01-11T21:57:36.5785614Z test_grad_unreachable (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5786188Z test_grad_unreachable_discovery (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5786743Z test_gradcheck_backward_mul_by_grad_output (__main__.TestAutograd) ... ok (0.022s) 2023-01-11T21:57:36.5787270Z test_gradcheck_check_batched_grad (__main__.TestAutograd) ... ok (0.050s) 2023-01-11T21:57:36.5787799Z test_gradcheck_check_forward_or_backward_only (__main__.TestAutograd) 2023-01-11T21:57:36.5788359Z Depending on settings for check_forward_ad and check_backward_ad, the ... ok (0.019s) 2023-01-11T21:57:36.5789889Z test_gradcheck_check_no_differentiable_outputs (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #0 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:57:36.5790776Z warnings.warn( 2023-01-11T21:57:36.5791068Z ok (0.003s) 2023-01-11T21:57:36.5791500Z test_gradcheck_complex_non_complex_outputs (__main__.TestAutograd) ... ok (0.008s) 2023-01-11T21:57:36.5792948Z test_gradcheck_custom_error (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #0 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:57:36.5793891Z warnings.warn( 2023-01-11T21:57:36.5794186Z ok (0.014s) 2023-01-11T21:57:36.5794618Z test_gradcheck_dense_and_sparse_inputs (__main__.TestAutograd) ... ok (0.005s) 2023-01-11T21:57:36.5795127Z test_gradcheck_forward_ad (__main__.TestAutograd) ... ok (0.107s) 2023-01-11T21:57:36.5795625Z test_gradcheck_forward_ad_batched_grad (__main__.TestAutograd) ... ok (0.009s) 2023-01-11T21:57:36.5796203Z test_gradcheck_forward_ad_respects_requires_grad (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5796774Z test_gradcheck_forward_ad_runs_with_no_requires_grad (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5798762Z test_gradcheck_get_analytical_jacobian (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:616: UserWarning: get_analytical_jacobian was part of PyTorch's private API and not meant to be exposed. We are deprecating it and it will be removed in a future version of PyTorch. If you have a specific use for this or feature request for this to be a stable API, please file us an issue at https://github.com/pytorch/pytorch/issues/new 2023-01-11T21:57:36.5800202Z warnings.warn("get_analytical_jacobian was part of PyTorch's private API and not " 2023-01-11T21:57:36.5800636Z ok (0.010s) 2023-01-11T21:57:36.5802302Z test_gradcheck_get_numerical_jacobian (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:209: UserWarning: get_numerical_jacobian was part of PyTorch's private API and not meant to be exposed. We are deprecating it and it will be removed in a future version of PyTorch. If you have a specific use for this or feature request for this to be a stable API, please file us an issue at https://github.com/pytorch/pytorch/issues/new 2023-01-11T21:57:36.5803655Z warnings.warn("get_numerical_jacobian was part of PyTorch's private API and not " 2023-01-11T21:57:36.5804063Z ok (0.008s) 2023-01-11T21:57:36.5805348Z test_gradcheck_jacobian_mismatch (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #0 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:57:36.5806216Z warnings.warn( 2023-01-11T21:57:36.5806512Z ok (0.037s) 2023-01-11T21:57:36.5807811Z test_gradcheck_multiple_mkldnn_inputs (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #1 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:57:36.5808697Z warnings.warn( 2023-01-11T21:57:36.5808987Z ok (0.017s) 2023-01-11T21:57:36.5809552Z test_gradcheck_nondeterministic (__main__.TestAutograd) ... ok (0.074s) 2023-01-11T21:57:36.5810100Z test_gradcheck_output_shape_or_dtype_depend_on_values (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5810613Z test_gradcheck_single_input (__main__.TestAutograd) ... ok (0.011s) 2023-01-11T21:57:36.5811780Z test_gradcheck_sparse_bsc_input (__main__.TestAutograd) ... /var/lib/jenkins/workspace/test/test_autograd.py:4389: UserWarning: Sparse BSC tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T21:57:36.5812964Z gradcheck(fn, torch.rand(4, 8, dtype=torch.double).to_sparse_bsc((2, 2)).requires_grad_(True), 2023-01-11T21:57:36.5813395Z ok (0.025s) 2023-01-11T21:57:36.5813812Z test_gradcheck_sparse_bsr_input (__main__.TestAutograd) ... ok (0.019s) 2023-01-11T21:57:36.5814482Z test_gradcheck_sparse_csc_input (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5814985Z test_gradcheck_sparse_csr_input (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5815500Z test_gradcheck_sparse_input (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5816944Z test_gradcheck_test_outputs (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #0 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:57:36.5817816Z warnings.warn( 2023-01-11T21:57:36.5818104Z ok (0.002s) 2023-01-11T21:57:36.5818494Z test_gradcheck_undefined_grad (__main__.TestAutograd) ... ok (0.010s) 2023-01-11T21:57:36.5819142Z test_gradcheck_validates_input_mkldnn (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5819658Z test_gradcheck_validates_inputs (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5820132Z test_graph_save_on_cpu (__main__.TestAutograd) ... ok (0.008s) 2023-01-11T21:57:36.5820656Z test_graph_save_on_cpu_cuda (__main__.TestAutograd) ... skip: test requires CUDA (0.001s) 2023-01-11T21:57:36.5821165Z test_hessian_vector (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5821587Z test_hook_none (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5822032Z test_hook_with_no_name (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5822464Z test_hooks (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5822961Z test_hooks_cpp (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5823444Z test_index_backward_does_not_save_tensor (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5823934Z test_indexing (__main__.TestAutograd) ... ok (0.017s) 2023-01-11T21:57:36.5824413Z test_indexing_duplicates (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5824857Z test_inplace (__main__.TestAutograd) ... ok (0.022s) 2023-01-11T21:57:36.5825322Z test_inplace_not_requires_grad (__main__.TestAutograd) ... ok (0.009s) 2023-01-11T21:57:36.5825816Z test_inplace_on_view_backward (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5826291Z test_inplace_on_view_leaf_errors (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5826795Z test_inplace_on_view_saved_output (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5827294Z test_inplace_on_view_weak_grad_fn (__main__.TestAutograd) ... ok (0.083s) 2023-01-11T21:57:36.5827758Z test_input_buffer_accum (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5828225Z test_integer_outputs (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5828687Z test_invalid_gradients (__main__.TestAutograd) ... ok (0.005s) 2023-01-11T21:57:36.5829160Z test_isolated_node (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5829612Z test_leaf_assignment (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5830098Z test_legacy_function_deprecation_exception (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5831532Z test_lobpcg (__main__.TestAutograd) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/80338 for platform(s) linux. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.002s) 2023-01-11T21:57:36.5832419Z test_mark_non_differentiable (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5832935Z test_mark_non_differentiable_mixed (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5833453Z test_mark_non_differentiable_none (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5833903Z test_materialize_grads (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5834322Z test_multi_backward (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5834744Z test_multi_backward_no_grad (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5835323Z test_multi_grad_hooks (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5836912Z test_named_tensor_for_complex_views (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/_tensor.py:1114: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /var/lib/jenkins/workspace/c10/core/TensorImpl.h:1816.) 2023-01-11T21:57:36.5837917Z return super(Tensor, self).refine_names(names) 2023-01-11T21:57:36.5838215Z ok (0.001s) 2023-01-11T21:57:36.5838632Z test_naughty_anomaly_access (__main__.TestAutograd) ... expected failure (0.002s) 2023-01-11T21:57:36.5839284Z test_naughty_autograd_function_attribute_access (__main__.TestAutograd) ... ok (0.009s) 2023-01-11T21:57:36.5839838Z test_naughty_autograd_function_stashing_ctx (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5840363Z test_nested_anomaly_detect_nan (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5840900Z test_nested_anomaly_printstack_cleanup (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5841376Z test_next_functions (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5841800Z test_no_grad (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5842231Z test_no_grad_assignment (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5842674Z test_no_grad_copy (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5843994Z test_no_grad_copy_sparse (__main__.TestAutograd) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2325: UserWarning: Argument order of nn.functional.embedding_bag was changed. Usage `embedding_bag(weight, input, ...)` is deprecated, and should now be `embedding_bag(input, weight, ...)`. 2023-01-11T21:57:36.5844794Z warnings.warn( 2023-01-11T21:57:36.5845090Z ok (0.005s) 2023-01-11T21:57:36.5845446Z test_no_grad_input (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5845909Z test_no_grad_modifies_version (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5846388Z test_no_grad_python_function (__main__.TestAutograd) 2023-01-11T21:57:36.5846837Z Python Functions should respect grad mode. ... ok (0.001s) 2023-01-11T21:57:36.5847308Z test_no_requires_grad_inplace (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5847788Z test_no_unnecessary_save (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5848274Z test_no_unnecessary_unwrapping (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5848760Z test_not_implemented_fwad (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5849382Z test_not_implemented_grad (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5849861Z test_numpy_requires_grad (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5850321Z test_once_differentiable (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5850845Z test_out_variant_raises_when_inputs_require_grad (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5851430Z test_pack_hook_with_inplace_modification_should_fail (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5851932Z test_pickle (__main__.TestAutograd) ... ok (0.008s) 2023-01-11T21:57:36.5852372Z test_pow_zero_tensor_gradient (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5852862Z test_power_function (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5853734Z test_profiler (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:27 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5854577Z STAGE:2023-01-11 21:57:27 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5855392Z STAGE:2023-01-11 21:57:27 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5855855Z ok (0.002s) 2023-01-11T21:57:36.5856393Z test_profiler_aggregation_fake (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5857270Z test_profiler_aggregation_lstm (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:27 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5858152Z STAGE:2023-01-11 21:57:27 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5858932Z STAGE:2023-01-11 21:57:27 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5859301Z 2023-01-11T21:57:36.5859501Z =================================================================================================================================================================== 2023-01-11T21:57:36.5859815Z TEST 2023-01-11T21:57:36.5860745Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5861539Z Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls Input Shapes 2023-01-11T21:57:36.5862504Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5863282Z aten::lstm 0.98% 208.000us 5.63% 1.197ms 1.197ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5863785Z aten::lstm 0.94% 199.000us 4.93% 1.048ms 1.048ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5864275Z aten::lstm 0.90% 192.000us 4.82% 1.024ms 1.024ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5864763Z aten::lstm 0.89% 189.000us 5.01% 1.064ms 1.064ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5865238Z aten::lstm 0.88% 187.000us 4.92% 1.045ms 1.045ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5865697Z aten::lstm 0.88% 187.000us 4.79% 1.019ms 1.019ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5866178Z aten::lstm 0.87% 184.000us 4.76% 1.011ms 1.011ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5866675Z aten::lstm 0.87% 184.000us 4.85% 1.030ms 1.030ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5867166Z aten::lstm 0.86% 182.000us 4.84% 1.029ms 1.029ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5867661Z aten::lstm 0.85% 180.000us 4.80% 1.021ms 1.021ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5868598Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5869327Z Self CPU time total: 21.254ms 2023-01-11T21:57:36.5869537Z 2023-01-11T21:57:36.5870187Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5870956Z Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls Input Shapes 2023-01-11T21:57:36.5871983Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5872827Z aten::lstm 17.10% 3.634ms 98.15% 20.860ms 1.043ms 20 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5873340Z aten::addmm 10.63% 2.259ms 12.86% 2.734ms 13.670us 200 [[80], [3, 20], [20, 80], [], []] 2023-01-11T21:57:36.5873864Z aten::mul 9.29% 1.974ms 9.29% 1.974ms 3.290us 600 [[3, 20], [3, 20]] 2023-01-11T21:57:36.5874427Z aten::sigmoid_ 8.57% 1.822ms 8.57% 1.822ms 3.037us 600 [[3, 20]] 2023-01-11T21:57:36.5874938Z aten::unsafe_split 6.54% 1.391ms 16.35% 3.475ms 17.375us 200 [[3, 80], [], []] 2023-01-11T21:57:36.5875433Z aten::slice 4.92% 1.046ms 5.00% 1.063ms 1.329us 800 [[3, 80], [], [], [], []] 2023-01-11T21:57:36.5875912Z aten::narrow 4.80% 1.020ms 9.39% 1.995ms 2.494us 800 [[3, 80], [], [], []] 2023-01-11T21:57:36.5876394Z aten::tanh_ 3.74% 794.000us 3.74% 794.000us 3.970us 200 [[3, 20]] 2023-01-11T21:57:36.5876869Z aten::tanh 3.23% 687.000us 3.23% 687.000us 3.435us 200 [[3, 20]] 2023-01-11T21:57:36.5877360Z aten::linear 3.06% 651.000us 19.15% 4.070ms 20.350us 200 [[3, 20], [80, 20], [80]] 2023-01-11T21:57:36.5878300Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5878901Z Self CPU time total: 21.254ms 2023-01-11T21:57:36.5879120Z 2023-01-11T21:57:36.5879328Z =================================================================================================================================================================== 2023-01-11T21:57:36.5879653Z TEST 2023-01-11T21:57:36.5879987Z =================================================================================================================================================================== 2023-01-11T21:57:36.5880516Z This report only display top-level ops statistics 2023-01-11T21:57:36.5881453Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5882232Z Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls Input Shapes 2023-01-11T21:57:36.5883191Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5883882Z aten::lstm 0.98% 208.000us 5.63% 1.197ms 1.197ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5884386Z aten::lstm 0.94% 199.000us 4.93% 1.048ms 1.048ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5884879Z aten::lstm 0.90% 192.000us 4.82% 1.024ms 1.024ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5885359Z aten::lstm 0.89% 189.000us 5.01% 1.064ms 1.064ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5885966Z aten::lstm 0.88% 187.000us 4.92% 1.045ms 1.045ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5886440Z aten::lstm 0.88% 187.000us 4.79% 1.019ms 1.019ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5886915Z aten::lstm 0.87% 184.000us 4.76% 1.011ms 1.011ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5887464Z aten::lstm 0.87% 184.000us 4.85% 1.030ms 1.030ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5887933Z aten::lstm 0.86% 182.000us 4.84% 1.029ms 1.029ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5888398Z aten::lstm 0.85% 180.000us 4.80% 1.021ms 1.021ms 1 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5889456Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5890070Z Self CPU time total: 21.254ms 2023-01-11T21:57:36.5890290Z 2023-01-11T21:57:36.5890773Z ERROR:2023-01-11 21:57:28 16138:16138 CudaDeviceProperties.cpp:27] cudaGetDeviceCount failed with code 35 2023-01-11T21:57:36.5891325Z =================================================================================================================================================================== 2023-01-11T21:57:36.5891845Z This report only display top-level ops statistics 2023-01-11T21:57:36.5892776Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5893580Z Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls Input Shapes 2023-01-11T21:57:36.5894550Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5895248Z aten::lstm 17.10% 3.634ms 98.15% 20.860ms 1.043ms 20 [[5, 3, 10], [], [], [], [], [], [], [], []] 2023-01-11T21:57:36.5895747Z aten::randn 0.92% 196.000us 1.81% 385.000us 6.417us 60 [[], [], [], [], []] 2023-01-11T21:57:36.5896652Z ----------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------------------------------------------ 2023-01-11T21:57:36.5897253Z Self CPU time total: 21.254ms 2023-01-11T21:57:36.5897459Z 2023-01-11T21:57:36.5897661Z Total time based on python measurements: 23.352ms 2023-01-11T21:57:36.5898103Z CPU time measurement python side overhead: 9.87% 2023-01-11T21:57:36.5898463Z ok (1.131s) 2023-01-11T21:57:36.5898830Z test_profiler_aggregation_table (__main__.TestAutograd) 2023-01-11T21:57:36.5899712Z Test if the profiling result is aggregated for `str(prof)` ... STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5900587Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5901412Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5901879Z ok (0.002s) 2023-01-11T21:57:36.5902267Z test_profiler_function_event_avg (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5903397Z test_profiler_propagation (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5904253Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5905059Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5905539Z ok (0.046s) 2023-01-11T21:57:36.5906248Z test_profiler_seq_nr (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5906851Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5907386Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5907917Z ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ 2023-01-11T21:57:36.5908333Z Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls 2023-01-11T21:57:36.5908828Z ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ 2023-01-11T21:57:36.5909203Z aten::sum 17.24% 15.000us 18.39% 16.000us 16.000us 1 2023-01-11T21:57:36.5909480Z aten::add 16.09% 14.000us 16.09% 14.000us 14.000us 1 2023-01-11T21:57:36.5909759Z aten::randn 9.20% 8.000us 17.24% 15.000us 7.500us 2 2023-01-11T21:57:36.5910055Z torch::autograd::AccumulateGrad 8.05% 7.000us 20.69% 18.000us 9.000us 2 2023-01-11T21:57:36.5910343Z aten::copy_ 8.05% 7.000us 8.05% 7.000us 3.500us 2 2023-01-11T21:57:36.5910987Z aten::expand 5.75% 5.000us 6.90% 6.000us 6.000us 1 2023-01-11T21:57:36.5911267Z aten::normal_ 4.60% 4.000us 4.60% 4.000us 2.000us 2 2023-01-11T21:57:36.5911579Z autograd::engine::evaluate_function: SumBackward1 4.60% 4.000us 14.94% 13.000us 13.000us 1 2023-01-11T21:57:36.5911889Z aten::empty 3.45% 3.000us 3.45% 3.000us 1.500us 2 2023-01-11T21:57:36.5912159Z aten::empty_like 3.45% 3.000us 4.60% 4.000us 4.000us 1 2023-01-11T21:57:36.5912436Z SumBackward1 3.45% 3.000us 10.34% 9.000us 9.000us 1 2023-01-11T21:57:36.5912746Z autograd::engine::evaluate_function: torch::autograd... 3.45% 3.000us 24.14% 21.000us 10.500us 2 2023-01-11T21:57:36.5913064Z aten::new_empty_strided 3.45% 3.000us 4.60% 4.000us 2.000us 2 2023-01-11T21:57:36.5913351Z aten::as_strided 2.30% 2.000us 2.30% 2.000us 1.000us 2 2023-01-11T21:57:36.5913617Z aten::ones_like 2.30% 2.000us 6.90% 6.000us 6.000us 1 2023-01-11T21:57:36.5913900Z aten::empty_strided 2.30% 2.000us 2.30% 2.000us 0.667us 3 2023-01-11T21:57:36.5914277Z autograd::engine::evaluate_function: AddBackward0 1.15% 1.000us 2.30% 2.000us 2.000us 1 2023-01-11T21:57:36.5914585Z AddBackward0 1.15% 1.000us 1.15% 1.000us 1.000us 1 2023-01-11T21:57:36.5914848Z aten::fill_ 0.00% 0.000us 0.00% 0.000us 0.000us 2 2023-01-11T21:57:36.5915325Z ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ 2023-01-11T21:57:36.5915649Z Self CPU time total: 87.000us 2023-01-11T21:57:36.5915770Z 2023-01-11T21:57:36.5915871Z ok (0.004s) 2023-01-11T21:57:36.5916286Z test_profiler_shapes (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5916769Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5917215Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5917416Z 2023-01-11T21:57:36.5917752Z ---------------------- ------------ ------------ ------------ ------------ ------------ ------------ --------------------------------------- 2023-01-11T21:57:36.5918171Z Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls Input Shapes 2023-01-11T21:57:36.5918912Z ---------------------- ------------ ------------ ------------ ------------ ------------ ------------ --------------------------------------- 2023-01-11T21:57:36.5919544Z aten::linear 3.80% 6.000us 51.90% 82.000us 82.000us 1 [[128, 20], [30, 20], [30]] 2023-01-11T21:57:36.5920011Z aten::t 7.59% 12.000us 12.03% 19.000us 19.000us 1 [[30, 20]] 2023-01-11T21:57:36.5920493Z aten::transpose 3.16% 5.000us 4.43% 7.000us 7.000us 1 [[30, 20], [], []] 2023-01-11T21:57:36.5920986Z aten::as_strided 1.27% 2.000us 1.27% 2.000us 2.000us 1 [[30, 20], [], [], []] 2023-01-11T21:57:36.5921483Z aten::addmm 30.38% 48.000us 36.08% 57.000us 57.000us 1 [[30], [128, 20], [20, 30], [], []] 2023-01-11T21:57:36.5921992Z aten::expand 1.27% 2.000us 1.27% 2.000us 2.000us 1 [[30], [], []] 2023-01-11T21:57:36.5922498Z aten::as_strided 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[30], [], [], []] 2023-01-11T21:57:36.5923006Z aten::copy_ 4.43% 7.000us 4.43% 7.000us 7.000us 1 [[128, 30], [128, 30], []] 2023-01-11T21:57:36.5923493Z aten::resolve_conj 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[128, 30]] 2023-01-11T21:57:36.5923997Z aten::resolve_conj 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[128, 20]] 2023-01-11T21:57:36.5924510Z aten::linear 1.90% 3.000us 48.10% 76.000us 76.000us 1 [[128, 30], [40, 30], [40]] 2023-01-11T21:57:36.5925008Z aten::t 1.90% 3.000us 3.16% 5.000us 5.000us 1 [[40, 30]] 2023-01-11T21:57:36.5925604Z aten::transpose 1.27% 2.000us 1.27% 2.000us 2.000us 1 [[40, 30], [], []] 2023-01-11T21:57:36.5926090Z aten::as_strided 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[40, 30], [], [], []] 2023-01-11T21:57:36.5926577Z aten::addmm 39.87% 63.000us 43.04% 68.000us 68.000us 1 [[40], [128, 30], [30, 40], [], []] 2023-01-11T21:57:36.5927067Z aten::expand 0.63% 1.000us 0.63% 1.000us 1.000us 1 [[40], [], []] 2023-01-11T21:57:36.5927632Z aten::as_strided 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[40], [], [], []] 2023-01-11T21:57:36.5928127Z aten::copy_ 2.53% 4.000us 2.53% 4.000us 4.000us 1 [[128, 40], [128, 40], []] 2023-01-11T21:57:36.5928620Z aten::resolve_conj 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[128, 40]] 2023-01-11T21:57:36.5929224Z aten::resolve_conj 0.00% 0.000us 0.00% 0.000us 0.000us 1 [[128, 30]] 2023-01-11T21:57:36.5930072Z ---------------------- ------------ ------------ ------------ ------------ ------------ ------------ --------------------------------------- 2023-01-11T21:57:36.5930641Z Self CPU time total: 158.000us 2023-01-11T21:57:36.5930855Z 2023-01-11T21:57:36.5930954Z ok (0.003s) 2023-01-11T21:57:36.5931757Z test_profiler_unboxed_only (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5932640Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5933453Z STAGE:2023-01-11 21:57:28 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5933902Z ok (0.001s) 2023-01-11T21:57:36.5934325Z test_pynode_destruction_deadlock (__main__.TestAutograd) ... ok (1.346s) 2023-01-11T21:57:36.5935228Z test_record_function (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5936087Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5936922Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5937712Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5938524Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5939312Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5939781Z ok (0.003s) 2023-01-11T21:57:36.5940548Z test_record_function_callbacks (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5941432Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5942241Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5942798Z ok (0.002s) 2023-01-11T21:57:36.5943606Z test_record_function_legacy (__main__.TestAutograd) ... STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T21:57:36.5944495Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T21:57:36.5945303Z STAGE:2023-01-11 21:57:29 16138:16138 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T21:57:36.5945931Z ok (0.002s) 2023-01-11T21:57:36.5946360Z test_record_function_multithreaded (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5946878Z test_reentrant_child_error (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5947382Z test_reentrant_priority (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5947904Z test_reentrant_with_callbacks_both_depths (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5948445Z test_reentrant_with_callbacks_depth_0 (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5948995Z test_reentrant_with_callbacks_depth_1 (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5949545Z test_reentrant_with_leaf_variable_hook (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5950187Z test_reentrant_with_non_leaf_variable_hook (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5950670Z test_requires_grad (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5951141Z test_requires_grad_ (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5951627Z test_requires_grad_inplace (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5952089Z test_retain_grad (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5952546Z test_retain_grad_cycle (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5953019Z test_retain_grad_inplace (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5953501Z test_retain_grad_inplace_over_view (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5954001Z test_return_duplicate (__main__.TestAutograd) ... ok (0.005s) 2023-01-11T21:57:36.5954501Z test_return_duplicate_inplace (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5954984Z test_return_leaf (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5955450Z test_return_leaf_inplace (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5955945Z test_save_none_for_backward (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5956464Z test_save_on_cpu_and_checkpoint (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5956943Z test_save_output_nr (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5957530Z test_saved_variable_packing_unpacking_did_not_save_original_with_default_hooks (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5958232Z test_saved_variable_packing_unpacking_did_not_save_original_with_hooks (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5958883Z test_saved_variable_packing_unpacking_saved_original_with_default_hooks (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5959516Z test_saved_variable_packing_unpacking_saved_original_with_hooks (__main__.TestAutograd) ... ok (0.012s) 2023-01-11T21:57:36.5960118Z test_saved_variable_saved_original_inplace_detach (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5960688Z test_saved_variable_version_counter (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5961211Z test_saved_variables_deprecated (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5961735Z test_saving_variable_to_disk (__main__.TestAutograd) ... ok (0.008s) 2023-01-11T21:57:36.5962222Z test_select_expanded_v (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5962688Z test_select_sum (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5963126Z test_set_data_preserve_pyobj (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5963638Z test_set_data_self_requires_grad (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5964157Z test_set_data_tensorimpl_type (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5964649Z test_set_grad_coroutines (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5965191Z test_set_grad_coroutines_benign_exceptions (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5965776Z test_set_grad_coroutines_critical_exceptions (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5966413Z test_set_grad_coroutines_exit (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5966889Z test_set_grad_enabled (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5967384Z test_set_grad_generator_functions (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5967903Z test_set_grad_generator_functions_recursive (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5968391Z test_setitem (__main__.TestAutograd) ... ok (0.013s) 2023-01-11T21:57:36.5968829Z test_setitem_mask (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5969507Z test_setting_default_saved_variable_hooks_twice_should_not_fail (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5970075Z test_setting_default_saved_variable_hooks_twice_should_use_inner (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5970662Z test_shape (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5971088Z test_sharded_grad (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5971548Z test_simple_reentrant (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5971986Z test_slice_expanded_v (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5972464Z test_sparse_gather_both_scalar (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5972965Z test_sparse_gather_dim0 (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5973431Z test_sparse_gather_dim1 (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5973899Z test_sparse_gather_dim_neg (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5974385Z test_sparse_gather_ind_scalar (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5974885Z test_sparse_gather_x_scalar (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5975355Z test_sparse_mm_backward (__main__.TestAutograd) ... ok (0.006s) 2023-01-11T21:57:36.5976178Z test_symeig_no_eigenvectors (__main__.TestAutograd) ... /var/lib/jenkins/workspace/test/test_autograd.py:4200: UserWarning: torch.symeig is deprecated in favor of torch.linalg.eigh and will be removed in a future PyTorch release. 2023-01-11T21:57:36.5977147Z The default behavior has changed from using the upper triangular portion of the matrix by default to using the lower triangular portion. 2023-01-11T21:57:36.5977722Z L, _ = torch.symeig(A, upper=upper) 2023-01-11T21:57:36.5978066Z should be replaced with 2023-01-11T21:57:36.5978601Z L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L') 2023-01-11T21:57:36.5978979Z and 2023-01-11T21:57:36.5979298Z L, V = torch.symeig(A, eigenvectors=True) 2023-01-11T21:57:36.5979665Z should be replaced with 2023-01-11T21:57:36.5980518Z L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L') (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2910.) 2023-01-11T21:57:36.5981162Z w, v = torch.symeig(A, eigenvectors=False) 2023-01-11T21:57:36.5981507Z ok (0.009s) 2023-01-11T21:57:36.5981889Z test_tensor_grad_warnings (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5982362Z test_thread_shutdown (__main__.TestAutograd) ... ok (1.370s) 2023-01-11T21:57:36.5982923Z test_to_sparse_backward (__main__.TestAutograd) ... ok (0.046s) 2023-01-11T21:57:36.5983394Z test_too_many_grads (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5983858Z test_type_conversions (__main__.TestAutograd) ... ok (0.003s) 2023-01-11T21:57:36.5984313Z test_unrelated_inputs (__main__.TestAutograd) ... ok (0.004s) 2023-01-11T21:57:36.5984769Z test_unused_output (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5985255Z test_var_mean_differentiable (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5985734Z test_variable_traverse (__main__.TestAutograd) ... ok (0.106s) 2023-01-11T21:57:36.5986219Z test_version_counter (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5986695Z test_view_func_replay (__main__.TestAutograd) ... ok (0.002s) 2023-01-11T21:57:36.5987130Z test_volatile_deprecated (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5987743Z test_will_engine_execute_node (__main__.TestAutograd) ... ok (0.007s) 2023-01-11T21:57:36.5988237Z test_wrapped_number_saved_variable_hooks (__main__.TestAutograd) ... ok (0.001s) 2023-01-11T21:57:36.5988845Z test_view_func_for_complex_views (autograd.test_complex.TestAutogradComplex) ... ok (0.003s) 2023-01-11T21:57:36.5989455Z test_view_with_multi_output (autograd.test_complex.TestAutogradComplex) ... ok (0.007s) 2023-01-11T21:57:36.5990756Z test_advanced_packing_unpacking (__main__.TestAutogradForwardMode) ... /var/lib/jenkins/workspace/test/test_autograd.py:8092: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.5991908Z self.assertEqual(dual.storage().data_ptr(), foo.storage().data_ptr()) 2023-01-11T21:57:36.5992948Z /var/lib/jenkins/workspace/test/test_autograd.py:8101: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.5993985Z self.assertEqual(dual_primal.storage().data_ptr(), foo.storage().data_ptr()) 2023-01-11T21:57:36.5995028Z /var/lib/jenkins/workspace/test/test_autograd.py:8102: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.5996076Z self.assertEqual(dual_tangent.storage().data_ptr(), bar.storage().data_ptr()) 2023-01-11T21:57:36.5996512Z ok (0.004s) 2023-01-11T21:57:36.5996967Z test_backward_graph_destruction (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.5997548Z test_basic_packing_unpacking (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.5998157Z test_codegen_ignores_undefined_outputs (__main__.TestAutogradForwardMode) ... ok (0.007s) 2023-01-11T21:57:36.5999382Z test_create_new_zeros_with_same_meta (__main__.TestAutogradForwardMode) ... /var/lib/jenkins/workspace/test/test_autograd.py:8351: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.6000550Z self.assertEqual(len(result.storage()), len(target.storage()) * prod_of_t_bdims) 2023-01-11T21:57:36.6000963Z ok (0.006s) 2023-01-11T21:57:36.6001386Z test_default_level (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6001956Z test_detach_view_tracking (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6002538Z test_forward_level_cleanup (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6003092Z test_fwd_grad_enabled (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6003634Z test_grad_cleanup (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6004208Z test_make_dual_forbid_integral_dtype (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6004808Z test_make_dual_inference_tensor_in_inference_mode (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6005416Z test_make_dual_torch_dispatch (__main__.TestAutogradForwardMode) ... ok (0.002s) 2023-01-11T21:57:36.6006002Z test_metadata_check_check_conj (__main__.TestAutogradForwardMode) ... ok (0.002s) 2023-01-11T21:57:36.6006613Z test_metadata_check_checks_ignores_size_zero (__main__.TestAutogradForwardMode) ... ok (0.003s) 2023-01-11T21:57:36.6007940Z test_metadata_check_checks_storage_numel (__main__.TestAutogradForwardMode) ... /var/lib/jenkins/workspace/test/test_autograd.py:7790: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.6009185Z self.assertEqual(len(primal.storage()), 5) 2023-01-11T21:57:36.6009552Z ok (0.001s) 2023-01-11T21:57:36.6010056Z test_metadata_check_ignore_storage_offset_for_zero_numel_tensor (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6011423Z test_metadata_check_when_primal_has_conj_bit (__main__.TestAutogradForwardMode) ... /var/lib/jenkins/workspace/test/test_autograd.py:7826: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.6012558Z self.assertEqual(len(a.storage()), len(b.storage())) 2023-01-11T21:57:36.6012925Z ok (0.001s) 2023-01-11T21:57:36.6014021Z test_metadata_check_when_primal_has_neg_bit (__main__.TestAutogradForwardMode) ... /var/lib/jenkins/workspace/test/test_autograd.py:7841: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.6015153Z self.assertEqual(len(a.storage()), len(b.storage())) 2023-01-11T21:57:36.6015498Z ok (0.001s) 2023-01-11T21:57:36.6015904Z test_nested_level (__main__.TestAutogradForwardMode) ... ok (0.002s) 2023-01-11T21:57:36.6016444Z test_non_differentiable (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6016995Z test_out_variant (__main__.TestAutogradForwardMode) ... ok (0.004s) 2023-01-11T21:57:36.6017503Z test_print (__main__.TestAutogradForwardMode) ... ok (0.002s) 2023-01-11T21:57:36.6018087Z test_set_fw_grad_having_own_fw_grad_at_same_level (__main__.TestAutogradForwardMode) ... ok (0.004s) 2023-01-11T21:57:36.6018704Z test_set_fwd_grad_enabled (__main__.TestAutogradForwardMode) ... ok (0.001s) 2023-01-11T21:57:36.6019233Z test_size_check (__main__.TestAutogradForwardMode) ... ok (0.004s) 2023-01-11T21:57:36.6019788Z test_view_inplace_always_creates_a_view (__main__.TestAutogradForwardMode) ... ok (0.003s) 2023-01-11T21:57:36.6020386Z test_view_inplace_differentiable_views (__main__.TestAutogradForwardMode) ... ok (0.002s) 2023-01-11T21:57:36.6020999Z test_view_inplace_non_differentiable_views (__main__.TestAutogradForwardMode) ... ok (0.002s) 2023-01-11T21:57:36.6021645Z test_inplace_on_view_not_same_layout (__main__.TestAutogradForwardModeBatchedGrad) ... ok (0.001s) 2023-01-11T21:57:36.6022341Z test_inplace_on_view_same_layout (__main__.TestAutogradForwardModeBatchedGrad) ... ok (0.001s) 2023-01-11T21:57:36.6023738Z test_metadata_check_for_storage_numel_skipped (__main__.TestAutogradForwardModeBatchedGrad) ... /var/lib/jenkins/workspace/test/test_autograd.py:7716: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:57:36.6024900Z self.assertEqual(len(primal.storage()), 5) 2023-01-11T21:57:36.6025205Z ok (0.004s) 2023-01-11T21:57:36.6025666Z test_out_of_place_basic (__main__.TestAutogradForwardModeBatchedGrad) ... ok (0.006s) 2023-01-11T21:57:36.6026375Z test_out_of_place_not_same_layout (__main__.TestAutogradForwardModeBatchedGrad) ... ok (0.001s) 2023-01-11T21:57:36.6027029Z test_construct_standard_basis_for_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6027933Z test_construct_standard_basis_for_cuda_base_tensor (autograd.test_functional.TestAutogradFunctional) ... skip: test requires CUDA (0.000s) 2023-01-11T21:57:36.6028779Z test_construct_standard_basis_for_cuda_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... skip: test requires CUDA (0.000s) 2023-01-11T21:57:36.6029570Z test_construct_standard_basis_for_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.011s) 2023-01-11T21:57:36.6030316Z test_hessian_create_graph_vectorize_False_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.134s) 2023-01-11T21:57:36.6031214Z test_hessian_create_graph_vectorize_False_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.808s) 2023-01-11T21:57:36.6032005Z test_hessian_create_graph_vectorize_True_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.070s) 2023-01-11T21:57:36.6032796Z test_hessian_create_graph_vectorize_True_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.361s) 2023-01-11T21:57:36.6033537Z test_hessian_err_check_strict_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6034259Z test_hessian_err_check_strict_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.008s) 2023-01-11T21:57:36.6034982Z test_hessian_err_check_strict_vectorize_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6035745Z test_hessian_err_check_strict_vectorize_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6036508Z test_hessian_err_check_vectorize_False_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6037270Z test_hessian_err_check_vectorize_False_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.014s) 2023-01-11T21:57:36.6038042Z test_hessian_err_check_vectorize_True_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6038787Z test_hessian_err_check_vectorize_True_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.007s) 2023-01-11T21:57:36.6039521Z test_hessian_match_vhp_hvp_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6040222Z test_hessian_match_vhp_hvp_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.009s) 2023-01-11T21:57:36.6040928Z test_hessian_no_grad_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6041618Z test_hessian_no_grad_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.009s) 2023-01-11T21:57:36.6042347Z test_hessian_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6043030Z test_hessian_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.012s) 2023-01-11T21:57:36.6043719Z test_hessian_output_vectorized_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6044439Z test_hessian_output_vectorized_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6045188Z test_hessian_scalar_vectorize_False_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6045932Z test_hessian_scalar_vectorize_False_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.008s) 2023-01-11T21:57:36.6046680Z test_hessian_scalar_vectorize_True_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6047432Z test_hessian_scalar_vectorize_True_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6048203Z test_hessian_vectorize_correctness_multi_input_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.014s) 2023-01-11T21:57:36.6049488Z test_hessian_vectorize_correctness_multi_input_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.107s) 2023-01-11T21:57:36.6050079Z test_hessian_vectorize_correctness_simple_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6050519Z test_hessian_vectorize_correctness_simple_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.030s) 2023-01-11T21:57:36.6050977Z test_hessian_vectorize_correctness_unrelated_outputs_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6051597Z test_hessian_vectorize_correctness_unrelated_outputs_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.028s) 2023-01-11T21:57:36.6052051Z test_hessian_vectorize_raises_no_warnings_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6052480Z test_hessian_vectorize_raises_no_warnings_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6052895Z test_hvp_create_graph_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.085s) 2023-01-11T21:57:36.6053297Z test_hvp_create_graph_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.448s) 2023-01-11T21:57:36.6053680Z test_hvp_err_check_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6054065Z test_hvp_err_check_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.008s) 2023-01-11T21:57:36.6054455Z test_hvp_err_check_strict_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6054857Z test_hvp_err_check_strict_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6055238Z test_hvp_no_grad_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6055620Z test_hvp_no_grad_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6056003Z test_hvp_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6056387Z test_hvp_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6056753Z test_hvp_scalar_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6057132Z test_hvp_scalar_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6057546Z test_jacobian_create_graph_vectorize_False_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.058s) 2023-01-11T21:57:36.6057987Z test_jacobian_create_graph_vectorize_False_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.322s) 2023-01-11T21:57:36.6058413Z test_jacobian_create_graph_vectorize_True_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.046s) 2023-01-11T21:57:36.6058846Z test_jacobian_create_graph_vectorize_True_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.228s) 2023-01-11T21:57:36.6059267Z test_jacobian_err_check_strict_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6059663Z test_jacobian_err_check_strict_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.007s) 2023-01-11T21:57:36.6060084Z test_jacobian_err_check_strict_vectorize_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6060516Z test_jacobian_err_check_strict_vectorize_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6060944Z test_jacobian_err_check_vectorize_False_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6061421Z test_jacobian_err_check_vectorize_False_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.007s) 2023-01-11T21:57:36.6061848Z test_jacobian_err_check_vectorize_True_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6062271Z test_jacobian_err_check_vectorize_True_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6062763Z test_jacobian_match_vjp_jvp_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6063158Z test_jacobian_match_vjp_jvp_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.007s) 2023-01-11T21:57:36.6063555Z test_jacobian_no_grad_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6063984Z test_jacobian_no_grad_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6064379Z test_jacobian_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6064761Z test_jacobian_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.009s) 2023-01-11T21:57:36.6065162Z test_jacobian_output_vectorized_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6065579Z test_jacobian_output_vectorized_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6065980Z test_jacobian_scalar_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6066355Z test_jacobian_scalar_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6066760Z test_jacobian_scalar_vectorized_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6067174Z test_jacobian_scalar_vectorized_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6067641Z test_jacobian_vectorize_correctness_different_devices_base_tensor (autograd.test_functional.TestAutogradFunctional) ... skip: test requires CUDA (0.000s) 2023-01-11T21:57:36.6068138Z test_jacobian_vectorize_correctness_different_devices_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... skip: test requires CUDA (0.000s) 2023-01-11T21:57:36.6068618Z test_jacobian_vectorize_correctness_different_dtype_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6069076Z test_jacobian_vectorize_correctness_different_dtype_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.009s) 2023-01-11T21:57:36.6069527Z test_jacobian_vectorize_correctness_multi_input_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6069956Z test_jacobian_vectorize_correctness_multi_input_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.018s) 2023-01-11T21:57:36.6070413Z test_jacobian_vectorize_correctness_multi_input_multi_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.008s) 2023-01-11T21:57:36.6070880Z test_jacobian_vectorize_correctness_multi_input_multi_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.059s) 2023-01-11T21:57:36.6071330Z test_jacobian_vectorize_correctness_simple_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6071755Z test_jacobian_vectorize_correctness_simple_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.019s) 2023-01-11T21:57:36.6072204Z test_jacobian_vectorize_correctness_unrelated_outputs_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6072668Z test_jacobian_vectorize_correctness_unrelated_outputs_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.021s) 2023-01-11T21:57:36.6073150Z test_jacobian_vectorize_correctness_zero_dim_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6073577Z test_jacobian_vectorize_correctness_zero_dim_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.033s) 2023-01-11T21:57:36.6074013Z test_jacobian_vectorize_raises_no_warnings_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6074444Z test_jacobian_vectorize_raises_no_warnings_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6074859Z test_jvp_create_graph_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.060s) 2023-01-11T21:57:36.6075240Z test_jvp_create_graph_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.315s) 2023-01-11T21:57:36.6075660Z test_jvp_err_check_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6076051Z test_jvp_err_check_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6076428Z test_jvp_err_check_strict_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6076824Z test_jvp_err_check_strict_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6077214Z test_jvp_no_grad_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6077593Z test_jvp_no_grad_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6077958Z test_jvp_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6078336Z test_jvp_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6078714Z test_jvp_scalar_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6079096Z test_jvp_scalar_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6079470Z test_vhp_create_graph_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.076s) 2023-01-11T21:57:36.6079863Z test_vhp_create_graph_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.411s) 2023-01-11T21:57:36.6080250Z test_vhp_err_check_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6080621Z test_vhp_err_check_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6081010Z test_vhp_err_check_strict_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6081408Z test_vhp_err_check_strict_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6081795Z test_vhp_no_grad_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6082164Z test_vhp_no_grad_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.006s) 2023-01-11T21:57:36.6082543Z test_vhp_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6082922Z test_vhp_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6083298Z test_vhp_scalar_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6083667Z test_vhp_scalar_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6084054Z test_vjp_create_graph_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.053s) 2023-01-11T21:57:36.6084445Z test_vjp_create_graph_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.279s) 2023-01-11T21:57:36.6084818Z test_vjp_err_check_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6085236Z test_vjp_err_check_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6085625Z test_vjp_err_check_strict_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6086025Z test_vjp_err_check_strict_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6086404Z test_vjp_no_grad_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6086782Z test_vjp_no_grad_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.005s) 2023-01-11T21:57:36.6087161Z test_vjp_output_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.002s) 2023-01-11T21:57:36.6087565Z test_vjp_output_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.004s) 2023-01-11T21:57:36.6087937Z test_vjp_scalar_base_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.001s) 2023-01-11T21:57:36.6088319Z test_vjp_scalar_logging_tensor (autograd.test_functional.TestAutogradFunctional) ... ok (0.003s) 2023-01-11T21:57:36.6088683Z test_inference_mode_context_manager (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6089011Z test_inference_mode_decorator (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6089591Z test_inference_mode_existing_autograd_session (__main__.TestAutogradInferenceMode) ... ok (0.006s) 2023-01-11T21:57:36.6089965Z test_inference_mode_handle_direct_view_on_rebase (__main__.TestAutogradInferenceMode) ... ok (0.007s) 2023-01-11T21:57:36.6090337Z test_inference_mode_handle_indirect_view_on_rebase (__main__.TestAutogradInferenceMode) ... ok (0.005s) 2023-01-11T21:57:36.6090709Z test_inference_mode_inf_tensor_in_inf_mode_functional_op (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6091091Z test_inference_mode_inf_tensor_in_inf_mode_inplace_op (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6091468Z test_inference_mode_inf_tensor_in_inf_mode_view_op (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6091845Z test_inference_mode_inf_tensor_in_normal_mode_functional_op (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6092222Z test_inference_mode_inf_tensor_in_normal_mode_inplace_op (__main__.TestAutogradInferenceMode) ... ok (0.007s) 2023-01-11T21:57:36.6092601Z test_inference_mode_inf_tensor_in_normal_mode_view_op (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6092957Z test_inference_mode_tensor_creation (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6093319Z test_mix_inference_and_normal_tensor_functional_op (__main__.TestAutogradInferenceMode) ... ok (0.004s) 2023-01-11T21:57:36.6093678Z test_mix_inference_and_normal_tensor_inplace_op (__main__.TestAutogradInferenceMode) ... ok (0.009s) 2023-01-11T21:57:36.6094043Z test_mix_inference_and_normal_tensor_view_op (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6094413Z test_normal_tensor_inplace_output_in_inference_mode (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6094774Z test_normal_tensor_inplace_output_in_normal_mode (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6095142Z test_normal_tensor_view_output_in_inference_mode (__main__.TestAutogradInferenceMode) ... ok (0.001s) 2023-01-11T21:57:36.6095502Z test_normal_tensor_view_output_in_normal_mode (__main__.TestAutogradInferenceMode) ... ok (0.004s) 2023-01-11T21:57:36.6095831Z test_cat_stack_r_to_c (__main__.TestMultithreadAutograd) ... ok (0.106s) 2023-01-11T21:57:36.6096143Z test_dataparallel_saved_tensors_hooks (__main__.TestMultithreadAutograd) ... ok (0.001s) 2023-01-11T21:57:36.6096468Z test_fork_join_in_middle (__main__.TestMultithreadAutograd) ... ok (0.017s) 2023-01-11T21:57:36.6096774Z test_multi_grad_hooks (__main__.TestMultithreadAutograd) ... ok (0.005s) 2023-01-11T21:57:36.6097167Z test_multithreaded_exception_propagation (__main__.TestMultithreadAutograd) ... ok (0.001s) 2023-01-11T21:57:36.6097504Z test_preserve_backtrace (__main__.TestMultithreadAutograd) ... ok (0.001s) 2023-01-11T21:57:36.6097821Z test_python_thread_in_middle (__main__.TestMultithreadAutograd) ... ok (0.021s) 2023-01-11T21:57:36.6098129Z test_simple_backward (__main__.TestMultithreadAutograd) ... ok (0.006s) 2023-01-11T21:57:36.6098436Z test_simple_backward_same_input (__main__.TestMultithreadAutograd) ... ok (0.009s) 2023-01-11T21:57:36.6098621Z 2023-01-11T21:57:36.6098863Z ---------------------------------------------------------------------- 2023-01-11T21:57:36.6099109Z Ran 478 tests in 16.478s 2023-01-11T21:57:36.6099224Z 2023-01-11T21:57:36.6099362Z OK (skipped=11, expected failures=1) 2023-01-11T21:57:36.6099484Z 2023-01-11T21:57:36.6099569Z Generating XML reports... 2023-01-11T21:57:36.6100011Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-TestAllowMutationOnSaved-20230111215719.xml 2023-01-11T21:57:36.6100529Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-TestAutograd-20230111215719.xml 2023-01-11T21:57:36.6101072Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-autograd.test_complex.TestAutogradComplex-20230111215719.xml 2023-01-11T21:57:36.6101640Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-TestAutogradForwardMode-20230111215719.xml 2023-01-11T21:57:36.6102223Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-TestAutogradForwardModeBatchedGrad-20230111215719.xml 2023-01-11T21:57:36.6102950Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-autograd.test_functional.TestAutogradFunctional-20230111215719.xml 2023-01-11T21:57:36.6103531Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-TestAutogradInferenceMode-20230111215719.xml 2023-01-11T21:57:36.6104076Z Generated XML report: test-reports/python-unittest/test_autograd/TEST-TestMultithreadAutograd-20230111215719.xml 2023-01-11T21:57:36.6104320Z 2023-01-11T21:57:36.6104640Z ##[endgroup] 2023-01-11T21:57:36.6105005Z FINISHED PRINTING LOG FILE of test_autograd (/var/lib/jenkins/workspace/test/test-reports/test_autograd_uadvh1se) 2023-01-11T21:57:36.6105219Z 2023-01-11T21:57:36.6105398Z Running test_cpp_extensions_jit ... [2023-01-11 21:57:36.570751] 2023-01-11T21:57:36.6105886Z Executing ['/opt/conda/bin/python', '-bb', 'test_cpp_extensions_jit.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:57:36.571009] 2023-01-11T21:58:10.5982284Z 2023-01-11T21:58:10.5983055Z Expand the folded group to see the log file of test_cpp_extensions_jit 2023-01-11T21:58:10.5984091Z ##[group]PRINTING LOG FILE of test_cpp_extensions_jit (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_jit_6smzcg8i) 2023-01-11T21:58:10.5984589Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T21:58:10.5986436Z 2023-01-11T21:58:10.5986608Z Running tests... 2023-01-11T21:58:10.5987152Z ---------------------------------------------------------------------- 2023-01-11T21:58:10.5987796Z Test results will be stored in test-reports/python-unittest/test_cpp_extensions_jit 2023-01-11T21:58:10.5988127Z test_autograd_from_cpp (__main__.TestCppExtensionJIT) ... ok (1.454s) 2023-01-11T21:58:10.5990547Z test_compilation_error_formatting (__main__.TestCppExtensionJIT) ... ok (13.283s) 2023-01-11T21:58:10.5991366Z test_cpp_frontend_module_has_same_output_as_python (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.5992203Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/cpp_frontend_extension... 2023-01-11T21:58:10.5992811Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/cpp_frontend_extension/build.ninja... 2023-01-11T21:58:10.5993133Z Building extension module cpp_frontend_extension... 2023-01-11T21:58:10.5993545Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.5995967Z [1/2] c++ -MMD -MF cpp_frontend_extension.o.d -DTORCH_EXTENSION_NAME=cpp_frontend_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/workspace/test/cpp_extensions/cpp_frontend_extension.cpp -o cpp_frontend_extension.o 2023-01-11T21:58:10.5998288Z [2/2] c++ cpp_frontend_extension.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o cpp_frontend_extension.so 2023-01-11T21:58:10.5998883Z Loading extension module cpp_frontend_extension... 2023-01-11T21:58:10.5999211Z ok (1.269s) 2023-01-11T21:58:10.5999825Z test_cpp_frontend_module_has_up_to_date_attributes (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6000792Z No modifications detected for re-loaded extension module cpp_frontend_extension, skipping build step... 2023-01-11T21:58:10.6001277Z Loading extension module cpp_frontend_extension... 2023-01-11T21:58:10.6001487Z ok (0.002s) 2023-01-11T21:58:10.6001821Z test_cpp_frontend_module_python_inter_op (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6002358Z No modifications detected for re-loaded extension module cpp_frontend_extension, skipping build step... 2023-01-11T21:58:10.6002895Z Loading extension module cpp_frontend_extension... 2023-01-11T21:58:10.6003285Z ok (0.008s) 2023-01-11T21:58:10.6003783Z test_cpp_frontend_module_python_inter_op_with_cuda (__main__.TestCppExtensionJIT) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:10.6004525Z test_custom_compound_op_autograd (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6004937Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/is_python_module... 2023-01-11T21:58:10.6005304Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/is_python_module/build.ninja... 2023-01-11T21:58:10.6005596Z Building extension module is_python_module... 2023-01-11T21:58:10.6005850Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6008004Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=is_python_module -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/is_python_module/main.cpp -o main.o 2023-01-11T21:58:10.6009700Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o is_python_module.so 2023-01-11T21:58:10.6010040Z Loading extension module is_python_module... 2023-01-11T21:58:10.6010679Z /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #0 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:58:10.6011202Z warnings.warn( 2023-01-11T21:58:10.6011813Z /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #1 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:58:10.6012230Z warnings.warn( 2023-01-11T21:58:10.6012831Z /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #0 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:58:10.6013238Z warnings.warn( 2023-01-11T21:58:10.6013888Z /opt/conda/lib/python3.10/site-packages/torch/autograd/gradcheck.py:688: UserWarning: Input #1 requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 2023-01-11T21:58:10.6014310Z warnings.warn( 2023-01-11T21:58:10.6014477Z ok (1.193s) 2023-01-11T21:58:10.6014679Z test_half_support (__main__.TestCppExtensionJIT) 2023-01-11T21:58:10.6015000Z Checks for an issue with operator< ambiguity for half when certain ... skip: Temporarily disabled (0.001s) 2023-01-11T21:58:10.6015379Z test_inline_jit_compile_custom_op_cuda (__main__.TestCppExtensionJIT) ... skip: Temporarily disabled (0.001s) 2023-01-11T21:58:10.6015747Z test_inline_jit_compile_extension_cuda (__main__.TestCppExtensionJIT) ... skip: Temporarily disabled (0.001s) 2023-01-11T21:58:10.6016203Z test_inline_jit_compile_extension_multiple_sources_and_no_functions (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6016653Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension... 2023-01-11T21:58:10.6017026Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension/build.ninja... 2023-01-11T21:58:10.6017325Z Building extension module inline_jit_extension... 2023-01-11T21:58:10.6017577Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6018870Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=inline_jit_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension/main.cpp -o main.o 2023-01-11T21:58:10.6019918Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o inline_jit_extension.so 2023-01-11T21:58:10.6020264Z Loading extension module inline_jit_extension... 2023-01-11T21:58:10.6020460Z ok (1.173s) 2023-01-11T21:58:10.6020737Z test_inline_jit_compile_extension_throws_when_functions_is_bad (__main__.TestCppExtensionJIT) ... ok (0.002s) 2023-01-11T21:58:10.6021183Z test_inline_jit_compile_extension_with_functions_as_dict (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6021638Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension_with_functions_dict... 2023-01-11T21:58:10.6022072Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension_with_functions_dict/build.ninja... 2023-01-11T21:58:10.6022414Z Building extension module inline_jit_extension_with_functions_dict... 2023-01-11T21:58:10.6022761Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6024155Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=inline_jit_extension_with_functions_dict -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension_with_functions_dict/main.cpp -o main.o 2023-01-11T21:58:10.6025309Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o inline_jit_extension_with_functions_dict.so 2023-01-11T21:58:10.6025701Z Loading extension module inline_jit_extension_with_functions_dict... 2023-01-11T21:58:10.6025918Z ok (1.166s) 2023-01-11T21:58:10.6026263Z test_inline_jit_compile_extension_with_functions_as_list (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6026721Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension_with_functions_list... 2023-01-11T21:58:10.6027128Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension_with_functions_list/build.ninja... 2023-01-11T21:58:10.6027470Z Building extension module inline_jit_extension_with_functions_list... 2023-01-11T21:58:10.6027742Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6029098Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=inline_jit_extension_with_functions_list -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/inline_jit_extension_with_functions_list/main.cpp -o main.o 2023-01-11T21:58:10.6030216Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o inline_jit_extension_with_functions_list.so 2023-01-11T21:58:10.6030604Z Loading extension module inline_jit_extension_with_functions_list... 2023-01-11T21:58:10.6030823Z ok (1.231s) 2023-01-11T21:58:10.6031143Z test_jit_compile_extension (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6031550Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/jit_extension... 2023-01-11T21:58:10.6031901Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/jit_extension/build.ninja... 2023-01-11T21:58:10.6032195Z Building extension module jit_extension... 2023-01-11T21:58:10.6032439Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6033796Z [1/3] c++ -MMD -MF jit_extension.o.d -DTORCH_EXTENSION_NAME=jit_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/var/lib/jenkins/workspace/test/cpp_extensions -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -g -c /var/lib/jenkins/workspace/test/cpp_extensions/jit_extension.cpp -o jit_extension.o 2023-01-11T21:58:10.6035826Z [2/3] c++ -MMD -MF jit_extension2.o.d -DTORCH_EXTENSION_NAME=jit_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/var/lib/jenkins/workspace/test/cpp_extensions -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -g -c /var/lib/jenkins/workspace/test/cpp_extensions/jit_extension2.cpp -o jit_extension2.o 2023-01-11T21:58:10.6036995Z [3/3] c++ jit_extension.o jit_extension2.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o jit_extension.so 2023-01-11T21:58:10.6037348Z Loading extension module jit_extension... 2023-01-11T21:58:10.6037536Z ok (1.641s) 2023-01-11T21:58:10.6037792Z test_jit_cuda_archflags (__main__.TestCppExtensionJIT) ... skip: CUDA not found (0.001s) 2023-01-11T21:58:10.6038130Z test_jit_cuda_extension (__main__.TestCppExtensionJIT) ... skip: CUDA not found (0.000s) 2023-01-11T21:58:10.6038457Z test_jit_cudnn_extension (__main__.TestCppExtensionJIT) ... skip: CuDNN not found (0.001s) 2023-01-11T21:58:10.6038857Z test_lenient_flag_handling_in_jit_extensions (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6039295Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/lenient_flag_handling_extension... 2023-01-11T21:58:10.6039696Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/lenient_flag_handling_extension/build.ninja... 2023-01-11T21:58:10.6040020Z Building extension module lenient_flag_handling_extension... 2023-01-11T21:58:10.6040285Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6041720Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=lenient_flag_handling_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/var/lib/jenkins/workspace/test/cpp_extensions -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -g -O0 -Wall -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/lenient_flag_handling_extension/main.cpp -o main.o 2023-01-11T21:58:10.6042872Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o lenient_flag_handling_extension.so 2023-01-11T21:58:10.6043244Z Loading extension module lenient_flag_handling_extension... 2023-01-11T21:58:10.6043460Z ok (1.422s) 2023-01-11T21:58:10.6043763Z test_reload_jit_extension (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6044173Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension... 2023-01-11T21:58:10.6044554Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension/build.ninja... 2023-01-11T21:58:10.6044859Z Building extension module reloaded_jit_extension... 2023-01-11T21:58:10.6045115Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6046418Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=reloaded_jit_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension/main.cpp -o main.o 2023-01-11T21:58:10.6047497Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o reloaded_jit_extension.so 2023-01-11T21:58:10.6047846Z Loading extension module reloaded_jit_extension... 2023-01-11T21:58:10.6048162Z Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6048676Z The input conditions for extension module reloaded_jit_extension have changed. Bumping to version 1 and re-building as reloaded_jit_extension_v1... 2023-01-11T21:58:10.6049216Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension/build.ninja... 2023-01-11T21:58:10.6050878Z Building extension module reloaded_jit_extension_v1... 2023-01-11T21:58:10.6051324Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6053132Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=reloaded_jit_extension_v1 -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension/main.cpp -o main.o 2023-01-11T21:58:10.6054547Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o reloaded_jit_extension_v1.so 2023-01-11T21:58:10.6055002Z Loading extension module reloaded_jit_extension_v1... 2023-01-11T21:58:10.6055306Z Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6056033Z No modifications detected for re-loaded extension module reloaded_jit_extension_v1, skipping build step... 2023-01-11T21:58:10.6056453Z Loading extension module reloaded_jit_extension_v1... 2023-01-11T21:58:10.6056752Z Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6057265Z The input conditions for extension module reloaded_jit_extension have changed. Bumping to version 2 and re-building as reloaded_jit_extension_v2... 2023-01-11T21:58:10.6057680Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension/build.ninja... 2023-01-11T21:58:10.6058009Z Building extension module reloaded_jit_extension_v2... 2023-01-11T21:58:10.6058269Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6059581Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=reloaded_jit_extension_v2 -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/reloaded_jit_extension/main.cpp -o main.o 2023-01-11T21:58:10.6060649Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o reloaded_jit_extension_v2.so 2023-01-11T21:58:10.6061133Z Loading extension module reloaded_jit_extension_v2... 2023-01-11T21:58:10.6061347Z ok (3.528s) 2023-01-11T21:58:10.6061705Z test_returns_shared_library_path_when_is_python_module_is_true (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6062283Z The input conditions for extension module is_python_module have changed. Bumping to version 1 and re-building as is_python_module_v1... 2023-01-11T21:58:10.6062753Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/is_python_module/build.ninja... 2023-01-11T21:58:10.6063069Z Building extension module is_python_module_v1... 2023-01-11T21:58:10.6063386Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6064673Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=is_python_module_v1 -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/is_python_module/main.cpp -o main.o 2023-01-11T21:58:10.6065723Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o is_python_module_v1.so 2023-01-11T21:58:10.6066055Z Loading extension module is_python_module_v1... 2023-01-11T21:58:10.6066265Z ok (1.187s) 2023-01-11T21:58:10.6066615Z test_set_default_type_also_changes_aten_default_type (__main__.TestCppExtensionJIT) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T21:58:10.6067056Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/test_set_default_type... 2023-01-11T21:58:10.6067421Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/test_set_default_type/build.ninja... 2023-01-11T21:58:10.6067735Z Building extension module test_set_default_type... 2023-01-11T21:58:10.6067993Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T21:58:10.6069300Z [1/2] c++ -MMD -MF main.o.d -DTORCH_EXTENSION_NAME=test_set_default_type -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -c /var/lib/jenkins/.cache/torch_extensions/py310_cu117/test_set_default_type/main.cpp -o main.o 2023-01-11T21:58:10.6070373Z [2/2] c++ main.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o test_set_default_type.so 2023-01-11T21:58:10.6070768Z Loading extension module test_set_default_type... 2023-01-11T21:58:10.6071044Z ok (1.154s) 2023-01-11T21:58:10.6071398Z test_warning (__main__.TestCppExtensionJIT) ... [W main.cpp:12] Warning: Error with CPUDoubleType (function foo) 2023-01-11T21:58:10.6071839Z [W main.cpp:12] Warning: Error with CPUDoubleType (function foo) 2023-01-11T21:58:10.6072199Z [W main.cpp:12] Warning: Error with CPUDoubleType (function foo) 2023-01-11T21:58:10.6082905Z [W main.cpp:12] Warning: Error with CPUDoubleType (function foo) 2023-01-11T21:58:10.6083401Z UserWarning: Error with torch.DoubleTensor (Triggered internally at /var/lib/jenkins/.cache/torch_extensions/py310_cu117/warn_mod/main.cpp:12.) 2023-01-11T21:58:10.6083832Z ok (2.328s) 2023-01-11T21:58:10.6083941Z 2023-01-11T21:58:10.6084189Z ---------------------------------------------------------------------- 2023-01-11T21:58:10.6084446Z Ran 23 tests in 32.120s 2023-01-11T21:58:10.6084570Z 2023-01-11T21:58:10.6084632Z OK (skipped=7) 2023-01-11T21:58:10.6084749Z 2023-01-11T21:58:10.6084837Z Generating XML reports... 2023-01-11T21:58:10.6085298Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_jit/TEST-TestCppExtensionJIT-20230111215738.xml 2023-01-11T21:58:10.6085571Z 2023-01-11T21:58:10.6085906Z ##[endgroup] 2023-01-11T21:58:10.6086325Z FINISHED PRINTING LOG FILE of test_cpp_extensions_jit (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_jit_6smzcg8i) 2023-01-11T21:58:10.6086576Z 2023-01-11T21:58:10.6086782Z Running test_cuda ... [2023-01-11 21:58:10.598557] 2023-01-11T21:58:10.6087261Z Executing ['/opt/conda/bin/python', '-bb', 'test_cuda.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:10.598803] 2023-01-11T21:58:12.2039878Z 2023-01-11T21:58:12.2040402Z Expand the folded group to see the log file of test_cuda 2023-01-11T21:58:12.2042296Z ##[group]PRINTING LOG FILE of test_cuda (/var/lib/jenkins/workspace/test/test-reports/test_cuda_028r8olj) 2023-01-11T21:58:12.2042862Z CUDA not available, skipping tests 2023-01-11T21:58:12.2043094Z 2023-01-11T21:58:12.2043224Z Running tests... 2023-01-11T21:58:12.2043903Z ---------------------------------------------------------------------- 2023-01-11T21:58:12.2044193Z 2023-01-11T21:58:12.2044541Z ---------------------------------------------------------------------- 2023-01-11T21:58:12.2044830Z Ran 0 tests in 0.000s 2023-01-11T21:58:12.2044941Z 2023-01-11T21:58:12.2045002Z OK 2023-01-11T21:58:12.2045094Z 2023-01-11T21:58:12.2045178Z Generating XML reports... 2023-01-11T21:58:12.2045544Z Test results will be stored in test-reports/python-unittest/test_cuda 2023-01-11T21:58:12.2045726Z 2023-01-11T21:58:12.2045946Z ##[endgroup] 2023-01-11T21:58:12.2046302Z FINISHED PRINTING LOG FILE of test_cuda (/var/lib/jenkins/workspace/test/test-reports/test_cuda_028r8olj) 2023-01-11T21:58:12.2046500Z 2023-01-11T21:58:12.2046671Z Running test_fake_tensor ... [2023-01-11 21:58:12.204079] 2023-01-11T21:58:12.2047134Z Executing ['/opt/conda/bin/python', '-bb', 'test_fake_tensor.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:12.204337] 2023-01-11T21:58:14.6129501Z 2023-01-11T21:58:14.6130007Z Expand the folded group to see the log file of test_fake_tensor 2023-01-11T21:58:14.6130958Z ##[group]PRINTING LOG FILE of test_fake_tensor (/var/lib/jenkins/workspace/test/test-reports/test_fake_tensor_wpqhlsjf) 2023-01-11T21:58:14.6131231Z 2023-01-11T21:58:14.6131365Z Running tests... 2023-01-11T21:58:14.6132017Z ---------------------------------------------------------------------- 2023-01-11T21:58:14.6133138Z Test results will be stored in test-reports/python-unittest/test_fake_tensor 2023-01-11T21:58:14.6133575Z test_aliased_const_write (__main__.FakeTensorConstHandling) ... ok (0.221s) 2023-01-11T21:58:14.6133958Z test_constant_invalidation (__main__.FakeTensorConstHandling) ... ok (0.005s) 2023-01-11T21:58:14.6134277Z test_fake_tensor_batch_norm_cpu (__main__.FakeTensorConstHandling) ... ok (0.078s) 2023-01-11T21:58:14.6134712Z test_fake_tensor_in_intlist_repro (__main__.FakeTensorConstHandling) ... ok (0.008s) 2023-01-11T21:58:14.6135171Z test_inplace_add (__main__.FakeTensorConstHandling) ... ok (0.001s) 2023-01-11T21:58:14.6135574Z test_inplace_view_invalidation (__main__.FakeTensorConstHandling) ... ok (0.001s) 2023-01-11T21:58:14.6136113Z test_shared_storage_invalidation (__main__.FakeTensorConstHandling) ... ok (0.005s) 2023-01-11T21:58:14.6137283Z test_shared_storages (__main__.FakeTensorConstHandling) ... /var/lib/jenkins/workspace/test/test_fake_tensor.py:513: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:14.6138200Z self.assertEqual(x.storage()._cdata, y.storage()._cdata) 2023-01-11T21:58:14.6138801Z /var/lib/jenkins/workspace/test/test_fake_tensor.py:514: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:14.6139414Z self.assertEqual(x.constant.storage()._cdata, y.constant.storage()._cdata) 2023-01-11T21:58:14.6139643Z ok (0.001s) 2023-01-11T21:58:14.6139972Z test_simple (__main__.FakeTensorConstHandling) ... ok (0.001s) 2023-01-11T21:58:14.6140280Z test_dead_key (__main__.FakeTensorConverterTest) ... ok (0.001s) 2023-01-11T21:58:14.6140579Z test_dead_weak_ref (__main__.FakeTensorConverterTest) ... ok (0.001s) 2023-01-11T21:58:14.6140937Z test_memoized_conversion_from_meta (__main__.FakeTensorConverterTest) ... ok (0.001s) 2023-01-11T21:58:14.6141274Z test_memoized_conversion_to_meta (__main__.FakeTensorConverterTest) ... ok (0.001s) 2023-01-11T21:58:14.6141632Z test_no_active_mode (__main__.FakeTensorConverterTest) ... ok (0.008s) 2023-01-11T21:58:14.6141920Z test_no_ref_cycle (__main__.FakeTensorConverterTest) ... ok (0.001s) 2023-01-11T21:58:14.6142257Z test_separate_mode_error (__main__.FakeTensorConverterTest) ... ok (0.007s) 2023-01-11T21:58:14.6143016Z test_separate_tensor_storages_non_view (__main__.FakeTensorConverterTest) ... /var/lib/jenkins/workspace/test/test_fake_tensor.py:602: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:14.6143596Z y.set_(x.storage()) 2023-01-11T21:58:14.6143804Z ok (0.001s) 2023-01-11T21:58:14.6144061Z test_separate_tensor_storages_view (__main__.FakeTensorConverterTest) ... ok (0.001s) 2023-01-11T21:58:14.6144385Z test_like_ops (__main__.FakeTensorOperatorInvariants) ... ok (0.014s) 2023-01-11T21:58:14.6144762Z test_non_kwarg_only_device (__main__.FakeTensorOperatorInvariants) ... ok (0.054s) 2023-01-11T21:58:14.6145093Z test_sparse_new (__main__.FakeTensorOperatorInvariants) ... expected failure (0.002s) 2023-01-11T21:58:14.6145506Z test_tensor_constructors_all_have_kwarg_device (__main__.FakeTensorOperatorInvariants) ... ok (0.104s) 2023-01-11T21:58:14.6146416Z test_fake_tensor_prop_on_nn_module (__main__.FakeTensorPropTest) ... /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py:564: UserWarning: Was not able to add assertion to guarantee correct input value to specialized function. It is up to the user to make sure that your inputs match the inputs you specialized the function with. 2023-01-11T21:58:14.6146952Z warnings.warn( 2023-01-11T21:58:14.6147112Z ok (0.023s) 2023-01-11T21:58:14.6147320Z test_basic (__main__.FakeTensorTest) ... ok (0.002s) 2023-01-11T21:58:14.6147643Z test_binary_op_type_promotion (__main__.FakeTensorTest) ... ok (0.008s) 2023-01-11T21:58:14.6147909Z test_constructor (__main__.FakeTensorTest) ... ok (0.004s) 2023-01-11T21:58:14.6148193Z test_cpu_fallback (__main__.FakeTensorTest) ... skip: requires cuda (0.001s) 2023-01-11T21:58:14.6148545Z test_cuda_lstm (__main__.FakeTensorTest) ... skip: requires cuda (0.001s) 2023-01-11T21:58:14.6148854Z test_cudnn_rnn_with_fallback (__main__.FakeTensorTest) ... skip: requires cuda (0.002s) 2023-01-11T21:58:14.6149218Z test_cudnn_rnn_without_fallback (__main__.FakeTensorTest) ... skip: requires cuda (0.002s) 2023-01-11T21:58:14.6149533Z test_data_dependent_operator (__main__.FakeTensorTest) ... ok (0.004s) 2023-01-11T21:58:14.6150240Z test_deepcopy (__main__.FakeTensorTest) ... /var/lib/jenkins/workspace/test/test_fake_tensor.py:466: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:14.6150904Z self.assertEqual(mod_copied.b.storage()._cdata, mod_copied.a.storage()._cdata) 2023-01-11T21:58:14.6151133Z ok (0.005s) 2023-01-11T21:58:14.6151400Z test_fake_dispatch_keys (__main__.FakeTensorTest) ... ok (0.008s) 2023-01-11T21:58:14.6151677Z test_fake_grad_copy (__main__.FakeTensorTest) ... ok (0.001s) 2023-01-11T21:58:14.6151930Z test_fake_mode_error (__main__.FakeTensorTest) ... ok (0.001s) 2023-01-11T21:58:14.6152308Z test_fallback_memory_prop (__main__.FakeTensorTest) ... skip: requires cuda (0.001s) 2023-01-11T21:58:14.6152602Z test_from_numpy (__main__.FakeTensorTest) ... ok (0.010s) 2023-01-11T21:58:14.6152944Z test_index_cuda_with_cpu (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6170321Z test_like_constructor (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6170907Z test_mode (__main__.FakeTensorTest) ... ok (0.004s) 2023-01-11T21:58:14.6171373Z test_nan_to_num (__main__.FakeTensorTest) ... ok (0.013s) 2023-01-11T21:58:14.6171813Z test_new (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6172129Z test_non_kwarg_device (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6172439Z test_non_overlapping_stride_zero (__main__.FakeTensorTest) ... ok (0.014s) 2023-01-11T21:58:14.6172746Z test_non_parameter_grad (__main__.FakeTensorTest) ... ok (0.001s) 2023-01-11T21:58:14.6173042Z test_normalize_device (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6173345Z test_parameter_instantiation (__main__.FakeTensorTest) ... ok (0.004s) 2023-01-11T21:58:14.6173635Z test_print_in_fake_mode (__main__.FakeTensorTest) ... ok (0.001s) 2023-01-11T21:58:14.6173903Z test_randperm (__main__.FakeTensorTest) ... ok (0.007s) 2023-01-11T21:58:14.6174162Z test_recursive_invocation (__main__.FakeTensorTest) ... ok (0.001s) 2023-01-11T21:58:14.6174438Z test_scalar_inputs (__main__.FakeTensorTest) ... ok (0.005s) 2023-01-11T21:58:14.6174717Z test_setitem (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6175012Z test_shape_take_not_device (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6175311Z test_throw (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6175597Z test_type_as (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6175917Z test_upsample_bilinear_small_channels (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6176223Z test_zero_dim (__main__.FakeTensorTest) ... skip: requires cuda (0.000s) 2023-01-11T21:58:14.6176390Z 2023-01-11T21:58:14.6176643Z ---------------------------------------------------------------------- 2023-01-11T21:58:14.6176885Z Ran 57 tests in 0.644s 2023-01-11T21:58:14.6176999Z 2023-01-11T21:58:14.6177082Z OK (skipped=16, expected failures=1) 2023-01-11T21:58:14.6177214Z 2023-01-11T21:58:14.6177298Z Generating XML reports... 2023-01-11T21:58:14.6177740Z Generated XML report: test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorConstHandling-20230111215813.xml 2023-01-11T21:58:14.6178300Z Generated XML report: test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorConverterTest-20230111215813.xml 2023-01-11T21:58:14.6178857Z Generated XML report: test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorOperatorInvariants-20230111215813.xml 2023-01-11T21:58:14.6179406Z Generated XML report: test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorPropTest-20230111215813.xml 2023-01-11T21:58:14.6179909Z Generated XML report: test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorTest-20230111215813.xml 2023-01-11T21:58:14.6180277Z 2023-01-11T21:58:14.6180644Z ##[endgroup] 2023-01-11T21:58:14.6181032Z FINISHED PRINTING LOG FILE of test_fake_tensor (/var/lib/jenkins/workspace/test/test-reports/test_fake_tensor_wpqhlsjf) 2023-01-11T21:58:14.6181246Z 2023-01-11T21:58:14.6181394Z Running test_nn ... [2023-01-11 21:58:14.613162] 2023-01-11T21:58:14.6181837Z Executing ['/opt/conda/bin/python', '-bb', 'test_nn.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:14.613403] 2023-01-11T21:58:48.6424693Z 2023-01-11T21:58:48.6425156Z Expand the folded group to see the log file of test_nn 2023-01-11T21:58:48.6428909Z ##[group]PRINTING LOG FILE of test_nn (/var/lib/jenkins/workspace/test/test-reports/test_nn_7jcit4ac) 2023-01-11T21:58:48.6429331Z 2023-01-11T21:58:48.6429708Z Running tests... 2023-01-11T21:58:48.6430317Z ---------------------------------------------------------------------- 2023-01-11T21:58:48.6430962Z Test results will be stored in test-reports/python-unittest/test_nn 2023-01-11T21:58:48.6431469Z test_add_relu (__main__.TestAddRelu) ... ok (0.002s) 2023-01-11T21:58:48.6431912Z test_add_relu_broadcasting (__main__.TestAddRelu) ... ok (0.001s) 2023-01-11T21:58:48.6432256Z test_constant_pad_nd (__main__.TestConstantPadNd) ... ok (0.001s) 2023-01-11T21:58:48.6432728Z test_preserves_memory_format (__main__.TestConstantPadNd) ... ok (0.001s) 2023-01-11T21:58:48.6433248Z test_pickle_softsign (__main__.TestFunctionalPickle) ... ok (0.000s) 2023-01-11T21:58:48.6433693Z test_fuse_module_eval_numerics (__main__.TestFusionEval) ... ok (0.255s) 2023-01-11T21:58:48.6434191Z test_fuse_conv_bn_requires_grad (__main__.TestFusionUtils) ... ok (0.002s) 2023-01-11T21:58:48.6434666Z test_fuse_linear_bn_requires_grad (__main__.TestFusionUtils) ... ok (0.001s) 2023-01-11T21:58:48.6435122Z test_AdaptiveAvgPool1d (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6435567Z test_AdaptiveAvgPool1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6435962Z test_AdaptiveAvgPool1d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6436455Z test_AdaptiveAvgPool1d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6436935Z test_AdaptiveAvgPool1d_one_output (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6437449Z test_AdaptiveAvgPool1d_one_output_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6437904Z test_AdaptiveAvgPool2d_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6438344Z test_AdaptiveAvgPool2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6438787Z test_AdaptiveAvgPool2d_single (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6439200Z test_AdaptiveAvgPool2d_single_1x1output (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6439731Z test_AdaptiveAvgPool2d_single_1x1output_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6440192Z test_AdaptiveAvgPool2d_single_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6440697Z test_AdaptiveAvgPool2d_tuple (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6441174Z test_AdaptiveAvgPool2d_tuple_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6441664Z test_AdaptiveAvgPool2d_tuple_none (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6442186Z test_AdaptiveAvgPool2d_tuple_none_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6442678Z test_AdaptiveAvgPool3d_last_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6443199Z test_AdaptiveAvgPool3d_last_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6443647Z test_AdaptiveAvgPool3d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6444110Z test_AdaptiveAvgPool3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6444763Z test_AdaptiveAvgPool3d_single (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6445261Z test_AdaptiveAvgPool3d_single_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6445756Z test_AdaptiveAvgPool3d_tuple (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6446230Z test_AdaptiveAvgPool3d_tuple_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6446672Z test_AdaptiveAvgPool3d_tuple_none (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6447069Z test_AdaptiveAvgPool3d_tuple_none_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6447527Z test_AdaptiveLogSoftmax (__main__.TestNN) ... ok (0.074s) 2023-01-11T21:58:48.6448130Z test_AdaptiveLogSoftmax_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6448653Z test_AdaptiveMaxPool1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6449340Z test_AdaptiveMaxPool1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6449777Z test_AdaptiveMaxPool1d_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6450355Z test_AdaptiveMaxPool1d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6450935Z test_AdaptiveMaxPool2d_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6451479Z test_AdaptiveMaxPool2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6452060Z test_AdaptiveMaxPool2d_single (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6452521Z test_AdaptiveMaxPool2d_single_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6452961Z test_AdaptiveMaxPool2d_tuple (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6453467Z test_AdaptiveMaxPool2d_tuple_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6454029Z test_AdaptiveMaxPool2d_tuple_none (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6454626Z test_AdaptiveMaxPool2d_tuple_none_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6455079Z test_AdaptiveMaxPool3d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6455592Z test_AdaptiveMaxPool3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6456124Z test_AdaptiveMaxPool3d_single (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6456685Z test_AdaptiveMaxPool3d_single_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6457296Z test_AdaptiveMaxPool3d_single_nonatomic (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6457779Z test_AdaptiveMaxPool3d_single_nonatomic_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6458308Z test_AdaptiveMaxPool3d_tuple (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6458842Z test_AdaptiveMaxPool3d_tuple_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6459422Z test_AdaptiveMaxPool3d_tuple_nonatomic (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6459959Z test_AdaptiveMaxPool3d_tuple_nonatomic_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6460278Z test_AdaptiveMaxPool3d_tuple_none (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6460601Z test_AdaptiveMaxPool3d_tuple_none_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6460891Z test_AvgPool1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6461170Z test_AvgPool1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6461446Z test_AvgPool1d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6461746Z test_AvgPool1d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6462156Z test_AvgPool1d_stride (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6462434Z test_AvgPool1d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6462901Z test_AvgPool1d_stride_pad (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6463309Z test_AvgPool1d_stride_pad_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6463597Z test_AvgPool2d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6463861Z test_AvgPool2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6464141Z test_AvgPool2d_divisor (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6464429Z test_AvgPool2d_divisor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6464884Z test_AvgPool2d_divisor_stride (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6465211Z test_AvgPool2d_divisor_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6465521Z test_AvgPool2d_divisor_stride_pad (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6465837Z test_AvgPool2d_divisor_stride_pad_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6467000Z test_AvgPool2d_divisor_stride_pad_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6467347Z test_AvgPool2d_divisor_stride_pad_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6467686Z test_AvgPool2d_divisor_stride_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6468023Z test_AvgPool2d_divisor_stride_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6468341Z test_AvgPool2d_divisor_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6468665Z test_AvgPool2d_divisor_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6468972Z test_AvgPool2d_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6469255Z test_AvgPool2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6469546Z test_AvgPool2d_stride (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6469828Z test_AvgPool2d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6470117Z test_AvgPool2d_stride_pad (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6470399Z test_AvgPool2d_stride_pad_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6470674Z test_AvgPool3d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6470947Z test_AvgPool3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6471215Z test_AvgPool3d_divisor (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6471502Z test_AvgPool3d_divisor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6471796Z test_AvgPool3d_divisor_stride (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6472069Z test_AvgPool3d_divisor_stride1_pad0_gpu_input (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6472405Z test_AvgPool3d_divisor_stride1_pad0_gpu_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6472755Z test_AvgPool3d_divisor_stride1_pad0_gpu_input_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6473123Z test_AvgPool3d_divisor_stride1_pad0_gpu_input_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6473476Z test_AvgPool3d_divisor_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6473782Z test_AvgPool3d_divisor_stride_pad (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6474098Z test_AvgPool3d_divisor_stride_pad_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6474489Z test_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6474834Z test_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6475202Z test_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6475586Z test_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6475948Z test_AvgPool3d_divisor_stride_pad_gpu_general_output (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6476291Z test_AvgPool3d_divisor_stride_pad_gpu_general_output_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6476695Z test_AvgPool3d_divisor_stride_pad_gpu_general_output_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6477084Z test_AvgPool3d_divisor_stride_pad_gpu_general_output_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6477447Z test_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6477792Z test_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6478159Z test_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6478543Z test_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6478890Z test_AvgPool3d_divisor_stride_pad_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6479237Z test_AvgPool3d_divisor_stride_pad_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6479570Z test_AvgPool3d_divisor_stride_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6479906Z test_AvgPool3d_divisor_stride_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6480217Z test_AvgPool3d_divisor_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6480542Z test_AvgPool3d_divisor_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6480848Z test_AvgPool3d_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6481147Z test_AvgPool3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6481423Z test_AvgPool3d_stride (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6481691Z test_AvgPool3d_stride1_pad0_gpu_input (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6482015Z test_AvgPool3d_stride1_pad0_gpu_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6482338Z test_AvgPool3d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6482625Z test_AvgPool3d_stride_pad (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6482917Z test_AvgPool3d_stride_pad_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6483231Z test_AvgPool3d_stride_pad_gpu_fixedkw_output (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6483557Z test_AvgPool3d_stride_pad_gpu_fixedkw_output_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6483893Z test_AvgPool3d_stride_pad_gpu_general_output (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6484229Z test_AvgPool3d_stride_pad_gpu_general_output_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6484552Z test_AvgPool3d_stride_pad_gpu_input_nooverlap (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6484892Z test_AvgPool3d_stride_pad_gpu_input_nooverlap_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6485224Z test_BCELoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6485501Z test_BCELoss_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6485806Z test_BCELoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6486121Z test_BCELoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6486431Z test_BCELoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6486704Z test_BCELoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6487010Z test_BCELoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6487387Z test_BCELoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6487731Z test_BCELoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6488022Z test_BCELoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6488326Z test_BCELoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6488670Z test_BCELoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6489012Z test_BCELoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6489566Z test_BCELoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6489873Z test_BCELoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6490220Z test_BCELoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6490549Z test_BCELoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6490847Z test_BCELoss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6491133Z test_BCELoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6491421Z test_BCELoss_no_reduce_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6491711Z test_BCELoss_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6492008Z test_BCELoss_scalar_weights (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6492317Z test_BCELoss_scalar_weights_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6492657Z test_BCELoss_scalar_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6493001Z test_BCELoss_scalar_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6493346Z test_BCELoss_scalar_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6493642Z test_BCELoss_weights (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6493923Z test_BCELoss_weights_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6494254Z test_BCELoss_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6494585Z test_BCELoss_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6494914Z test_BCELoss_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6495198Z test_BCELoss_weights_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6495509Z test_BCELoss_weights_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6495820Z test_BCELoss_weights_no_reduce_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6496206Z test_BCELoss_weights_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6496513Z test_BCEWithLogitsLoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6496822Z test_BCEWithLogitsLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6497163Z test_BCEWithLogitsLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6497495Z test_BCEWithLogitsLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6498197Z test_BCEWithLogitsLoss_legacy_enum (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. 2023-01-11T21:58:48.6498645Z warnings.warn(warning.format(ret)) 2023-01-11T21:58:48.6499138Z /opt/conda/lib/python3.10/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. 2023-01-11T21:58:48.6499480Z warnings.warn(warning.format(ret)) 2023-01-11T21:58:48.6499674Z ok (0.006s) 2023-01-11T21:58:48.6499941Z test_BCEWithLogitsLoss_legacy_enum_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6500255Z test_BCEWithLogitsLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6500595Z test_BCEWithLogitsLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6500968Z test_BCEWithLogitsLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6501340Z test_BCEWithLogitsLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6501660Z test_BCEWithLogitsLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6501999Z test_BCEWithLogitsLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6502378Z test_BCEWithLogitsLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6502936Z test_BCEWithLogitsLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6503267Z test_BCEWithLogitsLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6503603Z test_BCEWithLogitsLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6503973Z test_BCEWithLogitsLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6504330Z test_BCEWithLogitsLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6504651Z test_BCEWithLogitsLoss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6504972Z test_BCEWithLogitsLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6505293Z test_BCEWithLogitsLoss_no_reduce_scalar (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6505615Z test_BCEWithLogitsLoss_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6505939Z test_BCEWithLogitsLoss_scalar_weights (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6506275Z test_BCEWithLogitsLoss_scalar_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6506637Z test_BCEWithLogitsLoss_scalar_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6507010Z test_BCEWithLogitsLoss_scalar_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6507331Z test_BCEWithLogitsLoss_weights (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6507653Z test_BCEWithLogitsLoss_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6508047Z test_BCEWithLogitsLoss_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6508407Z test_BCEWithLogitsLoss_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6508715Z test_BatchNorm1d_3d_input (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6509014Z test_BatchNorm1d_3d_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6509297Z test_BatchNorm1d_3d_input_eval (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6509602Z test_BatchNorm1d_3d_input_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6509943Z test_BatchNorm1d_3d_input_not_affine (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6510251Z test_BatchNorm1d_3d_input_not_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6510573Z test_BatchNorm1d_3d_input_not_affine_eval (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6510901Z test_BatchNorm1d_3d_input_not_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6511204Z test_BatchNorm1d_affine (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6511484Z test_BatchNorm1d_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6511779Z test_BatchNorm1d_affine_eval (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6512079Z test_BatchNorm1d_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6512379Z test_BatchNorm1d_affine_simple_average (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6512708Z test_BatchNorm1d_affine_simple_average_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6513033Z test_BatchNorm1d_affine_simple_average_eval (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6513372Z test_BatchNorm1d_affine_simple_average_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6513674Z test_BatchNorm1d_not_affine (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6513975Z test_BatchNorm1d_not_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6514276Z test_BatchNorm1d_not_affine_eval (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6514573Z test_BatchNorm1d_not_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6514884Z test_BatchNorm1d_not_tracking_stats (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6515205Z test_BatchNorm1d_not_tracking_stats_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6515523Z test_BatchNorm1d_not_tracking_stats_eval (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6515837Z test_BatchNorm1d_not_tracking_stats_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6516148Z test_BatchNorm1d_zero_batch (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6516459Z test_BatchNorm1d_zero_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6516749Z test_BatchNorm1d_zero_batch_eval (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6517059Z test_BatchNorm1d_zero_batch_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6517345Z test_BatchNorm2d (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6517610Z test_BatchNorm2d_2d_simple_average (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6517917Z test_BatchNorm2d_2d_simple_average_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6518236Z test_BatchNorm2d_2d_simple_average_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6518562Z test_BatchNorm2d_2d_simple_average_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6518937Z test_BatchNorm2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6519218Z test_BatchNorm2d_eval (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6519505Z test_BatchNorm2d_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6519793Z test_BatchNorm2d_momentum (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6520075Z test_BatchNorm2d_momentum_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6520374Z test_BatchNorm2d_momentum_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6520680Z test_BatchNorm2d_momentum_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6520999Z test_BatchNorm2d_not_affine (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6521301Z test_BatchNorm2d_not_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6521600Z test_BatchNorm2d_not_affine_eval (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6521911Z test_BatchNorm2d_not_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6522207Z test_BatchNorm2d_not_tracking_stats (__main__.TestNN) ... ok (0.018s) 2023-01-11T21:58:48.6522525Z test_BatchNorm2d_not_tracking_stats_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6522844Z test_BatchNorm2d_not_tracking_stats_eval (__main__.TestNN) ... ok (0.018s) 2023-01-11T21:58:48.6523158Z test_BatchNorm2d_not_tracking_stats_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6523465Z test_BatchNorm2d_zero_batch (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6523767Z test_BatchNorm2d_zero_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6524068Z test_BatchNorm2d_zero_batch_eval (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6524369Z test_BatchNorm2d_zero_batch_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6524656Z test_BatchNorm3d (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6524917Z test_BatchNorm3d_3d_simple_average (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6525223Z test_BatchNorm3d_3d_simple_average_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6525538Z test_BatchNorm3d_3d_simple_average_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6525865Z test_BatchNorm3d_3d_simple_average_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6526196Z test_BatchNorm3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6526468Z test_BatchNorm3d_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6526757Z test_BatchNorm3d_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6527049Z test_BatchNorm3d_momentum (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6527332Z test_BatchNorm3d_momentum_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6527626Z test_BatchNorm3d_momentum_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6527932Z test_BatchNorm3d_momentum_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6528230Z test_BatchNorm3d_not_affine (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6528516Z test_BatchNorm3d_not_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6528817Z test_BatchNorm3d_not_affine_eval (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6529248Z test_BatchNorm3d_not_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6529567Z test_BatchNorm3d_not_tracking_stats (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6529870Z test_BatchNorm3d_not_tracking_stats_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6530260Z test_BatchNorm3d_not_tracking_stats_eval (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6530587Z test_BatchNorm3d_not_tracking_stats_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6530884Z test_BatchNorm3d_zero_batch (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6531185Z test_BatchNorm3d_zero_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6531492Z test_BatchNorm3d_zero_batch_eval (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6531805Z test_BatchNorm3d_zero_batch_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6532070Z test_CELU (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6532374Z test_CELU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6532647Z test_CELU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6532921Z test_CELU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6533197Z test_CELU_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6533471Z test_CELU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6533763Z test_CTCLoss_2d_int_target_lengths_intlists (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6534101Z test_CTCLoss_2d_int_target_lengths_intlists_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6534471Z test_CTCLoss_2d_int_target_lengths_intlists_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6534814Z test_CTCLoss_2d_int_target_lengths_intlists_sum_reduction (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6535169Z test_CTCLoss_2d_int_target_lengths_intlists_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6535573Z test_CTCLoss_2d_int_target_lengths_intlists_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6535914Z test_CTCLoss_2d_int_target_lengths_tensors (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6536248Z test_CTCLoss_2d_int_target_lengths_tensors_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6536606Z test_CTCLoss_2d_int_target_lengths_tensors_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6536949Z test_CTCLoss_2d_int_target_lengths_tensors_sum_reduction (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6537308Z test_CTCLoss_2d_int_target_lengths_tensors_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6537705Z test_CTCLoss_2d_int_target_lengths_tensors_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6538024Z test_CTCLoss_2d_lengths_tensors (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6538340Z test_CTCLoss_2d_lengths_tensors_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6538689Z test_CTCLoss_2d_lengths_tensors_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6538997Z test_CTCLoss_2d_lengths_tensors_sum_reduction (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6539337Z test_CTCLoss_2d_lengths_tensors_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6539711Z test_CTCLoss_2d_lengths_tensors_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6540059Z test_CTCLoss_critical_target_len (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6540339Z test_CTCLoss_lengthchecks_cpu (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6540672Z test_CTCLoss_lengthchecks_cuda (__main__.TestNN) ... skip: CUDA not available (0.000s) 2023-01-11T21:58:48.6540962Z test_CTCLoss_lengths_intlists (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6541271Z test_CTCLoss_lengths_intlists_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6541604Z test_CTCLoss_lengths_intlists_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6541926Z test_CTCLoss_lengths_intlists_sum_reduction (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6542266Z test_CTCLoss_lengths_intlists_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6542698Z test_CTCLoss_lengths_intlists_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6543054Z test_CTCLoss_lengths_tensors (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6543368Z test_CTCLoss_lengths_tensors_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6543716Z test_CTCLoss_lengths_tensors_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6544024Z test_CTCLoss_lengths_tensors_sum_reduction (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6544361Z test_CTCLoss_lengths_tensors_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6544732Z test_CTCLoss_lengths_tensors_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6545068Z test_CTCLoss_long_targets (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6545339Z test_CTCLoss_typechecks (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6545627Z test_CTCLoss_zero_infinity (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6545903Z test_ConstantPad1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6546150Z test_ConstantPad1d_batch (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6546449Z test_ConstantPad1d_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6546747Z test_ConstantPad1d_complex (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6547050Z test_ConstantPad1d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6547362Z test_ConstantPad1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6547645Z test_ConstantPad2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6547902Z test_ConstantPad2d_complex (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6548192Z test_ConstantPad2d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6548519Z test_ConstantPad2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6548815Z test_ConstantPad2d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6549130Z test_ConstantPad2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6549411Z test_ConstantPad3d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6549671Z test_ConstantPad3d_complex (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6549972Z test_ConstantPad3d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6550286Z test_ConstantPad3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6550578Z test_ConstantPad3d_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6550891Z test_ConstantPad3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6551158Z test_Conv1d (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6551415Z test_Conv1d_circular_stride2_pad2 (__main__.TestNN) ... ok (0.025s) 2023-01-11T21:58:48.6551730Z test_Conv1d_circular_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6552084Z test_Conv1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6552344Z test_Conv1d_dilated (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6552624Z test_Conv1d_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6552899Z test_Conv1d_groups (__main__.TestNN) ... ok (0.058s) 2023-01-11T21:58:48.6553165Z test_Conv1d_groups_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6553440Z test_Conv1d_pad1 (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6553713Z test_Conv1d_pad1_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6553988Z test_Conv1d_pad1size1 (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6554293Z test_Conv1d_pad1size1_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6554574Z test_Conv1d_pad2 (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6554850Z test_Conv1d_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6555115Z test_Conv1d_pad2size1 (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6555398Z test_Conv1d_pad2size1_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6555681Z test_Conv1d_pad_same (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6556497Z test_Conv1d_pad_same2 (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py:309: UserWarning: Using padding='same' with even kernel lengths and odd dilation may require a zero-padded copy of the input be created (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Convolution.cpp:997.) 2023-01-11T21:58:48.6557041Z return F.conv1d(input, weight, bias, self.stride, 2023-01-11T21:58:48.6557238Z ok (0.021s) 2023-01-11T21:58:48.6557484Z test_Conv1d_pad_same2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6557804Z test_Conv1d_pad_same_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6558082Z test_Conv1d_pad_same_dilated (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6558384Z test_Conv1d_pad_same_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6558676Z test_Conv1d_pad_valid (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6558946Z test_Conv1d_pad_valid_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6559240Z test_Conv1d_reflect_stride2_pad2 (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6559549Z test_Conv1d_reflect_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6559855Z test_Conv1d_replicate_stride2_pad2 (__main__.TestNN) ... ok (0.018s) 2023-01-11T21:58:48.6560157Z test_Conv1d_replicate_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6560453Z test_Conv1d_stride (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6560733Z test_Conv1d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6561000Z test_Conv1d_zero_batch (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6561284Z test_Conv1d_zero_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6561575Z test_Conv1d_zeros_stride2_pad2 (__main__.TestNN) ... ok (0.018s) 2023-01-11T21:58:48.6561874Z test_Conv1d_zeros_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6562137Z test_Conv2d (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6562388Z test_Conv2d_circular_stride2_pad2 (__main__.TestNN) ... ok (0.032s) 2023-01-11T21:58:48.6562698Z test_Conv2d_circular_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6563000Z test_Conv2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6563313Z test_Conv2d_depthwise (__main__.TestNN) ... ok (0.024s) 2023-01-11T21:58:48.6563599Z test_Conv2d_depthwise_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6563891Z test_Conv2d_depthwise_dilated (__main__.TestNN) ... ok (0.024s) 2023-01-11T21:58:48.6564184Z test_Conv2d_depthwise_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6564481Z test_Conv2d_depthwise_padded (__main__.TestNN) ... ok (0.026s) 2023-01-11T21:58:48.6564784Z test_Conv2d_depthwise_padded_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6565071Z test_Conv2d_depthwise_strided (__main__.TestNN) ... ok (0.023s) 2023-01-11T21:58:48.6565401Z test_Conv2d_depthwise_strided_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6565713Z test_Conv2d_depthwise_with_multiplier (__main__.TestNN) ... ok (0.026s) 2023-01-11T21:58:48.6566041Z test_Conv2d_depthwise_with_multiplier_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6566323Z test_Conv2d_dilated (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6566605Z test_Conv2d_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6566902Z test_Conv2d_dilated_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6567206Z test_Conv2d_dilated_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6567493Z test_Conv2d_groups (__main__.TestNN) ... ok (0.022s) 2023-01-11T21:58:48.6567773Z test_Conv2d_groups_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6568058Z test_Conv2d_groups_thnn (__main__.TestNN) ... ok (0.023s) 2023-01-11T21:58:48.6568336Z test_Conv2d_groups_thnn_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6568639Z test_Conv2d_groups_thnn_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6568960Z test_Conv2d_groups_thnn_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6569413Z test_Conv2d_groups_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6569727Z test_Conv2d_groups_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6570013Z test_Conv2d_no_bias (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6570293Z test_Conv2d_no_bias_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6570573Z test_Conv2d_no_bias_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6570888Z test_Conv2d_no_bias_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6571178Z test_Conv2d_pad_same (__main__.TestNN) ... ok (0.021s) 2023-01-11T21:58:48.6571448Z test_Conv2d_pad_same_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6571737Z test_Conv2d_pad_same_dilated (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6572036Z test_Conv2d_pad_same_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6572328Z test_Conv2d_pad_valid (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6572598Z test_Conv2d_pad_valid_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6572876Z test_Conv2d_padding (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6573160Z test_Conv2d_padding_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6573446Z test_Conv2d_padding_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6573765Z test_Conv2d_padding_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6574073Z test_Conv2d_reflect_stride2_pad2 (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6574447Z test_Conv2d_reflect_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6574743Z test_Conv2d_replicate_stride2_pad2 (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6575058Z test_Conv2d_replicate_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6575351Z test_Conv2d_strided (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6575618Z test_Conv2d_strided_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6575910Z test_Conv2d_strided_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6576227Z test_Conv2d_strided_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6576566Z test_Conv2d_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6576855Z test_Conv2d_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6577140Z test_Conv2d_zero_batch (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6577425Z test_Conv2d_zero_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6577714Z test_Conv2d_zero_batch_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6578037Z test_Conv2d_zero_batch_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6578345Z test_Conv2d_zeros_stride2_pad2 (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6578647Z test_Conv2d_zeros_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6578911Z test_Conv3d (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6579150Z test_Conv3d_1x1x1_no_bias (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6579438Z test_Conv3d_1x1x1_no_bias_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6579724Z test_Conv3d_1x1x1_no_bias_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6580042Z test_Conv3d_1x1x1_no_bias_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6580351Z test_Conv3d_circular_stride2_pad2 (__main__.TestNN) ... ok (0.042s) 2023-01-11T21:58:48.6580662Z test_Conv3d_circular_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6580965Z test_Conv3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6581237Z test_Conv3d_dilated (__main__.TestNN) ... ok (0.021s) 2023-01-11T21:58:48.6581514Z test_Conv3d_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6581787Z test_Conv3d_dilated_strided (__main__.TestNN) ... ok (0.021s) 2023-01-11T21:58:48.6582087Z test_Conv3d_dilated_strided_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6582370Z test_Conv3d_groups (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6582738Z test_Conv3d_groups_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6583020Z test_Conv3d_groups_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6583337Z test_Conv3d_groups_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6583625Z test_Conv3d_no_bias (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6583888Z test_Conv3d_no_bias_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6584179Z test_Conv3d_no_bias_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6584492Z test_Conv3d_no_bias_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6584784Z test_Conv3d_pad_same (__main__.TestNN) ... ok (0.028s) 2023-01-11T21:58:48.6585055Z test_Conv3d_pad_same_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6585383Z test_Conv3d_pad_same_dilated (__main__.TestNN) ... ok (0.028s) 2023-01-11T21:58:48.6585682Z test_Conv3d_pad_same_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6585957Z test_Conv3d_pad_valid (__main__.TestNN) ... ok (0.024s) 2023-01-11T21:58:48.6586239Z test_Conv3d_pad_valid_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6586537Z test_Conv3d_replicate_stride2_pad2 (__main__.TestNN) ... ok (0.023s) 2023-01-11T21:58:48.6586852Z test_Conv3d_replicate_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6587132Z test_Conv3d_stride (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6587412Z test_Conv3d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6587731Z test_Conv3d_stride_padding (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6588017Z test_Conv3d_stride_padding_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6588331Z test_Conv3d_stride_padding_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6588667Z test_Conv3d_stride_padding_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6588985Z test_Conv3d_stride_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6589287Z test_Conv3d_stride_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6589588Z test_Conv3d_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6589887Z test_Conv3d_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6590162Z test_Conv3d_zero_batch (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6590449Z test_Conv3d_zero_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6590750Z test_Conv3d_zero_batch_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6591075Z test_Conv3d_zero_batch_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6591370Z test_Conv3d_zeros_stride2_pad2 (__main__.TestNN) ... ok (0.021s) 2023-01-11T21:58:48.6591674Z test_Conv3d_zeros_stride2_pad2_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6591970Z test_ConvTranspose1d (__main__.TestNN) ... ok (0.018s) 2023-01-11T21:58:48.6592248Z test_ConvTranspose1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6592541Z test_ConvTranspose1d_dilated (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6592849Z test_ConvTranspose1d_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6593155Z test_ConvTranspose1d_groups (__main__.TestNN) ... ok (0.022s) 2023-01-11T21:58:48.6593451Z test_ConvTranspose1d_groups_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6593756Z test_ConvTranspose1d_no_bias (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6594059Z test_ConvTranspose1d_no_bias_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6594339Z test_ConvTranspose2d (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6594625Z test_ConvTranspose2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6594918Z test_ConvTranspose2d_dilated (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6595221Z test_ConvTranspose2d_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6595529Z test_ConvTranspose2d_dilated_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6595876Z test_ConvTranspose2d_dilated_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6596195Z test_ConvTranspose2d_groups (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6596538Z test_ConvTranspose2d_groups_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6596859Z test_ConvTranspose2d_groups_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6597196Z test_ConvTranspose2d_groups_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6597512Z test_ConvTranspose2d_no_bias (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6597804Z test_ConvTranspose2d_no_bias_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6598119Z test_ConvTranspose2d_no_bias_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6598458Z test_ConvTranspose2d_no_bias_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6598799Z test_ConvTranspose2d_with_long_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6599125Z test_ConvTranspose2d_with_long_tensor_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6599428Z test_ConvTranspose3d (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6599715Z test_ConvTranspose3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6599997Z test_ConvTranspose3d_dilated (__main__.TestNN) ... ok (0.021s) 2023-01-11T21:58:48.6600302Z test_ConvTranspose3d_dilated_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6600602Z test_CosineEmbeddingLoss (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6600904Z test_CosineEmbeddingLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6601256Z test_CosineEmbeddingLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6601604Z test_CosineEmbeddingLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6601921Z test_CosineEmbeddingLoss_margin (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6602235Z test_CosineEmbeddingLoss_margin_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6602598Z test_CosineEmbeddingLoss_margin_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6602960Z test_CosineEmbeddingLoss_margin_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6603295Z test_CosineEmbeddingLoss_margin_sum_reduction (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6603638Z test_CosineEmbeddingLoss_margin_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6604035Z test_CosineEmbeddingLoss_margin_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6604429Z test_CosineEmbeddingLoss_margin_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6604774Z test_CosineEmbeddingLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6605110Z test_CosineEmbeddingLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6605494Z test_CosineEmbeddingLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6605872Z test_CosineEmbeddingLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6606196Z test_CosineEmbeddingLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6606538Z test_CosineEmbeddingLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6606919Z test_CosineEmbeddingLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6607293Z test_CosineEmbeddingLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6607660Z test_CosineEmbeddingLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6607999Z test_CosineEmbeddingLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6608375Z test_CosineEmbeddingLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6608749Z test_CosineEmbeddingLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6609219Z test_CosineEmbeddingLoss_sum_reduction (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6609735Z test_CosineEmbeddingLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6610391Z test_CosineEmbeddingLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6610966Z test_CosineEmbeddingLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6611415Z test_CrossEntropyLoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6611782Z test_CrossEntropyLoss_2d (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6612136Z test_CrossEntropyLoss_2d_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6612470Z test_CrossEntropyLoss_2d_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6612810Z test_CrossEntropyLoss_2d_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6613122Z test_CrossEntropyLoss_2d_ignore_index (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6613454Z test_CrossEntropyLoss_2d_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6613810Z test_CrossEntropyLoss_2d_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6614177Z test_CrossEntropyLoss_2d_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6614518Z test_CrossEntropyLoss_2d_indices_target_smoothing (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6614867Z test_CrossEntropyLoss_2d_indices_target_smoothing_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6615261Z test_CrossEntropyLoss_2d_indices_target_smoothing_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6615651Z test_CrossEntropyLoss_2d_indices_target_smoothing_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6616014Z test_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6616387Z test_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6616809Z test_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6617223Z test_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6617599Z test_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6617973Z test_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6618390Z test_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6618810Z test_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6619243Z test_CrossEntropyLoss_2d_indices_target_smoothing_weight (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6619606Z test_CrossEntropyLoss_2d_indices_target_smoothing_weight_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6620014Z test_CrossEntropyLoss_2d_indices_target_smoothing_weight_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6620417Z test_CrossEntropyLoss_2d_indices_target_smoothing_weight_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6620757Z test_CrossEntropyLoss_2d_prob_target (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6621079Z test_CrossEntropyLoss_2d_prob_target_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6621471Z test_CrossEntropyLoss_2d_prob_target_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6621840Z test_CrossEntropyLoss_2d_prob_target_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6622176Z test_CrossEntropyLoss_2d_prob_target_smoothing (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6622584Z test_CrossEntropyLoss_2d_prob_target_smoothing_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6622979Z test_CrossEntropyLoss_2d_prob_target_smoothing_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6623359Z test_CrossEntropyLoss_2d_prob_target_smoothing_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6623721Z test_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6624089Z test_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6624502Z test_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6624916Z test_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6625278Z test_CrossEntropyLoss_2d_prob_target_smoothing_weight (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6625635Z test_CrossEntropyLoss_2d_prob_target_smoothing_weight_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6626035Z test_CrossEntropyLoss_2d_prob_target_smoothing_weight_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6626430Z test_CrossEntropyLoss_2d_prob_target_smoothing_weight_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6626774Z test_CrossEntropyLoss_2d_prob_target_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6627134Z test_CrossEntropyLoss_2d_prob_target_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6627645Z test_CrossEntropyLoss_2d_prob_target_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6628037Z test_CrossEntropyLoss_2d_prob_target_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6628371Z test_CrossEntropyLoss_2d_prob_target_weights (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6628723Z test_CrossEntropyLoss_2d_prob_target_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6629109Z test_CrossEntropyLoss_2d_prob_target_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6629493Z test_CrossEntropyLoss_2d_prob_target_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6629838Z test_CrossEntropyLoss_2d_prob_target_weights_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6630250Z test_CrossEntropyLoss_2d_prob_target_weights_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6630656Z test_CrossEntropyLoss_2d_prob_target_weights_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6631065Z test_CrossEntropyLoss_2d_prob_target_weights_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6631397Z test_CrossEntropyLoss_2d_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6631735Z test_CrossEntropyLoss_2d_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6632134Z test_CrossEntropyLoss_2d_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6632501Z test_CrossEntropyLoss_2d_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6632813Z test_CrossEntropyLoss_2d_weights (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6633139Z test_CrossEntropyLoss_2d_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6633496Z test_CrossEntropyLoss_2d_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6633840Z test_CrossEntropyLoss_2d_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6634171Z test_CrossEntropyLoss_3d_indices_target_smoothing (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6634530Z test_CrossEntropyLoss_3d_indices_target_smoothing_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6634922Z test_CrossEntropyLoss_3d_indices_target_smoothing_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6635304Z test_CrossEntropyLoss_3d_indices_target_smoothing_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6635669Z test_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6636052Z test_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6636470Z test_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6636867Z test_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6637249Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6637632Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6638053Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6638454Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6638841Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6639249Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6639692Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6640114Z test_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6640512Z test_CrossEntropyLoss_3d_prob_target (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6640843Z test_CrossEntropyLoss_3d_prob_target_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6641206Z test_CrossEntropyLoss_3d_prob_target_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6641558Z test_CrossEntropyLoss_3d_prob_target_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6641893Z test_CrossEntropyLoss_3d_prob_target_smoothing (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6642244Z test_CrossEntropyLoss_3d_prob_target_smoothing_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6642659Z test_CrossEntropyLoss_3d_prob_target_smoothing_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6643032Z test_CrossEntropyLoss_3d_prob_target_smoothing_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6643394Z test_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6643781Z test_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6644197Z test_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6644595Z test_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6644957Z test_CrossEntropyLoss_3d_prob_target_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6645319Z test_CrossEntropyLoss_3d_prob_target_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6645712Z test_CrossEntropyLoss_3d_prob_target_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6646089Z test_CrossEntropyLoss_3d_prob_target_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6646432Z test_CrossEntropyLoss_3d_prob_target_weights (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6646781Z test_CrossEntropyLoss_3d_prob_target_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6647151Z test_CrossEntropyLoss_3d_prob_target_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6647533Z test_CrossEntropyLoss_3d_prob_target_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6647893Z test_CrossEntropyLoss_3d_prob_target_weights_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6648263Z test_CrossEntropyLoss_3d_prob_target_weights_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6648658Z test_CrossEntropyLoss_3d_prob_target_weights_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6649201Z test_CrossEntropyLoss_3d_prob_target_weights_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6649554Z test_CrossEntropyLoss_4d_prob_target (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6649886Z test_CrossEntropyLoss_4d_prob_target_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6650238Z test_CrossEntropyLoss_4d_prob_target_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6650600Z test_CrossEntropyLoss_4d_prob_target_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6650940Z test_CrossEntropyLoss_4d_prob_target_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6651361Z test_CrossEntropyLoss_4d_prob_target_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6651737Z test_CrossEntropyLoss_4d_prob_target_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6652124Z test_CrossEntropyLoss_4d_prob_target_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6652468Z test_CrossEntropyLoss_4d_prob_target_weights (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6652816Z test_CrossEntropyLoss_4d_prob_target_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6653223Z test_CrossEntropyLoss_4d_prob_target_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6653609Z test_CrossEntropyLoss_4d_prob_target_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6653967Z test_CrossEntropyLoss_4d_prob_target_weights_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6654328Z test_CrossEntropyLoss_4d_prob_target_weights_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6654736Z test_CrossEntropyLoss_4d_prob_target_weights_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6655147Z test_CrossEntropyLoss_4d_prob_target_weights_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6655518Z test_CrossEntropyLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6655847Z test_CrossEntropyLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6656179Z test_CrossEntropyLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6656481Z test_CrossEntropyLoss_dim_is_3 (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6656802Z test_CrossEntropyLoss_dim_is_3_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6657141Z test_CrossEntropyLoss_dim_is_3_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6657490Z test_CrossEntropyLoss_dim_is_3_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6657814Z test_CrossEntropyLoss_dim_is_3_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6658158Z test_CrossEntropyLoss_dim_is_3_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6658525Z test_CrossEntropyLoss_dim_is_3_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6658903Z test_CrossEntropyLoss_dim_is_3_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6659231Z test_CrossEntropyLoss_higher_dim (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6659548Z test_CrossEntropyLoss_higher_dim_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6659911Z test_CrossEntropyLoss_higher_dim_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6660270Z test_CrossEntropyLoss_higher_dim_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6660604Z test_CrossEntropyLoss_higher_dim_sum_reduction (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6660945Z test_CrossEntropyLoss_higher_dim_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6661333Z test_CrossEntropyLoss_higher_dim_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6661717Z test_CrossEntropyLoss_higher_dim_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6662078Z test_CrossEntropyLoss_weights (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6662386Z test_CrossEntropyLoss_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6662838Z test_CrossEntropyLoss_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6663194Z test_CrossEntropyLoss_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6663479Z test_CrossMapLRN2d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6663766Z test_CrossMapLRN2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6664034Z test_ELU (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6664331Z test_ELU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6664589Z test_ELU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6664872Z test_ELU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6665144Z test_ELU_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6665407Z test_ELU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6665676Z test_Embedding (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6665935Z test_EmbeddingBag_discontiguous (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6666253Z test_EmbeddingBag_discontiguous_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6666540Z test_EmbeddingBag_max (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6666828Z test_EmbeddingBag_max_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6667128Z test_EmbeddingBag_max_padding_idx (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6667434Z test_EmbeddingBag_max_padding_idx_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6667739Z test_EmbeddingBag_mean (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6668029Z test_EmbeddingBag_mean_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6668331Z test_EmbeddingBag_mean_padding_idx (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6668638Z test_EmbeddingBag_mean_padding_idx_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6668943Z test_EmbeddingBag_sparse (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6669244Z test_EmbeddingBag_sparse_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6669522Z test_EmbeddingBag_sum (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6669813Z test_EmbeddingBag_sum_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6670114Z test_EmbeddingBag_sum_padding_idx (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6670436Z test_EmbeddingBag_sum_padding_idx_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6670754Z test_Embedding_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6671042Z test_Embedding_discontiguous (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6671349Z test_Embedding_discontiguous_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6671629Z test_Embedding_sparse (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6671915Z test_Embedding_sparse_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6672189Z test_Flatten (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6672455Z test_Flatten_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6672723Z test_Flatten_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6673012Z test_Flatten_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6673339Z test_Fold (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6673588Z test_Fold_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6673858Z test_Fold_int_input (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6674139Z test_Fold_int_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6674412Z test_Fold_no_batch_dim_input (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6674711Z test_Fold_no_batch_dim_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6675012Z test_Fold_no_batch_dim_int_input (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6675353Z test_Fold_no_batch_dim_int_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6675651Z test_FractionalMaxPool2d_ratio (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6675975Z test_FractionalMaxPool2d_ratio_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6676305Z test_FractionalMaxPool2d_ratio_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6676637Z test_FractionalMaxPool2d_ratio_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6676992Z test_FractionalMaxPool2d_ratio_no_batch_dim_no_random_samples (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6677369Z test_FractionalMaxPool2d_ratio_no_batch_dim_no_random_samples_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6677726Z test_FractionalMaxPool2d_ratio_return_indices (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6678068Z test_FractionalMaxPool2d_ratio_return_indices_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6678393Z test_FractionalMaxPool2d_size (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6678707Z test_FractionalMaxPool2d_size_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6679036Z test_FractionalMaxPool2d_size_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6679365Z test_FractionalMaxPool2d_size_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6679719Z test_FractionalMaxPool2d_size_no_batch_dim_no_random_samples (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6680093Z test_FractionalMaxPool2d_size_no_batch_dim_no_random_samples_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6680423Z test_FractionalMaxPool3d_asymsize (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6680747Z test_FractionalMaxPool3d_asymsize_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6681058Z test_FractionalMaxPool3d_ratio (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6681375Z test_FractionalMaxPool3d_ratio_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6681692Z test_FractionalMaxPool3d_ratio_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6682033Z test_FractionalMaxPool3d_ratio_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6682386Z test_FractionalMaxPool3d_ratio_no_batch_dim_no_random_samples (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6682762Z test_FractionalMaxPool3d_ratio_no_batch_dim_no_random_samples_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6683112Z test_FractionalMaxPool3d_ratio_return_indices (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6683462Z test_FractionalMaxPool3d_ratio_return_indices_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6683789Z test_FractionalMaxPool3d_size (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6684096Z test_FractionalMaxPool3d_size_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6684459Z test_FractionalMaxPool3d_size_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6684803Z test_FractionalMaxPool3d_size_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6685158Z test_FractionalMaxPool3d_size_no_batch_dim_no_random_samples (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6685522Z test_FractionalMaxPool3d_size_no_batch_dim_no_random_samples_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6685827Z test_GELU (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6686084Z test_GELU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6686343Z test_GELU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6686659Z test_GELU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6686938Z test_GELU_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6687215Z test_GELU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6687462Z test_GLU (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6687719Z test_GLU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6687974Z test_GLU_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6688223Z test_GLU_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6688492Z test_GLU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6688774Z test_GLU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6689218Z test_GroupNorm_1d_affine (__main__.TestNN) ... ok (0.023s) 2023-01-11T21:58:48.6689481Z test_GroupNorm_1d_affine_GN (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6689781Z test_GroupNorm_1d_affine_GN_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6690083Z test_GroupNorm_1d_affine_GN_eval (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6690378Z test_GroupNorm_1d_affine_GN_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6690707Z test_GroupNorm_1d_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6690997Z test_GroupNorm_1d_affine_eval (__main__.TestNN) ... ok (0.022s) 2023-01-11T21:58:48.6691300Z test_GroupNorm_1d_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6691631Z test_GroupNorm_1d_affine_large_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6691986Z test_GroupNorm_1d_affine_large_batch_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6692295Z test_GroupNorm_1d_no_affine_IN (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6692585Z test_GroupNorm_1d_no_affine_IN_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6692891Z test_GroupNorm_1d_no_affine_IN_eval (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6693202Z test_GroupNorm_1d_no_affine_IN_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6693505Z test_GroupNorm_1d_no_affine_LN (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6693795Z test_GroupNorm_1d_no_affine_LN_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6694100Z test_GroupNorm_1d_no_affine_LN_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6694414Z test_GroupNorm_1d_no_affine_LN_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6694698Z test_GroupNorm_2d_affine (__main__.TestNN) ... ok (0.022s) 2023-01-11T21:58:48.6694992Z test_GroupNorm_2d_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6695282Z test_GroupNorm_2d_affine_eval (__main__.TestNN) ... ok (0.022s) 2023-01-11T21:58:48.6695675Z test_GroupNorm_2d_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6696008Z test_GroupNorm_2d_affine_large_feature_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6696364Z test_GroupNorm_2d_affine_large_feature_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6696677Z test_GroupNorm_2d_no_affine_IN (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6696982Z test_GroupNorm_2d_no_affine_IN_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6697273Z test_GroupNorm_2d_no_affine_IN_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6697625Z test_GroupNorm_2d_no_affine_IN_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6697931Z test_GroupNorm_2d_no_affine_LN (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6698221Z test_GroupNorm_2d_no_affine_LN_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6698522Z test_GroupNorm_2d_no_affine_LN_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6698833Z test_GroupNorm_2d_no_affine_LN_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6699187Z test_GroupNorm_2d_no_affine_large_feature_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6699537Z test_GroupNorm_2d_no_affine_large_feature_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6699836Z test_Hardshrink (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6700112Z test_Hardshrink_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6700388Z test_Hardshrink_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6700689Z test_Hardshrink_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6700983Z test_Hardshrink_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6701273Z test_Hardshrink_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6701555Z test_Hardsigmoid_no_batch_dim (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6701863Z test_Hardsigmoid_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6702157Z test_Hardswish_no_batch_dim (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6702442Z test_Hardswish_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6702807Z test_Hardtanh (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6703078Z test_Hardtanh_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6703361Z test_Hardtanh_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6703642Z test_Hardtanh_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6703926Z test_Hardtanh_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6704210Z test_Hardtanh_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6704488Z test_HingeEmbeddingLoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6704803Z test_HingeEmbeddingLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6705154Z test_HingeEmbeddingLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6705498Z test_HingeEmbeddingLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6705797Z test_HingeEmbeddingLoss_margin (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6706125Z test_HingeEmbeddingLoss_margin_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6706485Z test_HingeEmbeddingLoss_margin_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6706869Z test_HingeEmbeddingLoss_margin_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6707196Z test_HingeEmbeddingLoss_margin_no_reduce (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6707535Z test_HingeEmbeddingLoss_margin_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6707874Z test_HingeEmbeddingLoss_margin_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6708213Z test_HingeEmbeddingLoss_margin_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6708605Z test_HingeEmbeddingLoss_margin_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6709022Z test_HingeEmbeddingLoss_margin_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6709367Z test_HingeEmbeddingLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6709701Z test_HingeEmbeddingLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6710078Z test_HingeEmbeddingLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6710457Z test_HingeEmbeddingLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6710780Z test_HingeEmbeddingLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6711123Z test_HingeEmbeddingLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6711502Z test_HingeEmbeddingLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6711877Z test_HingeEmbeddingLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6712202Z test_HingeEmbeddingLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6712543Z test_HingeEmbeddingLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6712917Z test_HingeEmbeddingLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6713290Z test_HingeEmbeddingLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6713602Z test_HingeEmbeddingLoss_no_reduce (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6713923Z test_HingeEmbeddingLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6714244Z test_HingeEmbeddingLoss_scalar_margin (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6714568Z test_HingeEmbeddingLoss_scalar_margin_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6714946Z test_HingeEmbeddingLoss_scalar_margin_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6715316Z test_HingeEmbeddingLoss_scalar_margin_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6715665Z test_HingeEmbeddingLoss_scalar_margin_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6716019Z test_HingeEmbeddingLoss_scalar_margin_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6716419Z test_HingeEmbeddingLoss_scalar_margin_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6716816Z test_HingeEmbeddingLoss_scalar_margin_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6717158Z test_HingeEmbeddingLoss_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6717518Z test_HingeEmbeddingLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6717895Z test_HingeEmbeddingLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6718270Z test_HingeEmbeddingLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6718569Z test_HuberLoss (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6718839Z test_HuberLoss_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6719158Z test_HuberLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6719473Z test_HuberLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6719799Z test_HuberLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6720081Z test_HuberLoss_delta (__main__.TestNN) ... ok (0.072s) 2023-01-11T21:58:48.6720366Z test_HuberLoss_delta_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6720657Z test_HuberLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6720964Z test_HuberLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6721317Z test_HuberLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6721664Z test_HuberLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6721954Z test_HuberLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6722268Z test_HuberLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6722617Z test_HuberLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6722967Z test_HuberLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6723258Z test_HuberLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6723567Z test_HuberLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6723913Z test_HuberLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6724255Z test_HuberLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6724543Z test_HuberLoss_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6724857Z test_HuberLoss_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6725206Z test_HuberLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6725543Z test_HuberLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6725888Z test_HuberLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6726181Z test_InstanceNorm1d (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6726466Z test_InstanceNorm1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6726740Z test_InstanceNorm1d_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6727034Z test_InstanceNorm1d_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6727335Z test_InstanceNorm1d_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6727639Z test_InstanceNorm1d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6727950Z test_InstanceNorm1d_no_batch_dim_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6728310Z test_InstanceNorm1d_no_batch_dim_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6728626Z test_InstanceNorm1d_tracking_stats (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6728936Z test_InstanceNorm1d_tracking_stats_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6729403Z test_InstanceNorm1d_tracking_stats_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6729735Z test_InstanceNorm1d_tracking_stats_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6730072Z test_InstanceNorm1d_tracking_stats_no_batch_dim (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6730405Z test_InstanceNorm1d_tracking_stats_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6730803Z test_InstanceNorm1d_tracking_stats_no_batch_dim_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6731157Z test_InstanceNorm1d_tracking_stats_no_batch_dim_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6731460Z test_InstanceNorm2d (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6731744Z test_InstanceNorm2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6732036Z test_InstanceNorm2d_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6732331Z test_InstanceNorm2d_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6732621Z test_InstanceNorm2d_no_batch_dim (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6732932Z test_InstanceNorm2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6733244Z test_InstanceNorm2d_no_batch_dim_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6733556Z test_InstanceNorm2d_no_batch_dim_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6733869Z test_InstanceNorm2d_tracking_stats (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6734192Z test_InstanceNorm2d_tracking_stats_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6734512Z test_InstanceNorm2d_tracking_stats_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6734828Z test_InstanceNorm2d_tracking_stats_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6735157Z test_InstanceNorm2d_tracking_stats_no_batch_dim (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6735498Z test_InstanceNorm2d_tracking_stats_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6735827Z test_InstanceNorm2d_tracking_stats_no_batch_dim_eval (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6736180Z test_InstanceNorm2d_tracking_stats_no_batch_dim_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6736488Z test_InstanceNorm3d (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6736774Z test_InstanceNorm3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6737051Z test_InstanceNorm3d_eval (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6737343Z test_InstanceNorm3d_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6737642Z test_InstanceNorm3d_no_batch_dim (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6737942Z test_InstanceNorm3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6738256Z test_InstanceNorm3d_no_batch_dim_eval (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6738578Z test_InstanceNorm3d_no_batch_dim_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6738898Z test_InstanceNorm3d_tracking_stats (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6739204Z test_InstanceNorm3d_tracking_stats_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6739567Z test_InstanceNorm3d_tracking_stats_eval (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6739894Z test_InstanceNorm3d_tracking_stats_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6740227Z test_InstanceNorm3d_tracking_stats_no_batch_dim (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6740556Z test_InstanceNorm3d_tracking_stats_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6740898Z test_InstanceNorm3d_tracking_stats_no_batch_dim_eval (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6741246Z test_InstanceNorm3d_tracking_stats_no_batch_dim_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6742200Z test_KLDivLoss (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6742794Z warnings.warn( 2023-01-11T21:58:48.6743513Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6743982Z warnings.warn( 2023-01-11T21:58:48.6744674Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6745124Z warnings.warn( 2023-01-11T21:58:48.6745294Z ok (0.005s) 2023-01-11T21:58:48.6745509Z test_KLDivLoss_batch_mean (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6745780Z test_KLDivLoss_batch_mean_log_target (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6746077Z test_KLDivLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6746402Z test_KLDivLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6746722Z test_KLDivLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6747560Z test_KLDivLoss_log_target (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6748081Z warnings.warn( 2023-01-11T21:58:48.6748779Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6749250Z warnings.warn( 2023-01-11T21:58:48.6749418Z ok (0.005s) 2023-01-11T21:58:48.6749673Z test_KLDivLoss_log_target_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6750022Z test_KLDivLoss_log_target_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6750367Z test_KLDivLoss_log_target_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6750669Z test_KLDivLoss_log_target_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6751064Z test_KLDivLoss_log_target_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6751440Z test_KLDivLoss_log_target_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6751810Z test_KLDivLoss_log_target_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6752111Z test_KLDivLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6752433Z test_KLDivLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6752790Z test_KLDivLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6753174Z test_KLDivLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6753472Z test_KLDivLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6753792Z test_KLDivLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6754146Z test_KLDivLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6754486Z test_KLDivLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6754790Z test_KLDivLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6755103Z test_KLDivLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6755455Z test_KLDivLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6755794Z test_KLDivLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6756092Z test_KLDivLoss_no_reduce (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6756386Z test_KLDivLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6756675Z test_KLDivLoss_no_reduce_log_target (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6756993Z test_KLDivLoss_no_reduce_log_target_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6757299Z test_KLDivLoss_no_reduce_scalar (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6757607Z test_KLDivLoss_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6757915Z test_KLDivLoss_no_reduce_scalar_log_target (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6758249Z test_KLDivLoss_no_reduce_scalar_log_target_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6759118Z test_KLDivLoss_scalar (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6759627Z warnings.warn( 2023-01-11T21:58:48.6760317Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6760789Z warnings.warn( 2023-01-11T21:58:48.6761489Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6761984Z warnings.warn( 2023-01-11T21:58:48.6762154Z ok (0.004s) 2023-01-11T21:58:48.6762397Z test_KLDivLoss_scalar_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6762736Z test_KLDivLoss_scalar_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6763068Z test_KLDivLoss_scalar_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6763948Z test_KLDivLoss_scalar_log_target (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6764461Z warnings.warn( 2023-01-11T21:58:48.6765159Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6765625Z warnings.warn( 2023-01-11T21:58:48.6765796Z ok (0.004s) 2023-01-11T21:58:48.6766052Z test_KLDivLoss_scalar_log_target_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6766417Z test_KLDivLoss_scalar_log_target_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6766771Z test_KLDivLoss_scalar_log_target_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6767090Z test_KLDivLoss_scalar_log_target_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6767439Z test_KLDivLoss_scalar_log_target_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6767822Z test_KLDivLoss_scalar_log_target_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6768202Z test_KLDivLoss_scalar_log_target_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6768521Z test_KLDivLoss_scalar_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6768849Z test_KLDivLoss_scalar_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6769376Z test_KLDivLoss_scalar_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6769745Z test_KLDivLoss_scalar_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6770047Z test_KLDivLoss_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6770360Z test_KLDivLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6770710Z test_KLDivLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6771044Z test_KLDivLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6771360Z test_KLDivLoss_with_log_target_no_reduce (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6771688Z test_KLDivLoss_with_log_target_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6772004Z test_KLDivLoss_with_target_no_reduce (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6772311Z test_KLDivLoss_with_target_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6772601Z test_L1Loss (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6772878Z test_L1Loss_cuda_cdouble (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6773246Z test_L1Loss_cuda_cfloat (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6773557Z test_L1Loss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6773868Z test_L1Loss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6774175Z test_L1Loss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6774444Z test_L1Loss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6774749Z test_L1Loss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6775094Z test_L1Loss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6775477Z test_L1Loss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6775768Z test_L1Loss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6776079Z test_L1Loss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6776418Z test_L1Loss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6776745Z test_L1Loss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6777040Z test_L1Loss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6777341Z test_L1Loss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6777681Z test_L1Loss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6778005Z test_L1Loss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6778294Z test_L1Loss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6778552Z test_L1Loss_no_reduce_complex (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6778843Z test_L1Loss_no_reduce_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6779168Z test_L1Loss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6779457Z test_L1Loss_no_reduce_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6779753Z test_L1Loss_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6780025Z test_L1Loss_scalar (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6780313Z test_L1Loss_scalar_cuda_cdouble (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6780636Z test_L1Loss_scalar_cuda_cfloat (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6780792Z test_L1Loss_scalar_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6780942Z test_L1Loss_scalar_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6781082Z test_L1Loss_scalar_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6781186Z test_LPPool1d (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6781329Z test_LPPool1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6781450Z test_LPPool1d_no_batch_dim (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6781604Z test_LPPool1d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6781714Z test_LPPool1d_norm (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6781860Z test_LPPool1d_norm_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6781964Z test_LPPool2d (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6782093Z test_LPPool2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6782239Z test_LPPool2d_norm (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6782385Z test_LPPool2d_norm_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6782543Z test_LSTM_cell (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6782680Z test_LSTM_cell_forward_hidden_size (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6782806Z test_LSTM_cell_forward_input_size (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6782939Z test_LayerNorm_1d_elementwise_affine (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6783109Z test_LayerNorm_1d_elementwise_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6783235Z test_LayerNorm_1d_elementwise_affine_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6783445Z test_LayerNorm_1d_elementwise_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6783585Z test_LayerNorm_1d_empty_elementwise_affine (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6783762Z test_LayerNorm_1d_empty_elementwise_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6783905Z test_LayerNorm_1d_empty_elementwise_affine_eval (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6784086Z test_LayerNorm_1d_empty_elementwise_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6784220Z test_LayerNorm_1d_no_elementwise_affine (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6784391Z test_LayerNorm_1d_no_elementwise_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6784517Z test_LayerNorm_1d_no_elementwise_affine_eval (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6784693Z test_LayerNorm_1d_no_elementwise_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6784825Z test_LayerNorm_3d_elementwise_affine (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6784995Z test_LayerNorm_3d_elementwise_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6785136Z test_LayerNorm_3d_elementwise_affine_eval (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6785310Z test_LayerNorm_3d_elementwise_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6785444Z test_LayerNorm_3d_no_affine_large_feature (__main__.TestNN) ... ok (0.755s) 2023-01-11T21:58:48.6785614Z test_LayerNorm_3d_no_affine_large_feature_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6785755Z test_LayerNorm_3d_no_affine_large_feature_eval (__main__.TestNN) ... ok (0.688s) 2023-01-11T21:58:48.6785921Z test_LayerNorm_3d_no_affine_large_feature_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6786054Z test_LayerNorm_3d_no_elementwise_affine (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6786227Z test_LayerNorm_3d_no_elementwise_affine_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6786364Z test_LayerNorm_3d_no_elementwise_affine_eval (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6786538Z test_LayerNorm_3d_no_elementwise_affine_eval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6786643Z test_LeakyReLU (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6786788Z test_LeakyReLU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6786906Z test_LeakyReLU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6787052Z test_LeakyReLU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6787171Z test_LeakyReLU_with_negval (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6787331Z test_LeakyReLU_with_negval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6787497Z test_LeakyReLU_with_negval_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6787663Z test_LeakyReLU_with_negval_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6787788Z test_LeakyReLU_with_zero_negval (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6787950Z test_LeakyReLU_with_zero_negval_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6788051Z test_Linear (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6788179Z test_Linear_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6788294Z test_Linear_no_batch_dim (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6788444Z test_Linear_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6788586Z test_Linear_no_bias (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6788735Z test_Linear_no_bias_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6788862Z test_LocalResponseNorm_1d (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6789022Z test_LocalResponseNorm_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6789157Z test_LocalResponseNorm_2d_uneven_pad (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6789315Z test_LocalResponseNorm_2d_uneven_pad_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6789451Z test_LocalResponseNorm_3d_custom_params (__main__.TestNN) ... ok (0.018s) 2023-01-11T21:58:48.6789625Z test_LocalResponseNorm_3d_custom_params_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6789733Z test_LogSigmoid (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6789880Z test_LogSigmoid_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6790000Z test_LogSigmoid_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6790161Z test_LogSigmoid_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6790278Z test_LogSigmoid_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6790419Z test_LogSigmoid_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6790525Z test_LogSoftmax (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6790669Z test_LogSoftmax_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6790793Z test_LogSoftmax_multiparam (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6790953Z test_LogSoftmax_multiparam_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6791083Z test_LogSoftmax_multiparam_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6791252Z test_LogSoftmax_multiparam_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6791373Z test_LogSoftmax_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6791518Z test_LogSoftmax_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6791620Z test_MSELoss (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6791766Z test_MSELoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6791913Z test_MSELoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6792056Z test_MSELoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6792178Z test_MSELoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6792345Z test_MSELoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6792510Z test_MSELoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6792673Z test_MSELoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6792811Z test_MSELoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6792974Z test_MSELoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6793136Z test_MSELoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6793295Z test_MSELoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6793415Z test_MSELoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6793575Z test_MSELoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6793765Z test_MSELoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6793931Z test_MSELoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6794034Z test_MSELoss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6794185Z test_MSELoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6794306Z test_MSELoss_no_reduce_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6794464Z test_MSELoss_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6794573Z test_MSELoss_prec (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6794728Z test_MSELoss_prec_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6794880Z test_MSELoss_prec_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6795032Z test_MSELoss_prec_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6795181Z test_MSELoss_prec_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6795281Z test_MSELoss_scalar (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6795438Z test_MSELoss_scalar_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6795592Z test_MSELoss_scalar_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6795746Z test_MSELoss_scalar_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6795896Z test_MSELoss_scalar_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6796024Z test_MSELoss_scalar_sum_reduction (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6796199Z test_MSELoss_scalar_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6796369Z test_MSELoss_scalar_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6796529Z test_MSELoss_scalar_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6796700Z test_MSELoss_scalar_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6796818Z test_MSELoss_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6796981Z test_MSELoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6797143Z test_MSELoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6797305Z test_MSELoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6797426Z test_MarginRankingLoss (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6797593Z test_MarginRankingLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6797755Z test_MarginRankingLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6797938Z test_MarginRankingLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6798065Z test_MarginRankingLoss_margin (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6798235Z test_MarginRankingLoss_margin_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6798403Z test_MarginRankingLoss_margin_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6798571Z test_MarginRankingLoss_margin_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6798714Z test_MarginRankingLoss_margin_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6798929Z test_MarginRankingLoss_margin_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6799116Z test_MarginRankingLoss_margin_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6799301Z test_MarginRankingLoss_margin_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6799428Z test_MarginRankingLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6799611Z test_MarginRankingLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6799789Z test_MarginRankingLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6799969Z test_MarginRankingLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6800107Z test_MarginRankingLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6800286Z test_MarginRankingLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6800469Z test_MarginRankingLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6800647Z test_MarginRankingLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6800784Z test_MarginRankingLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6800949Z test_MarginRankingLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6801125Z test_MarginRankingLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6801300Z test_MarginRankingLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6801438Z test_MarginRankingLoss_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6801619Z test_MarginRankingLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6801797Z test_MarginRankingLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6801972Z test_MarginRankingLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6802079Z test_MaxPool1d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6802210Z test_MaxPool1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6802334Z test_MaxPool1d_return_indices (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6802495Z test_MaxPool1d_return_indices_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6802608Z test_MaxPool1d_stride (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6802760Z test_MaxPool1d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6802950Z test_MaxPool2d_3d_input (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6803133Z test_MaxPool2d_3d_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6803312Z test_MaxPool2d_4d_input (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6803452Z test_MaxPool2d_4d_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6803740Z test_MaxPool2d_return_indices (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6803932Z test_MaxPool2d_return_indices_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6804065Z test_MaxPool3d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6804196Z test_MaxPool3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6804354Z test_MaxPool3d_return_indices (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6804577Z test_MaxPool3d_return_indices_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6804720Z test_MaxPool3d_stride (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6804901Z test_MaxPool3d_stride_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6805053Z test_MaxPool3d_stride_padding (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6805268Z test_MaxPool3d_stride_padding_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6805419Z test_MaxUnpool1d_net (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6805556Z test_MaxUnpool1d_net_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6805711Z test_MaxUnpool1d_net_no_batch_dim (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6805902Z test_MaxUnpool1d_net_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6806043Z test_MaxUnpool2d_net (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6806221Z test_MaxUnpool2d_net_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6806409Z test_MaxUnpool2d_net_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6806600Z test_MaxUnpool2d_net_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6806769Z test_MaxUnpool3d_net (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6806906Z test_MaxUnpool3d_net_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6807060Z test_MaxUnpool3d_net_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6807250Z test_MaxUnpool3d_net_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6807376Z test_Mish (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6807538Z test_Mish_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6822125Z test_Mish_no_batch_dim (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6822384Z test_Mish_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6822581Z test_Mish_scalar (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6822724Z test_Mish_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6822836Z test_ModuleDict (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6822938Z test_ModuleList (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6823062Z test_MultiLabelMarginLoss (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6823200Z test_MultiLabelMarginLoss_0d_no_reduce (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6823385Z test_MultiLabelMarginLoss_0d_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6823510Z test_MultiLabelMarginLoss_1d (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6823691Z test_MultiLabelMarginLoss_1d_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6823854Z test_MultiLabelMarginLoss_1d_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6824159Z test_MultiLabelMarginLoss_1d_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6824327Z test_MultiLabelMarginLoss_1d_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6824465Z test_MultiLabelMarginLoss_1d_no_reduce (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6824640Z test_MultiLabelMarginLoss_1d_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6824782Z test_MultiLabelMarginLoss_1d_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6824972Z test_MultiLabelMarginLoss_1d_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6825200Z test_MultiLabelMarginLoss_1d_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6825392Z test_MultiLabelMarginLoss_1d_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6825568Z test_MultiLabelMarginLoss_1d_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6825738Z test_MultiLabelMarginLoss_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6825905Z test_MultiLabelMarginLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6826071Z test_MultiLabelMarginLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6826235Z test_MultiLabelMarginLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6826372Z test_MultiLabelMarginLoss_index_neg (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6826547Z test_MultiLabelMarginLoss_index_neg_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6826690Z test_MultiLabelMarginLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6826883Z test_MultiLabelMarginLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6827055Z test_MultiLabelMarginLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6827238Z test_MultiLabelMarginLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6827382Z test_MultiLabelMarginLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6827569Z test_MultiLabelMarginLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6827753Z test_MultiLabelMarginLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6827930Z test_MultiLabelMarginLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6828073Z test_MultiLabelMarginLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6828256Z test_MultiLabelMarginLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6828437Z test_MultiLabelMarginLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6828605Z test_MultiLabelMarginLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6828740Z test_MultiLabelMarginLoss_no_reduce (__main__.TestNN) ... ok (0.023s) 2023-01-11T21:58:48.6828910Z test_MultiLabelMarginLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6829051Z test_MultiLabelMarginLoss_sum_reduction (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6829232Z test_MultiLabelMarginLoss_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6829449Z test_MultiLabelMarginLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6829629Z test_MultiLabelMarginLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6829808Z test_MultiLabelMarginLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6829942Z test_MultiLabelSoftMarginLoss (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6830109Z test_MultiLabelSoftMarginLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6830284Z test_MultiLabelSoftMarginLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6830492Z test_MultiLabelSoftMarginLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6830646Z test_MultiLabelSoftMarginLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6830844Z test_MultiLabelSoftMarginLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6831039Z test_MultiLabelSoftMarginLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6831232Z test_MultiLabelSoftMarginLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6831381Z test_MultiLabelSoftMarginLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6831573Z test_MultiLabelSoftMarginLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6831753Z test_MultiLabelSoftMarginLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6831939Z test_MultiLabelSoftMarginLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6832093Z test_MultiLabelSoftMarginLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6832281Z test_MultiLabelSoftMarginLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6832469Z test_MultiLabelSoftMarginLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6832658Z test_MultiLabelSoftMarginLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6832801Z test_MultiLabelSoftMarginLoss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6832982Z test_MultiLabelSoftMarginLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6833128Z test_MultiLabelSoftMarginLoss_weights (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6833303Z test_MultiLabelSoftMarginLoss_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6833490Z test_MultiLabelSoftMarginLoss_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6833673Z test_MultiLabelSoftMarginLoss_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6833828Z test_MultiLabelSoftMarginLoss_weights_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6834016Z test_MultiLabelSoftMarginLoss_weights_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6834174Z test_MultiLabelSoftMarginLoss_weights_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6834376Z test_MultiLabelSoftMarginLoss_weights_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6834576Z test_MultiLabelSoftMarginLoss_weights_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6834827Z test_MultiLabelSoftMarginLoss_weights_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6834929Z test_MultiMarginLoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6835047Z test_MultiMarginLoss_1d (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6835208Z test_MultiMarginLoss_1d_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6835366Z test_MultiMarginLoss_1d_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6835524Z test_MultiMarginLoss_1d_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6835653Z test_MultiMarginLoss_1d_no_reduce (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6835847Z test_MultiMarginLoss_1d_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6835982Z test_MultiMarginLoss_1d_sum_reduction (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6836148Z test_MultiMarginLoss_1d_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6836322Z test_MultiMarginLoss_1d_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6836498Z test_MultiMarginLoss_1d_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6836658Z test_MultiMarginLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6836816Z test_MultiMarginLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6836971Z test_MultiMarginLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6837094Z test_MultiMarginLoss_margin (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6837262Z test_MultiMarginLoss_margin_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6837430Z test_MultiMarginLoss_margin_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6837583Z test_MultiMarginLoss_margin_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6837717Z test_MultiMarginLoss_margin_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6837886Z test_MultiMarginLoss_margin_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6838024Z test_MultiMarginLoss_margin_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6838206Z test_MultiMarginLoss_margin_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6838389Z test_MultiMarginLoss_margin_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6838566Z test_MultiMarginLoss_margin_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6838693Z test_MultiMarginLoss_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6838854Z test_MultiMarginLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6838958Z test_MultiMarginLoss_p (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6839119Z test_MultiMarginLoss_p_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6839277Z test_MultiMarginLoss_p_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6839436Z test_MultiMarginLoss_p_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6839565Z test_MultiMarginLoss_p_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6839731Z test_MultiMarginLoss_p_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6839898Z test_MultiMarginLoss_p_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6840074Z test_MultiMarginLoss_p_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6840237Z test_MultiMarginLoss_p_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6840409Z test_MultiMarginLoss_p_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6840542Z test_MultiMarginLoss_sum_reduction (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6840712Z test_MultiMarginLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6840888Z test_MultiMarginLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6841092Z test_MultiMarginLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6841220Z test_MultiMarginLoss_weights (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6841387Z test_MultiMarginLoss_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6841551Z test_MultiMarginLoss_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6841705Z test_MultiMarginLoss_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6841840Z test_MultiMarginLoss_weights_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6842011Z test_MultiMarginLoss_weights_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6842153Z test_MultiMarginLoss_weights_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6842336Z test_MultiMarginLoss_weights_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6842519Z test_MultiMarginLoss_weights_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6842700Z test_MultiMarginLoss_weights_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6842802Z test_NLLLoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6842919Z test_NLLLoss2d_no_reduce (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6843061Z test_NLLLoss2d_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6843192Z test_NLLLoss2d_no_reduce_ignore_index (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6843358Z test_NLLLoss2d_no_reduce_ignore_index_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6843485Z test_NLLLoss2d_no_reduce_weights (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6843648Z test_NLLLoss2d_no_reduce_weights_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6843766Z test_NLLLossNd_no_reduce (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6843917Z test_NLLLossNd_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6844047Z test_NLLLossNd_no_reduce_ignore_index (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6844201Z test_NLLLossNd_no_reduce_ignore_index_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6844328Z test_NLLLossNd_no_reduce_weights (__main__.TestNN) ... ok (0.019s) 2023-01-11T21:58:48.6844489Z test_NLLLossNd_no_reduce_weights_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6844593Z test_NLLLoss_2d (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6844743Z test_NLLLoss_2d_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6844893Z test_NLLLoss_2d_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6845074Z test_NLLLoss_2d_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6845218Z test_NLLLoss_2d_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6845326Z test_NLLLoss_2d_ignore_index (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6845491Z test_NLLLoss_2d_ignore_index_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6845657Z test_NLLLoss_2d_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6845817Z test_NLLLoss_2d_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6845976Z test_NLLLoss_2d_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6846129Z test_NLLLoss_2d_sum_reduction (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6846300Z test_NLLLoss_2d_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6846467Z test_NLLLoss_2d_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6846630Z test_NLLLoss_2d_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6846779Z test_NLLLoss_2d_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6846894Z test_NLLLoss_2d_weights (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6847052Z test_NLLLoss_2d_weights_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6847212Z test_NLLLoss_2d_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6847372Z test_NLLLoss_2d_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6847526Z test_NLLLoss_2d_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6847677Z test_NLLLoss_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6847823Z test_NLLLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6847970Z test_NLLLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6848101Z test_NLLLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6848211Z test_NLLLoss_dim_is_3 (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6848368Z test_NLLLoss_dim_is_3_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6848521Z test_NLLLoss_dim_is_3_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6848681Z test_NLLLoss_dim_is_3_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6848833Z test_NLLLoss_dim_is_3_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6848964Z test_NLLLoss_dim_is_3_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6849351Z test_NLLLoss_dim_is_3_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6849517Z test_NLLLoss_dim_is_3_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6849687Z test_NLLLoss_dim_is_3_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6849853Z test_NLLLoss_dim_is_3_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6849969Z test_NLLLoss_higher_dim (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6850133Z test_NLLLoss_higher_dim_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6850292Z test_NLLLoss_higher_dim_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6850504Z test_NLLLoss_higher_dim_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6850660Z test_NLLLoss_higher_dim_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6850792Z test_NLLLoss_higher_dim_sum_reduction (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6850957Z test_NLLLoss_higher_dim_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6851132Z test_NLLLoss_higher_dim_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6851304Z test_NLLLoss_higher_dim_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6851513Z test_NLLLoss_higher_dim_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6851633Z test_NLLLoss_ignore_index (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6851800Z test_NLLLoss_ignore_index_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6851962Z test_NLLLoss_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6852123Z test_NLLLoss_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6852280Z test_NLLLoss_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6852390Z test_NLLLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6852556Z test_NLLLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6852722Z test_NLLLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6852880Z test_NLLLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6853001Z test_NLLLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6853166Z test_NLLLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6853328Z test_NLLLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6853489Z test_NLLLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6853595Z test_NLLLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6853756Z test_NLLLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6853918Z test_NLLLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6854080Z test_NLLLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6854193Z test_NLLLoss_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6854341Z test_NLLLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6854469Z test_NLLLoss_no_reduce_ignore_index (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6854633Z test_NLLLoss_no_reduce_ignore_index_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6854753Z test_NLLLoss_no_reduce_weights (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6854903Z test_NLLLoss_no_reduce_weights_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6855041Z test_NLLLoss_no_reduce_weights_ignore_index (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6855217Z test_NLLLoss_no_reduce_weights_ignore_index_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6855359Z test_NLLLoss_no_reduce_weights_ignore_index_neg (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6855567Z test_NLLLoss_no_reduce_weights_ignore_index_neg_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6855686Z test_NLLLoss_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6855851Z test_NLLLoss_sum_reduction_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6856010Z test_NLLLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6856158Z test_NLLLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6856318Z test_NLLLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6856464Z test_NLLLoss_weights (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6856627Z test_NLLLoss_weights_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6856785Z test_NLLLoss_weights_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6856939Z test_NLLLoss_weights_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6857093Z test_NLLLoss_weights_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6857221Z test_NLLLoss_weights_ignore_index (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6857394Z test_NLLLoss_weights_ignore_index_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6857552Z test_NLLLoss_weights_ignore_index_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6857721Z test_NLLLoss_weights_ignore_index_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6857891Z test_NLLLoss_weights_ignore_index_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6858022Z test_NLLLoss_weights_ignore_index_neg (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6858197Z test_NLLLoss_weights_ignore_index_neg_cuda_bfloat16 (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6858369Z test_NLLLoss_weights_ignore_index_neg_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6858538Z test_NLLLoss_weights_ignore_index_neg_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6858711Z test_NLLLoss_weights_ignore_index_neg_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6858812Z test_PReLU_1d (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6858942Z test_PReLU_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6859062Z test_PReLU_1d_multiparam (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6859216Z test_PReLU_1d_multiparam_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6859318Z test_PReLU_2d (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6859454Z test_PReLU_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6859569Z test_PReLU_2d_multiparam (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6859720Z test_PReLU_2d_multiparam_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6859817Z test_PReLU_3d (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6859946Z test_PReLU_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6860060Z test_PReLU_3d_multiparam (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6860213Z test_PReLU_3d_multiparam_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6860346Z test_PReLU_backward_requires_grad_false (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6860455Z test_PReLU_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6860632Z test_PReLU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6860731Z test_PReLU_scalar (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6860871Z test_PReLU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6860980Z test_Padding122112_3dcircular (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6861135Z test_Padding122112_3dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6861250Z test_Padding1221_2dcircular (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6861400Z test_Padding1221_2dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6861508Z test_Padding12_1dcircular (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6861687Z test_Padding12_1dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6861805Z test_Padding2322_2dcircular (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6861953Z test_Padding2322_2dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6862059Z test_Padding31_1dcircular (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6862204Z test_Padding31_1dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6862319Z test_Padding322112_3dcircular (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6862545Z test_Padding322112_3dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6862666Z test_Padding332122_3dcircular (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6862820Z test_Padding332122_3dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6862935Z test_Padding3331_2dcircular (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6863083Z test_Padding3331_2dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6863191Z test_Padding33_1dcircular (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6863341Z test_Padding33_1dcircular_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6863456Z test_PairwiseDistance (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6863589Z test_PairwiseDistance_broadcast_lhs (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6863760Z test_PairwiseDistance_broadcast_lhs_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6863891Z test_PairwiseDistance_broadcast_rhs (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6864057Z test_PairwiseDistance_broadcast_rhs_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6864208Z test_PairwiseDistance_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6864328Z test_PairwiseDistance_no_batch_dim (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6864490Z test_PairwiseDistance_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6864624Z test_PairwiseDistance_with_non_default_args (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6864795Z test_PairwiseDistance_with_non_default_args_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6864898Z test_ParameterDict (__main__.TestNN) ... ok (0.025s) 2023-01-11T21:58:48.6865019Z test_ParameterDict_replication (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6865124Z test_ParameterList (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6865234Z test_ParameterList_meta (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6865348Z test_ParameterList_replication (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6865453Z test_PixelShuffle (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6865594Z test_PixelShuffle_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6865736Z test_PixelUnshuffle (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6865880Z test_PixelUnshuffle_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6865997Z test_PoissonNLLLoss_full_loss (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6866158Z test_PoissonNLLLoss_full_loss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6866319Z test_PoissonNLLLoss_full_loss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6866470Z test_PoissonNLLLoss_full_loss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6866603Z test_PoissonNLLLoss_full_loss_no_log_input (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6866842Z test_PoissonNLLLoss_full_loss_no_log_input_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6867016Z test_PoissonNLLLoss_full_loss_no_log_input_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6867190Z test_PoissonNLLLoss_full_loss_no_log_input_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6867314Z test_PoissonNLLLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6867482Z test_PoissonNLLLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6867649Z test_PoissonNLLLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6867819Z test_PoissonNLLLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6867941Z test_PoissonNLLLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6868112Z test_PoissonNLLLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6868288Z test_PoissonNLLLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6868457Z test_PoissonNLLLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6868587Z test_PoissonNLLLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6868756Z test_PoissonNLLLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6868924Z test_PoissonNLLLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6869092Z test_PoissonNLLLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6869215Z test_PoissonNLLLoss_no_full_loss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6869371Z test_PoissonNLLLoss_no_full_loss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6869534Z test_PoissonNLLLoss_no_full_loss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6869694Z test_PoissonNLLLoss_no_full_loss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6869835Z test_PoissonNLLLoss_no_full_loss_no_log_input (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6870016Z test_PoissonNLLLoss_no_full_loss_no_log_input_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6870191Z test_PoissonNLLLoss_no_full_loss_no_log_input_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6870364Z test_PoissonNLLLoss_no_full_loss_no_log_input_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6870482Z test_PoissonNLLLoss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6870634Z test_PoissonNLLLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6870782Z test_RNN_cell (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6870903Z test_RNN_cell_forward_hidden_size (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6871022Z test_RNN_cell_forward_input_size (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6871143Z test_RNN_cell_forward_zero_hidden_size (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6871258Z test_RNN_cell_no_broadcasting (__main__.TestNN) ... ok (0.033s) 2023-01-11T21:58:48.6871390Z test_RNN_change_dropout (__main__.TestNN) ... skip: needs cudnn >= 5.1 (0.001s) 2023-01-11T21:58:48.6871527Z test_RNN_cpu_vs_cudnn_no_dropout (__main__.TestNN) ... skip: needs cudnn (0.000s) 2023-01-11T21:58:48.6871670Z test_RNN_cpu_vs_cudnn_with_dropout (__main__.TestNN) ... skip: needs cudnn >= 5.1 (0.000s) 2023-01-11T21:58:48.6871822Z test_RNN_cudnn_weight_norm (__main__.TestNN) ... skip: needs cudnn (0.001s) 2023-01-11T21:58:48.6871945Z test_RNN_dropout (__main__.TestNN) ... skip: needs cudnn >= 5.1 (0.001s) 2023-01-11T21:58:48.6872075Z test_RNN_dropout_state (__main__.TestNN) ... skip: needs cudnn >= 5.1 (0.001s) 2023-01-11T21:58:48.6872183Z test_RNN_input_size_zero (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6872288Z test_RNN_nonlinearity (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6872381Z test_RReLU (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6872512Z test_RReLU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6872617Z test_RReLU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6872757Z test_RReLU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6872867Z test_RReLU_with_up_down (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6873014Z test_RReLU_with_up_down_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6873134Z test_RReLU_with_up_down_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6873295Z test_RReLU_with_up_down_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6873389Z test_ReLU (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6873485Z test_ReLU6 (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6873610Z test_ReLU6_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6873717Z test_ReLU6_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6873856Z test_ReLU6_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6873957Z test_ReLU6_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6874093Z test_ReLU6_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6874222Z test_ReLU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6874326Z test_ReLU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6874470Z test_ReLU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6874564Z test_ReLU_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6874701Z test_ReLU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6874813Z test_ReflectionPad1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6874932Z test_ReflectionPad1d_batch (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6875084Z test_ReflectionPad1d_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6875202Z test_ReflectionPad1d_complex (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6875356Z test_ReflectionPad1d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6875504Z test_ReflectionPad1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6875608Z test_ReflectionPad2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6875759Z test_ReflectionPad2d_complex (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6875919Z test_ReflectionPad2d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6876068Z test_ReflectionPad2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6876196Z test_ReflectionPad2d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6876359Z test_ReflectionPad2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6876465Z test_ReflectionPad3d (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6876580Z test_ReflectionPad3d_complex (__main__.TestNN) ... ok (0.023s) 2023-01-11T21:58:48.6876755Z test_ReflectionPad3d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6876901Z test_ReflectionPad3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6877025Z test_ReflectionPad3d_no_batch_dim (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6877182Z test_ReflectionPad3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6877293Z test_ReplicationPad1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6877410Z test_ReplicationPad1d_batch (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6877565Z test_ReplicationPad1d_batch_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6877684Z test_ReplicationPad1d_complex (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6877843Z test_ReplicationPad1d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6877984Z test_ReplicationPad1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6878096Z test_ReplicationPad2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6878212Z test_ReplicationPad2d_complex (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6878372Z test_ReplicationPad2d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6878519Z test_ReplicationPad2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6878644Z test_ReplicationPad2d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6878808Z test_ReplicationPad2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6878923Z test_ReplicationPad3d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6879035Z test_ReplicationPad3d_complex (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6879195Z test_ReplicationPad3d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6879342Z test_ReplicationPad3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6879466Z test_ReplicationPad3d_no_batch_dim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6879630Z test_ReplicationPad3d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6879721Z test_SELU (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6879849Z test_SELU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6879958Z test_SELU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6880092Z test_SELU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6880191Z test_SELU_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6880328Z test_SELU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6880438Z test_Sequential_add (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6880552Z test_Sequential_append (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6880666Z test_Sequential_delitem (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6880799Z test_Sequential_extend (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6880907Z test_Sequential_getitem (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6881006Z test_Sequential_iadd (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881110Z test_Sequential_imul (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6881222Z test_Sequential_insert (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6881341Z test_Sequential_insert_fail_case (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881445Z test_Sequential_mul (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881550Z test_Sequential_pop (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881655Z test_Sequential_rmul (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881756Z test_Sequential_setitem (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881896Z test_Sequential_setitem_named (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6881991Z test_SiLU (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6882128Z test_SiLU_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6882238Z test_SiLU_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6882384Z test_SiLU_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6882487Z test_SiLU_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6882627Z test_SiLU_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6882717Z test_Sigmoid (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6882851Z test_Sigmoid_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6882963Z test_Sigmoid_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6883108Z test_Sigmoid_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6883209Z test_Sigmoid_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6883352Z test_Sigmoid_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6883458Z test_SmoothL1Loss (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6883559Z test_SmoothL1Loss_beta (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6883703Z test_SmoothL1Loss_beta_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6883853Z test_SmoothL1Loss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6884001Z test_SmoothL1Loss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6884147Z test_SmoothL1Loss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6884271Z test_SmoothL1Loss_no_batch_dim_mean (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6884443Z test_SmoothL1Loss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6884607Z test_SmoothL1Loss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6884765Z test_SmoothL1Loss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6884879Z test_SmoothL1Loss_no_batch_dim_none (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6885043Z test_SmoothL1Loss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6885203Z test_SmoothL1Loss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6885358Z test_SmoothL1Loss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6885483Z test_SmoothL1Loss_no_batch_dim_sum (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6885649Z test_SmoothL1Loss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6885845Z test_SmoothL1Loss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6886011Z test_SmoothL1Loss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6886129Z test_SmoothL1Loss_no_reduce (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6886273Z test_SmoothL1Loss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6886399Z test_SmoothL1Loss_no_reduce_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6886561Z test_SmoothL1Loss_no_reduce_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6886673Z test_SmoothL1Loss_scalar (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6886856Z test_SmoothL1Loss_scalar_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6887015Z test_SmoothL1Loss_scalar_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6887169Z test_SmoothL1Loss_scalar_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6887296Z test_SmoothL1Loss_scalar_sum_reduction (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6887459Z test_SmoothL1Loss_scalar_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6887625Z test_SmoothL1Loss_scalar_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6887791Z test_SmoothL1Loss_scalar_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6887912Z test_SmoothL1Loss_sum_reduction (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6888075Z test_SmoothL1Loss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6888240Z test_SmoothL1Loss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6888405Z test_SmoothL1Loss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6888521Z test_SmoothL1Loss_zero_beta (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6888672Z test_SmoothL1Loss_zero_beta_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6888774Z test_SoftMarginLoss (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6888929Z test_SoftMarginLoss_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6889245Z test_SoftMarginLoss_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6889434Z test_SoftMarginLoss_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6889574Z test_SoftMarginLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6889748Z test_SoftMarginLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6889923Z test_SoftMarginLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6890093Z test_SoftMarginLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6890224Z test_SoftMarginLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6890387Z test_SoftMarginLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6890558Z test_SoftMarginLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6890730Z test_SoftMarginLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6890860Z test_SoftMarginLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6891088Z test_SoftMarginLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6891255Z test_SoftMarginLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6891423Z test_SoftMarginLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6891544Z test_SoftMarginLoss_no_reduce (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6891692Z test_SoftMarginLoss_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6891820Z test_SoftMarginLoss_sum_reduction (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6891990Z test_SoftMarginLoss_sum_reduction_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6892197Z test_SoftMarginLoss_sum_reduction_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6892368Z test_SoftMarginLoss_sum_reduction_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6892467Z test_Softmax (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6892569Z test_Softmax2d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6892708Z test_Softmax2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6892825Z test_Softmax2d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6892969Z test_Softmax2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6893109Z test_Softmax_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6893222Z test_Softmax_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6893374Z test_Softmax_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6893482Z test_Softmax_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6893628Z test_Softmax_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6893728Z test_Softmin (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6893865Z test_Softmin_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6893965Z test_Softmin_multidim (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6894114Z test_Softmin_multidim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6894225Z test_Softmin_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6894373Z test_Softmin_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6894481Z test_Softmin_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6894626Z test_Softmin_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6894724Z test_Softplus (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6894823Z test_Softplus_beta (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6894961Z test_Softplus_beta_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6895073Z test_Softplus_beta_threshold (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6895222Z test_Softplus_beta_threshold_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6895346Z test_Softplus_beta_threshold_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6895511Z test_Softplus_beta_threshold_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6895651Z test_Softplus_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6895766Z test_Softplus_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6895921Z test_Softplus_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6896015Z test_Softshrink (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6896188Z test_Softshrink_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6896301Z test_Softshrink_lambda (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6896449Z test_Softshrink_lambda_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6896569Z test_Softshrink_lambda_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6896725Z test_Softshrink_lambda_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6896842Z test_Softshrink_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6896996Z test_Softshrink_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6897086Z test_Softsign (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6897253Z test_Softsign_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6897370Z test_Softsign_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6897522Z test_Softsign_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6897633Z test_Softsign_scalar (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6897778Z test_Softsign_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6897874Z test_Tanh (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6897996Z test_Tanh_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6898106Z test_Tanh_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6898252Z test_Tanh_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6898359Z test_Tanh_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6898501Z test_Tanh_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6898605Z test_Tanhshrink (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6898749Z test_Tanhshrink_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6898868Z test_Tanhshrink_no_batch_dim (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6899010Z test_Tanhshrink_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6899123Z test_Tanhshrink_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6899273Z test_Tanhshrink_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6899390Z test_Threshold_large_value (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6899543Z test_Threshold_large_value_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6899659Z test_Threshold_no_batch_dim (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6899815Z test_Threshold_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6899938Z test_Threshold_threshold_value (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6900085Z test_Threshold_threshold_value_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6900215Z test_Threshold_threshold_value_scalar (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6900382Z test_Threshold_threshold_value_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6900532Z test_TransformerDecoderLayer_gelu_activation (__main__.TestNN) ... ok (0.081s) 2023-01-11T21:58:48.6900721Z test_TransformerDecoderLayer_gelu_activation_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6900867Z test_TransformerDecoderLayer_relu_activation (__main__.TestNN) ... ok (0.080s) 2023-01-11T21:58:48.6901052Z test_TransformerDecoderLayer_relu_activation_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6901198Z test_TransformerEncoderLayer_gelu_activation (__main__.TestNN) ... ok (0.051s) 2023-01-11T21:58:48.6901414Z test_TransformerEncoderLayer_gelu_activation_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6901550Z test_TransformerEncoderLayer_relu_activation (__main__.TestNN) ... ok (0.040s) 2023-01-11T21:58:48.6901734Z test_TransformerEncoderLayer_relu_activation_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6901848Z test_Transformer_cell (__main__.TestNN) ... ok (0.593s) 2023-01-11T21:58:48.6901975Z test_Transformer_multilayer_coder (__main__.TestNN) ... ok (0.469s) 2023-01-11T21:58:48.6902140Z test_Transformer_multilayer_coder_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6902279Z test_TripletMarginLoss_no_batch_dim_mean (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6902558Z test_TripletMarginLoss_no_batch_dim_mean_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6902764Z test_TripletMarginLoss_no_batch_dim_mean_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6902939Z test_TripletMarginLoss_no_batch_dim_mean_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6903066Z test_TripletMarginLoss_no_batch_dim_none (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6903246Z test_TripletMarginLoss_no_batch_dim_none_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6903418Z test_TripletMarginLoss_no_batch_dim_none_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6903590Z test_TripletMarginLoss_no_batch_dim_none_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6903729Z test_TripletMarginLoss_no_batch_dim_sum (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6903907Z test_TripletMarginLoss_no_batch_dim_sum_cuda_double (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6904087Z test_TripletMarginLoss_no_batch_dim_sum_cuda_float (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6904261Z test_TripletMarginLoss_no_batch_dim_sum_cuda_half (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6904380Z test_Unflatten_no_batch_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6904524Z test_Unflatten_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6904625Z test_Unfold (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6904764Z test_Unfold_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6904877Z test_Unfold_int_input (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6905025Z test_Unfold_int_input_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6905130Z test_ZeroPad2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6905247Z test_ZeroPad2d_complex (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6905389Z test_ZeroPad2d_complex_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6905532Z test_ZeroPad2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6905654Z test_ZeroPad2d_negative_dims (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6905812Z test_ZeroPad2d_negative_dims_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6905932Z test_ZeroPad2d_no_batch_dim (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6906088Z test_ZeroPad2d_no_batch_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6906204Z test_adaptive_log_softmax (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6906307Z test_add_module (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6906431Z test_add_module_raises_error_if_attr_exists (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6906586Z test_affine_grid (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6906694Z test_affine_grid_3d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6906814Z test_affine_grid_error_checking (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6906917Z test_assignment (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6907067Z test_batchnorm_buffer_update_when_stats_are_not_tracked (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6907208Z test_batchnorm_cudnn_half (__main__.TestNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:58:48.6907347Z test_batchnorm_cudnn_nhwc (__main__.TestNN) ... skip: CUDA unavailable (0.002s) 2023-01-11T21:58:48.6907450Z test_batchnorm_nhwc_cpu (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6907618Z test_batchnorm_nhwc_cuda (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6907949Z test_batchnorm_non_contig_cpu_bn_module_ (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6908230Z test_batchnorm_non_contig_cpu_bn_module_ (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6908389Z test_batchnorm_nonaffine_cuda_half_input (__main__.TestNN) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:58:48.6908541Z test_batchnorm_raises_error_if_bias_is_not_same_size_as_input (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6908694Z test_batchnorm_raises_error_if_less_than_one_value_per_channel (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6908855Z test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6909018Z test_batchnorm_raises_error_if_running_var_is_not_same_size_as_input (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6909178Z test_batchnorm_raises_error_if_running_var_or_running_mean_have_forward_grad (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6909334Z test_batchnorm_raises_error_if_weight_is_not_same_size_as_input (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6909462Z test_bce_loss_always_nonnegative (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6909585Z test_bce_loss_broadcasts_weights (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6909698Z test_bce_loss_input_range (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6909816Z test_bce_loss_size_mismatch (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6909955Z test_bce_with_logits_broadcasts_pos_weights (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6910086Z test_bce_with_logits_broadcasts_weights (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6910229Z test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6910410Z test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss_large_tensors_with_grad (__main__.TestNN) ... ok (0.032s) 2023-01-11T21:58:48.6910548Z test_bce_with_logits_has_correct_forward_grad (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6910683Z test_bce_with_logits_has_correct_grad_at_zero (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6910834Z test_bce_with_logits_ones_in_pos_weights_are_the_same_as_none (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6910996Z test_bce_with_logits_raises_if_target_and_input_are_different_size (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6911114Z test_bce_with_logits_stability (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6911267Z test_bce_with_logits_with_pos_weight_has_correct_grad_at_zero (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6911368Z test_bilinear (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6911477Z test_bilinear_broadcasting (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6911587Z test_bilinear_no_bias (__main__.TestNN) ... ok (0.025s) 2023-01-11T21:58:48.6911704Z test_bilinear_non_contiguous (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6911987Z test_broadcast_double_backwards_gpu (__main__.TestNN) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:58:48.6912208Z test_broadcast_no_grad (__main__.TestNN) ... skip: multi-GPU not supported (0.000s) 2023-01-11T21:58:48.6912445Z test_broadcast_not_requiring_grad (__main__.TestNN) ... skip: multi-GPU not supported (0.001s) 2023-01-11T21:58:48.6912563Z test_buffer_not_persistent (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6912686Z test_buffer_not_persistent_assign (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6912796Z test_buffer_not_persistent_del (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6912918Z test_buffer_not_persistent_load (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6913046Z test_buffer_not_persistent_overwrite (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6913196Z test_buffers_and_named_buffers (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6913945Z test_call_supports_python_dict_output (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1296: UserWarning: Using non-full backward hooks on a Module that does not return a single Tensor or a tuple of Tensors is deprecated and will be removed in future versions. This hook will be missing some of the grad_output. Please use register_full_backward_hook to get the documented behavior. 2023-01-11T21:58:48.6914166Z warnings.warn("Using non-full backward hooks on a Module that does not return a " 2023-01-11T21:58:48.6914232Z ok (0.002s) 2023-01-11T21:58:48.6914342Z test_channel_shuffle (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6914466Z test_channel_shuffle_return_self (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6914556Z test_children (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6914665Z test_clip_grad_norm (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6914776Z test_clip_grad_value (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6914884Z test_container_copy (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6915028Z test_convert_sync_batchnorm (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6915161Z test_cosine_embedding_loss_invalid_shape (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6915295Z test_cosine_embedding_loss_margin_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6915412Z test_cosine_embedding_loss_no_reduce (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6915545Z test_cosine_embedding_loss_with_diff_type (__main__.TestNN) ... ok (0.035s) 2023-01-11T21:58:48.6915656Z test_cosine_similarity (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6915770Z test_cross_entropy_loss (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6915895Z test_cross_entropy_loss_precision (__main__.TestNN) ... ok (3.451s) 2023-01-11T21:58:48.6916019Z test_cross_entropy_loss_zero_div (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6916280Z test_cudnn_rnn_dropout_states_device (__main__.TestNN) ... skip: CUDNN or multi-gpu not available (0.000s) 2023-01-11T21:58:48.6916427Z test_cudnn_weight_format (__main__.TestNN) ... skip: CUDNN not available (0.001s) 2023-01-11T21:58:48.6916558Z test_cudnn_weight_tying (__main__.TestNN) ... skip: CUDNN not available (0.001s) 2023-01-11T21:58:48.6916652Z test_dir (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6916754Z test_dir_digit (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6916869Z test_elu_inplace_gradgrad (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6916982Z test_elu_inplace_on_view (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6917096Z test_error_RNN_seq_len_zero (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6917200Z test_extra_state (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6917331Z test_extra_state_missing_get_extra_state (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6917452Z test_extra_state_missing_set_extra_state (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6917567Z test_extra_state_non_dict (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6917967Z test_fb_fc_packed (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:2184: UserWarning: fbgemm_pack_gemm_matrix_fp16 is deprecated and will be removed in a future PyTorch release. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/QuantizedLinear.cpp:382.) 2023-01-11T21:58:48.6918093Z packed_w_tensor = torch.fbgemm_pack_gemm_matrix_fp16(w_tensor) 2023-01-11T21:58:48.6918433Z /var/lib/jenkins/workspace/test/test_nn.py:2185: UserWarning: fbgemm_linear_fp16_weight_fp32_activation is deprecated and will be removed in a future PyTorch release. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/QuantizedLinear.cpp:417.) 2023-01-11T21:58:48.6918587Z actual_output = torch.fbgemm_linear_fp16_weight(x_tensor, packed_w_tensor, b_tensor) 2023-01-11T21:58:48.6918686Z ok (0.002s) 2023-01-11T21:58:48.6918789Z test_flatten (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6918901Z test_fold_invalid_arg (__main__.TestNN) ... ok (0.028s) 2023-01-11T21:58:48.6919010Z test_gaussian_nll_loss_args (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6919138Z test_gaussian_nll_loss_broadcasting (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6919240Z test_get_buffer (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6919363Z test_get_buffer_from_submodules (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6919499Z test_getattr_with_property (__main__.TestNN) ... expected failure (0.001s) 2023-01-11T21:58:48.6919605Z test_grid_sample (__main__.TestNN) ... ok (0.950s) 2023-01-11T21:58:48.6919712Z test_grid_sample_3d (__main__.TestNN) ... ok (0.090s) 2023-01-11T21:58:48.6920345Z test_grid_sample_error_checking (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:4235: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. 2023-01-11T21:58:48.6920412Z warnings.warn( 2023-01-11T21:58:48.6920477Z ok (0.034s) 2023-01-11T21:58:48.6920590Z test_hardtanh_backward (__main__.TestNN) ... ok (0.117s) 2023-01-11T21:58:48.6920714Z test_hardtanh_inplace_gradgrad (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6920833Z test_huber_loss_invalid_delta (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6920940Z test_inplace_thnn (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6921044Z test_interpolate (__main__.TestNN) ... ok (0.162s) 2023-01-11T21:58:48.6921161Z test_interpolate_bicubic_2d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6921308Z test_interpolate_bicubic_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6921438Z test_interpolate_bicubic_2d_zero_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6921603Z test_interpolate_bicubic_2d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6921730Z test_interpolate_bicubic_scale_2d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6921893Z test_interpolate_bicubic_scale_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6922035Z test_interpolate_bicubic_scale_tuple_shared_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6922213Z test_interpolate_bicubic_scale_tuple_shared_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6922354Z test_interpolate_bicubic_scale_tuple_skewed_2d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6922497Z test_interpolate_bicubic_scale_tuple_skewed_2d_align_corners (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6922693Z test_interpolate_bicubic_scale_tuple_skewed_2d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6922869Z test_interpolate_bicubic_scale_tuple_skewed_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6923030Z test_interpolate_bicubic_tuple_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6923174Z test_interpolate_bicubic_tuple_2d_align_corners (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6923351Z test_interpolate_bicubic_tuple_2d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6923513Z test_interpolate_bicubic_tuple_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6923633Z test_interpolate_bilinear_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6923790Z test_interpolate_bilinear_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6923909Z test_interpolate_bilinear_2d_zero_dim (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6924106Z test_interpolate_bilinear_2d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6924232Z test_interpolate_bilinear_scale_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6924398Z test_interpolate_bilinear_scale_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6924540Z test_interpolate_bilinear_scale_tuple_shared_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6924718Z test_interpolate_bilinear_scale_tuple_shared_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6924857Z test_interpolate_bilinear_scale_tuple_skewed_2d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6925012Z test_interpolate_bilinear_scale_tuple_skewed_2d_align_corners (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6925206Z test_interpolate_bilinear_scale_tuple_skewed_2d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6925374Z test_interpolate_bilinear_scale_tuple_skewed_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6925502Z test_interpolate_bilinear_tuple_2d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6925645Z test_interpolate_bilinear_tuple_2d_align_corners (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6925821Z test_interpolate_bilinear_tuple_2d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6925986Z test_interpolate_bilinear_tuple_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T21:58:48.6926112Z test_interpolate_buffer_overflow (__main__.TestNN) ... ok (3.839s) 2023-01-11T21:58:48.6926268Z test_interpolate_illegal_memory_access (__main__.TestNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:58:48.6926384Z test_interpolate_linear_1d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6926508Z test_interpolate_linear_1d_align_corners (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6926677Z test_interpolate_linear_1d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6926831Z test_interpolate_linear_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6926958Z test_interpolate_linear_1d_zero_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6927122Z test_interpolate_linear_1d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6927245Z test_interpolate_linear_scale_1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6927383Z test_interpolate_linear_scale_1d_align_corners (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6927559Z test_interpolate_linear_scale_1d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6927718Z test_interpolate_linear_scale_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6927834Z test_interpolate_linear_tuple_1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6927992Z test_interpolate_linear_tuple_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6928147Z test_interpolate_nearest_1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6928301Z test_interpolate_nearest_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6928429Z test_interpolate_nearest_1d_zero_dim (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6928594Z test_interpolate_nearest_1d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6928711Z test_interpolate_nearest_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6928867Z test_interpolate_nearest_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6928993Z test_interpolate_nearest_2d_launch_configs (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6929448Z test_interpolate_nearest_2d_launch_configs_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6929588Z test_interpolate_nearest_2d_zero_dim (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6929757Z test_interpolate_nearest_2d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6929877Z test_interpolate_nearest_3d (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6930032Z test_interpolate_nearest_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6930159Z test_interpolate_nearest_3d_zero_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6930326Z test_interpolate_nearest_3d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6930441Z test_interpolate_nearest_scale_1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6930606Z test_interpolate_nearest_scale_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6930733Z test_interpolate_nearest_scale_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6930892Z test_interpolate_nearest_scale_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6931016Z test_interpolate_nearest_scale_3d (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6931173Z test_interpolate_nearest_scale_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6931299Z test_interpolate_nearest_tuple_1d (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6931460Z test_interpolate_nearest_tuple_1d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6931584Z test_interpolate_nearest_tuple_2d (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6931733Z test_interpolate_nearest_tuple_2d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6931860Z test_interpolate_nearest_tuple_3d (__main__.TestNN) ... ok (0.012s) 2023-01-11T21:58:48.6932020Z test_interpolate_nearest_tuple_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6932146Z test_interpolate_trilinear_3d (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6932305Z test_interpolate_trilinear_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6932436Z test_interpolate_trilinear_3d_zero_dim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6932605Z test_interpolate_trilinear_3d_zero_dim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6932732Z test_interpolate_trilinear_scale_3d (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6932865Z test_interpolate_trilinear_scale_3d_align_corners (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6933043Z test_interpolate_trilinear_scale_3d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6933208Z test_interpolate_trilinear_scale_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6933339Z test_interpolate_trilinear_tuple_3d (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6933523Z test_interpolate_trilinear_tuple_3d_align_corners (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6933704Z test_interpolate_trilinear_tuple_3d_align_corners_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6933872Z test_interpolate_trilinear_tuple_3d_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6933989Z test_kl_div_log_softmax_target (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6934710Z test_kl_div_with_diff_type (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6934786Z warnings.warn( 2023-01-11T21:58:48.6934842Z ok (0.002s) 2023-01-11T21:58:48.6934973Z test_kl_div_with_diff_type_log_target (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6935086Z test_l1_loss_correct (__main__.TestNN) ... ok (10.175s) 2023-01-11T21:58:48.6935224Z test_layer_norm_grads_with_create_graph_flag (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6935367Z test_linear_autograd_device_cpu_bias_weightCOO (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6935865Z test_linear_autograd_device_cpu_bias_weightCSC (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:6609: UserWarning: Sparse CSC tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T21:58:48.6936003Z module.weight = nn.Parameter(module.weight.to_sparse_csc()) 2023-01-11T21:58:48.6936068Z ok (0.012s) 2023-01-11T21:58:48.6936196Z test_linear_autograd_device_cpu_bias_weightCSR (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6936347Z test_linear_autograd_device_cpu_bias_weightStrided (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6936490Z test_linear_autograd_device_cpu_nobias_weightCOO (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6936631Z test_linear_autograd_device_cpu_nobias_weightCSC (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6936766Z test_linear_autograd_device_cpu_nobias_weightCSR (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6936915Z test_linear_autograd_device_cpu_nobias_weightStrided (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6937033Z test_linear_broadcasting (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6937142Z test_load_state_dict (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6937248Z test_load_state_dict_BC (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6937364Z test_load_state_dict_child (__main__.TestNN) ... ok (0.181s) 2023-01-11T21:58:48.6937482Z test_load_state_dict_custom (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6937601Z test_load_state_dict_invalid (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6937720Z test_load_state_dict_ref_cycle (__main__.TestNN) ... ok (0.115s) 2023-01-11T21:58:48.6937833Z test_load_state_dict_type (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6937944Z test_log_softmax_cpu (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6938055Z test_log_softmax_dim0 (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6938193Z test_log_softmax_dim0_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6938301Z test_log_softmax_dim3 (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6938448Z test_log_softmax_dim3_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6938563Z test_log_softmax_lastdim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6938715Z test_log_softmax_lastdim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6938861Z test_log_softmax_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6939009Z test_log_softmax_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6939120Z test_log_softmax_spatial (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6939260Z test_log_softmax_spatial_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6939383Z test_log_softmax_spatial_special (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6939543Z test_log_softmax_spatial_special_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6939942Z test_loss_equal_input_target_shape (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:2799: UserWarning: Using a target size (torch.Size([5, 3])) that is different to the input size (torch.Size([3, 5])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6940097Z 'mse_loss': lambda x, y: F.mse_loss(x, y), 2023-01-11T21:58:48.6940411Z /var/lib/jenkins/workspace/test/test_nn.py:2800: UserWarning: Using a target size (torch.Size([5, 3])) that is different to the input size (torch.Size([3, 5])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6940547Z 'l1_loss': lambda x, y: F.l1_loss(x, y), 2023-01-11T21:58:48.6940859Z /var/lib/jenkins/workspace/test/test_nn.py:2801: UserWarning: Using a target size (torch.Size([5, 3])) that is different to the input size (torch.Size([3, 5])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6941019Z 'smooth_l1_loss': lambda x, y: F.smooth_l1_loss(x, y), 2023-01-11T21:58:48.6941328Z /var/lib/jenkins/workspace/test/test_nn.py:2802: UserWarning: Using a target size (torch.Size([5, 3])) that is different to the input size (torch.Size([3, 5])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6941479Z 'huber_loss': lambda x, y: F.huber_loss(x, y), 2023-01-11T21:58:48.6942068Z /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T21:58:48.6942145Z warnings.warn( 2023-01-11T21:58:48.6942210Z ok (0.023s) 2023-01-11T21:58:48.6942344Z test_margin_ranking_loss_margin_no_reduce (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6942543Z test_margin_ranking_loss_no_reduce (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6942678Z test_module_apply_inplace_op (__main__.TestNN) ... ok (0.011s) 2023-01-11T21:58:48.6942792Z test_module_backcompat (__main__.TestNN) ... ok (0.029s) 2023-01-11T21:58:48.6942908Z test_module_to_argparse (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6942997Z test_modules (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6943109Z test_mse_loss_size_warning (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6943253Z test_multimarginloss_1d_input_0d_target_no_reduce (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6943435Z test_multimarginloss_1d_input_0d_target_no_reduce_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6943544Z test_named_children (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6943653Z test_named_modules (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6943786Z test_named_parameters_remove_duplicate (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6944154Z test_nested_tensor_from_mask (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:2204: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:58:48.6944312Z nt = torch._nested_tensor_from_mask(input, mask) 2023-01-11T21:58:48.6944366Z ok (0.002s) 2023-01-11T21:58:48.6944489Z test_nested_tensor_from_mask_error (__main__.TestNN) ... ok (0.020s) 2023-01-11T21:58:48.6944588Z test_no_grad (__main__.TestNN) ... ok (0.009s) 2023-01-11T21:58:48.6944704Z test_non_leaf_parameters (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6944803Z test_normalize (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6944938Z test_overwrite_module_params_on_conversion (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6945091Z test_pack_sequence_batch_sizes_throw (__main__.TestNN) ... skip: CUDA not available (0.000s) 2023-01-11T21:58:48.6945190Z test_pad_scalar_error (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6945328Z test_padding_list (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6945442Z test_pairwise_distance (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6945561Z test_parameter_assignment (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6945685Z test_parameterlistdict_pickle (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6945824Z test_parameterlistdict_setting_attributes (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6945953Z test_parameters_and_named_parameters (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6946070Z test_parameters_to_vector (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6946158Z test_parse_to (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6946300Z test_partial_flat_weights (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6946400Z test_pdist (__main__.TestNN) ... ok (0.015s) 2023-01-11T21:58:48.6946554Z test_pdist_cpu_gradgrad_unimplemented (__main__.TestNN) ... expected failure (0.007s) 2023-01-11T21:58:48.6946707Z test_pdist_cuda_gradgrad_unimplemented (__main__.TestNN) ... expected failure (0.010s) 2023-01-11T21:58:48.6946819Z test_pdist_empty_col (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6946926Z test_pdist_empty_row (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6947030Z test_pdist_large (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6947107Z test_pdist_zeros (__main__.TestNN) 2023-01-11T21:58:48.6947222Z Test that grad is still valid when dist is 0 ... ok (0.008s) 2023-01-11T21:58:48.6947342Z test_pixel_shuffle_nhwc_cpu (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6947462Z test_pixel_shuffle_unshuffle (__main__.TestNN) ... ok (0.463s) 2023-01-11T21:58:48.6947826Z test_pointwise_loss_broadcast (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6948000Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6948315Z /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6948484Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6948795Z /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6948950Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6949264Z /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6949491Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6949797Z /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6949963Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6950272Z /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6950467Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6950780Z /var/lib/jenkins/workspace/test/test_nn.py:5402: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6950947Z 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 2023-01-11T21:58:48.6951257Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6951422Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6951733Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6951885Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6952192Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6952353Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6952662Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6952825Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6953130Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6953292Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6953598Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6953755Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6954059Z /var/lib/jenkins/workspace/test/test_nn.py:5403: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6954215Z 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6954518Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6954738Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6955030Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6955213Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6955551Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6955738Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6956045Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6956226Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6956528Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6956712Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6957016Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6957202Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6957506Z /var/lib/jenkins/workspace/test/test_nn.py:5404: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6957686Z 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 2023-01-11T21:58:48.6957983Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6958161Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6958468Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6958639Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6958937Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6959104Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6959407Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6959610Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6959911Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6960082Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6960385Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6960553Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6960872Z /var/lib/jenkins/workspace/test/test_nn.py:5405: UserWarning: Using a target size (torch.Size([2, 10])) that is different to the input size (torch.Size([2, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size. 2023-01-11T21:58:48.6961047Z 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), 2023-01-11T21:58:48.6961113Z ok (0.038s) 2023-01-11T21:58:48.6961257Z test_pointwise_loss_target_grad_none_reduction (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6961387Z test_projections_errors_on_gru_and_rnn (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6961513Z test_projections_lstm_args_check (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6961749Z test_projections_lstm_check_device (__main__.TestNN) ... skip: multi-GPU not supported (0.001s) 2023-01-11T21:58:48.6961887Z test_projections_lstm_initial_hidden_state (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6962027Z test_register_buffer_allows_overwriting_with_same_name (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6962169Z test_register_buffer_raises_error_if_attr_exists (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6962319Z test_register_buffer_raises_error_if_name_is_not_string (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6962455Z test_register_buffer_raises_error_if_not_tensor (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6962608Z test_register_parameter_allows_overwriting_with_same_name (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6962752Z test_register_parameter_raises_error_if_attr_exists (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6962902Z test_register_parameter_raises_error_if_name_is_not_string (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6963026Z test_register_state_dict_pre_hook (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6963167Z test_register_state_dict_pre_hook_backward_compat (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6963271Z test_relu_inplace_on_view (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6963369Z test_repr (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6963479Z test_requires_grad_ (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6963582Z test_rnn_args_check (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6963797Z test_rnn_check_device (__main__.TestNN) ... skip: multi-GPU not supported (0.001s) 2023-01-11T21:58:48.6963915Z test_rnn_initial_hidden_state (__main__.TestNN) ... ok (0.014s) 2023-01-11T21:58:48.6964024Z test_rnn_weight_norm (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6964462Z test_share_memory (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:181: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:48.6964571Z self.assertFalse(p.storage().is_shared()) 2023-01-11T21:58:48.6964960Z /var/lib/jenkins/workspace/test/test_nn.py:186: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:48.6965097Z self.assertTrue(p.storage().is_shared()) 2023-01-11T21:58:48.6965162Z ok (0.001s) 2023-01-11T21:58:48.6965289Z test_smoothl1loss_intergral_target (__main__.TestNN) ... ok (0.006s) 2023-01-11T21:58:48.6965429Z test_smoothl1loss_negative_beta_not_supported (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6965534Z test_softmax_cpu (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6965653Z test_softmax_functional_dim0 (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6965839Z test_softmax_functional_dim0_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6965949Z test_softmax_functional_dim3 (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6966105Z test_softmax_functional_dim3_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6966230Z test_softmax_functional_scalar (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6966388Z test_softmax_functional_scalar_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6966496Z test_softmax_lastdim (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6966645Z test_softmax_lastdim_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6966761Z test_softmax_lastdim_dtype (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6966913Z test_softmax_lastdim_dtype_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6967010Z test_softmax_spatial (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6967159Z test_softmax_spatial_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6967275Z test_softmax_spatial_dtype (__main__.TestNN) ... ok (0.007s) 2023-01-11T21:58:48.6967432Z test_softmax_spatial_dtype_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6967550Z test_softmax_spatial_special (__main__.TestNN) ... ok (0.008s) 2023-01-11T21:58:48.6967704Z test_softmax_spatial_special_cuda (__main__.TestNN) ... skip: Excluded from CUDA tests (0.001s) 2023-01-11T21:58:48.6967802Z test_softmin (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6968241Z test_spectral_norm (__main__.TestNN) ... /var/lib/jenkins/workspace/test/test_nn.py:1899: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:48.6968376Z self.assertEqual(m.weight_orig.storage(), m.weight.storage()) 2023-01-11T21:58:48.6969193Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:48.6969335Z device=typed_storage.device, 2023-01-11T21:58:48.6969419Z ok (0.024s) 2023-01-11T21:58:48.6969539Z test_spectral_norm_dim (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6969656Z test_spectral_norm_forward (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6969781Z test_spectral_norm_load_state_dict (__main__.TestNN) ... ok (0.028s) 2023-01-11T21:58:48.6969896Z test_spectral_norm_pickle (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6969998Z test_state_dict (__main__.TestNN) ... ok (0.003s) 2023-01-11T21:58:48.6970150Z test_sync_batchnorm_accuracy_cuda (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6970291Z test_sync_batchnorm_backward_elemt (__main__.TestNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:58:48.6970465Z test_threshold_bfloat16 (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6970570Z test_threshold_int (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6970667Z test_to (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6970791Z test_train_errors_for_invalid_mode (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6970910Z test_transformer_args_check (__main__.TestNN) ... ok (0.170s) 2023-01-11T21:58:48.6971037Z test_transformer_layer_args_check (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6971144Z test_transformerdecoder (__main__.TestNN) ... ok (0.102s) 2023-01-11T21:58:48.6971273Z test_transformerdecoderlayer (__main__.TestNN) ... ok (0.025s) 2023-01-11T21:58:48.6971440Z test_transformerdecoderlayer_gelu (__main__.TestNN) ... ok (0.032s) 2023-01-11T21:58:48.6971558Z test_triplet_margin_loss (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6971681Z test_triplet_margin_loss_no_reduce (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6971805Z test_triplet_margin_loss_swap (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6971936Z test_triplet_margin_loss_swap_no_reduce (__main__.TestNN) ... ok (0.004s) 2023-01-11T21:58:48.6972032Z test_type (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6972706Z test_unflatten (__main__.TestNN) ... /opt/conda/lib/python3.10/site-packages/torch/_tensor.py:1114: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /var/lib/jenkins/workspace/c10/core/TensorImpl.h:1816.) 2023-01-11T21:58:48.6972806Z return super(Tensor, self).refine_names(names) 2023-01-11T21:58:48.6972870Z ok (0.002s) 2023-01-11T21:58:48.6972987Z test_unflatten_invalid_arg (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6973101Z test_unfold_invalid_arg (__main__.TestNN) ... ok (0.013s) 2023-01-11T21:58:48.6973252Z test_upsamplingBilinear2d_spatial_invariance (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6973371Z test_upsamplingLinear1d (__main__.TestNN) ... ok (0.016s) 2023-01-11T21:58:48.6973515Z test_upsamplingLinear1d_spatial_invariance (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6973638Z test_upsamplingTrilinear3d (__main__.TestNN) ... ok (0.043s) 2023-01-11T21:58:48.6973775Z test_upsamplingTrilinear3d_spatial_invariance (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6973889Z test_upsampling_bfloat16 (__main__.TestNN) ... ok (0.017s) 2023-01-11T21:58:48.6974026Z test_upsampling_not_recompute_scale_factor (__main__.TestNN) ... ok (0.010s) 2023-01-11T21:58:48.6974146Z test_upsampling_small_scale (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6974263Z test_vector_to_parameters (__main__.TestNN) ... ok (0.001s) 2023-01-11T21:58:48.6974369Z test_weight_norm (__main__.TestNN) ... ok (0.005s) 2023-01-11T21:58:48.6974482Z test_weight_norm_pickle (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6974574Z test_zero_grad (__main__.TestNN) ... ok (0.002s) 2023-01-11T21:58:48.6974593Z 2023-01-11T21:58:48.6974785Z ---------------------------------------------------------------------- 2023-01-11T21:58:48.6974861Z Ran 2070 tests in 31.391s 2023-01-11T21:58:48.6974867Z 2023-01-11T21:58:48.6974961Z OK (skipped=1111, expected failures=3) 2023-01-11T21:58:48.6974966Z 2023-01-11T21:58:48.6975049Z Generating XML reports... 2023-01-11T21:58:48.6975310Z Generated XML report: test-reports/python-unittest/test_nn/TEST-TestAddRelu-20230111215816.xml 2023-01-11T21:58:48.6975589Z Generated XML report: test-reports/python-unittest/test_nn/TEST-TestConstantPadNd-20230111215816.xml 2023-01-11T21:58:48.6975877Z Generated XML report: test-reports/python-unittest/test_nn/TEST-TestFunctionalPickle-20230111215816.xml 2023-01-11T21:58:48.6976137Z Generated XML report: test-reports/python-unittest/test_nn/TEST-TestFusionEval-20230111215816.xml 2023-01-11T21:58:48.6976426Z Generated XML report: test-reports/python-unittest/test_nn/TEST-TestFusionUtils-20230111215816.xml 2023-01-11T21:58:48.6976666Z Generated XML report: test-reports/python-unittest/test_nn/TEST-TestNN-20230111215816.xml 2023-01-11T21:58:48.6976672Z 2023-01-11T21:58:48.6977002Z ##[endgroup] 2023-01-11T21:58:48.6977258Z FINISHED PRINTING LOG FILE of test_nn (/var/lib/jenkins/workspace/test/test-reports/test_nn_7jcit4ac) 2023-01-11T21:58:48.6977263Z 2023-01-11T21:58:48.6977422Z Running test_overrides ... [2023-01-11 21:58:48.646200] 2023-01-11T21:58:48.6977756Z Executing ['/opt/conda/bin/python', '-bb', 'test_overrides.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:48.646413] 2023-01-11T21:58:51.5922637Z 2023-01-11T21:58:51.5923465Z Expand the folded group to see the log file of test_overrides 2023-01-11T21:58:51.5924633Z ##[group]PRINTING LOG FILE of test_overrides (/var/lib/jenkins/workspace/test/test-reports/test_overrides_srimhfgs) 2023-01-11T21:58:51.5925335Z 2023-01-11T21:58:51.5925446Z Running tests... 2023-01-11T21:58:51.5926088Z ---------------------------------------------------------------------- 2023-01-11T21:58:51.5926726Z Test results will be stored in test-reports/python-unittest/test_overrides 2023-01-11T21:58:51.5927293Z test_broadcast_all (__main__.TestBroadcastAllOverride) ... ok (0.217s) 2023-01-11T21:58:51.5928372Z test_parameter_does_not_prevent_dispatch (__main__.TestDisabledTorchFunction) ... ok (0.001s) 2023-01-11T21:58:51.5961057Z test_wrapper (__main__.TestEinsumOverride) ... ok (0.002s) 2023-01-11T21:58:51.5961364Z test_gradcheck (__main__.TestGradCheckOverride) ... ok (0.015s) 2023-01-11T21:58:51.5961640Z test_newones (__main__.TestGradNewOnesOverride) ... ok (0.001s) 2023-01-11T21:58:51.5961911Z test_getitem (__main__.TestIndexing) ... ok (0.001s) 2023-01-11T21:58:51.5962174Z test_getitem_subclass (__main__.TestIndexing) ... ok (0.001s) 2023-01-11T21:58:51.5962419Z test_setitem (__main__.TestIndexing) ... ok (0.001s) 2023-01-11T21:58:51.5962682Z test_setitem_subclass (__main__.TestIndexing) ... ok (0.001s) 2023-01-11T21:58:51.5965544Z test_setitem_val (__main__.TestIndexing) ... ok (0.001s) 2023-01-11T21:58:51.5966001Z test_iterator (__main__.TestIterator) ... ok (0.001s) 2023-01-11T21:58:51.5966431Z test_max (__main__.TestNamedTuple) ... ok (0.001s) 2023-01-11T21:58:51.5966854Z test_pickle (__main__.TestPickle) ... ok (0.001s) 2023-01-11T21:58:51.5967203Z test_rnn (__main__.TestRNN) ... ok (0.002s) 2023-01-11T21:58:51.5967586Z test_resolve_name (__main__.TestResolveName) ... ok (0.082s) 2023-01-11T21:58:51.5968042Z test_all_same_mode (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5968500Z test_basic (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5969202Z test_disable_enable_subclass (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5969740Z test_disable_subclass_not_mode (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5970336Z test_distributions_bernoulli (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5970858Z test_error_using_class_method_on_mode (__main__.TestTorchFunctionMode) ... ok (0.002s) 2023-01-11T21:58:51.5971328Z test_factory_override (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5971873Z test_get_cur_mode (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5972325Z test_get_mode_stack (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5972758Z test_mode_notimplemented_loop (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5973335Z test_modes_handle_first (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5973696Z test_modes_return_notimplemented (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5974040Z test_nested_modes_with_python_has_torch_function (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5974354Z test_nested_same_mode (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5974779Z test_nn_parse_to (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5975070Z test_reentrant_mode_idiom (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5975368Z test_restacking_with_ancestor (__main__.TestTorchFunctionMode) ... ok (0.000s) 2023-01-11T21:58:51.5975670Z test_subclass_hash (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5975954Z test_with_mode (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5976244Z test_with_mode_created_separately (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5976555Z test_with_nested_modes (__main__.TestTorchFunctionMode) ... ok (0.001s) 2023-01-11T21:58:51.5976855Z test_Tensor___add__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5977208Z test_Tensor___and__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5977501Z test_Tensor___array__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5977817Z test_Tensor___array_wrap__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5978124Z test_Tensor___bool__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5978417Z test_Tensor___complex__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5978731Z test_Tensor___contains__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5979065Z test_Tensor___cuda_array_interface_____get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5979394Z test_Tensor___deepcopy__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5979687Z test_Tensor___div__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5979994Z test_Tensor___dlpack__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5980309Z test_Tensor___dlpack_device__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5980608Z test_Tensor___eq__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5980908Z test_Tensor___float__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5981213Z test_Tensor___floordiv__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5981519Z test_Tensor___format__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5981807Z test_Tensor___ge__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5982109Z test_Tensor___getitem__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5982410Z test_Tensor___gt__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5982772Z test_Tensor___iadd__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5983075Z test_Tensor___iand__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5983375Z test_Tensor___idiv__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5985096Z test_Tensor___ifloordiv__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5985640Z test_Tensor___ilshift__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5986203Z test_Tensor___imod__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5986806Z test_Tensor___imul__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5987359Z test_Tensor___index__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5987987Z test_Tensor___int__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5988549Z test_Tensor___invert__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5988902Z test_Tensor___ior__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5989198Z test_Tensor___irshift__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5989606Z test_Tensor___isub__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5990089Z test_Tensor___ixor__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5990568Z test_Tensor___le__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5991048Z test_Tensor___len__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5991532Z test_Tensor___long__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5992024Z test_Tensor___lshift__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5992476Z test_Tensor___lt__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5992964Z test_Tensor___matmul__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5993547Z test_Tensor___mod__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5994050Z test_Tensor___mul__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5994518Z test_Tensor___ne__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5994996Z test_Tensor___nonzero__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5995482Z test_Tensor___or__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5995941Z test_Tensor___radd__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5996445Z test_Tensor___rand__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5996949Z test_Tensor___rdiv__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5997487Z test_Tensor___reduce_ex__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5998051Z test_Tensor___repr__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5998599Z test_Tensor___reversed__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5999097Z test_Tensor___rfloordiv__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.5999603Z test_Tensor___rlshift__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6000098Z test_Tensor___rmatmul__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6000589Z test_Tensor___rmod__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6001069Z test_Tensor___rmul__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6001533Z test_Tensor___ror__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6002001Z test_Tensor___rpow__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6002495Z test_Tensor___rrshift__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6002989Z test_Tensor___rshift__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6003471Z test_Tensor___rsub__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6003955Z test_Tensor___rxor__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6004512Z test_Tensor___setitem__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6005063Z test_Tensor___setstate__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6005620Z test_Tensor___sub__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6006170Z test_Tensor___truediv__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6006713Z test_Tensor___xor__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6007027Z test_Tensor__autocast_to_full_precision (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6007384Z test_Tensor__autocast_to_reduced_precision (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6007723Z test_Tensor__coalesced_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6008019Z test_Tensor__dimI (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6008384Z test_Tensor__dimV (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6008686Z test_Tensor__indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6008990Z test_Tensor__is_view (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6009482Z test_Tensor__nested_tensor_size (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6009797Z test_Tensor__nnz (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6010100Z test_Tensor__to_dense (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6010399Z test_Tensor__update_names (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6010784Z test_Tensor__values (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6011086Z test_Tensor_abs (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6011385Z test_Tensor_abs_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6011674Z test_Tensor_absolute (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6011985Z test_Tensor_absolute_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6012800Z test_Tensor_acos (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6013088Z test_Tensor_acos_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6013387Z test_Tensor_acosh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6013691Z test_Tensor_acosh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6013989Z test_Tensor_add (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6014276Z test_Tensor_add_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6014575Z test_Tensor_addbmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6014882Z test_Tensor_addbmm_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6015174Z test_Tensor_addcdiv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6015482Z test_Tensor_addcdiv_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6015789Z test_Tensor_addcmul (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6016081Z test_Tensor_addcmul_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6016383Z test_Tensor_addmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6016681Z test_Tensor_addmm_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6016980Z test_Tensor_addmv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6017267Z test_Tensor_addmv_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6017567Z test_Tensor_addr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6017868Z test_Tensor_addr_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6018155Z test_Tensor_adjoint (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6018460Z test_Tensor_align_as (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6018764Z test_Tensor_align_to (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6019062Z test_Tensor_all (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6019350Z test_Tensor_allclose (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6019651Z test_Tensor_amax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6019946Z test_Tensor_amin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6020238Z test_Tensor_aminmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6020540Z test_Tensor_angle (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6020902Z test_Tensor_any (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6021202Z test_Tensor_apply_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6021492Z test_Tensor_arccos (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6021791Z test_Tensor_arccos_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6022093Z test_Tensor_arccosh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6022384Z test_Tensor_arccosh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6022765Z test_Tensor_arcsin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6023063Z test_Tensor_arcsin_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6023398Z test_Tensor_arcsinh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6023688Z test_Tensor_arcsinh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6023990Z test_Tensor_arctan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6024289Z test_Tensor_arctan2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6024578Z test_Tensor_arctan2_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6024875Z test_Tensor_arctan_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6025177Z test_Tensor_arctanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6025464Z test_Tensor_arctanh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6025764Z test_Tensor_argmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6026064Z test_Tensor_argmin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6026367Z test_Tensor_argsort (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6026656Z test_Tensor_argwhere (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6026967Z test_Tensor_as_strided (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6027280Z test_Tensor_as_strided_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6027588Z test_Tensor_as_strided_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6027900Z test_Tensor_asin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6028197Z test_Tensor_asin_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6028497Z test_Tensor_asinh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6028785Z test_Tensor_asinh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6029083Z test_Tensor_atan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6029383Z test_Tensor_atan2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6029668Z test_Tensor_atan2_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6029966Z test_Tensor_atan_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6030264Z test_Tensor_atanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6030562Z test_Tensor_atanh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6030852Z test_Tensor_backward (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6031164Z test_Tensor_baddbmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6031469Z test_Tensor_baddbmm_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6031766Z test_Tensor_bernoulli (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6032076Z test_Tensor_bernoulli_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6032385Z test_Tensor_bfloat16 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6032687Z test_Tensor_bincount (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6033022Z test_Tensor_bitwise_and (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6033333Z test_Tensor_bitwise_and_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6033654Z test_Tensor_bitwise_left_shift (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6033970Z test_Tensor_bitwise_left_shift_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6034289Z test_Tensor_bitwise_not (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6034599Z test_Tensor_bitwise_not_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6034909Z test_Tensor_bitwise_or (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6035235Z test_Tensor_bitwise_or_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6035559Z test_Tensor_bitwise_right_shift (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6035892Z test_Tensor_bitwise_right_shift_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6036202Z test_Tensor_bitwise_xor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6036513Z test_Tensor_bitwise_xor_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6036817Z test_Tensor_bmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6037101Z test_Tensor_bool (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6037407Z test_Tensor_broadcast_to (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6037714Z test_Tensor_byte (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6038017Z test_Tensor_cauchy_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6038311Z test_Tensor_ccol_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6038626Z test_Tensor_cdouble (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6038924Z test_Tensor_ceil (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6039211Z test_Tensor_ceil_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6039513Z test_Tensor_cfloat (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6039812Z test_Tensor_chalf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6040110Z test_Tensor_char (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6040403Z test_Tensor_cholesky (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6040722Z test_Tensor_cholesky_inverse (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6041046Z test_Tensor_cholesky_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6041342Z test_Tensor_chunk (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6041643Z test_Tensor_clamp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6041943Z test_Tensor_clamp_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6042248Z test_Tensor_clamp_max (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6042546Z test_Tensor_clamp_max_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6042856Z test_Tensor_clamp_min (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6043163Z test_Tensor_clamp_min_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6043453Z test_Tensor_clip (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6043749Z test_Tensor_clip_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6044049Z test_Tensor_clone (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6044351Z test_Tensor_coalesce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6044704Z test_Tensor_col_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6045007Z test_Tensor_conj (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6045315Z test_Tensor_conj_physical (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6045622Z test_Tensor_conj_physical_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6045937Z test_Tensor_contiguous (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6046242Z test_Tensor_copy_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6046546Z test_Tensor_copysign (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6046844Z test_Tensor_copysign_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6047183Z test_Tensor_corrcoef (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6047488Z test_Tensor_cos (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6047775Z test_Tensor_cos_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6048072Z test_Tensor_cosh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6048369Z test_Tensor_cosh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6048663Z test_Tensor_count_nonzero (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6048970Z test_Tensor_cov (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6049409Z test_Tensor_cpu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6049712Z test_Tensor_cross (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6050006Z test_Tensor_crow_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6050314Z test_Tensor_cuda (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6050613Z test_Tensor_cummax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6050903Z test_Tensor_cummin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6051207Z test_Tensor_cumprod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6051513Z test_Tensor_cumprod_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6051815Z test_Tensor_cumsum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6052103Z test_Tensor_cumsum_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6052405Z test_Tensor_data_ptr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6052710Z test_Tensor_deg2rad (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6053000Z test_Tensor_deg2rad_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6053307Z test_Tensor_dense_dim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6053621Z test_Tensor_dequantize (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6053926Z test_Tensor_det (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6054212Z test_Tensor_detach (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6054513Z test_Tensor_detach_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6054813Z test_Tensor_diag (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6055108Z test_Tensor_diag_embed (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6055416Z test_Tensor_diagflat (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6055723Z test_Tensor_diagonal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6056029Z test_Tensor_diagonal_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6056342Z test_Tensor_diff (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6056707Z test_Tensor_digamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6057010Z test_Tensor_digamma_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6057297Z test_Tensor_dim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6057591Z test_Tensor_dist (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6057885Z test_Tensor_div (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6058166Z test_Tensor_div_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6058467Z test_Tensor_divide (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6058772Z test_Tensor_divide_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6059108Z test_Tensor_dot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6059398Z test_Tensor_double (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6059704Z test_Tensor_dsplit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6060015Z test_Tensor_element_size (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6060306Z test_Tensor_eq (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6060597Z test_Tensor_eq_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6060890Z test_Tensor_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6061187Z test_Tensor_erf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6061468Z test_Tensor_erf_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6061762Z test_Tensor_erfc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6062061Z test_Tensor_erfc_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6062348Z test_Tensor_erfinv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6062712Z test_Tensor_erfinv_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6063009Z test_Tensor_exp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6063306Z test_Tensor_exp2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6063592Z test_Tensor_exp2_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6063887Z test_Tensor_exp_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6064187Z test_Tensor_expand (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6064482Z test_Tensor_expand_as (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6064783Z test_Tensor_expm1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6065082Z test_Tensor_expm1_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6065377Z test_Tensor_exponential_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6065685Z test_Tensor_fill_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6065993Z test_Tensor_fill_diagonal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6066303Z test_Tensor_fix (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6066585Z test_Tensor_fix_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6066884Z test_Tensor_flatten (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6067185Z test_Tensor_flip (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6067473Z test_Tensor_fliplr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6067773Z test_Tensor_flipud (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6068073Z test_Tensor_float (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6068379Z test_Tensor_float_power (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6068713Z test_Tensor_float_power_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6069015Z test_Tensor_floor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6069309Z test_Tensor_floor_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6069601Z test_Tensor_floor_divide (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6069913Z test_Tensor_floor_divide_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6070218Z test_Tensor_fmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6070514Z test_Tensor_fmin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6070794Z test_Tensor_fmod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6071120Z test_Tensor_fmod_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6071416Z test_Tensor_frac (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6071701Z test_Tensor_frac_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6072000Z test_Tensor_frexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6072301Z test_Tensor_gather (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6072589Z test_Tensor_gcd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6072887Z test_Tensor_gcd_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6073181Z test_Tensor_ge (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6073474Z test_Tensor_ge_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6073765Z test_Tensor_geometric_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6074075Z test_Tensor_geqrf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6074375Z test_Tensor_ger (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6074665Z test_Tensor_get_device (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6074974Z test_Tensor_greater (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6075279Z test_Tensor_greater_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6075592Z test_Tensor_greater_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6075898Z test_Tensor_greater_equal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6076201Z test_Tensor_gt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6076493Z test_Tensor_gt_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6076777Z test_Tensor_half (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6077082Z test_Tensor_hardshrink (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6077390Z test_Tensor_has_names (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6077701Z test_Tensor_heaviside (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6077997Z test_Tensor_heaviside_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6078302Z test_Tensor_histc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6078606Z test_Tensor_histogram (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6078896Z test_Tensor_hsplit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6079198Z test_Tensor_hypot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6079496Z test_Tensor_hypot_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6079778Z test_Tensor_i0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6080071Z test_Tensor_i0_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6080369Z test_Tensor_igamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6080703Z test_Tensor_igamma_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6080996Z test_Tensor_igammac (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6081302Z test_Tensor_igammac_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6081609Z test_Tensor_index_add (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6081904Z test_Tensor_index_add_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6082212Z test_Tensor_index_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6082523Z test_Tensor_index_copy_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6082833Z test_Tensor_index_fill (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6083180Z test_Tensor_index_fill_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6083495Z test_Tensor_index_put (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6083804Z test_Tensor_index_put_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6084105Z test_Tensor_index_reduce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6084421Z test_Tensor_index_reduce_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6084736Z test_Tensor_index_select (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6085048Z test_Tensor_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6085338Z test_Tensor_inner (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6085634Z test_Tensor_int (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6085934Z test_Tensor_int_repr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6086227Z test_Tensor_inverse (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6086526Z test_Tensor_ipu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6086833Z test_Tensor_is_coalesced (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6087148Z test_Tensor_is_complex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6087440Z test_Tensor_is_conj (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6087754Z test_Tensor_is_contiguous (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6088076Z test_Tensor_is_distributed (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6088387Z test_Tensor_is_floating_point (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6088707Z test_Tensor_is_inference (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6089015Z test_Tensor_is_neg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6089485Z test_Tensor_is_nonzero (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6089786Z test_Tensor_is_pinned (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6090097Z test_Tensor_is_same_size (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6090407Z test_Tensor_is_set_to (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6090699Z test_Tensor_is_shared (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6091005Z test_Tensor_is_signed (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6091308Z test_Tensor_isclose (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6091615Z test_Tensor_isfinite (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6091907Z test_Tensor_isinf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6092205Z test_Tensor_isnan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6092568Z test_Tensor_isneginf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6092863Z test_Tensor_isposinf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6093166Z test_Tensor_isreal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6093465Z test_Tensor_istft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6093752Z test_Tensor_item (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6094049Z test_Tensor_kron (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6094351Z test_Tensor_kthvalue (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6094650Z test_Tensor_lcm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6094978Z test_Tensor_lcm_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6095279Z test_Tensor_ldexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6095580Z test_Tensor_ldexp_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6095868Z test_Tensor_le (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6096159Z test_Tensor_le_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6096450Z test_Tensor_lerp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6096750Z test_Tensor_lerp_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6097032Z test_Tensor_less (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6097327Z test_Tensor_less_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6097630Z test_Tensor_less_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6097930Z test_Tensor_less_equal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6098236Z test_Tensor_lgamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6098540Z test_Tensor_lgamma_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6098842Z test_Tensor_log (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6099124Z test_Tensor_log10 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6099419Z test_Tensor_log10_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6099716Z test_Tensor_log1p (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6100000Z test_Tensor_log1p_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6100297Z test_Tensor_log2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6100593Z test_Tensor_log2_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6100877Z test_Tensor_log_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6101180Z test_Tensor_log_normal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6101493Z test_Tensor_log_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6101804Z test_Tensor_logaddexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6102105Z test_Tensor_logaddexp2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6102420Z test_Tensor_logcumsumexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6102802Z test_Tensor_logdet (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6103101Z test_Tensor_logical_and (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6103416Z test_Tensor_logical_and_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6103730Z test_Tensor_logical_not (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6104042Z test_Tensor_logical_not_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6104342Z test_Tensor_logical_or (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6104685Z test_Tensor_logical_or_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6104994Z test_Tensor_logical_xor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6105293Z test_Tensor_logical_xor_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6105597Z test_Tensor_logit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6105896Z test_Tensor_logit_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6106204Z test_Tensor_logsumexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6106497Z test_Tensor_long (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6106791Z test_Tensor_lt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6107121Z test_Tensor_lt_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6107402Z test_Tensor_lu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6107700Z test_Tensor_lu_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6108000Z test_Tensor_map2_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6108297Z test_Tensor_map_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6108590Z test_Tensor_masked_fill (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6108900Z test_Tensor_masked_fill_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6109215Z test_Tensor_masked_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6109524Z test_Tensor_masked_scatter_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6109845Z test_Tensor_masked_select (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6110152Z test_Tensor_matmul (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6110461Z test_Tensor_matrix_exp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6110759Z test_Tensor_matrix_power (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6111062Z test_Tensor_max (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6111363Z test_Tensor_maximum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6111651Z test_Tensor_mean (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6111948Z test_Tensor_median (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6112246Z test_Tensor_min (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6112531Z test_Tensor_minimum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6112830Z test_Tensor_mm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6113124Z test_Tensor_mode (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6113426Z test_Tensor_moveaxis (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6113721Z test_Tensor_movedim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6114021Z test_Tensor_msort (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6114317Z test_Tensor_mul (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6114599Z test_Tensor_mul_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6114904Z test_Tensor_multinomial (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6115213Z test_Tensor_multiply (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6115523Z test_Tensor_multiply_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6115814Z test_Tensor_mv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6116112Z test_Tensor_mvlgamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6116452Z test_Tensor_mvlgamma_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6116750Z test_Tensor_nan_to_num (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6117056Z test_Tensor_nan_to_num_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6117362Z test_Tensor_nanmean (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6117670Z test_Tensor_nanmedian (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6117969Z test_Tensor_nanquantile (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6118277Z test_Tensor_nansum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6118577Z test_Tensor_narrow (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6118898Z test_Tensor_narrow_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6119212Z test_Tensor_ndimension (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6119517Z test_Tensor_ne (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6119808Z test_Tensor_ne_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6120089Z test_Tensor_neg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6120382Z test_Tensor_neg_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6120683Z test_Tensor_negative (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6120982Z test_Tensor_negative_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6121289Z test_Tensor_nelement (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6121594Z test_Tensor_nextafter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6121893Z test_Tensor_nextafter_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6122200Z test_Tensor_nonzero (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6122500Z test_Tensor_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6122797Z test_Tensor_normal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6123089Z test_Tensor_not_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6123398Z test_Tensor_not_equal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6123700Z test_Tensor_numel (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6123986Z test_Tensor_numpy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6124284Z test_Tensor_orgqr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6124579Z test_Tensor_ormqr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6124876Z test_Tensor_outer (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6125165Z test_Tensor_permute (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6125478Z test_Tensor_pin_memory (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6125789Z test_Tensor_pinverse (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6126086Z test_Tensor_polygamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6126396Z test_Tensor_polygamma_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6126704Z test_Tensor_positive (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6127008Z test_Tensor_pow (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6127295Z test_Tensor_pow_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6127590Z test_Tensor_prelu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6127891Z test_Tensor_prod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6128174Z test_Tensor_put (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6128501Z test_Tensor_put_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6128816Z test_Tensor_q_per_channel_axis (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6129258Z test_Tensor_q_per_channel_scales (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6129601Z test_Tensor_q_per_channel_zero_points (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6129922Z test_Tensor_q_scale (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6130233Z test_Tensor_q_zero_point (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6130522Z test_Tensor_qr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6130871Z test_Tensor_qscheme (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6131177Z test_Tensor_quantile (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6131473Z test_Tensor_rad2deg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6131775Z test_Tensor_rad2deg_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6132077Z test_Tensor_random_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6132375Z test_Tensor_ravel (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6132672Z test_Tensor_reciprocal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6132985Z test_Tensor_reciprocal_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6133305Z test_Tensor_record_stream (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6133606Z test_Tensor_refine_names (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6133923Z test_Tensor_register_hook (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6134229Z test_Tensor_relu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6134527Z test_Tensor_relu_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6134818Z test_Tensor_remainder (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6135126Z test_Tensor_remainder_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6135433Z test_Tensor_rename (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6135723Z test_Tensor_rename_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6136024Z test_Tensor_renorm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6136324Z test_Tensor_renorm_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6136624Z test_Tensor_repeat (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6136929Z test_Tensor_repeat_interleave (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6137255Z test_Tensor_requires_grad_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6137570Z test_Tensor_reshape (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6137867Z test_Tensor_reshape_as (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6138172Z test_Tensor_resize (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6138473Z test_Tensor_resize_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6138777Z test_Tensor_resize_as (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6139070Z test_Tensor_resize_as_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6139387Z test_Tensor_resize_as_sparse_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6139706Z test_Tensor_resolve_conj (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6140005Z test_Tensor_resolve_neg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6140362Z test_Tensor_retain_grad (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6140665Z test_Tensor_roll (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6140962Z test_Tensor_rot90 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6141246Z test_Tensor_round (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6141547Z test_Tensor_round_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6141853Z test_Tensor_row_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6142145Z test_Tensor_rsqrt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6142439Z test_Tensor_rsqrt_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6142853Z test_Tensor_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6143151Z test_Tensor_scatter_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6143463Z test_Tensor_scatter_add (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6143777Z test_Tensor_scatter_add_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6144095Z test_Tensor_scatter_reduce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6144405Z test_Tensor_scatter_reduce_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6144715Z test_Tensor_select (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6145024Z test_Tensor_select_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6145318Z test_Tensor_set_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6145611Z test_Tensor_sgn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6145905Z test_Tensor_sgn_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6146212Z test_Tensor_share_memory_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6146509Z test_Tensor_short (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6146809Z test_Tensor_sigmoid (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6147114Z test_Tensor_sigmoid_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6147402Z test_Tensor_sign (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6147700Z test_Tensor_sign_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6147999Z test_Tensor_signbit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6148298Z test_Tensor_sin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6148584Z test_Tensor_sin_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6148880Z test_Tensor_sinc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6149177Z test_Tensor_sinc_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6149464Z test_Tensor_sinh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6149758Z test_Tensor_sinh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6150051Z test_Tensor_size (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6150360Z test_Tensor_slice_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6150661Z test_Tensor_slogdet (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6150960Z test_Tensor_smm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6151259Z test_Tensor_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6151548Z test_Tensor_sort (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6151854Z test_Tensor_sparse_dim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6152198Z test_Tensor_sparse_mask (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6152500Z test_Tensor_sparse_resize_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6152832Z test_Tensor_sparse_resize_and_clear_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6153153Z test_Tensor_split (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6153465Z test_Tensor_split_with_sizes (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6153760Z test_Tensor_sqrt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6154057Z test_Tensor_sqrt_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6154355Z test_Tensor_square (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6154674Z test_Tensor_square_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6154978Z test_Tensor_squeeze (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6155282Z test_Tensor_squeeze_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6155590Z test_Tensor_sspaddmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6155878Z test_Tensor_std (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6156169Z test_Tensor_stft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6156470Z test_Tensor_storage (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6156770Z test_Tensor_storage_offset (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6157087Z test_Tensor_storage_type (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6157392Z test_Tensor_sub (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6157687Z test_Tensor_sub_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6157975Z test_Tensor_subtract (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6158282Z test_Tensor_subtract_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6158582Z test_Tensor_sum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6158873Z test_Tensor_sum_to_size (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6159171Z test_Tensor_svd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6159471Z test_Tensor_swapaxes (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6159780Z test_Tensor_swapaxes_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6160074Z test_Tensor_swapdims (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6160382Z test_Tensor_swapdims_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6160689Z test_Tensor_symeig (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6160972Z test_Tensor_t (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6161268Z test_Tensor_t_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6161562Z test_Tensor_take (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6161857Z test_Tensor_take_along_dim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6162162Z test_Tensor_tan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6162458Z test_Tensor_tan_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6162751Z test_Tensor_tanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6163035Z test_Tensor_tanh_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6163340Z test_Tensor_tensor_split (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6163646Z test_Tensor_tile (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6163926Z test_Tensor_to (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6164256Z test_Tensor_to_dense (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6164560Z test_Tensor_to_mkldnn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6164865Z test_Tensor_to_sparse (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6165152Z test_Tensor_tolist (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6165450Z test_Tensor_topk (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6165748Z test_Tensor_trace (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6166043Z test_Tensor_transpose (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6166398Z test_Tensor_transpose_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6166822Z test_Tensor_triangular_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6167248Z test_Tensor_tril (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6167624Z test_Tensor_tril_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6167945Z test_Tensor_triu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6168299Z test_Tensor_triu_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6168669Z test_Tensor_true_divide (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6169129Z test_Tensor_true_divide_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6169515Z test_Tensor_trunc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6169873Z test_Tensor_trunc_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6170230Z test_Tensor_type (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6170549Z test_Tensor_type_as (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6170963Z test_Tensor_unbind (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6171320Z test_Tensor_unfold (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6171639Z test_Tensor_uniform_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6171999Z test_Tensor_unique (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6172395Z test_Tensor_unique_consecutive (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6172777Z test_Tensor_unsafe_chunk (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6173106Z test_Tensor_unsafe_split (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6173484Z test_Tensor_unsafe_split_with_sizes (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6173874Z test_Tensor_unsqueeze (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6174238Z test_Tensor_unsqueeze_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6174615Z test_Tensor_untyped_storage (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6174983Z test_Tensor_values (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6175347Z test_Tensor_var (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6175660Z test_Tensor_vdot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6176033Z test_Tensor_view (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6176393Z test_Tensor_view_as (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6176712Z test_Tensor_vsplit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6177075Z test_Tensor_where (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6177475Z test_Tensor_xlogy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6177789Z test_Tensor_xlogy_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6178201Z test_Tensor_xpu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6178562Z test_Tensor_zero_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6178928Z test__TensorBase_H___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6179281Z test__TensorBase_T___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6179671Z test__TensorBase__backward_hooks___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6180072Z test__TensorBase__base___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6180413Z test__TensorBase__cdata___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6180858Z test__TensorBase__grad___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6181276Z test__TensorBase__grad_fn___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6195030Z test__TensorBase__version___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6195445Z test__TensorBase_data___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6195787Z test__TensorBase_device___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6196124Z test__TensorBase_dtype___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6196458Z test__TensorBase_grad___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6196777Z test__TensorBase_grad_fn___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6197105Z test__TensorBase_imag___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6197438Z test__TensorBase_is_cpu___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6197757Z test__TensorBase_is_cuda___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6198091Z test__TensorBase_is_ipu___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6198420Z test__TensorBase_is_leaf___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6198746Z test__TensorBase_is_meta___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6199061Z test__TensorBase_is_mkldnn___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6199389Z test__TensorBase_is_mps___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6199719Z test__TensorBase_is_nested___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6200033Z test__TensorBase_is_ort___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6200362Z test__TensorBase_is_quantized___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6200697Z test__TensorBase_is_sparse___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6201033Z test__TensorBase_is_sparse_csr___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6201356Z test__TensorBase_is_vulkan___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6201682Z test__TensorBase_is_xpu___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6202007Z test__TensorBase_layout___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6202330Z test__TensorBase_mH___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6202634Z test__TensorBase_mT___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6202956Z test__TensorBase_name___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6203278Z test__TensorBase_names___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6203677Z test__TensorBase_ndim___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6204007Z test__TensorBase_output_nr___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6204340Z test__TensorBase_real___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6204672Z test__TensorBase_requires_grad___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6204998Z test__TensorBase_retains_grad___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6205332Z test__TensorBase_shape___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6205663Z test__TensorBase_volatile___get__ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6205995Z test_base (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6206284Z test_grad (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6206601Z test_has_torch_function_non_sequence (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6206917Z test_mean_semantics (__main__.TestTorchFunctionOverride) 2023-01-11T21:58:51.6207195Z Test that a function with one argument can be overrided ... ok (0.001s) 2023-01-11T21:58:51.6207480Z test_mm_semantics (__main__.TestTorchFunctionOverride) 2023-01-11T21:58:51.6207775Z Test that a function with multiple arguments can be overrided ... ok (0.002s) 2023-01-11T21:58:51.6208063Z test_pow_rpow (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6208363Z test_precedence_semantics (__main__.TestTorchFunctionOverride) 2023-01-11T21:58:51.6208660Z Test semantics for __torch_function__ for functions that take ... ok (0.002s) 2023-01-11T21:58:51.6208952Z test_tensor_subclass_propagation (__main__.TestTorchFunctionOverride) 2023-01-11T21:58:51.6209448Z this test exercises the functionality described in ... ok (0.001s) 2023-01-11T21:58:51.6209755Z test_torch__C__fft_fft_fft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6210075Z test_torch__C__fft_fft_fft2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6210386Z test_torch__C__fft_fft_fftn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6210709Z test_torch__C__fft_fft_fftshift (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6211029Z test_torch__C__fft_fft_hfft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6211333Z test_torch__C__fft_fft_hfft2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6211650Z test_torch__C__fft_fft_hfftn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6211963Z test_torch__C__fft_fft_ifft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6212281Z test_torch__C__fft_fft_ifft2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6212579Z test_torch__C__fft_fft_ifftn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6212904Z test_torch__C__fft_fft_ifftshift (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6213224Z test_torch__C__fft_fft_ihfft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6213529Z test_torch__C__fft_fft_ihfft2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6213847Z test_torch__C__fft_fft_ihfftn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6214163Z test_torch__C__fft_fft_irfft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6214480Z test_torch__C__fft_fft_irfft2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6214782Z test_torch__C__fft_fft_irfftn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6215098Z test_torch__C__fft_fft_rfft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6215409Z test_torch__C__fft_fft_rfft2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6215776Z test_torch__C__fft_fft_rfftn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6216109Z test_torch__C__linalg_linalg_cholesky (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6216458Z test_torch__C__linalg_linalg_cholesky_ex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6216800Z test_torch__C__linalg_linalg_cond (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6217123Z test_torch__C__linalg_linalg_cross (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6217456Z test_torch__C__linalg_linalg_det (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6217840Z test_torch__C__linalg_linalg_diagonal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6218176Z test_torch__C__linalg_linalg_eig (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6218497Z test_torch__C__linalg_linalg_eigh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6218832Z test_torch__C__linalg_linalg_eigvals (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6219169Z test_torch__C__linalg_linalg_eigvalsh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6219512Z test_torch__C__linalg_linalg_householder_product (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6219862Z test_torch__C__linalg_linalg_inv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6220199Z test_torch__C__linalg_linalg_inv_ex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6220540Z test_torch__C__linalg_linalg_ldl_factor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6220876Z test_torch__C__linalg_linalg_ldl_factor_ex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6221223Z test_torch__C__linalg_linalg_ldl_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6221559Z test_torch__C__linalg_linalg_lstsq (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6221876Z test_torch__C__linalg_linalg_lu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6222207Z test_torch__C__linalg_linalg_lu_factor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6222626Z test_torch__C__linalg_linalg_lu_factor_ex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6222974Z test_torch__C__linalg_linalg_lu_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6223300Z test_torch__C__linalg_linalg_matmul (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6223644Z test_torch__C__linalg_linalg_matrix_exp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6223989Z test_torch__C__linalg_linalg_matrix_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6224342Z test_torch__C__linalg_linalg_matrix_power (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6224673Z test_torch__C__linalg_linalg_matrix_rank (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6225018Z test_torch__C__linalg_linalg_multi_dot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6225355Z test_torch__C__linalg_linalg_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6225673Z test_torch__C__linalg_linalg_pinv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6225999Z test_torch__C__linalg_linalg_qr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6226332Z test_torch__C__linalg_linalg_slogdet (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6226668Z test_torch__C__linalg_linalg_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6226989Z test_torch__C__linalg_linalg_solve_ex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6227373Z test_torch__C__linalg_linalg_solve_triangular (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6227716Z test_torch__C__linalg_linalg_svd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6228036Z test_torch__C__linalg_linalg_svdvals (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6228372Z test_torch__C__linalg_linalg_tensorinv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6228715Z test_torch__C__linalg_linalg_tensorsolve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6229058Z test_torch__C__linalg_linalg_vander (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6229413Z test_torch__C__linalg_linalg_vecdot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6229754Z test_torch__C__linalg_linalg_vector_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6230087Z test_torch__C__nn_avg_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6230407Z test_torch__C__nn_avg_pool3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6230712Z test_torch__C__nn_gelu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6231022Z test_torch__C__nn_linear (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6231339Z test_torch__C__nn_log_sigmoid (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6231643Z test_torch__C__nn_one_hot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6231958Z test_torch__C__nn_softplus (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6232279Z test_torch__C__nn_softshrink (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6232613Z test_torch__C__special_special_airy_ai (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6232947Z test_torch__C__special_special_bessel_j0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6233291Z test_torch__C__special_special_bessel_j1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6233637Z test_torch__C__special_special_bessel_y0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6233964Z test_torch__C__special_special_bessel_y1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6234327Z test_torch__C__special_special_chebyshev_polynomial_t (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6234709Z test_torch__C__special_special_chebyshev_polynomial_u (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6235084Z test_torch__C__special_special_chebyshev_polynomial_v (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6235438Z test_torch__C__special_special_chebyshev_polynomial_w (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6235801Z test_torch__C__special_special_digamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6236139Z test_torch__C__special_special_entr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6236474Z test_torch__C__special_special_erf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6236795Z test_torch__C__special_special_erfc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6237130Z test_torch__C__special_special_erfcx (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6237466Z test_torch__C__special_special_erfinv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6237792Z test_torch__C__special_special_exp2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6238128Z test_torch__C__special_special_expit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6238503Z test_torch__C__special_special_expm1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6238844Z test_torch__C__special_special_gammainc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6239178Z test_torch__C__special_special_gammaincc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6239525Z test_torch__C__special_special_gammaln (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6239887Z test_torch__C__special_special_hermite_polynomial_h (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6240260Z test_torch__C__special_special_hermite_polynomial_he (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6240602Z test_torch__C__special_special_i0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6240969Z test_torch__C__special_special_i0e (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6241305Z test_torch__C__special_special_i1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6241621Z test_torch__C__special_special_i1e (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6241978Z test_torch__C__special_special_laguerre_polynomial_l (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6242357Z test_torch__C__special_special_legendre_polynomial_p (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6242711Z test_torch__C__special_special_log1p (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6243041Z test_torch__C__special_special_log_ndtr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6243390Z test_torch__C__special_special_log_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6243733Z test_torch__C__special_special_logit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6244068Z test_torch__C__special_special_logsumexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6244434Z test_torch__C__special_special_modified_bessel_i0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6244805Z test_torch__C__special_special_modified_bessel_i1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6245168Z test_torch__C__special_special_modified_bessel_k0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6245522Z test_torch__C__special_special_modified_bessel_k1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6245879Z test_torch__C__special_special_multigammaln (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6246229Z test_torch__C__special_special_ndtr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6246566Z test_torch__C__special_special_ndtri (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6246900Z test_torch__C__special_special_polygamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6247241Z test_torch__C__special_special_psi (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6247576Z test_torch__C__special_special_round (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6247925Z test_torch__C__special_special_scaled_modified_bessel_k0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6248307Z test_torch__C__special_special_scaled_modified_bessel_k1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6248694Z test_torch__C__special_special_shifted_chebyshev_polynomial_t (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6249244Z test_torch__C__special_special_shifted_chebyshev_polynomial_u (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6249632Z test_torch__C__special_special_shifted_chebyshev_polynomial_v (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6250073Z test_torch__C__special_special_shifted_chebyshev_polynomial_w (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6250440Z test_torch__C__special_special_sinc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6250786Z test_torch__C__special_special_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6251134Z test_torch__C__special_special_spherical_bessel_j0 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6251494Z test_torch__C__special_special_xlog1py (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6251839Z test_torch__C__special_special_xlogy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6252237Z test_torch__C__special_special_zeta (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6252553Z test_torch__assert_async (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6252872Z test_torch__conj_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6253195Z test_torch__fw_primal_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6253502Z test_torch__indices_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6253826Z test_torch__lobpcg_lobpcg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6254157Z test_torch__lowrank_pca_lowrank (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6254495Z test_torch__lowrank_svd_lowrank (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6254811Z test_torch__make_dual_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6255142Z test_torch__native_batch_norm_legit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6255474Z test_torch__neg_view_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6255788Z test_torch__reshape_alias_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6256113Z test_torch__rowwise_prune (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6256446Z test_torch__sparse_broadcast_to_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6256778Z test_torch__values_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6257070Z test_torch_abs (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6257373Z test_torch_absolute (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6257680Z test_torch_acos (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6257967Z test_torch_acosh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6258291Z test_torch_adaptive_avg_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6258624Z test_torch_adaptive_max_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6258939Z test_torch_add (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6259229Z test_torch_addbmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6259534Z test_torch_addcdiv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6259840Z test_torch_addcmul (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6260132Z test_torch_addmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6260436Z test_torch_addmv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6260739Z test_torch_addr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6261028Z test_torch_adjoint (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6261351Z test_torch_affine_grid_generator (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6261679Z test_torch_alias_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6262014Z test_torch_all (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6262302Z test_torch_allclose (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6262679Z test_torch_alpha_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6262989Z test_torch_amax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6263273Z test_torch_amin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6263575Z test_torch_aminmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6263878Z test_torch_angle (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6264177Z test_torch_any (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6264498Z test_torch_arccos (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6264803Z test_torch_arccosh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6265113Z test_torch_arcsin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6265404Z test_torch_arcsinh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6265708Z test_torch_arctan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6266011Z test_torch_arctan2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6266311Z test_torch_arctanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6266598Z test_torch_argmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6266900Z test_torch_argmin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6267204Z test_torch_argsort (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6267499Z test_torch_argwhere (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6267815Z test_torch_as_strided_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6268143Z test_torch_as_strided_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6268456Z test_torch_asin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6268741Z test_torch_asinh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6269038Z test_torch_atan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6269337Z test_torch_atan2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6269620Z test_torch_atanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6269922Z test_torch_avg_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6270234Z test_torch_baddbmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6270527Z test_torch_batch_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6270853Z test_torch_batch_norm_backward_elemt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6271194Z test_torch_batch_norm_backward_reduce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6271524Z test_torch_batch_norm_elemt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6271840Z test_torch_batch_norm_gather_stats (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6272188Z test_torch_batch_norm_gather_stats_with_counts (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6272525Z test_torch_batch_norm_stats (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6272855Z test_torch_batch_norm_update_stats (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6273164Z test_torch_bernoulli (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6273472Z test_torch_bilinear (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6273842Z test_torch_binary_cross_entropy_with_logits (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6274158Z test_torch_bincount (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6274464Z test_torch_binomial (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6274772Z test_torch_bitwise_and (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6275080Z test_torch_bitwise_left_shift (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6275397Z test_torch_bitwise_not (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6275706Z test_torch_bitwise_or (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6276027Z test_torch_bitwise_right_shift (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6276365Z test_torch_bitwise_xor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6276666Z test_torch_bmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6276973Z test_torch_broadcast_to (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6277273Z test_torch_bucketize (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6277574Z test_torch_cat (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6277883Z test_torch_ccol_indices_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6278194Z test_torch_ceil (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6278476Z test_torch_celu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6278786Z test_torch_channel_shuffle (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6279100Z test_torch_cholesky (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6279401Z test_torch_cholesky_inverse (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6279724Z test_torch_cholesky_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6280055Z test_torch_choose_qparams_optimized (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6280375Z test_torch_chunk (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6280659Z test_torch_clamp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6280963Z test_torch_clamp_max (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6281267Z test_torch_clamp_min (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6281554Z test_torch_clip (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6281854Z test_torch_clone (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6282169Z test_torch_col_indices_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6282487Z test_torch_column_stack (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6282789Z test_torch_combinations (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6283094Z test_torch_complex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6283397Z test_torch_concat (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6283694Z test_torch_concatenate (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6283997Z test_torch_conj (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6284306Z test_torch_conj_physical (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6284626Z test_torch_constant_pad_nd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6284926Z test_torch_conv1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6285228Z test_torch_conv2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6285530Z test_torch_conv3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6285861Z test_torch_conv_tbc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6286176Z test_torch_conv_transpose1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6286498Z test_torch_conv_transpose2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6286818Z test_torch_conv_transpose3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6287121Z test_torch_convolution (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6287432Z test_torch_copysign (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6287741Z test_torch_corrcoef (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6288059Z test_torch_cos (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6288356Z test_torch_cosh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6288673Z test_torch_cosine_embedding_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6289007Z test_torch_cosine_similarity (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6289409Z test_torch_count_nonzero (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6289716Z test_torch_cov (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6290013Z test_torch_cross (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6290316Z test_torch_crow_indices_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6290634Z test_torch_ctc_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6290937Z test_torch_cummax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6291230Z test_torch_cummin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6291536Z test_torch_cumprod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6291844Z test_torch_cumsum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6292163Z test_torch_cumulative_trapezoid (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6292471Z test_torch_deg2rad (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6292779Z test_torch_dequantize (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6293083Z test_torch_det (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6293368Z test_torch_detach (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6293678Z test_torch_detach_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6293982Z test_torch_diag (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6294287Z test_torch_diag_embed (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6294585Z test_torch_diagflat (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6294893Z test_torch_diagonal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6295205Z test_torch_diagonal_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6295518Z test_torch_diagonal_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6295829Z test_torch_diff (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6296129Z test_torch_digamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6296430Z test_torch_dist (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6296709Z test_torch_div (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6297007Z test_torch_divide (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6297307Z test_torch_dot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6297594Z test_torch_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6297949Z test_torch_dsmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6298252Z test_torch_dsplit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6298546Z test_torch_dstack (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6298858Z test_torch_embedding (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6299177Z test_torch_embedding_bag (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6299495Z test_torch_empty_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6299784Z test_torch_eq (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6300085Z test_torch_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6300420Z test_torch_erf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6300704Z test_torch_erfc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6301004Z test_torch_erfinv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6301302Z test_torch_exp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6301602Z test_torch_exp2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6301897Z test_torch_expand_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6302208Z test_torch_expm1 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6302607Z test_torch_fake_quantize_per_channel_affine (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6302959Z test_torch_fake_quantize_per_tensor_affine (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6303315Z test_torch_fbgemm_linear_fp16_weight (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6303680Z test_torch_fbgemm_linear_fp16_weight_fp32_activation (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6304039Z test_torch_fbgemm_linear_int8_weight (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6304383Z test_torch_fbgemm_linear_int8_weight_fp32_activation (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6304746Z test_torch_fbgemm_linear_quantize_weight (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6305097Z test_torch_fbgemm_pack_gemm_matrix_fp16 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6305450Z test_torch_fbgemm_pack_quantized_matrix (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6305783Z test_torch_feature_alpha_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6306116Z test_torch_feature_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6306427Z test_torch_fix (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6306717Z test_torch_flatten (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6307018Z test_torch_flip (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6307322Z test_torch_fliplr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6307627Z test_torch_flipud (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6307921Z test_torch_float_power (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6308226Z test_torch_floor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6308537Z test_torch_floor_divide (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6308830Z test_torch_fmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6309122Z test_torch_fmin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6309416Z test_torch_fmod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6309735Z test_torch_frac (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6310033Z test_torch_frexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6310344Z test_torch_frobenius_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6310487Z test_torch_full_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6310645Z test_torch_functional_atleast_1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6310801Z test_torch_functional_atleast_2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6310943Z test_torch_functional_atleast_3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6311100Z test_torch_functional_block_diag (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6311297Z test_torch_functional_broadcast_tensors (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6311461Z test_torch_functional_cartesian_prod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6311618Z test_torch_functional_cdist (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6311777Z test_torch_functional_chain_matmul (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6311930Z test_torch_functional_einsum (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6312078Z test_torch_functional_lu (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6312222Z test_torch_functional_meshgrid (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6312372Z test_torch_functional_norm (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6312525Z test_torch_functional_split (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6312679Z test_torch_functional_stft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6312836Z test_torch_functional_tensordot (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6312992Z test_torch_functional_unique (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6313159Z test_torch_functional_unique_consecutive (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6313326Z test_torch_fused_moving_avg_obs_fake_quant (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6313455Z test_torch_gather (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6313593Z test_torch_gcd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6313727Z test_torch_ge (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6313864Z test_torch_geqrf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6314000Z test_torch_ger (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6314142Z test_torch_gradient (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6314286Z test_torch_greater (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6314432Z test_torch_greater_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6314568Z test_torch_grid_sampler (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6314717Z test_torch_grid_sampler_2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6314864Z test_torch_grid_sampler_3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315009Z test_torch_group_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315142Z test_torch_gru (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315284Z test_torch_gru_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315423Z test_torch_gt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315567Z test_torch_hardshrink (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315758Z test_torch_heaviside (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6315914Z test_torch_hinge_embedding_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6316053Z test_torch_histc (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6316197Z test_torch_histogram (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6316347Z test_torch_histogramdd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6316486Z test_torch_hsmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6316628Z test_torch_hsplit (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6316798Z test_torch_hstack (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6316925Z test_torch_hypot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6317063Z test_torch_i0 (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6317206Z test_torch_igamma (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6317348Z test_torch_igammac (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6317486Z test_torch_imag (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6317632Z test_torch_index_add (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6317779Z test_torch_index_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6317924Z test_torch_index_fill (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318052Z test_torch_index_put (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318200Z test_torch_index_reduce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318346Z test_torch_index_select (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318493Z test_torch_indices_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318630Z test_torch_inner (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318776Z test_torch_instance_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6318916Z test_torch_int_repr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6319055Z test_torch_inverse (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6319186Z test_torch_is_complex (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6319323Z test_torch_is_conj (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6319472Z test_torch_is_distributed (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6319626Z test_torch_is_floating_point (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6319769Z test_torch_is_inference (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6319908Z test_torch_is_neg (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6320051Z test_torch_is_nonzero (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6320193Z test_torch_is_same_size (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6320321Z test_torch_is_signed (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6320461Z test_torch_isclose (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6320602Z test_torch_isfinite (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6320737Z test_torch_isin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6320874Z test_torch_isinf (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6321014Z test_torch_isnan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6321155Z test_torch_isneginf (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6321328Z test_torch_isposinf (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6321459Z test_torch_isreal (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6321595Z test_torch_istft (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6321731Z test_torch_kl_div (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6321867Z test_torch_kron (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6322006Z test_torch_kthvalue (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6322149Z test_torch_layer_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6322285Z test_torch_lcm (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6322464Z test_torch_ldexp (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6322588Z test_torch_le (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6322727Z test_torch_lerp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6322863Z test_torch_less (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6323004Z test_torch_less_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6323143Z test_torch_lgamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6323277Z test_torch_log (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6323411Z test_torch_log10 (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6323546Z test_torch_log1p (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6323669Z test_torch_log2 (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6323816Z test_torch_log_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6323961Z test_torch_logaddexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6324111Z test_torch_logaddexp2 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6324258Z test_torch_logcumsumexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6324398Z test_torch_logdet (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6324543Z test_torch_logical_and (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6324686Z test_torch_logical_not (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6324816Z test_torch_logical_or (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6324957Z test_torch_logical_xor (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6325094Z test_torch_logit (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6325238Z test_torch_logsumexp (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6325373Z test_torch_lstm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6325515Z test_torch_lstm_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6325650Z test_torch_lt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6325789Z test_torch_lu_solve (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6325918Z test_torch_lu_unpack (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6326072Z test_torch_margin_ranking_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6326215Z test_torch_masked_fill (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6326363Z test_torch_masked_scatter (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6326511Z test_torch_masked_select (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6326650Z test_torch_matmul (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6326822Z test_torch_matrix_exp (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6326968Z test_torch_matrix_power (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6327091Z test_torch_max (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6327235Z test_torch_max_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6327393Z test_torch_max_pool1d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6327535Z test_torch_max_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6327675Z test_torch_max_pool3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6327815Z test_torch_maximum (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6327982Z test_torch_mean (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6328122Z test_torch_median (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6328248Z test_torch_min (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6328385Z test_torch_minimum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6328535Z test_torch_miopen_batch_norm (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6328690Z test_torch_miopen_convolution (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6328860Z test_torch_miopen_convolution_add_relu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6329112Z test_torch_miopen_convolution_relu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6329284Z test_torch_miopen_convolution_transpose (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6329458Z test_torch_miopen_depthwise_convolution (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6329591Z test_torch_miopen_rnn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6329731Z test_torch_mode (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6329875Z test_torch_moveaxis (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330016Z test_torch_movedim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330158Z test_torch_msort (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330294Z test_torch_mul (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330441Z test_torch_multinomial (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330584Z test_torch_multiply (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330707Z test_torch_mv (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330852Z test_torch_mvlgamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6330993Z test_torch_nan_to_num (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331135Z test_torch_nanmean (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331280Z test_torch_nanmedian (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331426Z test_torch_nanquantile (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331571Z test_torch_nansum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331712Z test_torch_narrow (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331845Z test_torch_narrow_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6331999Z test_torch_native_batch_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6332158Z test_torch_native_channel_shuffle (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6332310Z test_torch_native_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6332464Z test_torch_native_group_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6332667Z test_torch_native_layer_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6332810Z test_torch_native_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6332945Z test_torch_ne (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6333067Z test_torch_neg (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6333211Z test_torch_negative (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6333354Z test_torch_nextafter (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6333515Z test_torch_nn_functional__threshold (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6333729Z test_torch_nn_functional_adaptive_avg_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6333909Z test_torch_nn_functional_adaptive_avg_pool3d (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6334082Z test_torch_nn_functional_adaptive_max_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6334272Z test_torch_nn_functional_adaptive_max_pool1d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6334443Z test_torch_nn_functional_adaptive_max_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6334620Z test_torch_nn_functional_adaptive_max_pool2d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6334790Z test_torch_nn_functional_adaptive_max_pool3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6334976Z test_torch_nn_functional_adaptive_max_pool3d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6335139Z test_torch_nn_functional_affine_grid (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6335303Z test_torch_nn_functional_alpha_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6335464Z test_torch_nn_functional_batch_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6335635Z test_torch_nn_functional_binary_cross_entropy (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6335816Z test_torch_nn_functional_binary_cross_entropy_with_logits (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6335968Z test_torch_nn_functional_celu (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6336130Z test_torch_nn_functional_cosine_embedding_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6336293Z test_torch_nn_functional_cross_entropy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6336449Z test_torch_nn_functional_ctc_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6336606Z test_torch_nn_functional_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6336768Z test_torch_nn_functional_dropout1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6336925Z test_torch_nn_functional_dropout2d (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6337079Z test_torch_nn_functional_dropout3d (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6337233Z test_torch_nn_functional_elu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6337378Z test_torch_nn_functional_embedding (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6337541Z test_torch_nn_functional_embedding_bag (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6337716Z test_torch_nn_functional_feature_alpha_dropout (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6337870Z test_torch_nn_functional_fold (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6338073Z test_torch_nn_functional_fractional_max_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6338260Z test_torch_nn_functional_fractional_max_pool2d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6338430Z test_torch_nn_functional_fractional_max_pool3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6338613Z test_torch_nn_functional_fractional_max_pool3d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6338782Z test_torch_nn_functional_gaussian_nll_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6338921Z test_torch_nn_functional_glu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6339112Z test_torch_nn_functional_grid_sample (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6339272Z test_torch_nn_functional_group_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6339437Z test_torch_nn_functional_gumbel_softmax (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6339596Z test_torch_nn_functional_hardtanh (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6339769Z test_torch_nn_functional_hinge_embedding_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6339927Z test_torch_nn_functional_huber_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6340089Z test_torch_nn_functional_instance_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6340240Z test_torch_nn_functional_interpolate (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6340394Z test_torch_nn_functional_kl_div (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6340556Z test_torch_nn_functional_l1_loss (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6340715Z test_torch_nn_functional_layer_norm (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6340877Z test_torch_nn_functional_leaky_relu (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6341047Z test_torch_nn_functional_local_response_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6341207Z test_torch_nn_functional_log_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6341363Z test_torch_nn_functional_lp_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6341521Z test_torch_nn_functional_lp_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6341677Z test_torch_nn_functional_margin_ranking_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6341837Z test_torch_nn_functional_max_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6342009Z test_torch_nn_functional_max_pool1d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6342169Z test_torch_nn_functional_max_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6342344Z test_torch_nn_functional_max_pool2d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6342573Z test_torch_nn_functional_max_pool3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6342751Z test_torch_nn_functional_max_pool3d_with_indices (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6342914Z test_torch_nn_functional_max_unpool1d (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6343078Z test_torch_nn_functional_max_unpool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6343226Z test_torch_nn_functional_max_unpool3d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6343381Z test_torch_nn_functional_mish (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6343579Z test_torch_nn_functional_mse_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6343758Z test_torch_nn_functional_multi_head_attention_forward (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6343927Z test_torch_nn_functional_multi_margin_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6344103Z test_torch_nn_functional_multilabel_margin_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6344285Z test_torch_nn_functional_multilabel_soft_margin_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6344441Z test_torch_nn_functional_nll_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6344587Z test_torch_nn_functional_normalize (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6344772Z test_torch_nn_functional_pad (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6344942Z test_torch_nn_functional_poisson_nll_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6345097Z test_torch_nn_functional_relu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6345256Z test_torch_nn_functional_relu6 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6345411Z test_torch_nn_functional_rrelu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6345565Z test_torch_nn_functional_selu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6345714Z test_torch_nn_functional_silu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6345879Z test_torch_nn_functional_smooth_l1_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6346035Z test_torch_nn_functional_soft_margin_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6346193Z test_torch_nn_functional_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6346353Z test_torch_nn_functional_softmin (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6346513Z test_torch_nn_functional_softsign (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6346673Z test_torch_nn_functional_tanhshrink (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6346845Z test_torch_nn_functional_triplet_margin_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6347031Z test_torch_nn_functional_triplet_margin_with_distance_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6347190Z test_torch_nn_functional_unfold (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6347329Z test_torch_nn_init_constant_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6347488Z test_torch_nn_init_kaiming_uniform_ (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6347637Z test_torch_nn_init_normal_ (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6347789Z test_torch_nn_init_uniform_ (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6347932Z test_torch_nonzero (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6348082Z test_torch_norm_except_dim (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6348227Z test_torch_not_equal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6348376Z test_torch_nuclear_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6348502Z test_torch_numel (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6348642Z test_torch_ones_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6348781Z test_torch_orgqr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6348919Z test_torch_ormqr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349091Z test_torch_outer (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349245Z test_torch_pairwise_distance (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349385Z test_torch_pdist (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349527Z test_torch_permute (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349663Z test_torch_permute_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349807Z test_torch_pinverse (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6349956Z test_torch_pixel_shuffle (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6350107Z test_torch_pixel_unshuffle (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6350278Z test_torch_poisson (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6350433Z test_torch_poisson_nll_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6350574Z test_torch_polar (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6350719Z test_torch_polygamma (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6350849Z test_torch_positive (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6350985Z test_torch_pow (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6351122Z test_torch_prelu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6351260Z test_torch_prod (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6351396Z test_torch_put (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6351551Z test_torch_q_per_channel_axis (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6351709Z test_torch_q_per_channel_scales (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6351869Z test_torch_q_per_channel_zero_points (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6351998Z test_torch_q_scale (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6352144Z test_torch_q_zero_point (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6352283Z test_torch_qr (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6352423Z test_torch_quantile (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6352578Z test_torch_quantize_per_channel (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6352733Z test_torch_quantize_per_tensor (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6352894Z test_torch_quantize_per_tensor_dynamic (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353053Z test_torch_quantized_batch_norm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353208Z test_torch_quantized_gru_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353350Z test_torch_quantized_lstm_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353504Z test_torch_quantized_max_pool1d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353658Z test_torch_quantized_max_pool2d (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353817Z test_torch_quantized_rnn_relu_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6353973Z test_torch_quantized_rnn_tanh_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354114Z test_torch_rad2deg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354257Z test_torch_rand_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354406Z test_torch_randint_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354538Z test_torch_randn_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354705Z test_torch_ravel (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354844Z test_torch_real (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6354994Z test_torch_reciprocal (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6355129Z test_torch_relu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6355273Z test_torch_remainder (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6355413Z test_torch_renorm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6355566Z test_torch_repeat_interleave (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6355695Z test_torch_reshape (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6355872Z test_torch_resolve_conj (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356020Z test_torch_resolve_neg (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356162Z test_torch_rnn_relu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356308Z test_torch_rnn_relu_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356445Z test_torch_rnn_tanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356588Z test_torch_rnn_tanh_cell (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356725Z test_torch_roll (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356849Z test_torch_rot90 (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6356985Z test_torch_round (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357136Z test_torch_row_indices_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357279Z test_torch_row_stack (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357414Z test_torch_rrelu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357549Z test_torch_rsqrt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357687Z test_torch_rsub (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357828Z test_torch_saddmm (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6357955Z test_torch_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358100Z test_torch_scatter_add (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358249Z test_torch_scatter_reduce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358401Z test_torch_searchsorted (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358554Z test_torch_segment_reduce (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358694Z test_torch_select (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358841Z test_torch_select_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6358994Z test_torch_select_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6359119Z test_torch_selu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6359255Z test_torch_sgn (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6359395Z test_torch_sigmoid (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6359530Z test_torch_sign (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6359672Z test_torch_signbit (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6359808Z test_torch_sin (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6359946Z test_torch_sinc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6360079Z test_torch_sinh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6360246Z test_torch_slice_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6360391Z test_torch_slice_scatter (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6360533Z test_torch_slogdet (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6360667Z test_torch_smm (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6360804Z test_torch_softmax (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6360942Z test_torch_sort (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361087Z test_torch_split_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361236Z test_torch_split_with_sizes (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361420Z test_torch_split_with_sizes_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361559Z test_torch_sqrt (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361700Z test_torch_square (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361836Z test_torch_squeeze (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6361981Z test_torch_squeeze_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362119Z test_torch_stack (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362254Z test_torch_std (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362395Z test_torch_std_mean (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362516Z test_torch_sub (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362658Z test_torch_subtract (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362795Z test_torch_sum (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6362929Z test_torch_svd (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6363073Z test_torch_swapaxes (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6363214Z test_torch_swapdims (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6363351Z test_torch_symeig (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6363484Z test_torch_t (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6363613Z test_torch_t_copy (__main__.TestTorchFunctionOverride) ... ok (0.000s) 2023-01-11T21:58:51.6363749Z test_torch_take (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6363900Z test_torch_take_along_dim (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364034Z test_torch_tan (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364173Z test_torch_tanh (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364320Z test_torch_tensor_split (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364470Z test_torch_threshold (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364607Z test_torch_tile (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364729Z test_torch_topk (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6364868Z test_torch_trace (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365010Z test_torch_transpose (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365159Z test_torch_transpose_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365302Z test_torch_trapezoid (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365438Z test_torch_trapz (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365594Z test_torch_triangular_solve (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365728Z test_torch_tril (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6365906Z test_torch_triplet_margin_loss (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366043Z test_torch_triu (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366187Z test_torch_true_divide (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366323Z test_torch_trunc (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366462Z test_torch_unbind (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366607Z test_torch_unbind_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366749Z test_torch_unflatten (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6366892Z test_torch_unfold_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367062Z test_torch_unsafe_chunk (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367211Z test_torch_unsafe_split (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367369Z test_torch_unsafe_split_with_sizes (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367511Z test_torch_unsqueeze (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367660Z test_torch_unsqueeze_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367804Z test_torch_values_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6367941Z test_torch_var (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368081Z test_torch_var_mean (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368204Z test_torch_vdot (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368359Z test_torch_view_as_complex (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368513Z test_torch_view_as_complex_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368659Z test_torch_view_as_real (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368810Z test_torch_view_as_real_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6368950Z test_torch_view_copy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6369184Z test_torch_vsplit (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6369324Z test_torch_vstack (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6369449Z test_torch_where (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6369586Z test_torch_xlogy (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6369735Z test_torch_zeros_like (__main__.TestTorchFunctionOverride) ... ok (0.001s) 2023-01-11T21:58:51.6369886Z test_user_implementation_raises (__main__.TestTorchFunctionOverride) 2023-01-11T21:58:51.6370045Z Test that errors raised in user implementations propagate correctly ... ok (0.001s) 2023-01-11T21:58:51.6370208Z test_warn_on_invalid_torch_function (__main__.TestTorchFunctionWarning) ... ok (0.009s) 2023-01-11T21:58:51.6370349Z test_wrap_torch_function (__main__.TestWrapTorchFunction) ... ok (0.001s) 2023-01-11T21:58:51.6370357Z 2023-01-11T21:58:51.6370653Z ---------------------------------------------------------------------- 2023-01-11T21:58:51.6370719Z Ran 1416 tests in 1.160s 2023-01-11T21:58:51.6370723Z 2023-01-11T21:58:51.6370785Z OK 2023-01-11T21:58:51.6370790Z 2023-01-11T21:58:51.6370877Z Generating XML reports... 2023-01-11T21:58:51.6371219Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestBroadcastAllOverride-20230111215849.xml 2023-01-11T21:58:51.6371540Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestDisabledTorchFunction-20230111215849.xml 2023-01-11T21:58:51.6371831Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestEinsumOverride-20230111215849.xml 2023-01-11T21:58:51.6372192Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestGradCheckOverride-20230111215849.xml 2023-01-11T21:58:51.6372502Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestGradNewOnesOverride-20230111215849.xml 2023-01-11T21:58:51.6372775Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestIndexing-20230111215849.xml 2023-01-11T21:58:51.6373033Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestIterator-20230111215849.xml 2023-01-11T21:58:51.6373311Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestNamedTuple-20230111215849.xml 2023-01-11T21:58:51.6373576Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestPickle-20230111215849.xml 2023-01-11T21:58:51.6373865Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestRNN-20230111215849.xml 2023-01-11T21:58:51.6374142Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestResolveName-20230111215849.xml 2023-01-11T21:58:51.6374443Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestTorchFunctionMode-20230111215849.xml 2023-01-11T21:58:51.6374751Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestTorchFunctionOverride-20230111215849.xml 2023-01-11T21:58:51.6375056Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestTorchFunctionWarning-20230111215849.xml 2023-01-11T21:58:51.6375354Z Generated XML report: test-reports/python-unittest/test_overrides/TEST-TestWrapTorchFunction-20230111215849.xml 2023-01-11T21:58:51.6375360Z 2023-01-11T21:58:51.6375774Z ##[endgroup] 2023-01-11T21:58:51.6376054Z FINISHED PRINTING LOG FILE of test_overrides (/var/lib/jenkins/workspace/test/test-reports/test_overrides_srimhfgs) 2023-01-11T21:58:51.6376059Z 2023-01-11T21:58:51.6376224Z Running test_sparse_csr ... [2023-01-11 21:58:51.595423] 2023-01-11T21:58:51.6376559Z Executing ['/opt/conda/bin/python', '-bb', 'test_sparse_csr.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:51.595729] 2023-01-11T21:58:54.4917922Z 2023-01-11T21:58:54.4918509Z Expand the folded group to see the log file of test_sparse_csr 2023-01-11T21:58:54.4920765Z ##[group]PRINTING LOG FILE of test_sparse_csr (/var/lib/jenkins/workspace/test/test-reports/test_sparse_csr_a9xhvaav) 2023-01-11T21:58:54.4921189Z 2023-01-11T21:58:54.4921328Z Running tests... 2023-01-11T21:58:54.4921950Z ---------------------------------------------------------------------- 2023-01-11T21:58:54.4922372Z Test results will be stored in test-reports/python-unittest/test_sparse_csr 2023-01-11T21:58:54.4922727Z test_make_crow_indices (__main__.TestSparseCSRSampler) ... ok (0.385s) 2023-01-11T21:58:54.4922898Z 2023-01-11T21:58:54.4923111Z ---------------------------------------------------------------------- 2023-01-11T21:58:54.4923352Z Ran 1 test in 0.385s 2023-01-11T21:58:54.4923463Z 2023-01-11T21:58:54.4923526Z OK 2023-01-11T21:58:54.4923610Z 2023-01-11T21:58:54.4923693Z Generating XML reports... 2023-01-11T21:58:54.4924127Z Generated XML report: test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCSRSampler-20230111215853.xml 2023-01-11T21:58:54.4924369Z 2023-01-11T21:58:54.4924593Z ##[endgroup] 2023-01-11T21:58:54.4924959Z FINISHED PRINTING LOG FILE of test_sparse_csr (/var/lib/jenkins/workspace/test/test-reports/test_sparse_csr_a9xhvaav) 2023-01-11T21:58:54.4925168Z 2023-01-11T21:58:54.4925321Z Running test_torch ... [2023-01-11 21:58:54.491946] 2023-01-11T21:58:54.4925959Z Executing ['/opt/conda/bin/python', '-bb', 'test_torch.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:54.492189] 2023-01-11T21:58:58.2341821Z 2023-01-11T21:58:58.2348353Z Expand the folded group to see the log file of test_torch 2023-01-11T21:58:58.2358936Z ##[group]PRINTING LOG FILE of test_torch (/var/lib/jenkins/workspace/test/test-reports/test_torch_h_p19gpb) 2023-01-11T21:58:58.2359283Z 2023-01-11T21:58:58.2359537Z Running tests... 2023-01-11T21:58:58.2360179Z ---------------------------------------------------------------------- 2023-01-11T21:58:58.2360556Z Test results will be stored in test-reports/python-unittest/test_torch 2023-01-11T21:58:58.2360858Z test_basic_vitals (__main__.TestBasicVitalSigns) ... ok (0.001s) 2023-01-11T21:58:58.2361143Z test_basic_vitals_read_write (__main__.TestBasicVitalSigns) ... ok (0.001s) 2023-01-11T21:58:58.2361447Z test_dataloader_vitals (__main__.TestBasicVitalSigns) ... ok (0.001s) 2023-01-11T21:58:58.2361716Z test_RNGState (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2361971Z test_RNGStateAliasing (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2362219Z test_RNG_after_pickle (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2362456Z test_Size (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2362750Z test_Size_iter (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2362980Z test_Size_scalar (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2363229Z test_add_meta_scalar (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2363493Z test_allow_tensor_metadata_change (__main__.TestTorch) ... ok (0.000s) 2023-01-11T21:58:58.2363738Z test_apply (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2363980Z test_as_subclass (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2364225Z test_assert_async (__main__.TestTorch) ... ok (0.018s) 2023-01-11T21:58:58.2364489Z test_backward_hooks_traverse (__main__.TestTorch) ... ok (0.054s) 2023-01-11T21:58:58.2364751Z test_batch_norm_cpu_inference (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:58:58.2365507Z test_bmm_multithreaded (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [1, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2366194Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2366855Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [1, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2367479Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2368135Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [1, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2368754Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2369950Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 23, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2371010Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2372103Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2373223Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2374598Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2375707Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2376844Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [1, 23, 12], which does not match the required output shape [0, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2377937Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2379108Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [10, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2380170Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2381285Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [10, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2382309Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2383565Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [10, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2384682Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2385867Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 23, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2387140Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2388361Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 23, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2389509Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2390825Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 0, 12]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2391968Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2393193Z /var/lib/jenkins/workspace/test/test_torch.py:8590: UserWarning: An output with one or more elements was resized since it had shape [10, 23, 12], which does not match the required output shape [0, 0, 0]. This behavior is deprecated, and in a future PyTorch release outputs will not be resized unless they have zero elements. You can explicitly reuse an out tensor t by resizing it, inplace, to zero elements with t.resize_(0). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Resize.cpp:33.) 2023-01-11T21:58:58.2394275Z torch.bmm(b1, b2, out=res2) 2023-01-11T21:58:58.2394575Z ok (0.764s) 2023-01-11T21:58:58.2394952Z test_boxMullerState (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2395482Z test_c10_layer_norm (__main__.TestTorch) ... skip: Pytorch is compiled without Caffe2 (0.001s) 2023-01-11T21:58:58.2395967Z test_cat_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2396393Z test_chunk_neg_dim (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:58:58.2396831Z test_conj_neg_tolist (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2397258Z test_contains (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2397697Z test_copy_broadcast (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:58:58.2398142Z test_copy_dtypes (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2398556Z test_copy_float16 (__main__.TestTorch) ... ok (0.088s) 2023-01-11T21:58:58.2398982Z test_copy_many_to_one (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:58:58.2400278Z test_copy_transpose (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:7754: UserWarning: ComplexHalf support is experimental and many operators don't support it yet. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/EmptyTensor.cpp:32.) 2023-01-11T21:58:58.2401165Z x = torch.arange(100 * 100).reshape(100, 100).to(dtype=torch.complex32).t() 2023-01-11T21:58:58.2401547Z ok (0.003s) 2023-01-11T21:58:58.2402167Z test_cuda_not_built (__main__.TestTorch) ... skip: CUDA is built, can't test CUDA not built error (0.001s) 2023-01-11T21:58:58.2402654Z test_cummax_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2403092Z test_cummin_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2403518Z test_cumprod_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2403956Z test_cumsum_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2404381Z test_cxx_flags (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2405822Z test_dead_weak_ref (__main__.TestTorch) ... [W python_variable.cpp:319] Warning: Deallocating Tensor that still has live PyObject references. This probably happened because you took out a weak reference to Tensor and didn't call _fix_weakref() after dereferencing it. Subsequent accesses to this tensor via the PyObject will now fail. (function decref) 2023-01-11T21:58:58.2406834Z ok (0.004s) 2023-01-11T21:58:58.2407228Z test_deepcopy_gradient (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2407681Z test_deepcopy_parameter (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2408121Z test_deterministic_flag (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2408545Z test_device (__main__.TestTorch) ... ok (0.018s) 2023-01-11T21:58:58.2408953Z test_dir (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2409523Z test_doc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2409901Z test_doc_template (__main__.TestTorch) 2023-01-11T21:58:58.2410525Z Test that all public API doc strings use the same standard template for ... ok (0.019s) 2023-01-11T21:58:58.2411018Z test_dot_data_use (__main__.TestTorch) ... ok (0.012s) 2023-01-11T21:58:58.2411473Z test_dtype_is_signed (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2412477Z test_element_size (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:5939: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2413473Z byte = torch.ByteStorage().element_size() 2023-01-11T21:58:58.2414490Z /var/lib/jenkins/workspace/test/test_torch.py:5940: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2415369Z char = torch.CharStorage().element_size() 2023-01-11T21:58:58.2416376Z /var/lib/jenkins/workspace/test/test_torch.py:5941: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2417299Z short = torch.ShortStorage().element_size() 2023-01-11T21:58:58.2418275Z /var/lib/jenkins/workspace/test/test_torch.py:5942: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2419173Z int = torch.IntStorage().element_size() 2023-01-11T21:58:58.2420097Z /var/lib/jenkins/workspace/test/test_torch.py:5943: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2421012Z long = torch.LongStorage().element_size() 2023-01-11T21:58:58.2421929Z /var/lib/jenkins/workspace/test/test_torch.py:5944: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2422829Z float = torch.FloatStorage().element_size() 2023-01-11T21:58:58.2423818Z /var/lib/jenkins/workspace/test/test_torch.py:5945: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2424878Z double = torch.DoubleStorage().element_size() 2023-01-11T21:58:58.2425831Z /var/lib/jenkins/workspace/test/test_torch.py:5946: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2426738Z bool = torch.BoolStorage().element_size() 2023-01-11T21:58:58.2427787Z /var/lib/jenkins/workspace/test/test_torch.py:5947: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2428732Z bfloat16 = torch.BFloat16Storage().element_size() 2023-01-11T21:58:58.2429721Z /var/lib/jenkins/workspace/test/test_torch.py:5948: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2430690Z complexfloat = torch.ComplexFloatStorage().element_size() 2023-01-11T21:58:58.2431718Z /var/lib/jenkins/workspace/test/test_torch.py:5949: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2432746Z complexdouble = torch.ComplexDoubleStorage().element_size() 2023-01-11T21:58:58.2433127Z ok (0.002s) 2023-01-11T21:58:58.2433471Z test_empty_meta (__main__.TestTorch) ... ok (0.006s) 2023-01-11T21:58:58.2433892Z test_empty_storage_view (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2434276Z test_equal (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2434725Z test_error_msg_type_translation (__main__.TestTorch) ... ok (0.011s) 2023-01-11T21:58:58.2435203Z test_fill_diagonal (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2435643Z test_fix_weakref_no_leak (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2436076Z test_format_scalar_meta (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2437145Z test_from_buffer (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6322: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2438230Z self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4]) 2023-01-11T21:58:58.2439757Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:675: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2440666Z return list(self) 2023-01-11T21:58:58.2442027Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:649: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2443108Z return iter(map(lambda i: self[i], range(self.size()))) 2023-01-11T21:58:58.2444106Z /var/lib/jenkins/workspace/test/test_torch.py:6323: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2445302Z shorts = torch.ShortStorage.from_buffer(a, 'big') 2023-01-11T21:58:58.2446283Z /var/lib/jenkins/workspace/test/test_torch.py:6324: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2447197Z self.assertEqual(shorts.size(), 2) 2023-01-11T21:58:58.2448259Z /var/lib/jenkins/workspace/test/test_torch.py:6325: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2449365Z self.assertEqual(shorts.tolist(), [258, 772]) 2023-01-11T21:58:58.2450331Z /var/lib/jenkins/workspace/test/test_torch.py:6326: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2451373Z ints = torch.IntStorage.from_buffer(a, 'little') 2023-01-11T21:58:58.2452357Z /var/lib/jenkins/workspace/test/test_torch.py:6327: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2453266Z self.assertEqual(ints.size(), 1) 2023-01-11T21:58:58.2454216Z /var/lib/jenkins/workspace/test/test_torch.py:6328: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2455119Z self.assertEqual(ints[0], 67305985) 2023-01-11T21:58:58.2456080Z /var/lib/jenkins/workspace/test/test_torch.py:6330: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2457150Z floats = torch.FloatStorage.from_buffer(f, 'big') 2023-01-11T21:58:58.2458166Z /var/lib/jenkins/workspace/test/test_torch.py:6331: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2459011Z self.assertEqual(floats.size(), 1) 2023-01-11T21:58:58.2459991Z /var/lib/jenkins/workspace/test/test_torch.py:6332: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2460873Z self.assertEqual(floats[0], 2.25) 2023-01-11T21:58:58.2461834Z /var/lib/jenkins/workspace/test/test_torch.py:6335: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2463127Z bools = torch.BoolStorage.from_buffer(f, 'big') 2023-01-11T21:58:58.2464105Z /var/lib/jenkins/workspace/test/test_torch.py:6336: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2465032Z self.assertEqual(bools.size(), 8) 2023-01-11T21:58:58.2466127Z /var/lib/jenkins/workspace/test/test_torch.py:6337: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2467112Z self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True]) 2023-01-11T21:58:58.2468190Z /var/lib/jenkins/workspace/test/test_torch.py:6338: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2469299Z self.assertEqual(bools.type(), 'torch.BoolStorage') 2023-01-11T21:58:58.2470779Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2471835Z if self.device.type not in ['cpu', 'cuda']: 2023-01-11T21:58:58.2473284Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:962: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2474397Z module = torch if self.device.type == 'cpu' else torch.cuda 2023-01-11T21:58:58.2475825Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:978: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2476866Z return (cls_device == instance.device.type) and (cls.dtype == instance.dtype) 2023-01-11T21:58:58.2478340Z /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2479297Z return self.fget.__get__(instance, owner)() 2023-01-11T21:58:58.2480308Z /var/lib/jenkins/workspace/test/test_torch.py:6342: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2481355Z bools = torch.BoolStorage.from_buffer(f, 'big') 2023-01-11T21:58:58.2482343Z /var/lib/jenkins/workspace/test/test_torch.py:6343: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2483355Z self.assertEqual(bools.size(), 19) 2023-01-11T21:58:58.2484317Z /var/lib/jenkins/workspace/test/test_torch.py:6346: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2485369Z bools = torch.BoolStorage.from_buffer(f, 'big') 2023-01-11T21:58:58.2486407Z /var/lib/jenkins/workspace/test/test_torch.py:6347: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2487236Z self.assertEqual(bools.size(), 4) 2023-01-11T21:58:58.2488151Z /var/lib/jenkins/workspace/test/test_torch.py:6348: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2489266Z self.assertEqual(bools.tolist(), [False, True, True, True]) 2023-01-11T21:58:58.2490196Z /var/lib/jenkins/workspace/test/test_torch.py:6349: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2491094Z bytes = torch.ByteStorage.from_buffer(a) 2023-01-11T21:58:58.2492040Z /var/lib/jenkins/workspace/test/test_torch.py:6350: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2492968Z self.assertEqual(bytes.nbytes(), 4) 2023-01-11T21:58:58.2493856Z /var/lib/jenkins/workspace/test/test_torch.py:6351: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2494802Z self.assertEqual(bytes.tolist(), [1, 2, 3, 4]) 2023-01-11T21:58:58.2495149Z ok (0.004s) 2023-01-11T21:58:58.2496071Z test_from_file (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6663: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2497101Z s1 = torch.FloatStorage.from_file(filename, True, size) 2023-01-11T21:58:58.2498583Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:899: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2499521Z storage = cls(wrap_storage=untyped_storage) 2023-01-11T21:58:58.2500478Z /var/lib/jenkins/workspace/test/test_torch.py:6665: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2501568Z self.assertEqual(s1.data_ptr(), torch.FloatTensor(s1).data_ptr()) 2023-01-11T21:58:58.2502665Z /var/lib/jenkins/workspace/test/test_torch.py:6668: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2503616Z s2 = torch.FloatStorage.from_file(filename, True, size) 2023-01-11T21:58:58.2503987Z ok (0.005s) 2023-01-11T21:58:58.2504338Z test_gather_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2504889Z test_generator_cpu (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2505339Z test_has_internal_overlap (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2506407Z test_has_storage (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:7615: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2507394Z self.assertIsNotNone(torch.tensor([]).storage()) 2023-01-11T21:58:58.2508394Z /var/lib/jenkins/workspace/test/test_torch.py:7616: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2509340Z self.assertIsNotNone(torch.empty(0).storage()) 2023-01-11T21:58:58.2510349Z /var/lib/jenkins/workspace/test/test_torch.py:7617: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2511300Z self.assertIsNotNone(torch.tensor([]).clone().storage()) 2023-01-11T21:58:58.2512301Z /var/lib/jenkins/workspace/test/test_torch.py:7618: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2513278Z self.assertIsNotNone(torch.tensor([0, 0, 0]).nonzero().storage()) 2023-01-11T21:58:58.2514264Z /var/lib/jenkins/workspace/test/test_torch.py:7619: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2515254Z self.assertIsNotNone(torch.tensor([]).new().storage()) 2023-01-11T21:58:58.2515617Z ok (0.001s) 2023-01-11T21:58:58.2515974Z test_index_add (__main__.TestTorch) ... ok (0.017s) 2023-01-11T21:58:58.2516427Z test_index_add_all_dtypes (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:58:58.2517985Z test_index_add_correctness (__main__.TestTorch) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/91184 for platform(s) linux, rocm, win, windows. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.002s) 2023-01-11T21:58:58.2518998Z test_index_add_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2519440Z test_index_copy_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2519976Z test_index_fill_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2520432Z test_index_select_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2520889Z test_invalid_generator_raises (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2521350Z test_is_nonzero (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2522243Z test_is_same_size (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:5821: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T21:58:58.2523185Z nt1 = torch.nested.nested_tensor([torch.ones(2, 4), torch.ones(3, 4), torch.ones(5, 4)]) 2023-01-11T21:58:58.2523630Z ok (0.006s) 2023-01-11T21:58:58.2524151Z test_iter (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2524578Z test_kthvalue_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2525021Z test_logcumsumexp_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2525465Z test_manual_seed (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2525858Z test_map (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2526256Z test_map2 (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2526671Z test_max_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2527103Z test_mean_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2527535Z test_median_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2527983Z test_memory_format (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2528582Z test_memory_format_contiguous_returns_same_tensor_if_already_satisfies (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2529294Z test_memory_format_empty (__main__.TestTorch) ... ok (0.011s) 2023-01-11T21:58:58.2529705Z test_min_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2530128Z test_mode_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2530716Z test_multinomial_invalid_probs (__main__.TestTorch) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.001s) 2023-01-11T21:58:58.2531259Z test_nanmedian_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2531697Z test_narrow_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2532111Z test_ndim (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2533139Z test_new (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:7016: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2534153Z self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr()) 2023-01-11T21:58:58.2535176Z /var/lib/jenkins/workspace/test/test_torch.py:7022: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2536177Z self.assertRaises(RuntimeError, lambda: x.new(z.storage())) 2023-01-11T21:58:58.2536558Z ok (0.005s) 2023-01-11T21:58:58.2536937Z test_newaxis_numpy_comparison (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2537385Z test_newindex (__main__.TestTorch) ... ok (0.010s) 2023-01-11T21:58:58.2538080Z test_no_cuda_monkeypatch (__main__.TestTorch) ... skip: Skipped for cuda-enabled build (0.000s) 2023-01-11T21:58:58.2538564Z test_norm_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2538988Z test_normal_shape (__main__.TestTorch) ... ok (0.026s) 2023-01-11T21:58:58.2539408Z test_numel (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2539950Z test_parallel_info (__main__.TestTorch) ... ok (0.000s) 2023-01-11T21:58:58.2540361Z test_parsing_double (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2540816Z test_parsing_int64 (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2541776Z test_parsing_intlist (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6302: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here. 2023-01-11T21:58:58.2543156Z Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations 2023-01-11T21:58:58.2543909Z self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4)))) 2023-01-11T21:58:58.2544339Z ok (0.014s) 2023-01-11T21:58:58.2544682Z test_permute (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2545084Z test_pickle (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2545526Z test_pickle_dtype (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2545978Z test_pickle_function (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2546439Z test_pickle_parameter (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2546925Z test_pickle_parameter_no_requires_grad (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2547404Z test_pickle_size (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2547829Z test_pin_memory (__main__.TestTorch) ... ok (0.012s) 2023-01-11T21:58:58.2548221Z test_print (__main__.TestTorch) ... ok (0.040s) 2023-01-11T21:58:58.2548637Z test_prod_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2549065Z test_pyobj_preserved (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2549462Z test_qengine (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2549879Z test_renorm_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2550337Z test_resurrected_weak_ref (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2550777Z test_reversed (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2551195Z test_scatter_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2551612Z test_select_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2552102Z test_set_flush_denormal (__main__.TestTorch) ... skip: flush_denormal not supported (0.001s) 2023-01-11T21:58:58.2552633Z test_setting_real_imag_to_a_number (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2553086Z test_show_config (__main__.TestTorch) ... ok (0.000s) 2023-01-11T21:58:58.2553499Z test_size_neg_dim (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2554544Z test_sizeof (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6980: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2555510Z sizeof_empty = torch.randn(0).storage().__sizeof__() 2023-01-11T21:58:58.2556971Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:665: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2557971Z return super(TypedStorage, self).__sizeof__() + self.nbytes() 2023-01-11T21:58:58.2558991Z /var/lib/jenkins/workspace/test/test_torch.py:6981: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2560053Z sizeof_10 = torch.randn(10).storage().__sizeof__() 2023-01-11T21:58:58.2560742Z /var/lib/jenkins/workspace/test/test_torch.py:6982: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2561262Z sizeof_100 = torch.randn(100).storage().__sizeof__() 2023-01-11T21:58:58.2561860Z /var/lib/jenkins/workspace/test/test_torch.py:6986: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2562404Z sizeof_empty = torch.randn(0).to(torch.uint8).storage().__sizeof__() 2023-01-11T21:58:58.2562962Z /var/lib/jenkins/workspace/test/test_torch.py:6987: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2563481Z sizeof_10 = torch.randn(10).to(torch.uint8).storage().__sizeof__() 2023-01-11T21:58:58.2564030Z /var/lib/jenkins/workspace/test/test_torch.py:6988: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2564564Z sizeof_100 = torch.randn(100).to(torch.uint8).storage().__sizeof__() 2023-01-11T21:58:58.2564780Z ok (0.001s) 2023-01-11T21:58:58.2564971Z test_slice (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2565279Z test_slow_test (__main__.TestTorch) ... skip: test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test (0.000s) 2023-01-11T21:58:58.2565592Z test_sobolengine_bounds (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2565856Z test_sobolengine_bounds_scrambled (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:58:58.2566135Z test_sobolengine_continuing (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2566420Z test_sobolengine_continuing_scrambled (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2566710Z test_sobolengine_distribution (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2566994Z test_sobolengine_distribution_scrambled (__main__.TestTorch) ... ok (0.005s) 2023-01-11T21:58:58.2567278Z test_sobolengine_draw (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2567541Z test_sobolengine_draw_base2 (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2567809Z test_sobolengine_draw_base2_scrambled (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2568096Z test_sobolengine_draw_scrambled (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2568376Z test_sobolengine_fast_forward (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2568664Z test_sobolengine_fast_forward_scrambled (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2568960Z test_sobolengine_first_point (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2569410Z test_sobolengine_high_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2569676Z test_sobolengine_raise (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2569923Z test_sobolengine_reset (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2570269Z test_sobolengine_reset_scrambled (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2570660Z test_sort_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2570899Z test_split_neg_dim (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2571232Z test_squeeze_neg_dim (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2571479Z test_std_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2572065Z test_storage_casts (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6470: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2572682Z storage = torch.IntStorage([-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2573267Z /var/lib/jenkins/workspace/test/test_torch.py:6471: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2573802Z self.assertEqual(storage.size(), 6) 2023-01-11T21:58:58.2574453Z /var/lib/jenkins/workspace/test/test_torch.py:6472: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2575027Z self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2575800Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:675: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2576296Z return list(self) 2023-01-11T21:58:58.2577024Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:649: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2577562Z return iter(map(lambda i: self[i], range(self.size()))) 2023-01-11T21:58:58.2578104Z /var/lib/jenkins/workspace/test/test_torch.py:6473: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2578662Z self.assertEqual(storage.type(), 'torch.IntStorage') 2023-01-11T21:58:58.2579437Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:959: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2580007Z if self.device.type not in ['cpu', 'cuda']: 2023-01-11T21:58:58.2580756Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:962: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2581346Z module = torch if self.device.type == 'cpu' else torch.cuda 2023-01-11T21:58:58.2582161Z /var/lib/jenkins/workspace/test/test_torch.py:6476: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2583144Z floatStorage = storage.float() 2023-01-11T21:58:58.2583966Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:808: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2584563Z storage = torch.tensor([], dtype=self.dtype, device=self.device).set_(self).to(dtype)._typed_storage() 2023-01-11T21:58:58.2585466Z /opt/conda/lib/python3.10/site-packages/torch/storage.py:809: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2585976Z if storage.data_ptr() == self.data_ptr(): 2023-01-11T21:58:58.2586504Z /var/lib/jenkins/workspace/test/test_torch.py:6477: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2587020Z self.assertEqual(floatStorage.size(), 6) 2023-01-11T21:58:58.2587558Z /var/lib/jenkins/workspace/test/test_torch.py:6478: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2588146Z self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2588678Z /var/lib/jenkins/workspace/test/test_torch.py:6479: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2589271Z self.assertEqual(floatStorage.type(), 'torch.FloatStorage') 2023-01-11T21:58:58.2589830Z /var/lib/jenkins/workspace/test/test_torch.py:6480: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2590412Z self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2590963Z /var/lib/jenkins/workspace/test/test_torch.py:6483: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2591444Z halfStorage = storage.half() 2023-01-11T21:58:58.2591956Z /var/lib/jenkins/workspace/test/test_torch.py:6484: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2592459Z self.assertEqual(halfStorage.size(), 6) 2023-01-11T21:58:58.2592997Z /var/lib/jenkins/workspace/test/test_torch.py:6485: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2593606Z self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2594139Z /var/lib/jenkins/workspace/test/test_torch.py:6486: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2594725Z self.assertEqual(halfStorage.type(), 'torch.HalfStorage') 2023-01-11T21:58:58.2595307Z /var/lib/jenkins/workspace/test/test_torch.py:6487: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2595889Z self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2596615Z /var/lib/jenkins/workspace/test/test_torch.py:6490: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2597508Z bfloat16Storage = storage.bfloat16() 2023-01-11T21:58:58.2598481Z /var/lib/jenkins/workspace/test/test_torch.py:6491: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2599419Z self.assertEqual(bfloat16Storage.size(), 6) 2023-01-11T21:58:58.2600417Z /var/lib/jenkins/workspace/test/test_torch.py:6492: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2601507Z self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2602506Z /var/lib/jenkins/workspace/test/test_torch.py:6493: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2603620Z self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage') 2023-01-11T21:58:58.2604681Z /var/lib/jenkins/workspace/test/test_torch.py:6494: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2605781Z self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2606810Z /var/lib/jenkins/workspace/test/test_torch.py:6497: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2607695Z longStorage = storage.long() 2023-01-11T21:58:58.2608651Z /var/lib/jenkins/workspace/test/test_torch.py:6498: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2610025Z self.assertEqual(longStorage.size(), 6) 2023-01-11T21:58:58.2610996Z /var/lib/jenkins/workspace/test/test_torch.py:6499: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2612079Z self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2613180Z /var/lib/jenkins/workspace/test/test_torch.py:6500: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2614271Z self.assertEqual(longStorage.type(), 'torch.LongStorage') 2023-01-11T21:58:58.2615260Z /var/lib/jenkins/workspace/test/test_torch.py:6501: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2616354Z self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2617379Z /var/lib/jenkins/workspace/test/test_torch.py:6504: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2618286Z shortStorage = storage.short() 2023-01-11T21:58:58.2619213Z /var/lib/jenkins/workspace/test/test_torch.py:6505: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2620180Z self.assertEqual(shortStorage.size(), 6) 2023-01-11T21:58:58.2621187Z /var/lib/jenkins/workspace/test/test_torch.py:6506: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2622234Z self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2623311Z /var/lib/jenkins/workspace/test/test_torch.py:6507: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2624404Z self.assertEqual(shortStorage.type(), 'torch.ShortStorage') 2023-01-11T21:58:58.2625412Z /var/lib/jenkins/workspace/test/test_torch.py:6508: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2626518Z self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2627513Z /var/lib/jenkins/workspace/test/test_torch.py:6511: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2628529Z doubleStorage = storage.double() 2023-01-11T21:58:58.2629510Z /var/lib/jenkins/workspace/test/test_torch.py:6512: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2630475Z self.assertEqual(doubleStorage.size(), 6) 2023-01-11T21:58:58.2631472Z /var/lib/jenkins/workspace/test/test_torch.py:6513: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2632650Z self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) 2023-01-11T21:58:58.2633608Z /var/lib/jenkins/workspace/test/test_torch.py:6514: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2634657Z self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage') 2023-01-11T21:58:58.2635716Z /var/lib/jenkins/workspace/test/test_torch.py:6515: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2636822Z self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2637831Z /var/lib/jenkins/workspace/test/test_torch.py:6518: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2638661Z charStorage = storage.char() 2023-01-11T21:58:58.2639603Z /var/lib/jenkins/workspace/test/test_torch.py:6519: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2640548Z self.assertEqual(charStorage.size(), 6) 2023-01-11T21:58:58.2641524Z /var/lib/jenkins/workspace/test/test_torch.py:6520: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2642635Z self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) 2023-01-11T21:58:58.2643596Z /var/lib/jenkins/workspace/test/test_torch.py:6521: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2644692Z self.assertEqual(charStorage.type(), 'torch.CharStorage') 2023-01-11T21:58:58.2645737Z /var/lib/jenkins/workspace/test/test_torch.py:6522: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2646824Z self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2647934Z /var/lib/jenkins/workspace/test/test_torch.py:6525: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2648823Z byteStorage = storage.byte() 2023-01-11T21:58:58.2649907Z /var/lib/jenkins/workspace/test/test_torch.py:6526: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2650966Z self.assertEqual(byteStorage.size(), 6) 2023-01-11T21:58:58.2651942Z /var/lib/jenkins/workspace/test/test_torch.py:6527: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2652901Z self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2653890Z /var/lib/jenkins/workspace/test/test_torch.py:6528: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2654981Z self.assertEqual(byteStorage.type(), 'torch.ByteStorage') 2023-01-11T21:58:58.2655924Z /var/lib/jenkins/workspace/test/test_torch.py:6529: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2656909Z self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4]) 2023-01-11T21:58:58.2657923Z /var/lib/jenkins/workspace/test/test_torch.py:6532: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2658822Z boolStorage = storage.bool() 2023-01-11T21:58:58.2659753Z /var/lib/jenkins/workspace/test/test_torch.py:6533: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2660690Z self.assertEqual(boolStorage.size(), 6) 2023-01-11T21:58:58.2661679Z /var/lib/jenkins/workspace/test/test_torch.py:6534: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2662700Z self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True]) 2023-01-11T21:58:58.2663781Z /var/lib/jenkins/workspace/test/test_torch.py:6535: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2664905Z self.assertEqual(boolStorage.type(), 'torch.BoolStorage') 2023-01-11T21:58:58.2666073Z /var/lib/jenkins/workspace/test/test_torch.py:6536: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2667056Z self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1]) 2023-01-11T21:58:58.2668025Z /var/lib/jenkins/workspace/test/test_torch.py:6539: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2669267Z complexfloat_storage = torch.ComplexFloatStorage([-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j]) 2023-01-11T21:58:58.2670357Z /var/lib/jenkins/workspace/test/test_torch.py:6540: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2671354Z self.assertEqual(complexfloat_storage.size(), 6) 2023-01-11T21:58:58.2672344Z /var/lib/jenkins/workspace/test/test_torch.py:6541: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2673444Z self.assertEqual(complexfloat_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j]) 2023-01-11T21:58:58.2674422Z /var/lib/jenkins/workspace/test/test_torch.py:6542: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2675532Z self.assertEqual(complexfloat_storage.type(), 'torch.ComplexFloatStorage') 2023-01-11T21:58:58.2676637Z /var/lib/jenkins/workspace/test/test_torch.py:6545: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2677644Z complexdouble_storage = complexfloat_storage.complex_double() 2023-01-11T21:58:58.2678652Z /var/lib/jenkins/workspace/test/test_torch.py:6546: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2679636Z self.assertEqual(complexdouble_storage.size(), 6) 2023-01-11T21:58:58.2680682Z /var/lib/jenkins/workspace/test/test_torch.py:6547: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2681853Z self.assertEqual(complexdouble_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j]) 2023-01-11T21:58:58.2682925Z /var/lib/jenkins/workspace/test/test_torch.py:6548: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2684193Z self.assertEqual(complexdouble_storage.type(), 'torch.ComplexDoubleStorage') 2023-01-11T21:58:58.2684642Z ok (0.011s) 2023-01-11T21:58:58.2685614Z test_storage_error (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6364: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2686605Z torch.storage._LegacyStorage() 2023-01-11T21:58:58.2688094Z /opt/conda/lib/python3.10/site-packages/torch/_utils.py:768: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2689161Z return self.fget.__get__(instance, owner)() 2023-01-11T21:58:58.2690157Z /var/lib/jenkins/workspace/test/test_torch.py:6378: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2691134Z storage_class(device='cpu') 2023-01-11T21:58:58.2692097Z /var/lib/jenkins/workspace/test/test_torch.py:6381: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2693013Z storage_class(dtype=torch.float) 2023-01-11T21:58:58.2693980Z /var/lib/jenkins/workspace/test/test_torch.py:6387: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2694875Z storage_class(0, 0) 2023-01-11T21:58:58.2695829Z /var/lib/jenkins/workspace/test/test_torch.py:6390: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2696790Z storage_class('string') 2023-01-11T21:58:58.2697754Z /var/lib/jenkins/workspace/test/test_torch.py:6393: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2698659Z storage_class(torch.tensor([])) 2023-01-11T21:58:58.2699618Z /var/lib/jenkins/workspace/test/test_torch.py:6395: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2700504Z s = storage_class() 2023-01-11T21:58:58.2701410Z /var/lib/jenkins/workspace/test/test_torch.py:6398: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2702358Z storage_class(0, wrap_storage=s.untyped()) 2023-01-11T21:58:58.2703416Z /var/lib/jenkins/workspace/test/test_torch.py:6401: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2704447Z storage_class(wrap_storage=s) 2023-01-11T21:58:58.2705410Z /var/lib/jenkins/workspace/test/test_torch.py:6420: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2706394Z torch.TypedStorage(0, wrap_storage=s.untyped(), dtype=dtype) 2023-01-11T21:58:58.2707511Z /var/lib/jenkins/workspace/test/test_torch.py:6423: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2708484Z torch.TypedStorage(wrap_storage=s.untyped()) 2023-01-11T21:58:58.2709475Z /var/lib/jenkins/workspace/test/test_torch.py:6426: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2710446Z torch.TypedStorage(wrap_storage=s.untyped(), dtype=0) 2023-01-11T21:58:58.2711472Z /var/lib/jenkins/workspace/test/test_torch.py:6429: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2712484Z torch.TypedStorage(wrap_storage=s.untyped(), dtype=dtype, device=device) 2023-01-11T21:58:58.2713541Z /var/lib/jenkins/workspace/test/test_torch.py:6432: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2714495Z torch.TypedStorage(wrap_storage=s, dtype=dtype) 2023-01-11T21:58:58.2715496Z /var/lib/jenkins/workspace/test/test_torch.py:6435: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2716567Z torch.TypedStorage(dtype=dtype, device='xla') 2023-01-11T21:58:58.2717561Z /var/lib/jenkins/workspace/test/test_torch.py:6443: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2718554Z torch.TypedStorage(torch.tensor([]), dtype=dtype, device=device) 2023-01-11T21:58:58.2719579Z /var/lib/jenkins/workspace/test/test_torch.py:6446: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2720531Z torch.TypedStorage(0, 0, dtype=dtype, device=device) 2023-01-11T21:58:58.2721547Z /var/lib/jenkins/workspace/test/test_torch.py:6449: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2722621Z s_other = torch.TypedStorage([1, 2, 3, 4], device=device, dtype=dtype) 2023-01-11T21:58:58.2723642Z /var/lib/jenkins/workspace/test/test_torch.py:6452: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2724510Z s.fill_(s_other) 2023-01-11T21:58:58.2724803Z ok (0.041s) 2023-01-11T21:58:58.2725884Z test_storage_error_no_attribute (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6461: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2726885Z storage_class.from_buffer() 2023-01-11T21:58:58.2727214Z ok (0.001s) 2023-01-11T21:58:58.2727583Z test_structseq_repr (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2728038Z test_subclass_preserved (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2728518Z test_subclass_tensors (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2728963Z test_sum_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2729495Z test_t_not_2d_error (__main__.TestTorch) ... ok (0.009s) 2023-01-11T21:58:58.2729939Z test_tensor_base_init (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2730404Z test_tensor_base_new (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2730857Z test_tensor_ctor_scalar (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2731298Z test_tensor_cycle_via_dict (__main__.TestTorch) ... ok (0.105s) 2023-01-11T21:58:58.2731762Z test_tensor_cycle_via_slots (__main__.TestTorch) ... ok (0.043s) 2023-01-11T21:58:58.2732239Z test_tensor_dict_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2732708Z test_tensor_finalizer_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2733819Z test_tensor_set (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:5839: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2734856Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:58:58.2735898Z /var/lib/jenkins/workspace/test/test_torch.py:5841: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2736805Z t1.set_(t2.storage(), 0, size) 2023-01-11T21:58:58.2737740Z /var/lib/jenkins/workspace/test/test_torch.py:5843: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2738645Z t1.set_(t2.storage(), 0, tuple(size)) 2023-01-11T21:58:58.2739611Z /var/lib/jenkins/workspace/test/test_torch.py:5847: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2740663Z t1.set_(t2.storage(), 0, size, stride) 2023-01-11T21:58:58.2741647Z /var/lib/jenkins/workspace/test/test_torch.py:5849: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2742650Z t1.set_(t2.storage(), 0, size=size, stride=stride) 2023-01-11T21:58:58.2743730Z /var/lib/jenkins/workspace/test/test_torch.py:5857: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2744699Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:58:58.2745677Z /var/lib/jenkins/workspace/test/test_torch.py:5859: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2746529Z t1.set_(source=t2.storage()) 2023-01-11T21:58:58.2747399Z /var/lib/jenkins/workspace/test/test_torch.py:5860: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2748341Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:58:58.2749288Z /var/lib/jenkins/workspace/test/test_torch.py:5862: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2750204Z t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride) 2023-01-11T21:58:58.2751153Z /var/lib/jenkins/workspace/test/test_torch.py:5869: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2752104Z self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) 2023-01-11T21:58:58.2752479Z ok (0.003s) 2023-01-11T21:58:58.2753490Z test_tensor_set_errors (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:5876: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2754571Z self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage())) 2023-01-11T21:58:58.2755609Z /var/lib/jenkins/workspace/test/test_torch.py:5878: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2756596Z lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride())) 2023-01-11T21:58:58.2756988Z ok (0.004s) 2023-01-11T21:58:58.2757379Z test_tensor_slot_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2757834Z test_tensor_weakref_dealloc (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2758419Z test_tensoriterator_output_setup (__main__.TestTorch) ... ok (0.114s) 2023-01-11T21:58:58.2759563Z test_to (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:7842: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/SparseCsrTensorImpl.cpp:56.) 2023-01-11T21:58:58.2760570Z a = torch.tensor([[0, 1, 2], [2, 0, 3]]).to_sparse_csr() 2023-01-11T21:58:58.2760897Z ok (0.003s) 2023-01-11T21:58:58.2761297Z test_to_with_tensor (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2761733Z test_topk_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2762226Z test_torch_from_file (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2762701Z test_transpose_neg_dim (__main__.TestTorch) ... ok (0.004s) 2023-01-11T21:58:58.2763139Z test_type (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2763571Z test_type_alias (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2764037Z test_type_conversion_via_dtype_name (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2765187Z test_typed_storage_deprecation_warning (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6624: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2766191Z s0 = torch.FloatStorage(10) 2023-01-11T21:58:58.2766519Z ok (0.002s) 2023-01-11T21:58:58.2767544Z test_typed_storage_internal_no_warning (__main__.TestTorch) ... /var/lib/jenkins/workspace/test/test_torch.py:6554: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2768567Z s0 = torch.FloatStorage(10) 2023-01-11T21:58:58.2769666Z /var/lib/jenkins/workspace/test/test_torch.py:6555: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T21:58:58.2770561Z s0_untyped = s0.untyped() 2023-01-11T21:58:58.2770869Z ok (0.002s) 2023-01-11T21:58:58.2771244Z test_unbind_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2771695Z test_unflatten (__main__.TestTorch) ... ok (0.021s) 2023-01-11T21:58:58.2772130Z test_unfold_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2772590Z test_unsqueeze_neg_dim (__main__.TestTorch) ... ok (0.003s) 2023-01-11T21:58:58.2773061Z test_upsample_nearest1d_meta (__main__.TestTorch) ... ok (0.011s) 2023-01-11T21:58:58.2773550Z test_upsample_nearest2d_meta (__main__.TestTorch) ... ok (0.013s) 2023-01-11T21:58:58.2773997Z test_var_neg_dim (__main__.TestTorch) ... ok (0.002s) 2023-01-11T21:58:58.2774430Z test_warn_types (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2774875Z test_wildcard_import (__main__.TestTorch) ... ok (0.001s) 2023-01-11T21:58:58.2775133Z 2023-01-11T21:58:58.2775507Z ---------------------------------------------------------------------- 2023-01-11T21:58:58.2775931Z Ran 181 tests in 1.786s 2023-01-11T21:58:58.2776132Z 2023-01-11T21:58:58.2776256Z OK (skipped=7) 2023-01-11T21:58:58.2776447Z 2023-01-11T21:58:58.2776599Z Generating XML reports... 2023-01-11T21:58:58.2777322Z Generated XML report: test-reports/python-unittest/test_torch/TEST-TestBasicVitalSigns-20230111215856.xml 2023-01-11T21:58:58.2778223Z Generated XML report: test-reports/python-unittest/test_torch/TEST-TestTorch-20230111215856.xml 2023-01-11T21:58:58.2778910Z [TORCH_VITAL] Dataloader.enabled True 2023-01-11T21:58:58.2779354Z [TORCH_VITAL] Dataloader.basic_unit_test TEST_VALUE_STRING 2023-01-11T21:58:58.2779784Z [TORCH_VITAL] CUDA.used False 2023-01-11T21:58:58.2780011Z 2023-01-11T21:58:58.2780476Z ##[endgroup] 2023-01-11T21:58:58.2781109Z FINISHED PRINTING LOG FILE of test_torch (/var/lib/jenkins/workspace/test/test-reports/test_torch_h_p19gpb) 2023-01-11T21:58:58.2781482Z 2023-01-11T21:58:58.2781835Z Running distributions/test_distributions ... [2023-01-11 21:58:58.235137] 2023-01-11T21:58:58.2782852Z Executing ['/opt/conda/bin/python', '-bb', 'distributions/test_distributions.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:58:58.235531] 2023-01-11T21:59:39.9136079Z 2023-01-11T21:59:39.9136941Z Expand the folded group to see the log file of distributions/test_distributions 2023-01-11T21:59:39.9138011Z ##[group]PRINTING LOG FILE of distributions/test_distributions (/var/lib/jenkins/workspace/test/test-reports/distributions-test_distributions_n99q6cs3) 2023-01-11T21:59:39.9140149Z 2023-01-11T21:59:39.9140501Z Running tests... 2023-01-11T21:59:39.9141216Z ---------------------------------------------------------------------- 2023-01-11T21:59:39.9142010Z Test results will be stored in test-reports/python-unittest/distributions.test_distributions 2023-01-11T21:59:39.9142934Z test_cdf (__main__.TestAgainstScipy) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:107: UserWarning: Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim. 2023-01-11T21:59:39.9143932Z warnings.warn("Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim.") 2023-01-11T21:59:39.9144862Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9145214Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9145498Z ok (0.046s) 2023-01-11T21:59:39.9145771Z test_icdf (__main__.TestAgainstScipy) ... ok (0.023s) 2023-01-11T21:59:39.9148167Z test_mean (__main__.TestAgainstScipy) ... ok (1.179s) 2023-01-11T21:59:39.9149657Z test_variance_stddev (__main__.TestAgainstScipy) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_comparison.py:679: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/utils/tensor_numpy.cpp:210.) 2023-01-11T21:59:39.9150518Z return torch.as_tensor(tensor_like) 2023-01-11T21:59:39.9150784Z ok (0.034s) 2023-01-11T21:59:39.9151106Z test_params_constraints (__main__.TestConstraints) ... ok (0.054s) 2023-01-11T21:59:39.9151739Z test_support_constraints (__main__.TestConstraints) ... ok (0.072s) 2023-01-11T21:59:39.9152305Z test_bernoulli_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9152690Z test_bernoulli_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9153079Z test_beta_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9153443Z test_beta_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9163631Z test_binomial_shape (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9163970Z test_binomial_shape_vectorized_n (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9164301Z test_categorical_shape (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:59:39.9164622Z test_cauchy_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.001s) 2023-01-11T21:59:39.9164956Z test_cauchy_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9165439Z test_chi2_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9165754Z test_chi2_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9166096Z test_continuous_bernoulli_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9166454Z test_continuous_bernoulli_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:59:39.9166790Z test_dirichlet_shape (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9167081Z test_entropy_shape (__main__.TestDistributionShapes) ... ok (0.021s) 2023-01-11T21:59:39.9167404Z test_exponential_shape_scalar_param (__main__.TestDistributionShapes) ... ok (0.001s) 2023-01-11T21:59:39.9167785Z test_exponential_shape_tensor_param (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9168112Z test_gamma_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9168441Z test_gamma_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9178910Z test_geometric_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9179628Z test_geometric_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9180012Z test_gumbel_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9180356Z test_halfcauchy_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9180701Z test_halfcauchy_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9186001Z test_kumaraswamy_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9186732Z test_laplace_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9187446Z test_laplace_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9188166Z test_mixture_same_family_shape (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9188825Z test_multinomial_shape (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9189509Z test_normal_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9190215Z test_normal_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9190900Z test_one_hot_categorical_shape (__main__.TestDistributionShapes) ... ok (0.004s) 2023-01-11T21:59:39.9191596Z test_pareto_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9192312Z test_studentT_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9193034Z test_studentT_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9193725Z test_uniform_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.001s) 2023-01-11T21:59:39.9194443Z test_uniform_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9195144Z test_vonmises_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9195831Z test_vonmises_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9196537Z test_weibull_scale_scalar_params (__main__.TestDistributionShapes) ... ok (0.002s) 2023-01-11T21:59:39.9197250Z test_wishart_shape_scalar_params (__main__.TestDistributionShapes) ... ok (0.003s) 2023-01-11T21:59:39.9197955Z test_wishart_shape_tensor_params (__main__.TestDistributionShapes) ... ok (0.007s) 2023-01-11T21:59:39.9198625Z test_argmax_relaxed_categorical (__main__.TestDistributions) ... ok (0.019s) 2023-01-11T21:59:39.9199247Z test_bernoulli (__main__.TestDistributions) ... ok (0.071s) 2023-01-11T21:59:39.9199826Z test_bernoulli_3d (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9200628Z test_bernoulli_enumerate_support (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9201247Z test_beta_log_prob (__main__.TestDistributions) ... ok (0.063s) 2023-01-11T21:59:39.9201832Z test_beta_sample (__main__.TestDistributions) ... ok (0.279s) 2023-01-11T21:59:39.9202408Z test_beta_shape (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:59:39.9202969Z test_beta_underflow (__main__.TestDistributions) ... ok (0.034s) 2023-01-11T21:59:39.9203620Z test_beta_underflow_gpu (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:59:39.9204253Z test_binomial (__main__.TestDistributions) ... ok (0.024s) 2023-01-11T21:59:39.9204842Z test_binomial_enumerate_support (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9205567Z test_binomial_extreme_vals (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:59:39.9206225Z test_binomial_log_prob_and_entropy (__main__.TestDistributions) ... ok (0.056s) 2023-01-11T21:59:39.9206897Z test_binomial_log_prob_vectorized_count (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:59:39.9207554Z test_binomial_sample (__main__.TestDistributions) ... ok (0.054s) 2023-01-11T21:59:39.9208169Z test_binomial_stable (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9208826Z test_binomial_vectorized_count (__main__.TestDistributions) ... ok (0.076s) 2023-01-11T21:59:39.9209539Z test_categorical_1d (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:59:39.9210054Z test_categorical_2d (__main__.TestDistributions) ... ok (0.008s) 2023-01-11T21:59:39.9210429Z test_categorical_enumerate_support (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9210707Z test_cauchy (__main__.TestDistributions) ... ok (0.012s) 2023-01-11T21:59:39.9211290Z test_cdf_icdf_inverse (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9211666Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9211876Z ok (0.194s) 2023-01-11T21:59:39.9212086Z test_cdf_log_prob (__main__.TestDistributions) ... ok (0.086s) 2023-01-11T21:59:39.9212362Z test_chi2_sample (__main__.TestDistributions) ... ok (0.091s) 2023-01-11T21:59:39.9212634Z test_chi2_shape (__main__.TestDistributions) ... ok (0.004s) 2023-01-11T21:59:39.9212901Z test_continuous_bernoulli (__main__.TestDistributions) ... ok (0.013s) 2023-01-11T21:59:39.9213197Z test_continuous_bernoulli_3d (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9213495Z test_dirichlet_log_prob (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9213767Z test_dirichlet_mode (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9214049Z test_dirichlet_sample (__main__.TestDistributions) ... ok (0.036s) 2023-01-11T21:59:39.9214330Z test_dirichlet_shape (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9214855Z test_distribution_expand (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9215216Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9215416Z ok (0.551s) 2023-01-11T21:59:39.9215654Z test_distribution_subclass_expand (__main__.TestDistributions) ... ok (0.141s) 2023-01-11T21:59:39.9215945Z test_enumerate_support_type (__main__.TestDistributions) ... ok (0.026s) 2023-01-11T21:59:39.9216229Z test_exponential (__main__.TestDistributions) ... ok (0.030s) 2023-01-11T21:59:39.9216509Z test_exponential_sample (__main__.TestDistributions) ... ok (0.086s) 2023-01-11T21:59:39.9216792Z test_fishersnedecor (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:59:39.9217067Z test_fishersnedecor_sample (__main__.TestDistributions) ... ok (0.854s) 2023-01-11T21:59:39.9217379Z test_gamma_gpu_sample (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:59:39.9217776Z test_gamma_gpu_shape (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:59:39.9218076Z test_gamma_log_prob_at_boundary (__main__.TestDistributions) ... ok (0.004s) 2023-01-11T21:59:39.9218364Z test_gamma_sample (__main__.TestDistributions) ... ok (0.262s) 2023-01-11T21:59:39.9218639Z test_gamma_shape (__main__.TestDistributions) ... ok (0.004s) 2023-01-11T21:59:39.9218908Z test_geometric (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9219187Z test_geometric_log_prob_and_entropy (__main__.TestDistributions) ... ok (0.011s) 2023-01-11T21:59:39.9219488Z test_geometric_sample (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9219764Z test_gumbel (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:59:39.9220020Z test_gumbel_sample (__main__.TestDistributions) ... ok (0.503s) 2023-01-11T21:59:39.9220333Z test_halfcauchy (__main__.TestDistributions) ... ok (0.009s) 2023-01-11T21:59:39.9220600Z test_halfnormal (__main__.TestDistributions) ... ok (0.009s) 2023-01-11T21:59:39.9220870Z test_halfnormal_logprob (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9221158Z test_halfnormal_sample (__main__.TestDistributions) ... ok (0.085s) 2023-01-11T21:59:39.9221437Z test_has_examples (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9221959Z test_independent_expand (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9222320Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9222597Z ok (0.662s) 2023-01-11T21:59:39.9222831Z test_independent_shape (__main__.TestDistributions) ... ok (0.263s) 2023-01-11T21:59:39.9223127Z test_invalid_parameter_broadcasting (__main__.TestDistributions) ... ok (0.032s) 2023-01-11T21:59:39.9223442Z test_kumaraswamy_mean_variance (__main__.TestDistributions) ... ok (0.029s) 2023-01-11T21:59:39.9223740Z test_kumaraswamy_shape (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:59:39.9224020Z test_laplace (__main__.TestDistributions) ... ok (0.018s) 2023-01-11T21:59:39.9224360Z test_laplace_sample (__main__.TestDistributions) ... ok (0.257s) 2023-01-11T21:59:39.9224649Z test_lazy_property_grad (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9224926Z test_lkj_cholesky_log_prob (__main__.TestDistributions) ... ok (0.012s) 2023-01-11T21:59:39.9225216Z test_logisticnormal (__main__.TestDistributions) ... ok (0.022s) 2023-01-11T21:59:39.9225512Z test_logisticnormal_logprob (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9225800Z test_logisticnormal_sample (__main__.TestDistributions) ... ok (0.286s) 2023-01-11T21:59:39.9226192Z test_lognormal (__main__.TestDistributions) ... ok (0.017s) 2023-01-11T21:59:39.9226474Z test_lognormal_logprob (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9226751Z test_lognormal_sample (__main__.TestDistributions) ... ok (0.256s) 2023-01-11T21:59:39.9227066Z test_lowrank_multivariate_normal_log_prob (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:59:39.9227393Z test_lowrank_multivariate_normal_moments (__main__.TestDistributions) ... ok (0.036s) 2023-01-11T21:59:39.9227729Z test_lowrank_multivariate_normal_properties (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:59:39.9228049Z test_lowrank_multivariate_normal_sample (__main__.TestDistributions) ... ok (0.037s) 2023-01-11T21:59:39.9228378Z test_lowrank_multivariate_normal_shape (__main__.TestDistributions) ... ok (0.046s) 2023-01-11T21:59:39.9228693Z test_mixture_same_family_log_prob (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:59:39.9228985Z test_mixture_same_family_sample (__main__.TestDistributions) ... ok (0.044s) 2023-01-11T21:59:39.9229287Z test_mixture_same_family_shape (__main__.TestDistributions) ... ok (0.008s) 2023-01-11T21:59:39.9229807Z test_mode (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9230209Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9230398Z ok (0.112s) 2023-01-11T21:59:39.9230624Z test_multinomial_1d (__main__.TestDistributions) ... ok (0.011s) 2023-01-11T21:59:39.9230927Z test_multinomial_1d_log_prob_and_entropy (__main__.TestDistributions) ... ok (0.004s) 2023-01-11T21:59:39.9231215Z test_multinomial_2d (__main__.TestDistributions) ... ok (0.012s) 2023-01-11T21:59:39.9231508Z test_multivariate_normal_log_prob (__main__.TestDistributions) ... ok (0.008s) 2023-01-11T21:59:39.9231817Z test_multivariate_normal_moments (__main__.TestDistributions) ... ok (0.025s) 2023-01-11T21:59:39.9232134Z test_multivariate_normal_properties (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9232469Z test_multivariate_normal_sample (__main__.TestDistributions) ... ok (0.097s) 2023-01-11T21:59:39.9232774Z test_multivariate_normal_shape (__main__.TestDistributions) ... ok (0.067s) 2023-01-11T21:59:39.9233107Z test_multivariate_normal_stable_with_precision_matrix (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9233413Z test_negative_binomial (__main__.TestDistributions) ... ok (0.018s) 2023-01-11T21:59:39.9233710Z test_negative_binomial_log_prob (__main__.TestDistributions) ... ok (0.052s) 2023-01-11T21:59:39.9234032Z test_negative_binomial_log_prob_vectorized_count (__main__.TestDistributions) ... ok (0.003s) 2023-01-11T21:59:39.9234335Z test_normal (__main__.TestDistributions) ... ok (0.016s) 2023-01-11T21:59:39.9234590Z test_normal_sample (__main__.TestDistributions) ... ok (0.254s) 2023-01-11T21:59:39.9234876Z test_one_hot_categorical_1d (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9235170Z test_one_hot_categorical_2d (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:59:39.9235469Z test_one_hot_categorical_enumerate_support (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9235765Z test_pareto (__main__.TestDistributions) ... ok (0.005s) 2023-01-11T21:59:39.9236041Z test_pareto_sample (__main__.TestDistributions) ... ok (0.253s) 2023-01-11T21:59:39.9236324Z test_poisson_forward_ad (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9236619Z test_poisson_gpu_sample (__main__.TestDistributions) ... skip: CUDA not found (0.000s) 2023-01-11T21:59:39.9236926Z test_poisson_log_prob (__main__.TestDistributions) ... ok (0.007s) 2023-01-11T21:59:39.9237207Z test_poisson_sample (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9237471Z test_poisson_shape (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9237755Z test_relaxed_bernoulli (__main__.TestDistributions) ... ok (0.015s) 2023-01-11T21:59:39.9238053Z test_relaxed_one_hot_categorical_1d (__main__.TestDistributions) ... ok (0.009s) 2023-01-11T21:59:39.9238354Z test_relaxed_one_hot_categorical_2d (__main__.TestDistributions) ... ok (0.015s) 2023-01-11T21:59:39.9238638Z test_repr (__main__.TestDistributions) ... ok (0.019s) 2023-01-11T21:59:39.9238923Z test_rounded_relaxed_bernoulli (__main__.TestDistributions) ... ok (0.018s) 2023-01-11T21:59:39.9239470Z test_rsample_requires_grad (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9239829Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9240034Z ok (0.017s) 2023-01-11T21:59:39.9240262Z test_sample_detached (__main__.TestDistributions) ... ok (0.018s) 2023-01-11T21:59:39.9240524Z test_studentT (__main__.TestDistributions) ... ok (0.006s) 2023-01-11T21:59:39.9240798Z test_studentT_log_prob (__main__.TestDistributions) ... ok (0.092s) 2023-01-11T21:59:39.9241080Z test_studentT_sample (__main__.TestDistributions) ... ok (1.073s) 2023-01-11T21:59:39.9241369Z test_support_attributes (__main__.TestDistributions) ... ok (0.023s) 2023-01-11T21:59:39.9241632Z test_uniform (__main__.TestDistributions) ... ok (0.012s) 2023-01-11T21:59:39.9241982Z test_valid_parameter_broadcasting (__main__.TestDistributions) ... ok (0.026s) 2023-01-11T21:59:39.9242281Z test_vonmises_logprob (__main__.TestDistributions) ... ok (0.016s) 2023-01-11T21:59:39.9242546Z test_vonmises_sample (__main__.TestDistributions) ... ok (6.361s) 2023-01-11T21:59:39.9243159Z test_wishart_log_prob (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:107: UserWarning: Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim. 2023-01-11T21:59:39.9243788Z warnings.warn("Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim.") 2023-01-11T21:59:39.9244264Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9244618Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9244811Z ok (0.075s) 2023-01-11T21:59:39.9245037Z test_wishart_moments (__main__.TestDistributions) ... ok (1.490s) 2023-01-11T21:59:39.9245325Z test_wishart_properties (__main__.TestDistributions) ... ok (0.002s) 2023-01-11T21:59:39.9245597Z test_wishart_sample (__main__.TestDistributions) ... ok (0.278s) 2023-01-11T21:59:39.9246105Z test_wishart_shape (__main__.TestDistributions) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9246463Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9246872Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9247173Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9247578Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9247888Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9248274Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9248586Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9248985Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9249480Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9249871Z /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9250180Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9250381Z ok (0.127s) 2023-01-11T21:59:39.9250619Z test_wishart_stable_with_precision_matrix (__main__.TestDistributions) ... ok (0.001s) 2023-01-11T21:59:39.9250953Z test_zero_excluded_binomial (__main__.TestDistributions) ... skip: CUDA not found (0.001s) 2023-01-11T21:59:39.9251251Z test_cat_event_dim (__main__.TestFunctors) ... ok (0.001s) 2023-01-11T21:59:39.9251495Z test_cat_transform (__main__.TestFunctors) ... ok (0.003s) 2023-01-11T21:59:39.9251772Z test_cat_transform_non_uniform (__main__.TestFunctors) ... ok (0.003s) 2023-01-11T21:59:39.9252045Z test_stack_transform (__main__.TestFunctors) ... ok (0.003s) 2023-01-11T21:59:39.9252510Z test_cdf (__main__.TestJit) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:253: UserWarning: Singular sample detected. 2023-01-11T21:59:39.9252838Z warnings.warn("Singular sample detected.") 2023-01-11T21:59:39.9253036Z ok (2.465s) 2023-01-11T21:59:39.9253561Z test_entropy (__main__.TestJit) ... /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py:107: UserWarning: Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim. 2023-01-11T21:59:39.9254102Z warnings.warn("Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim.") 2023-01-11T21:59:39.9254365Z ok (3.285s) 2023-01-11T21:59:39.9254577Z test_enumerate_support (__main__.TestJit) ... ok (0.227s) 2023-01-11T21:59:39.9254892Z test_log_prob (__main__.TestJit) ... ok (5.580s) 2023-01-11T21:59:39.9255108Z test_mean (__main__.TestJit) ... ok (1.512s) 2023-01-11T21:59:39.9255338Z test_rsample (__main__.TestJit) ... ok (0.377s) 2023-01-11T21:59:39.9255568Z test_sample (__main__.TestJit) ... ok (0.510s) 2023-01-11T21:59:39.9255787Z test_variance (__main__.TestJit) ... ok (2.586s) 2023-01-11T21:59:39.9256048Z test_entropy_exponential_family (__main__.TestKL) ... ok (0.038s) 2023-01-11T21:59:39.9256317Z test_entropy_monte_carlo (__main__.TestKL) ... ok (2.581s) 2023-01-11T21:59:39.9256552Z test_kl_edgecases (__main__.TestKL) ... ok (0.011s) 2023-01-11T21:59:39.9256802Z test_kl_exponential_family (__main__.TestKL) ... ok (0.022s) 2023-01-11T21:59:39.9257047Z test_kl_infinite (__main__.TestKL) ... ok (0.015s) 2023-01-11T21:59:39.9257369Z test_kl_lowrank_multivariate_normal (__main__.TestKL) ... ok (0.021s) 2023-01-11T21:59:39.9257651Z test_kl_lowrank_multivariate_normal_batched (__main__.TestKL) ... ok (0.016s) 2023-01-11T21:59:39.9257924Z test_kl_monte_carlo (__main__.TestKL) ... ok (0.663s) 2023-01-11T21:59:39.9258177Z test_kl_multivariate_normal (__main__.TestKL) ... ok (0.029s) 2023-01-11T21:59:39.9258438Z test_kl_multivariate_normal_batched (__main__.TestKL) ... ok (0.014s) 2023-01-11T21:59:39.9258735Z test_kl_multivariate_normal_batched_broadcasted (__main__.TestKL) ... ok (0.014s) 2023-01-11T21:59:39.9259005Z test_kl_shape (__main__.TestKL) ... ok (0.046s) 2023-01-11T21:59:39.9259230Z test_kl_transformed (__main__.TestKL) ... ok (0.011s) 2023-01-11T21:59:39.9259532Z test_lazy_logits_initialization (__main__.TestLazyLogitsInitialization) ... ok (0.004s) 2023-01-11T21:59:39.9259886Z test_lazy_probs_initialization (__main__.TestLazyLogitsInitialization) ... ok (0.002s) 2023-01-11T21:59:39.9260219Z test_bernoulli_gradient (__main__.TestNumericalStability) ... ok (0.014s) 2023-01-11T21:59:39.9260525Z test_bernoulli_with_logits_overflow (__main__.TestNumericalStability) ... ok (0.003s) 2023-01-11T21:59:39.9260857Z test_bernoulli_with_logits_underflow (__main__.TestNumericalStability) ... ok (0.003s) 2023-01-11T21:59:39.9261179Z test_categorical_log_prob (__main__.TestNumericalStability) ... ok (0.002s) 2023-01-11T21:59:39.9261490Z test_categorical_log_prob_with_logits (__main__.TestNumericalStability) ... ok (0.002s) 2023-01-11T21:59:39.9261822Z test_continuous_bernoulli_gradient (__main__.TestNumericalStability) ... ok (0.028s) 2023-01-11T21:59:39.9262165Z test_continuous_bernoulli_with_logits_overflow (__main__.TestNumericalStability) ... ok (0.004s) 2023-01-11T21:59:39.9262603Z test_continuous_bernoulli_with_logits_underflow (__main__.TestNumericalStability) ... ok (0.004s) 2023-01-11T21:59:39.9262926Z test_multinomial_log_prob (__main__.TestNumericalStability) ... ok (0.002s) 2023-01-11T21:59:39.9263249Z test_multinomial_log_prob_with_logits (__main__.TestNumericalStability) ... ok (0.002s) 2023-01-11T21:59:39.9263545Z test_beta_wrt_alpha (__main__.TestRsample) ... ok (0.044s) 2023-01-11T21:59:39.9263794Z test_beta_wrt_beta (__main__.TestRsample) ... ok (0.043s) 2023-01-11T21:59:39.9264037Z test_chi2 (__main__.TestRsample) ... ok (0.024s) 2023-01-11T21:59:39.9264304Z test_dirichlet_multivariate (__main__.TestRsample) ... ok (0.503s) 2023-01-11T21:59:39.9264588Z test_dirichlet_on_diagonal (__main__.TestRsample) ... ok (0.046s) 2023-01-11T21:59:39.9264855Z test_dirichlet_tangent_field (__main__.TestRsample) ... ok (0.083s) 2023-01-11T21:59:39.9265111Z test_gamma (__main__.TestRsample) ... ok (0.023s) 2023-01-11T21:59:39.9265358Z test_invalid (__main__.TestValidation) ... ok (0.019s) 2023-01-11T21:59:39.9265614Z test_invalid_log_probs_arg (__main__.TestValidation) ... ok (0.279s) 2023-01-11T21:59:39.9265879Z test_valid (__main__.TestValidation) ... ok (0.012s) 2023-01-11T21:59:39.9266162Z test_warning_unimplemented_constraints (__main__.TestValidation) ... ok (0.007s) 2023-01-11T21:59:39.9266339Z 2023-01-11T21:59:39.9266587Z ---------------------------------------------------------------------- 2023-01-11T21:59:39.9266820Z Ran 219 tests in 39.189s 2023-01-11T21:59:39.9266935Z 2023-01-11T21:59:39.9267006Z OK (skipped=5) 2023-01-11T21:59:39.9267111Z 2023-01-11T21:59:39.9267195Z Generating XML reports... 2023-01-11T21:59:39.9267623Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestAgainstScipy-20230111215900.xml 2023-01-11T21:59:39.9268192Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestConstraints-20230111215900.xml 2023-01-11T21:59:39.9268774Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributionShapes-20230111215900.xml 2023-01-11T21:59:39.9269382Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributions-20230111215900.xml 2023-01-11T21:59:39.9269915Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestFunctors-20230111215900.xml 2023-01-11T21:59:39.9270443Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestJit-20230111215900.xml 2023-01-11T21:59:39.9270952Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestKL-20230111215900.xml 2023-01-11T21:59:39.9271533Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestLazyLogitsInitialization-20230111215900.xml 2023-01-11T21:59:39.9272130Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestNumericalStability-20230111215900.xml 2023-01-11T21:59:39.9272687Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestRsample-20230111215900.xml 2023-01-11T21:59:39.9273225Z Generated XML report: test-reports/python-unittest/distributions.test_distributions/TEST-TestValidation-20230111215900.xml 2023-01-11T21:59:39.9273469Z 2023-01-11T21:59:39.9273789Z ##[endgroup] 2023-01-11T21:59:39.9274243Z FINISHED PRINTING LOG FILE of distributions/test_distributions (/var/lib/jenkins/workspace/test/test-reports/distributions-test_distributions_n99q6cs3) 2023-01-11T21:59:39.9274501Z 2023-01-11T21:59:39.9274670Z Running nn/test_convolution ... [2023-01-11 21:59:39.914082] 2023-01-11T21:59:39.9275145Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_convolution.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:59:39.914374] 2023-01-11T21:59:47.7655476Z 2023-01-11T21:59:47.7656166Z Expand the folded group to see the log file of nn/test_convolution 2023-01-11T21:59:47.7657159Z ##[group]PRINTING LOG FILE of nn/test_convolution (/var/lib/jenkins/workspace/test/test-reports/nn-test_convolution_uccajnut) 2023-01-11T21:59:47.7657540Z 2023-01-11T21:59:47.7657669Z Running tests... 2023-01-11T21:59:47.7658316Z ---------------------------------------------------------------------- 2023-01-11T21:59:47.7658707Z Test results will be stored in test-reports/python-unittest/nn.test_convolution 2023-01-11T21:59:47.7659684Z test_Conv1d_module_same_padding (__main__.TestConvolutionNN) ... /var/lib/jenkins/workspace/test/nn/test_convolution.py:152: UserWarning: Using padding='same' with even kernel lengths and odd dilation may require a zero-padded copy of the input be created (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Convolution.cpp:997.) 2023-01-11T21:59:47.7660755Z expect = F.conv1d(x, module.weight, module.bias, padding='same') 2023-01-11T21:59:47.7661125Z ok (0.005s) 2023-01-11T21:59:47.7661520Z test_Conv2d_1x1 (__main__.TestConvolutionNN) ... ok (0.005s) 2023-01-11T21:59:47.7661887Z test_Conv2d_OneDNN (__main__.TestConvolutionNN) ... ok (0.018s) 2023-01-11T21:59:47.7662224Z test_Conv2d_backward_twice (__main__.TestConvolutionNN) ... ok (0.007s) 2023-01-11T21:59:47.7662597Z test_Conv2d_groups_nobias (__main__.TestConvolutionNN) ... ok (0.041s) 2023-01-11T21:59:47.7662922Z test_Conv2d_groups_nobias_v2 (__main__.TestConvolutionNN) ... ok (0.005s) 2023-01-11T21:59:47.7663436Z test_Conv2d_inconsistent_types (__main__.TestConvolutionNN) ... ok (0.008s) 2023-01-11T21:59:47.7663787Z test_Conv2d_inconsistent_types_on_GPU_with_cudnn (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:59:47.7664177Z test_Conv2d_inconsistent_types_on_GPU_without_cudnn (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:59:47.7664502Z test_Conv2d_missing_argument (__main__.TestConvolutionNN) ... ok (0.002s) 2023-01-11T21:59:47.7664801Z test_Conv2d_module_same_padding (__main__.TestConvolutionNN) ... ok (0.004s) 2023-01-11T21:59:47.7665101Z test_Conv3d_groups_nobias (__main__.TestConvolutionNN) ... ok (0.005s) 2023-01-11T21:59:47.7665392Z test_Conv3d_groups_wbias (__main__.TestConvolutionNN) ... ok (0.005s) 2023-01-11T21:59:47.7665728Z test_Conv3d_module_same_padding (__main__.TestConvolutionNN) ... ok (0.004s) 2023-01-11T21:59:47.7666067Z test_ConvTranspose2d_half_cublas_gemm (__main__.TestConvolutionNN) ... skip: CUDA not available (0.000s) 2023-01-11T21:59:47.7666408Z test_ConvTranspose2d_output_size (__main__.TestConvolutionNN) ... ok (0.003s) 2023-01-11T21:59:47.7666732Z test_ConvTranspose2d_output_size_downsample_upsample (__main__.TestConvolutionNN) ... ok (4.116s) 2023-01-11T21:59:47.7667071Z test_ConvTranspose3d_correct_output_size (__main__.TestConvolutionNN) ... ok (0.001s) 2023-01-11T21:59:47.7667389Z test_conv2d_discontiguous_weight (__main__.TestConvolutionNN) ... ok (0.045s) 2023-01-11T21:59:47.7667684Z test_conv_backcompat (__main__.TestConvolutionNN) ... ok (0.010s) 2023-01-11T21:59:47.7667998Z test_conv_cudnn_memory_layout_dominance (__main__.TestConvolutionNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:59:47.7668323Z test_conv_invalid_groups (__main__.TestConvolutionNN) ... ok (0.001s) 2023-01-11T21:59:47.7668647Z test_conv_modules_raise_error_on_incorrect_input_size (__main__.TestConvolutionNN) ... ok (0.095s) 2023-01-11T21:59:47.7668951Z test_conv_padding_mode (__main__.TestConvolutionNN) ... ok (0.001s) 2023-01-11T21:59:47.7669958Z test_conv_shapecheck (__main__.TestConvolutionNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1120: UserWarning: Complex modules are a new feature under active development whose design may change, and some modules might not work as expected when using complex tensors as parameters or buffers. Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml if a complex module does not work as expected. 2023-01-11T21:59:47.7670574Z warnings.warn( 2023-01-11T21:59:47.7670746Z ok (0.173s) 2023-01-11T21:59:47.7670952Z test_conv_tbc (__main__.TestConvolutionNN) ... ok (0.008s) 2023-01-11T21:59:47.7671273Z test_cudnn_non_contiguous (__main__.TestConvolutionNN) ... skip: CUDA not available (0.001s) 2023-01-11T21:59:47.7671618Z test_cudnn_noncontiguous_weight (__main__.TestConvolutionNN) ... skip: CUDA unavailable (0.000s) 2023-01-11T21:59:47.7671937Z test_functional_grad_conv (__main__.TestConvolutionNN) ... ok (0.004s) 2023-01-11T21:59:47.7672232Z test_functional_grad_conv2d (__main__.TestConvolutionNN) ... ok (0.136s) 2023-01-11T21:59:47.7672509Z test_grad_conv1d_input (__main__.TestConvolutionNN) ... ok (0.057s) 2023-01-11T21:59:47.7672793Z test_grad_conv1d_weight (__main__.TestConvolutionNN) ... ok (0.044s) 2023-01-11T21:59:47.7673078Z test_grad_conv2d_input (__main__.TestConvolutionNN) ... ok (0.066s) 2023-01-11T21:59:47.7673352Z test_grad_conv2d_weight (__main__.TestConvolutionNN) ... ok (0.056s) 2023-01-11T21:59:47.7673631Z test_grad_conv3d_input (__main__.TestConvolutionNN) ... ok (0.076s) 2023-01-11T21:59:47.7673915Z test_grad_conv3d_weight (__main__.TestConvolutionNN) ... ok (0.070s) 2023-01-11T21:59:47.7674232Z test_grouped_conv_cudnn_nhwc_support (__main__.TestConvolutionNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:59:47.7675239Z test_invalid_conv1d (__main__.TestConvolutionNN) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1120: UserWarning: Complex modules are a new feature under active development whose design may change, and some modules might not work as expected when using complex tensors as parameters or buffers. Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml if a complex module does not work as expected. 2023-01-11T21:59:47.7675890Z warnings.warn( 2023-01-11T21:59:47.7676059Z ok (0.077s) 2023-01-11T21:59:47.7676280Z test_invalid_conv2d (__main__.TestConvolutionNN) ... ok (0.152s) 2023-01-11T21:59:47.7676543Z test_invalid_conv3d (__main__.TestConvolutionNN) ... ok (0.075s) 2023-01-11T21:59:47.7676828Z test_mismatch_shape_conv2d (__main__.TestConvolutionNN) ... ok (0.007s) 2023-01-11T21:59:47.7677110Z test_nnpack_conv (__main__.TestConvolutionNN) ... ok (0.296s) 2023-01-11T21:59:47.7677456Z test_thnn_conv_strided_padded_dilated (__main__.TestConvolutionNN) ... skip: CUDA not available (0.002s) 2023-01-11T21:59:47.7677654Z 2023-01-11T21:59:47.7677858Z ---------------------------------------------------------------------- 2023-01-11T21:59:47.7678097Z Ran 43 tests in 5.687s 2023-01-11T21:59:47.7678209Z 2023-01-11T21:59:47.7678281Z OK (skipped=8) 2023-01-11T21:59:47.7678373Z 2023-01-11T21:59:47.7678457Z Generating XML reports... 2023-01-11T21:59:47.7678874Z Generated XML report: test-reports/python-unittest/nn.test_convolution/TEST-TestConvolutionNN-20230111215941.xml 2023-01-11T21:59:47.7679110Z 2023-01-11T21:59:47.7679374Z ##[endgroup] 2023-01-11T21:59:47.7679751Z FINISHED PRINTING LOG FILE of nn/test_convolution (/var/lib/jenkins/workspace/test/test-reports/nn-test_convolution_uccajnut) 2023-01-11T21:59:47.7679974Z 2023-01-11T21:59:47.7680135Z Running nn/test_pooling ... [2023-01-11 21:59:47.765811] 2023-01-11T21:59:47.7680599Z Executing ['/opt/conda/bin/python', '-bb', 'nn/test_pooling.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:59:47.766078] 2023-01-11T21:59:50.0713993Z 2023-01-11T21:59:50.0714544Z Expand the folded group to see the log file of nn/test_pooling 2023-01-11T21:59:50.0715651Z ##[group]PRINTING LOG FILE of nn/test_pooling (/var/lib/jenkins/workspace/test/test-reports/nn-test_pooling_dmmwoj91) 2023-01-11T21:59:50.0716151Z 2023-01-11T21:59:50.0716236Z Running tests... 2023-01-11T21:59:50.0716735Z ---------------------------------------------------------------------- 2023-01-11T21:59:50.0717227Z Test results will be stored in test-reports/python-unittest/nn.test_pooling 2023-01-11T21:59:50.0717588Z test_avg_pool1d_ceil_mode (__main__.TestAvgPool) ... ok (0.002s) 2023-01-11T21:59:50.0717956Z test_avg_pool2d_ceil_mode (__main__.TestAvgPool) ... ok (0.001s) 2023-01-11T21:59:50.0718426Z test_avg_pool3d_ceil_mode (__main__.TestAvgPool) ... ok (0.001s) 2023-01-11T21:59:50.0718905Z test_doubletensor_avg_pool2d (__main__.TestAvgPool) ... ok (0.007s) 2023-01-11T21:59:50.0719258Z test_doubletensor_avg_pool2d_with_divisor (__main__.TestAvgPool) ... ok (0.005s) 2023-01-11T21:59:50.0719596Z test_doubletensor_avg_pool3d (__main__.TestAvgPool) ... ok (0.046s) 2023-01-11T21:59:50.0719883Z test_doubletensor_avg_pool3d_with_divisor (__main__.TestAvgPool) ... ok (0.143s) 2023-01-11T21:59:50.0720269Z test_MaxUnpool2d_output_size (__main__.TestPoolingNN) ... ok (0.007s) 2023-01-11T21:59:50.0720560Z test_adaptive_pooling_avg_nhwc (__main__.TestPoolingNN) ... ok (0.002s) 2023-01-11T21:59:50.0720894Z test_adaptive_pooling_avg_nhwc_launch_config_backward (__main__.TestPoolingNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:59:50.0721278Z test_adaptive_pooling_avg_nhwc_launch_config_forward (__main__.TestPoolingNN) ... skip: CUDA unavailable (0.001s) 2023-01-11T21:59:50.0721633Z test_adaptive_pooling_avg_nhwc_non_contiguous (__main__.TestPoolingNN) ... ok (0.002s) 2023-01-11T21:59:50.0721944Z test_adaptive_pooling_bfloat16 (__main__.TestPoolingNN) ... ok (0.005s) 2023-01-11T21:59:50.0722224Z test_adaptive_pooling_input_size (__main__.TestPoolingNN) ... ok (0.001s) 2023-01-11T21:59:50.0722729Z test_adaptive_pooling_size_none (__main__.TestPoolingNN) ... ok (0.001s) 2023-01-11T21:59:50.0723025Z test_adaptive_pooling_size_overflow (__main__.TestPoolingNN) ... ok (0.009s) 2023-01-11T21:59:50.0723291Z test_max_unpool (__main__.TestPoolingNN) ... ok (0.222s) 2023-01-11T21:59:50.0723558Z test_max_unpool2d_nhwc_cpu (__main__.TestPoolingNN) ... ok (0.002s) 2023-01-11T21:59:50.0723715Z 2023-01-11T21:59:50.0723933Z ---------------------------------------------------------------------- 2023-01-11T21:59:50.0724169Z Ran 18 tests in 0.459s 2023-01-11T21:59:50.0724283Z 2023-01-11T21:59:50.0724353Z OK (skipped=2) 2023-01-11T21:59:50.0724458Z 2023-01-11T21:59:50.0724541Z Generating XML reports... 2023-01-11T21:59:50.0724944Z Generated XML report: test-reports/python-unittest/nn.test_pooling/TEST-TestAvgPool-20230111215949.xml 2023-01-11T21:59:50.0725496Z Generated XML report: test-reports/python-unittest/nn.test_pooling/TEST-TestPoolingNN-20230111215949.xml 2023-01-11T21:59:50.0725721Z 2023-01-11T21:59:50.0725986Z ##[endgroup] 2023-01-11T21:59:50.0726369Z FINISHED PRINTING LOG FILE of nn/test_pooling (/var/lib/jenkins/workspace/test/test-reports/nn-test_pooling_dmmwoj91) 2023-01-11T21:59:50.0726584Z 2023-01-11T21:59:50.0726739Z Running test_cpp_api_parity ... [2023-01-11 21:59:50.071548] 2023-01-11T21:59:50.0727211Z Executing ['/opt/conda/bin/python', '-bb', 'test_cpp_api_parity.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 21:59:50.071800] 2023-01-11T22:00:01.6412027Z 2023-01-11T22:00:01.6412583Z Expand the folded group to see the log file of test_cpp_api_parity 2023-01-11T22:00:01.6413617Z ##[group]PRINTING LOG FILE of test_cpp_api_parity (/var/lib/jenkins/workspace/test/test-reports/test_cpp_api_parity_cteeoalo) 2023-01-11T22:00:01.6414532Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:01.6414799Z 2023-01-11T22:00:01.6414939Z Running tests... 2023-01-11T22:00:01.6415452Z ---------------------------------------------------------------------- 2023-01-11T22:00:01.6416126Z Test results will be stored in test-reports/python-unittest/test_cpp_api_parity 2023-01-11T22:00:01.6416647Z test_torch_nn_AdaptiveAvgPool1d (__main__.TestCppApiParity) ... ok (0.029s) 2023-01-11T22:00:01.6417222Z test_torch_nn_AdaptiveAvgPool1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6417815Z test_torch_nn_AdaptiveAvgPool1d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6418407Z test_torch_nn_AdaptiveAvgPool1d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6419041Z test_torch_nn_AdaptiveAvgPool1d_one_output (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6419676Z test_torch_nn_AdaptiveAvgPool1d_one_output_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6420215Z test_torch_nn_AdaptiveAvgPool2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6420827Z test_torch_nn_AdaptiveAvgPool2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6421403Z test_torch_nn_AdaptiveAvgPool2d_single (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6422027Z test_torch_nn_AdaptiveAvgPool2d_single_1x1output (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6422742Z test_torch_nn_AdaptiveAvgPool2d_single_1x1output_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6423405Z test_torch_nn_AdaptiveAvgPool2d_single_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6423978Z test_torch_nn_AdaptiveAvgPool2d_tuple (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6424599Z test_torch_nn_AdaptiveAvgPool2d_tuple_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6425265Z test_torch_nn_AdaptiveAvgPool2d_tuple_none (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6426209Z test_torch_nn_AdaptiveAvgPool2d_tuple_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6426868Z test_torch_nn_AdaptiveAvgPool3d_last_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6427470Z test_torch_nn_AdaptiveAvgPool3d_last_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6428083Z test_torch_nn_AdaptiveAvgPool3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6428766Z test_torch_nn_AdaptiveAvgPool3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6429257Z test_torch_nn_AdaptiveAvgPool3d_single (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6429862Z test_torch_nn_AdaptiveAvgPool3d_single_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6430418Z test_torch_nn_AdaptiveAvgPool3d_tuple (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6430977Z test_torch_nn_AdaptiveAvgPool3d_tuple_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6431655Z test_torch_nn_AdaptiveAvgPool3d_tuple_none (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6432275Z test_torch_nn_AdaptiveAvgPool3d_tuple_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6432945Z test_torch_nn_AdaptiveMaxPool1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6433337Z test_torch_nn_AdaptiveMaxPool1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6434023Z test_torch_nn_AdaptiveMaxPool1d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6434424Z test_torch_nn_AdaptiveMaxPool1d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6434772Z test_torch_nn_AdaptiveMaxPool2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6435138Z test_torch_nn_AdaptiveMaxPool2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6435496Z test_torch_nn_AdaptiveMaxPool2d_single (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6435851Z test_torch_nn_AdaptiveMaxPool2d_single_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6436242Z test_torch_nn_AdaptiveMaxPool2d_tuple (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6436619Z test_torch_nn_AdaptiveMaxPool2d_tuple_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6437270Z test_torch_nn_AdaptiveMaxPool2d_tuple_none (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6437752Z test_torch_nn_AdaptiveMaxPool2d_tuple_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6438100Z test_torch_nn_AdaptiveMaxPool3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6438472Z test_torch_nn_AdaptiveMaxPool3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6438828Z test_torch_nn_AdaptiveMaxPool3d_single (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6439171Z test_torch_nn_AdaptiveMaxPool3d_single_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6439536Z test_torch_nn_AdaptiveMaxPool3d_single_nonatomic (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6439909Z test_torch_nn_AdaptiveMaxPool3d_single_nonatomic_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6440271Z test_torch_nn_AdaptiveMaxPool3d_tuple (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6440616Z test_torch_nn_AdaptiveMaxPool3d_tuple_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6440978Z test_torch_nn_AdaptiveMaxPool3d_tuple_nonatomic (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6441411Z test_torch_nn_AdaptiveMaxPool3d_tuple_nonatomic_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6441776Z test_torch_nn_AdaptiveMaxPool3d_tuple_none (__main__.TestCppApiParity) ... ok (0.018s) 2023-01-11T22:00:01.6442121Z test_torch_nn_AdaptiveMaxPool3d_tuple_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6442451Z test_torch_nn_AvgPool1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6442772Z test_torch_nn_AvgPool1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6443085Z test_torch_nn_AvgPool1d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6443471Z test_torch_nn_AvgPool1d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6443810Z test_torch_nn_AvgPool1d_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6444146Z test_torch_nn_AvgPool1d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6444465Z test_torch_nn_AvgPool1d_stride_pad (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6444804Z test_torch_nn_AvgPool1d_stride_pad_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6445129Z test_torch_nn_AvgPool2d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6445432Z test_torch_nn_AvgPool2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6445754Z test_torch_nn_AvgPool2d_divisor (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6446089Z test_torch_nn_AvgPool2d_divisor_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6446432Z test_torch_nn_AvgPool2d_divisor_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6446765Z test_torch_nn_AvgPool2d_divisor_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6447115Z test_torch_nn_AvgPool2d_divisor_stride_pad (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6447467Z test_torch_nn_AvgPool2d_divisor_stride_pad_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6447808Z test_torch_nn_AvgPool2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6448137Z test_torch_nn_AvgPool2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6448470Z test_torch_nn_AvgPool2d_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6448803Z test_torch_nn_AvgPool2d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6449320Z test_torch_nn_AvgPool2d_stride_pad (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6449666Z test_torch_nn_AvgPool2d_stride_pad_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6449992Z test_torch_nn_AvgPool3d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6450308Z test_torch_nn_AvgPool3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6450618Z test_torch_nn_AvgPool3d_divisor (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6450951Z test_torch_nn_AvgPool3d_divisor_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6451290Z test_torch_nn_AvgPool3d_divisor_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6451614Z test_torch_nn_AvgPool3d_divisor_stride1_pad0_gpu_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6451993Z test_torch_nn_AvgPool3d_divisor_stride1_pad0_gpu_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6452380Z test_torch_nn_AvgPool3d_divisor_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6452804Z test_torch_nn_AvgPool3d_divisor_stride_pad (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6453145Z test_torch_nn_AvgPool3d_divisor_stride_pad_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6453521Z test_torch_nn_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6453914Z test_torch_nn_AvgPool3d_divisor_stride_pad_gpu_fixedkw_output_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6454305Z test_torch_nn_AvgPool3d_divisor_stride_pad_gpu_general_output (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6454686Z test_torch_nn_AvgPool3d_divisor_stride_pad_gpu_general_output_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6455121Z test_torch_nn_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6455522Z test_torch_nn_AvgPool3d_divisor_stride_pad_gpu_input_nooverlap_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6455886Z test_torch_nn_AvgPool3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6456218Z test_torch_nn_AvgPool3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6456549Z test_torch_nn_AvgPool3d_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6456869Z test_torch_nn_AvgPool3d_stride1_pad0_gpu_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6457222Z test_torch_nn_AvgPool3d_stride1_pad0_gpu_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6457590Z test_torch_nn_AvgPool3d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6457925Z test_torch_nn_AvgPool3d_stride_pad (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6458265Z test_torch_nn_AvgPool3d_stride_pad_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6458612Z test_torch_nn_AvgPool3d_stride_pad_gpu_fixedkw_output (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6458992Z test_torch_nn_AvgPool3d_stride_pad_gpu_fixedkw_output_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6459370Z test_torch_nn_AvgPool3d_stride_pad_gpu_general_output (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6459751Z test_torch_nn_AvgPool3d_stride_pad_gpu_general_output_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6460117Z test_torch_nn_AvgPool3d_stride_pad_gpu_input_nooverlap (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6460496Z test_torch_nn_AvgPool3d_stride_pad_gpu_input_nooverlap_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6460835Z test_torch_nn_BCELoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6461147Z test_torch_nn_BCELoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6461477Z test_torch_nn_BCELoss_no_batch_dim_mean (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6461832Z test_torch_nn_BCELoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6462191Z test_torch_nn_BCELoss_no_batch_dim_none (__main__.TestCppApiParity) ... expected failure (0.007s) 2023-01-11T22:00:01.6462603Z test_torch_nn_BCELoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6462963Z test_torch_nn_BCELoss_no_batch_dim_sum (__main__.TestCppApiParity) ... expected failure (0.007s) 2023-01-11T22:00:01.6463318Z test_torch_nn_BCELoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6463662Z test_torch_nn_BCELoss_scalar_weights (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6464037Z test_torch_nn_BCELoss_scalar_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6464372Z test_torch_nn_BCELoss_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6464705Z test_torch_nn_BCELoss_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6465041Z test_torch_nn_BCEWithLogitsLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6465371Z test_torch_nn_BCEWithLogitsLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6465744Z test_torch_nn_BCEWithLogitsLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6466169Z test_torch_nn_BCEWithLogitsLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6466545Z test_torch_nn_BCEWithLogitsLoss_no_batch_dim_none (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6466934Z test_torch_nn_BCEWithLogitsLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6467323Z test_torch_nn_BCEWithLogitsLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6467716Z test_torch_nn_BCEWithLogitsLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6468072Z test_torch_nn_BCEWithLogitsLoss_scalar_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6468447Z test_torch_nn_BCEWithLogitsLoss_scalar_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6468809Z test_torch_nn_BCEWithLogitsLoss_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6469170Z test_torch_nn_BCEWithLogitsLoss_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6469506Z test_torch_nn_BatchNorm1d_3d_input (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6469846Z test_torch_nn_BatchNorm1d_3d_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6470195Z test_torch_nn_BatchNorm1d_3d_input_not_affine (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6470543Z test_torch_nn_BatchNorm1d_3d_input_not_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6470884Z test_torch_nn_BatchNorm1d_affine (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6471224Z test_torch_nn_BatchNorm1d_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6471574Z test_torch_nn_BatchNorm1d_affine_simple_average (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6471936Z test_torch_nn_BatchNorm1d_affine_simple_average_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6472291Z test_torch_nn_BatchNorm1d_not_affine (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6472635Z test_torch_nn_BatchNorm1d_not_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6472984Z test_torch_nn_BatchNorm1d_not_tracking_stats (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6473767Z test_torch_nn_BatchNorm1d_not_tracking_stats_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6474109Z test_torch_nn_BatchNorm1d_zero_batch (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6474451Z test_torch_nn_BatchNorm1d_zero_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6474777Z test_torch_nn_BatchNorm2d (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6475080Z test_torch_nn_BatchNorm2d_2d_simple_average (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6475436Z test_torch_nn_BatchNorm2d_2d_simple_average_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6475835Z test_torch_nn_BatchNorm2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6476149Z test_torch_nn_BatchNorm2d_momentum (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6476483Z test_torch_nn_BatchNorm2d_momentum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6476815Z test_torch_nn_BatchNorm2d_not_affine (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6477157Z test_torch_nn_BatchNorm2d_not_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6477494Z test_torch_nn_BatchNorm2d_not_tracking_stats (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6477895Z test_torch_nn_BatchNorm2d_not_tracking_stats_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6478236Z test_torch_nn_BatchNorm2d_zero_batch (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6478584Z test_torch_nn_BatchNorm2d_zero_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6478894Z test_torch_nn_BatchNorm3d (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6479205Z test_torch_nn_BatchNorm3d_3d_simple_average (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6479560Z test_torch_nn_BatchNorm3d_3d_simple_average_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6479908Z test_torch_nn_BatchNorm3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6480233Z test_torch_nn_BatchNorm3d_momentum (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6480577Z test_torch_nn_BatchNorm3d_momentum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6480910Z test_torch_nn_BatchNorm3d_not_affine (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6481238Z test_torch_nn_BatchNorm3d_not_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6481580Z test_torch_nn_BatchNorm3d_not_tracking_stats (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6481936Z test_torch_nn_BatchNorm3d_not_tracking_stats_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6482265Z test_torch_nn_BatchNorm3d_zero_batch (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6482601Z test_torch_nn_BatchNorm3d_zero_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6482916Z test_torch_nn_CELU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6483223Z test_torch_nn_CELU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6483519Z test_torch_nn_CELU_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6483841Z test_torch_nn_CELU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6484187Z test_torch_nn_CTCLoss_2d_int_target_lengths_tensors (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6484553Z test_torch_nn_CTCLoss_2d_int_target_lengths_tensors_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6484892Z test_torch_nn_CTCLoss_2d_lengths_tensors (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6485236Z test_torch_nn_CTCLoss_2d_lengths_tensors_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6485577Z test_torch_nn_CTCLoss_lengths_tensors (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6485910Z test_torch_nn_CTCLoss_lengths_tensors_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6486237Z test_torch_nn_ConstantPad1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6486543Z test_torch_nn_ConstantPad1d_batch (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6486917Z test_torch_nn_ConstantPad1d_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6487246Z test_torch_nn_ConstantPad1d_complex (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6487590Z test_torch_nn_ConstantPad1d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6487949Z test_torch_nn_ConstantPad1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6488272Z test_torch_nn_ConstantPad2d (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6488569Z test_torch_nn_ConstantPad2d_complex (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6488945Z test_torch_nn_ConstantPad2d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6489492Z test_torch_nn_ConstantPad2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6489822Z test_torch_nn_ConstantPad2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6490173Z test_torch_nn_ConstantPad2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6490506Z test_torch_nn_ConstantPad3d (__main__.TestCppApiParity) ... ok (0.034s) 2023-01-11T22:00:01.6490820Z test_torch_nn_ConstantPad3d_complex (__main__.TestCppApiParity) ... ok (0.041s) 2023-01-11T22:00:01.6491155Z test_torch_nn_ConstantPad3d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6491513Z test_torch_nn_ConstantPad3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6491848Z test_torch_nn_ConstantPad3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.021s) 2023-01-11T22:00:01.6492189Z test_torch_nn_ConstantPad3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6492514Z test_torch_nn_Conv1d (__main__.TestCppApiParity) ... ok (0.033s) 2023-01-11T22:00:01.6492819Z test_torch_nn_Conv1d_circular_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6493175Z test_torch_nn_Conv1d_circular_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6493514Z test_torch_nn_Conv1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6493826Z test_torch_nn_Conv1d_dilated (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6494150Z test_torch_nn_Conv1d_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6494470Z test_torch_nn_Conv1d_groups (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6494784Z test_torch_nn_Conv1d_groups_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6495098Z test_torch_nn_Conv1d_pad1 (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6495423Z test_torch_nn_Conv1d_pad1_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6495729Z test_torch_nn_Conv1d_pad1size1 (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6496057Z test_torch_nn_Conv1d_pad1size1_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6496374Z test_torch_nn_Conv1d_pad2 (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6496695Z test_torch_nn_Conv1d_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6496999Z test_torch_nn_Conv1d_pad2size1 (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6497327Z test_torch_nn_Conv1d_pad2size1_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6497648Z test_torch_nn_Conv1d_pad_same (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6498563Z test_torch_nn_Conv1d_pad_same2 (__main__.TestCppApiParity) ... /opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py:309: UserWarning: Using padding='same' with even kernel lengths and odd dilation may require a zero-padded copy of the input be created (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/Convolution.cpp:997.) 2023-01-11T22:00:01.6499197Z return F.conv1d(input, weight, bias, self.stride, 2023-01-11T22:00:01.6499402Z ok (0.012s) 2023-01-11T22:00:01.6499667Z test_torch_nn_Conv1d_pad_same2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6500023Z test_torch_nn_Conv1d_pad_same_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6500345Z test_torch_nn_Conv1d_pad_same_dilated (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6500750Z test_torch_nn_Conv1d_pad_same_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6501086Z test_torch_nn_Conv1d_pad_valid (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6501406Z test_torch_nn_Conv1d_pad_valid_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6501743Z test_torch_nn_Conv1d_reflect_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6502096Z test_torch_nn_Conv1d_reflect_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6502516Z test_torch_nn_Conv1d_replicate_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6502867Z test_torch_nn_Conv1d_replicate_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6503201Z test_torch_nn_Conv1d_stride (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6503527Z test_torch_nn_Conv1d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6503839Z test_torch_nn_Conv1d_zero_batch (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6504171Z test_torch_nn_Conv1d_zero_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6504506Z test_torch_nn_Conv1d_zeros_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6504852Z test_torch_nn_Conv1d_zeros_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6505159Z test_torch_nn_Conv2d (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6505462Z test_torch_nn_Conv2d_circular_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6505818Z test_torch_nn_Conv2d_circular_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6506171Z test_torch_nn_Conv2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6506477Z test_torch_nn_Conv2d_depthwise (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6506808Z test_torch_nn_Conv2d_depthwise_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6507147Z test_torch_nn_Conv2d_depthwise_dilated (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6507481Z test_torch_nn_Conv2d_depthwise_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6507819Z test_torch_nn_Conv2d_depthwise_padded (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6508172Z test_torch_nn_Conv2d_depthwise_padded_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6508520Z test_torch_nn_Conv2d_depthwise_strided (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6508853Z test_torch_nn_Conv2d_depthwise_strided_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6509204Z test_torch_nn_Conv2d_depthwise_with_multiplier (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6509564Z test_torch_nn_Conv2d_depthwise_with_multiplier_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6509947Z test_torch_nn_Conv2d_dilated (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6510261Z test_torch_nn_Conv2d_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6510583Z test_torch_nn_Conv2d_groups (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6510907Z test_torch_nn_Conv2d_groups_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6511215Z test_torch_nn_Conv2d_groups_thnn (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6511544Z test_torch_nn_Conv2d_groups_thnn_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6511901Z test_torch_nn_Conv2d_no_bias (__main__.TestCppApiParity) ... ok (0.017s) 2023-01-11T22:00:01.6512225Z test_torch_nn_Conv2d_no_bias_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6512535Z test_torch_nn_Conv2d_pad_same (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6512863Z test_torch_nn_Conv2d_pad_same_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6513194Z test_torch_nn_Conv2d_pad_same_dilated (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6513524Z test_torch_nn_Conv2d_pad_same_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6513853Z test_torch_nn_Conv2d_pad_valid (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6514179Z test_torch_nn_Conv2d_pad_valid_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6514503Z test_torch_nn_Conv2d_padding (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6514816Z test_torch_nn_Conv2d_padding_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6515150Z test_torch_nn_Conv2d_reflect_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6515499Z test_torch_nn_Conv2d_reflect_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6515848Z test_torch_nn_Conv2d_replicate_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6516188Z test_torch_nn_Conv2d_replicate_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6516519Z test_torch_nn_Conv2d_strided (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6516841Z test_torch_nn_Conv2d_strided_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6517146Z test_torch_nn_Conv2d_zero_batch (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6517477Z test_torch_nn_Conv2d_zero_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6517807Z test_torch_nn_Conv2d_zeros_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6518149Z test_torch_nn_Conv2d_zeros_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6518451Z test_torch_nn_Conv3d (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6518738Z test_torch_nn_Conv3d_1x1x1_no_bias (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6519062Z test_torch_nn_Conv3d_1x1x1_no_bias_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6519383Z test_torch_nn_Conv3d_circular_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6519729Z test_torch_nn_Conv3d_circular_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6520078Z test_torch_nn_Conv3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6520391Z test_torch_nn_Conv3d_dilated (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6520701Z test_torch_nn_Conv3d_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6521065Z test_torch_nn_Conv3d_dilated_strided (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6521404Z test_torch_nn_Conv3d_dilated_strided_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6521726Z test_torch_nn_Conv3d_groups (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6522032Z test_torch_nn_Conv3d_groups_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6522346Z test_torch_nn_Conv3d_no_bias (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6522665Z test_torch_nn_Conv3d_no_bias_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6522999Z test_torch_nn_Conv3d_pad_same (__main__.TestCppApiParity) ... ok (0.025s) 2023-01-11T22:00:01.6523322Z test_torch_nn_Conv3d_pad_same_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6523652Z test_torch_nn_Conv3d_pad_same_dilated (__main__.TestCppApiParity) ... ok (0.025s) 2023-01-11T22:00:01.6523992Z test_torch_nn_Conv3d_pad_same_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6524309Z test_torch_nn_Conv3d_pad_valid (__main__.TestCppApiParity) ... ok (0.016s) 2023-01-11T22:00:01.6524632Z test_torch_nn_Conv3d_pad_valid_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6524968Z test_torch_nn_Conv3d_replicate_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6525311Z test_torch_nn_Conv3d_replicate_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6525641Z test_torch_nn_Conv3d_stride (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6525961Z test_torch_nn_Conv3d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6526295Z test_torch_nn_Conv3d_stride_padding (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6526622Z test_torch_nn_Conv3d_stride_padding_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6526949Z test_torch_nn_Conv3d_zero_batch (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6527278Z test_torch_nn_Conv3d_zero_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6527613Z test_torch_nn_Conv3d_zeros_stride2_pad2 (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6527945Z test_torch_nn_Conv3d_zeros_stride2_pad2_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6528274Z test_torch_nn_ConvTranspose1d (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6528612Z test_torch_nn_ConvTranspose1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6528937Z test_torch_nn_ConvTranspose1d_dilated (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6529447Z test_torch_nn_ConvTranspose1d_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6529794Z test_torch_nn_ConvTranspose1d_groups (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6530141Z test_torch_nn_ConvTranspose1d_groups_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6530473Z test_torch_nn_ConvTranspose1d_no_bias (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6530817Z test_torch_nn_ConvTranspose1d_no_bias_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6531151Z test_torch_nn_ConvTranspose2d (__main__.TestCppApiParity) ... ok (0.021s) 2023-01-11T22:00:01.6531475Z test_torch_nn_ConvTranspose2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6531811Z test_torch_nn_ConvTranspose2d_dilated (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6532226Z test_torch_nn_ConvTranspose2d_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6532573Z test_torch_nn_ConvTranspose2d_groups (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6532907Z test_torch_nn_ConvTranspose2d_groups_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6533252Z test_torch_nn_ConvTranspose2d_no_bias (__main__.TestCppApiParity) ... ok (0.019s) 2023-01-11T22:00:01.6533597Z test_torch_nn_ConvTranspose2d_no_bias_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6533930Z test_torch_nn_ConvTranspose3d (__main__.TestCppApiParity) ... ok (0.017s) 2023-01-11T22:00:01.6534249Z test_torch_nn_ConvTranspose3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6534625Z test_torch_nn_ConvTranspose3d_dilated (__main__.TestCppApiParity) ... ok (0.021s) 2023-01-11T22:00:01.6534973Z test_torch_nn_ConvTranspose3d_dilated_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6535312Z test_torch_nn_CosineEmbeddingLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6535661Z test_torch_nn_CosineEmbeddingLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6536012Z test_torch_nn_CosineEmbeddingLoss_margin (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6536380Z test_torch_nn_CosineEmbeddingLoss_margin_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6536740Z test_torch_nn_CosineEmbeddingLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6537121Z test_torch_nn_CosineEmbeddingLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6537505Z test_torch_nn_CosineEmbeddingLoss_no_batch_dim_none (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6537893Z test_torch_nn_CosineEmbeddingLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6538255Z test_torch_nn_CosineEmbeddingLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6538632Z test_torch_nn_CosineEmbeddingLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6538984Z test_torch_nn_CrossEntropyLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6539284Z test_torch_nn_CrossEntropyLoss_2d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6539632Z test_torch_nn_CrossEntropyLoss_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6539984Z test_torch_nn_CrossEntropyLoss_2d_ignore_index (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6540354Z test_torch_nn_CrossEntropyLoss_2d_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6540720Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6541112Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6541511Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6541927Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6542328Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6542821Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_sum_reduction_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6543237Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_weight (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6543686Z test_torch_nn_CrossEntropyLoss_2d_indices_target_smoothing_weight_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6544055Z test_torch_nn_CrossEntropyLoss_2d_prob_target (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6544420Z test_torch_nn_CrossEntropyLoss_2d_prob_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6544793Z test_torch_nn_CrossEntropyLoss_2d_prob_target_smoothing (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6545177Z test_torch_nn_CrossEntropyLoss_2d_prob_target_smoothing_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6545592Z test_torch_nn_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6546007Z test_torch_nn_CrossEntropyLoss_2d_prob_target_smoothing_sum_reduction_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6546416Z test_torch_nn_CrossEntropyLoss_2d_prob_target_smoothing_weight (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6546816Z test_torch_nn_CrossEntropyLoss_2d_prob_target_smoothing_weight_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6547192Z test_torch_nn_CrossEntropyLoss_2d_prob_target_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6547576Z test_torch_nn_CrossEntropyLoss_2d_prob_target_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6547942Z test_torch_nn_CrossEntropyLoss_2d_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6548291Z test_torch_nn_CrossEntropyLoss_2d_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6548665Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6549056Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6549459Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6549867Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6550278Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6550691Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6551122Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6551554Z test_torch_nn_CrossEntropyLoss_3d_indices_target_smoothing_sum_reduction_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6551952Z test_torch_nn_CrossEntropyLoss_3d_prob_target (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6552315Z test_torch_nn_CrossEntropyLoss_3d_prob_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6552684Z test_torch_nn_CrossEntropyLoss_3d_prob_target_smoothing (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6553055Z test_torch_nn_CrossEntropyLoss_3d_prob_target_smoothing_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6553449Z test_torch_nn_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6553861Z test_torch_nn_CrossEntropyLoss_3d_prob_target_smoothing_sum_reduction_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6554286Z test_torch_nn_CrossEntropyLoss_3d_prob_target_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6554649Z test_torch_nn_CrossEntropyLoss_3d_prob_target_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6555014Z test_torch_nn_CrossEntropyLoss_4d_prob_target (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6555374Z test_torch_nn_CrossEntropyLoss_4d_prob_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6555743Z test_torch_nn_CrossEntropyLoss_4d_prob_target_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6556109Z test_torch_nn_CrossEntropyLoss_4d_prob_target_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6556523Z test_torch_nn_CrossEntropyLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6556862Z test_torch_nn_CrossEntropyLoss_dim_is_3 (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6557204Z test_torch_nn_CrossEntropyLoss_dim_is_3_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6557552Z test_torch_nn_CrossEntropyLoss_higher_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6557912Z test_torch_nn_CrossEntropyLoss_higher_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6558265Z test_torch_nn_CrossEntropyLoss_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6558608Z test_torch_nn_CrossEntropyLoss_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6558941Z test_torch_nn_CrossMapLRN2d (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6559275Z test_torch_nn_CrossMapLRN2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6559586Z test_torch_nn_ELU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6559876Z test_torch_nn_ELU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6560182Z test_torch_nn_ELU_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6560498Z test_torch_nn_ELU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6560803Z test_torch_nn_Embedding (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6561113Z test_torch_nn_EmbeddingBag_discontiguous (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6561471Z test_torch_nn_EmbeddingBag_discontiguous_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6561815Z test_torch_nn_EmbeddingBag_max (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6562140Z test_torch_nn_EmbeddingBag_max_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6562486Z test_torch_nn_EmbeddingBag_max_padding_idx (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6562847Z test_torch_nn_EmbeddingBag_max_padding_idx_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6563175Z test_torch_nn_EmbeddingBag_mean (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6563509Z test_torch_nn_EmbeddingBag_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6563853Z test_torch_nn_EmbeddingBag_mean_padding_idx (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6564218Z test_torch_nn_EmbeddingBag_mean_padding_idx_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6564551Z test_torch_nn_EmbeddingBag_sparse (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6564900Z test_torch_nn_EmbeddingBag_sparse_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6565233Z test_torch_nn_EmbeddingBag_sum (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6565602Z test_torch_nn_EmbeddingBag_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6565934Z test_torch_nn_EmbeddingBag_sum_padding_idx (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6566291Z test_torch_nn_EmbeddingBag_sum_padding_idx_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6566653Z test_torch_nn_Embedding_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6566973Z test_torch_nn_Embedding_discontiguous (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6567325Z test_torch_nn_Embedding_discontiguous_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6567659Z test_torch_nn_Embedding_sparse (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6568023Z test_torch_nn_Embedding_sparse_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6568329Z test_torch_nn_Flatten (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6568637Z test_torch_nn_Flatten_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6568956Z test_torch_nn_Flatten_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6569442Z test_torch_nn_Flatten_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6569759Z test_torch_nn_Fold (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6570063Z test_torch_nn_Fold_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6570373Z test_torch_nn_Fold_int_input (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6570688Z test_torch_nn_Fold_int_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6571021Z test_torch_nn_Fold_no_batch_dim_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6571363Z test_torch_nn_Fold_no_batch_dim_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6571705Z test_torch_nn_Fold_no_batch_dim_int_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6572038Z test_torch_nn_Fold_no_batch_dim_int_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6572386Z test_torch_nn_FractionalMaxPool2d_ratio (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6572744Z test_torch_nn_FractionalMaxPool2d_ratio_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6573098Z test_torch_nn_FractionalMaxPool2d_ratio_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6573481Z test_torch_nn_FractionalMaxPool2d_ratio_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6573876Z test_torch_nn_FractionalMaxPool2d_ratio_no_batch_dim_no_random_samples (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6574296Z test_torch_nn_FractionalMaxPool2d_ratio_no_batch_dim_no_random_samples_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6574669Z test_torch_nn_FractionalMaxPool2d_size (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6575026Z test_torch_nn_FractionalMaxPool2d_size_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6575391Z test_torch_nn_FractionalMaxPool2d_size_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6575769Z test_torch_nn_FractionalMaxPool2d_size_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6576152Z test_torch_nn_FractionalMaxPool2d_size_no_batch_dim_no_random_samples (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6576573Z test_torch_nn_FractionalMaxPool2d_size_no_batch_dim_no_random_samples_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6577036Z test_torch_nn_FractionalMaxPool3d_asymsize (__main__.TestCppApiParity) ... ok (0.015s) 2023-01-11T22:00:01.6577402Z test_torch_nn_FractionalMaxPool3d_asymsize_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6577749Z test_torch_nn_FractionalMaxPool3d_ratio (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6578110Z test_torch_nn_FractionalMaxPool3d_ratio_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6578481Z test_torch_nn_FractionalMaxPool3d_ratio_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6578850Z test_torch_nn_FractionalMaxPool3d_ratio_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6579299Z test_torch_nn_FractionalMaxPool3d_ratio_no_batch_dim_no_random_samples (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6579722Z test_torch_nn_FractionalMaxPool3d_ratio_no_batch_dim_no_random_samples_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6580110Z test_torch_nn_FractionalMaxPool3d_size (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6580456Z test_torch_nn_FractionalMaxPool3d_size_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6580818Z test_torch_nn_FractionalMaxPool3d_size_no_batch_dim (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6581203Z test_torch_nn_FractionalMaxPool3d_size_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6581597Z test_torch_nn_FractionalMaxPool3d_size_no_batch_dim_no_random_samples (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6582006Z test_torch_nn_FractionalMaxPool3d_size_no_batch_dim_no_random_samples_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6582363Z test_torch_nn_GELU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6582741Z test_torch_nn_GELU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6583049Z test_torch_nn_GELU_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6583357Z test_torch_nn_GELU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6583666Z test_torch_nn_GLU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6583970Z test_torch_nn_GLU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6584262Z test_torch_nn_GLU_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6584568Z test_torch_nn_GLU_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6584892Z test_torch_nn_GroupNorm_1d_affine (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6585202Z test_torch_nn_GroupNorm_1d_affine_GN (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6585530Z test_torch_nn_GroupNorm_1d_affine_GN_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6585891Z test_torch_nn_GroupNorm_1d_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6586236Z test_torch_nn_GroupNorm_1d_affine_large_batch (__main__.TestCppApiParity) ... ok (0.019s) 2023-01-11T22:00:01.6586582Z test_torch_nn_GroupNorm_1d_affine_large_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6586925Z test_torch_nn_GroupNorm_1d_no_affine_IN (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6587269Z test_torch_nn_GroupNorm_1d_no_affine_IN_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6587614Z test_torch_nn_GroupNorm_1d_no_affine_LN (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6587943Z test_torch_nn_GroupNorm_1d_no_affine_LN_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6588325Z test_torch_nn_GroupNorm_2d_affine (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6588663Z test_torch_nn_GroupNorm_2d_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6589010Z test_torch_nn_GroupNorm_2d_affine_large_feature (__main__.TestCppApiParity) ... ok (0.026s) 2023-01-11T22:00:01.6589356Z test_torch_nn_GroupNorm_2d_affine_large_feature_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6589704Z test_torch_nn_GroupNorm_2d_no_affine_IN (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6590050Z test_torch_nn_GroupNorm_2d_no_affine_IN_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6590407Z test_torch_nn_GroupNorm_2d_no_affine_LN (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6590750Z test_torch_nn_GroupNorm_2d_no_affine_LN_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6591104Z test_torch_nn_GroupNorm_2d_no_affine_large_feature (__main__.TestCppApiParity) ... ok (0.093s) 2023-01-11T22:00:01.6591472Z test_torch_nn_GroupNorm_2d_no_affine_large_feature_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6591794Z test_torch_nn_Hardshrink (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6592112Z test_torch_nn_Hardshrink_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6592434Z test_torch_nn_Hardshrink_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6592765Z test_torch_nn_Hardshrink_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6593073Z test_torch_nn_Hardtanh (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6593386Z test_torch_nn_Hardtanh_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6593702Z test_torch_nn_Hardtanh_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6594022Z test_torch_nn_Hardtanh_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6594360Z test_torch_nn_HingeEmbeddingLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6594706Z test_torch_nn_HingeEmbeddingLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6595056Z test_torch_nn_HingeEmbeddingLoss_margin (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6595403Z test_torch_nn_HingeEmbeddingLoss_margin_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6595784Z test_torch_nn_HingeEmbeddingLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... expected failure (0.007s) 2023-01-11T22:00:01.6596175Z test_torch_nn_HingeEmbeddingLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6596568Z test_torch_nn_HingeEmbeddingLoss_no_batch_dim_none (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6596945Z test_torch_nn_HingeEmbeddingLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6597332Z test_torch_nn_HingeEmbeddingLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... expected failure (0.007s) 2023-01-11T22:00:01.6597720Z test_torch_nn_HingeEmbeddingLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6598074Z test_torch_nn_HingeEmbeddingLoss_scalar_margin (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6598451Z test_torch_nn_HingeEmbeddingLoss_scalar_margin_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6598792Z test_torch_nn_HuberLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6599110Z test_torch_nn_HuberLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6599452Z test_torch_nn_InstanceNorm1d (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6599781Z test_torch_nn_InstanceNorm1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6600123Z test_torch_nn_InstanceNorm1d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6600479Z test_torch_nn_InstanceNorm1d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6600821Z test_torch_nn_InstanceNorm1d_tracking_stats (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6601182Z test_torch_nn_InstanceNorm1d_tracking_stats_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6601587Z test_torch_nn_InstanceNorm1d_tracking_stats_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6601960Z test_torch_nn_InstanceNorm1d_tracking_stats_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6602311Z test_torch_nn_InstanceNorm2d (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6602642Z test_torch_nn_InstanceNorm2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6602980Z test_torch_nn_InstanceNorm2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6603320Z test_torch_nn_InstanceNorm2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6603670Z test_torch_nn_InstanceNorm2d_tracking_stats (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6604031Z test_torch_nn_InstanceNorm2d_tracking_stats_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6604399Z test_torch_nn_InstanceNorm2d_tracking_stats_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6604769Z test_torch_nn_InstanceNorm2d_tracking_stats_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6605122Z test_torch_nn_InstanceNorm3d (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6605453Z test_torch_nn_InstanceNorm3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6605780Z test_torch_nn_InstanceNorm3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6606130Z test_torch_nn_InstanceNorm3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6606485Z test_torch_nn_InstanceNorm3d_tracking_stats (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6606844Z test_torch_nn_InstanceNorm3d_tracking_stats_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6607202Z test_torch_nn_InstanceNorm3d_tracking_stats_no_batch_dim (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6607583Z test_torch_nn_InstanceNorm3d_tracking_stats_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6608582Z test_torch_nn_KLDivLoss (__main__.TestCppApiParity) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:2918: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. 2023-01-11T22:00:01.6609273Z warnings.warn( 2023-01-11T22:00:01.6610178Z /var/lib/jenkins/workspace/test/cpp_api_parity/module_impl_check.py:149: UserWarning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/api/include/torch/nn/functional/loss.h:57.) 2023-01-11T22:00:01.6610923Z cpp_test_fn(arg_dict_file_path, module_file_path, forward_output_file_path, backward_grad_dict_file_path) 2023-01-11T22:00:01.6611187Z ok (0.008s) 2023-01-11T22:00:01.6611448Z test_torch_nn_KLDivLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6611777Z test_torch_nn_KLDivLoss_log_target (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6612110Z test_torch_nn_KLDivLoss_log_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6612449Z test_torch_nn_KLDivLoss_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6612781Z test_torch_nn_KLDivLoss_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6613154Z test_torch_nn_KLDivLoss_scalar_log_target (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6613511Z test_torch_nn_KLDivLoss_scalar_log_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6613841Z test_torch_nn_L1Loss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6614150Z test_torch_nn_L1Loss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6614452Z test_torch_nn_L1Loss_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6614771Z test_torch_nn_L1Loss_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6615088Z test_torch_nn_LPPool1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6615395Z test_torch_nn_LPPool1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6615723Z test_torch_nn_LPPool1d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6616064Z test_torch_nn_LPPool1d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6616396Z test_torch_nn_LPPool1d_norm (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6616713Z test_torch_nn_LPPool1d_norm_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6617024Z test_torch_nn_LPPool2d (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6617341Z test_torch_nn_LPPool2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6617657Z test_torch_nn_LPPool2d_norm (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6617969Z test_torch_nn_LPPool2d_norm_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6618309Z test_torch_nn_LayerNorm_1d_elementwise_affine (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6618672Z test_torch_nn_LayerNorm_1d_elementwise_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6619028Z test_torch_nn_LayerNorm_1d_empty_elementwise_affine (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6619402Z test_torch_nn_LayerNorm_1d_empty_elementwise_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6619769Z test_torch_nn_LayerNorm_1d_no_elementwise_affine (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6620133Z test_torch_nn_LayerNorm_1d_no_elementwise_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6620479Z test_torch_nn_LayerNorm_3d_elementwise_affine (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6620836Z test_torch_nn_LayerNorm_3d_elementwise_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6621196Z test_torch_nn_LayerNorm_3d_no_affine_large_feature (__main__.TestCppApiParity) ... ok (0.052s) 2023-01-11T22:00:01.6621570Z test_torch_nn_LayerNorm_3d_no_affine_large_feature_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6621920Z test_torch_nn_LayerNorm_3d_no_elementwise_affine (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6622316Z test_torch_nn_LayerNorm_3d_no_elementwise_affine_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6622731Z test_torch_nn_LeakyReLU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6623041Z test_torch_nn_LeakyReLU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6623367Z test_torch_nn_LeakyReLU_with_negval (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6623710Z test_torch_nn_LeakyReLU_with_negval_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6624052Z test_torch_nn_LeakyReLU_with_negval_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6624434Z test_torch_nn_LeakyReLU_with_negval_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6624785Z test_torch_nn_LeakyReLU_with_zero_negval (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6625136Z test_torch_nn_LeakyReLU_with_zero_negval_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6625457Z test_torch_nn_Linear (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6625751Z test_torch_nn_Linear_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6626064Z test_torch_nn_Linear_no_batch_dim (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6626396Z test_torch_nn_Linear_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6626704Z test_torch_nn_Linear_no_bias (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6627028Z test_torch_nn_Linear_no_bias_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6627361Z test_torch_nn_LocalResponseNorm_1d (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6627705Z test_torch_nn_LocalResponseNorm_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6628048Z test_torch_nn_LocalResponseNorm_2d_uneven_pad (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6628410Z test_torch_nn_LocalResponseNorm_2d_uneven_pad_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6628775Z test_torch_nn_LocalResponseNorm_3d_custom_params (__main__.TestCppApiParity) ... ok (0.027s) 2023-01-11T22:00:01.6629135Z test_torch_nn_LocalResponseNorm_3d_custom_params_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6629473Z test_torch_nn_LogSigmoid (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6629791Z test_torch_nn_LogSigmoid_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6630115Z test_torch_nn_LogSigmoid_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6630437Z test_torch_nn_LogSigmoid_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6630759Z test_torch_nn_LogSoftmax (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6631075Z test_torch_nn_LogSoftmax_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6631403Z test_torch_nn_LogSoftmax_multiparam (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6631736Z test_torch_nn_LogSoftmax_multiparam_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6632086Z test_torch_nn_LogSoftmax_multiparam_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6632447Z test_torch_nn_LogSoftmax_multiparam_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6632787Z test_torch_nn_LogSoftmax_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6633129Z test_torch_nn_LogSoftmax_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6633490Z test_torch_nn_MSELoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6633799Z test_torch_nn_MSELoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6634095Z test_torch_nn_MSELoss_prec (__main__.TestCppApiParity) ... ok (0.039s) 2023-01-11T22:00:01.6634414Z test_torch_nn_MSELoss_prec_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6634731Z test_torch_nn_MSELoss_scalar (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6635042Z test_torch_nn_MSELoss_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6635371Z test_torch_nn_MarginRankingLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6635745Z test_torch_nn_MarginRankingLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6636097Z test_torch_nn_MarginRankingLoss_margin (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6636444Z test_torch_nn_MarginRankingLoss_margin_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6636805Z test_torch_nn_MarginRankingLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6637180Z test_torch_nn_MarginRankingLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6637550Z test_torch_nn_MarginRankingLoss_no_batch_dim_none (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6637912Z test_torch_nn_MarginRankingLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6638277Z test_torch_nn_MarginRankingLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6638649Z test_torch_nn_MarginRankingLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6638975Z test_torch_nn_MaxPool1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6639290Z test_torch_nn_MaxPool1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6639608Z test_torch_nn_MaxPool1d_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6639939Z test_torch_nn_MaxPool1d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6640260Z test_torch_nn_MaxPool2d_3d_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6640590Z test_torch_nn_MaxPool2d_3d_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6640919Z test_torch_nn_MaxPool2d_4d_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6641251Z test_torch_nn_MaxPool2d_4d_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6641556Z test_torch_nn_MaxPool3d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6641873Z test_torch_nn_MaxPool3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6642195Z test_torch_nn_MaxPool3d_stride (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6642515Z test_torch_nn_MaxPool3d_stride_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6642849Z test_torch_nn_MaxPool3d_stride_padding (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6643197Z test_torch_nn_MaxPool3d_stride_padding_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6643520Z test_torch_nn_Mish (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6643809Z test_torch_nn_Mish_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6644120Z test_torch_nn_Mish_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6644438Z test_torch_nn_Mish_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6644794Z test_torch_nn_MultiLabelMarginLoss (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6645123Z test_torch_nn_MultiLabelMarginLoss_1d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6645482Z test_torch_nn_MultiLabelMarginLoss_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6645862Z test_torch_nn_MultiLabelMarginLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6646218Z test_torch_nn_MultiLabelMarginLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6646600Z test_torch_nn_MultiLabelMarginLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6647012Z test_torch_nn_MultiLabelMarginLoss_no_batch_dim_none (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6647397Z test_torch_nn_MultiLabelMarginLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6647763Z test_torch_nn_MultiLabelMarginLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6648146Z test_torch_nn_MultiLabelMarginLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6648513Z test_torch_nn_MultiLabelSoftMarginLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6648870Z test_torch_nn_MultiLabelSoftMarginLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6649414Z test_torch_nn_MultiLabelSoftMarginLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6649820Z test_torch_nn_MultiLabelSoftMarginLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6650219Z test_torch_nn_MultiLabelSoftMarginLoss_no_batch_dim_none (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6650607Z test_torch_nn_MultiLabelSoftMarginLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6651000Z test_torch_nn_MultiLabelSoftMarginLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6651391Z test_torch_nn_MultiLabelSoftMarginLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6651773Z test_torch_nn_MultiLabelSoftMarginLoss_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6652147Z test_torch_nn_MultiLabelSoftMarginLoss_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6652496Z test_torch_nn_MultiMarginLoss (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6652806Z test_torch_nn_MultiMarginLoss_1d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6653144Z test_torch_nn_MultiMarginLoss_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6653496Z test_torch_nn_MultiMarginLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6653834Z test_torch_nn_MultiMarginLoss_margin (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6654187Z test_torch_nn_MultiMarginLoss_margin_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6654511Z test_torch_nn_MultiMarginLoss_p (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6654846Z test_torch_nn_MultiMarginLoss_p_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6655187Z test_torch_nn_MultiMarginLoss_weights (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6655542Z test_torch_nn_MultiMarginLoss_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6655863Z test_torch_nn_NLLLoss (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6656144Z test_torch_nn_NLLLoss_2d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6656522Z test_torch_nn_NLLLoss_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6656840Z test_torch_nn_NLLLoss_2d_ignore_index (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6657184Z test_torch_nn_NLLLoss_2d_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6657517Z test_torch_nn_NLLLoss_2d_weights (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6657854Z test_torch_nn_NLLLoss_2d_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6658186Z test_torch_nn_NLLLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6658553Z test_torch_nn_NLLLoss_dim_is_3 (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6658880Z test_torch_nn_NLLLoss_dim_is_3_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6659211Z test_torch_nn_NLLLoss_higher_dim (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6659531Z test_torch_nn_NLLLoss_higher_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6659864Z test_torch_nn_NLLLoss_ignore_index (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6660204Z test_torch_nn_NLLLoss_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6660548Z test_torch_nn_NLLLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... expected failure (0.012s) 2023-01-11T22:00:01.6660907Z test_torch_nn_NLLLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6661265Z test_torch_nn_NLLLoss_no_batch_dim_none (__main__.TestCppApiParity) ... expected failure (0.010s) 2023-01-11T22:00:01.6661624Z test_torch_nn_NLLLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6661971Z test_torch_nn_NLLLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... expected failure (0.010s) 2023-01-11T22:00:01.6662329Z test_torch_nn_NLLLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6662738Z test_torch_nn_NLLLoss_weights (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6663059Z test_torch_nn_NLLLoss_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6663399Z test_torch_nn_NLLLoss_weights_ignore_index (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6663756Z test_torch_nn_NLLLoss_weights_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6664110Z test_torch_nn_NLLLoss_weights_ignore_index_neg (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6664458Z test_torch_nn_NLLLoss_weights_ignore_index_neg_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6664791Z test_torch_nn_PReLU_1d (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6665105Z test_torch_nn_PReLU_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6665425Z test_torch_nn_PReLU_1d_multiparam (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6665752Z test_torch_nn_PReLU_1d_multiparam_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6666073Z test_torch_nn_PReLU_2d (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6666385Z test_torch_nn_PReLU_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6666694Z test_torch_nn_PReLU_2d_multiparam (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6667034Z test_torch_nn_PReLU_2d_multiparam_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6667352Z test_torch_nn_PReLU_3d (__main__.TestCppApiParity) ... ok (0.017s) 2023-01-11T22:00:01.6667702Z test_torch_nn_PReLU_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6668012Z test_torch_nn_PReLU_3d_multiparam (__main__.TestCppApiParity) ... ok (0.017s) 2023-01-11T22:00:01.6668350Z test_torch_nn_PReLU_3d_multiparam_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6668676Z test_torch_nn_PReLU_scalar (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6668986Z test_torch_nn_PReLU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6669312Z test_torch_nn_PairwiseDistance (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6669639Z test_torch_nn_PairwiseDistance_broadcast_lhs (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6670052Z test_torch_nn_PairwiseDistance_broadcast_lhs_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6670404Z test_torch_nn_PairwiseDistance_broadcast_rhs (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6670770Z test_torch_nn_PairwiseDistance_broadcast_rhs_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6671141Z test_torch_nn_PairwiseDistance_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6671486Z test_torch_nn_PairwiseDistance_no_batch_dim (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6671836Z test_torch_nn_PairwiseDistance_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6672207Z test_torch_nn_PairwiseDistance_with_non_default_args (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6672589Z test_torch_nn_PairwiseDistance_with_non_default_args_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6672924Z test_torch_nn_PixelShuffle (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6673248Z test_torch_nn_PixelShuffle_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6673569Z test_torch_nn_PixelUnshuffle (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6673898Z test_torch_nn_PixelUnshuffle_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6674223Z test_torch_nn_PoissonNLLLoss_full_loss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6674568Z test_torch_nn_PoissonNLLLoss_full_loss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6674922Z test_torch_nn_PoissonNLLLoss_full_loss_no_log_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6675290Z test_torch_nn_PoissonNLLLoss_full_loss_no_log_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6675636Z test_torch_nn_PoissonNLLLoss_no_full_loss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6675988Z test_torch_nn_PoissonNLLLoss_no_full_loss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6676352Z test_torch_nn_PoissonNLLLoss_no_full_loss_no_log_input (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6676714Z test_torch_nn_PoissonNLLLoss_no_full_loss_no_log_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6677047Z test_torch_nn_RReLU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6677357Z test_torch_nn_RReLU_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6677674Z test_torch_nn_RReLU_with_up_down (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6677996Z test_torch_nn_RReLU_with_up_down_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6678334Z test_torch_nn_RReLU_with_up_down_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6678683Z test_torch_nn_RReLU_with_up_down_scalar_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6679045Z test_torch_nn_ReLU (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6679303Z test_torch_nn_ReLU6 (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6679603Z test_torch_nn_ReLU6_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6679906Z test_torch_nn_ReLU6_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6680210Z test_torch_nn_ReLU6_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6680545Z test_torch_nn_ReLU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6680852Z test_torch_nn_ReLU_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6681198Z test_torch_nn_ReLU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6681512Z test_torch_nn_ReflectionPad1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6681828Z test_torch_nn_ReflectionPad1d_batch (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6682172Z test_torch_nn_ReflectionPad1d_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6682506Z test_torch_nn_ReflectionPad1d_complex (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6682854Z test_torch_nn_ReflectionPad1d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6683225Z test_torch_nn_ReflectionPad1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6683552Z test_torch_nn_ReflectionPad2d (__main__.TestCppApiParity) ... ok (0.018s) 2023-01-11T22:00:01.6683855Z test_torch_nn_ReflectionPad2d_complex (__main__.TestCppApiParity) ... ok (0.026s) 2023-01-11T22:00:01.6684206Z test_torch_nn_ReflectionPad2d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6684578Z test_torch_nn_ReflectionPad2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6684907Z test_torch_nn_ReflectionPad2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6685264Z test_torch_nn_ReflectionPad2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6685603Z test_torch_nn_ReflectionPad3d (__main__.TestCppApiParity) ... ok (0.030s) 2023-01-11T22:00:01.6685918Z test_torch_nn_ReflectionPad3d_complex (__main__.TestCppApiParity) ... ok (0.047s) 2023-01-11T22:00:01.6686260Z test_torch_nn_ReflectionPad3d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6686627Z test_torch_nn_ReflectionPad3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6686967Z test_torch_nn_ReflectionPad3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.021s) 2023-01-11T22:00:01.6687326Z test_torch_nn_ReflectionPad3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6687658Z test_torch_nn_ReplicationPad1d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6687973Z test_torch_nn_ReplicationPad1d_batch (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6688326Z test_torch_nn_ReplicationPad1d_batch_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6688666Z test_torch_nn_ReplicationPad1d_complex (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6689143Z test_torch_nn_ReplicationPad1d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6689540Z test_torch_nn_ReplicationPad1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6689880Z test_torch_nn_ReplicationPad2d (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6690185Z test_torch_nn_ReplicationPad2d_complex (__main__.TestCppApiParity) ... ok (0.016s) 2023-01-11T22:00:01.6690600Z test_torch_nn_ReplicationPad2d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6690971Z test_torch_nn_ReplicationPad2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6691321Z test_torch_nn_ReplicationPad2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6691672Z test_torch_nn_ReplicationPad2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6692017Z test_torch_nn_ReplicationPad3d (__main__.TestCppApiParity) ... ok (0.018s) 2023-01-11T22:00:01.6692338Z test_torch_nn_ReplicationPad3d_complex (__main__.TestCppApiParity) ... ok (0.027s) 2023-01-11T22:00:01.6692716Z test_torch_nn_ReplicationPad3d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6693092Z test_torch_nn_ReplicationPad3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6693448Z test_torch_nn_ReplicationPad3d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.014s) 2023-01-11T22:00:01.6693810Z test_torch_nn_ReplicationPad3d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6694124Z test_torch_nn_SELU (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6694422Z test_torch_nn_SELU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6694732Z test_torch_nn_SELU_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6695042Z test_torch_nn_SELU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6695374Z test_torch_nn_SampleModule_has_parity (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6695722Z test_torch_nn_SampleModule_has_parity_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6696082Z test_torch_nn_SampleModule_no_parity (__main__.TestCppApiParity) ... expected failure (0.011s) 2023-01-11T22:00:01.6696429Z test_torch_nn_SampleModule_no_parity_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6696745Z test_torch_nn_SiLU (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6697050Z test_torch_nn_SiLU_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6697355Z test_torch_nn_SiLU_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6697662Z test_torch_nn_SiLU_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6697970Z test_torch_nn_Sigmoid (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6698280Z test_torch_nn_Sigmoid_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6698585Z test_torch_nn_Sigmoid_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6698911Z test_torch_nn_Sigmoid_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6699232Z test_torch_nn_SmoothL1Loss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6699553Z test_torch_nn_SmoothL1Loss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6699866Z test_torch_nn_SmoothL1Loss_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6700203Z test_torch_nn_SmoothL1Loss_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6700531Z test_torch_nn_SoftMarginLoss (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6700849Z test_torch_nn_SoftMarginLoss_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6701210Z test_torch_nn_SoftMarginLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6701588Z test_torch_nn_SoftMarginLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6701994Z test_torch_nn_SoftMarginLoss_no_batch_dim_none (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6702351Z test_torch_nn_SoftMarginLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6702805Z test_torch_nn_SoftMarginLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... expected failure (0.008s) 2023-01-11T22:00:01.6703182Z test_torch_nn_SoftMarginLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6703512Z test_torch_nn_Softmax (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6703784Z test_torch_nn_Softmax2d (__main__.TestCppApiParity) ... ok (0.013s) 2023-01-11T22:00:01.6704138Z test_torch_nn_Softmax2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6704467Z test_torch_nn_Softmax2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6704796Z test_torch_nn_Softmax2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6705146Z test_torch_nn_Softmax_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6705463Z test_torch_nn_Softmax_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6705797Z test_torch_nn_Softmax_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6706105Z test_torch_nn_Softmax_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6706428Z test_torch_nn_Softmax_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6706744Z test_torch_nn_Softmin (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6707038Z test_torch_nn_Softmin_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6707354Z test_torch_nn_Softmin_multidim (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6707684Z test_torch_nn_Softmin_multidim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6708012Z test_torch_nn_Softmin_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6708332Z test_torch_nn_Softmin_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6708652Z test_torch_nn_Softmin_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6708975Z test_torch_nn_Softmin_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6709277Z test_torch_nn_Softplus (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6709567Z test_torch_nn_Softplus_beta (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6709890Z test_torch_nn_Softplus_beta_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6710219Z test_torch_nn_Softplus_beta_threshold (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6710550Z test_torch_nn_Softplus_beta_threshold_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6710896Z test_torch_nn_Softplus_beta_threshold_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6711251Z test_torch_nn_Softplus_beta_threshold_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6711608Z test_torch_nn_Softplus_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6711904Z test_torch_nn_Softshrink (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6712222Z test_torch_nn_Softshrink_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6712540Z test_torch_nn_Softshrink_lambda (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6712892Z test_torch_nn_Softshrink_lambda_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6713229Z test_torch_nn_Softshrink_lambda_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6713578Z test_torch_nn_Softshrink_lambda_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6713903Z test_torch_nn_Softsign (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6714203Z test_torch_nn_Softsign_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6714517Z test_torch_nn_Softsign_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6714846Z test_torch_nn_Softsign_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6715181Z test_torch_nn_Tanh (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6715488Z test_torch_nn_Tanh_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6715800Z test_torch_nn_Tanh_scalar (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6716116Z test_torch_nn_Tanh_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6716417Z test_torch_nn_Tanhshrink (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6716733Z test_torch_nn_Tanhshrink_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6717053Z test_torch_nn_Tanhshrink_scalar (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6717374Z test_torch_nn_Tanhshrink_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6717706Z test_torch_nn_Threshold_large_value (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6718051Z test_torch_nn_Threshold_large_value_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6718389Z test_torch_nn_Threshold_threshold_value (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6718726Z test_torch_nn_Threshold_threshold_value_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6719075Z test_torch_nn_Threshold_threshold_value_scalar (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6719438Z test_torch_nn_Threshold_threshold_value_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6719818Z test_torch_nn_TransformerDecoderLayer_gelu_activation (__main__.TestCppApiParity) ... ok (0.052s) 2023-01-11T22:00:01.6720204Z test_torch_nn_TransformerDecoderLayer_gelu_activation_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6720593Z test_torch_nn_TransformerDecoderLayer_relu_activation (__main__.TestCppApiParity) ... ok (0.051s) 2023-01-11T22:00:01.6741084Z test_torch_nn_TransformerDecoderLayer_relu_activation_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6741881Z test_torch_nn_TransformerEncoderLayer_gelu_activation (__main__.TestCppApiParity) ... ok (0.038s) 2023-01-11T22:00:01.6742677Z test_torch_nn_TransformerEncoderLayer_gelu_activation_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6743420Z test_torch_nn_TransformerEncoderLayer_relu_activation (__main__.TestCppApiParity) ... ok (0.038s) 2023-01-11T22:00:01.6744177Z test_torch_nn_TransformerEncoderLayer_relu_activation_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6744885Z test_torch_nn_Transformer_multilayer_coder (__main__.TestCppApiParity) ... ok (0.163s) 2023-01-11T22:00:01.6745547Z test_torch_nn_Transformer_multilayer_coder_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6746212Z test_torch_nn_TripletMarginLoss_no_batch_dim_mean (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6746931Z test_torch_nn_TripletMarginLoss_no_batch_dim_mean_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6747784Z test_torch_nn_TripletMarginLoss_no_batch_dim_none (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6748442Z test_torch_nn_TripletMarginLoss_no_batch_dim_none_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6749104Z test_torch_nn_TripletMarginLoss_no_batch_dim_sum (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6749776Z test_torch_nn_TripletMarginLoss_no_batch_dim_sum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6750412Z test_torch_nn_Unflatten_no_batch_dim (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6751030Z test_torch_nn_Unflatten_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6751720Z test_torch_nn_Unfold (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6752296Z test_torch_nn_Unfold_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6752886Z test_torch_nn_Unfold_int_input (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6753473Z test_torch_nn_Unfold_int_input_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6754069Z test_torch_nn_ZeroPad2d (__main__.TestCppApiParity) ... ok (0.010s) 2023-01-11T22:00:01.6754607Z test_torch_nn_ZeroPad2d_complex (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6755207Z test_torch_nn_ZeroPad2d_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6755854Z test_torch_nn_ZeroPad2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6756459Z test_torch_nn_ZeroPad2d_negative_dims (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6757082Z test_torch_nn_ZeroPad2d_negative_dims_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6757702Z test_torch_nn_ZeroPad2d_no_batch_dim (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6758314Z test_torch_nn_ZeroPad2d_no_batch_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6758955Z test_torch_nn_functional_BCELoss_no_reduce (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6759594Z test_torch_nn_functional_BCELoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6760265Z test_torch_nn_functional_BCELoss_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6760949Z test_torch_nn_functional_BCELoss_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6761598Z test_torch_nn_functional_BCELoss_weights_no_reduce (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6762262Z test_torch_nn_functional_BCELoss_weights_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6762958Z test_torch_nn_functional_BCELoss_weights_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6763681Z test_torch_nn_functional_BCELoss_weights_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6765073Z test_torch_nn_functional_BCEWithLogitsLoss_legacy_enum (__main__.TestCppApiParity) ... /opt/conda/lib/python3.10/site-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction='none' instead. 2023-01-11T22:00:01.6765882Z warnings.warn(warning.format(ret)) 2023-01-11T22:00:01.6766231Z ok (0.006s) 2023-01-11T22:00:01.6766745Z test_torch_nn_functional_BCEWithLogitsLoss_legacy_enum_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6767441Z test_torch_nn_functional_BCEWithLogitsLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6768156Z test_torch_nn_functional_BCEWithLogitsLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6768960Z test_torch_nn_functional_BCEWithLogitsLoss_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6769720Z test_torch_nn_functional_BCEWithLogitsLoss_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6770305Z test_torch_nn_functional_HingeEmbeddingLoss_margin_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6770901Z test_torch_nn_functional_HingeEmbeddingLoss_margin_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6771528Z test_torch_nn_functional_HingeEmbeddingLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6772392Z test_torch_nn_functional_HingeEmbeddingLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6773052Z test_torch_nn_functional_HuberLoss_delta (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6773672Z test_torch_nn_functional_HuberLoss_delta_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6774319Z test_torch_nn_functional_KLDivLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6774954Z test_torch_nn_functional_KLDivLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6775554Z test_torch_nn_functional_KLDivLoss_no_reduce_log_target (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6776239Z test_torch_nn_functional_KLDivLoss_no_reduce_log_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6776889Z test_torch_nn_functional_KLDivLoss_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6777540Z test_torch_nn_functional_KLDivLoss_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6778198Z test_torch_nn_functional_KLDivLoss_no_reduce_scalar_log_target (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6778841Z test_torch_nn_functional_KLDivLoss_no_reduce_scalar_log_target_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6779577Z test_torch_nn_functional_KLDivLoss_with_log_target_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6780286Z test_torch_nn_functional_KLDivLoss_with_log_target_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6780985Z test_torch_nn_functional_KLDivLoss_with_target_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6781673Z test_torch_nn_functional_KLDivLoss_with_target_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6782302Z test_torch_nn_functional_L1Loss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6782972Z test_torch_nn_functional_L1Loss_no_reduce_complex (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6783645Z test_torch_nn_functional_L1Loss_no_reduce_complex_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6784343Z test_torch_nn_functional_L1Loss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6784991Z test_torch_nn_functional_L1Loss_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6785656Z test_torch_nn_functional_L1Loss_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6786316Z test_torch_nn_functional_MSELoss_no_reduce (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6786961Z test_torch_nn_functional_MSELoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6787598Z test_torch_nn_functional_MSELoss_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6788431Z test_torch_nn_functional_MSELoss_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6789113Z test_torch_nn_functional_MultiLabelMarginLoss_0d_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6789801Z test_torch_nn_functional_MultiLabelMarginLoss_0d_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6790489Z test_torch_nn_functional_MultiLabelMarginLoss_1d_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6791224Z test_torch_nn_functional_MultiLabelMarginLoss_1d_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6792021Z test_torch_nn_functional_MultiLabelMarginLoss_index_neg (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6792750Z test_torch_nn_functional_MultiLabelMarginLoss_index_neg_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6793466Z test_torch_nn_functional_MultiLabelMarginLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6794203Z test_torch_nn_functional_MultiLabelMarginLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6794904Z test_torch_nn_functional_MultiLabelSoftMarginLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6795639Z test_torch_nn_functional_MultiLabelSoftMarginLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6796391Z test_torch_nn_functional_MultiLabelSoftMarginLoss_weights_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6797170Z test_torch_nn_functional_MultiLabelSoftMarginLoss_weights_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6797904Z test_torch_nn_functional_MultiMarginLoss_1d_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6798684Z test_torch_nn_functional_MultiMarginLoss_1d_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6799360Z test_torch_nn_functional_MultiMarginLoss_margin_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6800081Z test_torch_nn_functional_MultiMarginLoss_margin_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6800770Z test_torch_nn_functional_MultiMarginLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6801443Z test_torch_nn_functional_MultiMarginLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6802135Z test_torch_nn_functional_MultiMarginLoss_p_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6802799Z test_torch_nn_functional_MultiMarginLoss_p_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6803505Z test_torch_nn_functional_MultiMarginLoss_weights_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6804219Z test_torch_nn_functional_MultiMarginLoss_weights_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6804874Z test_torch_nn_functional_NLLLoss2d_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6805517Z test_torch_nn_functional_NLLLoss2d_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6806182Z test_torch_nn_functional_NLLLoss2d_no_reduce_ignore_index (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6806859Z test_torch_nn_functional_NLLLoss2d_no_reduce_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6807556Z test_torch_nn_functional_NLLLoss2d_no_reduce_weights (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6808344Z test_torch_nn_functional_NLLLoss2d_no_reduce_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6808991Z test_torch_nn_functional_NLLLossNd_no_reduce (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6809769Z test_torch_nn_functional_NLLLossNd_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6810460Z test_torch_nn_functional_NLLLossNd_no_reduce_ignore_index (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6811182Z test_torch_nn_functional_NLLLossNd_no_reduce_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6811847Z test_torch_nn_functional_NLLLossNd_no_reduce_weights (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6812634Z test_torch_nn_functional_NLLLossNd_no_reduce_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6813283Z test_torch_nn_functional_NLLLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6813917Z test_torch_nn_functional_NLLLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6814570Z test_torch_nn_functional_NLLLoss_no_reduce_ignore_index (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6815243Z test_torch_nn_functional_NLLLoss_no_reduce_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6815918Z test_torch_nn_functional_NLLLoss_no_reduce_weights (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6816587Z test_torch_nn_functional_NLLLoss_no_reduce_weights_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6817284Z test_torch_nn_functional_NLLLoss_no_reduce_weights_ignore_index (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6818013Z test_torch_nn_functional_NLLLoss_no_reduce_weights_ignore_index_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6818756Z test_torch_nn_functional_NLLLoss_no_reduce_weights_ignore_index_neg (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6819440Z test_torch_nn_functional_NLLLoss_no_reduce_weights_ignore_index_neg_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6820110Z test_torch_nn_functional_Padding122112_3dcircular (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6820790Z test_torch_nn_functional_Padding122112_3dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6821465Z test_torch_nn_functional_Padding1221_2dcircular (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6822143Z test_torch_nn_functional_Padding1221_2dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6822875Z test_torch_nn_functional_Padding12_1dcircular (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6823559Z test_torch_nn_functional_Padding12_1dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6824231Z test_torch_nn_functional_Padding2322_2dcircular (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6824887Z test_torch_nn_functional_Padding2322_2dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6825557Z test_torch_nn_functional_Padding31_1dcircular (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6826202Z test_torch_nn_functional_Padding31_1dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6826869Z test_torch_nn_functional_Padding322112_3dcircular (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6827515Z test_torch_nn_functional_Padding322112_3dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6828185Z test_torch_nn_functional_Padding332122_3dcircular (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6828974Z test_torch_nn_functional_Padding332122_3dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6829608Z test_torch_nn_functional_Padding3331_2dcircular (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6830242Z test_torch_nn_functional_Padding3331_2dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6830895Z test_torch_nn_functional_Padding33_1dcircular (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6831557Z test_torch_nn_functional_Padding33_1dcircular_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6832208Z test_torch_nn_functional_PoissonNLLLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6833031Z test_torch_nn_functional_PoissonNLLLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6833686Z test_torch_nn_functional_SmoothL1Loss_beta (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6834323Z test_torch_nn_functional_SmoothL1Loss_beta_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6834942Z test_torch_nn_functional_SmoothL1Loss_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6835603Z test_torch_nn_functional_SmoothL1Loss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6836272Z test_torch_nn_functional_SmoothL1Loss_no_reduce_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6836953Z test_torch_nn_functional_SmoothL1Loss_no_reduce_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6837609Z test_torch_nn_functional_SmoothL1Loss_zero_beta (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6838230Z test_torch_nn_functional_SmoothL1Loss_zero_beta_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6838863Z test_torch_nn_functional_SoftMarginLoss_no_reduce (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6839489Z test_torch_nn_functional_SoftMarginLoss_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6840067Z test_torch_nn_functional_interpolate_bicubic_2d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6840753Z test_torch_nn_functional_interpolate_bicubic_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6841410Z test_torch_nn_functional_interpolate_bicubic_2d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6842027Z test_torch_nn_functional_interpolate_bicubic_2d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6842656Z test_torch_nn_functional_interpolate_bicubic_scale_2d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6843321Z test_torch_nn_functional_interpolate_bicubic_scale_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6844008Z test_torch_nn_functional_interpolate_bicubic_scale_tuple_shared_2d (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6844749Z test_torch_nn_functional_interpolate_bicubic_scale_tuple_shared_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6845455Z test_torch_nn_functional_interpolate_bicubic_scale_tuple_skewed_2d (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6846105Z test_torch_nn_functional_interpolate_bicubic_scale_tuple_skewed_2d_align_corners (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6846909Z test_torch_nn_functional_interpolate_bicubic_scale_tuple_skewed_2d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6847687Z test_torch_nn_functional_interpolate_bicubic_scale_tuple_skewed_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6848469Z test_torch_nn_functional_interpolate_bicubic_tuple_2d (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6849359Z test_torch_nn_functional_interpolate_bicubic_tuple_2d_align_corners (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6850108Z test_torch_nn_functional_interpolate_bicubic_tuple_2d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6850814Z test_torch_nn_functional_interpolate_bicubic_tuple_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6851430Z test_torch_nn_functional_interpolate_bilinear_2d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6852221Z test_torch_nn_functional_interpolate_bilinear_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6852909Z test_torch_nn_functional_interpolate_bilinear_2d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6853570Z test_torch_nn_functional_interpolate_bilinear_2d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6854234Z test_torch_nn_functional_interpolate_bilinear_scale_2d (__main__.TestCppApiParity) ... ok (0.009s) 2023-01-11T22:00:01.6854908Z test_torch_nn_functional_interpolate_bilinear_scale_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6855619Z test_torch_nn_functional_interpolate_bilinear_scale_tuple_shared_2d (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6856331Z test_torch_nn_functional_interpolate_bilinear_scale_tuple_shared_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6857049Z test_torch_nn_functional_interpolate_bilinear_scale_tuple_skewed_2d (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6857742Z test_torch_nn_functional_interpolate_bilinear_scale_tuple_skewed_2d_align_corners (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6858524Z test_torch_nn_functional_interpolate_bilinear_scale_tuple_skewed_2d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6858895Z test_torch_nn_functional_interpolate_bilinear_scale_tuple_skewed_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6859190Z test_torch_nn_functional_interpolate_bilinear_tuple_2d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6859508Z test_torch_nn_functional_interpolate_bilinear_tuple_2d_align_corners (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6859890Z test_torch_nn_functional_interpolate_bilinear_tuple_2d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6860257Z test_torch_nn_functional_interpolate_bilinear_tuple_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6860552Z test_torch_nn_functional_interpolate_linear_1d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6860868Z test_torch_nn_functional_interpolate_linear_1d_align_corners (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6861227Z test_torch_nn_functional_interpolate_linear_1d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6861569Z test_torch_nn_functional_interpolate_linear_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6861869Z test_torch_nn_functional_interpolate_linear_1d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6862220Z test_torch_nn_functional_interpolate_linear_1d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6862581Z test_torch_nn_functional_interpolate_linear_scale_1d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6863047Z test_torch_nn_functional_interpolate_linear_scale_1d_align_corners (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6863413Z test_torch_nn_functional_interpolate_linear_scale_1d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6863769Z test_torch_nn_functional_interpolate_linear_scale_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6864070Z test_torch_nn_functional_interpolate_linear_tuple_1d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6864410Z test_torch_nn_functional_interpolate_linear_tuple_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6864700Z test_torch_nn_functional_interpolate_nearest_1d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6865119Z test_torch_nn_functional_interpolate_nearest_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6865441Z test_torch_nn_functional_interpolate_nearest_1d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6865774Z test_torch_nn_functional_interpolate_nearest_1d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6866073Z test_torch_nn_functional_interpolate_nearest_2d (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6866404Z test_torch_nn_functional_interpolate_nearest_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6866731Z test_torch_nn_functional_interpolate_nearest_2d_launch_configs (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6867110Z test_torch_nn_functional_interpolate_nearest_2d_launch_configs_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6867411Z test_torch_nn_functional_interpolate_nearest_2d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6867771Z test_torch_nn_functional_interpolate_nearest_2d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6868073Z test_torch_nn_functional_interpolate_nearest_3d (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6868417Z test_torch_nn_functional_interpolate_nearest_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6868703Z test_torch_nn_functional_interpolate_nearest_3d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6869044Z test_torch_nn_functional_interpolate_nearest_3d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6869340Z test_torch_nn_functional_interpolate_nearest_scale_1d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6869699Z test_torch_nn_functional_interpolate_nearest_scale_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6869987Z test_torch_nn_functional_interpolate_nearest_scale_2d (__main__.TestCppApiParity) ... ok (0.008s) 2023-01-11T22:00:01.6870337Z test_torch_nn_functional_interpolate_nearest_scale_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6870647Z test_torch_nn_functional_interpolate_nearest_scale_3d (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6871007Z test_torch_nn_functional_interpolate_nearest_scale_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6871323Z test_torch_nn_functional_interpolate_nearest_tuple_1d (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6871665Z test_torch_nn_functional_interpolate_nearest_tuple_1d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6871964Z test_torch_nn_functional_interpolate_nearest_tuple_2d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6872318Z test_torch_nn_functional_interpolate_nearest_tuple_2d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6872725Z test_torch_nn_functional_interpolate_nearest_tuple_3d (__main__.TestCppApiParity) ... ok (0.012s) 2023-01-11T22:00:01.6873084Z test_torch_nn_functional_interpolate_nearest_tuple_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6873382Z test_torch_nn_functional_interpolate_trilinear_3d (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6873702Z test_torch_nn_functional_interpolate_trilinear_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6874013Z test_torch_nn_functional_interpolate_trilinear_3d_zero_dim (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6874353Z test_torch_nn_functional_interpolate_trilinear_3d_zero_dim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6874721Z test_torch_nn_functional_interpolate_trilinear_scale_3d (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6875055Z test_torch_nn_functional_interpolate_trilinear_scale_3d_align_corners (__main__.TestCppApiParity) ... ok (0.011s) 2023-01-11T22:00:01.6875443Z test_torch_nn_functional_interpolate_trilinear_scale_3d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6875791Z test_torch_nn_functional_interpolate_trilinear_scale_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6876092Z test_torch_nn_functional_interpolate_trilinear_tuple_3d (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6876421Z test_torch_nn_functional_interpolate_trilinear_tuple_3d_align_corners (__main__.TestCppApiParity) ... ok (0.007s) 2023-01-11T22:00:01.6876794Z test_torch_nn_functional_interpolate_trilinear_tuple_3d_align_corners_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6877147Z test_torch_nn_functional_interpolate_trilinear_tuple_3d_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6877427Z test_torch_nn_functional_log_softmax_dim0 (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6877756Z test_torch_nn_functional_log_softmax_dim0_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6878011Z test_torch_nn_functional_log_softmax_dim3 (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6878341Z test_torch_nn_functional_log_softmax_dim3_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6878625Z test_torch_nn_functional_log_softmax_lastdim (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6878966Z test_torch_nn_functional_log_softmax_lastdim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6879248Z test_torch_nn_functional_log_softmax_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6879570Z test_torch_nn_functional_log_softmax_scalar_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6879853Z test_torch_nn_functional_log_softmax_spatial (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6880220Z test_torch_nn_functional_log_softmax_spatial_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6880607Z test_torch_nn_functional_log_softmax_spatial_special (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6880936Z test_torch_nn_functional_log_softmax_spatial_special_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6881271Z test_torch_nn_functional_multimarginloss_1d_input_0d_target_no_reduce (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6881666Z test_torch_nn_functional_multimarginloss_1d_input_0d_target_no_reduce_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6881969Z test_torch_nn_functional_sample_functional_has_parity (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6882438Z test_torch_nn_functional_sample_functional_has_parity_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6882783Z test_torch_nn_functional_sample_functional_no_parity (__main__.TestCppApiParity) ... expected failure (0.004s) 2023-01-11T22:00:01.6883143Z test_torch_nn_functional_sample_functional_no_parity_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6883447Z test_torch_nn_functional_softmax_functional_dim0 (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6883807Z test_torch_nn_functional_softmax_functional_dim0_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6884098Z test_torch_nn_functional_softmax_functional_dim3 (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6884539Z test_torch_nn_functional_softmax_functional_dim3_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6884861Z test_torch_nn_functional_softmax_functional_scalar (__main__.TestCppApiParity) ... ok (0.004s) 2023-01-11T22:00:01.6885254Z test_torch_nn_functional_softmax_functional_scalar_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6885546Z test_torch_nn_functional_softmax_lastdim (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6885855Z test_torch_nn_functional_softmax_lastdim_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6886124Z test_torch_nn_functional_softmax_lastdim_dtype (__main__.TestCppApiParity) ... ok (0.006s) 2023-01-11T22:00:01.6886466Z test_torch_nn_functional_softmax_lastdim_dtype_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6886740Z test_torch_nn_functional_softmax_spatial (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6887071Z test_torch_nn_functional_softmax_spatial_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6887338Z test_torch_nn_functional_softmax_spatial_dtype (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6887682Z test_torch_nn_functional_softmax_spatial_dtype_cuda (__main__.TestCppApiParity) ... skip: Excluded from CUDA tests (0.000s) 2023-01-11T22:00:01.6887965Z test_torch_nn_functional_softmax_spatial_special (__main__.TestCppApiParity) ... ok (0.005s) 2023-01-11T22:00:01.6888296Z test_torch_nn_functional_softmax_spatial_special_cuda (__main__.TestCppApiParity) ... skip: CUDA unavailable (0.000s) 2023-01-11T22:00:01.6888310Z 2023-01-11T22:00:01.6888744Z ---------------------------------------------------------------------- 2023-01-11T22:00:01.6888886Z Ran 1100 tests in 5.570s 2023-01-11T22:00:01.6888896Z 2023-01-11T22:00:01.6889222Z OK (skipped=550, expected failures=17) 2023-01-11T22:00:01.6889232Z 2023-01-11T22:00:01.6889381Z Generating XML reports... 2023-01-11T22:00:01.6889952Z Generated XML report: test-reports/python-unittest/test_cpp_api_parity/TEST-TestCppApiParity-20230111215955.xml 2023-01-11T22:00:01.6889968Z 2023-01-11T22:00:01.6890464Z ##[endgroup] 2023-01-11T22:00:01.6891022Z FINISHED PRINTING LOG FILE of test_cpp_api_parity (/var/lib/jenkins/workspace/test/test-reports/test_cpp_api_parity_cteeoalo) 2023-01-11T22:00:01.6891032Z 2023-01-11T22:00:01.6891378Z Running test_cpp_extensions_aot_ninja ... [2023-01-11 22:00:01.643541] 2023-01-11T22:00:03.1850608Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:03.2880590Z running install 2023-01-11T22:00:03.2881539Z /opt/conda/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. 2023-01-11T22:00:03.2881925Z warnings.warn( 2023-01-11T22:00:03.2966649Z running build 2023-01-11T22:00:03.2966969Z running build_py 2023-01-11T22:00:03.3017900Z creating build 2023-01-11T22:00:03.3018499Z creating build/lib.linux-x86_64-cpython-310 2023-01-11T22:00:03.3019074Z creating build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension 2023-01-11T22:00:03.3021109Z copying torch_test_cpp_extension/__init__.py -> build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension 2023-01-11T22:00:03.3021408Z running build_ext 2023-01-11T22:00:03.3318485Z building 'torch_test_cpp_extension.cpp' extension 2023-01-11T22:00:03.3318913Z creating /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310 2023-01-11T22:00:03.3600365Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/build.ninja... 2023-01-11T22:00:03.3600900Z Compiling objects... 2023-01-11T22:00:03.3601275Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:00:04.3451677Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/extension.o.d -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/var/lib/jenkins/workspace/test/cpp_extensions/self_compiler_include_dirs_test -I/opt/conda/include/python3.10 -c -c /var/lib/jenkins/workspace/test/cpp_extensions/extension.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=cpp -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:04.3453368Z In file included from /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/Exceptions.h:14:0, 2023-01-11T22:00:04.3453867Z from /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/python.h:11, 2023-01-11T22:00:04.3454331Z from /opt/conda/lib/python3.10/site-packages/torch/include/torch/extension.h:6, 2023-01-11T22:00:04.3454695Z from /var/lib/jenkins/workspace/test/cpp_extensions/extension.cpp:1: 2023-01-11T22:00:04.3478163Z /opt/conda/lib/python3.10/site-packages/torch/include/pybind11/pybind11.h: In instantiation of ‘class pybind11::class_’: 2023-01-11T22:00:04.3478638Z /var/lib/jenkins/workspace/test/cpp_extensions/extension.cpp:40:53: required from here 2023-01-11T22:00:04.3479527Z /opt/conda/lib/python3.10/site-packages/torch/include/pybind11/pybind11.h:1479:7: warning: ‘pybind11::class_’ declared with greater visibility than the type of its field ‘pybind11::class_::’ [-Wattributes] 2023-01-11T22:00:04.3480035Z class class_ : public detail::generic_type { 2023-01-11T22:00:04.3480238Z ^~~~~~ 2023-01-11T22:00:04.3480912Z /opt/conda/lib/python3.10/site-packages/torch/include/pybind11/pybind11.h:1479:7: warning: ‘pybind11::class_’ declared with greater visibility than its base ‘pybind11::detail::generic_type’ [-Wattributes] 2023-01-11T22:00:04.3545354Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/extension.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/cpp.cpython-310-x86_64-linux-gnu.so 2023-01-11T22:00:04.7251418Z building 'torch_test_cpp_extension.ort' extension 2023-01-11T22:00:04.7534050Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/build.ninja... 2023-01-11T22:00:04.7556846Z Compiling objects... 2023-01-11T22:00:04.7557090Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:00:05.6821518Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/ort_extension.o.d -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/var/lib/jenkins/workspace/test/cpp_extensions/self_compiler_include_dirs_test -I/opt/conda/include/python3.10 -c -c /var/lib/jenkins/workspace/test/cpp_extensions/ort_extension.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/ort_extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=ort -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:05.6866145Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/ort_extension.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/ort.cpython-310-x86_64-linux-gnu.so 2023-01-11T22:00:06.0141173Z building 'torch_test_cpp_extension.rng' extension 2023-01-11T22:00:06.0426508Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/build.ninja... 2023-01-11T22:00:06.0426941Z Compiling objects... 2023-01-11T22:00:06.0427197Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:00:07.1596365Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/rng_extension.o.d -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/var/lib/jenkins/workspace/test/cpp_extensions/self_compiler_include_dirs_test -I/opt/conda/include/python3.10 -c -c /var/lib/jenkins/workspace/test/cpp_extensions/rng_extension.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/rng_extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=rng -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:07.1598055Z In file included from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h:8:0, 2023-01-11T22:00:07.1598530Z from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h:6, 2023-01-11T22:00:07.1598953Z from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Loops.h:37, 2023-01-11T22:00:07.1599462Z from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h:8, 2023-01-11T22:00:07.1599828Z from /var/lib/jenkins/workspace/test/cpp_extensions/rng_extension.cpp:6: 2023-01-11T22:00:07.1600357Z /opt/conda/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h:1008:0: warning: ignoring #pragma unroll [-Wunknown-pragmas] 2023-01-11T22:00:07.1600681Z # pragma unroll 2023-01-11T22:00:07.1600875Z 2023-01-11T22:00:07.1643929Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib /var/lib/jenkins/workspace/test/cpp_extensions/build/temp.linux-x86_64-cpython-310/rng_extension.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/rng.cpython-310-x86_64-linux-gnu.so 2023-01-11T22:00:07.5359460Z running install_lib 2023-01-11T22:00:07.5399889Z creating install 2023-01-11T22:00:07.5400232Z creating install/opt 2023-01-11T22:00:07.5400609Z creating install/opt/conda 2023-01-11T22:00:07.5401011Z creating install/opt/conda/lib 2023-01-11T22:00:07.5401348Z creating install/opt/conda/lib/python3.10 2023-01-11T22:00:07.5401947Z creating install/opt/conda/lib/python3.10/site-packages 2023-01-11T22:00:07.5402543Z creating install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:07.5404103Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/__init__.py -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:07.5405243Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/cpp.cpython-310-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:07.5476089Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/ort.cpython-310-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:07.5548430Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/rng.cpython-310-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:07.5625042Z byte-compiling ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension/__init__.py to __init__.cpython-310.pyc 2023-01-11T22:00:07.5625865Z running install_egg_info 2023-01-11T22:00:07.5721016Z running egg_info 2023-01-11T22:00:07.5721620Z creating torch_test_cpp_extension.egg-info 2023-01-11T22:00:07.5754917Z writing torch_test_cpp_extension.egg-info/PKG-INFO 2023-01-11T22:00:07.5756438Z writing dependency_links to torch_test_cpp_extension.egg-info/dependency_links.txt 2023-01-11T22:00:07.5758341Z writing top-level names to torch_test_cpp_extension.egg-info/top_level.txt 2023-01-11T22:00:07.5759522Z writing manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T22:00:07.5794630Z reading manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T22:00:07.5799968Z writing manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T22:00:07.5800665Z Copying torch_test_cpp_extension.egg-info to ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension-0.0.0-py3.10.egg-info 2023-01-11T22:00:07.5804114Z running install_scripts 2023-01-11T22:00:09.3961386Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:09.4153990Z running install 2023-01-11T22:00:09.4155276Z /opt/conda/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. 2023-01-11T22:00:09.4155658Z warnings.warn( 2023-01-11T22:00:09.4239410Z running build 2023-01-11T22:00:09.4239702Z running build_ext 2023-01-11T22:00:09.4531055Z building 'no_python_abi_suffix_test' extension 2023-01-11T22:00:09.4531441Z creating /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build 2023-01-11T22:00:09.4531913Z creating /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310 2023-01-11T22:00:09.4804233Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310/build.ninja... 2023-01-11T22:00:09.4804692Z Compiling objects... 2023-01-11T22:00:09.4804921Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:00:09.5391216Z [1/1] c++ -MMD -MF /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310/no_python_abi_suffix_test.o.d -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include/python3.10 -c -c /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/no_python_abi_suffix_test.cpp -o /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310/no_python_abi_suffix_test.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=no_python_abi_suffix_test -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:09.5425177Z creating build/lib.linux-x86_64-cpython-310 2023-01-11T22:00:09.5427360Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310/no_python_abi_suffix_test.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/no_python_abi_suffix_test.so 2023-01-11T22:00:09.5995637Z running install_lib 2023-01-11T22:00:09.6033311Z creating install 2023-01-11T22:00:09.6034534Z creating install/opt 2023-01-11T22:00:09.6034923Z creating install/opt/conda 2023-01-11T22:00:09.6035299Z creating install/opt/conda/lib 2023-01-11T22:00:09.6035674Z creating install/opt/conda/lib/python3.10 2023-01-11T22:00:09.6036301Z creating install/opt/conda/lib/python3.10/site-packages 2023-01-11T22:00:09.6036752Z copying build/lib.linux-x86_64-cpython-310/no_python_abi_suffix_test.so -> ./install/opt/conda/lib/python3.10/site-packages 2023-01-11T22:00:09.6039907Z running install_egg_info 2023-01-11T22:00:09.6131606Z running egg_info 2023-01-11T22:00:09.6131981Z creating no_python_abi_suffix_test.egg-info 2023-01-11T22:00:09.6163933Z writing no_python_abi_suffix_test.egg-info/PKG-INFO 2023-01-11T22:00:09.6165521Z writing dependency_links to no_python_abi_suffix_test.egg-info/dependency_links.txt 2023-01-11T22:00:09.6167410Z writing top-level names to no_python_abi_suffix_test.egg-info/top_level.txt 2023-01-11T22:00:09.6168097Z writing manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T22:00:09.6201884Z reading manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T22:00:09.6206651Z writing manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T22:00:09.6207458Z Copying no_python_abi_suffix_test.egg-info to ./install/opt/conda/lib/python3.10/site-packages/no_python_abi_suffix_test-0.0.0-py3.10.egg-info 2023-01-11T22:00:09.6211108Z running install_scripts 2023-01-11T22:00:09.9027605Z Executing ['/opt/conda/bin/python', '-bb', 'test_cpp_extensions_aot_ninja.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:09.902393] 2023-01-11T22:00:12.0781169Z 2023-01-11T22:00:12.0781720Z Expand the folded group to see the log file of test_cpp_extensions_aot_ninja 2023-01-11T22:00:12.0783119Z ##[group]PRINTING LOG FILE of test_cpp_extensions_aot_ninja (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_aot_ninja_f88xphfw) 2023-01-11T22:00:12.0783906Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:12.0784095Z 2023-01-11T22:00:12.0784204Z Running tests... 2023-01-11T22:00:12.0784640Z ---------------------------------------------------------------------- 2023-01-11T22:00:12.0785648Z Test results will be stored in test-reports/python-unittest/test_cpp_extensions_aot_ninja 2023-01-11T22:00:12.0786005Z test_backward (__main__.TestCppExtensionAOT) ... ok (0.011s) 2023-01-11T22:00:12.0786306Z test_cublas_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:12.0786639Z test_cuda_dlink_libs (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:12.0786969Z test_cuda_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:12.0787300Z test_cusolver_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:12.0787606Z test_extension_function (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:12.0787907Z test_extension_module (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:12.0788312Z test_no_python_abi_suffix_sets_the_correct_library_name (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:12.0788619Z test_optional (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:12.0788883Z test_add (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T22:00:12.0789150Z test_conv_backend_override (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T22:00:12.0789425Z test_unregistered (__main__.TestORTTensor) ... ok (0.006s) 2023-01-11T22:00:12.0789666Z test_zeros (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T22:00:12.0789945Z test_pybind_return_types (__main__.TestPybindTypeCasters) ... ok (0.001s) 2023-01-11T22:00:12.0790230Z test_rng (__main__.TestRNGExtension) ... ok (0.002s) 2023-01-11T22:00:12.0790500Z test_torch_library (__main__.TestTorchLibrary) ... skip: CUDA not found (0.001s) 2023-01-11T22:00:12.0790676Z 2023-01-11T22:00:12.0790885Z ---------------------------------------------------------------------- 2023-01-11T22:00:12.0791231Z Ran 16 tests in 0.029s 2023-01-11T22:00:12.0791345Z 2023-01-11T22:00:12.0791419Z OK (skipped=5) 2023-01-11T22:00:12.0791513Z 2023-01-11T22:00:12.0791602Z Generating XML reports... 2023-01-11T22:00:12.0792063Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestCppExtensionAOT-20230111220011.xml 2023-01-11T22:00:12.0792618Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestORTTensor-20230111220011.xml 2023-01-11T22:00:12.0793232Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestPybindTypeCasters-20230111220011.xml 2023-01-11T22:00:12.0793790Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestRNGExtension-20230111220011.xml 2023-01-11T22:00:12.0794328Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestTorchLibrary-20230111220011.xml 2023-01-11T22:00:12.0794569Z 2023-01-11T22:00:12.0794827Z ##[endgroup] 2023-01-11T22:00:12.0795239Z FINISHED PRINTING LOG FILE of test_cpp_extensions_aot_ninja (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_aot_ninja_f88xphfw) 2023-01-11T22:00:12.0795481Z 2023-01-11T22:00:12.0795684Z Running test_cpp_extensions_aot_no_ninja ... [2023-01-11 22:00:12.078338] 2023-01-11T22:00:13.5554071Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:13.6542917Z running install 2023-01-11T22:00:13.6543710Z /opt/conda/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. 2023-01-11T22:00:13.6544098Z warnings.warn( 2023-01-11T22:00:13.6629428Z running build 2023-01-11T22:00:13.6629603Z running build_py 2023-01-11T22:00:13.6667049Z creating build 2023-01-11T22:00:13.6667540Z creating build/lib.linux-x86_64-cpython-310 2023-01-11T22:00:13.6668063Z creating build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension 2023-01-11T22:00:13.6668772Z copying torch_test_cpp_extension/__init__.py -> build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension 2023-01-11T22:00:13.6670020Z running build_ext 2023-01-11T22:00:13.6681559Z building 'torch_test_cpp_extension.cpp' extension 2023-01-11T22:00:13.6682372Z creating build/temp.linux-x86_64-cpython-310 2023-01-11T22:00:13.6685559Z gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -Iself_compiler_include_dirs_test -I/opt/conda/include/python3.10 -c extension.cpp -o build/temp.linux-x86_64-cpython-310/extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -DTORCH_EXTENSION_NAME=cpp -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:14.6284933Z In file included from /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/Exceptions.h:14:0, 2023-01-11T22:00:14.6285452Z from /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/python.h:11, 2023-01-11T22:00:14.6285893Z from /opt/conda/lib/python3.10/site-packages/torch/include/torch/extension.h:6, 2023-01-11T22:00:14.6286178Z from extension.cpp:1: 2023-01-11T22:00:14.6286753Z /opt/conda/lib/python3.10/site-packages/torch/include/pybind11/pybind11.h: In instantiation of ‘class pybind11::class_’: 2023-01-11T22:00:14.6287085Z extension.cpp:40:53: required from here 2023-01-11T22:00:14.6287785Z /opt/conda/lib/python3.10/site-packages/torch/include/pybind11/pybind11.h:1479:7: warning: ‘pybind11::class_’ declared with greater visibility than the type of its field ‘pybind11::class_::’ [-Wattributes] 2023-01-11T22:00:14.6288239Z class class_ : public detail::generic_type { 2023-01-11T22:00:14.6288445Z ^~~~~~ 2023-01-11T22:00:14.6289210Z /opt/conda/lib/python3.10/site-packages/torch/include/pybind11/pybind11.h:1479:7: warning: ‘pybind11::class_’ declared with greater visibility than its base ‘pybind11::detail::generic_type’ [-Wattributes] 2023-01-11T22:00:14.6291611Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib build/temp.linux-x86_64-cpython-310/extension.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/cpp.cpython-310-x86_64-linux-gnu.so 2023-01-11T22:00:14.9749275Z building 'torch_test_cpp_extension.ort' extension 2023-01-11T22:00:14.9751183Z gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -Iself_compiler_include_dirs_test -I/opt/conda/include/python3.10 -c ort_extension.cpp -o build/temp.linux-x86_64-cpython-310/ort_extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -DTORCH_EXTENSION_NAME=ort -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:15.8496931Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib build/temp.linux-x86_64-cpython-310/ort_extension.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/ort.cpython-310-x86_64-linux-gnu.so 2023-01-11T22:00:16.1639259Z building 'torch_test_cpp_extension.rng' extension 2023-01-11T22:00:16.1641197Z gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -Iself_compiler_include_dirs_test -I/opt/conda/include/python3.10 -c rng_extension.cpp -o build/temp.linux-x86_64-cpython-310/rng_extension.o -g -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -DTORCH_EXTENSION_NAME=rng -D_GLIBCXX_USE_CXX11_ABI=1 -std=c++17 2023-01-11T22:00:17.1334498Z In file included from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h:8:0, 2023-01-11T22:00:17.1335255Z from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h:6, 2023-01-11T22:00:17.1335912Z from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Loops.h:37, 2023-01-11T22:00:17.1336397Z from /opt/conda/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h:8, 2023-01-11T22:00:17.1336700Z from rng_extension.cpp:6: 2023-01-11T22:00:17.1337141Z /opt/conda/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h:1008:0: warning: ignoring #pragma unroll [-Wunknown-pragmas] 2023-01-11T22:00:17.1337436Z # pragma unroll 2023-01-11T22:00:17.1337601Z 2023-01-11T22:00:17.1340899Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib build/temp.linux-x86_64-cpython-310/rng_extension.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/rng.cpython-310-x86_64-linux-gnu.so 2023-01-11T22:00:17.4897723Z running install_lib 2023-01-11T22:00:17.4937837Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/cpp.cpython-310-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:17.5022503Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/ort.cpython-310-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:17.5109253Z copying build/lib.linux-x86_64-cpython-310/torch_test_cpp_extension/rng.cpython-310-x86_64-linux-gnu.so -> ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension 2023-01-11T22:00:17.5198201Z running install_egg_info 2023-01-11T22:00:17.5292463Z running egg_info 2023-01-11T22:00:17.5323513Z writing torch_test_cpp_extension.egg-info/PKG-INFO 2023-01-11T22:00:17.5332059Z writing dependency_links to torch_test_cpp_extension.egg-info/dependency_links.txt 2023-01-11T22:00:17.5338981Z writing top-level names to torch_test_cpp_extension.egg-info/top_level.txt 2023-01-11T22:00:17.5378825Z reading manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T22:00:17.5384540Z writing manifest file 'torch_test_cpp_extension.egg-info/SOURCES.txt' 2023-01-11T22:00:17.5390429Z removing './install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension-0.0.0-py3.10.egg-info' (and everything under it) 2023-01-11T22:00:17.5392166Z Copying torch_test_cpp_extension.egg-info to ./install/opt/conda/lib/python3.10/site-packages/torch_test_cpp_extension-0.0.0-py3.10.egg-info 2023-01-11T22:00:17.5395505Z running install_scripts 2023-01-11T22:00:19.3135096Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:19.3326041Z running install 2023-01-11T22:00:19.3327365Z /opt/conda/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. 2023-01-11T22:00:19.3327799Z warnings.warn( 2023-01-11T22:00:19.3428648Z running build 2023-01-11T22:00:19.3428948Z running build_ext 2023-01-11T22:00:19.3722266Z building 'no_python_abi_suffix_test' extension 2023-01-11T22:00:19.3996078Z Emitting ninja build file /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310/build.ninja... 2023-01-11T22:00:19.4002147Z Compiling objects... 2023-01-11T22:00:19.4002592Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:00:19.4244069Z ninja: no work to do. 2023-01-11T22:00:19.4280182Z g++ -pthread -B /opt/conda/compiler_compat -shared -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib -Wl,-rpath,/opt/conda/lib -Wl,-rpath-link,/opt/conda/lib -L/opt/conda/lib /var/lib/jenkins/workspace/test/cpp_extensions/no_python_abi_suffix_test/build/temp.linux-x86_64-cpython-310/no_python_abi_suffix_test.o -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-cpython-310/no_python_abi_suffix_test.so 2023-01-11T22:00:19.4848026Z running install_lib 2023-01-11T22:00:19.4885750Z copying build/lib.linux-x86_64-cpython-310/no_python_abi_suffix_test.so -> ./install/opt/conda/lib/python3.10/site-packages 2023-01-11T22:00:19.4890576Z running install_egg_info 2023-01-11T22:00:19.4981877Z running egg_info 2023-01-11T22:00:19.5013679Z writing no_python_abi_suffix_test.egg-info/PKG-INFO 2023-01-11T22:00:19.5039911Z writing dependency_links to no_python_abi_suffix_test.egg-info/dependency_links.txt 2023-01-11T22:00:19.5048729Z writing top-level names to no_python_abi_suffix_test.egg-info/top_level.txt 2023-01-11T22:00:19.5088513Z reading manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T22:00:19.5095205Z writing manifest file 'no_python_abi_suffix_test.egg-info/SOURCES.txt' 2023-01-11T22:00:19.5104033Z removing './install/opt/conda/lib/python3.10/site-packages/no_python_abi_suffix_test-0.0.0-py3.10.egg-info' (and everything under it) 2023-01-11T22:00:19.5105824Z Copying no_python_abi_suffix_test.egg-info to ./install/opt/conda/lib/python3.10/site-packages/no_python_abi_suffix_test-0.0.0-py3.10.egg-info 2023-01-11T22:00:19.5110272Z running install_scripts 2023-01-11T22:00:19.7930897Z Executing ['/opt/conda/bin/python', '-bb', 'test_cpp_extensions_aot_no_ninja.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:19.792701] 2023-01-11T22:00:21.9528722Z 2023-01-11T22:00:21.9529287Z Expand the folded group to see the log file of test_cpp_extensions_aot_no_ninja 2023-01-11T22:00:21.9530421Z ##[group]PRINTING LOG FILE of test_cpp_extensions_aot_no_ninja (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_aot_no_ninja_wgarsge_) 2023-01-11T22:00:21.9531260Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:21.9531430Z 2023-01-11T22:00:21.9531505Z Running tests... 2023-01-11T22:00:21.9531811Z ---------------------------------------------------------------------- 2023-01-11T22:00:21.9532379Z Test results will be stored in test-reports/python-unittest/test_cpp_extensions_aot_no_ninja 2023-01-11T22:00:21.9532777Z test_backward (__main__.TestCppExtensionAOT) ... ok (0.011s) 2023-01-11T22:00:21.9533344Z test_cublas_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:21.9533955Z test_cuda_dlink_libs (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:21.9534443Z test_cuda_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:21.9534802Z test_cusolver_extension (__main__.TestCppExtensionAOT) ... skip: CUDA not found (0.000s) 2023-01-11T22:00:21.9535106Z test_extension_function (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:21.9535593Z test_extension_module (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:21.9535924Z test_no_python_abi_suffix_sets_the_correct_library_name (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:21.9536244Z test_optional (__main__.TestCppExtensionAOT) ... ok (0.001s) 2023-01-11T22:00:21.9536490Z test_add (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T22:00:21.9536759Z test_conv_backend_override (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T22:00:21.9538573Z test_unregistered (__main__.TestORTTensor) ... ok (0.006s) 2023-01-11T22:00:21.9538936Z test_zeros (__main__.TestORTTensor) ... ok (0.001s) 2023-01-11T22:00:21.9539410Z test_pybind_return_types (__main__.TestPybindTypeCasters) ... ok (0.001s) 2023-01-11T22:00:21.9539905Z test_rng (__main__.TestRNGExtension) ... ok (0.002s) 2023-01-11T22:00:21.9540577Z test_torch_library (__main__.TestTorchLibrary) ... skip: CUDA not found (0.001s) 2023-01-11T22:00:21.9540915Z 2023-01-11T22:00:21.9541346Z ---------------------------------------------------------------------- 2023-01-11T22:00:21.9541758Z Ran 16 tests in 0.029s 2023-01-11T22:00:21.9541879Z 2023-01-11T22:00:21.9541954Z OK (skipped=5) 2023-01-11T22:00:21.9542047Z 2023-01-11T22:00:21.9542135Z Generating XML reports... 2023-01-11T22:00:21.9542678Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestCppExtensionAOT-20230111220021.xml 2023-01-11T22:00:21.9543245Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestORTTensor-20230111220021.xml 2023-01-11T22:00:21.9543811Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestPybindTypeCasters-20230111220021.xml 2023-01-11T22:00:21.9544365Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestRNGExtension-20230111220021.xml 2023-01-11T22:00:21.9544920Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestTorchLibrary-20230111220021.xml 2023-01-11T22:00:21.9545216Z 2023-01-11T22:00:21.9545575Z ##[endgroup] 2023-01-11T22:00:21.9546003Z FINISHED PRINTING LOG FILE of test_cpp_extensions_aot_no_ninja (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_aot_no_ninja_wgarsge_) 2023-01-11T22:00:21.9546253Z 2023-01-11T22:00:21.9546472Z Running test_cpp_extensions_open_device_registration ... [2023-01-11 22:00:21.953010] 2023-01-11T22:00:21.9547019Z Executing ['/opt/conda/bin/python', '-bb', 'test_cpp_extensions_open_device_registration.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:21.953299] 2023-01-11T22:00:45.1698994Z 2023-01-11T22:00:45.1700782Z Expand the folded group to see the log file of test_cpp_extensions_open_device_registration 2023-01-11T22:00:45.1701848Z ##[group]PRINTING LOG FILE of test_cpp_extensions_open_device_registration (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_open_device_registration_m4hq1ltr) 2023-01-11T22:00:45.1702549Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:00:45.1702714Z 2023-01-11T22:00:45.1702792Z Running tests... 2023-01-11T22:00:45.1703107Z ---------------------------------------------------------------------- 2023-01-11T22:00:45.1705443Z Test results will be stored in test-reports/python-unittest/test_cpp_extensions_open_device_registration 2023-01-11T22:00:45.1706264Z test_open_device_registration (__main__.TestCppExtensionOpenRgistration) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T22:00:45.1706718Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/custom_device_extension... 2023-01-11T22:00:45.1707099Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/custom_device_extension/build.ninja... 2023-01-11T22:00:45.1707426Z Building extension module custom_device_extension... 2023-01-11T22:00:45.1707672Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:00:45.1709323Z [1/2] c++ -MMD -MF open_registration_extension.o.d -DTORCH_EXTENSION_NAME=custom_device_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/var/lib/jenkins/workspace/test/cpp_extensions -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -g -c /var/lib/jenkins/workspace/test/cpp_extensions/open_registration_extension.cpp -o open_registration_extension.o 2023-01-11T22:00:45.1710653Z [2/2] c++ open_registration_extension.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o custom_device_extension.so 2023-01-11T22:00:45.1711038Z Loading extension module custom_device_extension... 2023-01-11T22:00:45.1711254Z ok (21.330s) 2023-01-11T22:00:45.1711360Z 2023-01-11T22:00:45.1711563Z ---------------------------------------------------------------------- 2023-01-11T22:00:45.1711792Z Ran 1 test in 21.344s 2023-01-11T22:00:45.1711905Z 2023-01-11T22:00:45.1711965Z OK 2023-01-11T22:00:45.1712057Z 2023-01-11T22:00:45.1712143Z Generating XML reports... 2023-01-11T22:00:45.1712641Z Generated XML report: test-reports/python-unittest/test_cpp_extensions_open_device_registration/TEST-TestCppExtensionOpenRgistration-20230111220023.xml 2023-01-11T22:00:45.1712949Z 2023-01-11T22:00:45.1713239Z ##[endgroup] 2023-01-11T22:00:45.1713721Z FINISHED PRINTING LOG FILE of test_cpp_extensions_open_device_registration (/var/lib/jenkins/workspace/test/test-reports/test_cpp_extensions_open_device_registration_m4hq1ltr) 2023-01-11T22:00:45.1714001Z 2023-01-11T22:00:45.1714184Z Running test_cuda_nvml_based_avail ... [2023-01-11 22:00:45.170032] 2023-01-11T22:00:45.1714694Z Executing ['/opt/conda/bin/python', '-bb', 'test_cuda_nvml_based_avail.py', '-v', '--subprocess', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:45.170318] 2023-01-11T22:00:46.6963750Z 2023-01-11T22:00:46.6964311Z Expand the folded group to see the log file of test_cuda_nvml_based_avail 2023-01-11T22:00:46.6965176Z ##[group]PRINTING LOG FILE of test_cuda_nvml_based_avail (/var/lib/jenkins/workspace/test/test-reports/test_cuda_nvml_based_avail_8xh_7anv) 2023-01-11T22:00:46.6965568Z CUDA not available, skipping tests 2023-01-11T22:00:46.6965701Z 2023-01-11T22:00:46.6965904Z ##[endgroup] 2023-01-11T22:00:46.6966457Z FINISHED PRINTING LOG FILE of test_cuda_nvml_based_avail (/var/lib/jenkins/workspace/test/test-reports/test_cuda_nvml_based_avail_8xh_7anv) 2023-01-11T22:00:46.6966689Z 2023-01-11T22:00:46.6966888Z Running test_cuda_primary_ctx ... [2023-01-11 22:00:46.696439] 2023-01-11T22:00:46.6968421Z Executing ['/opt/conda/bin/python', '-bb', 'test_cuda_primary_ctx.py', '-v', '--subprocess', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:46.696668] 2023-01-11T22:00:48.2308752Z 2023-01-11T22:00:48.2309492Z Expand the folded group to see the log file of test_cuda_primary_ctx 2023-01-11T22:00:48.2310482Z ##[group]PRINTING LOG FILE of test_cuda_primary_ctx (/var/lib/jenkins/workspace/test/test-reports/test_cuda_primary_ctx_65c_auj6) 2023-01-11T22:00:48.2310959Z CUDA not available, skipping tests 2023-01-11T22:00:48.2311157Z 2023-01-11T22:00:48.2311492Z ##[endgroup] 2023-01-11T22:00:48.2312220Z FINISHED PRINTING LOG FILE of test_cuda_primary_ctx (/var/lib/jenkins/workspace/test/test-reports/test_cuda_primary_ctx_65c_auj6) 2023-01-11T22:00:48.2312562Z 2023-01-11T22:00:48.2312842Z Running test_cuda_trace ... [2023-01-11 22:00:48.230966] 2023-01-11T22:00:48.2314581Z Executing ['/opt/conda/bin/python', '-bb', 'test_cuda_trace.py', '-v', '--subprocess', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:48.231237] 2023-01-11T22:00:49.7609981Z 2023-01-11T22:00:49.7610906Z Expand the folded group to see the log file of test_cuda_trace 2023-01-11T22:00:49.7611693Z ##[group]PRINTING LOG FILE of test_cuda_trace (/var/lib/jenkins/workspace/test/test-reports/test_cuda_trace_3vw5om71) 2023-01-11T22:00:49.7612197Z CUDA not available, skipping tests 2023-01-11T22:00:49.7612345Z 2023-01-11T22:00:49.7612708Z ##[endgroup] 2023-01-11T22:00:49.7613546Z FINISHED PRINTING LOG FILE of test_cuda_trace (/var/lib/jenkins/workspace/test/test-reports/test_cuda_trace_3vw5om71) 2023-01-11T22:00:49.7613868Z 2023-01-11T22:00:49.7614077Z Running test_dispatch ... [2023-01-11 22:00:49.761052] 2023-01-11T22:00:49.7615613Z Executing ['/opt/conda/bin/python', '-bb', 'test_dispatch.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:00:49.761333] 2023-01-11T22:01:14.7158485Z 2023-01-11T22:01:14.7159100Z Expand the folded group to see the log file of test_dispatch 2023-01-11T22:01:14.7159773Z ##[group]PRINTING LOG FILE of test_dispatch (/var/lib/jenkins/workspace/test/test-reports/test_dispatch_e4h4n955) 2023-01-11T22:01:14.7160418Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:01:14.7209768Z 2023-01-11T22:01:14.7210028Z Running tests... 2023-01-11T22:01:14.7210661Z ---------------------------------------------------------------------- 2023-01-11T22:01:14.7211363Z Test results will be stored in test-reports/python-unittest/test_dispatch 2023-01-11T22:01:14.7211663Z test_all_invariants (__main__.TestDispatch) ... ok (0.223s) 2023-01-11T22:01:14.7211934Z test_computed_table (__main__.TestDispatch) ... ok (7.065s) 2023-01-11T22:01:14.7212226Z test_computed_table_with_ambiguous_autogradother (__main__.TestDispatch) ... ok (0.011s) 2023-01-11T22:01:14.7212545Z test_computed_table_with_autograd (__main__.TestDispatch) ... ok (0.002s) 2023-01-11T22:01:14.7212879Z test_computed_table_with_cpu_autograd_defaultbackend (__main__.TestDispatch) ... ok (0.198s) 2023-01-11T22:01:14.7213196Z test_computed_table_with_cpu_autograd_math (__main__.TestDispatch) ... ok (0.210s) 2023-01-11T22:01:14.7213538Z test_computed_table_with_cpu_autograd_math_defaultbackend (__main__.TestDispatch) ... ok (6.666s) 2023-01-11T22:01:14.7213876Z test_computed_table_with_cpu_defaultbackend (__main__.TestDispatch) ... ok (0.010s) 2023-01-11T22:01:14.7214184Z test_computed_table_with_cpu_math (__main__.TestDispatch) ... ok (0.011s) 2023-01-11T22:01:14.7214500Z test_computed_table_with_cpu_math_autogradcpu_fallthrough (__main__.TestDispatch) ... ok (0.002s) 2023-01-11T22:01:14.7214821Z test_computed_table_with_math (__main__.TestDispatch) ... ok (0.002s) 2023-01-11T22:01:14.7215082Z test_def (__main__.TestDispatch) ... ok (6.754s) 2023-01-11T22:01:14.7215333Z test_def_impl_schema_mismatch (__main__.TestDispatch) ... ok (0.011s) 2023-01-11T22:01:14.7215601Z test_def_only (__main__.TestDispatch) ... ok (0.001s) 2023-01-11T22:01:14.7215867Z test_def_with_explicit_alias (__main__.TestDispatch) ... ok (0.001s) 2023-01-11T22:01:14.7216130Z test_def_with_inference (__main__.TestDispatch) ... ok (0.225s) 2023-01-11T22:01:14.7216449Z test_dispatch_print_registrations_for_dispatch_key_invalid (__main__.TestDispatch) ... ok (0.002s) 2023-01-11T22:01:14.7216764Z test_find_dangling_impls (__main__.TestDispatch) ... ok (0.001s) 2023-01-11T22:01:14.7217127Z test_find_dangling_impls_ext (__main__.TestDispatch) ... Using /var/lib/jenkins/.cache/torch_extensions/py310_cu117 as PyTorch extensions root... 2023-01-11T22:01:14.7217519Z Creating extension directory /var/lib/jenkins/.cache/torch_extensions/py310_cu117/dangling_impl_extension... 2023-01-11T22:01:14.7217903Z Emitting ninja build file /var/lib/jenkins/.cache/torch_extensions/py310_cu117/dangling_impl_extension/build.ninja... 2023-01-11T22:01:14.7218226Z Building extension module dangling_impl_extension... 2023-01-11T22:01:14.7218489Z Using envvar MAX_JOBS (6) as the number of workers... 2023-01-11T22:01:14.7219867Z [1/2] c++ -MMD -MF dangling_impl_extension.o.d -DTORCH_EXTENSION_NAME=dangling_impl_extension -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -isystem /opt/conda/lib/python3.10/site-packages/torch/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -isystem /opt/conda/lib/python3.10/site-packages/torch/include/TH -isystem /opt/conda/lib/python3.10/site-packages/torch/include/THC -isystem /opt/conda/include/python3.10 -D_GLIBCXX_USE_CXX11_ABI=1 -fPIC -std=c++17 -g -c /var/lib/jenkins/workspace/test/cpp_extensions/dangling_impl_extension.cpp -o dangling_impl_extension.o 2023-01-11T22:01:14.7221244Z [2/2] c++ dangling_impl_extension.o -shared -L/opt/conda/lib/python3.10/site-packages/torch/lib -lc10 -ltorch_cpu -ltorch -ltorch_python -o dangling_impl_extension.so 2023-01-11T22:01:14.7221768Z Loading extension module dangling_impl_extension... 2023-01-11T22:01:14.7221975Z ok (1.349s) 2023-01-11T22:01:14.7222193Z test_impl_only (__main__.TestDispatch) ... ok (0.214s) 2023-01-11T22:01:14.7222480Z test_multiple_def_alias_defaulting (__main__.TestDispatch) ... ok (0.008s) 2023-01-11T22:01:14.7222829Z test_multiple_def_alias_mismatch (__main__.TestDispatch) ... ok (0.008s) 2023-01-11T22:01:14.7223118Z test_multiple_def_error (__main__.TestDispatch) ... ok (0.008s) 2023-01-11T22:01:14.7223391Z test_multiple_fallback (__main__.TestDispatch) ... ok (0.009s) 2023-01-11T22:01:14.7223774Z test_overwrite_math (__main__.TestDispatch) ... [W OperatorEntry.cpp:159] Warning: Overriding a previously registered kernel for the same operator and the same dispatch key 2023-01-11T22:01:14.7224134Z operator: __test45643__::foo 2023-01-11T22:01:14.7224323Z no debug info 2023-01-11T22:01:14.7224510Z dispatch key: (catch all) 2023-01-11T22:01:14.7224690Z previous kernel: fn1 2023-01-11T22:01:14.7224912Z new kernel: fn2 (function registerKernel) 2023-01-11T22:01:14.7225251Z [W OperatorEntry.cpp:159] Warning: Overriding a previously registered kernel for the same operator and the same dispatch key 2023-01-11T22:01:14.7225543Z operator: __test45644__::foo 2023-01-11T22:01:14.7225727Z no debug info 2023-01-11T22:01:14.7225925Z dispatch key: (catch all) 2023-01-11T22:01:14.7226103Z previous kernel: fn1 2023-01-11T22:01:14.7226321Z new kernel: fn2 (function registerKernel) 2023-01-11T22:01:14.7226520Z ok (0.001s) 2023-01-11T22:01:14.7226744Z test_autogradother (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T22:01:14.7227028Z test_basic (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T22:01:14.7227330Z test_defaultbackend_autogradcpu (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T22:01:14.7227650Z test_defaultbackend_math (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T22:01:14.7227954Z test_duplicate_registrations (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T22:01:14.7228266Z test_math_autogradcpu (__main__.TestPythonDispatcher) ... ok (0.001s) 2023-01-11T22:01:14.7228590Z test_quantized_structured_not_implemented (__main__.TestPythonDispatcher) ... ok (0.024s) 2023-01-11T22:01:14.7228782Z 2023-01-11T22:01:14.7228983Z ---------------------------------------------------------------------- 2023-01-11T22:01:14.7229226Z Ran 32 tests in 23.022s 2023-01-11T22:01:14.7229339Z 2023-01-11T22:01:14.7229401Z OK 2023-01-11T22:01:14.7229491Z 2023-01-11T22:01:14.7229576Z Generating XML reports... 2023-01-11T22:01:14.7229962Z Generated XML report: test-reports/python-unittest/test_dispatch/TEST-TestDispatch-20230111220051.xml 2023-01-11T22:01:14.7230480Z Generated XML report: test-reports/python-unittest/test_dispatch/TEST-TestPythonDispatcher-20230111220051.xml 2023-01-11T22:01:14.7230715Z 2023-01-11T22:01:14.7231008Z ##[endgroup] 2023-01-11T22:01:14.7231382Z FINISHED PRINTING LOG FILE of test_dispatch (/var/lib/jenkins/workspace/test/test-reports/test_dispatch_e4h4n955) 2023-01-11T22:01:14.7231595Z 2023-01-11T22:01:14.7231746Z Running test_fx ... [2023-01-11 22:01:14.715980] 2023-01-11T22:01:14.7232245Z Executing ['/opt/conda/bin/python', '-bb', 'test_fx.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:01:14.716215] 2023-01-11T22:05:04.0041497Z 2023-01-11T22:05:04.0041943Z Expand the folded group to see the log file of test_fx 2023-01-11T22:05:04.0044143Z ##[group]PRINTING LOG FILE of test_fx (/var/lib/jenkins/workspace/test/test-reports/test_fx_4tp8se8h) 2023-01-11T22:05:04.0044456Z 2023-01-11T22:05:04.0044568Z Running tests... 2023-01-11T22:05:04.0049547Z ---------------------------------------------------------------------- 2023-01-11T22:05:04.0050194Z Test results will be stored in test-reports/python-unittest/test_fx 2023-01-11T22:05:04.0050862Z test_annotate (fx.test_gradual_type.AnnotationsTest) ... ok (0.011s) 2023-01-11T22:05:04.0051325Z test_annotations (fx.test_gradual_type.AnnotationsTest) 2023-01-11T22:05:04.0052024Z Test type annotations in the forward function. ... ok (0.003s) 2023-01-11T22:05:04.0052513Z test_broadcasting1 (fx.test_gradual_type.AnnotationsTest) ... ok (0.001s) 2023-01-11T22:05:04.0053017Z test_broadcasting2 (fx.test_gradual_type.AnnotationsTest) ... ok (0.001s) 2023-01-11T22:05:04.0053531Z test_broadcasting3 (fx.test_gradual_type.AnnotationsTest) ... ok (0.001s) 2023-01-11T22:05:04.0054017Z test_consistency (fx.test_gradual_type.AnnotationsTest) 2023-01-11T22:05:04.0054464Z Test the consistency relation. ... ok (0.001s) 2023-01-11T22:05:04.0054907Z test_precision (fx.test_gradual_type.AnnotationsTest) 2023-01-11T22:05:04.0055180Z Test the consistency relation. ... ok (0.001s) 2023-01-11T22:05:04.0055440Z test_banned_list (fx.test_cse_pass.TestCSEPass) ... ok (0.057s) 2023-01-11T22:05:04.0055700Z test_empty (fx.test_cse_pass.TestCSEPass) ... ok (0.006s) 2023-01-11T22:05:04.0055990Z test_immutable_list_multiple_entries (fx.test_cse_pass.TestCSEPass) ... ok (0.055s) 2023-01-11T22:05:04.0056299Z test_immutable_list_type (fx.test_cse_pass.TestCSEPass) ... ok (0.055s) 2023-01-11T22:05:04.0056564Z test_kwarg (fx.test_cse_pass.TestCSEPass) ... ok (0.024s) 2023-01-11T22:05:04.0056856Z test_nested_immutable_list_type (fx.test_cse_pass.TestCSEPass) ... ok (0.027s) 2023-01-11T22:05:04.0057144Z test_nochange (fx.test_cse_pass.TestCSEPass) ... ok (0.035s) 2023-01-11T22:05:04.0057413Z test_rand_like (fx.test_cse_pass.TestCSEPass) ... ok (0.027s) 2023-01-11T22:05:04.0057666Z test_rand_n (fx.test_cse_pass.TestCSEPass) ... ok (0.025s) 2023-01-11T22:05:04.0057927Z test_random (fx.test_cse_pass.TestCSEPass) ... ok (0.083s) 2023-01-11T22:05:04.0058188Z test_simple (fx.test_cse_pass.TestCSEPass) ... ok (0.041s) 2023-01-11T22:05:04.0058436Z test_simple_2 (fx.test_cse_pass.TestCSEPass) ... ok (0.054s) 2023-01-11T22:05:04.0058722Z test_simple_multiple_same_ops (fx.test_cse_pass.TestCSEPass) ... ok (0.054s) 2023-01-11T22:05:04.0059005Z test_two_args (fx.test_cse_pass.TestCSEPass) ... ok (0.055s) 2023-01-11T22:05:04.0059282Z test_two_args_default (fx.test_cse_pass.TestCSEPass) ... ok (0.055s) 2023-01-11T22:05:04.0059603Z test_correctness_CSEPass_MutationInput_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.027s) 2023-01-11T22:05:04.0059983Z test_correctness_CSEPass_MutationMetadata_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.014s) 2023-01-11T22:05:04.0060375Z test_correctness_CSEPass_MutationTorchTensorCall_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.025s) 2023-01-11T22:05:04.0060740Z test_correctness_CSEPass_Mutation_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.027s) 2023-01-11T22:05:04.0061139Z test_correctness_CSEPass_ReturnList_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.038s) 2023-01-11T22:05:04.0061493Z test_correctness_CSEPass_TakeList_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.013s) 2023-01-11T22:05:04.0061929Z test_correctness_factory_CSEPass_FactoryFunctionCall_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.018s) 2023-01-11T22:05:04.0062464Z test_correctness_factory_CSEPass_MutationFactory_cpu (fx.test_common_passes.TestCommonPass) ... ok (0.025s) 2023-01-11T22:05:04.0063248Z test_check_inline_non_const (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0064518Z Perform constant folding conversion and check that the non-const module is inlined ... /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/const_fold.py:248: UserWarning: Attempted to insert a get_attr Node with no underlying reference in the owning GraphModule! Call GraphModule.add_submodule to add the necessary submodule, GraphModule.add_parameter to add the necessary Parameter, or nn.Module.register_buffer to add the necessary buffer 2023-01-11T22:05:04.0065424Z new_node = root_const_gm.graph.get_attr(in_node.target) 2023-01-11T22:05:04.0065634Z ok (0.007s) 2023-01-11T22:05:04.0065866Z test_check_inline_non_const_mult_return (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0066335Z Perform constant folding conversion and check that the non-const module is inlined ... ok (0.006s) 2023-01-11T22:05:04.0066681Z test_check_skip_folding_quant_dequant_pattern (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0067002Z Set up skip_folding_quant_dequant function to skip quant/dequant pattern. ... ok (0.024s) 2023-01-11T22:05:04.0067328Z test_const_fold_basic_one_attr_name_collision (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0067667Z Perform constant folding conversion, from original mod to split constant folding ... ok (0.005s) 2023-01-11T22:05:04.0068004Z test_const_fold_basic_one_attr_no_name_collision (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0068334Z Perform constant folding conversion, from original mod to split constant folding ... ok (0.005s) 2023-01-11T22:05:04.0068672Z test_const_fold_basic_placeholder_reordered (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0068995Z Test code path where placeholder comes after normal op node in FX ... ok (0.003s) 2023-01-11T22:05:04.0069285Z test_const_fold_basic_two_attr (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0069597Z Perform constant folding conversion, from original mod to split constant ... ok (0.005s) 2023-01-11T22:05:04.0069924Z test_const_fold_basic_two_attr_three_input (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0070246Z Perform constant folding conversion, from original mod to split constant ... ok (0.005s) 2023-01-11T22:05:04.0070572Z test_const_fold_has_inlined_call_module_node (fx.test_fx_const_fold.TestConstFold) ... ok (0.005s) 2023-01-11T22:05:04.0071127Z test_const_fold_module_attr (fx.test_fx_const_fold.TestConstFold) ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:973: UserWarning: Failed to fetch module mod! 2023-01-11T22:05:04.0071506Z warnings.warn(f"Failed to fetch module {module_path}!") 2023-01-11T22:05:04.0071714Z ok (0.095s) 2023-01-11T22:05:04.0071944Z test_const_fold_multi_const_folded_attrs (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0072271Z Perform constant folding conversion, from original mod to split constant ... ok (0.007s) 2023-01-11T22:05:04.0072570Z test_const_fold_noop (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0072856Z Check that a graph with no constant folding is handled correctly. ... ok (0.003s) 2023-01-11T22:05:04.0073162Z test_const_fold_submod_hierarchy (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0073717Z Perform constant folding conversion, from original mod to split constant folding ... /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py:973: UserWarning: Failed to fetch module my_mod! 2023-01-11T22:05:04.0074110Z warnings.warn(f"Failed to fetch module {module_path}!") 2023-01-11T22:05:04.0074306Z ok (0.005s) 2023-01-11T22:05:04.0074548Z test_const_fold_tensor_meta (fx.test_fx_const_fold.TestConstFold) ... ok (0.010s) 2023-01-11T22:05:04.0074874Z test_const_fold_unused_placeholder (fx.test_fx_const_fold.TestConstFold) ... ok (0.005s) 2023-01-11T22:05:04.0075176Z test_dict_output (fx.test_fx_const_fold.TestConstFold) ... ok (0.004s) 2023-01-11T22:05:04.0075453Z test_fold_module (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0075760Z Perform constant folding with a call_module node. ... ok (0.005s) 2023-01-11T22:05:04.0076023Z test_retain_node_meta (fx.test_fx_const_fold.TestConstFold) 2023-01-11T22:05:04.0076330Z Perform constant folding conversion, and validate that node meta is retained. ... ok (0.005s) 2023-01-11T22:05:04.0076645Z test_three_outputs (fx.test_fx_const_fold.TestConstFold) ... ok (0.005s) 2023-01-11T22:05:04.0076936Z test_two_outputs (fx.test_fx_const_fold.TestConstFold) ... ok (0.004s) 2023-01-11T22:05:04.0077281Z test_param_dim_const (fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow) ... ok (0.006s) 2023-01-11T22:05:04.0077696Z test_param_ndim_const (fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow) ... ok (0.005s) 2023-01-11T22:05:04.0078147Z test_param_nelement_const (fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow) ... ok (0.005s) 2023-01-11T22:05:04.0078571Z test_param_numel_const (fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow) ... ok (0.005s) 2023-01-11T22:05:04.0078975Z test_param_shape_const (fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow) ... ok (0.005s) 2023-01-11T22:05:04.0079381Z test_param_size_const (fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow) ... ok (0.005s) 2023-01-11T22:05:04.0079700Z test_dead_chain (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0080025Z Tests that a chain of two nodes in the graph are DCE'd correctly. ... graph(): 2023-01-11T22:05:04.0080286Z %x : [#users=2] = placeholder[target=x] 2023-01-11T22:05:04.0080555Z %add : [#users=1] = call_function[target=operator.add](args = (%x, 1), kwargs = {}) 2023-01-11T22:05:04.0080864Z %mul : [#users=0] = call_function[target=operator.mul](args = (%add, 7), kwargs = {}) 2023-01-11T22:05:04.0081116Z %attr_1 : [#users=1] = get_attr[target=attr_1] 2023-01-11T22:05:04.0081391Z %add_1 : [#users=1] = call_function[target=operator.add](args = (%x, %attr_1), kwargs = {}) 2023-01-11T22:05:04.0081632Z return add_1 2023-01-11T22:05:04.0081784Z ok (0.003s) 2023-01-11T22:05:04.0081986Z test_dead_getattr (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0082301Z Tests that a getatrr in the graph is DCE'd correctly. ... graph(): 2023-01-11T22:05:04.0082537Z %x : [#users=2] = placeholder[target=x] 2023-01-11T22:05:04.0082802Z %add : [#users=1] = call_function[target=operator.add](args = (%x, 1), kwargs = {}) 2023-01-11T22:05:04.0083065Z %attr_1 : [#users=1] = get_attr[target=attr_1] 2023-01-11T22:05:04.0083342Z %mul : [#users=0] = call_function[target=operator.mul](args = (%add, %attr_1), kwargs = {}) 2023-01-11T22:05:04.0083642Z %add_1 : [#users=1] = call_function[target=operator.add](args = (%x, 11), kwargs = {}) 2023-01-11T22:05:04.0083880Z return add_1 2023-01-11T22:05:04.0084042Z ok (0.003s) 2023-01-11T22:05:04.0084241Z test_dead_placeholder (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0084597Z Tests that a placeholder in the graph is not DCE'd, as that would change ... graph(): 2023-01-11T22:05:04.0084869Z %x : [#users=1] = placeholder[target=x] 2023-01-11T22:05:04.0085074Z %y : [#users=0] = placeholder[target=y] 2023-01-11T22:05:04.0085336Z %add : [#users=1] = call_function[target=operator.add](args = (%x, 7), kwargs = {}) 2023-01-11T22:05:04.0085569Z return add 2023-01-11T22:05:04.0085718Z ok (0.002s) 2023-01-11T22:05:04.0085939Z test_dead_placeholder_with_user (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0086303Z Tests that a placeholder in the graph is not DCE'd, as that would change ... graph(): 2023-01-11T22:05:04.0086574Z %x : [#users=1] = placeholder[target=x] 2023-01-11T22:05:04.0086779Z %y : [#users=1] = placeholder[target=y] 2023-01-11T22:05:04.0087043Z %add : [#users=0] = call_function[target=operator.add](args = (%y, 2), kwargs = {}) 2023-01-11T22:05:04.0087349Z %add_1 : [#users=1] = call_function[target=operator.add](args = (%x, 7), kwargs = {}) 2023-01-11T22:05:04.0087567Z return add_1 2023-01-11T22:05:04.0087767Z ok (0.003s) 2023-01-11T22:05:04.0087988Z test_keep_module_with_side_effects (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0088351Z Test that DCE doesn't remove a module if it's specified as having side effects. ... graph(): 2023-01-11T22:05:04.0088644Z %a : torch.Tensor [#users=2] = placeholder[target=a] 2023-01-11T22:05:04.0088910Z %relu : [#users=0] = call_module[target=relu](args = (%a,), kwargs = {}) 2023-01-11T22:05:04.0089323Z %mul : [#users=1] = call_function[target=operator.mul](args = (%a, 2), kwargs = {}) 2023-01-11T22:05:04.0089541Z return mul 2023-01-11T22:05:04.0089702Z ok (0.003s) 2023-01-11T22:05:04.0089909Z test_keep_torch_assert (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0090246Z Test that DCE doesn't remove torch._assert since it has side effects. ... graph(): 2023-01-11T22:05:04.0090588Z %a : torch.Tensor [#users=2] = placeholder[target=a] 2023-01-11T22:05:04.0090871Z %equal : [#users=1] = call_function[target=torch.equal](args = (%a, %a), kwargs = {}) 2023-01-11T22:05:04.0091192Z %_assert : [#users=0] = call_function[target=torch._assert](args = (%equal, a must equal a), kwargs = {}) 2023-01-11T22:05:04.0091517Z %mul : [#users=1] = call_function[target=operator.mul](args = (%a, 2), kwargs = {}) 2023-01-11T22:05:04.0091746Z return mul 2023-01-11T22:05:04.0091897Z ok (0.003s) 2023-01-11T22:05:04.0092093Z test_simple (fx.test_dce_pass.TestDCE) 2023-01-11T22:05:04.0092410Z Tests that a single node in the graph is DCE'd correctly. ... graph(): 2023-01-11T22:05:04.0092666Z %x : [#users=2] = placeholder[target=x] 2023-01-11T22:05:04.0092921Z %add : [#users=0] = call_function[target=operator.add](args = (%x, 1), kwargs = {}) 2023-01-11T22:05:04.0093187Z %attr_1 : [#users=1] = get_attr[target=attr_1] 2023-01-11T22:05:04.0093467Z %add_1 : [#users=1] = call_function[target=operator.add](args = (%x, %attr_1), kwargs = {}) 2023-01-11T22:05:04.0093693Z return add_1 2023-01-11T22:05:04.0093859Z ok (0.003s) 2023-01-11T22:05:04.0094067Z test_all_input_nodes (__main__.TestFX) ... ok (0.008s) 2023-01-11T22:05:04.0094310Z test_annotation_with_future (__main__.TestFX) ... ok (0.007s) 2023-01-11T22:05:04.0095090Z test_annotations_empty_tuple (__main__.TestFX) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. 2023-01-11T22:05:04.0095690Z warnings.warn("The TorchScript type system doesn't support " 2023-01-11T22:05:04.0095911Z ok (0.027s) 2023-01-11T22:05:04.0096131Z test_annotations_with_forward_references (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0096428Z test_annotations_with_no_forward_references (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0096762Z test_annotations_with_non_torch_reference_and_internal_forward_references (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0097130Z test_annotations_with_non_torch_reference_and_no_internal_forward_references (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0097417Z test_args_kwargs (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0097664Z test_args_kwargs_no_self (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0098006Z test_assert (__main__.TestFX) ... skip: Does not work on Python-3.10 (0.000s) 2023-01-11T22:05:04.0098287Z test_ast_rewriter_reassigns_submodules (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0098568Z test_ast_rewriter_rewrites_assert (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0098854Z test_ast_rewriter_rewrites_assert_with_message (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0099125Z test_ast_rewriter_wrap (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0099378Z test_ast_rewriter_wrap_fn_directly (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0099656Z test_ast_rewriter_wrap_with_submodule (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0099988Z test_ast_rewriter_wrapped_via_decorator (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0100284Z test_ast_rewriter_wrapped_via_decorator_and_transformed (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0100574Z test_autowrap_functions (__main__.TestFX) ... ok (0.063s) 2023-01-11T22:05:04.0100837Z test_concrete_arg_none_assert (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0101084Z test_construct_root_dict (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0101324Z test_copy_it (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0101560Z test_copy_no_remap (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0101792Z test_ctx_mgr (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0102012Z test_custom_codegen (__main__.TestFX) ... ok (0.019s) 2023-01-11T22:05:04.0102304Z test_custom_codegen_with_transformer (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0102566Z test_custom_import (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0102884Z test_custom_proxy_dynamic_value (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0103174Z test_custom_proxy_input_dependent_control_flow (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0103455Z test_custom_proxy_type (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0103704Z test_custom_proxy_type_literal (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0104013Z test_custom_traceback_not_raised_when_exception_source_is_submodule (__main__.TestFX) ... ok (0.008s) 2023-01-11T22:05:04.0104362Z test_custom_traceback_raised_when_exception_source_is_graphmodule (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0104677Z test_deepcopy_graph_with_tracer_cls (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0104956Z test_deepcopy_graphmodule_with_transform (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0105240Z test_deepcopy_recursion_depth (__main__.TestFX) ... ok (0.058s) 2023-01-11T22:05:04.0105496Z test_deepcopy_tracer (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0105751Z test_deepcopy_with_submods_params (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0106026Z test_delete_unused_submodules_leaf (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0106272Z test_dict (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0106505Z test_direct_param_use (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0106739Z test_disallow_override (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0106973Z test_ellipsis (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0107213Z test_empty_graph_codegen (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0107448Z test_erase_node_error (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0107695Z test_example_shape_prop (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0107938Z test_find_uses (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0108173Z test_fn_type_annotation_empty (__main__.TestFX) ... ok (0.017s) 2023-01-11T22:05:04.0108433Z test_fn_type_annotations (__main__.TestFX) ... ok (0.024s) 2023-01-11T22:05:04.0108672Z test_fx_and_or (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0108888Z test_fx_create_arg (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0109117Z test_fx_shifts (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0109351Z test_fx_stateless (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0109597Z test_get_torch_func_signature (__main__.TestFX) ... ok (0.121s) 2023-01-11T22:05:04.0109877Z test_getitem (__main__.TestFX) ... skip: Will be checked in test_getitem_subproc (0.000s) 2023-01-11T22:05:04.0110160Z test_getitem_subproc (__main__.TestFX) ... ok (0.028s) 2023-01-11T22:05:04.0110412Z test_graph_edit_with_proxy (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0110639Z test_graph_fns (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0110875Z test_graph_module (__main__.TestFX) ... ok (0.035s) 2023-01-11T22:05:04.0111152Z test_graph_module_init_buffer_param_copied_dict_init (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0111500Z test_graph_module_init_buffer_param_copied_mod_init (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0111783Z test_graph_module_replicate_for_dp (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0112049Z test_graph_unique_names (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0112306Z test_graph_unique_names_manual (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0112561Z test_immutable_dict_pytree_ops (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0112830Z test_immutable_list_pytree_ops (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0113085Z test_imul_code_print (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0113305Z test_inf_nan (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0113534Z test_inf_nan_kwds (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0113796Z test_inline_graph (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0114037Z test_insertion_point (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0114266Z test_interpreter (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0114520Z test_interpreter_default_args (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0114785Z test_interpreter_gc_values (__main__.TestFX) ... ok (0.248s) 2023-01-11T22:05:04.0115035Z test_interpreter_noop_resnet18 (__main__.TestFX) ... ok (0.307s) 2023-01-11T22:05:04.0115308Z test_interpreter_not_enough_args (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0115578Z test_interpreter_onthefly_swap (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0116019Z test_interpreter_partial_eval (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0116294Z test_interpreter_run_node_override (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0116560Z test_interpreter_star_args (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0116823Z test_interpreter_with_codegen (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0117053Z test_layout (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0117285Z test_leaf_module (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0117522Z test_matmul_tracing (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0117766Z test_module_deepcopy_edit_nodes (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0118017Z test_move_before (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0118261Z test_multi_insert_point (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0118501Z test_multiple_default_args (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0118756Z test_named_tuple_inlined (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0119018Z test_namedtuple_return_qualname (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0119285Z test_namedtuple_return_trace (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0119529Z test_native_callable (__main__.TestFX) ... ok (0.024s) 2023-01-11T22:05:04.0119770Z test_no_mutation (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0120008Z test_node_tagging (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0120245Z test_nonetype_annotation (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0120973Z test_partial_trace (__main__.TestFX) ... /opt/conda/lib/python3.10/site-packages/torch/fx/_symbolic_trace.py:564: UserWarning: Was not able to add assertion to guarantee correct input f to specialized function. It is up to the user to make sure that your inputs match the inputs you specialized the function with. 2023-01-11T22:05:04.0121436Z warnings.warn( 2023-01-11T22:05:04.0121546Z 2023-01-11T22:05:04.0121551Z 2023-01-11T22:05:04.0121555Z 2023-01-11T22:05:04.0121637Z def forward(self, x, y_1): 2023-01-11T22:05:04.0121818Z eq = y_1 == True; y_1 = None 2023-01-11T22:05:04.0122179Z _assert = torch._assert(eq, 'y has been specialized to have value True but got another value'); eq = None 2023-01-11T22:05:04.0122443Z mul = 2 * x; x = None 2023-01-11T22:05:04.0122605Z return mul 2023-01-11T22:05:04.0122762Z 2023-01-11T22:05:04.0122948Z ok (0.007s) 2023-01-11T22:05:04.0123145Z test_pickle_custom_import (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0123406Z test_pickle_graphmodule (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0123671Z test_pickle_nonetype_annotation (__main__.TestFX) ... ok (0.006s) 2023-01-11T22:05:04.0123939Z test_pickle_torch_custom_ops (__main__.TestFX) ... ok (0.006s) 2023-01-11T22:05:04.0124458Z test_prepend_self (__main__.TestFX) ... /opt/conda/lib/python3.10/site-packages/torch/fx/node.py:244: UserWarning: Trying to prepend a node to itself. This behavior has no effect on the graph. 2023-01-11T22:05:04.0124893Z warnings.warn("Trying to prepend a node to itself. This behavior has no effect on the graph.") 2023-01-11T22:05:04.0125142Z ok (0.001s) 2023-01-11T22:05:04.0125331Z test_pretty_print (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0125684Z test_pretty_print_graph (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0125939Z test_pretty_print_node (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0126196Z test_pretty_print_targets (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0126451Z test_profiler_ranges_side_effect (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0126701Z test_pytree (__main__.TestFX) ... ok (0.098s) 2023-01-11T22:05:04.0126938Z test_pytree_concrete (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0127181Z test_reassign_args_kwargs_uses (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0127444Z test_regular_and_default_args (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0127691Z test_remove_uses (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0127935Z test_remove_uses_with_custom_filter (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0128191Z test_replace_input (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0128433Z test_replace_uses (__main__.TestFX) ... ok (0.135s) 2023-01-11T22:05:04.0128657Z test_reserved_getattr (__main__.TestFX) 2023-01-11T22:05:04.0128919Z Ensure that we do not name any nodes with a reserved builtin like `getattr` ... ok (0.003s) 2023-01-11T22:05:04.0129342Z test_return_tuple (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0129587Z test_return_type_exists (__main__.TestFX) ... ok (0.017s) 2023-01-11T22:05:04.0129830Z test_script_method_trace (__main__.TestFX) ... ok (0.008s) 2023-01-11T22:05:04.0130085Z test_script_tensor_constant (__main__.TestFX) ... ok (0.017s) 2023-01-11T22:05:04.0130329Z test_sequential (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0130570Z test_shape_prop_aggregate (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0130824Z test_shape_prop_layout (__main__.TestFX) ... ok (0.024s) 2023-01-11T22:05:04.0131077Z test_shape_prop_layout_3d (__main__.TestFX) ... ok (0.511s) 2023-01-11T22:05:04.0131331Z test_single_default_arg (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0131563Z test_snake_case (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0131792Z test_sqrt (__main__.TestFX) ... ok (0.008s) 2023-01-11T22:05:04.0132024Z test_stack_traces (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0132274Z test_stack_traces_with_transformer (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0132545Z test_string_literal_return (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0132820Z test_submodule_manipulation_API (__main__.TestFX) ... ok (0.018s) 2023-01-11T22:05:04.0133078Z test_symbolic_trace_assert (__main__.TestFX) ... ok (0.009s) 2023-01-11T22:05:04.0133346Z test_symbolic_trace_sequential (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0133607Z test_tensor_attribute (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0133867Z test_tensor_attribute_coalseced (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0134115Z test_tensor_constant (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0134365Z test_throw_out_variant (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0134613Z test_torch_custom_ops (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0134913Z test_torch_fx_getattr (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0135674Z test_torch_fx_len (__main__.TestFX) ... /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. 2023-01-11T22:05:04.0136300Z warnings.warn("The TorchScript type system doesn't support " 2023-01-11T22:05:04.0136595Z ok (0.023s) 2023-01-11T22:05:04.0136794Z test_torch_op_overloads (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0137063Z test_torchbind_class_attribute_in_fx (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0137361Z test_torchbind_class_attribute_in_fx_tensor_arg (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0137715Z test_trace_buffer_slice (__main__.TestFX) ... skip: Hotfix for SEV remediation (0.001s) 2023-01-11T22:05:04.0138010Z test_trace_dict_int_keys (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0138266Z test_trace_dict_proxy_keys (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0138520Z test_trace_fn_constant (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0138751Z test_trace_function (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0139007Z test_trace_multiple_funcs (__main__.TestFX) ... 2.0.0a0+git8419ddd 2023-01-11T22:05:04.0139222Z ok (0.006s) 2023-01-11T22:05:04.0139450Z test_tracing_graphmodules_as_leaf_submodules (__main__.TestFX) ... ok (0.014s) 2023-01-11T22:05:04.0139739Z test_transformer_multi_outputs (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0140000Z test_transformer_noop (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0140242Z test_transformer_op_swap (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0140501Z test_tuple_no_subscript (__main__.TestFX) ... ok (0.005s) 2023-01-11T22:05:04.0140748Z test_typename_print (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0140974Z test_unpack (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0141223Z test_unpack_dict_better_error (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0141486Z test_unpack_list_better_error (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0141743Z test_update_args_api (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0141993Z test_update_args_kwargs_yells_at_you (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0142258Z test_update_kwargs_api (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0142542Z test_user_friendly_call_provenance_with_function (__main__.TestFX) ... ok (0.016s) 2023-01-11T22:05:04.0142937Z test_user_friendly_call_provenance_with_module (__main__.TestFX) ... ok (0.016s) 2023-01-11T22:05:04.0143201Z test_wrap (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0143452Z test_wrap_decorated_function (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0143710Z test_wrap_fn_directly (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0143951Z test_wrap_with_submodule (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0144201Z test_wrapped_method (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0144447Z test_wrapped_retrace (__main__.TestFX) ... ok (0.004s) 2023-01-11T22:05:04.0144693Z test_wrapped_via_decorator (__main__.TestFX) ... ok (0.002s) 2023-01-11T22:05:04.0144973Z test_wrapped_via_decorator_and_transformed (__main__.TestFX) ... ok (0.003s) 2023-01-11T22:05:04.0145249Z test_wrong_target_type (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0145474Z test_wrong_topo (__main__.TestFX) ... ok (0.001s) 2023-01-11T22:05:04.0145761Z test_class_member_back_compat (__main__.TestFXAPIBackwardCompatibility) 2023-01-11T22:05:04.0146079Z Test backward compatibility for members of classes with ... ok (0.002s) 2023-01-11T22:05:04.0146392Z test_function_back_compat (__main__.TestFXAPIBackwardCompatibility) 2023-01-11T22:05:04.0146692Z Test backward compatibility for function signatures with ... ok (0.008s) 2023-01-11T22:05:04.0147129Z test_public_api_surface (__main__.TestFXAPIBackwardCompatibility) ... ok (0.002s) 2023-01-11T22:05:04.0147479Z test_nn_functional_adaptive_avg_pool1d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0147802Z test_nn_functional_adaptive_avg_pool2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0148126Z test_nn_functional_adaptive_avg_pool3d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0148456Z test_nn_functional_adaptive_max_pool1d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0148806Z test_nn_functional_adaptive_max_pool1d_with_indices (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0149136Z test_nn_functional_adaptive_max_pool2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0149514Z test_nn_functional_adaptive_max_pool2d_with_indices (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0149857Z test_nn_functional_adaptive_max_pool3d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0150189Z test_nn_functional_adaptive_max_pool3d_with_indices (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0150522Z test_nn_functional_affine_grid (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0150838Z test_nn_functional_alpha_dropout (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0151158Z test_nn_functional_avg_pool1d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0151453Z test_nn_functional_avg_pool2d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0151757Z test_nn_functional_avg_pool3d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0152066Z test_nn_functional_batch_norm (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0152366Z test_nn_functional_bilinear (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0152686Z test_nn_functional_binary_cross_entropy (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0153033Z test_nn_functional_binary_cross_entropy_with_logits (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0153355Z test_nn_functional_celu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0153643Z test_nn_functional_celu_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0153955Z test_nn_functional_channel_shuffle (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0154267Z test_nn_functional_conv1d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0154558Z test_nn_functional_conv2d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0154858Z test_nn_functional_conv3d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0155166Z test_nn_functional_conv_tbc (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0155483Z test_nn_functional_conv_transpose1d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0155799Z test_nn_functional_conv_transpose2d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0156123Z test_nn_functional_conv_transpose3d (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0156456Z test_nn_functional_cosine_embedding_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0156777Z test_nn_functional_cosine_similarity (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0157099Z test_nn_functional_cross_entropy (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0157409Z test_nn_functional_ctc_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0157815Z test_nn_functional_dropout (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0158116Z test_nn_functional_dropout1d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0158426Z test_nn_functional_dropout2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0158768Z test_nn_functional_dropout3d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0159057Z test_nn_functional_elu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0159353Z test_nn_functional_elu_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0159656Z test_nn_functional_embedding (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0159972Z test_nn_functional_embedding_bag (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0160287Z test_nn_functional_feature_alpha_dropout (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0160604Z test_nn_functional_fold (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0160950Z test_nn_functional_fractional_max_pool2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0161289Z test_nn_functional_fractional_max_pool2d_with_indices (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0161640Z test_nn_functional_fractional_max_pool3d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0161986Z test_nn_functional_fractional_max_pool3d_with_indices (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0162328Z test_nn_functional_gaussian_nll_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0162627Z test_nn_functional_gelu (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0162923Z test_nn_functional_glu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0163228Z test_nn_functional_grid_sample (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0163540Z test_nn_functional_group_norm (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0163848Z test_nn_functional_gumbel_softmax (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0164164Z test_nn_functional_hardshrink (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0164480Z test_nn_functional_hardsigmoid (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0164780Z test_nn_functional_hardswish (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0165088Z test_nn_functional_hardtanh (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0165396Z test_nn_functional_hardtanh_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0165718Z test_nn_functional_hinge_embedding_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0166028Z test_nn_functional_huber_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0166342Z test_nn_functional_instance_norm (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0166663Z test_nn_functional_interpolate (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0166961Z test_nn_functional_kl_div (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0167264Z test_nn_functional_l1_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0167571Z test_nn_functional_layer_norm (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0167877Z test_nn_functional_leaky_relu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0168172Z test_nn_functional_leaky_relu_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0168475Z test_nn_functional_linear (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0168793Z test_nn_functional_local_response_norm (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0169390Z test_nn_functional_log_softmax (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0169713Z test_nn_functional_logsigmoid (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0170027Z test_nn_functional_lp_pool1d (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0170397Z test_nn_functional_lp_pool2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0170704Z test_nn_functional_margin_ranking_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0171024Z test_nn_functional_max_pool1d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0171348Z test_nn_functional_max_pool1d_with_indices (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0171660Z test_nn_functional_max_pool2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0171981Z test_nn_functional_max_pool2d_with_indices (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0172303Z test_nn_functional_max_pool3d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0172662Z test_nn_functional_max_pool3d_with_indices (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0172977Z test_nn_functional_max_unpool1d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0173295Z test_nn_functional_max_unpool2d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0173606Z test_nn_functional_max_unpool3d (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0173898Z test_nn_functional_mish (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0174199Z test_nn_functional_mse_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0174529Z test_nn_functional_multi_head_attention_forward (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0174865Z test_nn_functional_multi_margin_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0175183Z test_nn_functional_multilabel_margin_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0175527Z test_nn_functional_multilabel_soft_margin_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0175866Z test_nn_functional_native_channel_shuffle (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0176174Z test_nn_functional_nll_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0176486Z test_nn_functional_normalize (__main__.TestFunctionalTracing) ... ok (0.003s) 2023-01-11T22:05:04.0176791Z test_nn_functional_one_hot (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0177093Z test_nn_functional_pad (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0177396Z test_nn_functional_pairwise_distance (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0177709Z test_nn_functional_pdist (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0178019Z test_nn_functional_pixel_shuffle (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0178329Z test_nn_functional_pixel_unshuffle (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0178653Z test_nn_functional_poisson_nll_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0178965Z test_nn_functional_prelu (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0179265Z test_nn_functional_relu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0179550Z test_nn_functional_relu6 (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0179849Z test_nn_functional_relu_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0180143Z test_nn_functional_rrelu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0180430Z test_nn_functional_rrelu_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0180733Z test_nn_functional_selu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0181030Z test_nn_functional_selu_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0181330Z test_nn_functional_silu (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0181624Z test_nn_functional_smooth_l1_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0192503Z test_nn_functional_soft_margin_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0192831Z test_nn_functional_softmax (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0193129Z test_nn_functional_softmin (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0193445Z test_nn_functional_softplus (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0193765Z test_nn_functional_softshrink (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0194090Z test_nn_functional_threshold (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0194395Z test_nn_functional_threshold_ (__main__.TestFunctionalTracing) ... ok (0.001s) 2023-01-11T22:05:04.0194814Z test_nn_functional_triplet_margin_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0195173Z test_nn_functional_triplet_margin_with_distance_loss (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0195507Z test_nn_functional_unfold (__main__.TestFunctionalTracing) ... ok (0.002s) 2023-01-11T22:05:04.0196193Z test_nn_functional_upsample (__main__.TestFunctionalTracing) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:3736: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. 2023-01-11T22:05:04.0196719Z warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") 2023-01-11T22:05:04.0196998Z ok (0.002s) 2023-01-11T22:05:04.0197578Z test_nn_functional_upsample_bilinear (__main__.TestFunctionalTracing) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:4078: UserWarning: nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead. 2023-01-11T22:05:04.0198119Z warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.") 2023-01-11T22:05:04.0198401Z ok (0.002s) 2023-01-11T22:05:04.0198985Z test_nn_functional_upsample_nearest (__main__.TestFunctionalTracing) ... /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py:4022: UserWarning: nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead. 2023-01-11T22:05:04.0199502Z warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.") 2023-01-11T22:05:04.0199781Z ok (0.002s) 2023-01-11T22:05:04.0200011Z test_pass_manager (fx.test_pass_infra.TestPassManager) 2023-01-11T22:05:04.0200305Z Tests that the pass manager runs the passes correctly. ... ok (0.006s) 2023-01-11T22:05:04.0200591Z test_pass_manager_bad_checks (fx.test_pass_infra.TestPassManager) 2023-01-11T22:05:04.0200914Z Checks that we error if we pass in a check function with the wrong parameters ... ok (0.001s) 2023-01-11T22:05:04.0201234Z test_pass_manager_checks (fx.test_pass_infra.TestPassManager) 2023-01-11T22:05:04.0201512Z Tests that users can add in check functions correctly ... ok (0.002s) 2023-01-11T22:05:04.0201805Z test_pass_manager_error (fx.test_pass_infra.TestPassManager) 2023-01-11T22:05:04.0202065Z Tests error catching + debug ... ok (0.004s) 2023-01-11T22:05:04.0202329Z test_this_before_that_pass_constraint (fx.test_pass_infra.TestPassManager) 2023-01-11T22:05:04.0202619Z Tests the construction of constraints ... ok (0.001s) 2023-01-11T22:05:04.0202890Z test_topological_sort (fx.test_pass_infra.TestPassManager) 2023-01-11T22:05:04.0203182Z Tests that passes are correctly ordered based on contraints. ... ok (0.002s) 2023-01-11T22:05:04.0203519Z test_matching_pattern_with_list_type_arg (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.006s) 2023-01-11T22:05:04.0203907Z test_replace_pattern_with_filters (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.014s) 2023-01-11T22:05:04.0204293Z test_subgraph_rewriter_annotations_int (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.004s) 2023-01-11T22:05:04.0204677Z test_subgraph_rewriter_call_method (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0205102Z test_subgraph_rewriter_correct_output_replacement (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.008s) 2023-01-11T22:05:04.0205509Z test_subgraph_rewriter_graph_argument_order (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0205950Z test_subgraph_rewriter_internal_pattern_nodes_cannot_have_users_that_are_not_matched (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0206364Z test_subgraph_rewriter_local_revert (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.010s) 2023-01-11T22:05:04.0206753Z test_subgraph_rewriter_multiple_pattern_match (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.009s) 2023-01-11T22:05:04.0207199Z test_subgraph_rewriter_nodes_with_kwargs (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0207601Z test_subgraph_rewriter_pattern_is_entire_graph (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0208032Z test_subgraph_rewriter_pattern_output_pattern_node_can_have_users_that_are_not_matched (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0208459Z test_subgraph_rewriter_placeholder_matching (fx.test_subgraph_rewriter.TestSubgraphRewriter) 2023-01-11T22:05:04.0208806Z This tests that a placeholder Node can be matched to a Node with ... ok (0.007s) 2023-01-11T22:05:04.0209317Z test_subgraph_rewriter_preserves_logic (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.008s) 2023-01-11T22:05:04.0209719Z test_subgraph_rewriter_replace_consecutive_submodules (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0210144Z test_subgraph_rewriter_replace_with_duplicated_outputs (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.008s) 2023-01-11T22:05:04.0210560Z test_subgraph_rewriter_replace_with_multiple_outputs (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.008s) 2023-01-11T22:05:04.0210982Z test_subgraph_rewriter_replaces_referenced_submodules (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0211382Z test_subgraph_rewriter_single_pattern_match (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0211776Z test_subgraph_rewriter_traced_as_callable (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.008s) 2023-01-11T22:05:04.0212170Z test_subgraph_rewriter_with_oneliner_pattern (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0212580Z test_subgraph_rewriter_with_overlapping_matches (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0212962Z test_subgraph_rewriter_with_unused_args (fx.test_subgraph_rewriter.TestSubgraphRewriter) ... ok (0.007s) 2023-01-11T22:05:04.0213311Z test_torchvision_models_alexnet (__main__.TestVisionTracing) ... ok (0.486s) 2023-01-11T22:05:04.0213623Z test_torchvision_models_convnext_base (__main__.TestVisionTracing) ... ok (2.229s) 2023-01-11T22:05:04.0213929Z test_torchvision_models_convnext_large (__main__.TestVisionTracing) ... ok (3.748s) 2023-01-11T22:05:04.0214243Z test_torchvision_models_convnext_small (__main__.TestVisionTracing) ... ok (1.372s) 2023-01-11T22:05:04.0214558Z test_torchvision_models_convnext_tiny (__main__.TestVisionTracing) ... ok (0.756s) 2023-01-11T22:05:04.0214870Z test_torchvision_models_densenet121 (__main__.TestVisionTracing) ... ok (1.582s) 2023-01-11T22:05:04.0215164Z test_torchvision_models_densenet161 (__main__.TestVisionTracing) ... ok (2.584s) 2023-01-11T22:05:04.0215473Z test_torchvision_models_densenet169 (__main__.TestVisionTracing) ... ok (2.202s) 2023-01-11T22:05:04.0215778Z test_torchvision_models_densenet201 (__main__.TestVisionTracing) ... ok (2.800s) 2023-01-11T22:05:04.0216579Z test_torchvision_models_detection_fasterrcnn_mobilenet_v3_large_320_fpn (__main__.TestVisionTracing) ... /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained_backbone' is deprecated since 0.13 and may be removed in the future, please use 'weights_backbone' instead. 2023-01-11T22:05:04.0217120Z warnings.warn( 2023-01-11T22:05:04.0217777Z /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights_backbone' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights_backbone=None`. 2023-01-11T22:05:04.0218227Z warnings.warn(msg) 2023-01-11T22:05:04.0218403Z ok (0.173s) 2023-01-11T22:05:04.0218670Z test_torchvision_models_detection_fasterrcnn_mobilenet_v3_large_fpn (__main__.TestVisionTracing) ... ok (0.170s) 2023-01-11T22:05:04.0219080Z test_torchvision_models_detection_fasterrcnn_resnet50_fpn (__main__.TestVisionTracing) ... ok (0.390s) 2023-01-11T22:05:04.0219445Z test_torchvision_models_detection_fasterrcnn_resnet50_fpn_v2 (__main__.TestVisionTracing) ... ok (0.416s) 2023-01-11T22:05:04.0219789Z test_torchvision_models_detection_fcos_resnet50_fpn (__main__.TestVisionTracing) ... ok (0.372s) 2023-01-11T22:05:04.0220144Z test_torchvision_models_detection_keypointrcnn_resnet50_fpn (__main__.TestVisionTracing) ... ok (0.574s) 2023-01-11T22:05:04.0220508Z test_torchvision_models_detection_maskrcnn_resnet50_fpn (__main__.TestVisionTracing) ... ok (0.419s) 2023-01-11T22:05:04.0220862Z test_torchvision_models_detection_maskrcnn_resnet50_fpn_v2 (__main__.TestVisionTracing) ... ok (0.446s) 2023-01-11T22:05:04.0221206Z test_torchvision_models_detection_retinanet_resnet50_fpn (__main__.TestVisionTracing) ... ok (0.374s) 2023-01-11T22:05:04.0221563Z test_torchvision_models_detection_retinanet_resnet50_fpn_v2 (__main__.TestVisionTracing) ... ok (0.413s) 2023-01-11T22:05:04.0221905Z test_torchvision_models_detection_ssd300_vgg16 (__main__.TestVisionTracing) ... ok (1.853s) 2023-01-11T22:05:04.0222258Z test_torchvision_models_detection_ssdlite320_mobilenet_v3_large (__main__.TestVisionTracing) ... ok (0.143s) 2023-01-11T22:05:04.0222589Z test_torchvision_models_efficientnet_b0 (__main__.TestVisionTracing) ... ok (1.017s) 2023-01-11T22:05:04.0222990Z test_torchvision_models_efficientnet_b1 (__main__.TestVisionTracing) ... ok (1.426s) 2023-01-11T22:05:04.0223312Z test_torchvision_models_efficientnet_b2 (__main__.TestVisionTracing) ... ok (1.403s) 2023-01-11T22:05:04.0223620Z test_torchvision_models_efficientnet_b3 (__main__.TestVisionTracing) ... ok (1.656s) 2023-01-11T22:05:04.0223938Z test_torchvision_models_efficientnet_b4 (__main__.TestVisionTracing) ... ok (2.243s) 2023-01-11T22:05:04.0224250Z test_torchvision_models_efficientnet_b5 (__main__.TestVisionTracing) ... ok (2.718s) 2023-01-11T22:05:04.0224572Z test_torchvision_models_efficientnet_b6 (__main__.TestVisionTracing) ... ok (3.438s) 2023-01-11T22:05:04.0224875Z test_torchvision_models_efficientnet_b7 (__main__.TestVisionTracing) ... ok (4.375s) 2023-01-11T22:05:04.0225195Z test_torchvision_models_efficientnet_v2_l (__main__.TestVisionTracing) ... ok (5.980s) 2023-01-11T22:05:04.0225519Z test_torchvision_models_efficientnet_v2_m (__main__.TestVisionTracing) ... ok (4.021s) 2023-01-11T22:05:04.0225826Z test_torchvision_models_efficientnet_v2_s (__main__.TestVisionTracing) ... ok (2.626s) 2023-01-11T22:05:04.0226720Z test_torchvision_models_googlenet (__main__.TestVisionTracing) ... /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/googlenet.py:47: FutureWarning: The default weight initialization of GoogleNet will be changed in future releases of torchvision. If you wish to keep the old behavior (which leads to long initialization times due to scipy/scipy#11299), please set init_weights=True. 2023-01-11T22:05:04.0227269Z warnings.warn( 2023-01-11T22:05:04.0227444Z ok (1.003s) 2023-01-11T22:05:04.0228263Z test_torchvision_models_inception_v3 (__main__.TestVisionTracing) ... /var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/models/inception.py:43: FutureWarning: The default weight initialization of inception_v3 will be changed in future releases of torchvision. If you wish to keep the old behavior (which leads to long initialization times due to scipy/scipy#11299), please set init_weights=True. 2023-01-11T22:05:04.0228825Z warnings.warn( 2023-01-11T22:05:04.0228993Z ok (1.543s) 2023-01-11T22:05:04.0229695Z test_torchvision_models_maxvit_t (__main__.TestVisionTracing) ... /opt/conda/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/TensorShape.cpp:3452.) 2023-01-11T22:05:04.0230290Z return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] 2023-01-11T22:05:04.0230526Z ok (3.210s) 2023-01-11T22:05:04.0230767Z test_torchvision_models_mnasnet0_5 (__main__.TestVisionTracing) ... ok (0.757s) 2023-01-11T22:05:04.0231079Z test_torchvision_models_mnasnet0_75 (__main__.TestVisionTracing) ... ok (0.758s) 2023-01-11T22:05:04.0231374Z test_torchvision_models_mnasnet1_0 (__main__.TestVisionTracing) ... ok (0.741s) 2023-01-11T22:05:04.0231680Z test_torchvision_models_mnasnet1_3 (__main__.TestVisionTracing) ... ok (0.845s) 2023-01-11T22:05:04.0231985Z test_torchvision_models_mobilenet_v2 (__main__.TestVisionTracing) ... ok (0.832s) 2023-01-11T22:05:04.0232306Z test_torchvision_models_mobilenet_v3_large (__main__.TestVisionTracing) ... ok (1.178s) 2023-01-11T22:05:04.0232619Z test_torchvision_models_mobilenet_v3_small (__main__.TestVisionTracing) ... ok (0.804s) 2023-01-11T22:05:04.0232935Z test_torchvision_models_regnet_x_16gf (__main__.TestVisionTracing) ... ok (2.111s) 2023-01-11T22:05:04.0233247Z test_torchvision_models_regnet_x_1_6gf (__main__.TestVisionTracing) ... ok (1.279s) 2023-01-11T22:05:04.0233544Z test_torchvision_models_regnet_x_32gf (__main__.TestVisionTracing) ... ok (3.232s) 2023-01-11T22:05:04.0233853Z test_torchvision_models_regnet_x_3_2gf (__main__.TestVisionTracing) ... ok (1.843s) 2023-01-11T22:05:04.0234161Z test_torchvision_models_regnet_x_400mf (__main__.TestVisionTracing) ... ok (1.416s) 2023-01-11T22:05:04.0234467Z test_torchvision_models_regnet_x_800mf (__main__.TestVisionTracing) ... ok (1.105s) 2023-01-11T22:05:04.0234760Z test_torchvision_models_regnet_x_8gf (__main__.TestVisionTracing) ... ok (2.001s) 2023-01-11T22:05:04.0235071Z test_torchvision_models_regnet_y_128gf (__main__.TestVisionTracing) ... ok (13.013s) 2023-01-11T22:05:04.0235382Z test_torchvision_models_regnet_y_16gf (__main__.TestVisionTracing) ... ok (2.715s) 2023-01-11T22:05:04.0235679Z test_torchvision_models_regnet_y_1_6gf (__main__.TestVisionTracing) ... ok (2.457s) 2023-01-11T22:05:04.0235989Z test_torchvision_models_regnet_y_32gf (__main__.TestVisionTracing) ... ok (4.091s) 2023-01-11T22:05:04.0236298Z test_torchvision_models_regnet_y_3_2gf (__main__.TestVisionTracing) ... ok (2.108s) 2023-01-11T22:05:04.0236605Z test_torchvision_models_regnet_y_400mf (__main__.TestVisionTracing) ... ok (1.581s) 2023-01-11T22:05:04.0236891Z test_torchvision_models_regnet_y_800mf (__main__.TestVisionTracing) ... ok (1.509s) 2023-01-11T22:05:04.0237197Z test_torchvision_models_regnet_y_8gf (__main__.TestVisionTracing) ... ok (2.061s) 2023-01-11T22:05:04.0237505Z test_torchvision_models_resnet101 (__main__.TestVisionTracing) ... ok (1.840s) 2023-01-11T22:05:04.0237809Z test_torchvision_models_resnet152 (__main__.TestVisionTracing) ... ok (2.601s) 2023-01-11T22:05:04.0238096Z test_torchvision_models_resnet18 (__main__.TestVisionTracing) ... ok (0.479s) 2023-01-11T22:05:04.0238396Z test_torchvision_models_resnet34 (__main__.TestVisionTracing) ... ok (0.908s) 2023-01-11T22:05:04.0238697Z test_torchvision_models_resnet50 (__main__.TestVisionTracing) ... ok (0.985s) 2023-01-11T22:05:04.0238996Z test_torchvision_models_resnext101_32x8d (__main__.TestVisionTracing) ... ok (2.510s) 2023-01-11T22:05:04.0239348Z test_torchvision_models_resnext101_64x4d (__main__.TestVisionTracing) ... ok (2.433s) 2023-01-11T22:05:04.0239662Z test_torchvision_models_resnext50_32x4d (__main__.TestVisionTracing) ... ok (1.017s) 2023-01-11T22:05:04.0240016Z test_torchvision_models_segmentation_deeplabv3_mobilenet_v3_large (__main__.TestVisionTracing) ... ok (1.277s) 2023-01-11T22:05:04.0240371Z test_torchvision_models_segmentation_deeplabv3_resnet101 (__main__.TestVisionTracing) ... ok (2.163s) 2023-01-11T22:05:04.0240728Z test_torchvision_models_segmentation_deeplabv3_resnet50 (__main__.TestVisionTracing) ... ok (1.135s) 2023-01-11T22:05:04.0241077Z test_torchvision_models_segmentation_fcn_resnet101 (__main__.TestVisionTracing) ... ok (1.753s) 2023-01-11T22:05:04.0241407Z test_torchvision_models_segmentation_fcn_resnet50 (__main__.TestVisionTracing) ... ok (0.976s) 2023-01-11T22:05:04.0241793Z test_torchvision_models_segmentation_lraspp_mobilenet_v3_large (__main__.TestVisionTracing) ... ok (0.987s) 2023-01-11T22:05:04.0242140Z test_torchvision_models_shufflenet_v2_x0_5 (__main__.TestVisionTracing) ... ok (0.945s) 2023-01-11T22:05:04.0242455Z test_torchvision_models_shufflenet_v2_x1_0 (__main__.TestVisionTracing) ... ok (0.897s) 2023-01-11T22:05:04.0242759Z test_torchvision_models_shufflenet_v2_x1_5 (__main__.TestVisionTracing) ... ok (0.898s) 2023-01-11T22:05:04.0243075Z test_torchvision_models_shufflenet_v2_x2_0 (__main__.TestVisionTracing) ... ok (0.958s) 2023-01-11T22:05:04.0243386Z test_torchvision_models_squeezenet1_0 (__main__.TestVisionTracing) ... ok (0.349s) 2023-01-11T22:05:04.0243698Z test_torchvision_models_squeezenet1_1 (__main__.TestVisionTracing) ... ok (0.270s) 2023-01-11T22:05:04.0243993Z test_torchvision_models_swin_b (__main__.TestVisionTracing) ... ok (3.026s) 2023-01-11T22:05:04.0244291Z test_torchvision_models_swin_s (__main__.TestVisionTracing) ... ok (2.474s) 2023-01-11T22:05:04.0244585Z test_torchvision_models_swin_t (__main__.TestVisionTracing) ... ok (1.250s) 2023-01-11T22:05:04.0244870Z test_torchvision_models_swin_v2_b (__main__.TestVisionTracing) ... ok (3.545s) 2023-01-11T22:05:04.0245171Z test_torchvision_models_swin_v2_s (__main__.TestVisionTracing) ... ok (2.960s) 2023-01-11T22:05:04.0245474Z test_torchvision_models_swin_v2_t (__main__.TestVisionTracing) ... ok (1.511s) 2023-01-11T22:05:04.0245762Z test_torchvision_models_vgg11 (__main__.TestVisionTracing) ... ok (1.592s) 2023-01-11T22:05:04.0246064Z test_torchvision_models_vgg11_bn (__main__.TestVisionTracing) ... ok (1.784s) 2023-01-11T22:05:04.0246365Z test_torchvision_models_vgg13 (__main__.TestVisionTracing) ... ok (1.826s) 2023-01-11T22:05:04.0246667Z test_torchvision_models_vgg13_bn (__main__.TestVisionTracing) ... ok (1.846s) 2023-01-11T22:05:04.0246954Z test_torchvision_models_vgg16 (__main__.TestVisionTracing) ... ok (1.929s) 2023-01-11T22:05:04.0247255Z test_torchvision_models_vgg16_bn (__main__.TestVisionTracing) ... ok (1.982s) 2023-01-11T22:05:04.0247554Z test_torchvision_models_vgg19 (__main__.TestVisionTracing) ... ok (2.050s) 2023-01-11T22:05:04.0247843Z test_torchvision_models_vgg19_bn (__main__.TestVisionTracing) ... ok (2.145s) 2023-01-11T22:05:04.0248155Z test_torchvision_models_video_mc3_18 (__main__.TestVisionTracing) ... ok (0.872s) 2023-01-11T22:05:04.0248469Z test_torchvision_models_video_mvit_v1_b (__main__.TestVisionTracing) ... ok (4.569s) 2023-01-11T22:05:04.0248787Z test_torchvision_models_video_mvit_v2_s (__main__.TestVisionTracing) ... ok (5.466s) 2023-01-11T22:05:04.0249202Z test_torchvision_models_video_r2plus1d_18 (__main__.TestVisionTracing) ... ok (1.262s) 2023-01-11T22:05:04.0249523Z test_torchvision_models_video_r3d_18 (__main__.TestVisionTracing) ... ok (1.228s) 2023-01-11T22:05:04.0249835Z test_torchvision_models_video_s3d (__main__.TestVisionTracing) ... ok (2.589s) 2023-01-11T22:05:04.0250140Z test_torchvision_models_video_swin3d_b (__main__.TestVisionTracing) ... ok (3.266s) 2023-01-11T22:05:04.0250456Z test_torchvision_models_video_swin3d_s (__main__.TestVisionTracing) ... ok (2.641s) 2023-01-11T22:05:04.0250831Z test_torchvision_models_video_swin3d_t (__main__.TestVisionTracing) ... ok (1.403s) 2023-01-11T22:05:04.0251137Z test_torchvision_models_vit_b_16 (__main__.TestVisionTracing) ... ok (2.112s) 2023-01-11T22:05:04.0251425Z test_torchvision_models_vit_b_32 (__main__.TestVisionTracing) ... ok (1.795s) 2023-01-11T22:05:04.0251725Z test_torchvision_models_vit_h_14 (__main__.TestVisionTracing) ... ok (11.000s) 2023-01-11T22:05:04.0252027Z test_torchvision_models_vit_l_16 (__main__.TestVisionTracing) ... ok (5.961s) 2023-01-11T22:05:04.0252314Z test_torchvision_models_vit_l_32 (__main__.TestVisionTracing) ... ok (5.911s) 2023-01-11T22:05:04.0252628Z test_torchvision_models_wide_resnet101_2 (__main__.TestVisionTracing) ... ok (2.951s) 2023-01-11T22:05:04.0252980Z test_torchvision_models_wide_resnet50_2 (__main__.TestVisionTracing) ... ok (1.581s) 2023-01-11T22:05:04.0253308Z test_flatten_fully_static (fx.test_gradual_type.TypeCheckerTest) ... ok (0.016s) 2023-01-11T22:05:04.0253607Z test_resnet50 (fx.test_gradual_type.TypeCheckerTest) ... ok (1.232s) 2023-01-11T22:05:04.0253921Z test_symbolic_add_with_broadcast (fx.test_gradual_type.TypeCheckerTest) ... ok (0.004s) 2023-01-11T22:05:04.0254263Z test_symbolic_add_with_broadcast_2 (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0254596Z test_type_check_add_false (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0254901Z test_type_check_add_true (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0255231Z test_type_check_add_with_broadcast (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0255569Z test_type_check_add_with_scalar (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0255889Z test_type_check_batch_norm_2D (fx.test_gradual_type.TypeCheckerTest) ... ok (0.004s) 2023-01-11T22:05:04.0256229Z test_type_check_batch_norm_2D_broadcast (fx.test_gradual_type.TypeCheckerTest) ... ok (0.007s) 2023-01-11T22:05:04.0256572Z test_type_check_batch_norm_2D_false (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0256907Z test_type_check_batch_norm_symbolic (fx.test_gradual_type.TypeCheckerTest) ... ok (0.004s) 2023-01-11T22:05:04.0257218Z test_type_check_conv2D (fx.test_gradual_type.TypeCheckerTest) ... ok (0.004s) 2023-01-11T22:05:04.0257533Z test_type_check_conv2D_2 (fx.test_gradual_type.TypeCheckerTest) ... ok (0.007s) 2023-01-11T22:05:04.0257865Z test_type_check_conv2D_2_fully_static (fx.test_gradual_type.TypeCheckerTest) ... ok (0.028s) 2023-01-11T22:05:04.0258198Z test_type_check_conv2D_maxpool2d_flatten (fx.test_gradual_type.TypeCheckerTest) ... ok (0.005s) 2023-01-11T22:05:04.0258528Z test_type_check_conv2D_types (fx.test_gradual_type.TypeCheckerTest) ... ok (0.008s) 2023-01-11T22:05:04.0258845Z test_type_check_flatten (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0259163Z test_type_check_flatten3 (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0259477Z test_type_check_flatten_2 (fx.test_gradual_type.TypeCheckerTest) ... ok (0.002s) 2023-01-11T22:05:04.0259803Z test_type_check_reshape_dyn_false (fx.test_gradual_type.TypeCheckerTest) ... ok (0.002s) 2023-01-11T22:05:04.0260138Z test_type_check_reshape_dyn_true (fx.test_gradual_type.TypeCheckerTest) ... ok (0.002s) 2023-01-11T22:05:04.0260471Z test_type_check_reshape_dyn_true_param_false (fx.test_gradual_type.TypeCheckerTest) ... ok (0.002s) 2023-01-11T22:05:04.0260814Z test_type_check_reshape_false (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0261137Z test_type_check_reshape_true (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0261499Z test_type_check_symbolic_inferenceconv2D_maxpool2d_flatten (fx.test_gradual_type.TypeCheckerTest) ... ok (0.019s) 2023-01-11T22:05:04.0261853Z test_type_check_transpose_False (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0262211Z test_type_check_transpose_true (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0262539Z test_type_maxpool2d_fully_static (fx.test_gradual_type.TypeCheckerTest) ... ok (0.024s) 2023-01-11T22:05:04.0262951Z test_type_typechecl_maxpool2d_3dinput (fx.test_gradual_type.TypeCheckerTest) ... ok (0.003s) 2023-01-11T22:05:04.0263275Z test_typecheck_basicblock (fx.test_gradual_type.TypeCheckerTest) ... ok (0.006s) 2023-01-11T22:05:04.0263456Z 2023-01-11T22:05:04.0263676Z ---------------------------------------------------------------------- 2023-01-11T22:05:04.0263920Z Ran 526 tests in 223.797s 2023-01-11T22:05:04.0264037Z 2023-01-11T22:05:04.0264096Z OK (skipped=3) 2023-01-11T22:05:04.0264201Z 2023-01-11T22:05:04.0264286Z Generating XML reports... 2023-01-11T22:05:04.0264754Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_gradual_type.AnnotationsTest-20230111220117.xml 2023-01-11T22:05:04.0265278Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_cse_pass.TestCSEPass-20230111220117.xml 2023-01-11T22:05:04.0265793Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_common_passes.TestCommonPass-20230111220117.xml 2023-01-11T22:05:04.0266315Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_fx_const_fold.TestConstFold-20230111220117.xml 2023-01-11T22:05:04.0266924Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow-20230111220117.xml 2023-01-11T22:05:04.0267492Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_dce_pass.TestDCE-20230111220117.xml 2023-01-11T22:05:04.0267927Z Generated XML report: test-reports/python-unittest/test_fx/TEST-TestFX-20230111220117.xml 2023-01-11T22:05:04.0268433Z Generated XML report: test-reports/python-unittest/test_fx/TEST-TestFXAPIBackwardCompatibility-20230111220117.xml 2023-01-11T22:05:04.0268967Z Generated XML report: test-reports/python-unittest/test_fx/TEST-TestFunctionalTracing-20230111220117.xml 2023-01-11T22:05:04.0269477Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_pass_infra.TestPassManager-20230111220117.xml 2023-01-11T22:05:04.0270035Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_subgraph_rewriter.TestSubgraphRewriter-20230111220117.xml 2023-01-11T22:05:04.0270564Z Generated XML report: test-reports/python-unittest/test_fx/TEST-TestVisionTracing-20230111220117.xml 2023-01-11T22:05:04.0271074Z Generated XML report: test-reports/python-unittest/test_fx/TEST-fx.test_gradual_type.TypeCheckerTest-20230111220117.xml 2023-01-11T22:05:04.0271309Z 2023-01-11T22:05:04.0271622Z ##[endgroup] 2023-01-11T22:05:04.0271972Z FINISHED PRINTING LOG FILE of test_fx (/var/lib/jenkins/workspace/test/test-reports/test_fx_4tp8se8h) 2023-01-11T22:05:04.0272172Z 2023-01-11T22:05:04.0272332Z Running test_indexing ... [2023-01-11 22:05:04.006066] 2023-01-11T22:05:04.0272799Z Executing ['/opt/conda/bin/python', '-bb', 'test_indexing.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:04.006291] 2023-01-11T22:05:05.9115796Z 2023-01-11T22:05:05.9116348Z Expand the folded group to see the log file of test_indexing 2023-01-11T22:05:05.9117147Z ##[group]PRINTING LOG FILE of test_indexing (/var/lib/jenkins/workspace/test/test-reports/test_indexing_5q82la_z) 2023-01-11T22:05:05.9117798Z 2023-01-11T22:05:05.9118097Z Running tests... 2023-01-11T22:05:05.9118720Z ---------------------------------------------------------------------- 2023-01-11T22:05:05.9118984Z 2023-01-11T22:05:05.9119282Z ---------------------------------------------------------------------- 2023-01-11T22:05:05.9119647Z Ran 0 tests in 0.000s 2023-01-11T22:05:05.9119813Z 2023-01-11T22:05:05.9119902Z OK 2023-01-11T22:05:05.9122196Z 2023-01-11T22:05:05.9122459Z Generating XML reports... 2023-01-11T22:05:05.9122857Z Test results will be stored in test-reports/python-unittest/test_indexing 2023-01-11T22:05:05.9129464Z 2023-01-11T22:05:05.9129915Z ##[endgroup] 2023-01-11T22:05:05.9130346Z FINISHED PRINTING LOG FILE of test_indexing (/var/lib/jenkins/workspace/test/test-reports/test_indexing_5q82la_z) 2023-01-11T22:05:05.9130559Z 2023-01-11T22:05:05.9130720Z Running test_jit_cuda_fuser ... [2023-01-11 22:05:05.911673] 2023-01-11T22:05:05.9131199Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_cuda_fuser.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:05.911933] 2023-01-11T22:05:08.6794550Z 2023-01-11T22:05:08.6794993Z Expand the folded group to see the log file of test_jit_cuda_fuser 2023-01-11T22:05:08.6795989Z ##[group]PRINTING LOG FILE of test_jit_cuda_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_cuda_fuser_cayni90c) 2023-01-11T22:05:08.6796398Z 2023-01-11T22:05:08.6796521Z Running tests... 2023-01-11T22:05:08.6797336Z ---------------------------------------------------------------------- 2023-01-11T22:05:08.6798011Z Test results will be stored in test-reports/python-unittest/test_jit_cuda_fuser 2023-01-11T22:05:08.6798511Z test__softmax_function (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6798987Z test__softmax_function_half_to_float (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6799427Z test_addcmul_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6799947Z test_alias_pass_fix (__main__.TestCudaFuser) ... skip: skipping this test since unsqueeze is disabled now (0.001s) 2023-01-11T22:05:08.6800447Z test_autocast_1 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6800933Z test_autocast_1_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6801401Z test_autocast_2 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6801848Z test_autocast_2_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6802303Z test_backward_type (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6802687Z test_batch_norm_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6803020Z test_batch_norm_impl_index_correctness (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6803360Z test_batch_norm_impl_index_inner_bcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6803696Z test_bfloat (__main__.TestCudaFuser) ... skip: device does not support BFloat16 (0.001s) 2023-01-11T22:05:08.6804150Z test_binary_bitwise (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6804596Z test_binary_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6805098Z test_binary_ops_channels_last_with_bcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6805758Z test_binary_ops_complex (__main__.TestCudaFuser) ... skip: see issue https://github.com/csarofeen/pytorch/issues/1730 (0.001s) 2023-01-11T22:05:08.6806328Z test_binary_ops_permutation (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6806901Z test_branches (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6807509Z test_broadcasting_0 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6808091Z test_broadcasting_1 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6808595Z test_broadcasting_2 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6809286Z test_broadcasting_3 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6810155Z test_broadcasting_multiple_output (__main__.TestCudaFuser) ... skip: broadcast on branches can't be resolved yet (0.001s) 2023-01-11T22:05:08.6810849Z test_broadcasting_multiple_output_shape (__main__.TestCudaFuser) ... skip: Broadcast with different output not supported yet (0.001s) 2023-01-11T22:05:08.6811676Z test_broadcasting_partition_logic_0 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6812258Z test_broadcasting_partition_logic_1 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6812869Z test_build_shape_expression_native_dropout (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6813401Z test_category_rule (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T22:05:08.6813918Z test_channels_last_with_broadcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T22:05:08.6814444Z test_chunk (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6814898Z test_clamp (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6815499Z test_clamp_reversed_bound (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6816051Z test_clean_profile_ivalue (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6816540Z test_const (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6817041Z test_contiguous_on_broadcasted (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6817576Z test_conv2d_bias (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6818114Z test_conv2d_symbolic_shapes (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6818650Z test_cpu_scalar (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6819174Z test_cuda_fusion_guard (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6819750Z test_cuda_fusion_guard_backward (__main__.TestCudaFuser) ... skip: requires NVFuser (0.001s) 2023-01-11T22:05:08.6820333Z test_device_constant (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6820948Z test_disable_const_chunk_propagation_for_normalization (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6821584Z test_disable_sibling_fuse (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6822157Z test_dropout_inference_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6822849Z test_dropout_train_nograd_fusion (__main__.TestCudaFuser) ... skip: not enough memory (0.001s) 2023-01-11T22:05:08.6823444Z test_dropout_train_nograd_prob_check (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6824046Z test_dropout_training_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6824644Z test_dropout_training_prob_check (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6825188Z test_dynamic_size (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6825715Z test_expand (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6826265Z test_fix_shape_expression_bn (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6826885Z test_flatten (__main__.TestCudaFuser) ... skip: skipping this test since flatten is disabled now (0.001s) 2023-01-11T22:05:08.6827431Z test_gelu (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6827926Z test_grad_sum_to_size (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6828486Z test_graph_for_with_missing_optimized_engine (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6829060Z test_graph_rng (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6829554Z test_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6830058Z test_high_rank_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6830588Z test_inf_quick_patch (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6831097Z test_inplace_removal (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6831776Z test_input_output_passthrough (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6832350Z test_int_tensor_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6832870Z test_issue1445_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6833360Z test_issue_1785 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6833901Z test_layer_norm_autodiff (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6834458Z test_layer_norm_parser (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6838579Z test_layer_norm_trivial_reduce_dim (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6839231Z test_linear (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6839795Z test_linear_symbolic_shapes (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6840407Z test_multiple_device_pw (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6840973Z test_native_batch_norm_backward (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6841550Z test_native_layer_norm (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6842100Z test_native_layer_norm_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6842653Z test_native_layer_norm_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6843250Z test_nested_view (__main__.TestCudaFuser) ... skip: skipping this test since view is disabled now (0.000s) 2023-01-11T22:05:08.6843828Z test_no_tensor_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6844346Z test_norm (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6844859Z test_norm_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6845381Z test_norm_channels_last (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6845919Z test_norm_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6846422Z test_norm_half_layer (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6846910Z test_norm_large (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6847459Z test_normalization_partition (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6848084Z test_nvfuser_comparison_callbacks_with_fallback (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6848819Z test_nvfuser_comparison_callbacks_without_fallback (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6849563Z test_overlapped_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6850136Z test_permutation_preservation (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6850766Z test_permutation_preservation_edge_case_0 (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6851444Z test_permutation_preservation_edge_case_1_broken (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6852044Z test_permutation_preservation_edge_case_2 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6852613Z test_permute (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6853158Z test_pointwise_reference_tensor (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6853694Z test_profile_ivalue (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6854240Z test_profile_ivalue_multiple_profiles (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6854874Z test_profiling_node (__main__.TestCudaFuser) ... skip: Skipped due to rand_like behavior change (0.000s) 2023-01-11T22:05:08.6855593Z test_pw_single_reduction_partition (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6856143Z test_random_topo (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6856615Z test_reduction (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6857098Z test_reduction_dtypes_axis (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6857600Z test_reduction_empty_axes (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6858172Z test_reduction_multiple_output (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6858762Z test_reduction_permutation (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6859438Z test_reduction_sizes_op (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6860002Z test_remove_output_used_only_in_dtype (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6860540Z test_rsub (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6861053Z test_scalar_cuda_tensor (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6861591Z test_scalar_input (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6862107Z test_scalar_tensor (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6862638Z test_scalar_tensor_permuted (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6863376Z test_scheduler_with_polymorphic_broadcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6864063Z test_shape_expression (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.001s) 2023-01-11T22:05:08.6864673Z test_sibling_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6865256Z test_sibling_fusion_no_scalar_inputs (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6865831Z test_single_reduction_broadcast (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6866366Z test_singleton_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6866913Z test_skip_parser (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6867437Z test_softmax (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6867936Z test_softmax_bfloat (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6868451Z test_softmax_dtype (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6868938Z test_softmax_half (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6869450Z test_softplus_fuser (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6870060Z test_squeeze (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.000s) 2023-01-11T22:05:08.6870768Z test_squeeze_negative_dim (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.000s) 2023-01-11T22:05:08.6871476Z test_squeeze_zero (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.001s) 2023-01-11T22:05:08.6872103Z test_strict_fusion (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6872617Z test_sum_to_one (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6873123Z test_sum_to_size (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6873621Z test_ternary_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.002s) 2023-01-11T22:05:08.6874179Z test_ternary_ops_integer_compatibility (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6874783Z test_ternary_ops_type_promotion (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6875441Z test_to_boolean (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6875943Z test_to_copy (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6876453Z test_to_dtype_bf16_to_bf16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6877017Z test_to_dtype_bf16_to_fp32 (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6877613Z test_to_dtype_fp16_to_fp16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6878135Z test_to_dtype_fp16_to_fp32 (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6878667Z test_to_dtype_fp32_to_bf16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6879322Z test_to_dtype_fp32_to_fp16 (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6879864Z test_transpose (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6880399Z test_transpose_default (__main__.TestCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6880952Z test_trivial_reduction (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6881465Z test_type_as_op (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6882017Z test_type_inference (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6882540Z test_unary_bitwise (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6883067Z test_unary_ops (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6883652Z test_unsqueeze (__main__.TestCudaFuser) ... skip: skipping this test since squeeze/unsqueeze is disabled now (0.000s) 2023-01-11T22:05:08.6884243Z test_variance (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6884769Z test_variance_profiling (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6885365Z test_view (__main__.TestCudaFuser) ... skip: skipping this test since view is disabled now (0.000s) 2023-01-11T22:05:08.6885935Z test_view_before_permute (__main__.TestCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6886540Z test_view_copy_graph_guard (__main__.TestCudaFuser) ... skip: skipping this test since reshape is disabled now (0.000s) 2023-01-11T22:05:08.6887241Z test_view_copy_graph_guard_double_fusion (__main__.TestCudaFuser) ... skip: skipping this test since view is disabled now (0.001s) 2023-01-11T22:05:08.6887885Z test_can_be_enabled_nvfuser (__main__.TestEnableDisableCudaFuser) ... ok (0.001s) 2023-01-11T22:05:08.6888491Z test_context_manager_test (__main__.TestEnableDisableCudaFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:05:08.6889242Z test_register_fuser (__main__.TestEnableDisableCudaFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:05:08.6889862Z test_register_fuser_cpu (__main__.TestEnableDisableCudaFuser) ... ok (0.004s) 2023-01-11T22:05:08.6890441Z test_autodiff_fallback (jit.test_fuser_common.TestFuserCommon) ... ok (0.054s) 2023-01-11T22:05:08.6890770Z 2023-01-11T22:05:08.6891145Z ---------------------------------------------------------------------- 2023-01-11T22:05:08.6891552Z Ran 158 tests in 0.165s 2023-01-11T22:05:08.6891747Z 2023-01-11T22:05:08.6891868Z OK (skipped=155) 2023-01-11T22:05:08.6892054Z 2023-01-11T22:05:08.6892207Z Generating XML reports... 2023-01-11T22:05:08.6893012Z Generated XML report: test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestEnableDisableCudaFuser-20230111220508.xml 2023-01-11T22:05:08.6894031Z Generated XML report: test-reports/python-unittest/test_jit_cuda_fuser/TEST-jit.test_fuser_common.TestFuserCommon-20230111220508.xml 2023-01-11T22:05:08.6894996Z Generated XML report: test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestCudaFuser-20230111220508.xml 2023-01-11T22:05:08.6895399Z 2023-01-11T22:05:08.6895927Z ##[endgroup] 2023-01-11T22:05:08.6896780Z FINISHED PRINTING LOG FILE of test_jit_cuda_fuser (/var/lib/jenkins/workspace/test/test-reports/test_jit_cuda_fuser_cayni90c) 2023-01-11T22:05:08.6897189Z 2023-01-11T22:05:08.6897483Z Running test_jit_disabled ... [2023-01-11 22:05:08.679836] 2023-01-11T22:05:08.6898324Z Executing ['/opt/conda/bin/python', '-bb', 'test_jit_disabled.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:08.680090] 2023-01-11T22:05:10.5997931Z 2023-01-11T22:05:10.5998375Z Expand the folded group to see the log file of test_jit_disabled 2023-01-11T22:05:10.5999350Z ##[group]PRINTING LOG FILE of test_jit_disabled (/var/lib/jenkins/workspace/test/test-reports/test_jit_disabled_7mzfsfj9) 2023-01-11T22:05:10.5999667Z 2023-01-11T22:05:10.5999773Z Running tests... 2023-01-11T22:05:10.6000434Z ---------------------------------------------------------------------- 2023-01-11T22:05:10.6000884Z Test results will be stored in test-reports/python-unittest/test_jit_disabled 2023-01-11T22:05:10.6001199Z test_attribute (__main__.TestJitDisabled) ... ok (0.252s) 2023-01-11T22:05:10.6001521Z test_recursive_script (__main__.TestJitDisabled) ... ok (0.032s) 2023-01-11T22:05:10.6002035Z test_script_module_construction (__main__.TestJitDisabled) ... ok (0.032s) 2023-01-11T22:05:10.6002345Z 2023-01-11T22:05:10.6002568Z ---------------------------------------------------------------------- 2023-01-11T22:05:10.6002807Z Ran 3 tests in 0.317s 2023-01-11T22:05:10.6002922Z 2023-01-11T22:05:10.6003014Z OK 2023-01-11T22:05:10.6003171Z 2023-01-11T22:05:10.6003321Z Generating XML reports... 2023-01-11T22:05:10.6003958Z Generated XML report: test-reports/python-unittest/test_jit_disabled/TEST-TestJitDisabled-20230111220509.xml 2023-01-11T22:05:10.6004191Z 2023-01-11T22:05:10.6004414Z ##[endgroup] 2023-01-11T22:05:10.6004806Z FINISHED PRINTING LOG FILE of test_jit_disabled (/var/lib/jenkins/workspace/test/test-reports/test_jit_disabled_7mzfsfj9) 2023-01-11T22:05:10.6005021Z 2023-01-11T22:05:10.6005187Z Running test_linalg ... [2023-01-11 22:05:10.599895] 2023-01-11T22:05:10.6005642Z Executing ['/opt/conda/bin/python', '-bb', 'test_linalg.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:10.600144] 2023-01-11T22:05:12.4596104Z 2023-01-11T22:05:12.4596627Z Expand the folded group to see the log file of test_linalg 2023-01-11T22:05:12.4597572Z ##[group]PRINTING LOG FILE of test_linalg (/var/lib/jenkins/workspace/test/test-reports/test_linalg_827cdfkd) 2023-01-11T22:05:12.4597977Z 2023-01-11T22:05:12.4598108Z Running tests... 2023-01-11T22:05:12.4598769Z ---------------------------------------------------------------------- 2023-01-11T22:05:12.4599069Z 2023-01-11T22:05:12.4599406Z ---------------------------------------------------------------------- 2023-01-11T22:05:12.4599823Z Ran 0 tests in 0.000s 2023-01-11T22:05:12.4599942Z 2023-01-11T22:05:12.4600015Z OK 2023-01-11T22:05:12.4600105Z 2023-01-11T22:05:12.4600190Z Generating XML reports... 2023-01-11T22:05:12.4600507Z Test results will be stored in test-reports/python-unittest/test_linalg 2023-01-11T22:05:12.4600772Z 2023-01-11T22:05:12.4601161Z ##[endgroup] 2023-01-11T22:05:12.4601684Z FINISHED PRINTING LOG FILE of test_linalg (/var/lib/jenkins/workspace/test/test-reports/test_linalg_827cdfkd) 2023-01-11T22:05:12.4601874Z 2023-01-11T22:05:12.4602059Z Running test_mobile_optimizer ... [2023-01-11 22:05:12.459641] 2023-01-11T22:05:12.4602539Z Executing ['/opt/conda/bin/python', '-bb', 'test_mobile_optimizer.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:12.459916] 2023-01-11T22:05:16.7910480Z 2023-01-11T22:05:16.7910947Z Expand the folded group to see the log file of test_mobile_optimizer 2023-01-11T22:05:16.7911746Z ##[group]PRINTING LOG FILE of test_mobile_optimizer (/var/lib/jenkins/workspace/test/test-reports/test_mobile_optimizer_x_y6wabu) 2023-01-11T22:05:16.7911990Z 2023-01-11T22:05:16.7912097Z Running tests... 2023-01-11T22:05:16.7912499Z ---------------------------------------------------------------------- 2023-01-11T22:05:16.7913280Z Test results will be stored in test-reports/python-unittest/test_mobile_optimizer 2023-01-11T22:05:16.7913645Z test_clone_module_with_class (__main__.TestOptimizer) ... ok (0.236s) 2023-01-11T22:05:16.7914566Z test_generate_mobile_module_lints (__main__.TestOptimizer) ... /opt/conda/lib/python3.10/site-packages/torch/utils/bundled_inputs.py:394: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:16.7915227Z if arg._typed_storage().size() <= MAX_RAW_TENSOR_SIZE or skip_size_check: 2023-01-11T22:05:16.7915564Z ok (0.030s) 2023-01-11T22:05:16.7915900Z test_hoist_conv_packed_params (__main__.TestOptimizer) ... ok (0.446s) 2023-01-11T22:05:16.7916335Z test_mobilenet_optimize_for_mobile (__main__.TestOptimizer) ... ok (1.384s) 2023-01-11T22:05:16.7916857Z test_optimize_for_mobile (__main__.TestOptimizer) ... ok (0.182s) 2023-01-11T22:05:16.7917325Z test_preserve_bundled_inputs_methods (__main__.TestOptimizer) ... ok (0.040s) 2023-01-11T22:05:16.7917795Z test_quantized_conv_no_asan_failures (__main__.TestOptimizer) ... ok (0.180s) 2023-01-11T22:05:16.7918048Z 2023-01-11T22:05:16.7918376Z ---------------------------------------------------------------------- 2023-01-11T22:05:16.7918776Z Ran 7 tests in 2.500s 2023-01-11T22:05:16.7918954Z 2023-01-11T22:05:16.7919045Z OK 2023-01-11T22:05:16.7919190Z 2023-01-11T22:05:16.7919317Z Generating XML reports... 2023-01-11T22:05:16.7920090Z Generated XML report: test-reports/python-unittest/test_mobile_optimizer/TEST-TestOptimizer-20230111220513.xml 2023-01-11T22:05:16.7920551Z 2023-01-11T22:05:16.7921028Z ##[endgroup] 2023-01-11T22:05:16.7921716Z FINISHED PRINTING LOG FILE of test_mobile_optimizer (/var/lib/jenkins/workspace/test/test-reports/test_mobile_optimizer_x_y6wabu) 2023-01-11T22:05:16.7922129Z 2023-01-11T22:05:16.7922430Z Running test_modules ... [2023-01-11 22:05:16.791167] 2023-01-11T22:05:16.7923260Z Executing ['/opt/conda/bin/python', '-bb', 'test_modules.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:16.791455] 2023-01-11T22:05:19.2018101Z 2023-01-11T22:05:19.2020083Z Expand the folded group to see the log file of test_modules 2023-01-11T22:05:19.2020854Z ##[group]PRINTING LOG FILE of test_modules (/var/lib/jenkins/workspace/test/test-reports/test_modules_izu92gho) 2023-01-11T22:05:19.2021124Z 2023-01-11T22:05:19.2021203Z Running tests... 2023-01-11T22:05:19.2021600Z ---------------------------------------------------------------------- 2023-01-11T22:05:19.2021771Z 2023-01-11T22:05:19.2021958Z ---------------------------------------------------------------------- 2023-01-11T22:05:19.2022244Z Ran 0 tests in 0.000s 2023-01-11T22:05:19.2022403Z 2023-01-11T22:05:19.2022491Z OK 2023-01-11T22:05:19.2022687Z 2023-01-11T22:05:19.2022784Z Generating XML reports... 2023-01-11T22:05:19.2023116Z Test results will be stored in test-reports/python-unittest/test_modules 2023-01-11T22:05:19.2023293Z 2023-01-11T22:05:19.2023570Z ##[endgroup] 2023-01-11T22:05:19.2023938Z FINISHED PRINTING LOG FILE of test_modules (/var/lib/jenkins/workspace/test/test-reports/test_modules_izu92gho) 2023-01-11T22:05:19.2024149Z 2023-01-11T22:05:19.2024333Z Running test_multiprocessing ... [2023-01-11 22:05:19.201929] 2023-01-11T22:05:19.2024819Z Executing ['/opt/conda/bin/python', '-bb', 'test_multiprocessing.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:19.202194] 2023-01-11T22:05:30.4867122Z 2023-01-11T22:05:30.4867725Z Expand the folded group to see the log file of test_multiprocessing 2023-01-11T22:05:30.4868816Z ##[group]PRINTING LOG FILE of test_multiprocessing (/var/lib/jenkins/workspace/test/test-reports/test_multiprocessing_chv4aypo) 2023-01-11T22:05:30.4869207Z 2023-01-11T22:05:30.4869327Z Running tests... 2023-01-11T22:05:30.4870136Z ---------------------------------------------------------------------- 2023-01-11T22:05:30.4870726Z Test results will be stored in test-reports/python-unittest/test_multiprocessing 2023-01-11T22:05:30.4871221Z test_autograd_errors (__main__.TestMultiprocessing) ... ok (0.238s) 2023-01-11T22:05:30.4872124Z test_autograd_fine_with_spawn (__main__.TestMultiprocessing) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:30.4872716Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:30.4873384Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:30.4874084Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:30.4874974Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:30.4875511Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:30.4876241Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:30.4876808Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:30.4877659Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:30.4878298Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:30.4879109Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:30.4879726Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:30.4880133Z ok (1.349s) 2023-01-11T22:05:30.4880580Z test_cuda_bad_call (__main__.TestMultiprocessing) ... skip: CUDA not available (0.000s) 2023-01-11T22:05:30.4881164Z test_cuda_ipc_deadlock (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4881787Z test_cuda_memory_allocation (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.000s) 2023-01-11T22:05:30.4882418Z test_cuda_parameter_sharing (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.000s) 2023-01-11T22:05:30.4883045Z test_cuda_send_many (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4883620Z test_cuda_simple (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.000s) 2023-01-11T22:05:30.4884201Z test_cuda_small_tensors (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4884777Z test_cuda_variable_sharing (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.000s) 2023-01-11T22:05:30.4885346Z test_empty_shared (__main__.TestMultiprocessing) ... ok (0.001s) 2023-01-11T22:05:30.4885851Z test_empty_tensor_sharing (__main__.TestMultiprocessing) ... ok (0.003s) 2023-01-11T22:05:30.4886409Z test_empty_tensor_sharing_cuda (__main__.TestMultiprocessing) ... skip: CUDA not available (0.000s) 2023-01-11T22:05:30.4887000Z test_event (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4887595Z test_event_handle_exporter (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.000s) 2023-01-11T22:05:30.4888249Z test_event_handle_importer (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4888866Z test_event_handle_multi_gpu (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4889703Z test_event_multiprocess (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4890276Z test_fd_pool (__main__.TestMultiprocessing) ... ok (0.607s) 2023-01-11T22:05:30.4891442Z test_fd_preserve_sharing (__main__.TestMultiprocessing) ... /var/lib/jenkins/workspace/test/test_multiprocessing.py:304: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4892643Z data = [x.storage(), x, x[2], x[:, 1]] 2023-01-11T22:05:30.4894210Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:1904: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4895203Z device=typed_storage.device, 2023-01-11T22:05:30.4896306Z /var/lib/jenkins/workspace/test/test_multiprocessing.py:312: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4897347Z self.assertEqual(t.storage()._cdata, storage_cdata) 2023-01-11T22:05:30.4897713Z ok (0.129s) 2023-01-11T22:05:30.4898725Z test_fd_sharing (__main__.TestMultiprocessing) ... /var/lib/jenkins/workspace/test/test_multiprocessing.py:284: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4899711Z s1 = t1.storage() 2023-01-11T22:05:30.4900643Z /var/lib/jenkins/workspace/test/test_multiprocessing.py:285: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4901565Z s2 = t2.storage() 2023-01-11T22:05:30.4902596Z /var/lib/jenkins/workspace/test/test_multiprocessing.py:287: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4903597Z self.assertEqual(s1.data_ptr(), s1.data_ptr()) 2023-01-11T22:05:30.4903972Z ok (0.616s) 2023-01-11T22:05:30.4905017Z test_fs (__main__.TestMultiprocessing) ... /var/lib/jenkins/workspace/test/test_multiprocessing.py:378: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() 2023-01-11T22:05:30.4906028Z x = torch.DoubleStorage(4) 2023-01-11T22:05:30.4906364Z ok (4.499s) 2023-01-11T22:05:30.4906763Z test_fs_is_shared (__main__.TestMultiprocessing) ... ok (0.001s) 2023-01-11T22:05:30.4907248Z test_fs_pool (__main__.TestMultiprocessing) ... ok (0.491s) 2023-01-11T22:05:30.4907736Z test_fs_preserve_sharing (__main__.TestMultiprocessing) ... ok (0.096s) 2023-01-11T22:05:30.4909383Z test_fs_sharing (__main__.TestMultiprocessing) ... skip: Test is disabled because an issue exists disabling it: https://github.com/pytorch/pytorch/issues/67002 for platform(s) windows, mac, linux, dynamo, rocm. If you're seeing this on your local machine and would like to enable this test, please make sure CI is not set and you are not using the flag --import-disabled-tests. (0.000s) 2023-01-11T22:05:30.4910464Z test_inherit_tensor (__main__.TestMultiprocessing) ... ok (0.011s) 2023-01-11T22:05:30.4911539Z test_integer_parameter_serialization_cpu (__main__.TestMultiprocessing) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:30.4912369Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:30.4913157Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:30.4913807Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:30.4914203Z ok (1.524s) 2023-01-11T22:05:30.4914713Z test_integer_parameter_serialization_cuda (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.000s) 2023-01-11T22:05:30.4915321Z test_is_shared (__main__.TestMultiprocessing) ... ok (0.001s) 2023-01-11T22:05:30.4915970Z test_is_shared_cuda (__main__.TestMultiprocessing) ... skip: CUDA not available (0.000s) 2023-01-11T22:05:30.4916541Z test_leaf_variable_sharing (__main__.TestMultiprocessing) ... ok (0.016s) 2023-01-11T22:05:30.4917139Z test_mixed_types_cuda_sharing (__main__.TestMultiprocessing) ... skip: CUDA IPC not available (0.001s) 2023-01-11T22:05:30.4917751Z test_non_leaf_variable_sharing (__main__.TestMultiprocessing) ... ok (0.001s) 2023-01-11T22:05:30.4919403Z test_parameter_sharing (__main__.TestMultiprocessing) ... /opt/conda/lib/python3.10/site-packages/torch/utils/hooks.py:87: UserWarning: backward hook .hook at 0x7f2eb2d48c10> on tensor will not be serialized. If this is expected, you can decorate the function with @torch.utils.hooks.unserializable_hook to suppress this warning 2023-01-11T22:05:30.4920504Z warnings.warn("backward hook {} on tensor will not be " 2023-01-11T22:05:30.4920894Z ok (0.009s) 2023-01-11T22:05:30.4922411Z test_variable_sharing (__main__.TestMultiprocessing) ... /opt/conda/lib/python3.10/site-packages/torch/utils/hooks.py:87: UserWarning: backward hook .hook at 0x7f2eb2d497e0> on tensor will not be serialized. If this is expected, you can decorate the function with @torch.utils.hooks.unserializable_hook to suppress this warning 2023-01-11T22:05:30.4923513Z warnings.warn("backward hook {} on tensor will not be " 2023-01-11T22:05:30.4923836Z ok (0.018s) 2023-01-11T22:05:30.4924272Z test_wrong_cuda_fork (__main__.TestMultiprocessing) ... skip: CUDA not available (0.001s) 2023-01-11T22:05:30.4924618Z 2023-01-11T22:05:30.4924993Z ---------------------------------------------------------------------- 2023-01-11T22:05:30.4925392Z Ran 37 tests in 9.622s 2023-01-11T22:05:30.4925565Z 2023-01-11T22:05:30.4925693Z OK (skipped=19) 2023-01-11T22:05:30.4925883Z 2023-01-11T22:05:30.4926031Z Generating XML reports... 2023-01-11T22:05:30.4926786Z Generated XML report: test-reports/python-unittest/test_multiprocessing/TEST-TestMultiprocessing-20230111220520.xml 2023-01-11T22:05:30.4927180Z 2023-01-11T22:05:30.4927604Z ##[endgroup] 2023-01-11T22:05:30.4928374Z FINISHED PRINTING LOG FILE of test_multiprocessing (/var/lib/jenkins/workspace/test/test-reports/test_multiprocessing_chv4aypo) 2023-01-11T22:05:30.4928795Z 2023-01-11T22:05:30.4929308Z Running test_multiprocessing_spawn ... [2023-01-11 22:05:30.486882] 2023-01-11T22:05:30.4930185Z Executing ['/opt/conda/bin/python', '-bb', 'test_multiprocessing_spawn.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:30.487167] 2023-01-11T22:05:48.9691099Z 2023-01-11T22:05:48.9691660Z Expand the folded group to see the log file of test_multiprocessing_spawn 2023-01-11T22:05:48.9692881Z ##[group]PRINTING LOG FILE of test_multiprocessing_spawn (/var/lib/jenkins/workspace/test/test-reports/test_multiprocessing_spawn_s150fkr1) 2023-01-11T22:05:48.9693349Z 2023-01-11T22:05:48.9693453Z Running tests... 2023-01-11T22:05:48.9694032Z ---------------------------------------------------------------------- 2023-01-11T22:05:48.9694609Z Test results will be stored in test-reports/python-unittest/test_multiprocessing_spawn 2023-01-11T22:05:48.9695354Z test_errors_pickleable (__main__.ErrorTest) ... ok (0.217s) 2023-01-11T22:05:48.9695727Z test_exception_all (__main__.ForkTest) ... ok (0.025s) 2023-01-11T22:05:48.9696096Z test_exception_single (__main__.ForkTest) ... ok (0.021s) 2023-01-11T22:05:48.9696505Z test_first_argument_index (__main__.ForkTest) ... ok (0.010s) 2023-01-11T22:05:48.9696864Z test_success (__main__.ForkTest) ... ok (0.008s) 2023-01-11T22:05:48.9697241Z test_success_first_then_exception (__main__.ForkTest) ... ok (0.110s) 2023-01-11T22:05:48.9729503Z test_success_non_blocking (__main__.ForkTest) ... ok (0.009s) 2023-01-11T22:05:48.9730125Z test_terminate_exit (__main__.ForkTest) ... ok (0.009s) 2023-01-11T22:05:48.9730581Z test_terminate_signal (__main__.ForkTest) ... ok (0.232s) 2023-01-11T22:05:48.9731701Z test_exception_all (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9732395Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9733212Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9733807Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9734598Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9735185Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9735912Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9736472Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9736870Z ok (1.694s) 2023-01-11T22:05:48.9737658Z test_exception_raises (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9738329Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9739045Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9739588Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9740001Z ok (1.518s) 2023-01-11T22:05:48.9740813Z test_exception_single (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9741474Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9742246Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9742953Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9743724Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9744318Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9745111Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9745706Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9746502Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9747097Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9747869Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9748494Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9749297Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9750046Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9750782Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9751416Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9751808Z ok (3.164s) 2023-01-11T22:05:48.9752613Z test_first_argument_index (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9753249Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9754027Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9754712Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9755497Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9756102Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9756917Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9757540Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9757910Z ok (1.613s) 2023-01-11T22:05:48.9758274Z test_signal_raises (__main__.SpawnTest) ... ok (0.002s) 2023-01-11T22:05:48.9759216Z test_success (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9759864Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9760643Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9761274Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9762075Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9762649Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9763416Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9764036Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9764442Z ok (1.621s) 2023-01-11T22:05:48.9765269Z test_success_first_then_exception (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9765962Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9766753Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9767340Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9768128Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9768722Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9769695Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9770292Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9770688Z ok (1.732s) 2023-01-11T22:05:48.9771541Z test_success_non_blocking (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9772211Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9772978Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9773729Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9774530Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9775067Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9775822Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9776440Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9776809Z ok (1.638s) 2023-01-11T22:05:48.9777722Z test_terminate_exit (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9778397Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9779193Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9779802Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9780589Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9781183Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9781960Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9782637Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9783007Z ok (1.583s) 2023-01-11T22:05:48.9783831Z test_terminate_signal (__main__.SpawnTest) ... /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9784484Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9785283Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9785908Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9786709Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:122: UserWarning: loaded 76 slow tests 2023-01-11T22:05:48.9787283Z warnings.warn(f"loaded {len(slow_tests_dict)} slow tests") 2023-01-11T22:05:48.9788082Z /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py:126: UserWarning: loaded 210 disabled tests 2023-01-11T22:05:48.9788712Z warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests") 2023-01-11T22:05:48.9789100Z ok (1.609s) 2023-01-11T22:05:48.9789281Z 2023-01-11T22:05:48.9789645Z ---------------------------------------------------------------------- 2023-01-11T22:05:48.9790073Z Ran 19 tests in 16.816s 2023-01-11T22:05:48.9790277Z 2023-01-11T22:05:48.9790386Z OK 2023-01-11T22:05:48.9790529Z 2023-01-11T22:05:48.9790673Z Generating XML reports... 2023-01-11T22:05:48.9791420Z Generated XML report: test-reports/python-unittest/test_multiprocessing_spawn/TEST-ErrorTest-20230111220531.xml 2023-01-11T22:05:48.9792320Z Generated XML report: test-reports/python-unittest/test_multiprocessing_spawn/TEST-ForkTest-20230111220531.xml 2023-01-11T22:05:48.9793216Z Generated XML report: test-reports/python-unittest/test_multiprocessing_spawn/TEST-SpawnTest-20230111220531.xml 2023-01-11T22:05:48.9793610Z 2023-01-11T22:05:48.9794072Z ##[endgroup] 2023-01-11T22:05:48.9794843Z FINISHED PRINTING LOG FILE of test_multiprocessing_spawn (/var/lib/jenkins/workspace/test/test-reports/test_multiprocessing_spawn_s150fkr1) 2023-01-11T22:05:48.9795285Z 2023-01-11T22:05:48.9795642Z Running test_namedtuple_return_api ... [2023-01-11 22:05:48.969328] 2023-01-11T22:05:48.9796539Z Executing ['/opt/conda/bin/python', '-bb', 'test_namedtuple_return_api.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:48.969598] 2023-01-11T22:05:51.8925472Z 2023-01-11T22:05:51.8925961Z Expand the folded group to see the log file of test_namedtuple_return_api 2023-01-11T22:05:51.8926685Z ##[group]PRINTING LOG FILE of test_namedtuple_return_api (/var/lib/jenkins/workspace/test/test-reports/test_namedtuple_return_api_qni51v39) 2023-01-11T22:05:51.8926941Z 2023-01-11T22:05:51.8927058Z Running tests... 2023-01-11T22:05:51.8927478Z ---------------------------------------------------------------------- 2023-01-11T22:05:51.8927907Z Test results will be stored in test-reports/python-unittest/test_namedtuple_return_api 2023-01-11T22:05:51.8928282Z test_import_return_types (__main__.TestNamedTupleAPI) ... ok (0.205s) 2023-01-11T22:05:51.8929225Z test_namedtuple_return (__main__.TestNamedTupleAPI) ... /var/lib/jenkins/workspace/test/test_namedtuple_return_api.py:149: UserWarning: torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release. 2023-01-11T22:05:51.8929829Z The boolean parameter 'some' has been replaced with a string parameter 'mode'. 2023-01-11T22:05:51.8930085Z Q, R = torch.qr(A, some) 2023-01-11T22:05:51.8930280Z should be replaced with 2023-01-11T22:05:51.8930754Z Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2459.) 2023-01-11T22:05:51.8931092Z ret1 = func(a, *op.input) 2023-01-11T22:05:51.8931456Z /var/lib/jenkins/workspace/test/test_namedtuple_return_api.py:155: UserWarning: torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release. 2023-01-11T22:05:51.8931925Z The boolean parameter 'some' has been replaced with a string parameter 'mode'. 2023-01-11T22:05:51.8932161Z Q, R = torch.qr(A, some) 2023-01-11T22:05:51.8932354Z should be replaced with 2023-01-11T22:05:51.8932825Z Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2471.) 2023-01-11T22:05:51.8933176Z ret2 = func(a, *op.input, out=tuple(ret1)) 2023-01-11T22:05:51.8933569Z /var/lib/jenkins/workspace/test/test_namedtuple_return_api.py:149: UserWarning: torch.symeig is deprecated in favor of torch.linalg.eigh and will be removed in a future PyTorch release. 2023-01-11T22:05:51.8934053Z The default behavior has changed from using the upper triangular portion of the matrix by default to using the lower triangular portion. 2023-01-11T22:05:51.8934370Z L, _ = torch.symeig(A, upper=upper) 2023-01-11T22:05:51.8934558Z should be replaced with 2023-01-11T22:05:51.8934845Z L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L') 2023-01-11T22:05:51.8935053Z and 2023-01-11T22:05:51.8935229Z L, V = torch.symeig(A, eigenvectors=True) 2023-01-11T22:05:51.8935437Z should be replaced with 2023-01-11T22:05:51.8935899Z L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L') (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2910.) 2023-01-11T22:05:51.8936223Z ret1 = func(a, *op.input) 2023-01-11T22:05:51.8936596Z /var/lib/jenkins/workspace/test/test_namedtuple_return_api.py:155: UserWarning: torch.symeig is deprecated in favor of torch.linalg.eigh and will be removed in a future PyTorch release. 2023-01-11T22:05:51.8937079Z The default behavior has changed from using the upper triangular portion of the matrix by default to using the lower triangular portion. 2023-01-11T22:05:51.8937394Z L, _ = torch.symeig(A, upper=upper) 2023-01-11T22:05:51.8937583Z should be replaced with 2023-01-11T22:05:51.8937870Z L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L') 2023-01-11T22:05:51.8938082Z and 2023-01-11T22:05:51.8938257Z L, V = torch.symeig(A, eigenvectors=True) 2023-01-11T22:05:51.8938466Z should be replaced with 2023-01-11T22:05:51.8938923Z L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L') (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2928.) 2023-01-11T22:05:51.8939359Z ret2 = func(a, *op.input, out=tuple(ret1)) 2023-01-11T22:05:51.8939780Z /var/lib/jenkins/workspace/test/test_namedtuple_return_api.py:149: UserWarning: torch.triangular_solve is deprecated in favor of torch.linalg.solve_triangularand will be removed in a future PyTorch release. 2023-01-11T22:05:51.8940253Z torch.linalg.solve_triangular has its arguments reversed and does not return a copy of one of the inputs. 2023-01-11T22:05:51.8940555Z X = torch.triangular_solve(B, A).solution 2023-01-11T22:05:51.8940754Z should be replaced with 2023-01-11T22:05:51.8941095Z X = torch.linalg.solve_triangular(A, B). (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2225.) 2023-01-11T22:05:51.8941421Z ret1 = func(a, *op.input) 2023-01-11T22:05:51.8941869Z /var/lib/jenkins/workspace/test/test_namedtuple_return_api.py:149: UserWarning: torch.lu is deprecated in favor of torch.linalg.lu_factor / torch.linalg.lu_factor_ex and will be removed in a future PyTorch release. 2023-01-11T22:05:51.8942257Z LU, pivots = torch.lu(A, compute_pivots) 2023-01-11T22:05:51.8942572Z should be replaced with 2023-01-11T22:05:51.8942811Z LU, pivots = torch.linalg.lu_factor(A, compute_pivots) 2023-01-11T22:05:51.8943008Z and 2023-01-11T22:05:51.8943223Z LU, pivots, info = torch.lu(A, compute_pivots, get_infos=True) 2023-01-11T22:05:51.8943458Z should be replaced with 2023-01-11T22:05:51.8943803Z LU, pivots, info = torch.linalg.lu_factor_ex(A, compute_pivots) (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:2029.) 2023-01-11T22:05:51.8944147Z ret1 = func(a, *op.input) 2023-01-11T22:05:51.8944330Z ok (0.033s) 2023-01-11T22:05:51.8944564Z test_native_functions_yaml (__main__.TestNamedTupleAPI) ... ok (1.087s) 2023-01-11T22:05:51.8944721Z 2023-01-11T22:05:51.8944932Z ---------------------------------------------------------------------- 2023-01-11T22:05:51.8945175Z Ran 3 tests in 1.325s 2023-01-11T22:05:51.8945289Z 2023-01-11T22:05:51.8945352Z OK 2023-01-11T22:05:51.8945444Z 2023-01-11T22:05:51.8945514Z Generating XML reports... 2023-01-11T22:05:51.8945944Z Generated XML report: test-reports/python-unittest/test_namedtuple_return_api/TEST-TestNamedTupleAPI-20230111220550.xml 2023-01-11T22:05:51.8946192Z 2023-01-11T22:05:51.8946470Z ##[endgroup] 2023-01-11T22:05:51.8946880Z FINISHED PRINTING LOG FILE of test_namedtuple_return_api (/var/lib/jenkins/workspace/test/test-reports/test_namedtuple_return_api_qni51v39) 2023-01-11T22:05:51.8947119Z 2023-01-11T22:05:51.8947287Z Running test_ops ... [2023-01-11 22:05:51.892707] 2023-01-11T22:05:53.4257696Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:05:53.4550215Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:05:53.4953639Z Ignoring disabled issues: [] 2023-01-11T22:05:53.5200132Z Ignoring disabled issues: [] 2023-01-11T22:05:53.7299320Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=0', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:53.729563] 2023-01-11T22:05:53.7300511Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=1', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:53.729685] 2023-01-11T22:05:56.8321326Z 2023-01-11T22:05:56.8321823Z Expand the folded group to see the log file of test_ops 2023-01-11T22:05:56.8322803Z ##[group]PRINTING LOG FILE of test_ops (/var/lib/jenkins/workspace/test/test-reports/test_ops_ej0y0p5c) 2023-01-11T22:05:56.8324205Z Test results will be stored in test-reports/python-pytest/test_ops/test_ops-02e8df424f6ccae0.xml 2023-01-11T22:05:56.8324759Z ============================= test session starts ============================== 2023-01-11T22:05:56.8325179Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:05:56.8325617Z cachedir: .pytest_cache 2023-01-11T22:05:56.8326033Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:05:56.8326453Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:05:56.8327025Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:05:56.8327338Z collecting ... collected 0 items 2023-01-11T22:05:56.8327576Z Running 0 items in this shard: 2023-01-11T22:05:56.8327707Z 2023-01-11T22:05:56.8327883Z =============================== warnings summary =============================== 2023-01-11T22:05:56.8328376Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:05:56.8329586Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:05:56.8330137Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:05:56.8330270Z 2023-01-11T22:05:56.8368061Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:05:56.8368708Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops/test_ops-02e8df424f6ccae0.xml - 2023-01-11T22:05:56.8369227Z ============================== 1 warning in 0.04s ============================== 2023-01-11T22:05:56.8369765Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:05:56.8370015Z 2023-01-11T22:05:56.8370533Z ##[endgroup] 2023-01-11T22:05:56.8371193Z FINISHED PRINTING LOG FILE of test_ops (/var/lib/jenkins/workspace/test/test-reports/test_ops_ej0y0p5c) 2023-01-11T22:05:56.8371576Z 2023-01-11T22:05:56.8371583Z 2023-01-11T22:05:56.8371852Z Expand the folded group to see the log file of test_ops 2023-01-11T22:05:56.8372716Z ##[group]PRINTING LOG FILE of test_ops (/var/lib/jenkins/workspace/test/test-reports/test_ops_65x6uh7i) 2023-01-11T22:05:56.8373544Z Test results will be stored in test-reports/python-pytest/test_ops/test_ops-eab6b2fd1107632b.xml 2023-01-11T22:05:56.8374080Z ============================= test session starts ============================== 2023-01-11T22:05:56.8374608Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:05:56.8374952Z cachedir: .pytest_cache 2023-01-11T22:05:56.8375781Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:05:56.8376226Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:05:56.8376661Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:05:56.8376950Z collecting ... collected 0 items 2023-01-11T22:05:56.8377157Z Running 0 items in this shard: 2023-01-11T22:05:56.8377280Z 2023-01-11T22:05:56.8377506Z =============================== warnings summary =============================== 2023-01-11T22:05:56.8377921Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:05:56.8378449Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:05:56.8378805Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:05:56.8378937Z 2023-01-11T22:05:56.8379179Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:05:56.8379648Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops/test_ops-eab6b2fd1107632b.xml - 2023-01-11T22:05:56.8379979Z ============================== 1 warning in 0.04s ============================== 2023-01-11T22:05:56.8380287Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:05:56.8380620Z 2023-01-11T22:05:56.8380857Z ##[endgroup] 2023-01-11T22:05:56.8381215Z FINISHED PRINTING LOG FILE of test_ops (/var/lib/jenkins/workspace/test/test-reports/test_ops_65x6uh7i) 2023-01-11T22:05:56.8381416Z 2023-01-11T22:05:57.1710438Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '-k=_linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:05:57.170651] 2023-01-11T22:06:00.0732243Z 2023-01-11T22:06:00.0732771Z Expand the folded group to see the log file of test_ops 2023-01-11T22:06:00.0733855Z ##[group]PRINTING LOG FILE of test_ops (/var/lib/jenkins/workspace/test/test-reports/test_ops_ohcjuv29) 2023-01-11T22:06:00.0734823Z Test results will be stored in test-reports/python-pytest/test_ops/test_ops-775e32094a08d97f.xml 2023-01-11T22:06:00.0735388Z ============================= test session starts ============================== 2023-01-11T22:06:00.0735838Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:00.0736181Z cachedir: .pytest_cache 2023-01-11T22:06:00.0736887Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:00.0737409Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:00.0737858Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:00.0738155Z collecting ... collected 0 items 2023-01-11T22:06:00.0738360Z Running 0 items in this shard: 2023-01-11T22:06:00.0738483Z 2023-01-11T22:06:00.0738582Z =============================== warnings summary =============================== 2023-01-11T22:06:00.0738988Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:00.0739862Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:00.0740218Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:00.0740348Z 2023-01-11T22:06:00.0740564Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:00.0741035Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops/test_ops-775e32094a08d97f.xml - 2023-01-11T22:06:00.0741370Z ============================== 1 warning in 0.11s ============================== 2023-01-11T22:06:00.0741669Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:00.0741861Z 2023-01-11T22:06:00.0742089Z ##[endgroup] 2023-01-11T22:06:00.0742519Z FINISHED PRINTING LOG FILE of test_ops (/var/lib/jenkins/workspace/test/test-reports/test_ops_ohcjuv29) 2023-01-11T22:06:00.0742723Z 2023-01-11T22:06:00.0742905Z Running test_ops_fwd_gradients ... [2023-01-11 22:06:00.073741] 2023-01-11T22:06:01.6685806Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:06:01.6813051Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:06:01.7464962Z Ignoring disabled issues: [] 2023-01-11T22:06:01.7567283Z Ignoring disabled issues: [] 2023-01-11T22:06:01.7653085Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_fwd_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=0', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:01.765044] 2023-01-11T22:06:01.7754059Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_fwd_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=1', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:01.775052] 2023-01-11T22:06:04.4371132Z 2023-01-11T22:06:04.4372012Z Expand the folded group to see the log file of test_ops_fwd_gradients 2023-01-11T22:06:04.4373177Z ##[group]PRINTING LOG FILE of test_ops_fwd_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_fwd_gradients_cl8saevw) 2023-01-11T22:06:04.4374160Z Test results will be stored in test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-c852b6361f23a757.xml 2023-01-11T22:06:04.4375730Z ============================= test session starts ============================== 2023-01-11T22:06:04.4376370Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:04.4376788Z cachedir: .pytest_cache 2023-01-11T22:06:04.4377201Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:04.4377551Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:04.4378040Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:04.4378337Z collecting ... collected 0 items 2023-01-11T22:06:04.4378540Z Running 0 items in this shard: 2023-01-11T22:06:04.4378668Z 2023-01-11T22:06:04.4378767Z =============================== warnings summary =============================== 2023-01-11T22:06:04.4379118Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:04.4379638Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:04.4379995Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:04.4380126Z 2023-01-11T22:06:04.4380342Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:04.4380860Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-c852b6361f23a757.xml - 2023-01-11T22:06:04.4381220Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:04.4381520Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:04.4381704Z 2023-01-11T22:06:04.4381941Z ##[endgroup] 2023-01-11T22:06:04.4382341Z FINISHED PRINTING LOG FILE of test_ops_fwd_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_fwd_gradients_cl8saevw) 2023-01-11T22:06:04.4382653Z 2023-01-11T22:06:04.5028453Z 2023-01-11T22:06:04.5028926Z Expand the folded group to see the log file of test_ops_fwd_gradients 2023-01-11T22:06:04.5029793Z ##[group]PRINTING LOG FILE of test_ops_fwd_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_fwd_gradients_zmquy4l7) 2023-01-11T22:06:04.5030730Z Test results will be stored in test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-d9fcda48e67f6e06.xml 2023-01-11T22:06:04.5031274Z ============================= test session starts ============================== 2023-01-11T22:06:04.5031880Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:04.5032156Z cachedir: .pytest_cache 2023-01-11T22:06:04.5032708Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:04.5033066Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:04.5033476Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:04.5033773Z collecting ... collected 0 items 2023-01-11T22:06:04.5033978Z Running 0 items in this shard: 2023-01-11T22:06:04.5034099Z 2023-01-11T22:06:04.5034211Z =============================== warnings summary =============================== 2023-01-11T22:06:04.5034546Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:04.5035072Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:04.5035423Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:04.5035734Z 2023-01-11T22:06:04.5035962Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:04.5036478Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-d9fcda48e67f6e06.xml - 2023-01-11T22:06:04.5036843Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:04.5037147Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:04.5037339Z 2023-01-11T22:06:04.5037593Z ##[endgroup] 2023-01-11T22:06:04.5037991Z FINISHED PRINTING LOG FILE of test_ops_fwd_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_fwd_gradients_zmquy4l7) 2023-01-11T22:06:04.5038217Z 2023-01-11T22:06:04.8384454Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_fwd_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '-k=_linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:04.837926] 2023-01-11T22:06:07.4499990Z 2023-01-11T22:06:07.4500552Z Expand the folded group to see the log file of test_ops_fwd_gradients 2023-01-11T22:06:07.4501551Z ##[group]PRINTING LOG FILE of test_ops_fwd_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_fwd_gradients_xicbc3_f) 2023-01-11T22:06:07.4502728Z Test results will be stored in test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-60a240aeadf13b46.xml 2023-01-11T22:06:07.4503238Z ============================= test session starts ============================== 2023-01-11T22:06:07.4503881Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:07.4504329Z cachedir: .pytest_cache 2023-01-11T22:06:07.4505090Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:07.4505735Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:07.4506394Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:07.4506828Z collecting ... collected 0 items 2023-01-11T22:06:07.4507120Z Running 0 items in this shard: 2023-01-11T22:06:07.4507309Z 2023-01-11T22:06:07.4507471Z =============================== warnings summary =============================== 2023-01-11T22:06:07.4508027Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:07.4508889Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:07.4509525Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:07.4509757Z 2023-01-11T22:06:07.4510185Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:07.4511088Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-60a240aeadf13b46.xml - 2023-01-11T22:06:07.4511639Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:07.4512135Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:07.4512470Z 2023-01-11T22:06:07.4512883Z ##[endgroup] 2023-01-11T22:06:07.4513519Z FINISHED PRINTING LOG FILE of test_ops_fwd_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_fwd_gradients_xicbc3_f) 2023-01-11T22:06:07.4513869Z 2023-01-11T22:06:07.4514175Z Running test_ops_gradients ... [2023-01-11 22:06:07.450610] 2023-01-11T22:06:08.9743455Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:06:09.0065250Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:06:09.0393977Z Ignoring disabled issues: [] 2023-01-11T22:06:09.0578860Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=0', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:09.057545] 2023-01-11T22:06:09.0713003Z Ignoring disabled issues: [] 2023-01-11T22:06:09.0900468Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=1', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:09.089749] 2023-01-11T22:06:11.7535487Z 2023-01-11T22:06:11.7536007Z Expand the folded group to see the log file of test_ops_gradients 2023-01-11T22:06:11.7537103Z ##[group]PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_21qp6016) 2023-01-11T22:06:11.7538431Z Test results will be stored in test-reports/python-pytest/test_ops_gradients/test_ops_gradients-b637e26586d3453a.xml 2023-01-11T22:06:11.7538805Z ============================= test session starts ============================== 2023-01-11T22:06:11.7539252Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:11.7539567Z cachedir: .pytest_cache 2023-01-11T22:06:11.7540240Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:11.7540872Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:11.7541321Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:11.7541601Z collecting ... collected 0 items 2023-01-11T22:06:11.7541804Z Running 0 items in this shard: 2023-01-11T22:06:11.7541927Z 2023-01-11T22:06:11.7542039Z =============================== warnings summary =============================== 2023-01-11T22:06:11.7542445Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:11.7542964Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:11.7543325Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:11.7543458Z 2023-01-11T22:06:11.7543692Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:11.7544208Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-b637e26586d3453a.xml - 2023-01-11T22:06:11.7544558Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:11.7544857Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:11.7545049Z 2023-01-11T22:06:11.7545295Z ##[endgroup] 2023-01-11T22:06:11.7545677Z FINISHED PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_21qp6016) 2023-01-11T22:06:11.7545901Z 2023-01-11T22:06:11.7784967Z 2023-01-11T22:06:11.7785460Z Expand the folded group to see the log file of test_ops_gradients 2023-01-11T22:06:11.7786533Z ##[group]PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_cg8es9rt) 2023-01-11T22:06:11.7787613Z Test results will be stored in test-reports/python-pytest/test_ops_gradients/test_ops_gradients-ed1e446199e7e291.xml 2023-01-11T22:06:11.7788075Z ============================= test session starts ============================== 2023-01-11T22:06:11.7788566Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:11.7788923Z cachedir: .pytest_cache 2023-01-11T22:06:11.7789456Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:11.7789820Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:11.7790246Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:11.7790792Z collecting ... collected 0 items 2023-01-11T22:06:11.7791081Z Running 0 items in this shard: 2023-01-11T22:06:11.7791259Z 2023-01-11T22:06:11.7791425Z =============================== warnings summary =============================== 2023-01-11T22:06:11.7791970Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:11.7792510Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:11.7792858Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:11.7792991Z 2023-01-11T22:06:11.7793224Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:11.7793844Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-ed1e446199e7e291.xml - 2023-01-11T22:06:11.7794192Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:11.7794501Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:11.7794693Z 2023-01-11T22:06:11.7794984Z ##[endgroup] 2023-01-11T22:06:11.7795368Z FINISHED PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_cg8es9rt) 2023-01-11T22:06:11.7795593Z 2023-01-11T22:06:12.1105016Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_gradients.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '-k=_linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:12.110020] 2023-01-11T22:06:14.6729584Z 2023-01-11T22:06:14.6730129Z Expand the folded group to see the log file of test_ops_gradients 2023-01-11T22:06:14.6731251Z ##[group]PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_oipp2vw4) 2023-01-11T22:06:14.6731880Z Test results will be stored in test-reports/python-pytest/test_ops_gradients/test_ops_gradients-3567e610b2a391c3.xml 2023-01-11T22:06:14.6732222Z ============================= test session starts ============================== 2023-01-11T22:06:14.6732589Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:14.6732850Z cachedir: .pytest_cache 2023-01-11T22:06:14.6733253Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:14.6733611Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:14.6734033Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:14.6734313Z collecting ... collected 0 items 2023-01-11T22:06:14.6734520Z Running 0 items in this shard: 2023-01-11T22:06:14.6734669Z 2023-01-11T22:06:14.6734835Z =============================== warnings summary =============================== 2023-01-11T22:06:14.6735236Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:14.6735746Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:14.6736138Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:14.6736269Z 2023-01-11T22:06:14.6736496Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:14.6737007Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-3567e610b2a391c3.xml - 2023-01-11T22:06:14.6737344Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:14.6737647Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:14.6737837Z 2023-01-11T22:06:14.6738239Z ##[endgroup] 2023-01-11T22:06:14.6738621Z FINISHED PRINTING LOG FILE of test_ops_gradients (/var/lib/jenkins/workspace/test/test-reports/test_ops_gradients_oipp2vw4) 2023-01-11T22:06:14.6738844Z 2023-01-11T22:06:14.6739007Z Running test_ops_jit ... [2023-01-11 22:06:14.673403] 2023-01-11T22:06:16.2063123Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:06:16.2295576Z No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' 2023-01-11T22:06:16.2706325Z Ignoring disabled issues: [] 2023-01-11T22:06:16.2892055Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_jit.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=0', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:16.288805] 2023-01-11T22:06:16.2935921Z Ignoring disabled issues: [] 2023-01-11T22:06:16.3123132Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_jit.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '--shard-id=1', '--num-shards=2', '-k=not _linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:16.312023] 2023-01-11T22:06:19.0502913Z 2023-01-11T22:06:19.0503496Z Expand the folded group to see the log file of test_ops_jit 2023-01-11T22:06:19.0504556Z ##[group]PRINTING LOG FILE of test_ops_jit (/var/lib/jenkins/workspace/test/test-reports/test_ops_jit_67igmrjd) 2023-01-11T22:06:19.0505342Z Test results will be stored in test-reports/python-pytest/test_ops_jit/test_ops_jit-5431f0498166287b.xml 2023-01-11T22:06:19.0505661Z ============================= test session starts ============================== 2023-01-11T22:06:19.0506032Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:19.0506278Z cachedir: .pytest_cache 2023-01-11T22:06:19.0506708Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:19.0507063Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:19.0507479Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:19.0507774Z collecting ... collected 0 items 2023-01-11T22:06:19.0507980Z Running 0 items in this shard: 2023-01-11T22:06:19.0508103Z 2023-01-11T22:06:19.0508203Z =============================== warnings summary =============================== 2023-01-11T22:06:19.0508551Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:19.0509073Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:19.0509425Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:19.0509557Z 2023-01-11T22:06:19.0509778Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:19.0510260Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_jit/test_ops_jit-5431f0498166287b.xml - 2023-01-11T22:06:19.0521299Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:19.0521744Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:19.0521948Z 2023-01-11T22:06:19.0522238Z ##[endgroup] 2023-01-11T22:06:19.0522692Z FINISHED PRINTING LOG FILE of test_ops_jit (/var/lib/jenkins/workspace/test/test-reports/test_ops_jit_67igmrjd) 2023-01-11T22:06:19.0522902Z 2023-01-11T22:06:19.0558532Z 2023-01-11T22:06:19.0558867Z Expand the folded group to see the log file of test_ops_jit 2023-01-11T22:06:19.0559693Z ##[group]PRINTING LOG FILE of test_ops_jit (/var/lib/jenkins/workspace/test/test-reports/test_ops_jit_ueawpfyj) 2023-01-11T22:06:19.0560656Z Test results will be stored in test-reports/python-pytest/test_ops_jit/test_ops_jit-096e00faef340b2a.xml 2023-01-11T22:06:19.0561227Z ============================= test session starts ============================== 2023-01-11T22:06:19.0562080Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:19.0562434Z cachedir: .pytest_cache 2023-01-11T22:06:19.0563026Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:19.0563541Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:19.0563995Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:19.0564278Z collecting ... collected 0 items 2023-01-11T22:06:19.0564486Z Running 0 items in this shard: 2023-01-11T22:06:19.0564613Z 2023-01-11T22:06:19.0564736Z =============================== warnings summary =============================== 2023-01-11T22:06:19.0565221Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:19.0566034Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:19.0566582Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:19.0566721Z 2023-01-11T22:06:19.0566963Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:19.0567447Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_jit/test_ops_jit-096e00faef340b2a.xml - 2023-01-11T22:06:19.0567787Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:19.0568088Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:19.0568280Z 2023-01-11T22:06:19.0568516Z ##[endgroup] 2023-01-11T22:06:19.0568890Z FINISHED PRINTING LOG FILE of test_ops_jit (/var/lib/jenkins/workspace/test/test-reports/test_ops_jit_ueawpfyj) 2023-01-11T22:06:19.0569351Z 2023-01-11T22:06:19.3993208Z Executing ['/opt/conda/bin/python', '-bb', 'test_ops_jit.py', '-v', '--use-pytest', '-vv', '-rfEX', '-x', '--reruns=2', '-k=_linalg_cholesky_', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:19.398894] 2023-01-11T22:06:22.0352917Z 2023-01-11T22:06:22.0353473Z Expand the folded group to see the log file of test_ops_jit 2023-01-11T22:06:22.0354371Z ##[group]PRINTING LOG FILE of test_ops_jit (/var/lib/jenkins/workspace/test/test-reports/test_ops_jit_lvu198_v) 2023-01-11T22:06:22.0355386Z Test results will be stored in test-reports/python-pytest/test_ops_jit/test_ops_jit-256d5705adf79135.xml 2023-01-11T22:06:22.0355707Z ============================= test session starts ============================== 2023-01-11T22:06:22.0356072Z platform linux -- Python 3.10.8, pytest-7.2.0, pluggy-1.0.0 -- /opt/conda/bin/python 2023-01-11T22:06:22.0356332Z cachedir: .pytest_cache 2023-01-11T22:06:22.0356745Z hypothesis profile 'pytorch_ci' -> database=None, max_examples=50, derandomize=True, suppress_health_check=[HealthCheck.too_slow] 2023-01-11T22:06:22.0357107Z rootdir: /var/lib/jenkins/workspace, configfile: pytest.ini 2023-01-11T22:06:22.0357515Z plugins: hypothesis-5.35.1, flakefinder-1.1.0, rerunfailures-10.3, shard-0.1.2, xdist-3.1.0, xdoctest-1.1.0 2023-01-11T22:06:22.0357813Z collecting ... collected 0 items 2023-01-11T22:06:22.0358017Z Running 0 items in this shard: 2023-01-11T22:06:22.0358139Z 2023-01-11T22:06:22.0358238Z =============================== warnings summary =============================== 2023-01-11T22:06:22.0358587Z ../../../../../opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171 2023-01-11T22:06:22.0359144Z /opt/conda/lib/python3.10/site-packages/_pytest/config/__init__.py:1171: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis 2023-01-11T22:06:22.0359697Z self._mark_plugins_for_rewrite(hook) 2023-01-11T22:06:22.0359830Z 2023-01-11T22:06:22.0360089Z -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html 2023-01-11T22:06:22.0360796Z - generated xml file: /var/lib/jenkins/workspace/test/test-reports/python-pytest/test_ops_jit/test_ops_jit-256d5705adf79135.xml - 2023-01-11T22:06:22.0361147Z ============================== 1 warning in 0.01s ============================== 2023-01-11T22:06:22.0361477Z If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them 2023-01-11T22:06:22.0361670Z 2023-01-11T22:06:22.0361923Z ##[endgroup] 2023-01-11T22:06:22.0362309Z FINISHED PRINTING LOG FILE of test_ops_jit (/var/lib/jenkins/workspace/test/test-reports/test_ops_jit_lvu198_v) 2023-01-11T22:06:22.0362516Z 2023-01-11T22:06:22.0362673Z Running test_prims ... [2023-01-11 22:06:22.035838] 2023-01-11T22:06:22.0363204Z Executing ['/opt/conda/bin/python', '-bb', 'test_prims.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:22.036051] 2023-01-11T22:06:24.5233416Z 2023-01-11T22:06:24.5233904Z Expand the folded group to see the log file of test_prims 2023-01-11T22:06:24.5234995Z ##[group]PRINTING LOG FILE of test_prims (/var/lib/jenkins/workspace/test/test-reports/test_prims_av_xfdkt) 2023-01-11T22:06:24.5235275Z 2023-01-11T22:06:24.5235364Z Running tests... 2023-01-11T22:06:24.5235813Z ---------------------------------------------------------------------- 2023-01-11T22:06:24.5236227Z Test results will be stored in test-reports/python-unittest/test_prims 2023-01-11T22:06:24.5236520Z test_mul_complex (__main__.TestPrimsBasic) ... ok (0.002s) 2023-01-11T22:06:24.5236811Z test_torch_ops (__main__.TestPrimsBasic) ... ok (0.002s) 2023-01-11T22:06:24.5236999Z 2023-01-11T22:06:24.5237197Z ---------------------------------------------------------------------- 2023-01-11T22:06:24.5237426Z Ran 2 tests in 0.004s 2023-01-11T22:06:24.5237538Z 2023-01-11T22:06:24.5237632Z OK 2023-01-11T22:06:24.5237736Z 2023-01-11T22:06:24.5237831Z Generating XML reports... 2023-01-11T22:06:24.5238227Z Generated XML report: test-reports/python-unittest/test_prims/TEST-TestPrimsBasic-20230111220624.xml 2023-01-11T22:06:24.5238455Z 2023-01-11T22:06:24.5238678Z ##[endgroup] 2023-01-11T22:06:24.5239043Z FINISHED PRINTING LOG FILE of test_prims (/var/lib/jenkins/workspace/test/test-reports/test_prims_av_xfdkt) 2023-01-11T22:06:24.5239248Z 2023-01-11T22:06:24.5239406Z Running test_reductions ... [2023-01-11 22:06:24.523359] 2023-01-11T22:06:24.5239872Z Executing ['/opt/conda/bin/python', '-bb', 'test_reductions.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:24.523603] 2023-01-11T22:06:26.9725641Z 2023-01-11T22:06:26.9726270Z Expand the folded group to see the log file of test_reductions 2023-01-11T22:06:26.9727146Z ##[group]PRINTING LOG FILE of test_reductions (/var/lib/jenkins/workspace/test/test-reports/test_reductions_nhn_em26) 2023-01-11T22:06:26.9727477Z 2023-01-11T22:06:26.9727596Z Running tests... 2023-01-11T22:06:26.9728057Z ---------------------------------------------------------------------- 2023-01-11T22:06:26.9728229Z 2023-01-11T22:06:26.9728435Z ---------------------------------------------------------------------- 2023-01-11T22:06:26.9728693Z Ran 0 tests in 0.000s 2023-01-11T22:06:26.9728806Z 2023-01-11T22:06:26.9728866Z OK 2023-01-11T22:06:26.9728955Z 2023-01-11T22:06:26.9729190Z Generating XML reports... 2023-01-11T22:06:26.9729547Z Test results will be stored in test-reports/python-unittest/test_reductions 2023-01-11T22:06:26.9729743Z 2023-01-11T22:06:26.9730025Z ##[endgroup] 2023-01-11T22:06:26.9730419Z FINISHED PRINTING LOG FILE of test_reductions (/var/lib/jenkins/workspace/test/test-reports/test_reductions_nhn_em26) 2023-01-11T22:06:26.9730760Z 2023-01-11T22:06:26.9731134Z Running test_show_pickle ... [2023-01-11 22:06:26.972647] 2023-01-11T22:06:26.9731863Z Executing ['/opt/conda/bin/python', '-bb', 'test_show_pickle.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:26.972880] 2023-01-11T22:06:28.7800484Z 2023-01-11T22:06:28.7801045Z Expand the folded group to see the log file of test_show_pickle 2023-01-11T22:06:28.7802097Z ##[group]PRINTING LOG FILE of test_show_pickle (/var/lib/jenkins/workspace/test/test-reports/test_show_pickle_3ky4oq1k) 2023-01-11T22:06:28.7802342Z 2023-01-11T22:06:28.7802416Z Running tests... 2023-01-11T22:06:28.7802882Z ---------------------------------------------------------------------- 2023-01-11T22:06:28.7803313Z Test results will be stored in test-reports/python-unittest/test_show_pickle 2023-01-11T22:06:28.7803661Z test_scripted_model (__main__.TestShowPickle) ... ok (0.224s) 2023-01-11T22:06:28.7803817Z 2023-01-11T22:06:28.7804016Z ---------------------------------------------------------------------- 2023-01-11T22:06:28.7804243Z Ran 1 test in 0.224s 2023-01-11T22:06:28.7804391Z 2023-01-11T22:06:28.7804481Z OK 2023-01-11T22:06:28.7804588Z 2023-01-11T22:06:28.7804678Z Generating XML reports... 2023-01-11T22:06:28.7805269Z Generated XML report: test-reports/python-unittest/test_show_pickle/TEST-TestShowPickle-20230111220628.xml 2023-01-11T22:06:28.7805753Z 2023-01-11T22:06:28.7806102Z ##[endgroup] 2023-01-11T22:06:28.7806710Z FINISHED PRINTING LOG FILE of test_show_pickle (/var/lib/jenkins/workspace/test/test-reports/test_show_pickle_3ky4oq1k) 2023-01-11T22:06:28.7807058Z 2023-01-11T22:06:28.7807318Z Running test_spectral_ops ... [2023-01-11 22:06:28.780151] 2023-01-11T22:06:28.7808107Z Executing ['/opt/conda/bin/python', '-bb', 'test_spectral_ops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:28.780373] 2023-01-11T22:06:32.1832295Z 2023-01-11T22:06:32.1832779Z Expand the folded group to see the log file of test_spectral_ops 2023-01-11T22:06:32.1833782Z ##[group]PRINTING LOG FILE of test_spectral_ops (/var/lib/jenkins/workspace/test/test-reports/test_spectral_ops__g34f1fu) 2023-01-11T22:06:32.1834420Z /var/lib/jenkins/workspace/test/test_spectral_ops.py:44: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead. 2023-01-11T22:06:32.1835280Z if LooseVersion(np.__version__) >= '1.20.0' and ( 2023-01-11T22:06:32.1835688Z /var/lib/jenkins/workspace/test/test_spectral_ops.py:45: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead. 2023-01-11T22:06:32.1836166Z not has_scipy_fft or LooseVersion(scipy.__version__) >= '1.6.0') 2023-01-11T22:06:32.1836375Z 2023-01-11T22:06:32.1836481Z Running tests... 2023-01-11T22:06:32.1837047Z ---------------------------------------------------------------------- 2023-01-11T22:06:32.1837299Z 2023-01-11T22:06:32.1837495Z ---------------------------------------------------------------------- 2023-01-11T22:06:32.1837740Z Ran 0 tests in 0.000s 2023-01-11T22:06:32.1837854Z 2023-01-11T22:06:32.1837914Z OK 2023-01-11T22:06:32.1838007Z 2023-01-11T22:06:32.1838078Z Generating XML reports... 2023-01-11T22:06:32.1838411Z Test results will be stored in test-reports/python-unittest/test_spectral_ops 2023-01-11T22:06:32.1838593Z 2023-01-11T22:06:32.1838828Z ##[endgroup] 2023-01-11T22:06:32.1839203Z FINISHED PRINTING LOG FILE of test_spectral_ops (/var/lib/jenkins/workspace/test/test-reports/test_spectral_ops__g34f1fu) 2023-01-11T22:06:32.1839424Z 2023-01-11T22:06:32.1839612Z Running test_tensor_creation_ops ... [2023-01-11 22:06:32.183275] 2023-01-11T22:06:32.1840100Z Executing ['/opt/conda/bin/python', '-bb', 'test_tensor_creation_ops.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:32.183511] 2023-01-11T22:06:34.0284153Z 2023-01-11T22:06:34.0284630Z Expand the folded group to see the log file of test_tensor_creation_ops 2023-01-11T22:06:34.0285756Z ##[group]PRINTING LOG FILE of test_tensor_creation_ops (/var/lib/jenkins/workspace/test/test-reports/test_tensor_creation_ops_0hgotwfy) 2023-01-11T22:06:34.0286150Z 2023-01-11T22:06:34.0286233Z Running tests... 2023-01-11T22:06:34.0286720Z ---------------------------------------------------------------------- 2023-01-11T22:06:34.0286914Z 2023-01-11T22:06:34.0287184Z ---------------------------------------------------------------------- 2023-01-11T22:06:34.0287630Z Ran 0 tests in 0.000s 2023-01-11T22:06:34.0287742Z 2023-01-11T22:06:34.0287802Z OK 2023-01-11T22:06:34.0287893Z 2023-01-11T22:06:34.0287964Z Generating XML reports... 2023-01-11T22:06:34.0288315Z Test results will be stored in test-reports/python-unittest/test_tensor_creation_ops 2023-01-11T22:06:34.0288507Z 2023-01-11T22:06:34.0288747Z ##[endgroup] 2023-01-11T22:06:34.0289438Z FINISHED PRINTING LOG FILE of test_tensor_creation_ops (/var/lib/jenkins/workspace/test/test-reports/test_tensor_creation_ops_0hgotwfy) 2023-01-11T22:06:34.0289712Z 2023-01-11T22:06:34.0289900Z Running test_tensorexpr ... [2023-01-11 22:06:34.028541] 2023-01-11T22:06:34.0290376Z Executing ['/opt/conda/bin/python', '-bb', 'test_tensorexpr.py', '-v', '--import-slow-tests', '--import-disabled-tests'] ... [2023-01-11 22:06:34.028837] 2023-01-11T22:07:19.4561875Z 2023-01-11T22:07:19.4562782Z Expand the folded group to see the log file of test_tensorexpr 2023-01-11T22:07:19.4564682Z ##[group]PRINTING LOG FILE of test_tensorexpr (/var/lib/jenkins/workspace/test/test-reports/test_tensorexpr_3qers4rd) 2023-01-11T22:07:19.4565019Z 2023-01-11T22:07:19.4565112Z Running tests... 2023-01-11T22:07:19.4565738Z ---------------------------------------------------------------------- 2023-01-11T22:07:19.4566376Z Test results will be stored in test-reports/python-unittest/test_tensorexpr 2023-01-11T22:07:19.4569955Z test_add_const_rhs (__main__.TestTensorExprFuser) ... ok (0.259s) 2023-01-11T22:07:19.4570311Z test_add_sub (__main__.TestTensorExprFuser) ... ok (0.036s) 2023-01-11T22:07:19.4570608Z test_alias_analysis_input_and_module (__main__.TestTensorExprFuser) ... ok (0.045s) 2023-01-11T22:07:19.4570917Z test_alias_analysis_inputs (__main__.TestTensorExprFuser) ... ok (0.008s) 2023-01-11T22:07:19.4571220Z test_alias_analysis_module (__main__.TestTensorExprFuser) ... ok (0.130s) 2023-01-11T22:07:19.4571519Z test_all_combos (__main__.TestTensorExprFuser) ... ok (0.038s) 2023-01-11T22:07:19.4571793Z test_alpha (__main__.TestTensorExprFuser) ... ok (0.025s) 2023-01-11T22:07:19.4573734Z test_binary_ops (__main__.TestTensorExprFuser) ... ok (1.442s) 2023-01-11T22:07:19.4574067Z test_bitwise_ops (__main__.TestTensorExprFuser) ... ok (0.160s) 2023-01-11T22:07:19.4574357Z test_broadcast (__main__.TestTensorExprFuser) ... ok (0.039s) 2023-01-11T22:07:19.4574679Z test_broadcast3 (__main__.TestTensorExprFuser) ... ok (0.145s) 2023-01-11T22:07:19.4574964Z test_broadcast_2 (__main__.TestTensorExprFuser) ... ok (0.033s) 2023-01-11T22:07:19.4575320Z test_broadcast_big2 (__main__.TestTensorExprFuser) ... ok (0.046s) 2023-01-11T22:07:19.4575818Z test_cat (__main__.TestTensorExprFuser) ... ok (3.245s) 2023-01-11T22:07:19.4576280Z test_cat_empty_tensors (__main__.TestTensorExprFuser) ... ok (0.115s) 2023-01-11T22:07:19.4576719Z test_cat_negative_dim (__main__.TestTensorExprFuser) ... ok (0.069s) 2023-01-11T22:07:19.4577317Z test_cat_only (__main__.TestTensorExprFuser) ... skip: cat is broken with fusion group inlining disabled (0.001s) 2023-01-11T22:07:19.4577858Z test_cat_promote_inputs (__main__.TestTensorExprFuser) ... ok (0.129s) 2023-01-11T22:07:19.4578306Z test_cat_with_constant_dim (__main__.TestTensorExprFuser) ... ok (0.046s) 2023-01-11T22:07:19.4578642Z test_char (__main__.TestTensorExprFuser) ... ok (0.028s) 2023-01-11T22:07:19.4579087Z test_chunk (__main__.TestTensorExprFuser) ... ok (0.196s) 2023-01-11T22:07:19.4579555Z test_clamp (__main__.TestTensorExprFuser) ... ok (0.037s) 2023-01-11T22:07:19.4579922Z test_constant (__main__.TestTensorExprFuser) ... ok (0.027s) 2023-01-11T22:07:19.4580229Z test_double (__main__.TestTensorExprFuser) ... ok (0.026s) 2023-01-11T22:07:19.4580500Z test_double_intrinsics (__main__.TestTensorExprFuser) ... ok (0.032s) 2023-01-11T22:07:19.4580892Z test_dynamic_shape (__main__.TestTensorExprFuser) ... skip: dynamic shapes are not quite there yet (0.001s) 2023-01-11T22:07:19.4581252Z test_easy (__main__.TestTensorExprFuser) ... ok (0.037s) 2023-01-11T22:07:19.4581918Z test_eq (__main__.TestTensorExprFuser) ... ok (0.063s) 2023-01-11T22:07:19.4582376Z test_exp_pow (__main__.TestTensorExprFuser) ... ok (0.058s) 2023-01-11T22:07:19.4582798Z test_four_arg (__main__.TestTensorExprFuser) ... ok (0.038s) 2023-01-11T22:07:19.4583123Z test_ge (__main__.TestTensorExprFuser) ... ok (0.063s) 2023-01-11T22:07:19.4583532Z test_gt (__main__.TestTensorExprFuser) ... ok (0.063s) 2023-01-11T22:07:19.4583937Z test_guard_fails (__main__.TestTensorExprFuser) ... skip: requires CUDA (0.001s) 2023-01-11T22:07:19.4584375Z test_half_bn_relu (__main__.TestTensorExprFuser) ... ok (0.001s) 2023-01-11T22:07:19.4584676Z test_half_gelu (__main__.TestTensorExprFuser) ... ok (0.003s) 2023-01-11T22:07:19.4585073Z test_int64_promotion (__main__.TestTensorExprFuser) ... ok (0.027s) 2023-01-11T22:07:19.4585553Z test_int_output (__main__.TestTensorExprFuser) ... ok (0.027s) 2023-01-11T22:07:19.4586052Z test_le (__main__.TestTensorExprFuser) ... ok (0.063s) 2023-01-11T22:07:19.4586520Z test_loop (__main__.TestTensorExprFuser) ... ok (0.075s) 2023-01-11T22:07:19.4586857Z test_lt (__main__.TestTensorExprFuser) ... ok (0.063s) 2023-01-11T22:07:19.4587115Z test_mask (__main__.TestTensorExprFuser) ... ok (0.025s) 2023-01-11T22:07:19.4587380Z test_min_max (__main__.TestTensorExprFuser) ... ok (0.039s) 2023-01-11T22:07:19.4587648Z test_min_max_reduction (__main__.TestTensorExprFuser) ... ok (0.026s) 2023-01-11T22:07:19.4587942Z test_min_max_reduction2 (__main__.TestTensorExprFuser) ... ok (0.025s) 2023-01-11T22:07:19.4588241Z test_min_max_reduction_dim1 (__main__.TestTensorExprFuser) ... ok (0.028s) 2023-01-11T22:07:19.4588530Z test_min_max_reduction_dim1_2 (__main__.TestTensorExprFuser) ... ok (0.040s) 2023-01-11T22:07:19.4588819Z test_multi_rand (__main__.TestTensorExprFuser) ... ok (0.052s) 2023-01-11T22:07:19.4589102Z test_multioutput (__main__.TestTensorExprFuser) ... ok (0.036s) 2023-01-11T22:07:19.4589390Z test_multiple_outputs (__main__.TestTensorExprFuser) ... ok (0.178s) 2023-01-11T22:07:19.4589655Z test_nans (__main__.TestTensorExprFuser) ... ok (0.100s) 2023-01-11T22:07:19.4589912Z test_ne (__main__.TestTensorExprFuser) ... ok (0.063s) 2023-01-11T22:07:19.4590174Z test_promotion (__main__.TestTensorExprFuser) ... ok (0.033s) 2023-01-11T22:07:19.4590454Z test_propagated_mem_layout (__main__.TestTensorExprFuser) ... ok (30.499s) 2023-01-11T22:07:19.4590747Z test_rand_like (__main__.TestTensorExprFuser) ... ok (0.064s) 2023-01-11T22:07:19.4591015Z test_rank_two (__main__.TestTensorExprFuser) ... ok (0.044s) 2023-01-11T22:07:19.4591265Z test_relu (__main__.TestTensorExprFuser) ... ok (0.036s) 2023-01-11T22:07:19.4591534Z test_remainder (__main__.TestTensorExprFuser) ... ok (0.256s) 2023-01-11T22:07:19.4591801Z test_reps (__main__.TestTensorExprFuser) ... ok (0.042s) 2023-01-11T22:07:19.4592063Z test_scalar (__main__.TestTensorExprFuser) ... ok (0.108s) 2023-01-11T22:07:19.4592316Z test_short (__main__.TestTensorExprFuser) ... ok (0.027s) 2023-01-11T22:07:19.4592588Z test_simple_add (__main__.TestTensorExprFuser) ... ok (0.015s) 2023-01-11T22:07:19.4592863Z test_sin_pow (__main__.TestTensorExprFuser) ... ok (0.311s) 2023-01-11T22:07:19.4593117Z test_slice (__main__.TestTensorExprFuser) ... ok (0.058s) 2023-01-11T22:07:19.4593390Z test_sliced_stride (__main__.TestTensorExprFuser) ... ok (0.107s) 2023-01-11T22:07:19.4593669Z test_softmax_cpu (__main__.TestTensorExprFuser) ... ok (0.649s) 2023-01-11T22:07:19.4593957Z test_softmax_cuda (__main__.TestTensorExprFuser) ... skip: requires CUDA (0.000s) 2023-01-11T22:07:19.4594274Z test_strided_output_preserved (__main__.TestTensorExprFuser) ... ok (0.110s) 2023-01-11T22:07:19.4594564Z test_three_arg (__main__.TestTensorExprFuser) ... ok (0.036s) 2023-01-11T22:07:19.4594833Z test_three_arg2 (__main__.TestTensorExprFuser) ... ok (0.040s) 2023-01-11T22:07:19.4595099Z test_transpose (__main__.TestTensorExprFuser) ... ok (0.160s) 2023-01-11T22:07:19.4595367Z test_unary_ops (__main__.TestTensorExprFuser) ... ok (3.150s) 2023-01-11T22:07:19.4595696Z test_unsqueeze (__main__.TestTensorExprFuser) ... ok (0.061s) 2023-01-11T22:07:19.4595950Z test_where (__main__.TestTensorExprFuser) ... ok (0.159s) 2023-01-11T22:07:19.4596097Z 2023-01-11T22:07:19.4596365Z ---------------------------------------------------------------------- 2023-01-11T22:07:19.4596607Z Ran 73 tests in 43.521s 2023-01-11T22:07:19.4596720Z 2023-01-11T22:07:19.4596794Z OK (skipped=4) 2023-01-11T22:07:19.4596887Z 2023-01-11T22:07:19.4596971Z Generating XML reports... 2023-01-11T22:07:19.4597403Z Generated XML report: test-reports/python-unittest/test_tensorexpr/TEST-TestTensorExprFuser-20230111220635.xml 2023-01-11T22:07:19.4597647Z 2023-01-11T22:07:19.4597942Z ##[endgroup] 2023-01-11T22:07:19.4598356Z FINISHED PRINTING LOG FILE of test_tensorexpr (/var/lib/jenkins/workspace/test/test-reports/test_tensorexpr_3qers4rd) 2023-01-11T22:07:19.4598578Z 2023-01-11T22:07:19.4598728Z Running doctests ... [2023-01-11 22:07:19.456394] 2023-01-11T22:07:19.4883400Z Start doctest_module('/opt/conda/lib/python3.10/site-packages/torch') 2023-01-11T22:07:19.4883646Z Listing tests 2023-01-11T22:07:25.5722946Z gathering tests 2023-01-11T22:07:25.5739599Z running 663 test(s) 2023-01-11T22:07:25.5793196Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/__init__.py::is_tensor:0, line 429 <- wrt source file 2023-01-11T22:07:25.5800409Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/__init__.py::is_tensor:0 2023-01-11T22:07:25.5800957Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/__init__.py::set_default_tensor_type:0, line 458 <- wrt source file 2023-01-11T22:07:25.5803019Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/__init__.py::set_default_tensor_type:0 2023-01-11T22:07:25.5803752Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/__init__.py::set_default_dtype:0, line 496 <- wrt source file 2023-01-11T22:07:25.5806051Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/__init__.py::set_default_dtype:0 2023-01-11T22:07:25.5806767Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/__init__.py::use_deterministic_algorithms:0, line 629 <- wrt source file 2023-01-11T22:07:25.5808194Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/__init__.py::use_deterministic_algorithms:0 2023-01-11T22:07:25.5809273Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/__init__.py::compile:0, line 1221 <- wrt source file 2023-01-11T22:07:25.5809958Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/__init__.py::compile:0 2023-01-11T22:07:25.5810545Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so::Generator:0, line 15 <- wrt source file 2023-01-11T22:07:25.5811307Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so::Generator:0 2023-01-11T22:07:25.5811891Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so::_LinAlgError:0, line 5 <- wrt source file 2023-01-11T22:07:25.5813080Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_C.cpython-310-x86_64-linux-gnu.so::_LinAlgError:0 2023-01-11T22:07:25.5813846Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_namedtensor_internals.py::update_names:0, line 125 <- wrt source file 2023-01-11T22:07:25.5815381Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_namedtensor_internals.py::update_names:0 2023-01-11T22:07:25.5816066Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.register_hook:0, line 508 <- wrt source file 2023-01-11T22:07:25.5824395Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.register_hook:0 2023-01-11T22:07:25.5825052Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.refine_names:0, line 1096 <- wrt source file 2023-01-11T22:07:25.5944206Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.refine_names:0 2023-01-11T22:07:25.5948228Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.align_to:0, line 1141 <- wrt source file 2023-01-11T22:07:25.5954076Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.align_to:0 2023-01-11T22:07:25.5954705Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.rename:0, line 1214 <- wrt source file 2023-01-11T22:07:25.5963282Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.rename:0 2023-01-11T22:07:25.5963994Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.to_sparse_coo:0, line 1244 <- wrt source file 2023-01-11T22:07:25.5971955Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_tensor.py::Tensor.to_sparse_coo:0 2023-01-11T22:07:25.5972678Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_tensor_str.py::set_printoptions:0, line 49 <- wrt source file 2023-01-11T22:07:25.6000874Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_tensor_str.py::set_printoptions:0 2023-01-11T22:07:25.6001587Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::broadcast_tensors:0, line 61 <- wrt source file 2023-01-11T22:07:25.6009164Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::broadcast_tensors:0 2023-01-11T22:07:25.6009701Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::broadcast_shapes:0, line 89 <- wrt source file 2023-01-11T22:07:25.6013007Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::broadcast_shapes:0 2023-01-11T22:07:25.6013529Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::split:0, line 161 <- wrt source file 2023-01-11T22:07:25.6027350Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::split:0 2023-01-11T22:07:25.6027853Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::einsum:0, line 269 <- wrt source file 2023-01-11T22:07:25.6224602Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::einsum:0 2023-01-11T22:07:25.6225285Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::meshgrid:0, line 450 <- wrt source file 2023-01-11T22:07:25.6261376Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::meshgrid:0 2023-01-11T22:07:25.6261965Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::_unique_impl:0, line 764 <- wrt source file 2023-01-11T22:07:25.6276751Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::_unique_impl:0 2023-01-11T22:07:25.6277362Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::_unique_consecutive_impl:0, line 842 <- wrt source file 2023-01-11T22:07:25.6289882Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::_unique_consecutive_impl:0 2023-01-11T22:07:25.6290474Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::tensordot:0, line 1040 <- wrt source file 2023-01-11T22:07:25.6304196Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::tensordot:0 2023-01-11T22:07:25.6304737Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::cartesian_prod:0, line 1118 <- wrt source file 2023-01-11T22:07:25.6312515Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::cartesian_prod:0 2023-01-11T22:07:25.6313200Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::block_diag:0, line 1152 <- wrt source file 2023-01-11T22:07:25.6324216Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::block_diag:0 2023-01-11T22:07:25.6324796Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::cdist:0, line 1203 <- wrt source file 2023-01-11T22:07:25.6342137Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::cdist:0 2023-01-11T22:07:25.6342723Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::atleast_1d:0, line 1243 <- wrt source file 2023-01-11T22:07:25.6362106Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::atleast_1d:0 2023-01-11T22:07:25.6362747Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::atleast_2d:0, line 1279 <- wrt source file 2023-01-11T22:07:25.6383449Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::atleast_2d:0 2023-01-11T22:07:25.6383968Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::atleast_3d:0, line 1317 <- wrt source file 2023-01-11T22:07:25.6409481Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::atleast_3d:0 2023-01-11T22:07:25.6409968Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::norm:0, line 1455 <- wrt source file 2023-01-11T22:07:25.6451845Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/functional.py::norm:0 2023-01-11T22:07:25.6452380Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::chain_matmul:0, line 1606 <- wrt source file 2023-01-11T22:07:25.6453884Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/functional.py::chain_matmul:0 2023-01-11T22:07:25.6454388Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/functional.py::_lu_impl:0, line 1706 <- wrt source file 2023-01-11T22:07:25.6456624Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/functional.py::_lu_impl:0 2023-01-11T22:07:25.6457309Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/hub.py::list:0, line 391 <- wrt source file 2023-01-11T22:07:25.6457880Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/hub.py::list:0 2023-01-11T22:07:25.6458571Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/hub.py::help:0, line 444 <- wrt source file 2023-01-11T22:07:25.6459243Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/hub.py::help:0 2023-01-11T22:07:25.6459911Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/hub.py::load:0, line 524 <- wrt source file 2023-01-11T22:07:25.6460513Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/hub.py::load:0 2023-01-11T22:07:25.6461211Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/hub.py::_load_local:0, line 563 <- wrt source file 2023-01-11T22:07:25.6461782Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/hub.py::_load_local:0 2023-01-11T22:07:25.6462514Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/hub.py::download_url_to_file:0, line 592 <- wrt source file 2023-01-11T22:07:25.6463065Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/hub.py::download_url_to_file:0 2023-01-11T22:07:25.6463572Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/hub.py::load_state_dict_from_url:0, line 701 <- wrt source file 2023-01-11T22:07:25.6464132Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/hub.py::load_state_dict_from_url:0 2023-01-11T22:07:25.6464643Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/library.py::Library.define:0, line 61 <- wrt source file 2023-01-11T22:07:25.6465267Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/library.py::Library.define:0 2023-01-11T22:07:25.6465756Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/library.py::Library.impl:0, line 81 <- wrt source file 2023-01-11T22:07:25.6466240Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/library.py::Library.impl:0 2023-01-11T22:07:25.6466753Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/overrides.py::get_ignored_functions:0, line 67 <- wrt source file 2023-01-11T22:07:25.6469220Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/overrides.py::get_ignored_functions:0 2023-01-11T22:07:25.6469880Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/overrides.py::get_testing_overrides:0, line 336 <- wrt source file 2023-01-11T22:07:25.6507147Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/overrides.py::get_testing_overrides:0 2023-01-11T22:07:25.6507681Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/overrides.py::wrap_torch_function:0, line 1391 <- wrt source file 2023-01-11T22:07:25.6511396Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/overrides.py::wrap_torch_function:0 2023-01-11T22:07:25.6511913Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/overrides.py::handle_torch_function:0, line 1508 <- wrt source file 2023-01-11T22:07:25.6515453Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/overrides.py::handle_torch_function:0 2023-01-11T22:07:25.6516001Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/overrides.py::is_tensor_method_or_property:0, line 1732 <- wrt source file 2023-01-11T22:07:25.6557117Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/overrides.py::is_tensor_method_or_property:0 2023-01-11T22:07:25.6557637Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/overrides.py::is_tensor_like:0, line 1750 <- wrt source file 2023-01-11T22:07:25.6565851Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/overrides.py::is_tensor_like:0 2023-01-11T22:07:25.6566507Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/quasirandom.py::SobolEngine:0, line 37 <- wrt source file 2023-01-11T22:07:25.6567318Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/quasirandom.py::SobolEngine:0 2023-01-11T22:07:25.6567982Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/serialization.py::save:0, line 429 <- wrt source file 2023-01-11T22:07:25.6568455Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/serialization.py::save:0 2023-01-11T22:07:25.6568959Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/serialization.py::load:0, line 754 <- wrt source file 2023-01-11T22:07:25.6572387Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/serialization.py::load:0 2023-01-11T22:07:25.6573148Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/torch_version.py::TorchVersion:0, line 49 <- wrt source file 2023-01-11T22:07:25.6573942Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/torch_version.py::TorchVersion:0 2023-01-11T22:07:25.6574505Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_prims_common/__init__.py::compute_required_storage_length:0, line 1495 <- wrt source file 2023-01-11T22:07:25.6579971Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_prims_common/__init__.py::compute_required_storage_length:0 2023-01-11T22:07:25.6580690Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.then:0, line 147 <- wrt source file 2023-01-11T22:07:25.6581587Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.then:0 2023-01-11T22:07:25.6582266Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.add_done_callback:0, line 195 <- wrt source file 2023-01-11T22:07:25.6584582Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.add_done_callback:0 2023-01-11T22:07:25.6585316Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.set_result:0, line 228 <- wrt source file 2023-01-11T22:07:25.6586406Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.set_result:0 2023-01-11T22:07:25.6587423Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.set_exception:0, line 257 <- wrt source file 2023-01-11T22:07:25.6588098Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::Future.set_exception:0 2023-01-11T22:07:25.6589008Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::collect_all:0, line 288 <- wrt source file 2023-01-11T22:07:25.6589832Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/futures/__init__.py::collect_all:0 2023-01-11T22:07:25.6590411Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/__init__.py::annotate:0, line 103 <- wrt source file 2023-01-11T22:07:25.6590996Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/__init__.py::annotate:0 2023-01-11T22:07:25.6591883Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/__init__.py::strict_fusion:0, line 202 <- wrt source file 2023-01-11T22:07:25.6592481Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/__init__.py::strict_fusion:0 2023-01-11T22:07:25.6593021Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/monitor/__init__.py::TensorboardEventHandler:0, line 21 <- wrt source file 2023-01-11T22:07:25.6608379Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/monitor/__init__.py::TensorboardEventHandler:0 2023-01-11T22:07:25.6609189Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nested/__init__.py::as_nested_tensor:0, line 39 <- wrt source file 2023-01-11T22:07:25.6624738Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nested/__init__.py::as_nested_tensor:0 2023-01-11T22:07:25.6625723Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/sparse/__init__.py::sum:0, line 175 <- wrt source file 2023-01-11T22:07:25.6637864Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/sparse/__init__.py::sum:0 2023-01-11T22:07:25.6638901Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py::aot_function:0, line 2139 <- wrt source file 2023-01-11T22:07:25.7914711Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py::aot_function:0 2023-01-11T22:07:25.7915461Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/benchmark_utils.py::benchmark_utilization:0, line 162 <- wrt source file 2023-01-11T22:07:25.7916030Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_functorch/benchmark_utils.py::benchmark_utilization:0 2023-01-11T22:07:25.7916588Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::vjp:0, line 195 <- wrt source file 2023-01-11T22:07:25.7999248Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::vjp:0 2023-01-11T22:07:25.7999953Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::jacrev:0, line 382 <- wrt source file 2023-01-11T22:07:25.8161159Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::jacrev:0 2023-01-11T22:07:25.8161962Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::jvp:0, line 882 <- wrt source file 2023-01-11T22:07:25.8847640Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::jvp:0 2023-01-11T22:07:25.8848194Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::jacfwd:0, line 1024 <- wrt source file 2023-01-11T22:07:25.9002622Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::jacfwd:0 2023-01-11T22:07:25.9003302Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::hessian:0, line 1173 <- wrt source file 2023-01-11T22:07:25.9047640Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::hessian:0 2023-01-11T22:07:25.9048341Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::grad:0, line 1290 <- wrt source file 2023-01-11T22:07:25.9048957Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::grad:0 2023-01-11T22:07:25.9049626Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::functionalize:0, line 1441 <- wrt source file 2023-01-11T22:07:25.9054646Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py::functionalize:0 2023-01-11T22:07:25.9055579Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/fx_minifier.py::minifier:0, line 72 <- wrt source file 2023-01-11T22:07:25.9056149Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_functorch/fx_minifier.py::minifier:0 2023-01-11T22:07:25.9056671Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_functorch/vmap.py::vmap:0, line 306 <- wrt source file 2023-01-11T22:07:25.9100317Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/_functorch/vmap.py::vmap:0 2023-01-11T22:07:25.9101310Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_prims/context.py::NvfuserPrimsMode:0, line 90 <- wrt source file 2023-01-11T22:07:25.9102273Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_prims/context.py::NvfuserPrimsMode:0 2023-01-11T22:07:25.9103327Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/_prims/context.py::TorchRefsMode:0, line 141 <- wrt source file 2023-01-11T22:07:25.9104267Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/_prims/context.py::TorchRefsMode:0 2023-01-11T22:07:25.9105321Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/qat/modules/linear_relu.py::LinearReLU:0, line 21 <- wrt source file 2023-01-11T22:07:25.9106337Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/qat/modules/linear_relu.py::LinearReLU:0 2023-01-11T22:07:25.9107474Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/dynamic/modules/linear_relu.py::LinearReLU:0, line 21 <- wrt source file 2023-01-11T22:07:25.9108847Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/dynamic/modules/linear_relu.py::LinearReLU:0 2023-01-11T22:07:25.9110019Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/modules/linear_relu.py::LinearReLU:0, line 22 <- wrt source file 2023-01-11T22:07:25.9111108Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/modules/linear_relu.py::LinearReLU:0 2023-01-11T22:07:25.9112213Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/modules/linear_relu.py::LinearLeakyReLU:0, line 59 <- wrt source file 2023-01-11T22:07:25.9113552Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/modules/linear_relu.py::LinearLeakyReLU:0 2023-01-11T22:07:25.9114632Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/modules/linear_relu.py::LinearTanh:0, line 126 <- wrt source file 2023-01-11T22:07:25.9115681Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/intrinsic/quantized/modules/linear_relu.py::LinearTanh:0 2023-01-11T22:07:25.9116613Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/rnn.py::LSTMCell:0, line 24 <- wrt source file 2023-01-11T22:07:25.9140791Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/rnn.py::LSTMCell:0 2023-01-11T22:07:25.9142620Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/rnn.py::LSTM:0, line 274 <- wrt source file 2023-01-11T22:07:25.9183234Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantizable/modules/rnn.py::LSTM:0 2023-01-11T22:07:25.9185049Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py::conv1d:0, line 166 <- wrt source file 2023-01-11T22:07:25.9186295Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py::conv1d:0 2023-01-11T22:07:25.9187287Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py::conv2d:0, line 226 <- wrt source file 2023-01-11T22:07:25.9188255Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py::conv2d:0 2023-01-11T22:07:25.9189297Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py::conv3d:0, line 287 <- wrt source file 2023-01-11T22:07:25.9190236Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/functional.py::conv3d:0 2023-01-11T22:07:25.9191267Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__init__.py::Quantize:0, line 74 <- wrt source file 2023-01-11T22:07:25.9196858Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__init__.py::Quantize:0 2023-01-11T22:07:25.9197893Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__init__.py::DeQuantize:0, line 114 <- wrt source file 2023-01-11T22:07:25.9203736Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/__init__.py::DeQuantize:0 2023-01-11T22:07:25.9204816Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::Conv1d:0, line 34 <- wrt source file 2023-01-11T22:07:25.9205838Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::Conv1d:0 2023-01-11T22:07:25.9206872Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::Conv2d:0, line 105 <- wrt source file 2023-01-11T22:07:25.9207906Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::Conv2d:0 2023-01-11T22:07:25.9208922Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::Conv3d:0, line 170 <- wrt source file 2023-01-11T22:07:25.9210134Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::Conv3d:0 2023-01-11T22:07:25.9211212Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::ConvTranspose1d:0, line 236 <- wrt source file 2023-01-11T22:07:25.9212289Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::ConvTranspose1d:0 2023-01-11T22:07:25.9213503Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::ConvTranspose2d:0, line 297 <- wrt source file 2023-01-11T22:07:25.9214565Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::ConvTranspose2d:0 2023-01-11T22:07:25.9215647Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::ConvTranspose3d:0, line 358 <- wrt source file 2023-01-11T22:07:25.9216695Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/conv.py::ConvTranspose3d:0 2023-01-11T22:07:25.9217864Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/linear.py::Linear:0, line 28 <- wrt source file 2023-01-11T22:07:25.9218884Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/linear.py::Linear:0 2023-01-11T22:07:25.9219929Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::LSTM:0, line 391 <- wrt source file 2023-01-11T22:07:25.9220885Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::LSTM:0 2023-01-11T22:07:25.9221792Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::GRU:0, line 618 <- wrt source file 2023-01-11T22:07:25.9222777Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::GRU:0 2023-01-11T22:07:25.9223793Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::RNNCell:0, line 940 <- wrt source file 2023-01-11T22:07:25.9224796Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::RNNCell:0 2023-01-11T22:07:25.9225814Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::LSTMCell:0, line 993 <- wrt source file 2023-01-11T22:07:25.9226987Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::LSTMCell:0 2023-01-11T22:07:25.9228005Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::GRUCell:0, line 1036 <- wrt source file 2023-01-11T22:07:25.9229004Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/dynamic/modules/rnn.py::GRUCell:0 2023-01-11T22:07:25.9230034Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/activation.py::ReLU6:0, line 31 <- wrt source file 2023-01-11T22:07:25.9231031Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/activation.py::ReLU6:0 2023-01-11T22:07:25.9232029Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::Conv1d:0, line 295 <- wrt source file 2023-01-11T22:07:25.9233042Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::Conv1d:0 2023-01-11T22:07:25.9234045Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::Conv2d:0, line 403 <- wrt source file 2023-01-11T22:07:25.9234999Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::Conv2d:0 2023-01-11T22:07:25.9235960Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::Conv3d:0, line 502 <- wrt source file 2023-01-11T22:07:25.9236925Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::Conv3d:0 2023-01-11T22:07:25.9237849Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::ConvTranspose1d:0, line 685 <- wrt source file 2023-01-11T22:07:25.9238881Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::ConvTranspose1d:0 2023-01-11T22:07:25.9239771Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::ConvTranspose2d:0, line 775 <- wrt source file 2023-01-11T22:07:25.9240657Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::ConvTranspose2d:0 2023-01-11T22:07:25.9241575Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::ConvTranspose3d:0, line 869 <- wrt source file 2023-01-11T22:07:25.9242709Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/conv.py::ConvTranspose3d:0 2023-01-11T22:07:25.9243799Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/embedding_ops.py::Embedding:0, line 84 <- wrt source file 2023-01-11T22:07:25.9260944Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/embedding_ops.py::Embedding:0 2023-01-11T22:07:25.9261761Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/embedding_ops.py::EmbeddingBag:0, line 209 <- wrt source file 2023-01-11T22:07:25.9286238Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/embedding_ops.py::EmbeddingBag:0 2023-01-11T22:07:25.9287045Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/functional_modules.py::FloatFunctional:0, line 21 <- wrt source file 2023-01-11T22:07:25.9292183Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/functional_modules.py::FloatFunctional:0 2023-01-11T22:07:25.9292997Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/functional_modules.py::QFunctional:0, line 141 <- wrt source file 2023-01-11T22:07:25.9297131Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/functional_modules.py::QFunctional:0 2023-01-11T22:07:25.9298043Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/linear.py::Linear:0, line 117 <- wrt source file 2023-01-11T22:07:25.9298881Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/linear.py::Linear:0 2023-01-11T22:07:25.9299732Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/rnn.py::LSTM:0, line 20 <- wrt source file 2023-01-11T22:07:25.9300430Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/nn/quantized/modules/rnn.py::LSTM:0 2023-01-11T22:07:25.9301428Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/activation_sparsifier.py::ActivationSparsifier:0, line 59 <- wrt source file 2023-01-11T22:07:25.9302369Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/activation_sparsifier/activation_sparsifier.py::ActivationSparsifier:0 2023-01-11T22:07:25.9303477Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_scheduler/base_data_scheduler.py::BaseDataScheduler.get_schedule_param:0, line 92 <- wrt source file 2023-01-11T22:07:25.9441560Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_scheduler/base_data_scheduler.py::BaseDataScheduler.get_schedule_param:0 2023-01-11T22:07:25.9442296Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/base_data_sparsifier.py::BaseDataSparsifier:0, line 54 <- wrt source file 2023-01-11T22:07:25.9442972Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/_experimental/data_sparsifier/base_data_sparsifier.py::BaseDataSparsifier:0 2023-01-11T22:07:25.9443702Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/scheduler/lambda_scheduler.py::LambdaSL:0, line 19 <- wrt source file 2023-01-11T22:07:25.9446299Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/scheduler/lambda_scheduler.py::LambdaSL:0 2023-01-11T22:07:25.9446896Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/base_sparsifier.py::BaseSparsifier:0, line 45 <- wrt source file 2023-01-11T22:07:25.9447488Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/base_sparsifier.py::BaseSparsifier:0 2023-01-11T22:07:25.9448176Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/base_sparsifier.py::BaseSparsifier.squash_mask:0, line 237 <- wrt source file 2023-01-11T22:07:25.9452316Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/pruning/sparsifier/base_sparsifier.py::BaseSparsifier.squash_mask:0 2023-01-11T22:07:25.9452917Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuse_modules.py::fuse_modules:0, line 143 <- wrt source file 2023-01-11T22:07:25.9454185Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuse_modules.py::fuse_modules:0 2023-01-11T22:07:25.9454792Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_conv_bn:0, line 27 <- wrt source file 2023-01-11T22:07:25.9462275Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_conv_bn:0 2023-01-11T22:07:25.9463021Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_conv_bn_relu:0, line 64 <- wrt source file 2023-01-11T22:07:25.9469756Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_conv_bn_relu:0 2023-01-11T22:07:25.9470409Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_linear_bn:0, line 111 <- wrt source file 2023-01-11T22:07:25.9476043Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_linear_bn:0 2023-01-11T22:07:25.9476662Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_convtranspose_bn:0, line 139 <- wrt source file 2023-01-11T22:07:25.9482775Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fuser_method_mappings.py::fuse_convtranspose_bn:0 2023-01-11T22:07:25.9483545Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py::_with_args:0, line 85 <- wrt source file 2023-01-11T22:07:25.9484476Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py::_with_args:0 2023-01-11T22:07:25.9485105Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py::_with_callable_args:0, line 106 <- wrt source file 2023-01-11T22:07:25.9485880Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/observer.py::_with_callable_args:0 2023-01-11T22:07:25.9486452Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::fuse_fx:0, line 242 <- wrt source file 2023-01-11T22:07:25.9487359Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::fuse_fx:0 2023-01-11T22:07:25.9489818Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::prepare_fx:0, line 301 <- wrt source file 2023-01-11T22:07:25.9490547Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::prepare_fx:0 2023-01-11T22:07:25.9492591Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::prepare_qat_fx:0, line 439 <- wrt source file 2023-01-11T22:07:25.9493310Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::prepare_qat_fx:0 2023-01-11T22:07:25.9494298Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::convert_fx:0, line 604 <- wrt source file 2023-01-11T22:07:25.9495024Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::convert_fx:0 2023-01-11T22:07:25.9496005Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::convert_to_reference_fx:0, line 663 <- wrt source file 2023-01-11T22:07:25.9496906Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::convert_to_reference_fx:0 2023-01-11T22:07:25.9497748Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::_convert_to_reference_decomposed_fx:0, line 715 <- wrt source file 2023-01-11T22:07:25.9498555Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.py::_convert_to_reference_decomposed_fx:0 2023-01-11T22:07:25.9499489Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_path_of_module:0, line 408 <- wrt source file 2023-01-11T22:07:25.9500226Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_path_of_module:0 2023-01-11T22:07:25.9501081Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_signature_locals:0, line 429 <- wrt source file 2023-01-11T22:07:25.9501731Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_signature_locals:0 2023-01-11T22:07:25.9502465Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_default_kwargs:0, line 442 <- wrt source file 2023-01-11T22:07:25.9503010Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_default_kwargs:0 2023-01-11T22:07:25.9503560Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_normalize_kwargs:0, line 463 <- wrt source file 2023-01-11T22:07:25.9504203Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_normalize_kwargs:0 2023-01-11T22:07:25.9505078Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_num_pos_args:0, line 483 <- wrt source file 2023-01-11T22:07:25.9505772Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/utils.py::_get_num_pos_args:0 2023-01-11T22:07:25.9506365Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/backend_config/backend_config.py::DTypeConfig:0, line 131 <- wrt source file 2023-01-11T22:07:25.9506971Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/backend_config/backend_config.py::DTypeConfig:0 2023-01-11T22:07:25.9507572Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/backend_config/onednn.py::_fuse_linear_bn_leaky_relu:0, line 80 <- wrt source file 2023-01-11T22:07:25.9508171Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/backend_config/onednn.py::_fuse_linear_bn_leaky_relu:0 2023-01-11T22:07:25.9508782Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report.py::ModelReport:0, line 79 <- wrt source file 2023-01-11T22:07:25.9510620Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report.py::ModelReport:0 2023-01-11T22:07:25.9511750Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_filtered_tables:0, line 324 <- wrt source file 2023-01-11T22:07:25.9512900Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_filtered_tables:0 2023-01-11T22:07:25.9514175Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_table_visualization:0, line 407 <- wrt source file 2023-01-11T22:07:25.9515280Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_table_visualization:0 2023-01-11T22:07:25.9516328Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_plot_visualization:0, line 557 <- wrt source file 2023-01-11T22:07:25.9517429Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_plot_visualization:0 2023-01-11T22:07:25.9518469Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_histogram_visualization:0, line 619 <- wrt source file 2023-01-11T22:07:25.9519385Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/ao/quantization/fx/_model_report/model_report_visualizer.py::ModelReportVisualizer.generate_histogram_visualization:0 2023-01-11T22:07:25.9520384Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/anomaly_mode.py::detect_anomaly:0, line 25 <- wrt source file 2023-01-11T22:07:25.9521104Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/anomaly_mode.py::detect_anomaly:0 2023-01-11T22:07:25.9521841Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/forward_ad.py::make_dual:0, line 63 <- wrt source file 2023-01-11T22:07:25.9522364Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/forward_ad.py::make_dual:0 2023-01-11T22:07:25.9522890Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/forward_ad.py::unpack_dual:0, line 126 <- wrt source file 2023-01-11T22:07:25.9523407Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/forward_ad.py::unpack_dual:0 2023-01-11T22:07:25.9523935Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/forward_ad.py::dual_level:0, line 163 <- wrt source file 2023-01-11T22:07:25.9524444Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/forward_ad.py::dual_level:0 2023-01-11T22:07:25.9525002Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.save_for_backward:0, line 51 <- wrt source file 2023-01-11T22:07:25.9525564Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.save_for_backward:0 2023-01-11T22:07:25.9526140Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.save_for_forward:0, line 93 <- wrt source file 2023-01-11T22:07:25.9526685Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.save_for_forward:0 2023-01-11T22:07:25.9527251Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.mark_dirty:0, line 143 <- wrt source file 2023-01-11T22:07:25.9527888Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.mark_dirty:0 2023-01-11T22:07:25.9528472Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.mark_non_differentiable:0, line 187 <- wrt source file 2023-01-11T22:07:25.9530411Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.mark_non_differentiable:0 2023-01-11T22:07:25.9531176Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.set_materialize_grads:0, line 215 <- wrt source file 2023-01-11T22:07:25.9531953Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::FunctionCtx.set_materialize_grads:0 2023-01-11T22:07:25.9532632Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::Function:0, line 387 <- wrt source file 2023-01-11T22:07:25.9533143Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py::Function:0 2023-01-11T22:07:25.9533650Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::vjp:0, line 248 <- wrt source file 2023-01-11T22:07:25.9535910Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::vjp:0 2023-01-11T22:07:25.9536436Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::jvp:0, line 346 <- wrt source file 2023-01-11T22:07:25.9539385Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::jvp:0 2023-01-11T22:07:25.9539917Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::jacobian:0, line 548 <- wrt source file 2023-01-11T22:07:25.9542497Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::jacobian:0 2023-01-11T22:07:25.9543042Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::hessian:0, line 760 <- wrt source file 2023-01-11T22:07:25.9545683Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::hessian:0 2023-01-11T22:07:25.9546198Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::vhp:0, line 864 <- wrt source file 2023-01-11T22:07:25.9549286Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::vhp:0 2023-01-11T22:07:25.9549805Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::hvp:0, line 955 <- wrt source file 2023-01-11T22:07:25.9553123Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/functional.py::hvp:0 2023-01-11T22:07:25.9553637Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::no_grad:0, line 120 <- wrt source file 2023-01-11T22:07:25.9554909Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::no_grad:0 2023-01-11T22:07:25.9555442Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::enable_grad:0, line 166 <- wrt source file 2023-01-11T22:07:25.9557273Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::enable_grad:0 2023-01-11T22:07:25.9557999Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::set_grad_enabled:0, line 216 <- wrt source file 2023-01-11T22:07:25.9559237Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::set_grad_enabled:0 2023-01-11T22:07:25.9559925Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::inference_mode:0, line 273 <- wrt source file 2023-01-11T22:07:25.9561222Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/grad_mode.py::inference_mode:0 2023-01-11T22:07:25.9561901Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::saved_tensors_hooks:0, line 50 <- wrt source file 2023-01-11T22:07:25.9562814Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::saved_tensors_hooks:0 2023-01-11T22:07:25.9563759Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::save_on_cpu:0, line 109 <- wrt source file 2023-01-11T22:07:25.9564664Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::save_on_cpu:0 2023-01-11T22:07:25.9565270Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::disable_saved_tensors_hooks:0, line 164 <- wrt source file 2023-01-11T22:07:25.9565798Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::disable_saved_tensors_hooks:0 2023-01-11T22:07:25.9566359Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::register_multi_grad_hook:0, line 204 <- wrt source file 2023-01-11T22:07:25.9579621Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::register_multi_grad_hook:0 2023-01-11T22:07:25.9580317Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::allow_mutation_on_saved_tensors:0, line 406 <- wrt source file 2023-01-11T22:07:25.9597879Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/autograd/graph.py::allow_mutation_on_saved_tensors:0 2023-01-11T22:07:25.9598635Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::profile:0, line 123 <- wrt source file 2023-01-11T22:07:25.9599327Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::profile:0 2023-01-11T22:07:25.9599999Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::record_function:0, line 457 <- wrt source file 2023-01-11T22:07:25.9600796Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::record_function:0 2023-01-11T22:07:25.9601549Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::emit_itt:0, line 582 <- wrt source file 2023-01-11T22:07:25.9602419Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::emit_itt:0 2023-01-11T22:07:25.9603385Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::emit_nvtx:0, line 651 <- wrt source file 2023-01-11T22:07:25.9604298Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/autograd/profiler.py::emit_nvtx:0 2023-01-11T22:07:25.9605245Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_jit_fn:0, line 95 <- wrt source file 2023-01-11T22:07:25.9606193Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_jit_fn:0 2023-01-11T22:07:25.9607173Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_jit_fn:1, line 106 <- wrt source file 2023-01-11T22:07:25.9607937Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_jit_fn:1 2023-01-11T22:07:25.9608812Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_jit_fn:2, line 119 <- wrt source file 2023-01-11T22:07:25.9609671Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_jit_fn:2 2023-01-11T22:07:25.9610295Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_multi_output_jit_fn:0, line 151 <- wrt source file 2023-01-11T22:07:25.9611263Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/cuda/jiterator.py::_create_multi_output_jit_fn:0 2023-01-11T22:07:25.9612304Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/argparse_util.py::env:0, line 23 <- wrt source file 2023-01-11T22:07:25.9612823Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/argparse_util.py::env:0 2023-01-11T22:07:25.9613403Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/argparse_util.py::check_env:0, line 73 <- wrt source file 2023-01-11T22:07:25.9614009Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/argparse_util.py::check_env:0 2023-01-11T22:07:25.9614990Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::batch_isend_irecv:0, line 1377 <- wrt source file 2023-01-11T22:07:25.9615999Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::batch_isend_irecv:0 2023-01-11T22:07:25.9616984Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_reduce:0, line 1633 <- wrt source file 2023-01-11T22:07:25.9617838Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_reduce:0 2023-01-11T22:07:25.9618803Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather_object:0, line 1997 <- wrt source file 2023-01-11T22:07:25.9619355Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather_object:0 2023-01-11T22:07:25.9619925Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::gather_object:0, line 2085 <- wrt source file 2023-01-11T22:07:25.9620477Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::gather_object:0 2023-01-11T22:07:25.9621052Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::broadcast_object_list:0, line 2192 <- wrt source file 2023-01-11T22:07:25.9621605Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::broadcast_object_list:0 2023-01-11T22:07:25.9622446Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::scatter_object_list:0, line 2288 <- wrt source file 2023-01-11T22:07:25.9623241Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::scatter_object_list:0 2023-01-11T22:07:25.9623805Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather:0, line 2375 <- wrt source file 2023-01-11T22:07:25.9624377Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather:0 2023-01-11T22:07:25.9625028Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather_into_tensor:0, line 2455 <- wrt source file 2023-01-11T22:07:25.9625768Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather_into_tensor:0 2023-01-11T22:07:25.9626653Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather_coalesced:0, line 2564 <- wrt source file 2023-01-11T22:07:25.9627273Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_gather_coalesced:0 2023-01-11T22:07:25.9627921Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::scatter:0, line 2722 <- wrt source file 2023-01-11T22:07:25.9628451Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::scatter:0 2023-01-11T22:07:25.9629093Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::reduce_scatter_tensor:0, line 2929 <- wrt source file 2023-01-11T22:07:25.9630098Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::reduce_scatter_tensor:0 2023-01-11T22:07:25.9630669Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_to_all_single:0, line 3046 <- wrt source file 2023-01-11T22:07:25.9635460Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_to_all_single:0 2023-01-11T22:07:25.9636027Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_to_all:0, line 3164 <- wrt source file 2023-01-11T22:07:25.9641392Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::all_to_all:0 2023-01-11T22:07:25.9642014Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::monitored_barrier:0, line 3346 <- wrt source file 2023-01-11T22:07:25.9642560Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::monitored_barrier:0 2023-01-11T22:07:25.9643128Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::new_subgroups:0, line 3598 <- wrt source file 2023-01-11T22:07:25.9643720Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::new_subgroups:0 2023-01-11T22:07:25.9644314Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::new_subgroups_by_enumeration:0, line 3713 <- wrt source file 2023-01-11T22:07:25.9645031Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py::new_subgroups_by_enumeration:0 2023-01-11T22:07:25.9645584Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/launch.py::__doc__:0, line 81 <- wrt source file 2023-01-11T22:07:25.9647714Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/launch.py::__doc__:0 2023-01-11T22:07:25.9648363Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/run.py::__doc__:0, line 297 <- wrt source file 2023-01-11T22:07:25.9648947Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/run.py::__doc__:0 2023-01-11T22:07:25.9649668Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/autograd/__init__.py::context:0, line 39 <- wrt source file 2023-01-11T22:07:25.9650273Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/autograd/__init__.py::context:0 2023-01-11T22:07:25.9650874Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel.no_sync:0, line 509 <- wrt source file 2023-01-11T22:07:25.9651498Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel.no_sync:0 2023-01-11T22:07:25.9652143Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel.register_comm_hook:0, line 826 <- wrt source file 2023-01-11T22:07:25.9687658Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel.register_comm_hook:0 2023-01-11T22:07:25.9688676Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel.register_comm_hook:1, line 838 <- wrt source file 2023-01-11T22:07:25.9689558Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel.register_comm_hook:1 2023-01-11T22:07:25.9690593Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel._register_builtin_comm_hook:0, line 874 <- wrt source file 2023-01-11T22:07:25.9691569Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel._register_builtin_comm_hook:0 2023-01-11T22:07:25.9692602Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel._register_fused_optim:0, line 930 <- wrt source file 2023-01-11T22:07:25.9693252Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/_ddp.py::DistributedDataParallel._register_fused_optim:0 2023-01-11T22:07:25.9693959Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/checkpoint_activation.py::checkpoint:0, line 198 <- wrt source file 2023-01-11T22:07:25.9694553Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/checkpoint_activation.py::checkpoint:0 2023-01-11T22:07:25.9695142Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/contract.py::contract:0, line 44 <- wrt source file 2023-01-11T22:07:25.9695819Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/contract.py::contract:0 2023-01-11T22:07:25.9696657Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/replicate.py::replicate:0, line 21 <- wrt source file 2023-01-11T22:07:25.9697340Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_composable/replicate.py::replicate:0 2023-01-11T22:07:25.9698075Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/partial_tensor.py::_PartialTensor:0, line 61 <- wrt source file 2023-01-11T22:07:25.9698785Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/partial_tensor.py::_PartialTensor:0 2023-01-11T22:07:25.9699404Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_optim/__init__.py::named_params_with_sharded_tensor:0, line 32 <- wrt source file 2023-01-11T22:07:25.9700077Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_optim/__init__.py::named_params_with_sharded_tensor:0 2023-01-11T22:07:25.9700881Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/__init__.py::init_from_local_shards:0, line 366 <- wrt source file 2023-01-11T22:07:25.9701482Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/__init__.py::init_from_local_shards:0 2023-01-11T22:07:25.9702096Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/__init__.py::custom_sharded_op_impl:0, line 430 <- wrt source file 2023-01-11T22:07:25.9702787Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/__init__.py::custom_sharded_op_impl:0 2023-01-11T22:07:25.9703407Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/api.py::ShardedTensor._init_from_local_tensor:0, line 808 <- wrt source file 2023-01-11T22:07:25.9704038Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/api.py::ShardedTensor._init_from_local_tensor:0 2023-01-11T22:07:25.9704774Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/api.py::ShardedTensor.reshard:0, line 958 <- wrt source file 2023-01-11T22:07:25.9705874Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/api.py::ShardedTensor.reshard:0 2023-01-11T22:07:25.9707086Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/_common.py::_sharded_op_common:0, line 15 <- wrt source file 2023-01-11T22:07:25.9708036Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/_ops/_common.py::_sharded_op_common:0 2023-01-11T22:07:25.9708643Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharding_plan/api.py::ShardingPlan:0, line 36 <- wrt source file 2023-01-11T22:07:25.9709340Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_shard/sharding_plan/api.py::ShardingPlan:0 2023-01-11T22:07:25.9710124Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/_tools/memory_tracker.py::MemoryTracker:0, line 57 <- wrt source file 2023-01-11T22:07:25.9710993Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/_tools/memory_tracker.py::MemoryTracker:0 2023-01-11T22:07:25.9711549Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/join.py::Join:0, line 148 <- wrt source file 2023-01-11T22:07:25.9714011Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/join.py::Join:0 2023-01-11T22:07:25.9715034Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__init__.py::register_ddp_comm_hook:0, line 99 <- wrt source file 2023-01-11T22:07:25.9715815Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/__init__.py::register_ddp_comm_hook:0 2023-01-11T22:07:25.9716807Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/debugging_hooks.py::noop_hook:0, line 23 <- wrt source file 2023-01-11T22:07:25.9717763Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/debugging_hooks.py::noop_hook:0 2023-01-11T22:07:25.9718954Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::allreduce_hook:0, line 37 <- wrt source file 2023-01-11T22:07:25.9720072Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::allreduce_hook:0 2023-01-11T22:07:25.9721225Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::fp16_compress_hook:0, line 54 <- wrt source file 2023-01-11T22:07:25.9722345Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::fp16_compress_hook:0 2023-01-11T22:07:25.9723521Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::bf16_compress_hook:0, line 90 <- wrt source file 2023-01-11T22:07:25.9724656Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::bf16_compress_hook:0 2023-01-11T22:07:25.9725877Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::fp16_compress_wrapper:0, line 123 <- wrt source file 2023-01-11T22:07:25.9727005Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::fp16_compress_wrapper:0 2023-01-11T22:07:25.9728201Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::bf16_compress_wrapper:0, line 161 <- wrt source file 2023-01-11T22:07:25.9728934Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py::bf16_compress_wrapper:0 2023-01-11T22:07:25.9730163Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/post_localSGD_hook.py::post_localSGD_hook:0, line 85 <- wrt source file 2023-01-11T22:07:25.9731278Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/post_localSGD_hook.py::post_localSGD_hook:0 2023-01-11T22:07:25.9732239Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/powerSGD_hook.py::powerSGD_hook:0, line 382 <- wrt source file 2023-01-11T22:07:25.9733388Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/powerSGD_hook.py::powerSGD_hook:0 2023-01-11T22:07:25.9734600Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/powerSGD_hook.py::batched_powerSGD_hook:0, line 691 <- wrt source file 2023-01-11T22:07:25.9735585Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/powerSGD_hook.py::batched_powerSGD_hook:0 2023-01-11T22:07:25.9736574Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/quantization_hooks.py::quantization_pertensor_hook:0, line 62 <- wrt source file 2023-01-11T22:07:25.9737758Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/quantization_hooks.py::quantization_pertensor_hook:0 2023-01-11T22:07:25.9739025Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/quantization_hooks.py::quantization_perchannel_hook:0, line 142 <- wrt source file 2023-01-11T22:07:25.9740252Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/ddp_comm_hooks/quantization_hooks.py::quantization_perchannel_hook:0 2023-01-11T22:07:25.9741443Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/averagers.py::PeriodicModelAverager:0, line 51 <- wrt source file 2023-01-11T22:07:25.9742674Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/averagers.py::PeriodicModelAverager:0 2023-01-11T22:07:25.9743522Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/hierarchical_model_averager.py::HierarchicalModelAverager:0, line 50 <- wrt source file 2023-01-11T22:07:25.9744586Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/algorithms/model_averaging/hierarchical_model_averager.py::HierarchicalModelAverager:0 2023-01-11T22:07:25.9745328Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/optimizer.py::load_sharded_optimizer_state_dict:0, line 205 <- wrt source file 2023-01-11T22:07:25.9745942Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/optimizer.py::load_sharded_optimizer_state_dict:0 2023-01-11T22:07:25.9746866Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/planner.py::SavePlanner:0, line 126 <- wrt source file 2023-01-11T22:07:25.9747531Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/planner.py::SavePlanner:0 2023-01-11T22:07:25.9748450Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/planner.py::LoadPlanner:0, line 281 <- wrt source file 2023-01-11T22:07:25.9749151Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/planner.py::LoadPlanner:0 2023-01-11T22:07:25.9750135Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/state_dict_loader.py::load_state_dict:0, line 63 <- wrt source file 2023-01-11T22:07:25.9750854Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/state_dict_loader.py::load_state_dict:0 2023-01-11T22:07:25.9752141Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/state_dict_saver.py::save_state_dict:0, line 60 <- wrt source file 2023-01-11T22:07:25.9753221Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/checkpoint/state_dict_saver.py::save_state_dict:0 2023-01-11T22:07:25.9754197Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__init__.py::start_processes:0, line 132 <- wrt source file 2023-01-11T22:07:25.9755240Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/__init__.py::start_processes:0 2023-01-11T22:07:25.9756364Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py::Std.from_str:0, line 110 <- wrt source file 2023-01-11T22:07:25.9757473Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py::Std.from_str:0 2023-01-11T22:07:25.9758382Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py::to_map:0, line 150 <- wrt source file 2023-01-11T22:07:25.9759011Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py::to_map:0 2023-01-11T22:07:25.9759633Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py::ChildFailedError:0, line 203 <- wrt source file 2023-01-11T22:07:25.9760402Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py::ChildFailedError:0 2023-01-11T22:07:25.9761044Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/api.py::RendezvousHandler.shutdown:0, line 112 <- wrt source file 2023-01-11T22:07:25.9761657Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/api.py::RendezvousHandler.shutdown:0 2023-01-11T22:07:25.9762244Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/api.py::StateDictType:0, line 221 <- wrt source file 2023-01-11T22:07:25.9762773Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/api.py::StateDictType:0 2023-01-11T22:07:25.9763332Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/api.py::FullStateDictConfig:0, line 258 <- wrt source file 2023-01-11T22:07:25.9763870Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/api.py::FullStateDictConfig:0 2023-01-11T22:07:25.9764739Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel:0, line 125 <- wrt source file 2023-01-11T22:07:25.9765388Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel:0 2023-01-11T22:07:25.9766085Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.set_state_dict_type:0, line 551 <- wrt source file 2023-01-11T22:07:25.9766786Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.set_state_dict_type:0 2023-01-11T22:07:25.9767491Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.state_dict_type:0, line 619 <- wrt source file 2023-01-11T22:07:25.9768260Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.state_dict_type:0 2023-01-11T22:07:25.9769346Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.shard_full_optim_state_dict:0, line 1346 <- wrt source file 2023-01-11T22:07:25.9770074Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.shard_full_optim_state_dict:0 2023-01-11T22:07:25.9770815Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.scatter_full_optim_state_dict:0, line 1455 <- wrt source file 2023-01-11T22:07:25.9771597Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.scatter_full_optim_state_dict:0 2023-01-11T22:07:25.9772338Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.rekey_optim_state_dict:0, line 1586 <- wrt source file 2023-01-11T22:07:25.9773255Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py::FullyShardedDataParallel.rekey_optim_state_dict:0 2023-01-11T22:07:25.9773913Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/sharded_grad_scaler.py::ShardedGradScaler:0, line 45 <- wrt source file 2023-01-11T22:07:25.9774495Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/fsdp/sharded_grad_scaler.py::ShardedGradScaler:0 2023-01-11T22:07:25.9775078Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/functional.py::_all_gather_base:0, line 130 <- wrt source file 2023-01-11T22:07:25.9775623Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/functional.py::_all_gather_base:0 2023-01-11T22:07:25.9776205Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/api/remote_module.py::_RemoteModule.__init__:0, line 201 <- wrt source file 2023-01-11T22:07:25.9776803Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/api/remote_module.py::_RemoteModule.__init__:0 2023-01-11T22:07:25.9777407Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/api/remote_module.py::_RemoteModule.init_from_module_rref:0, line 524 <- wrt source file 2023-01-11T22:07:25.9778019Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/api/remote_module.py::_RemoteModule.init_from_module_rref:0 2023-01-11T22:07:25.9778615Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/api/remote_module.py::RemoteModule:0, line 646 <- wrt source file 2023-01-11T22:07:25.9779168Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/nn/api/remote_module.py::RemoteModule:0 2023-01-11T22:07:25.9779782Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/apply_optimizer_in_backward.py::_apply_optimizer_in_backward:0, line 27 <- wrt source file 2023-01-11T22:07:25.9780413Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/apply_optimizer_in_backward.py::_apply_optimizer_in_backward:0 2023-01-11T22:07:25.9781020Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/named_optimizer.py::_NamedOptimizer:0, line 38 <- wrt source file 2023-01-11T22:07:25.9781593Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/named_optimizer.py::_NamedOptimizer:0 2023-01-11T22:07:25.9782175Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/optimizer.py::DistributedOptimizer:0, line 160 <- wrt source file 2023-01-11T22:07:25.9782892Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/optimizer.py::DistributedOptimizer:0 2023-01-11T22:07:25.9783522Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/post_localSGD_optimizer.py::PostLocalSGDOptimizer:0, line 18 <- wrt source file 2023-01-11T22:07:25.9784149Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/post_localSGD_optimizer.py::PostLocalSGDOptimizer:0 2023-01-11T22:07:25.9784751Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/utils.py::register_functional_optim:0, line 35 <- wrt source file 2023-01-11T22:07:25.9785299Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/utils.py::register_functional_optim:0 2023-01-11T22:07:25.9785966Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/zero_redundancy_optimizer.py::ZeroRedundancyOptimizer:0, line 325 <- wrt source file 2023-01-11T22:07:25.9786611Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/optim/zero_redundancy_optimizer.py::ZeroRedundancyOptimizer:0 2023-01-11T22:07:25.9787213Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/pipeline/sync/pipe.py::WithDevice:0, line 152 <- wrt source file 2023-01-11T22:07:25.9787747Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/pipeline/sync/pipe.py::WithDevice:0 2023-01-11T22:07:25.9788308Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/pipeline/sync/pipe.py::Pipe:0, line 274 <- wrt source file 2023-01-11T22:07:25.9788850Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/pipeline/sync/pipe.py::Pipe:0 2023-01-11T22:07:25.9789477Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::_wait_all:0, line 160 <- wrt source file 2023-01-11T22:07:25.9790196Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::_wait_all:0 2023-01-11T22:07:25.9790909Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::shutdown:0, line 333 <- wrt source file 2023-01-11T22:07:25.9791423Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::shutdown:0 2023-01-11T22:07:25.9791944Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::remote:0, line 582 <- wrt source file 2023-01-11T22:07:25.9792432Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::remote:0 2023-01-11T22:07:25.9792995Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::rpc_sync:0, line 766 <- wrt source file 2023-01-11T22:07:25.9793686Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::rpc_sync:0 2023-01-11T22:07:25.9794434Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::rpc_async:0, line 858 <- wrt source file 2023-01-11T22:07:25.9795071Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/api.py::rpc_async:0 2023-01-11T22:07:25.9795722Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/functions.py::async_execution:0, line 33 <- wrt source file 2023-01-11T22:07:25.9796280Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/functions.py::async_execution:0 2023-01-11T22:07:25.9796901Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/options.py::TensorPipeRpcBackendOptions.set_device_map:0, line 117 <- wrt source file 2023-01-11T22:07:25.9797538Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/options.py::TensorPipeRpcBackendOptions.set_device_map:0 2023-01-11T22:07:25.9798262Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/server_process_global_profiler.py::_server_process_global_profile:0, line 58 <- wrt source file 2023-01-11T22:07:25.9798899Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/rpc/server_process_global_profiler.py::_server_process_global_profile:0 2023-01-11T22:07:25.9799523Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/tensor/parallel/_utils.py::_prepare_input_validate:0, line 33 <- wrt source file 2023-01-11T22:07:25.9800112Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/tensor/parallel/_utils.py::_prepare_input_validate:0 2023-01-11T22:07:25.9800774Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/tensor/parallel/_utils.py::_prepare_output_validate:0, line 78 <- wrt source file 2023-01-11T22:07:25.9801509Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/tensor/parallel/_utils.py::_prepare_output_validate:0 2023-01-11T22:07:25.9802116Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributed/tensor/parallel/api.py::parallelize_module:0, line 63 <- wrt source file 2023-01-11T22:07:25.9802686Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributed/tensor/parallel/api.py::parallelize_module:0 2023-01-11T22:07:25.9803229Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/bernoulli.py::Bernoulli:0, line 21 <- wrt source file 2023-01-11T22:07:25.9803754Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/bernoulli.py::Bernoulli:0 2023-01-11T22:07:25.9804273Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/beta.py::Beta:0, line 16 <- wrt source file 2023-01-11T22:07:25.9808919Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/beta.py::Beta:0 2023-01-11T22:07:25.9809638Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/binomial.py::Binomial:0, line 20 <- wrt source file 2023-01-11T22:07:25.9818340Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/binomial.py::Binomial:0 2023-01-11T22:07:25.9818894Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/categorical.py::Categorical:0, line 37 <- wrt source file 2023-01-11T22:07:25.9825496Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/categorical.py::Categorical:0 2023-01-11T22:07:25.9826044Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/cauchy.py::Cauchy:0, line 19 <- wrt source file 2023-01-11T22:07:25.9831466Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/cauchy.py::Cauchy:0 2023-01-11T22:07:25.9831991Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/chi2.py::Chi2:0, line 12 <- wrt source file 2023-01-11T22:07:25.9837260Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/chi2.py::Chi2:0 2023-01-11T22:07:25.9838092Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/constraints.py::_DependentProperty:0, line 152 <- wrt source file 2023-01-11T22:07:25.9838661Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/constraints.py::_DependentProperty:0 2023-01-11T22:07:25.9839271Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/continuous_bernoulli.py::ContinuousBernoulli:0, line 24 <- wrt source file 2023-01-11T22:07:25.9845868Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/continuous_bernoulli.py::ContinuousBernoulli:0 2023-01-11T22:07:25.9846441Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/dirichlet.py::Dirichlet:0, line 35 <- wrt source file 2023-01-11T22:07:25.9851941Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/dirichlet.py::Dirichlet:0 2023-01-11T22:07:25.9852481Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/exponential.py::Exponential:0, line 15 <- wrt source file 2023-01-11T22:07:25.9857009Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/exponential.py::Exponential:0 2023-01-11T22:07:25.9857586Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/fishersnedecor.py::FisherSnedecor:0, line 16 <- wrt source file 2023-01-11T22:07:25.9864813Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/fishersnedecor.py::FisherSnedecor:0 2023-01-11T22:07:25.9865355Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/gamma.py::Gamma:0, line 19 <- wrt source file 2023-01-11T22:07:25.9870069Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/gamma.py::Gamma:0 2023-01-11T22:07:25.9870610Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/geometric.py::Geometric:0, line 21 <- wrt source file 2023-01-11T22:07:25.9875525Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/geometric.py::Geometric:0 2023-01-11T22:07:25.9876144Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/gumbel.py::Gumbel:0, line 17 <- wrt source file 2023-01-11T22:07:25.9883473Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/gumbel.py::Gumbel:0 2023-01-11T22:07:25.9884024Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/half_cauchy.py::HalfCauchy:0, line 20 <- wrt source file 2023-01-11T22:07:25.9890449Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/half_cauchy.py::HalfCauchy:0 2023-01-11T22:07:25.9891063Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/half_normal.py::HalfNormal:0, line 20 <- wrt source file 2023-01-11T22:07:25.9896278Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/half_normal.py::HalfNormal:0 2023-01-11T22:07:25.9896933Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/independent.py::Independent:0, line 18 <- wrt source file 2023-01-11T22:07:25.9937979Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/independent.py::Independent:0 2023-01-11T22:07:25.9939170Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/kumaraswamy.py::Kumaraswamy:0, line 25 <- wrt source file 2023-01-11T22:07:25.9940175Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/kumaraswamy.py::Kumaraswamy:0 2023-01-11T22:07:25.9941271Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/laplace.py::Laplace:0, line 14 <- wrt source file 2023-01-11T22:07:25.9942310Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/laplace.py::Laplace:0 2023-01-11T22:07:25.9943267Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py::LKJCholesky:0, line 38 <- wrt source file 2023-01-11T22:07:25.9944226Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py::LKJCholesky:0 2023-01-11T22:07:25.9945246Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/log_normal.py::LogNormal:0, line 17 <- wrt source file 2023-01-11T22:07:25.9946287Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/log_normal.py::LogNormal:0 2023-01-11T22:07:25.9947430Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/logistic_normal.py::LogisticNormal:0, line 22 <- wrt source file 2023-01-11T22:07:25.9949019Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/logistic_normal.py::LogisticNormal:0 2023-01-11T22:07:25.9950399Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/lowrank_multivariate_normal.py::LowRankMultivariateNormal:0, line 56 <- wrt source file 2023-01-11T22:07:25.9951807Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/lowrank_multivariate_normal.py::LowRankMultivariateNormal:0 2023-01-11T22:07:25.9952991Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/mixture_same_family.py::MixtureSameFamily:0, line 19 <- wrt source file 2023-01-11T22:07:25.9968242Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/mixture_same_family.py::MixtureSameFamily:0 2023-01-11T22:07:25.9969250Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/multinomial.py::Multinomial:0, line 34 <- wrt source file 2023-01-11T22:07:25.9969801Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/multinomial.py::Multinomial:0 2023-01-11T22:07:25.9970395Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/multivariate_normal.py::MultivariateNormal:0, line 94 <- wrt source file 2023-01-11T22:07:25.9971084Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/multivariate_normal.py::MultivariateNormal:0 2023-01-11T22:07:25.9971777Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/normal.py::Normal:0, line 18 <- wrt source file 2023-01-11T22:07:25.9972292Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/normal.py::Normal:0 2023-01-11T22:07:25.9972862Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/one_hot_categorical.py::OneHotCategorical:0, line 27 <- wrt source file 2023-01-11T22:07:25.9973447Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/one_hot_categorical.py::OneHotCategorical:0 2023-01-11T22:07:25.9973982Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/pareto.py::Pareto:0, line 14 <- wrt source file 2023-01-11T22:07:25.9979306Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/pareto.py::Pareto:0 2023-01-11T22:07:25.9979979Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/poisson.py::Poisson:0, line 20 <- wrt source file 2023-01-11T22:07:25.9980711Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/poisson.py::Poisson:0 2023-01-11T22:07:25.9981277Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py::RelaxedBernoulli:0, line 102 <- wrt source file 2023-01-11T22:07:25.9988788Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py::RelaxedBernoulli:0 2023-01-11T22:07:25.9989407Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/relaxed_categorical.py::RelaxedOneHotCategorical:0, line 96 <- wrt source file 2023-01-11T22:07:25.9998379Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/relaxed_categorical.py::RelaxedOneHotCategorical:0 2023-01-11T22:07:25.9998952Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/studentT.py::StudentT:0, line 17 <- wrt source file 2023-01-11T22:07:26.0005921Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/studentT.py::StudentT:0 2023-01-11T22:07:26.0006666Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/transforms.py::CatTransform:0, line 1002 <- wrt source file 2023-01-11T22:07:26.0007481Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/transforms.py::CatTransform:0 2023-01-11T22:07:26.0008361Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/transforms.py::StackTransform:0, line 1105 <- wrt source file 2023-01-11T22:07:26.0009009Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/transforms.py::StackTransform:0 2023-01-11T22:07:26.0009914Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/transforms.py::CumulativeDistributionTransform:0, line 1178 <- wrt source file 2023-01-11T22:07:26.0010661Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/transforms.py::CumulativeDistributionTransform:0 2023-01-11T22:07:26.0011325Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/uniform.py::Uniform:0, line 17 <- wrt source file 2023-01-11T22:07:26.0014730Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/uniform.py::Uniform:0 2023-01-11T22:07:26.0015256Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/von_mises.py::VonMises:0, line 79 <- wrt source file 2023-01-11T22:07:26.0023540Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/von_mises.py::VonMises:0 2023-01-11T22:07:26.0024070Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/weibull.py::Weibull:0, line 16 <- wrt source file 2023-01-11T22:07:26.0030881Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/distributions/weibull.py::Weibull:0 2023-01-11T22:07:26.0031655Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py::Wishart:0, line 36 <- wrt source file 2023-01-11T22:07:26.0032264Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/distributions/wishart.py::Wishart:0 2023-01-11T22:07:26.0033026Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py::_snake_case:0, line 79 <- wrt source file 2023-01-11T22:07:26.0033682Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py::_snake_case:0 2023-01-11T22:07:26.0034215Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py::Graph.eliminate_dead_code:0, line 1363 <- wrt source file 2023-01-11T22:07:26.0034726Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py::Graph.eliminate_dead_code:0 2023-01-11T22:07:26.0035754Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py::Graph.on_generate_code:0, line 1431 <- wrt source file 2023-01-11T22:07:26.0036278Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/graph.py::Graph.on_generate_code:0 2023-01-11T22:07:26.0037533Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py::Interpreter:0, line 37 <- wrt source file 2023-01-11T22:07:26.0038239Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py::Interpreter:0 2023-01-11T22:07:26.0039075Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py::Transformer:0, line 380 <- wrt source file 2023-01-11T22:07:26.0039718Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/interpreter.py::Transformer:0 2023-01-11T22:07:26.0040507Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/subgraph_rewriter.py::replace_pattern:0, line 108 <- wrt source file 2023-01-11T22:07:26.0041234Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/subgraph_rewriter.py::replace_pattern:0 2023-01-11T22:07:26.0042006Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/tensor_type.py::TensorType:0, line 11 <- wrt source file 2023-01-11T22:07:26.0042896Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/tensor_type.py::TensorType:0 2023-01-11T22:07:26.0043528Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/tensor_type.py::is_consistent:0, line 62 <- wrt source file 2023-01-11T22:07:26.0044032Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/tensor_type.py::is_consistent:0 2023-01-11T22:07:26.0044653Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/tensor_type.py::is_more_precise:0, line 88 <- wrt source file 2023-01-11T22:07:26.0045321Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/tensor_type.py::is_more_precise:0 2023-01-11T22:07:26.0046169Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/rewriter.py::AST_Rewriter.visit_AnnAssign:0, line 87 <- wrt source file 2023-01-11T22:07:26.0046923Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/rewriter.py::AST_Rewriter.visit_AnnAssign:0 2023-01-11T22:07:26.0047634Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/core.py::reify:0, line 42 <- wrt source file 2023-01-11T22:07:26.0048470Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/core.py::reify:0 2023-01-11T22:07:26.0049399Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/match.py::VarDispatcher:0, line 42 <- wrt source file 2023-01-11T22:07:26.0050218Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/match.py::VarDispatcher:0 2023-01-11T22:07:26.0050893Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/more.py::unifiable:0, line 10 <- wrt source file 2023-01-11T22:07:26.0051581Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/more.py::unifiable:0 2023-01-11T22:07:26.0052258Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/more.py::reify_object:0, line 36 <- wrt source file 2023-01-11T22:07:26.0052811Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/more.py::reify_object:0 2023-01-11T22:07:26.0053369Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/more.py::unify_object:0, line 91 <- wrt source file 2023-01-11T22:07:26.0053923Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/more.py::unify_object:0 2023-01-11T22:07:26.0054511Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::merge:0, line 22 <- wrt source file 2023-01-11T22:07:26.0077843Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::merge:0 2023-01-11T22:07:26.0078440Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::merge_with:0, line 49 <- wrt source file 2023-01-11T22:07:26.0081611Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::merge_with:0 2023-01-11T22:07:26.0082215Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::valmap:0, line 75 <- wrt source file 2023-01-11T22:07:26.0085498Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::valmap:0 2023-01-11T22:07:26.0086150Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::keymap:0, line 91 <- wrt source file 2023-01-11T22:07:26.0088757Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::keymap:0 2023-01-11T22:07:26.0089704Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::itemmap:0, line 107 <- wrt source file 2023-01-11T22:07:26.0092268Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::itemmap:0 2023-01-11T22:07:26.0092887Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::valfilter:0, line 123 <- wrt source file 2023-01-11T22:07:26.0096545Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::valfilter:0 2023-01-11T22:07:26.0097241Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::keyfilter:0, line 143 <- wrt source file 2023-01-11T22:07:26.0100973Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::keyfilter:0 2023-01-11T22:07:26.0101591Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::itemfilter:0, line 163 <- wrt source file 2023-01-11T22:07:26.0106098Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::itemfilter:0 2023-01-11T22:07:26.0106696Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::assoc:0, line 189 <- wrt source file 2023-01-11T22:07:26.0109398Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::assoc:0 2023-01-11T22:07:26.0110004Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::dissoc:0, line 206 <- wrt source file 2023-01-11T22:07:26.0114205Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::dissoc:0 2023-01-11T22:07:26.0114817Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::assoc_in:0, line 232 <- wrt source file 2023-01-11T22:07:26.0118025Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::assoc_in:0 2023-01-11T22:07:26.0118642Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::update_in:0, line 259 <- wrt source file 2023-01-11T22:07:26.0125323Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::update_in:0 2023-01-11T22:07:26.0125928Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::get_in:0, line 311 <- wrt source file 2023-01-11T22:07:26.0134696Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::get_in:0 2023-01-11T22:07:26.0135297Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::groupby:0, line 357 <- wrt source file 2023-01-11T22:07:26.0139379Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::groupby:0 2023-01-11T22:07:26.0140006Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::first:0, line 393 <- wrt source file 2023-01-11T22:07:26.0142321Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/unification_tools.py::first:0 2023-01-11T22:07:26.0143060Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::transitive_get:0, line 12 <- wrt source file 2023-01-11T22:07:26.0146736Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::transitive_get:0 2023-01-11T22:07:26.0147561Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::_toposort:0, line 39 <- wrt source file 2023-01-11T22:07:26.0148505Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::_toposort:0 2023-01-11T22:07:26.0149082Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::reverse_dict:0, line 67 <- wrt source file 2023-01-11T22:07:26.0151565Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::reverse_dict:0 2023-01-11T22:07:26.0152198Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::freeze:0, line 92 <- wrt source file 2023-01-11T22:07:26.0157061Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/utils.py::freeze:0 2023-01-11T22:07:26.0157906Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/variable.py::variables:0, line 62 <- wrt source file 2023-01-11T22:07:26.0158485Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/variable.py::variables:0 2023-01-11T22:07:26.0159106Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/core.py::dispatch:0, line 18 <- wrt source file 2023-01-11T22:07:26.0162295Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/core.py::dispatch:0 2023-01-11T22:07:26.0163031Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher:0, line 100 <- wrt source file 2023-01-11T22:07:26.0163861Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher:0 2023-01-11T22:07:26.0164713Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher.register:0, line 124 <- wrt source file 2023-01-11T22:07:26.0165551Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher.register:0 2023-01-11T22:07:26.0166306Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher.add:0, line 176 <- wrt source file 2023-01-11T22:07:26.0167104Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher.add:0 2023-01-11T22:07:26.0167855Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher.dispatch:0, line 288 <- wrt source file 2023-01-11T22:07:26.0168514Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::Dispatcher.dispatch:0 2023-01-11T22:07:26.0169343Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::str_signature:0, line 418 <- wrt source file 2023-01-11T22:07:26.0171676Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/dispatcher.py::str_signature:0 2023-01-11T22:07:26.0172327Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::expand_tuples:0, line 15 <- wrt source file 2023-01-11T22:07:26.0175771Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::expand_tuples:0 2023-01-11T22:07:26.0176400Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::_toposort:0, line 38 <- wrt source file 2023-01-11T22:07:26.0179776Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::_toposort:0 2023-01-11T22:07:26.0180505Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::reverse_dict:0, line 66 <- wrt source file 2023-01-11T22:07:26.0183377Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::reverse_dict:0 2023-01-11T22:07:26.0184191Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::groupby:0, line 85 <- wrt source file 2023-01-11T22:07:26.0187612Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::groupby:0 2023-01-11T22:07:26.0188341Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::typename:0, line 115 <- wrt source file 2023-01-11T22:07:26.0191216Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/utils.py::typename:0 2023-01-11T22:07:26.0192230Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/variadic.py::isvariadic:0, line 47 <- wrt source file 2023-01-11T22:07:26.0193125Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/variadic.py::isvariadic:0 2023-01-11T22:07:26.0193767Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/variadic.py::Variadic:0, line 80 <- wrt source file 2023-01-11T22:07:26.0195008Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/experimental/unification/multipledispatch/variadic.py::Variadic:0 2023-01-11T22:07:26.0196281Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/passes/shape_prop.py::ShapeProp:0, line 76 <- wrt source file 2023-01-11T22:07:26.0196933Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/passes/shape_prop.py::ShapeProp:0 2023-01-11T22:07:26.0198270Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/fx/passes/split_module.py::split_module:0, line 68 <- wrt source file 2023-01-11T22:07:26.0198975Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/fx/passes/split_module.py::split_module:0 2023-01-11T22:07:26.0199804Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py::AttributeTypeIsSupportedChecker:0, line 35 <- wrt source file 2023-01-11T22:07:26.0200670Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/_check.py::AttributeTypeIsSupportedChecker:0 2023-01-11T22:07:26.0201362Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py::save:0, line 53 <- wrt source file 2023-01-11T22:07:26.0202046Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py::save:0 2023-01-11T22:07:26.0202783Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py::load:0, line 111 <- wrt source file 2023-01-11T22:07:26.0203526Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py::load:0 2023-01-11T22:07:26.0204366Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py::save_jit_module_to_flatbuffer:0, line 235 <- wrt source file 2023-01-11T22:07:26.0205356Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/_serialization.py::save_jit_module_to_flatbuffer:0 2023-01-11T22:07:26.0206142Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_load_for_lite_interpreter:0, line 23 <- wrt source file 2023-01-11T22:07:26.0207016Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_load_for_lite_interpreter:0 2023-01-11T22:07:26.0208014Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_get_model_bytecode_version:0, line 89 <- wrt source file 2023-01-11T22:07:26.0208802Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_get_model_bytecode_version:0 2023-01-11T22:07:26.0209607Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_get_mobile_model_contained_types:0, line 119 <- wrt source file 2023-01-11T22:07:26.0210179Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_get_mobile_model_contained_types:0 2023-01-11T22:07:26.0210739Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_get_model_ops_and_info:0, line 199 <- wrt source file 2023-01-11T22:07:26.0211257Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/jit/mobile/__init__.py::_get_model_ops_and_info:0 2023-01-11T22:07:26.0211816Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py::is_masked_tensor:0, line 22 <- wrt source file 2023-01-11T22:07:26.0212360Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/masked/maskedtensor/core.py::is_masked_tensor:0 2023-01-11T22:07:26.0212928Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::fractional_max_pool2d_with_indices:0, line 452 <- wrt source file 2023-01-11T22:07:26.0284550Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::fractional_max_pool2d_with_indices:0 2023-01-11T22:07:26.0285254Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::fractional_max_pool3d_with_indices:0, line 553 <- wrt source file 2023-01-11T22:07:26.1414324Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::fractional_max_pool3d_with_indices:0 2023-01-11T22:07:26.1431509Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::gumbel_softmax:0, line 1878 <- wrt source file 2023-01-11T22:07:26.1441446Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::gumbel_softmax:0 2023-01-11T22:07:26.1442284Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::embedding:0, line 2149 <- wrt source file 2023-01-11T22:07:26.1452905Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::embedding:0 2023-01-11T22:07:26.1453612Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::embedding_bag:0, line 2286 <- wrt source file 2023-01-11T22:07:26.1465312Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::embedding_bag:0 2023-01-11T22:07:26.1466007Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::ctc_loss:0, line 2615 <- wrt source file 2023-01-11T22:07:26.1482889Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::ctc_loss:0 2023-01-11T22:07:26.1483579Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::nll_loss:0, line 2681 <- wrt source file 2023-01-11T22:07:26.1489875Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::nll_loss:0 2023-01-11T22:07:26.1490560Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::cross_entropy:0, line 3000 <- wrt source file 2023-01-11T22:07:26.1499277Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::cross_entropy:0 2023-01-11T22:07:26.1500047Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::binary_cross_entropy:0, line 3066 <- wrt source file 2023-01-11T22:07:26.1505547Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::binary_cross_entropy:0 2023-01-11T22:07:26.1506294Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::binary_cross_entropy_with_logits:0, line 3138 <- wrt source file 2023-01-11T22:07:26.1512590Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/functional.py::binary_cross_entropy_with_logits:0 2023-01-11T22:07:26.1513317Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv1d_input:0, line 23 <- wrt source file 2023-01-11T22:07:26.1521909Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv1d_input:0 2023-01-11T22:07:26.1522582Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv1d_weight:0, line 53 <- wrt source file 2023-01-11T22:07:26.1528608Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv1d_weight:0 2023-01-11T22:07:26.1529409Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv2d_input:0, line 86 <- wrt source file 2023-01-11T22:07:26.1537177Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv2d_input:0 2023-01-11T22:07:26.1537838Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv2d_weight:0, line 116 <- wrt source file 2023-01-11T22:07:26.1543786Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv2d_weight:0 2023-01-11T22:07:26.1544458Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv3d_input:0, line 149 <- wrt source file 2023-01-11T22:07:26.1574335Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv3d_input:0 2023-01-11T22:07:26.1575208Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv3d_weight:0, line 179 <- wrt source file 2023-01-11T22:07:26.1594723Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/grad.py::conv3d_weight:0 2023-01-11T22:07:26.1595495Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::calculate_gain:0, line 96 <- wrt source file 2023-01-11T22:07:26.1599434Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::calculate_gain:0 2023-01-11T22:07:26.1600094Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::uniform_:0, line 132 <- wrt source file 2023-01-11T22:07:26.1603544Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::uniform_:0 2023-01-11T22:07:26.1604186Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::normal_:0, line 150 <- wrt source file 2023-01-11T22:07:26.1607847Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::normal_:0 2023-01-11T22:07:26.1608511Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::trunc_normal_:0, line 173 <- wrt source file 2023-01-11T22:07:26.1612432Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::trunc_normal_:0 2023-01-11T22:07:26.1613099Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::constant_:0, line 187 <- wrt source file 2023-01-11T22:07:26.1616808Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::constant_:0 2023-01-11T22:07:26.1617632Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::ones_:0, line 202 <- wrt source file 2023-01-11T22:07:26.1620464Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::ones_:0 2023-01-11T22:07:26.1621322Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::zeros_:0, line 215 <- wrt source file 2023-01-11T22:07:26.1624137Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::zeros_:0 2023-01-11T22:07:26.1624954Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::eye_:0, line 230 <- wrt source file 2023-01-11T22:07:26.1628264Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::eye_:0 2023-01-11T22:07:26.1629154Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::dirac_:0, line 251 <- wrt source file 2023-01-11T22:07:26.1633523Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::dirac_:0 2023-01-11T22:07:26.1634364Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::xavier_uniform_:0, line 320 <- wrt source file 2023-01-11T22:07:26.1637585Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::xavier_uniform_:0 2023-01-11T22:07:26.1638157Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::xavier_normal_:0, line 347 <- wrt source file 2023-01-11T22:07:26.1641483Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::xavier_normal_:0 2023-01-11T22:07:26.1641995Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::kaiming_uniform_:0, line 392 <- wrt source file 2023-01-11T22:07:26.1645430Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::kaiming_uniform_:0 2023-01-11T22:07:26.1646016Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::kaiming_normal_:0, line 441 <- wrt source file 2023-01-11T22:07:26.1650086Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::kaiming_normal_:0 2023-01-11T22:07:26.1651003Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::orthogonal_:0, line 466 <- wrt source file 2023-01-11T22:07:26.1651674Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::orthogonal_:0 2023-01-11T22:07:26.1652159Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::sparse_:0, line 512 <- wrt source file 2023-01-11T22:07:26.1656428Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/init.py::sparse_:0 2023-01-11T22:07:26.1657219Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Threshold:0, line 40 <- wrt source file 2023-01-11T22:07:26.1661457Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Threshold:0 2023-01-11T22:07:26.1662230Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::ReLU:0, line 83 <- wrt source file 2023-01-11T22:07:26.1668135Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::ReLU:0 2023-01-11T22:07:26.1668851Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::RReLU:0, line 142 <- wrt source file 2023-01-11T22:07:26.1672722Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::RReLU:0 2023-01-11T22:07:26.1673435Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardtanh:0, line 202 <- wrt source file 2023-01-11T22:07:26.1677714Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardtanh:0 2023-01-11T22:07:26.1678305Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::ReLU6:0, line 260 <- wrt source file 2023-01-11T22:07:26.1681737Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::ReLU6:0 2023-01-11T22:07:26.1682405Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Sigmoid:0, line 288 <- wrt source file 2023-01-11T22:07:26.1685808Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Sigmoid:0 2023-01-11T22:07:26.1686502Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardsigmoid:0, line 320 <- wrt source file 2023-01-11T22:07:26.1690398Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardsigmoid:0 2023-01-11T22:07:26.1691210Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Tanh:0, line 352 <- wrt source file 2023-01-11T22:07:26.1695089Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Tanh:0 2023-01-11T22:07:26.1695734Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::SiLU:0, line 383 <- wrt source file 2023-01-11T22:07:26.1700159Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::SiLU:0 2023-01-11T22:07:26.1700819Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Mish:0, line 419 <- wrt source file 2023-01-11T22:07:26.1704781Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Mish:0 2023-01-11T22:07:26.1705458Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardswish:0, line 461 <- wrt source file 2023-01-11T22:07:26.1708785Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardswish:0 2023-01-11T22:07:26.1709311Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::ELU:0, line 502 <- wrt source file 2023-01-11T22:07:26.1713256Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::ELU:0 2023-01-11T22:07:26.1713770Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::CELU:0, line 543 <- wrt source file 2023-01-11T22:07:26.1717508Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::CELU:0 2023-01-11T22:07:26.1718028Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::SELU:0, line 595 <- wrt source file 2023-01-11T22:07:26.1721833Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::SELU:0 2023-01-11T22:07:26.1722344Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::GLU:0, line 631 <- wrt source file 2023-01-11T22:07:26.1726336Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::GLU:0 2023-01-11T22:07:26.1726855Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::GELU:0, line 672 <- wrt source file 2023-01-11T22:07:26.1733187Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::GELU:0 2023-01-11T22:07:26.1733942Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardshrink:0, line 714 <- wrt source file 2023-01-11T22:07:26.1738408Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Hardshrink:0 2023-01-11T22:07:26.1739147Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::LeakyReLU:0, line 761 <- wrt source file 2023-01-11T22:07:26.1743459Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::LeakyReLU:0 2023-01-11T22:07:26.1744337Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::LogSigmoid:0, line 796 <- wrt source file 2023-01-11T22:07:26.1747958Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::LogSigmoid:0 2023-01-11T22:07:26.1748682Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softplus:0, line 827 <- wrt source file 2023-01-11T22:07:26.1752832Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softplus:0 2023-01-11T22:07:26.1753557Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softshrink:0, line 869 <- wrt source file 2023-01-11T22:07:26.1757584Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softshrink:0 2023-01-11T22:07:26.1758359Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::MultiheadAttention:0, line 938 <- wrt source file 2023-01-11T22:07:26.1759117Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::MultiheadAttention:0 2023-01-11T22:07:26.1759853Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::PReLU:0, line 1274 <- wrt source file 2023-01-11T22:07:26.1763386Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::PReLU:0 2023-01-11T22:07:26.1764096Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softsign:0, line 1309 <- wrt source file 2023-01-11T22:07:26.1768208Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softsign:0 2023-01-11T22:07:26.1768942Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Tanhshrink:0, line 1332 <- wrt source file 2023-01-11T22:07:26.1773048Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Tanhshrink:0 2023-01-11T22:07:26.1773757Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softmin:0, line 1366 <- wrt source file 2023-01-11T22:07:26.1778408Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softmin:0 2023-01-11T22:07:26.1779128Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softmax:0, line 1421 <- wrt source file 2023-01-11T22:07:26.1783481Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softmax:0 2023-01-11T22:07:26.1784203Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softmax2d:0, line 1461 <- wrt source file 2023-01-11T22:07:26.1788407Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::Softmax2d:0 2023-01-11T22:07:26.1789102Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::LogSoftmax:0, line 1493 <- wrt source file 2023-01-11T22:07:26.1793599Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/activation.py::LogSoftmax:0 2023-01-11T22:07:26.1794162Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::BatchNorm1d:0, line 290 <- wrt source file 2023-01-11T22:07:26.1802533Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::BatchNorm1d:0 2023-01-11T22:07:26.1803277Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::BatchNorm2d:0, line 399 <- wrt source file 2023-01-11T22:07:26.2043422Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::BatchNorm2d:0 2023-01-11T22:07:26.2044490Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::BatchNorm3d:0, line 505 <- wrt source file 2023-01-11T22:07:26.4642152Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::BatchNorm3d:0 2023-01-11T22:07:26.4757726Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::SyncBatchNorm:0, line 627 <- wrt source file 2023-01-11T22:07:26.4760686Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::SyncBatchNorm:0 2023-01-11T22:07:26.4761598Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::SyncBatchNorm.convert_sync_batchnorm:0, line 782 <- wrt source file 2023-01-11T22:07:26.4762434Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/batchnorm.py::SyncBatchNorm.convert_sync_batchnorm:0 2023-01-11T22:07:26.4763032Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/channelshuffle.py::ChannelShuffle:0, line 17 <- wrt source file 2023-01-11T22:07:26.4780584Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/channelshuffle.py::ChannelShuffle:0 2023-01-11T22:07:26.4781363Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::Sequential:0, line 63 <- wrt source file 2023-01-11T22:07:26.4782060Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::Sequential:0 2023-01-11T22:07:26.4783914Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ModuleList:0, line 261 <- wrt source file 2023-01-11T22:07:26.4784716Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ModuleList:0 2023-01-11T22:07:26.4785616Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ModuleDict:0, line 433 <- wrt source file 2023-01-11T22:07:26.4786460Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ModuleDict:0 2023-01-11T22:07:26.4787551Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ParameterList:0, line 567 <- wrt source file 2023-01-11T22:07:26.4788293Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ParameterList:0 2023-01-11T22:07:26.4789053Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ParameterDict:0, line 707 <- wrt source file 2023-01-11T22:07:26.4789776Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py::ParameterDict:0 2023-01-11T22:07:26.4790535Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/distance.py::PairwiseDistance:0, line 36 <- wrt source file 2023-01-11T22:07:26.4796293Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/distance.py::PairwiseDistance:0 2023-01-11T22:07:26.4797058Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/distance.py::CosineSimilarity:0, line 72 <- wrt source file 2023-01-11T22:07:26.4805785Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/distance.py::CosineSimilarity:0 2023-01-11T22:07:26.4806525Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout:0, line 49 <- wrt source file 2023-01-11T22:07:26.4812252Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout:0 2023-01-11T22:07:26.4812959Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout1d:0, line 91 <- wrt source file 2023-01-11T22:07:26.4819811Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout1d:0 2023-01-11T22:07:26.4820538Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout2d:0, line 140 <- wrt source file 2023-01-11T22:07:26.4844776Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout2d:0 2023-01-11T22:07:26.4845488Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout3d:0, line 182 <- wrt source file 2023-01-11T22:07:26.4923458Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::Dropout3d:0 2023-01-11T22:07:26.4924303Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::AlphaDropout:0, line 225 <- wrt source file 2023-01-11T22:07:26.4929809Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::AlphaDropout:0 2023-01-11T22:07:26.4930562Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::FeatureAlphaDropout:0, line 272 <- wrt source file 2023-01-11T22:07:26.5008043Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/dropout.py::FeatureAlphaDropout:0 2023-01-11T22:07:26.5008915Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/flatten.py::Flatten:0, line 24 <- wrt source file 2023-01-11T22:07:26.5016209Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/flatten.py::Flatten:0 2023-01-11T22:07:26.5016928Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/flatten.py::Unflatten:0, line 76 <- wrt source file 2023-01-11T22:07:26.5035761Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/flatten.py::Unflatten:0 2023-01-11T22:07:26.5036470Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/fold.py::Fold:0, line 111 <- wrt source file 2023-01-11T22:07:26.5042974Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/fold.py::Fold:0 2023-01-11T22:07:26.5043674Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/fold.py::Unfold:0, line 253 <- wrt source file 2023-01-11T22:07:26.5059724Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/fold.py::Unfold:0 2023-01-11T22:07:26.5060458Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py::InstanceNorm1d:0, line 135 <- wrt source file 2023-01-11T22:07:26.5073805Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py::InstanceNorm1d:0 2023-01-11T22:07:26.5074572Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py::InstanceNorm2d:0, line 251 <- wrt source file 2023-01-11T22:07:26.5267970Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py::InstanceNorm2d:0 2023-01-11T22:07:26.5268836Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py::InstanceNorm3d:0, line 367 <- wrt source file 2023-01-11T22:07:26.7960484Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py::InstanceNorm3d:0 2023-01-11T22:07:26.8078833Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py::LazyModuleMixin:0, line 77 <- wrt source file 2023-01-11T22:07:26.8083881Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/lazy.py::LazyModuleMixin:0 2023-01-11T22:07:26.8084721Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py::Identity:0, line 33 <- wrt source file 2023-01-11T22:07:26.8093485Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py::Identity:0 2023-01-11T22:07:26.8094512Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py::Linear:0, line 78 <- wrt source file 2023-01-11T22:07:26.8104349Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py::Linear:0 2023-01-11T22:07:26.8105477Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py::Bilinear:0, line 164 <- wrt source file 2023-01-11T22:07:26.8128339Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/linear.py::Bilinear:0 2023-01-11T22:07:26.8129162Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::L1Loss:0, line 88 <- wrt source file 2023-01-11T22:07:26.8137000Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::L1Loss:0 2023-01-11T22:07:26.8138064Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::NLLLoss:0, line 184 <- wrt source file 2023-01-11T22:07:26.8162443Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::NLLLoss:0 2023-01-11T22:07:26.8163078Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::PoissonNLLLoss:0, line 271 <- wrt source file 2023-01-11T22:07:26.8170833Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::PoissonNLLLoss:0 2023-01-11T22:07:26.8171525Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::GaussianNLLLoss:0, line 343 <- wrt source file 2023-01-11T22:07:26.8187446Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::GaussianNLLLoss:0 2023-01-11T22:07:26.8188150Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::KLDivLoss:0, line 451 <- wrt source file 2023-01-11T22:07:26.8198344Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::KLDivLoss:0 2023-01-11T22:07:26.8199473Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MSELoss:0, line 523 <- wrt source file 2023-01-11T22:07:26.8206318Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MSELoss:0 2023-01-11T22:07:26.8207311Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::BCELoss:0, line 605 <- wrt source file 2023-01-11T22:07:26.8214621Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::BCELoss:0 2023-01-11T22:07:26.8215656Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::BCEWithLogitsLoss:0, line 668 <- wrt source file 2023-01-11T22:07:26.8228711Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::BCEWithLogitsLoss:0 2023-01-11T22:07:26.8229756Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MultiLabelMarginLoss:0, line 831 <- wrt source file 2023-01-11T22:07:26.8239095Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MultiLabelMarginLoss:0 2023-01-11T22:07:26.8240183Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::CrossEntropyLoss:0, line 1149 <- wrt source file 2023-01-11T22:07:26.8249703Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::CrossEntropyLoss:0 2023-01-11T22:07:26.8250458Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MarginRankingLoss:0, line 1317 <- wrt source file 2023-01-11T22:07:26.8257641Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MarginRankingLoss:0 2023-01-11T22:07:26.8258356Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MultiMarginLoss:0, line 1388 <- wrt source file 2023-01-11T22:07:26.8266685Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::MultiMarginLoss:0 2023-01-11T22:07:26.8267588Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::TripletMarginLoss:0, line 1468 <- wrt source file 2023-01-11T22:07:26.8279536Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::TripletMarginLoss:0 2023-01-11T22:07:26.8280295Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::TripletMarginWithDistanceLoss:0, line 1559 <- wrt source file 2023-01-11T22:07:26.8303249Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::TripletMarginWithDistanceLoss:0 2023-01-11T22:07:26.8304235Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::CTCLoss:0, line 1670 <- wrt source file 2023-01-11T22:07:26.8339601Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/loss.py::CTCLoss:0 2023-01-11T22:07:26.8340338Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.register_buffer:0, line 491 <- wrt source file 2023-01-11T22:07:26.8341060Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.register_buffer:0 2023-01-11T22:07:26.8341786Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.apply:0, line 847 <- wrt source file 2023-01-11T22:07:26.8356911Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.apply:0 2023-01-11T22:07:26.8357617Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.to:0, line 1072 <- wrt source file 2023-01-11T22:07:26.8366112Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.to:0 2023-01-11T22:07:26.8366833Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.state_dict:0, line 1763 <- wrt source file 2023-01-11T22:07:26.8369269Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.state_dict:0 2023-01-11T22:07:26.8370515Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.parameters:0, line 2050 <- wrt source file 2023-01-11T22:07:26.8371347Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.parameters:0 2023-01-11T22:07:26.8372115Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_parameters:0, line 2082 <- wrt source file 2023-01-11T22:07:26.8372797Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_parameters:0 2023-01-11T22:07:26.8373411Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.buffers:0, line 2107 <- wrt source file 2023-01-11T22:07:26.8373981Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.buffers:0 2023-01-11T22:07:26.8374553Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_buffers:0, line 2133 <- wrt source file 2023-01-11T22:07:26.8375121Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_buffers:0 2023-01-11T22:07:26.8375729Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_children:0, line 2163 <- wrt source file 2023-01-11T22:07:26.8376308Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_children:0 2023-01-11T22:07:26.8376869Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.modules:0, line 2187 <- wrt source file 2023-01-11T22:07:26.8386475Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.modules:0 2023-01-11T22:07:26.8387035Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_modules:0, line 2221 <- wrt source file 2023-01-11T22:07:26.8392446Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py::Module.named_modules:0 2023-01-11T22:07:26.8393006Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/normalization.py::LocalResponseNorm:0, line 34 <- wrt source file 2023-01-11T22:07:26.8447134Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/normalization.py::LocalResponseNorm:0 2023-01-11T22:07:26.8447874Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/normalization.py::LayerNorm:0, line 140 <- wrt source file 2023-01-11T22:07:26.8457611Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/normalization.py::LayerNorm:0 2023-01-11T22:07:26.8458172Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/normalization.py::GroupNorm:0, line 230 <- wrt source file 2023-01-11T22:07:26.8467479Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/normalization.py::GroupNorm:0 2023-01-11T22:07:26.8468235Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ConstantPad1d:0, line 48 <- wrt source file 2023-01-11T22:07:26.8477346Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ConstantPad1d:0 2023-01-11T22:07:26.8478073Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ConstantPad2d:0, line 101 <- wrt source file 2023-01-11T22:07:26.8484148Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ConstantPad2d:0 2023-01-11T22:07:26.8484890Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ConstantPad3d:0, line 157 <- wrt source file 2023-01-11T22:07:26.8509870Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ConstantPad3d:0 2023-01-11T22:07:26.8510607Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReflectionPad1d:0, line 201 <- wrt source file 2023-01-11T22:07:26.8517349Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReflectionPad1d:0 2023-01-11T22:07:26.8518063Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReflectionPad2d:0, line 244 <- wrt source file 2023-01-11T22:07:26.8523769Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReflectionPad2d:0 2023-01-11T22:07:26.8524493Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReflectionPad3d:0, line 301 <- wrt source file 2023-01-11T22:07:26.8528412Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReflectionPad3d:0 2023-01-11T22:07:26.8529230Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReplicationPad1d:0, line 358 <- wrt source file 2023-01-11T22:07:26.8535124Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReplicationPad1d:0 2023-01-11T22:07:26.8535891Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReplicationPad2d:0, line 401 <- wrt source file 2023-01-11T22:07:26.8541909Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReplicationPad2d:0 2023-01-11T22:07:26.8542711Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReplicationPad3d:0, line 458 <- wrt source file 2023-01-11T22:07:27.5083077Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ReplicationPad3d:0 2023-01-11T22:07:27.5300896Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ZeroPad2d:0, line 494 <- wrt source file 2023-01-11T22:07:27.5309276Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/padding.py::ZeroPad2d:0 2023-01-11T22:07:27.5309832Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py::PixelShuffle:0, line 36 <- wrt source file 2023-01-11T22:07:27.5317019Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py::PixelShuffle:0 2023-01-11T22:07:27.5318014Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py::PixelUnshuffle:0, line 86 <- wrt source file 2023-01-11T22:07:27.5323809Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py::PixelUnshuffle:0 2023-01-11T22:07:27.5324548Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxPool1d:0, line 76 <- wrt source file 2023-01-11T22:07:27.5331396Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxPool1d:0 2023-01-11T22:07:27.5332099Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxPool2d:0, line 148 <- wrt source file 2023-01-11T22:07:27.5382121Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxPool2d:0 2023-01-11T22:07:27.5382907Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxPool3d:0, line 226 <- wrt source file 2023-01-11T22:07:27.7557189Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxPool3d:0 2023-01-11T22:07:27.7625838Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxUnpool1d:0, line 293 <- wrt source file 2023-01-11T22:07:27.7645912Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxUnpool1d:0 2023-01-11T22:07:27.7646652Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxUnpool2d:0, line 366 <- wrt source file 2023-01-11T22:07:27.7675484Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxUnpool2d:0 2023-01-11T22:07:27.7676217Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxUnpool3d:0, line 451 <- wrt source file 2023-01-11T22:07:27.8424948Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::MaxUnpool3d:0 2023-01-11T22:07:27.8425702Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AvgPool1d:0, line 524 <- wrt source file 2023-01-11T22:07:27.8436267Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AvgPool1d:0 2023-01-11T22:07:27.8437014Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AvgPool2d:0, line 600 <- wrt source file 2023-01-11T22:07:27.8478765Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AvgPool2d:0 2023-01-11T22:07:27.8479497Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AvgPool3d:0, line 686 <- wrt source file 2023-01-11T22:07:28.0257420Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AvgPool3d:0 2023-01-11T22:07:28.0300930Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::FractionalMaxPool2d:0, line 749 <- wrt source file 2023-01-11T22:07:28.0352760Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::FractionalMaxPool2d:0 2023-01-11T22:07:28.0354148Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::FractionalMaxPool3d:0, line 819 <- wrt source file 2023-01-11T22:07:28.1036397Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::FractionalMaxPool3d:0 2023-01-11T22:07:28.1037150Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::LPPool1d:0, line 909 <- wrt source file 2023-01-11T22:07:28.1045873Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::LPPool1d:0 2023-01-11T22:07:28.1046579Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::LPPool2d:0, line 960 <- wrt source file 2023-01-11T22:07:28.1106929Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::LPPool2d:0 2023-01-11T22:07:28.1107803Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveMaxPool1d:0, line 1011 <- wrt source file 2023-01-11T22:07:28.1112818Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveMaxPool1d:0 2023-01-11T22:07:28.1113570Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveMaxPool2d:0, line 1045 <- wrt source file 2023-01-11T22:07:28.1123899Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveMaxPool2d:0 2023-01-11T22:07:28.1124688Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveMaxPool3d:0, line 1088 <- wrt source file 2023-01-11T22:07:28.1191633Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveMaxPool3d:0 2023-01-11T22:07:28.1192428Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveAvgPool1d:0, line 1135 <- wrt source file 2023-01-11T22:07:28.1197397Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveAvgPool1d:0 2023-01-11T22:07:28.1198175Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveAvgPool2d:0, line 1166 <- wrt source file 2023-01-11T22:07:28.1207342Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveAvgPool2d:0 2023-01-11T22:07:28.1208112Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveAvgPool3d:0, line 1205 <- wrt source file 2023-01-11T22:07:28.1235565Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/pooling.py::AdaptiveAvgPool3d:0 2023-01-11T22:07:28.1236527Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::RNN:0, line 436 <- wrt source file 2023-01-11T22:07:28.1249731Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::RNN:0 2023-01-11T22:07:28.1250527Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::LSTM:0, line 702 <- wrt source file 2023-01-11T22:07:28.1268050Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::LSTM:0 2023-01-11T22:07:28.1269437Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::GRU:0, line 933 <- wrt source file 2023-01-11T22:07:28.1287012Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::GRU:0 2023-01-11T22:07:28.1288783Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::RNNCell:0, line 1106 <- wrt source file 2023-01-11T22:07:28.1300354Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::RNNCell:0 2023-01-11T22:07:28.1301152Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::LSTMCell:0, line 1207 <- wrt source file 2023-01-11T22:07:28.1312439Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::LSTMCell:0 2023-01-11T22:07:28.1313225Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::GRUCell:0, line 1300 <- wrt source file 2023-01-11T22:07:28.1327717Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/rnn.py::GRUCell:0 2023-01-11T22:07:28.1328913Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::Embedding:0, line 67 <- wrt source file 2023-01-11T22:07:28.1343691Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::Embedding:0 2023-01-11T22:07:28.1344541Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::Embedding.from_pretrained:0, line 200 <- wrt source file 2023-01-11T22:07:28.1350009Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::Embedding.from_pretrained:0 2023-01-11T22:07:28.1350701Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::EmbeddingBag:0, line 278 <- wrt source file 2023-01-11T22:07:28.1366946Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::EmbeddingBag:0 2023-01-11T22:07:28.1367724Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::EmbeddingBag.from_pretrained:0, line 429 <- wrt source file 2023-01-11T22:07:28.1375000Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/sparse.py::EmbeddingBag.from_pretrained:0 2023-01-11T22:07:28.1375780Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::Transformer:0, line 42 <- wrt source file 2023-01-11T22:07:28.8052000Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::Transformer:0 2023-01-11T22:07:28.8066451Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::Transformer.forward:0, line 134 <- wrt source file 2023-01-11T22:07:28.8067879Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::Transformer.forward:0 2023-01-11T22:07:28.8068987Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerEncoder:0, line 181 <- wrt source file 2023-01-11T22:07:28.8696849Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerEncoder:0 2023-01-11T22:07:28.8702205Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerDecoder:0, line 325 <- wrt source file 2023-01-11T22:07:28.9953402Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerDecoder:0 2023-01-11T22:07:28.9961144Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerEncoderLayer:0, line 391 <- wrt source file 2023-01-11T22:07:29.0206739Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerEncoderLayer:0 2023-01-11T22:07:29.0237048Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerDecoderLayer:0, line 608 <- wrt source file 2023-01-11T22:07:29.0635897Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/transformer.py::TransformerDecoderLayer:0 2023-01-11T22:07:29.0636859Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/upsampling.py::Upsample:0, line 74 <- wrt source file 2023-01-11T22:07:29.0664265Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/upsampling.py::Upsample:0 2023-01-11T22:07:29.0665341Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/upsampling.py::UpsamplingNearest2d:0, line 196 <- wrt source file 2023-01-11T22:07:29.0678441Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/upsampling.py::UpsamplingNearest2d:0 2023-01-11T22:07:29.0679072Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/modules/upsampling.py::UpsamplingBilinear2d:0, line 242 <- wrt source file 2023-01-11T22:07:29.0687721Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/modules/upsampling.py::UpsamplingBilinear2d:0 2023-01-11T22:07:29.0688947Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/data_parallel.py::DataParallel:0, line 116 <- wrt source file 2023-01-11T22:07:29.0690108Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/data_parallel.py::DataParallel:0 2023-01-11T22:07:29.0691193Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel:0, line 534 <- wrt source file 2023-01-11T22:07:29.0692255Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel:0 2023-01-11T22:07:29.0693381Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.no_sync:0, line 1051 <- wrt source file 2023-01-11T22:07:29.0694525Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.no_sync:0 2023-01-11T22:07:29.0695188Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.join:0, line 1377 <- wrt source file 2023-01-11T22:07:29.0695805Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.join:0 2023-01-11T22:07:29.0696446Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.register_comm_hook:0, line 1550 <- wrt source file 2023-01-11T22:07:29.0697096Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.register_comm_hook:0 2023-01-11T22:07:29.0697757Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.register_comm_hook:1, line 1560 <- wrt source file 2023-01-11T22:07:29.0698394Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel.register_comm_hook:1 2023-01-11T22:07:29.0699048Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel._register_builtin_comm_hook:0, line 1594 <- wrt source file 2023-01-11T22:07:29.0699703Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel._register_builtin_comm_hook:0 2023-01-11T22:07:29.0700358Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel._register_fused_optim:0, line 1652 <- wrt source file 2023-01-11T22:07:29.0700992Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/parallel/distributed.py::DistributedDataParallel._register_fused_optim:0 2023-01-11T22:07:29.0701600Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/_per_sample_grad.py::call_for_per_sample_grads:0, line 32 <- wrt source file 2023-01-11T22:07:29.0702148Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/_per_sample_grad.py::call_for_per_sample_grads:0 2023-01-11T22:07:29.0702743Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/init.py::skip_init:0, line 30 <- wrt source file 2023-01-11T22:07:29.0707196Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/init.py::skip_init:0 2023-01-11T22:07:29.0708013Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/memory_format.py::convert_conv2d_weight_memory_format:0, line 54 <- wrt source file 2023-01-11T22:07:29.0708904Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/memory_format.py::convert_conv2d_weight_memory_format:0 2023-01-11T22:07:29.0709649Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/parametrizations.py::orthogonal:0, line 245 <- wrt source file 2023-01-11T22:07:29.0710769Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/parametrizations.py::orthogonal:0 2023-01-11T22:07:29.0712014Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/parametrizations.py::spectral_norm:0, line 462 <- wrt source file 2023-01-11T22:07:29.0713092Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/parametrizations.py::spectral_norm:0 2023-01-11T22:07:29.0714178Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/parametrize.py::register_parametrization:0, line 463 <- wrt source file 2023-01-11T22:07:29.0719635Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/parametrize.py::register_parametrization:0 2023-01-11T22:07:29.0720661Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::identity:0, line 846 <- wrt source file 2023-01-11T22:07:29.0721568Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::identity:0 2023-01-11T22:07:29.0722529Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::random_unstructured:0, line 880 <- wrt source file 2023-01-11T22:07:29.0723533Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::random_unstructured:0 2023-01-11T22:07:29.0724483Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::l1_unstructured:0, line 921 <- wrt source file 2023-01-11T22:07:29.0725449Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::l1_unstructured:0 2023-01-11T22:07:29.0726407Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::random_structured:0, line 959 <- wrt source file 2023-01-11T22:07:29.0727370Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::random_structured:0 2023-01-11T22:07:29.0728209Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::ln_structured:0, line 1005 <- wrt source file 2023-01-11T22:07:29.0757038Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::ln_structured:0 2023-01-11T22:07:29.0757609Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::global_unstructured:0, line 1058 <- wrt source file 2023-01-11T22:07:29.0776797Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::global_unstructured:0 2023-01-11T22:07:29.0777435Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::custom_from_mask:0, line 1160 <- wrt source file 2023-01-11T22:07:29.0787904Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::custom_from_mask:0 2023-01-11T22:07:29.0788431Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::remove:0, line 1188 <- wrt source file 2023-01-11T22:07:29.0795265Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::remove:0 2023-01-11T22:07:29.0795786Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::is_pruned:0, line 1215 <- wrt source file 2023-01-11T22:07:29.0804978Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/prune.py::is_pruned:0 2023-01-11T22:07:29.0805511Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::pad_packed_sequence:0, line 282 <- wrt source file 2023-01-11T22:07:29.0822225Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::pad_packed_sequence:0 2023-01-11T22:07:29.0823111Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::pad_sequence:0, line 359 <- wrt source file 2023-01-11T22:07:29.0829061Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::pad_sequence:0 2023-01-11T22:07:29.0829863Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::unpad_sequence:0, line 412 <- wrt source file 2023-01-11T22:07:29.0846704Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::unpad_sequence:0 2023-01-11T22:07:29.0847712Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::pack_sequence:0, line 467 <- wrt source file 2023-01-11T22:07:29.0857492Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::pack_sequence:0 2023-01-11T22:07:29.0858170Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::unpack_sequence:0, line 495 <- wrt source file 2023-01-11T22:07:29.0879182Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/rnn.py::unpack_sequence:0 2023-01-11T22:07:29.0879863Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/spectral_norm.py::spectral_norm:0, line 267 <- wrt source file 2023-01-11T22:07:29.0887587Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/spectral_norm.py::spectral_norm:0 2023-01-11T22:07:29.0888263Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/spectral_norm.py::remove_spectral_norm:0, line 294 <- wrt source file 2023-01-11T22:07:29.0895115Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/spectral_norm.py::remove_spectral_norm:0 2023-01-11T22:07:29.0895866Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/stateless.py::functional_call:0, line 123 <- wrt source file 2023-01-11T22:07:29.0899624Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/stateless.py::functional_call:0 2023-01-11T22:07:29.0900352Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py::weight_norm:0, line 99 <- wrt source file 2023-01-11T22:07:29.0909047Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py::weight_norm:0 2023-01-11T22:07:29.0909603Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py::remove_weight_norm:0, line 121 <- wrt source file 2023-01-11T22:07:29.0915567Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py::remove_weight_norm:0 2023-01-11T22:07:29.0916504Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/_expanded_weights/conv_utils.py::unfold3d:0, line 203 <- wrt source file 2023-01-11T22:07:29.0918420Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/_expanded_weights/conv_utils.py::unfold3d:0 2023-01-11T22:07:29.0919385Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/nn/utils/_expanded_weights/expanded_weights_utils.py::sum_over_all_but_batch_and_last_n:0, line 108 <- wrt source file 2023-01-11T22:07:29.1007222Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/nn/utils/_expanded_weights/expanded_weights_utils.py::sum_over_all_but_batch_and_last_n:0 2023-01-11T22:07:29.1007917Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/onnx/_type_utils.py::JitScalarType:0, line 66 <- wrt source file 2023-01-11T22:07:29.1010680Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/onnx/_type_utils.py::JitScalarType:0 2023-01-11T22:07:29.1011442Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/onnx/verification.py::find_mismatch:0, line 1746 <- wrt source file 2023-01-11T22:07:29.1011970Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/onnx/verification.py::find_mismatch:0 2023-01-11T22:07:29.1012649Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/onnx/_internal/diagnostics/infra/engine.py::DiagnosticEngine:0, line 20 <- wrt source file 2023-01-11T22:07:29.1013645Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/onnx/_internal/diagnostics/infra/engine.py::DiagnosticEngine:0 2023-01-11T22:07:29.1014444Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::LambdaLR:0, line 200 <- wrt source file 2023-01-11T22:07:29.1015181Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::LambdaLR:0 2023-01-11T22:07:29.1016030Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::MultiplicativeLR:0, line 286 <- wrt source file 2023-01-11T22:07:29.1016892Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::MultiplicativeLR:0 2023-01-11T22:07:29.1017884Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::StepLR:0, line 369 <- wrt source file 2023-01-11T22:07:29.1018811Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::StepLR:0 2023-01-11T22:07:29.1019662Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::MultiStepLR:0, line 418 <- wrt source file 2023-01-11T22:07:29.1020637Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::MultiStepLR:0 2023-01-11T22:07:29.1021477Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::ConstantLR:0, line 467 <- wrt source file 2023-01-11T22:07:29.1022299Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::ConstantLR:0 2023-01-11T22:07:29.1023332Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::LinearLR:0, line 529 <- wrt source file 2023-01-11T22:07:29.1024258Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::LinearLR:0 2023-01-11T22:07:29.1025206Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::SequentialLR:0, line 621 <- wrt source file 2023-01-11T22:07:29.1026172Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::SequentialLR:0 2023-01-11T22:07:29.1027132Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::PolynomialLR:0, line 729 <- wrt source file 2023-01-11T22:07:29.1028054Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::PolynomialLR:0 2023-01-11T22:07:29.1029054Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::ChainedScheduler:0, line 849 <- wrt source file 2023-01-11T22:07:29.1030051Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::ChainedScheduler:0 2023-01-11T22:07:29.1030838Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::ReduceLROnPlateau:0, line 953 <- wrt source file 2023-01-11T22:07:29.1031369Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::ReduceLROnPlateau:0 2023-01-11T22:07:29.1031906Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::CyclicLR:0, line 1168 <- wrt source file 2023-01-11T22:07:29.1032526Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::CyclicLR:0 2023-01-11T22:07:29.1033106Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::CosineAnnealingWarmRestarts.step:0, line 1389 <- wrt source file 2023-01-11T22:07:29.1033712Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::CosineAnnealingWarmRestarts.step:0 2023-01-11T22:07:29.1034323Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::CosineAnnealingWarmRestarts.step:1, line 1405 <- wrt source file 2023-01-11T22:07:29.1034991Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::CosineAnnealingWarmRestarts.step:1 2023-01-11T22:07:29.1035559Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::OneCycleLR:0, line 1547 <- wrt source file 2023-01-11T22:07:29.1036075Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/lr_scheduler.py::OneCycleLR:0 2023-01-11T22:07:29.1036562Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/sgd.py::SGD:0, line 58 <- wrt source file 2023-01-11T22:07:29.1037024Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/sgd.py::SGD:0 2023-01-11T22:07:29.1037534Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::AveragedModel:0, line 38 <- wrt source file 2023-01-11T22:07:29.1038041Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::AveragedModel:0 2023-01-11T22:07:29.1038556Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::AveragedModel:1, line 64 <- wrt source file 2023-01-11T22:07:29.1039060Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::AveragedModel:1 2023-01-11T22:07:29.1039577Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::update_bn:0, line 161 <- wrt source file 2023-01-11T22:07:29.1040069Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::update_bn:0 2023-01-11T22:07:29.1040565Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::SWALR:0, line 222 <- wrt source file 2023-01-11T22:07:29.1041042Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/optim/swa_utils.py::SWALR:0 2023-01-11T22:07:29.1041558Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/package/glob_group.py::GlobGroup:0, line 19 <- wrt source file 2023-01-11T22:07:29.1042068Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/package/glob_group.py::GlobGroup:0 2023-01-11T22:07:29.1042579Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/profiler/profiler.py::profile:0, line 363 <- wrt source file 2023-01-11T22:07:29.1043079Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/profiler/profiler.py::profile:0 2023-01-11T22:07:29.1043608Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_comparison.py::assert_close:0, line 1395 <- wrt source file 2023-01-11T22:07:29.1088079Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/testing/_comparison.py::assert_close:0 2023-01-11T22:07:29.1088864Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_creation.py::make_tensor:0, line 93 <- wrt source file 2023-01-11T22:07:29.1089931Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/testing/_creation.py::make_tensor:0 2023-01-11T22:07:29.1090884Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::parametrize:0, line 305 <- wrt source file 2023-01-11T22:07:29.1091841Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::parametrize:0 2023-01-11T22:07:29.1092572Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::random_symmetric_psd_matrix:0, line 3447 <- wrt source file 2023-01-11T22:07:29.1093354Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::random_symmetric_psd_matrix:0 2023-01-11T22:07:29.1094080Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::random_hermitian_psd_matrix:0, line 3461 <- wrt source file 2023-01-11T22:07:29.1094822Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::random_hermitian_psd_matrix:0 2023-01-11T22:07:29.1095526Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::random_hermitian_pd_matrix:0, line 3491 <- wrt source file 2023-01-11T22:07:29.1096326Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py::random_hermitian_pd_matrix:0 2023-01-11T22:07:29.1097163Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/distributed/_tensor/common_dtensor.py::skip_unless_torch_gpu:0, line 57 <- wrt source file 2023-01-11T22:07:29.1098069Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/testing/_internal/distributed/_tensor/common_dtensor.py::skip_unless_torch_gpu:0 2023-01-11T22:07:29.1099092Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/backend_registration.py::rename_privateuse1_backend:0, line 24 <- wrt source file 2023-01-11T22:07:29.1100053Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/backend_registration.py::rename_privateuse1_backend:0 2023-01-11T22:07:29.1100752Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py::checkpoint_sequential:0, line 306 <- wrt source file 2023-01-11T22:07:29.1101301Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py::checkpoint_sequential:0 2023-01-11T22:07:29.1101848Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::CppExtension:0, line 912 <- wrt source file 2023-01-11T22:07:29.1102426Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::CppExtension:0 2023-01-11T22:07:29.1102978Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::CUDAExtension:0, line 960 <- wrt source file 2023-01-11T22:07:29.1103500Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::CUDAExtension:0 2023-01-11T22:07:29.1104047Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::CUDAExtension:1, line 1037 <- wrt source file 2023-01-11T22:07:29.1104557Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::CUDAExtension:1 2023-01-11T22:07:29.1105082Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::load:0, line 1273 <- wrt source file 2023-01-11T22:07:29.1105582Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::load:0 2023-01-11T22:07:29.1106105Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::load_inline:0, line 1364 <- wrt source file 2023-01-11T22:07:29.1106606Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py::load_inline:0 2023-01-11T22:07:29.1107123Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/dlpack.py::from_dlpack:0, line 71 <- wrt source file 2023-01-11T22:07:29.1117768Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/utils/dlpack.py::from_dlpack:0 2023-01-11T22:07:29.1118405Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/throughput_benchmark.py::ThroughputBenchmark:0, line 77 <- wrt source file 2023-01-11T22:07:29.1118988Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/throughput_benchmark.py::ThroughputBenchmark:0 2023-01-11T22:07:29.1119541Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataset.py::IterableDataset:0, line 84 <- wrt source file 2023-01-11T22:07:29.1126262Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataset.py::IterableDataset:0 2023-01-11T22:07:29.1127358Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataset.py::random_split:0, line 320 <- wrt source file 2023-01-11T22:07:29.1128094Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataset.py::random_split:0 2023-01-11T22:07:29.1128641Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/distributed.py::DistributedSampler:0, line 51 <- wrt source file 2023-01-11T22:07:29.1129304Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/distributed.py::DistributedSampler:0 2023-01-11T22:07:29.1129879Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/sampler.py::WeightedRandomSampler:0, line 172 <- wrt source file 2023-01-11T22:07:29.1134992Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/utils/data/sampler.py::WeightedRandomSampler:0 2023-01-11T22:07:29.1135590Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/sampler.py::BatchSampler:0, line 220 <- wrt source file 2023-01-11T22:07:29.1140872Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/utils/data/sampler.py::BatchSampler:0 2023-01-11T22:07:29.1141503Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py::default_convert:0, line 36 <- wrt source file 2023-01-11T22:07:29.1144639Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py::default_convert:0 2023-01-11T22:07:29.1145201Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py::collate:0, line 102 <- wrt source file 2023-01-11T22:07:29.1149968Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py::collate:0 2023-01-11T22:07:29.1150546Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py::default_collate:0, line 231 <- wrt source file 2023-01-11T22:07:29.1155752Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py::default_collate:0 2023-01-11T22:07:29.1156380Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.py::IterDataPipe:0, line 84 <- wrt source file 2023-01-11T22:07:29.1159370Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.py::IterDataPipe:0 2023-01-11T22:07:29.1159952Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.py::MapDataPipe:0, line 232 <- wrt source file 2023-01-11T22:07:29.1161707Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/datapipe.py::MapDataPipe:0 2023-01-11T22:07:29.1162307Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/callable.py::MapperIterDataPipe:0, line 46 <- wrt source file 2023-01-11T22:07:29.1164480Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/callable.py::MapperIterDataPipe:0 2023-01-11T22:07:29.1165103Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/callable.py::CollatorIterDataPipe:0, line 187 <- wrt source file 2023-01-11T22:07:29.1167268Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/callable.py::CollatorIterDataPipe:0 2023-01-11T22:07:29.1167967Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combinatorics.py::ShufflerIterDataPipe:0, line 80 <- wrt source file 2023-01-11T22:07:29.1168657Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combinatorics.py::ShufflerIterDataPipe:0 2023-01-11T22:07:29.1169450Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::ConcaterIterDataPipe:0, line 33 <- wrt source file 2023-01-11T22:07:29.1193897Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::ConcaterIterDataPipe:0 2023-01-11T22:07:29.1194745Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::ForkerIterDataPipe:0, line 75 <- wrt source file 2023-01-11T22:07:29.1195793Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::ForkerIterDataPipe:0 2023-01-11T22:07:29.1196822Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::_ChildDataPipe:0, line 250 <- wrt source file 2023-01-11T22:07:29.1197407Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::_ChildDataPipe:0 2023-01-11T22:07:29.1198033Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::DemultiplexerIterDataPipe:0, line 329 <- wrt source file 2023-01-11T22:07:29.1199859Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::DemultiplexerIterDataPipe:0 2023-01-11T22:07:29.1200565Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::MultiplexerIterDataPipe:0, line 507 <- wrt source file 2023-01-11T22:07:29.1201681Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::MultiplexerIterDataPipe:0 2023-01-11T22:07:29.1202397Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::ZipperIterDataPipe:0, line 572 <- wrt source file 2023-01-11T22:07:29.1203342Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py::ZipperIterDataPipe:0 2023-01-11T22:07:29.1204442Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/filelister.py::FileListerIterDataPipe:0, line 29 <- wrt source file 2023-01-11T22:07:29.1205414Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/filelister.py::FileListerIterDataPipe:0 2023-01-11T22:07:29.1206408Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/fileopener.py::FileOpenerIterDataPipe:0, line 33 <- wrt source file 2023-01-11T22:07:29.1207211Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/fileopener.py::FileOpenerIterDataPipe:0 2023-01-11T22:07:29.1208263Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py::BatcherIterDataPipe:0, line 102 <- wrt source file 2023-01-11T22:07:29.1208872Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py::BatcherIterDataPipe:0 2023-01-11T22:07:29.1209704Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py::UnBatcherIterDataPipe:0, line 159 <- wrt source file 2023-01-11T22:07:29.1210415Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py::UnBatcherIterDataPipe:0 2023-01-11T22:07:29.1211026Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py::GrouperIterDataPipe:0, line 226 <- wrt source file 2023-01-11T22:07:29.1213412Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py::GrouperIterDataPipe:0 2023-01-11T22:07:29.1214028Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/selecting.py::FilterIterDataPipe:0, line 34 <- wrt source file 2023-01-11T22:07:29.1214939Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/selecting.py::FilterIterDataPipe:0 2023-01-11T22:07:29.1216569Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/streamreader.py::StreamReaderIterDataPipe:0, line 20 <- wrt source file 2023-01-11T22:07:29.1217221Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/streamreader.py::StreamReaderIterDataPipe:0 2023-01-11T22:07:29.1217868Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/utils.py::IterableWrapperIterDataPipe:0, line 23 <- wrt source file 2023-01-11T22:07:29.1218496Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/utils.py::IterableWrapperIterDataPipe:0 2023-01-11T22:07:29.1219294Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/callable.py::MapperMapDataPipe:0, line 30 <- wrt source file 2023-01-11T22:07:29.1219893Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/callable.py::MapperMapDataPipe:0 2023-01-11T22:07:29.1220673Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/combinatorics.py::ShufflerIterDataPipe:0, line 31 <- wrt source file 2023-01-11T22:07:29.1221410Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/combinatorics.py::ShufflerIterDataPipe:0 2023-01-11T22:07:29.1222277Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/combining.py::ConcaterMapDataPipe:0, line 24 <- wrt source file 2023-01-11T22:07:29.1223089Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/combining.py::ConcaterMapDataPipe:0 2023-01-11T22:07:29.1223869Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/combining.py::ZipperMapDataPipe:0, line 66 <- wrt source file 2023-01-11T22:07:29.1224534Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/combining.py::ZipperMapDataPipe:0 2023-01-11T22:07:29.1225162Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/grouping.py::BatcherMapDataPipe:0, line 23 <- wrt source file 2023-01-11T22:07:29.1225994Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/grouping.py::BatcherMapDataPipe:0 2023-01-11T22:07:29.1226875Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/utils.py::SequenceWrapperMapDataPipe:0, line 23 <- wrt source file 2023-01-11T22:07:29.1227561Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/map/utils.py::SequenceWrapperMapDataPipe:0 2023-01-11T22:07:29.1228279Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py::validate_input_col:0, line 33 <- wrt source file 2023-01-11T22:07:29.1228913Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/data/datapipes/utils/common.py::validate_input_col:0 2023-01-11T22:07:29.1229562Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py::find_closure_group:0, line 415 <- wrt source file 2023-01-11T22:07:29.1232363Z * SUCCESS: /opt/conda/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py::find_closure_group:0 2023-01-11T22:07:29.1233301Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py::replace_extern_shared:0, line 511 <- wrt source file 2023-01-11T22:07:29.1234238Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py::replace_extern_shared:0 2023-01-11T22:07:29.1235173Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.__init__:0, line 213 <- wrt source file 2023-01-11T22:07:29.1236093Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.__init__:0 2023-01-11T22:07:29.1237019Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_hparams:0, line 320 <- wrt source file 2023-01-11T22:07:29.1237846Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_hparams:0 2023-01-11T22:07:29.1238782Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_scalar:0, line 368 <- wrt source file 2023-01-11T22:07:29.1239622Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_scalar:0 2023-01-11T22:07:29.1240376Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_scalars:0, line 404 <- wrt source file 2023-01-11T22:07:29.1241083Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_scalars:0 2023-01-11T22:07:29.1241865Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_histogram:0, line 462 <- wrt source file 2023-01-11T22:07:29.1242588Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_histogram:0 2023-01-11T22:07:29.1243313Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_histogram_raw:0, line 519 <- wrt source file 2023-01-11T22:07:29.1243943Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_histogram_raw:0 2023-01-11T22:07:29.1244585Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_image:0, line 585 <- wrt source file 2023-01-11T22:07:29.1245238Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_image:0 2023-01-11T22:07:29.1246389Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_images:0, line 638 <- wrt source file 2023-01-11T22:07:29.1247167Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_images:0 2023-01-11T22:07:29.1247842Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_text:0, line 810 <- wrt source file 2023-01-11T22:07:29.1248615Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_text:0 2023-01-11T22:07:29.1249584Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_embedding:0, line 896 <- wrt source file 2023-01-11T22:07:29.1250566Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_embedding:0 2023-01-11T22:07:29.1251347Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_pr_curve:0, line 1001 <- wrt source file 2023-01-11T22:07:29.1252111Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_pr_curve:0 2023-01-11T22:07:29.1252936Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_custom_scalars_multilinechart:0, line 1076 <- wrt source file 2023-01-11T22:07:29.1253815Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_custom_scalars_multilinechart:0 2023-01-11T22:07:29.1254550Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_custom_scalars_marginchart:0, line 1095 <- wrt source file 2023-01-11T22:07:29.1255167Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_custom_scalars_marginchart:0 2023-01-11T22:07:29.1255907Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_custom_scalars:0, line 1117 <- wrt source file 2023-01-11T22:07:29.1256745Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_custom_scalars:0 2023-01-11T22:07:29.1257777Z * DOCTEST : /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_mesh:0, line 1161 <- wrt source file 2023-01-11T22:07:29.1258453Z * SKIPPED: /opt/conda/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py::SummaryWriter.add_mesh:0 2023-01-11T22:07:29.1258776Z ============ 2023-01-11T22:07:29.1258966Z Finished doctests 2023-01-11T22:07:29.1259221Z 287 / 663 passed 2023-01-11T22:07:29.1259422Z  2023-01-11T22:07:29.1259761Z === Found 3 run-time warnings === 2023-01-11T22:07:29.1260082Z --- Runtime Warning: 1 / 3 --- 2023-01-11T22:07:29.1260534Z example = 2023-01-11T22:07:29.1261959Z /opt/conda/lib/python3.10/site-packages/torch/_tensor.py:1114: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /var/lib/jenkins/workspace/c10/core/TensorImpl.h:1816.) 2023-01-11T22:07:29.1262699Z return super(Tensor, self).refine_names(names) 2023-01-11T22:07:29.1262900Z 2023-01-11T22:07:29.1263126Z --- Runtime Warning: 2 / 3 --- 2023-01-11T22:07:29.1263398Z example = 2023-01-11T22:07:29.1264102Z /opt/conda/lib/python3.10/site-packages/torch/nested/__init__.py:58: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at /var/lib/jenkins/workspace/aten/src/ATen/NestedTensorImpl.cpp:179.) 2023-01-11T22:07:29.1264638Z return torch._nested_tensor_from_tensor_list(tensor_list, dtype, None, device, None) 2023-01-11T22:07:29.1264962Z 2023-01-11T22:07:29.1265276Z --- Runtime Warning: 3 / 3 --- 2023-01-11T22:07:29.1265770Z example = 2023-01-11T22:07:29.1266862Z /opt/conda/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py:921: UserWarning: Your compiler for AOTAutograd is returning a a function that doesn't take boxed arguments. Please wrap it with functorch.compile.make_boxed_func or handle the boxed arguments yourself. See https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670 for rationale. 2023-01-11T22:07:29.1267378Z warnings.warn( 2023-01-11T22:07:29.1267628Z 2023-01-11T22:07:29.1267907Z === 287 passed, 376 skipped, 3 warnings in 9.64 seconds === 2023-01-11T22:07:29.4686814Z 2023-01-11T22:07:29.4687190Z real 45m2.992s 2023-01-11T22:07:29.4687525Z user 84m48.991s 2023-01-11T22:07:29.4687825Z sys 10m6.893s 2023-01-11T22:07:29.4688086Z + assert_git_not_dirty 2023-01-11T22:07:29.4688471Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:07:29.4688797Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:07:29.4690608Z ++ git status --porcelain 2023-01-11T22:07:40.2253119Z + git_status= 2023-01-11T22:07:40.2253506Z + [[ -n '' ]] 2023-01-11T22:07:40.2253731Z + test_aten 2023-01-11T22:07:40.2254184Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *asan* ]] 2023-01-11T22:07:40.2254503Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:07:40.2255002Z + echo 'Running ATen tests with pytorch lib' 2023-01-11T22:07:40.2255235Z Running ATen tests with pytorch lib 2023-01-11T22:07:40.2255462Z + [[ -n '' ]] 2023-01-11T22:07:40.2255684Z + echo 'Running test with the build folder' 2023-01-11T22:07:40.2255905Z Running test with the build folder 2023-01-11T22:07:40.2256108Z + TEST_BASE_DIR=build/bin 2023-01-11T22:07:40.2256638Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libc10.so /opt/conda/lib/python3.10/site-packages/torch/lib/libc10_cuda.so /opt/conda/lib/python3.10/site-packages/torch/lib/libc10d_cuda_test.so build/bin 2023-01-11T22:07:40.2324562Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libcaffe2_nvrtc.so build/bin 2023-01-11T22:07:40.2333606Z + ln -sf '/opt/conda/lib/python3.10/site-packages/torch/lib/libmkldnn*' build/bin 2023-01-11T22:07:40.2342613Z + ln -sf '/opt/conda/lib/python3.10/site-packages/torch/lib/libnccl*' build/bin 2023-01-11T22:07:40.2352989Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_global_deps.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorchbind_test.so build/bin 2023-01-11T22:07:40.2361679Z + ln -sf '/opt/conda/lib/python3.10/site-packages/torch/lib/libtbb*' build/bin 2023-01-11T22:07:40.2369584Z + ls build/bin 2023-01-11T22:07:40.2453465Z CppSignature_test 2023-01-11T22:07:40.2453735Z Dict_test 2023-01-11T22:07:40.2454038Z Dimname_test 2023-01-11T22:07:40.2454324Z FileStoreTest 2023-01-11T22:07:40.2454601Z HashStoreTest 2023-01-11T22:07:40.2455278Z IListRef_test 2023-01-11T22:07:40.2455617Z KernelFunction_test 2023-01-11T22:07:40.2455925Z List_test 2023-01-11T22:07:40.2456157Z MaybeOwned_test 2023-01-11T22:07:40.2456626Z NamedTensor_test 2023-01-11T22:07:40.2456952Z ProcessGroupGlooAsyncTest 2023-01-11T22:07:40.2457265Z ProcessGroupGlooTest 2023-01-11T22:07:40.2457581Z ProcessGroupMPITest 2023-01-11T22:07:40.2458024Z ProcessGroupNCCLErrorsTest 2023-01-11T22:07:40.2458396Z ProcessGroupNCCLTest 2023-01-11T22:07:40.2458671Z ProcessGroupUCCTest 2023-01-11T22:07:40.2458952Z TCPStoreTest 2023-01-11T22:07:40.2459134Z aot_model_compiler_test 2023-01-11T22:07:40.2459308Z apply_utils_test 2023-01-11T22:07:40.2459469Z atest 2023-01-11T22:07:40.2459632Z backend_fallback_test 2023-01-11T22:07:40.2459786Z basic 2023-01-11T22:07:40.2459942Z broadcast_test 2023-01-11T22:07:40.2460108Z c10_Array_test 2023-01-11T22:07:40.2460262Z c10_Bitset_test 2023-01-11T22:07:40.2460434Z c10_C++17_test 2023-01-11T22:07:40.2460788Z c10_CompileTimeFunctionPointer_test 2023-01-11T22:07:40.2461166Z c10_ConstexprCrc_test 2023-01-11T22:07:40.2461391Z c10_DeadlockDetection_test 2023-01-11T22:07:40.2461582Z c10_DeviceGuard_test 2023-01-11T22:07:40.2461748Z c10_Device_test 2023-01-11T22:07:40.2461929Z c10_DispatchKeySet_test 2023-01-11T22:07:40.2462105Z c10_Half_test 2023-01-11T22:07:40.2462501Z c10_InlineDeviceGuard_test 2023-01-11T22:07:40.2462704Z c10_InlineStreamGuard_test 2023-01-11T22:07:40.2462893Z c10_LeftRight_test 2023-01-11T22:07:40.2463069Z c10_Metaprogramming_test 2023-01-11T22:07:40.2463265Z c10_SizesAndStrides_test 2023-01-11T22:07:40.2463453Z c10_SmallVectorTest 2023-01-11T22:07:40.2463639Z c10_StreamGuard_test 2023-01-11T22:07:40.2463802Z c10_SymInt_test 2023-01-11T22:07:40.2463978Z c10_Synchronized_test 2023-01-11T22:07:40.2464162Z c10_ThreadLocal_test 2023-01-11T22:07:40.2464327Z c10_TypeIndex_test 2023-01-11T22:07:40.2464502Z c10_TypeList_test 2023-01-11T22:07:40.2464678Z c10_TypeTraits_test 2023-01-11T22:07:40.2464843Z c10_accumulate_test 2023-01-11T22:07:40.2465015Z c10_bfloat16_test 2023-01-11T22:07:40.2465191Z c10_complex_math_test 2023-01-11T22:07:40.2465352Z c10_complex_test 2023-01-11T22:07:40.2465622Z c10_cuda_CUDAAssertionsTest_1_var_test 2023-01-11T22:07:40.2465863Z c10_cuda_CUDAAssertionsTest_catches_stream 2023-01-11T22:07:40.2466119Z c10_cuda_CUDAAssertionsTest_catches_thread_and_block_and_device 2023-01-11T22:07:40.2466385Z c10_cuda_CUDAAssertionsTest_from_2_processes 2023-01-11T22:07:40.2466661Z c10_cuda_CUDAAssertionsTest_multiple_writes_from_blocks_and_threads 2023-01-11T22:07:40.2466945Z c10_cuda_CUDAAssertionsTest_multiple_writes_from_multiple_blocks 2023-01-11T22:07:40.2467238Z c10_cuda_CUDAAssertionsTest_multiple_writes_from_same_block 2023-01-11T22:07:40.2467458Z c10_cuda_CUDATest 2023-01-11T22:07:40.2467616Z c10_either_test 2023-01-11T22:07:40.2467787Z c10_exception_test 2023-01-11T22:07:40.2467962Z c10_flags_test 2023-01-11T22:07:40.2468128Z c10_intrusive_ptr_benchmark 2023-01-11T22:07:40.2468316Z c10_intrusive_ptr_test 2023-01-11T22:07:40.2468489Z c10_irange_test 2023-01-11T22:07:40.2468645Z c10_logging_test 2023-01-11T22:07:40.2468816Z c10_optional_test 2023-01-11T22:07:40.2469010Z c10_ordered_preserving_dict_test 2023-01-11T22:07:40.2469188Z c10_registry_test 2023-01-11T22:07:40.2469362Z c10_string_view_test 2023-01-11T22:07:40.2469536Z c10_tempfile_test 2023-01-11T22:07:40.2469694Z c10_typeid_test 2023-01-11T22:07:40.2469865Z cpu_generator_test 2023-01-11T22:07:40.2470062Z cpu_profiling_allocator_test 2023-01-11T22:07:40.2470234Z cpu_rng_test 2023-01-11T22:07:40.2470400Z cuda_apply_test 2023-01-11T22:07:40.2470577Z cuda_atomic_ops_test 2023-01-11T22:07:40.2470762Z cuda_caching_host_allocator_test 2023-01-11T22:07:40.2470956Z cuda_complex_math_test 2023-01-11T22:07:40.2471137Z cuda_complex_test 2023-01-11T22:07:40.2471294Z cuda_cub_test 2023-01-11T22:07:40.2471459Z cuda_cudnn_test 2023-01-11T22:07:40.2471629Z cuda_device_test 2023-01-11T22:07:40.2471799Z cuda_distributions_test 2023-01-11T22:07:40.2471986Z cuda_dlconvertor_test 2023-01-11T22:07:40.2472169Z cuda_generator_test 2023-01-11T22:07:40.2472333Z cuda_half_test 2023-01-11T22:07:40.2472513Z cuda_integer_divider_test 2023-01-11T22:07:40.2472699Z cuda_optional_test 2023-01-11T22:07:40.2472896Z cuda_packedtensoraccessor_test 2023-01-11T22:07:40.2473100Z cuda_reportMemoryUsage_test 2023-01-11T22:07:40.2473288Z cuda_stream_test 2023-01-11T22:07:40.2473465Z cuda_vectorized_test 2023-01-11T22:07:40.2473635Z dispatch_key_set_test 2023-01-11T22:07:40.2473818Z dlconvertor_test 2023-01-11T22:07:40.2473992Z example_allreduce 2023-01-11T22:07:40.2474159Z extension_backend_test 2023-01-11T22:07:40.2474332Z half_test 2023-01-11T22:07:40.2474500Z inline_container_test 2023-01-11T22:07:40.2474661Z ivalue_test 2023-01-11T22:07:40.2474839Z kernel_function_legacy_test 2023-01-11T22:07:40.2475027Z kernel_function_test 2023-01-11T22:07:40.2475202Z kernel_lambda_legacy_test 2023-01-11T22:07:40.2475386Z kernel_lambda_test 2023-01-11T22:07:40.2475567Z kernel_stackbased_test 2023-01-11T22:07:40.2475734Z lazy_tensor_test 2023-01-11T22:07:40.2475905Z legacy_vmap_test 2023-01-11T22:07:40.2476071Z libc10.so 2023-01-11T22:07:40.2476220Z libc10_cuda.so 2023-01-11T22:07:40.2476389Z libc10d_cuda_test.so 2023-01-11T22:07:40.2476619Z libcaffe2_nvrtc.so 2023-01-11T22:07:40.2476888Z 'libmkldnn*' 2023-01-11T22:07:40.2477148Z 'libnccl*' 2023-01-11T22:07:40.2477460Z 'libtbb*' 2023-01-11T22:07:40.2477729Z libtorch.so 2023-01-11T22:07:40.2478001Z libtorch_cpu.so 2023-01-11T22:07:40.2478174Z libtorch_cuda.so 2023-01-11T22:07:40.2478339Z libtorch_cuda_linalg.so 2023-01-11T22:07:40.2478526Z libtorch_global_deps.so 2023-01-11T22:07:40.2478712Z libtorch_python.so 2023-01-11T22:07:40.2478882Z libtorchbind_test.so 2023-01-11T22:07:40.2479082Z make_boxed_from_unboxed_functor_test 2023-01-11T22:07:40.2479272Z math_kernel_test 2023-01-11T22:07:40.2479433Z memory_format_test 2023-01-11T22:07:40.2479616Z memory_overlapping_test 2023-01-11T22:07:40.2479839Z mobile_memory_cleanup 2023-01-11T22:07:40.2480041Z native_test 2023-01-11T22:07:40.2480241Z op_allowlist_test 2023-01-11T22:07:40.2480557Z op_registration_test 2023-01-11T22:07:40.2480942Z operator_name_test 2023-01-11T22:07:40.2481174Z operators_test 2023-01-11T22:07:40.2481371Z packedtensoraccessor_test 2023-01-11T22:07:40.2481557Z parallel_benchmark 2023-01-11T22:07:40.2481730Z pow_test 2023-01-11T22:07:40.2481891Z protoc 2023-01-11T22:07:40.2482076Z protoc-3.13.0.0 2023-01-11T22:07:40.2482254Z quantized_test 2023-01-11T22:07:40.2482425Z reduce_ops_test 2023-01-11T22:07:40.2482595Z reportMemoryUsage_test 2023-01-11T22:07:40.2482783Z scalar_tensor_test 2023-01-11T22:07:40.2482952Z scalar_test 2023-01-11T22:07:40.2483113Z stride_properties_test 2023-01-11T22:07:40.2483297Z tensor_iterator_test 2023-01-11T22:07:40.2483467Z test_api 2023-01-11T22:07:40.2483614Z test_cpp_rpc 2023-01-11T22:07:40.2483781Z test_dist_autograd 2023-01-11T22:07:40.2483967Z test_edge_op_registration 2023-01-11T22:07:40.2484134Z test_jit 2023-01-11T22:07:40.2484289Z test_lazy 2023-01-11T22:07:40.2484452Z test_mobile_nnc 2023-01-11T22:07:40.2484607Z test_parallel 2023-01-11T22:07:40.2484778Z test_tensorexpr 2023-01-11T22:07:40.2484950Z thread_init_test 2023-01-11T22:07:40.2485109Z torch_shm_manager 2023-01-11T22:07:40.2485288Z tutorial_tensorexpr 2023-01-11T22:07:40.2485465Z type_ptr_test 2023-01-11T22:07:40.2485614Z type_test 2023-01-11T22:07:40.2485783Z undefined_tensor_test 2023-01-11T22:07:40.2485956Z variant_test 2023-01-11T22:07:40.2486119Z vec_test_all_types_AVX2 2023-01-11T22:07:40.2486313Z vec_test_all_types_DEFAULT 2023-01-11T22:07:40.2486506Z verify_api_visibility 2023-01-11T22:07:40.2486669Z weakref_test 2023-01-11T22:07:40.2486836Z wrapdim_test 2023-01-11T22:07:40.2487001Z xla_tensor_test 2023-01-11T22:07:40.2487185Z + aten/tools/run_tests.sh build/bin 2023-01-11T22:07:40.2487382Z + set -e 2023-01-11T22:07:40.2487561Z ++ dirname aten/tools/run_tests.sh 2023-01-11T22:07:40.2521036Z + VALGRIND_SUP=/var/lib/jenkins/workspace/aten/tools/valgrind.sup 2023-01-11T22:07:40.2521593Z + pushd build/bin 2023-01-11T22:07:40.2521900Z ~/workspace/build/bin ~/workspace 2023-01-11T22:07:40.2522083Z + VALGRIND=ON 2023-01-11T22:07:40.2522244Z + ./basic 2023-01-11T22:07:41.5563083Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:41.5563593Z [==========] Running 5 tests from 1 test suite. 2023-01-11T22:07:41.5563899Z [----------] Global test environment set-up. 2023-01-11T22:07:41.5564169Z [----------] 5 tests from BasicTest 2023-01-11T22:07:41.5564443Z [ RUN ] BasicTest.BasicTestCPU 2023-01-11T22:07:41.6802552Z 6 ms 2023-01-11T22:07:41.7538520Z 70 ms 2023-01-11T22:07:41.8620182Z 106 ms 2023-01-11T22:07:41.9166133Z [ OK ] BasicTest.BasicTestCPU (360 ms) 2023-01-11T22:07:41.9166545Z [ RUN ] BasicTest.BasicTestHalfCPU 2023-01-11T22:07:41.9229547Z 3 ms 2023-01-11T22:07:42.0150332Z 91 ms 2023-01-11T22:07:42.1443096Z 129 ms 2023-01-11T22:07:42.1575704Z [ OK ] BasicTest.BasicTestHalfCPU (240 ms) 2023-01-11T22:07:42.1576296Z [ RUN ] BasicTest.BasicTestCUDA 2023-01-11T22:07:42.1576595Z [ OK ] BasicTest.BasicTestCUDA (0 ms) 2023-01-11T22:07:42.1577154Z [ RUN ] BasicTest.FactoryMethodsTest 2023-01-11T22:07:42.1629676Z [ OK ] BasicTest.FactoryMethodsTest (5 ms) 2023-01-11T22:07:42.1630085Z [ RUN ] BasicTest.BasicStdTestCPU 2023-01-11T22:07:42.1630450Z Simple example: called once 2023-01-11T22:07:42.1634136Z throw: call_once will retry 2023-01-11T22:07:42.1635523Z throw: call_once will retry 2023-01-11T22:07:42.1637304Z Didn't throw, call_once will not attempt again 2023-01-11T22:07:42.1637844Z [ OK ] BasicTest.BasicStdTestCPU (0 ms) 2023-01-11T22:07:42.1638185Z [----------] 5 tests from BasicTest (607 ms total) 2023-01-11T22:07:42.1638374Z 2023-01-11T22:07:42.1638535Z [----------] Global test environment tear-down 2023-01-11T22:07:42.1638853Z [==========] 5 tests from 1 test suite ran. (607 ms total) 2023-01-11T22:07:42.1639260Z [ PASSED ] 5 tests. 2023-01-11T22:07:42.3832731Z + ./atest 2023-01-11T22:07:42.6969673Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:42.6970406Z [==========] Running 16 tests from 1 test suite. 2023-01-11T22:07:42.6970856Z [----------] Global test environment set-up. 2023-01-11T22:07:42.6971249Z [----------] 16 tests from atest 2023-01-11T22:07:42.6971619Z [ RUN ] atest.operators 2023-01-11T22:07:42.6998093Z [ OK ] atest.operators (0 ms) 2023-01-11T22:07:42.6998590Z [ RUN ] atest.logical_and_operators 2023-01-11T22:07:42.6998927Z [ OK ] atest.logical_and_operators (0 ms) 2023-01-11T22:07:42.6999213Z [ RUN ] atest.logical_or_operators 2023-01-11T22:07:42.6999503Z [ OK ] atest.logical_or_operators (0 ms) 2023-01-11T22:07:42.6999783Z [ RUN ] atest.logical_xor_operators 2023-01-11T22:07:42.7000072Z [ OK ] atest.logical_xor_operators (0 ms) 2023-01-11T22:07:42.7000337Z [ RUN ] atest.lt_operators 2023-01-11T22:07:42.7000592Z [ OK ] atest.lt_operators (0 ms) 2023-01-11T22:07:42.7000899Z [ RUN ] atest.le_operators 2023-01-11T22:07:42.7001346Z [ OK ] atest.le_operators (0 ms) 2023-01-11T22:07:42.7001689Z [ RUN ] atest.gt_operators 2023-01-11T22:07:42.7002138Z [ OK ] atest.gt_operators (0 ms) 2023-01-11T22:07:42.7002497Z [ RUN ] atest.ge_operators 2023-01-11T22:07:42.7002914Z [ OK ] atest.ge_operators (0 ms) 2023-01-11T22:07:42.7003363Z [ RUN ] atest.eq_operators 2023-01-11T22:07:42.7003726Z [ OK ] atest.eq_operators (0 ms) 2023-01-11T22:07:42.7004108Z [ RUN ] atest.ne_operators 2023-01-11T22:07:42.7004499Z [ OK ] atest.ne_operators (0 ms) 2023-01-11T22:07:42.7004840Z [ RUN ] atest.add_operators 2023-01-11T22:07:42.7005339Z [ OK ] atest.add_operators (0 ms) 2023-01-11T22:07:42.7005780Z [ RUN ] atest.max_operators 2023-01-11T22:07:42.7012187Z [ OK ] atest.max_operators (2 ms) 2023-01-11T22:07:42.7012547Z [ RUN ] atest.min_operators 2023-01-11T22:07:42.7012919Z [ OK ] atest.min_operators (0 ms) 2023-01-11T22:07:42.7013232Z [ RUN ] atest.sigmoid_backward_operator 2023-01-11T22:07:42.7013743Z [ OK ] atest.sigmoid_backward_operator (0 ms) 2023-01-11T22:07:42.7014034Z [ RUN ] atest.fmod_tensor_operators 2023-01-11T22:07:42.7015306Z [ OK ] atest.fmod_tensor_operators (0 ms) 2023-01-11T22:07:42.7015608Z [ RUN ] atest.atest 2023-01-11T22:07:42.7136039Z [ OK ] atest.atest (12 ms) 2023-01-11T22:07:42.7136903Z [----------] 16 tests from atest (16 ms total) 2023-01-11T22:07:42.7137046Z 2023-01-11T22:07:42.7137217Z [----------] Global test environment tear-down 2023-01-11T22:07:42.7137528Z [==========] 16 tests from 1 test suite ran. (16 ms total) 2023-01-11T22:07:42.7137965Z [ PASSED ] 16 tests. 2023-01-11T22:07:42.7870612Z + ./scalar_test 2023-01-11T22:07:43.0984325Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:43.0985194Z [==========] Running 4 tests from 1 test suite. 2023-01-11T22:07:43.0985541Z [----------] Global test environment set-up. 2023-01-11T22:07:43.0985846Z [----------] 4 tests from TestScalar 2023-01-11T22:07:43.0986122Z [ RUN ] TestScalar.TestScalar 2023-01-11T22:07:43.0986320Z H2: 3 257 3 1 2023-01-11T22:07:43.1125979Z [ OK ] TestScalar.TestScalar (14 ms) 2023-01-11T22:07:43.1126471Z [ RUN ] TestScalar.TestConj 2023-01-11T22:07:43.1126998Z [ OK ] TestScalar.TestConj (0 ms) 2023-01-11T22:07:43.1127555Z [ RUN ] TestScalar.TestEqual 2023-01-11T22:07:43.1127842Z [ OK ] TestScalar.TestEqual (0 ms) 2023-01-11T22:07:43.1128172Z [ RUN ] TestScalar.TestFormatting 2023-01-11T22:07:43.1128497Z [ OK ] TestScalar.TestFormatting (0 ms) 2023-01-11T22:07:43.1128818Z [----------] 4 tests from TestScalar (14 ms total) 2023-01-11T22:07:43.1129010Z 2023-01-11T22:07:43.1129423Z [----------] Global test environment tear-down 2023-01-11T22:07:43.1129741Z [==========] 4 tests from 1 test suite ran. (14 ms total) 2023-01-11T22:07:43.1129991Z [ PASSED ] 4 tests. 2023-01-11T22:07:43.1831784Z + ./broadcast_test 2023-01-11T22:07:43.5157244Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:43.5157817Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:07:43.5158143Z [----------] Global test environment set-up. 2023-01-11T22:07:43.5158461Z [----------] 1 test from BroadcastTest 2023-01-11T22:07:43.5158790Z [ RUN ] BroadcastTest.Broadcast 2023-01-11T22:07:43.6027283Z [ OK ] BroadcastTest.Broadcast (86 ms) 2023-01-11T22:07:43.6027915Z [----------] 1 test from BroadcastTest (86 ms total) 2023-01-11T22:07:43.6028187Z 2023-01-11T22:07:43.6028405Z [----------] Global test environment tear-down 2023-01-11T22:07:43.6028728Z [==========] 1 test from 1 test suite ran. (87 ms total) 2023-01-11T22:07:43.6028986Z [ PASSED ] 1 test. 2023-01-11T22:07:43.6759184Z + ./wrapdim_test 2023-01-11T22:07:43.9881000Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:43.9881750Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:07:43.9882087Z [----------] Global test environment set-up. 2023-01-11T22:07:43.9882375Z [----------] 1 test from TestWrapdim 2023-01-11T22:07:43.9882650Z [ RUN ] TestWrapdim.TestWrapdim 2023-01-11T22:07:43.9886864Z [ OK ] TestWrapdim.TestWrapdim (0 ms) 2023-01-11T22:07:43.9887288Z [----------] 1 test from TestWrapdim (0 ms total) 2023-01-11T22:07:43.9887447Z 2023-01-11T22:07:43.9887617Z [----------] Global test environment tear-down 2023-01-11T22:07:43.9887974Z [==========] 1 test from 1 test suite ran. (0 ms total) 2023-01-11T22:07:43.9888227Z [ PASSED ] 1 test. 2023-01-11T22:07:44.0572355Z + ./apply_utils_test 2023-01-11T22:07:44.3703741Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:44.3704256Z [==========] Running 6 tests from 1 test suite. 2023-01-11T22:07:44.3704564Z [----------] Global test environment set-up. 2023-01-11T22:07:44.3704874Z [----------] 6 tests from ApplyUtilsTest 2023-01-11T22:07:44.3705155Z [ RUN ] ApplyUtilsTest.Contiguous2D 2023-01-11T22:07:44.3743716Z [ OK ] ApplyUtilsTest.Contiguous2D (4 ms) 2023-01-11T22:07:44.3744274Z [ RUN ] ApplyUtilsTest.Small2D 2023-01-11T22:07:44.3745007Z [ OK ] ApplyUtilsTest.Small2D (0 ms) 2023-01-11T22:07:44.3745437Z [ RUN ] ApplyUtilsTest._2D 2023-01-11T22:07:44.3756588Z [ OK ] ApplyUtilsTest._2D (1 ms) 2023-01-11T22:07:44.3756883Z [ RUN ] ApplyUtilsTest._3D 2023-01-11T22:07:44.3758267Z [ OK ] ApplyUtilsTest._3D (0 ms) 2023-01-11T22:07:44.3758578Z [ RUN ] ApplyUtilsTest.Medium3D 2023-01-11T22:07:44.3772751Z [ OK ] ApplyUtilsTest.Medium3D (1 ms) 2023-01-11T22:07:44.3773031Z [ RUN ] ApplyUtilsTest._10D 2023-01-11T22:07:44.4637397Z [ OK ] ApplyUtilsTest._10D (86 ms) 2023-01-11T22:07:44.4637782Z [----------] 6 tests from ApplyUtilsTest (93 ms total) 2023-01-11T22:07:44.4637951Z 2023-01-11T22:07:44.4638288Z [----------] Global test environment tear-down 2023-01-11T22:07:44.4638593Z [==========] 6 tests from 1 test suite ran. (93 ms total) 2023-01-11T22:07:44.4638859Z [ PASSED ] 6 tests. 2023-01-11T22:07:44.5350286Z + ./dlconvertor_test 2023-01-11T22:07:44.8683474Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:44.8684180Z [==========] Running 2 tests from 1 test suite. 2023-01-11T22:07:44.8684486Z [----------] Global test environment set-up. 2023-01-11T22:07:44.8684828Z [----------] 2 tests from TestDlconvertor 2023-01-11T22:07:44.8685146Z [ RUN ] TestDlconvertor.TestDlconvertor 2023-01-11T22:07:44.8687415Z [ OK ] TestDlconvertor.TestDlconvertor (0 ms) 2023-01-11T22:07:44.8688046Z [ RUN ] TestDlconvertor.TestDlconvertorNoStrides 2023-01-11T22:07:44.8688580Z [ OK ] TestDlconvertor.TestDlconvertorNoStrides (0 ms) 2023-01-11T22:07:44.8688953Z [----------] 2 tests from TestDlconvertor (0 ms total) 2023-01-11T22:07:44.8689322Z 2023-01-11T22:07:44.8689492Z [----------] Global test environment tear-down 2023-01-11T22:07:44.8689800Z [==========] 2 tests from 1 test suite ran. (0 ms total) 2023-01-11T22:07:44.8690054Z [ PASSED ] 2 tests. 2023-01-11T22:07:44.9390895Z + ./native_test 2023-01-11T22:07:45.2522460Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:45.2523215Z [==========] Running 2 tests from 1 test suite. 2023-01-11T22:07:45.2523676Z [----------] Global test environment set-up. 2023-01-11T22:07:45.2524020Z [----------] 2 tests from TestNative 2023-01-11T22:07:45.2524289Z [ RUN ] TestNative.NativeTestCPU 2023-01-11T22:07:45.2731967Z [W TensorCompare.cpp:493] Warning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead. (function operator()) 2023-01-11T22:07:45.2745595Z [ OK ] TestNative.NativeTestCPU (22 ms) 2023-01-11T22:07:45.2746013Z [ RUN ] TestNative.NativeTestGPU 2023-01-11T22:07:45.2746447Z [ OK ] TestNative.NativeTestGPU (0 ms) 2023-01-11T22:07:45.2746785Z [----------] 2 tests from TestNative (22 ms total) 2023-01-11T22:07:45.2746960Z 2023-01-11T22:07:45.2747167Z [----------] Global test environment tear-down 2023-01-11T22:07:45.2747466Z [==========] 2 tests from 1 test suite ran. (22 ms total) 2023-01-11T22:07:45.2747741Z [ PASSED ] 2 tests. 2023-01-11T22:07:45.3458587Z + ./scalar_tensor_test 2023-01-11T22:07:45.6599900Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:45.6600651Z [==========] Running 3 tests from 1 test suite. 2023-01-11T22:07:45.6600943Z [----------] Global test environment set-up. 2023-01-11T22:07:45.6601254Z [----------] 3 tests from TestScalarTensor 2023-01-11T22:07:45.6601588Z [ RUN ] TestScalarTensor.TestScalarTensorCPU 2023-01-11T22:07:45.8844919Z [ OK ] TestScalarTensor.TestScalarTensorCPU (224 ms) 2023-01-11T22:07:45.8845742Z [ RUN ] TestScalarTensor.TestScalarTensorCUDA 2023-01-11T22:07:45.8846170Z [ OK ] TestScalarTensor.TestScalarTensorCUDA (0 ms) 2023-01-11T22:07:45.8846555Z [ RUN ] TestScalarTensor.TestScalarTensorMPS 2023-01-11T22:07:45.8846909Z [ OK ] TestScalarTensor.TestScalarTensorMPS (0 ms) 2023-01-11T22:07:45.8847276Z [----------] 3 tests from TestScalarTensor (224 ms total) 2023-01-11T22:07:45.8847437Z 2023-01-11T22:07:45.8847603Z [----------] Global test environment tear-down 2023-01-11T22:07:45.8847906Z [==========] 3 tests from 1 test suite ran. (224 ms total) 2023-01-11T22:07:45.8848165Z [ PASSED ] 3 tests. 2023-01-11T22:07:45.9585528Z + [[ -x ./tensor_interop_test ]] 2023-01-11T22:07:45.9585790Z + ./undefined_tensor_test 2023-01-11T22:07:46.2720475Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:46.2721226Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:07:46.2721538Z [----------] Global test environment set-up. 2023-01-11T22:07:46.2721837Z [----------] 1 test from TestUndefined 2023-01-11T22:07:46.2722127Z [ RUN ] TestUndefined.UndefinedTest 2023-01-11T22:07:46.3050893Z [ OK ] TestUndefined.UndefinedTest (33 ms) 2023-01-11T22:07:46.3051512Z [----------] 1 test from TestUndefined (33 ms total) 2023-01-11T22:07:46.3051792Z 2023-01-11T22:07:46.3052013Z [----------] Global test environment tear-down 2023-01-11T22:07:46.3052322Z [==========] 1 test from 1 test suite ran. (33 ms total) 2023-01-11T22:07:46.3052566Z [ PASSED ] 1 test. 2023-01-11T22:07:46.3768427Z + ./extension_backend_test 2023-01-11T22:07:46.6893964Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:46.6894608Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:07:46.6895051Z [----------] Global test environment set-up. 2023-01-11T22:07:46.6895549Z [----------] 1 test from BackendExtensionTest 2023-01-11T22:07:46.6896065Z [ RUN ] BackendExtensionTest.TestRegisterOp 2023-01-11T22:07:46.6896610Z [ OK ] BackendExtensionTest.TestRegisterOp (0 ms) 2023-01-11T22:07:46.6897174Z [----------] 1 test from BackendExtensionTest (0 ms total) 2023-01-11T22:07:46.6897445Z 2023-01-11T22:07:46.6897700Z [----------] Global test environment tear-down 2023-01-11T22:07:46.6898195Z [==========] 1 test from 1 test suite ran. (0 ms total) 2023-01-11T22:07:46.6898602Z [ PASSED ] 1 test. 2023-01-11T22:07:46.7592178Z + ./lazy_tensor_test 2023-01-11T22:07:47.0709755Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:47.0710520Z [==========] Running 2 tests from 2 test suites. 2023-01-11T22:07:47.0711079Z [----------] Global test environment set-up. 2023-01-11T22:07:47.0711641Z [----------] 1 test from XlaTensorTest 2023-01-11T22:07:47.0712011Z [ RUN ] XlaTensorTest.TestNoStorage 2023-01-11T22:07:47.0712325Z [ OK ] XlaTensorTest.TestNoStorage (0 ms) 2023-01-11T22:07:47.0712648Z [----------] 1 test from XlaTensorTest (0 ms total) 2023-01-11T22:07:47.0712799Z 2023-01-11T22:07:47.0712946Z [----------] 1 test from LazyTensorTest 2023-01-11T22:07:47.0713224Z [ RUN ] LazyTensorTest.TestNoStorage 2023-01-11T22:07:47.0713541Z [ OK ] LazyTensorTest.TestNoStorage (0 ms) 2023-01-11T22:07:47.0713864Z [----------] 1 test from LazyTensorTest (0 ms total) 2023-01-11T22:07:47.0714016Z 2023-01-11T22:07:47.0714174Z [----------] Global test environment tear-down 2023-01-11T22:07:47.0714480Z [==========] 2 tests from 2 test suites ran. (0 ms total) 2023-01-11T22:07:47.0714976Z [ PASSED ] 2 tests. 2023-01-11T22:07:47.1391726Z + ./tensor_iterator_test 2023-01-11T22:07:47.4806689Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:47.4807457Z [==========] Running 65 tests from 1 test suite. 2023-01-11T22:07:47.4807999Z [----------] Global test environment set-up. 2023-01-11T22:07:47.4808438Z [----------] 65 tests from TensorIteratorTest 2023-01-11T22:07:47.4808744Z [ RUN ] TensorIteratorTest.CPUScalar 2023-01-11T22:07:47.4809245Z [ OK ] TensorIteratorTest.CPUScalar (0 ms) 2023-01-11T22:07:47.4809568Z [ RUN ] TensorIteratorTest.CPUScalarInputs 2023-01-11T22:07:47.4809918Z [ OK ] TensorIteratorTest.CPUScalarInputs (0 ms) 2023-01-11T22:07:47.4810485Z [ RUN ] TensorIteratorTest.MixedDevices 2023-01-11T22:07:47.4810811Z [ OK ] TensorIteratorTest.MixedDevices (0 ms) 2023-01-11T22:07:47.4811167Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Byte 2023-01-11T22:07:47.4831669Z [ OK ] TensorIteratorTest.SerialLoopUnary_Byte (2 ms) 2023-01-11T22:07:47.4832211Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Char 2023-01-11T22:07:47.4849188Z [ OK ] TensorIteratorTest.SerialLoopUnary_Char (1 ms) 2023-01-11T22:07:47.4849831Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Short 2023-01-11T22:07:47.4866790Z [ OK ] TensorIteratorTest.SerialLoopUnary_Short (1 ms) 2023-01-11T22:07:47.4867362Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Int 2023-01-11T22:07:47.4884266Z [ OK ] TensorIteratorTest.SerialLoopUnary_Int (1 ms) 2023-01-11T22:07:47.4884859Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Long 2023-01-11T22:07:47.4901737Z [ OK ] TensorIteratorTest.SerialLoopUnary_Long (1 ms) 2023-01-11T22:07:47.4902405Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Float 2023-01-11T22:07:47.4919531Z [ OK ] TensorIteratorTest.SerialLoopUnary_Float (1 ms) 2023-01-11T22:07:47.4920135Z [ RUN ] TensorIteratorTest.SerialLoopUnary_Double 2023-01-11T22:07:47.4937348Z [ OK ] TensorIteratorTest.SerialLoopUnary_Double (1 ms) 2023-01-11T22:07:47.4937953Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Byte 2023-01-11T22:07:47.4954934Z [ OK ] TensorIteratorTest.SerialLoopBinary_Byte (1 ms) 2023-01-11T22:07:47.4955520Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Char 2023-01-11T22:07:47.4972497Z [ OK ] TensorIteratorTest.SerialLoopBinary_Char (1 ms) 2023-01-11T22:07:47.4973091Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Short 2023-01-11T22:07:47.4989966Z [ OK ] TensorIteratorTest.SerialLoopBinary_Short (1 ms) 2023-01-11T22:07:47.4990546Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Int 2023-01-11T22:07:47.5007193Z [ OK ] TensorIteratorTest.SerialLoopBinary_Int (1 ms) 2023-01-11T22:07:47.5007782Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Long 2023-01-11T22:07:47.5024733Z [ OK ] TensorIteratorTest.SerialLoopBinary_Long (1 ms) 2023-01-11T22:07:47.5025328Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Float 2023-01-11T22:07:47.5042046Z [ OK ] TensorIteratorTest.SerialLoopBinary_Float (1 ms) 2023-01-11T22:07:47.5042649Z [ RUN ] TensorIteratorTest.SerialLoopBinary_Double 2023-01-11T22:07:47.5059653Z [ OK ] TensorIteratorTest.SerialLoopBinary_Double (1 ms) 2023-01-11T22:07:47.5060243Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Byte 2023-01-11T22:07:47.5077096Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Byte (1 ms) 2023-01-11T22:07:47.5077709Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Char 2023-01-11T22:07:47.5094526Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Char (1 ms) 2023-01-11T22:07:47.5095236Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Short 2023-01-11T22:07:47.5111946Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Short (1 ms) 2023-01-11T22:07:47.5112542Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Int 2023-01-11T22:07:47.5129554Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Int (1 ms) 2023-01-11T22:07:47.5130182Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Long 2023-01-11T22:07:47.5147061Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Long (1 ms) 2023-01-11T22:07:47.5147671Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Float 2023-01-11T22:07:47.5164492Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Float (1 ms) 2023-01-11T22:07:47.5165203Z [ RUN ] TensorIteratorTest.SerialLoopPointwise_Double 2023-01-11T22:07:47.5182890Z [ OK ] TensorIteratorTest.SerialLoopPointwise_Double (1 ms) 2023-01-11T22:07:47.5183622Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Byte 2023-01-11T22:07:47.5184289Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Byte (0 ms) 2023-01-11T22:07:47.5184959Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Char 2023-01-11T22:07:47.5185629Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Char (0 ms) 2023-01-11T22:07:47.5186271Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Short 2023-01-11T22:07:47.5186909Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Short (0 ms) 2023-01-11T22:07:47.5187412Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Int 2023-01-11T22:07:47.5187827Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Int (0 ms) 2023-01-11T22:07:47.5188231Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Long 2023-01-11T22:07:47.5188643Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Long (0 ms) 2023-01-11T22:07:47.5189057Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Float 2023-01-11T22:07:47.5189480Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Float (0 ms) 2023-01-11T22:07:47.5189894Z [ RUN ] TensorIteratorTest.SerialLoopUnaryNoOutput_Double 2023-01-11T22:07:47.5190312Z [ OK ] TensorIteratorTest.SerialLoopUnaryNoOutput_Double (0 ms) 2023-01-11T22:07:47.5190730Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Byte 2023-01-11T22:07:47.5191137Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Byte (0 ms) 2023-01-11T22:07:47.5191549Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Char 2023-01-11T22:07:47.5191968Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Char (0 ms) 2023-01-11T22:07:47.5192370Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Short 2023-01-11T22:07:47.5192792Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Short (0 ms) 2023-01-11T22:07:47.5193327Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Int 2023-01-11T22:07:47.5193979Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Int (0 ms) 2023-01-11T22:07:47.5194604Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Long 2023-01-11T22:07:47.5195248Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Long (0 ms) 2023-01-11T22:07:47.5195914Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Float 2023-01-11T22:07:47.5196577Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Float (0 ms) 2023-01-11T22:07:47.5197254Z [ RUN ] TensorIteratorTest.SerialLoopBinaryNoOutput_Double 2023-01-11T22:07:47.5197939Z [ OK ] TensorIteratorTest.SerialLoopBinaryNoOutput_Double (0 ms) 2023-01-11T22:07:47.5198626Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Byte 2023-01-11T22:07:47.5199496Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Byte (0 ms) 2023-01-11T22:07:47.5200218Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Char 2023-01-11T22:07:47.5200850Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Char (0 ms) 2023-01-11T22:07:47.5201457Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Short 2023-01-11T22:07:47.5201909Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Short (0 ms) 2023-01-11T22:07:47.5202334Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Int 2023-01-11T22:07:47.5202766Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Int (0 ms) 2023-01-11T22:07:47.5203178Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Long 2023-01-11T22:07:47.5203717Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Long (0 ms) 2023-01-11T22:07:47.5204154Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Float 2023-01-11T22:07:47.5204581Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Float (0 ms) 2023-01-11T22:07:47.5205017Z [ RUN ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Double 2023-01-11T22:07:47.5205454Z [ OK ] TensorIteratorTest.SerialLoopPoinwiseNoOutput_Double (0 ms) 2023-01-11T22:07:47.5205861Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Byte 2023-01-11T22:07:47.5206269Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Byte (0 ms) 2023-01-11T22:07:47.5206657Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Char 2023-01-11T22:07:47.5207051Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Char (0 ms) 2023-01-11T22:07:47.5207428Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Short 2023-01-11T22:07:47.5207830Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Short (0 ms) 2023-01-11T22:07:47.5208218Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Int 2023-01-11T22:07:47.5208612Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Int (0 ms) 2023-01-11T22:07:47.5208990Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Long 2023-01-11T22:07:47.5209752Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Long (0 ms) 2023-01-11T22:07:47.5210147Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Float 2023-01-11T22:07:47.5210533Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Float (0 ms) 2023-01-11T22:07:47.5210925Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Double 2023-01-11T22:07:47.5211326Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Double (0 ms) 2023-01-11T22:07:47.5211705Z [ RUN ] TensorIteratorTest.ComparisonLoopBinary_Bool 2023-01-11T22:07:47.5212099Z [ OK ] TensorIteratorTest.ComparisonLoopBinary_Bool (0 ms) 2023-01-11T22:07:47.5212482Z [ RUN ] TensorIteratorTest.SerialLoopSingleThread 2023-01-11T22:07:47.5255504Z [ OK ] TensorIteratorTest.SerialLoopSingleThread (5 ms) 2023-01-11T22:07:47.5256121Z [ RUN ] TensorIteratorTest.InputDType 2023-01-11T22:07:47.5256564Z [ OK ] TensorIteratorTest.InputDType (0 ms) 2023-01-11T22:07:47.5257064Z [ RUN ] TensorIteratorTest.ComputeCommonDTypeInputOnly 2023-01-11T22:07:47.5257609Z [ OK ] TensorIteratorTest.ComputeCommonDTypeInputOnly (0 ms) 2023-01-11T22:07:47.5258183Z [ RUN ] TensorIteratorTest.DoNotComputeCommonDTypeInputOnly 2023-01-11T22:07:47.5258778Z [ OK ] TensorIteratorTest.DoNotComputeCommonDTypeInputOnly (0 ms) 2023-01-11T22:07:47.5259334Z [ RUN ] TensorIteratorTest.FailNonPromotingBinaryOp 2023-01-11T22:07:47.5268733Z [ OK ] TensorIteratorTest.FailNonPromotingBinaryOp (1 ms) 2023-01-11T22:07:47.5269444Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Byte 2023-01-11T22:07:47.5270338Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Byte (0 ms) 2023-01-11T22:07:47.5270893Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Char 2023-01-11T22:07:47.5271431Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Char (0 ms) 2023-01-11T22:07:47.5271984Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Short 2023-01-11T22:07:47.5272548Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Short (0 ms) 2023-01-11T22:07:47.5273078Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Int 2023-01-11T22:07:47.5273637Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Int (0 ms) 2023-01-11T22:07:47.5274182Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Long 2023-01-11T22:07:47.5281439Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Long (0 ms) 2023-01-11T22:07:47.5282281Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Float 2023-01-11T22:07:47.5282850Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Float (0 ms) 2023-01-11T22:07:47.5283394Z [ RUN ] TensorIteratorTest.CpuKernelMultipleOutputs_Double 2023-01-11T22:07:47.5283932Z [ OK ] TensorIteratorTest.CpuKernelMultipleOutputs_Double (0 ms) 2023-01-11T22:07:47.5284445Z [----------] 65 tests from TensorIteratorTest (47 ms total) 2023-01-11T22:07:47.5284661Z 2023-01-11T22:07:47.5284875Z [----------] Global test environment tear-down 2023-01-11T22:07:47.5285281Z [==========] 65 tests from 1 test suite ran. (47 ms total) 2023-01-11T22:07:47.5285596Z [ PASSED ] 65 tests. 2023-01-11T22:07:47.6010827Z + ./Dimname_test 2023-01-11T22:07:47.9356042Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:47.9356703Z [==========] Running 4 tests from 1 test suite. 2023-01-11T22:07:47.9357008Z [----------] Global test environment set-up. 2023-01-11T22:07:47.9357326Z [----------] 4 tests from DimnameTest 2023-01-11T22:07:47.9357620Z [ RUN ] DimnameTest.isValidIdentifier 2023-01-11T22:07:47.9357933Z [ OK ] DimnameTest.isValidIdentifier (0 ms) 2023-01-11T22:07:47.9358235Z [ RUN ] DimnameTest.wildcardName 2023-01-11T22:07:47.9358533Z [ OK ] DimnameTest.wildcardName (0 ms) 2023-01-11T22:07:47.9358823Z [ RUN ] DimnameTest.createNormalName 2023-01-11T22:07:47.9374885Z [ OK ] DimnameTest.createNormalName (1 ms) 2023-01-11T22:07:47.9375483Z [ RUN ] DimnameTest.unifyAndMatch 2023-01-11T22:07:47.9375829Z [ OK ] DimnameTest.unifyAndMatch (0 ms) 2023-01-11T22:07:47.9376147Z [----------] 4 tests from DimnameTest (2 ms total) 2023-01-11T22:07:47.9376303Z 2023-01-11T22:07:47.9376466Z [----------] Global test environment tear-down 2023-01-11T22:07:47.9376776Z [==========] 4 tests from 1 test suite ran. (2 ms total) 2023-01-11T22:07:47.9377025Z [ PASSED ] 4 tests. 2023-01-11T22:07:48.0070918Z + ./Dict_test 2023-01-11T22:07:48.3221505Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:48.3222256Z [==========] Running 47 tests from 2 test suites. 2023-01-11T22:07:48.3222869Z [----------] Global test environment set-up. 2023-01-11T22:07:48.3223345Z [----------] 46 tests from DictTest 2023-01-11T22:07:48.3223914Z [ RUN ] DictTest.givenEmptyDict_whenCallingEmpty_thenReturnsTrue 2023-01-11T22:07:48.3224595Z [ OK ] DictTest.givenEmptyDict_whenCallingEmpty_thenReturnsTrue (0 ms) 2023-01-11T22:07:48.3225274Z [ RUN ] DictTest.givenNonemptyDict_whenCallingEmpty_thenReturnsFalse 2023-01-11T22:07:48.3225944Z [ OK ] DictTest.givenNonemptyDict_whenCallingEmpty_thenReturnsFalse (0 ms) 2023-01-11T22:07:48.3226573Z [ RUN ] DictTest.givenEmptyDict_whenCallingSize_thenReturnsZero 2023-01-11T22:07:48.3227485Z [ OK ] DictTest.givenEmptyDict_whenCallingSize_thenReturnsZero (0 ms) 2023-01-11T22:07:48.3228193Z [ RUN ] DictTest.givenNonemptyDict_whenCallingSize_thenReturnsNumberOfElements 2023-01-11T22:07:48.3228801Z [ OK ] DictTest.givenNonemptyDict_whenCallingSize_thenReturnsNumberOfElements (0 ms) 2023-01-11T22:07:48.3229396Z [ RUN ] DictTest.givenNonemptyDict_whenCallingClear_thenIsEmpty 2023-01-11T22:07:48.3230033Z [ OK ] DictTest.givenNonemptyDict_whenCallingClear_thenIsEmpty (0 ms) 2023-01-11T22:07:48.3230734Z [ RUN ] DictTest.whenInsertingNewKey_thenReturnsTrueAndIteratorToNewElement 2023-01-11T22:07:48.3231679Z [ OK ] DictTest.whenInsertingNewKey_thenReturnsTrueAndIteratorToNewElement (0 ms) 2023-01-11T22:07:48.3232540Z [ RUN ] DictTest.whenInsertingExistingKey_thenReturnsFalseAndIteratorToExistingElement 2023-01-11T22:07:48.3233472Z [ OK ] DictTest.whenInsertingExistingKey_thenReturnsFalseAndIteratorToExistingElement (0 ms) 2023-01-11T22:07:48.3234273Z [ RUN ] DictTest.whenInsertingExistingKey_thenDoesNotModifyDict 2023-01-11T22:07:48.3234959Z [ OK ] DictTest.whenInsertingExistingKey_thenDoesNotModifyDict (0 ms) 2023-01-11T22:07:48.3235750Z [ RUN ] DictTest.whenInsertOrAssigningNewKey_thenReturnsTrueAndIteratorToNewElement 2023-01-11T22:07:48.3236598Z [ OK ] DictTest.whenInsertOrAssigningNewKey_thenReturnsTrueAndIteratorToNewElement (0 ms) 2023-01-11T22:07:48.3237470Z [ RUN ] DictTest.whenInsertOrAssigningExistingKey_thenReturnsFalseAndIteratorToChangedElement 2023-01-11T22:07:48.3238406Z [ OK ] DictTest.whenInsertOrAssigningExistingKey_thenReturnsFalseAndIteratorToChangedElement (0 ms) 2023-01-11T22:07:48.3239227Z [ RUN ] DictTest.whenInsertOrAssigningExistingKey_thenDoesModifyDict 2023-01-11T22:07:48.3239955Z [ OK ] DictTest.whenInsertOrAssigningExistingKey_thenDoesModifyDict (0 ms) 2023-01-11T22:07:48.3240603Z [ RUN ] DictTest.givenEmptyDict_whenIterating_thenBeginIsEnd 2023-01-11T22:07:48.3241231Z [ OK ] DictTest.givenEmptyDict_whenIterating_thenBeginIsEnd (0 ms) 2023-01-11T22:07:48.3241853Z [ RUN ] DictTest.givenMutableDict_whenIterating_thenFindsElements 2023-01-11T22:07:48.3242494Z [ OK ] DictTest.givenMutableDict_whenIterating_thenFindsElements (0 ms) 2023-01-11T22:07:48.3243191Z [ RUN ] DictTest.givenMutableDict_whenIteratingWithForeach_thenFindsElements 2023-01-11T22:07:48.3243906Z [ OK ] DictTest.givenMutableDict_whenIteratingWithForeach_thenFindsElements (0 ms) 2023-01-11T22:07:48.3244568Z [ RUN ] DictTest.givenConstDict_whenIterating_thenFindsElements 2023-01-11T22:07:48.3245252Z [ OK ] DictTest.givenConstDict_whenIterating_thenFindsElements (0 ms) 2023-01-11T22:07:48.3245909Z [ RUN ] DictTest.givenConstDict_whenIteratingWithForeach_thenFindsElements 2023-01-11T22:07:48.3246611Z [ OK ] DictTest.givenConstDict_whenIteratingWithForeach_thenFindsElements (0 ms) 2023-01-11T22:07:48.3247219Z [ RUN ] DictTest.givenIterator_thenCanModifyValue 2023-01-11T22:07:48.3247770Z [ OK ] DictTest.givenIterator_thenCanModifyValue (0 ms) 2023-01-11T22:07:48.3248400Z [ RUN ] DictTest.givenOneElementDict_whenErasingByIterator_thenDictIsEmpty 2023-01-11T22:07:48.3249315Z [ OK ] DictTest.givenOneElementDict_whenErasingByIterator_thenDictIsEmpty (0 ms) 2023-01-11T22:07:48.3250046Z [ RUN ] DictTest.givenOneElementDict_whenErasingByKey_thenReturnsOneAndDictIsEmpty 2023-01-11T22:07:48.3250796Z [ OK ] DictTest.givenOneElementDict_whenErasingByKey_thenReturnsOneAndDictIsEmpty (0 ms) 2023-01-11T22:07:48.3251600Z [ RUN ] DictTest.givenOneElementDict_whenErasingByNonexistingKey_thenReturnsZeroAndDictIsUnchanged 2023-01-11T22:07:48.3252626Z [ OK ] DictTest.givenOneElementDict_whenErasingByNonexistingKey_thenReturnsZeroAndDictIsUnchanged (0 ms) 2023-01-11T22:07:48.3253394Z [ RUN ] DictTest.whenCallingAtWithExistingKey_thenReturnsCorrectElement 2023-01-11T22:07:48.3254092Z [ OK ] DictTest.whenCallingAtWithExistingKey_thenReturnsCorrectElement (0 ms) 2023-01-11T22:07:48.3254863Z [ RUN ] DictTest.whenCallingAtWithNonExistingKey_thenReturnsCorrectElement 2023-01-11T22:07:48.3255719Z [ OK ] DictTest.whenCallingAtWithNonExistingKey_thenReturnsCorrectElement (0 ms) 2023-01-11T22:07:48.3256624Z [ RUN ] DictTest.givenMutableDict_whenCallingFindOnExistingKey_thenFindsCorrectElement 2023-01-11T22:07:48.3257578Z [ OK ] DictTest.givenMutableDict_whenCallingFindOnExistingKey_thenFindsCorrectElement (0 ms) 2023-01-11T22:07:48.3258397Z [ RUN ] DictTest.givenMutableDict_whenCallingFindOnNonExistingKey_thenReturnsEnd 2023-01-11T22:07:48.3259200Z [ OK ] DictTest.givenMutableDict_whenCallingFindOnNonExistingKey_thenReturnsEnd (0 ms) 2023-01-11T22:07:48.3259980Z [ RUN ] DictTest.givenConstDict_whenCallingFindOnExistingKey_thenFindsCorrectElement 2023-01-11T22:07:48.3260796Z [ OK ] DictTest.givenConstDict_whenCallingFindOnExistingKey_thenFindsCorrectElement (0 ms) 2023-01-11T22:07:48.3261571Z [ RUN ] DictTest.givenConstDict_whenCallingFindOnNonExistingKey_thenReturnsEnd 2023-01-11T22:07:48.3262422Z [ OK ] DictTest.givenConstDict_whenCallingFindOnNonExistingKey_thenReturnsEnd (0 ms) 2023-01-11T22:07:48.3263140Z [ RUN ] DictTest.whenCallingContainsWithExistingKey_thenReturnsTrue 2023-01-11T22:07:48.3263898Z [ OK ] DictTest.whenCallingContainsWithExistingKey_thenReturnsTrue (0 ms) 2023-01-11T22:07:48.3264646Z [ RUN ] DictTest.whenCallingContainsWithNonExistingKey_thenReturnsFalse 2023-01-11T22:07:48.3265420Z [ OK ] DictTest.whenCallingContainsWithNonExistingKey_thenReturnsFalse (0 ms) 2023-01-11T22:07:48.3266078Z [ RUN ] DictTest.whenCallingReserve_thenDoesntCrash 2023-01-11T22:07:48.3266659Z [ OK ] DictTest.whenCallingReserve_thenDoesntCrash (0 ms) 2023-01-11T22:07:48.3267272Z [ RUN ] DictTest.whenCopyConstructingDict_thenAreEqual 2023-01-11T22:07:48.3267896Z [ OK ] DictTest.whenCopyConstructingDict_thenAreEqual (0 ms) 2023-01-11T22:07:48.3268485Z [ RUN ] DictTest.whenCopyAssigningDict_thenAreEqual 2023-01-11T22:07:48.3269059Z [ OK ] DictTest.whenCopyAssigningDict_thenAreEqual (0 ms) 2023-01-11T22:07:48.3269546Z [ RUN ] DictTest.whenCopyingDict_thenAreEqual 2023-01-11T22:07:48.3270010Z [ OK ] DictTest.whenCopyingDict_thenAreEqual (0 ms) 2023-01-11T22:07:48.3270572Z [ RUN ] DictTest.whenMoveConstructingDict_thenNewIsCorrect 2023-01-11T22:07:48.3271181Z [ OK ] DictTest.whenMoveConstructingDict_thenNewIsCorrect (0 ms) 2023-01-11T22:07:48.3271758Z [ RUN ] DictTest.whenMoveAssigningDict_thenNewIsCorrect 2023-01-11T22:07:48.3272286Z [ OK ] DictTest.whenMoveAssigningDict_thenNewIsCorrect (0 ms) 2023-01-11T22:07:48.3272808Z [ RUN ] DictTest.whenMoveConstructingDict_thenOldIsUnchanged 2023-01-11T22:07:48.3273335Z [ OK ] DictTest.whenMoveConstructingDict_thenOldIsUnchanged (0 ms) 2023-01-11T22:07:48.3273871Z [ RUN ] DictTest.whenMoveAssigningDict_thenOldIsUnchanged 2023-01-11T22:07:48.3274501Z [ OK ] DictTest.whenMoveAssigningDict_thenOldIsUnchanged (0 ms) 2023-01-11T22:07:48.3275221Z [ RUN ] DictTest.givenIterator_whenPostfixIncrementing_thenMovesToNextAndReturnsOldPosition 2023-01-11T22:07:48.3275998Z [ OK ] DictTest.givenIterator_whenPostfixIncrementing_thenMovesToNextAndReturnsOldPosition (0 ms) 2023-01-11T22:07:48.3276942Z [ RUN ] DictTest.givenIterator_whenPrefixIncrementing_thenMovesToNextAndReturnsNewPosition 2023-01-11T22:07:48.3277748Z [ OK ] DictTest.givenIterator_whenPrefixIncrementing_thenMovesToNextAndReturnsNewPosition (0 ms) 2023-01-11T22:07:48.3278381Z [ RUN ] DictTest.givenEqualIterators_thenAreEqual 2023-01-11T22:07:48.3278957Z [ OK ] DictTest.givenEqualIterators_thenAreEqual (0 ms) 2023-01-11T22:07:48.3279538Z [ RUN ] DictTest.givenDifferentIterators_thenAreNotEqual 2023-01-11T22:07:48.3280159Z [ OK ] DictTest.givenDifferentIterators_thenAreNotEqual (0 ms) 2023-01-11T22:07:48.3280795Z [ RUN ] DictTest.givenIterator_whenDereferencing_thenPointsToCorrectElement 2023-01-11T22:07:48.3281608Z [ OK ] DictTest.givenIterator_whenDereferencing_thenPointsToCorrectElement (0 ms) 2023-01-11T22:07:48.3282285Z [ RUN ] DictTest.givenIterator_whenWritingToValue_thenChangesValue 2023-01-11T22:07:48.3282897Z [ OK ] DictTest.givenIterator_whenWritingToValue_thenChangesValue (0 ms) 2023-01-11T22:07:48.3283433Z [ RUN ] DictTest.isReferenceType 2023-01-11T22:07:48.3283903Z [ OK ] DictTest.isReferenceType (0 ms) 2023-01-11T22:07:48.3284403Z [ RUN ] DictTest.copyHasSeparateStorage 2023-01-11T22:07:48.3284923Z [ OK ] DictTest.copyHasSeparateStorage (0 ms) 2023-01-11T22:07:48.3285415Z [ RUN ] DictTest.dictTensorAsKey 2023-01-11T22:07:48.3285877Z [ OK ] DictTest.dictTensorAsKey (0 ms) 2023-01-11T22:07:48.3286371Z [ RUN ] DictTest.dictEquality 2023-01-11T22:07:48.3286794Z [ OK ] DictTest.dictEquality (0 ms) 2023-01-11T22:07:48.3287258Z [----------] 46 tests from DictTest (0 ms total) 2023-01-11T22:07:48.3287471Z 2023-01-11T22:07:48.3287712Z [----------] 1 test from ListTest_IValueBasedList 2023-01-11T22:07:48.3288360Z [ RUN ] ListTest_IValueBasedList.givenIterator_whenWritingToValueFromIterator_thenChangesValue 2023-01-11T22:07:48.3289266Z [ OK ] ListTest_IValueBasedList.givenIterator_whenWritingToValueFromIterator_thenChangesValue (0 ms) 2023-01-11T22:07:48.3289916Z [----------] 1 test from ListTest_IValueBasedList (0 ms total) 2023-01-11T22:07:48.3290176Z 2023-01-11T22:07:48.3290415Z [----------] Global test environment tear-down 2023-01-11T22:07:48.3290895Z [==========] 47 tests from 2 test suites ran. (0 ms total) 2023-01-11T22:07:48.3291280Z [ PASSED ] 47 tests. 2023-01-11T22:07:48.3950709Z + ./NamedTensor_test 2023-01-11T22:07:48.7064427Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:48.7065214Z [==========] Running 10 tests from 1 test suite. 2023-01-11T22:07:48.7065576Z [----------] Global test environment set-up. 2023-01-11T22:07:48.7066022Z [----------] 10 tests from NamedTensorTest 2023-01-11T22:07:48.7066357Z [ RUN ] NamedTensorTest.isNamed 2023-01-11T22:07:48.7066866Z [W TensorImpl.h:1816] Warning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (function operator()) 2023-01-11T22:07:48.7067428Z [ OK ] NamedTensorTest.isNamed (0 ms) 2023-01-11T22:07:48.7067789Z [ RUN ] NamedTensorTest.attachMetadata 2023-01-11T22:07:48.7068106Z [ OK ] NamedTensorTest.attachMetadata (0 ms) 2023-01-11T22:07:48.7068490Z [ RUN ] NamedTensorTest.internalSetNamesInplace 2023-01-11T22:07:48.7068899Z [ OK ] NamedTensorTest.internalSetNamesInplace (0 ms) 2023-01-11T22:07:48.7069216Z [ RUN ] NamedTensorTest.empty 2023-01-11T22:07:48.7102085Z [ OK ] NamedTensorTest.empty (3 ms) 2023-01-11T22:07:48.7102690Z [ RUN ] NamedTensorTest.dimnameToPosition 2023-01-11T22:07:48.7107603Z [ OK ] NamedTensorTest.dimnameToPosition (0 ms) 2023-01-11T22:07:48.7107990Z [ RUN ] NamedTensorTest.unifyFromRight 2023-01-11T22:07:48.7176568Z [ OK ] NamedTensorTest.unifyFromRight (6 ms) 2023-01-11T22:07:48.7177016Z [ RUN ] NamedTensorTest.alias 2023-01-11T22:07:48.7177300Z [ OK ] NamedTensorTest.alias (0 ms) 2023-01-11T22:07:48.7177593Z [ RUN ] NamedTensorTest.NoNamesGuard 2023-01-11T22:07:48.7177913Z [ OK ] NamedTensorTest.NoNamesGuard (0 ms) 2023-01-11T22:07:48.7178222Z [ RUN ] NamedTensorTest.TensorNamePrint 2023-01-11T22:07:48.7178558Z [ OK ] NamedTensorTest.TensorNamePrint (0 ms) 2023-01-11T22:07:48.7179021Z [ RUN ] NamedTensorTest.TensorNamesCheckUnique 2023-01-11T22:07:48.7182860Z [ OK ] NamedTensorTest.TensorNamesCheckUnique (0 ms) 2023-01-11T22:07:48.7183233Z [----------] 10 tests from NamedTensorTest (11 ms total) 2023-01-11T22:07:48.7183398Z 2023-01-11T22:07:48.7183563Z [----------] Global test environment tear-down 2023-01-11T22:07:48.7183870Z [==========] 10 tests from 1 test suite ran. (11 ms total) 2023-01-11T22:07:48.7184130Z [ PASSED ] 10 tests. 2023-01-11T22:07:48.7881777Z + ./cpu_generator_test 2023-01-11T22:07:49.0984712Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:49.0985344Z [==========] Running 15 tests from 1 test suite. 2023-01-11T22:07:49.0985757Z [----------] Global test environment set-up. 2023-01-11T22:07:49.0986226Z [----------] 15 tests from CPUGeneratorImpl 2023-01-11T22:07:49.0986727Z [ RUN ] CPUGeneratorImpl.TestGeneratorDynamicCast 2023-01-11T22:07:49.0987361Z [ OK ] CPUGeneratorImpl.TestGeneratorDynamicCast (0 ms) 2023-01-11T22:07:49.0987949Z [ RUN ] CPUGeneratorImpl.TestDefaultGenerator 2023-01-11T22:07:49.0988486Z [ OK ] CPUGeneratorImpl.TestDefaultGenerator (0 ms) 2023-01-11T22:07:49.0989024Z [ RUN ] CPUGeneratorImpl.TestCloning 2023-01-11T22:07:49.0989519Z [ OK ] CPUGeneratorImpl.TestCloning (0 ms) 2023-01-11T22:07:49.0990126Z [ RUN ] CPUGeneratorImpl.TestMultithreadingGetEngineOperator 2023-01-11T22:07:49.0991010Z [ OK ] CPUGeneratorImpl.TestMultithreadingGetEngineOperator (0 ms) 2023-01-11T22:07:49.0991832Z [ RUN ] CPUGeneratorImpl.TestGetSetCurrentSeed 2023-01-11T22:07:49.0992559Z [ OK ] CPUGeneratorImpl.TestGetSetCurrentSeed (0 ms) 2023-01-11T22:07:49.0993390Z [ RUN ] CPUGeneratorImpl.TestMultithreadingGetSetCurrentSeed 2023-01-11T22:07:49.0994327Z [ OK ] CPUGeneratorImpl.TestMultithreadingGetSetCurrentSeed (0 ms) 2023-01-11T22:07:49.0995075Z [ RUN ] CPUGeneratorImpl.TestRNGForking 2023-01-11T22:07:49.1004961Z [ OK ] CPUGeneratorImpl.TestRNGForking (1 ms) 2023-01-11T22:07:49.1005568Z [ RUN ] CPUGeneratorImpl.TestPhiloxEngineReproducibility 2023-01-11T22:07:49.1006027Z [ OK ] CPUGeneratorImpl.TestPhiloxEngineReproducibility (0 ms) 2023-01-11T22:07:49.1006427Z [ RUN ] CPUGeneratorImpl.TestPhiloxEngineOffset1 2023-01-11T22:07:49.1006812Z [ OK ] CPUGeneratorImpl.TestPhiloxEngineOffset1 (0 ms) 2023-01-11T22:07:49.1007196Z [ RUN ] CPUGeneratorImpl.TestPhiloxEngineOffset2 2023-01-11T22:07:49.1007567Z [ OK ] CPUGeneratorImpl.TestPhiloxEngineOffset2 (0 ms) 2023-01-11T22:07:49.1007941Z [ RUN ] CPUGeneratorImpl.TestPhiloxEngineOffset3 2023-01-11T22:07:49.1008329Z [ OK ] CPUGeneratorImpl.TestPhiloxEngineOffset3 (0 ms) 2023-01-11T22:07:49.1008774Z [ RUN ] CPUGeneratorImpl.TestPhiloxEngineIndex 2023-01-11T22:07:49.1009712Z [ OK ] CPUGeneratorImpl.TestPhiloxEngineIndex (0 ms) 2023-01-11T22:07:49.1010334Z [ RUN ] CPUGeneratorImpl.TestMT19937EngineReproducibility 2023-01-11T22:07:49.1010979Z [ OK ] CPUGeneratorImpl.TestMT19937EngineReproducibility (0 ms) 2023-01-11T22:07:49.1011414Z [ RUN ] CPUGeneratorImpl.TestPhiloxEngineReproducibilityRandN 2023-01-11T22:07:49.1011888Z [ OK ] CPUGeneratorImpl.TestPhiloxEngineReproducibilityRandN (0 ms) 2023-01-11T22:07:49.1012309Z [ RUN ] CPUGeneratorImpl.TestPhiloxDeterministic 2023-01-11T22:07:49.1012695Z [ OK ] CPUGeneratorImpl.TestPhiloxDeterministic (0 ms) 2023-01-11T22:07:49.1013052Z [----------] 15 tests from CPUGeneratorImpl (2 ms total) 2023-01-11T22:07:49.1013214Z 2023-01-11T22:07:49.1013473Z [----------] Global test environment tear-down 2023-01-11T22:07:49.1013788Z [==========] 15 tests from 1 test suite ran. (2 ms total) 2023-01-11T22:07:49.1014036Z [ PASSED ] 15 tests. 2023-01-11T22:07:49.1728314Z + ./legacy_vmap_test 2023-01-11T22:07:49.4850782Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:49.4851518Z [==========] Running 23 tests from 1 test suite. 2023-01-11T22:07:49.4851814Z [----------] Global test environment set-up. 2023-01-11T22:07:49.4852115Z [----------] 23 tests from VmapTest 2023-01-11T22:07:49.4852403Z [ RUN ] VmapTest.TestBatchedTensor 2023-01-11T22:07:49.4873624Z [ OK ] VmapTest.TestBatchedTensor (2 ms) 2023-01-11T22:07:49.4874041Z [ RUN ] VmapTest.TestBatchedTensorMaxLevel 2023-01-11T22:07:49.4888205Z [ OK ] VmapTest.TestBatchedTensorMaxLevel (1 ms) 2023-01-11T22:07:49.4888587Z [ RUN ] VmapTest.TestBatchedTensorActualDim 2023-01-11T22:07:49.4913280Z [ OK ] VmapTest.TestBatchedTensorActualDim (2 ms) 2023-01-11T22:07:49.4913659Z [ RUN ] VmapTest.TestMultiBatchVmapTransform 2023-01-11T22:07:49.4923225Z [ OK ] VmapTest.TestMultiBatchVmapTransform (0 ms) 2023-01-11T22:07:49.4923603Z [ RUN ] VmapTest.TestVmapPhysicalViewGetPhysicalDim 2023-01-11T22:07:49.4932914Z [ OK ] VmapTest.TestVmapPhysicalViewGetPhysicalDim (0 ms) 2023-01-11T22:07:49.4933329Z [ RUN ] VmapTest.TestVmapPhysicalViewGetPhysicalDims 2023-01-11T22:07:49.4942610Z [ OK ] VmapTest.TestVmapPhysicalViewGetPhysicalDims (0 ms) 2023-01-11T22:07:49.4943051Z [ RUN ] VmapTest.TestVmapPhysicalViewNewLogicalFromPhysical 2023-01-11T22:07:49.4943518Z [ OK ] VmapTest.TestVmapPhysicalViewNewLogicalFromPhysical (0 ms) 2023-01-11T22:07:49.4943902Z [ RUN ] VmapTest.TestBatchedTensorSum 2023-01-11T22:07:49.4946724Z [ OK ] VmapTest.TestBatchedTensorSum (0 ms) 2023-01-11T22:07:49.4947114Z [ RUN ] VmapTest.TestBroadcastingVmapTransformBatchedBatched 2023-01-11T22:07:49.4953918Z [ OK ] VmapTest.TestBroadcastingVmapTransformBatchedBatched (0 ms) 2023-01-11T22:07:49.4954472Z [ RUN ] VmapTest.TestBroadcastingVmapTransformBatchedUnbatched 2023-01-11T22:07:49.4960332Z [ OK ] VmapTest.TestBroadcastingVmapTransformBatchedUnbatched (0 ms) 2023-01-11T22:07:49.4960844Z [ RUN ] VmapTest.TestBroadcastingVmapTransformMaxLevels 2023-01-11T22:07:49.4964334Z [ OK ] VmapTest.TestBroadcastingVmapTransformMaxLevels (0 ms) 2023-01-11T22:07:49.4964739Z [ RUN ] VmapTest.TestBatchedTensorMul 2023-01-11T22:07:49.4966750Z [ OK ] VmapTest.TestBatchedTensorMul (0 ms) 2023-01-11T22:07:49.4967163Z [ RUN ] VmapTest.TestBatchedTensorSize 2023-01-11T22:07:49.4972892Z [ OK ] VmapTest.TestBatchedTensorSize (0 ms) 2023-01-11T22:07:49.4973283Z [ RUN ] VmapTest.TestVmapPhysicalViewGetPhysicalShape 2023-01-11T22:07:49.4973908Z [ OK ] VmapTest.TestVmapPhysicalViewGetPhysicalShape (0 ms) 2023-01-11T22:07:49.4974284Z [ RUN ] VmapTest.TestBatchedTensorExpand 2023-01-11T22:07:49.5115219Z [ OK ] VmapTest.TestBatchedTensorExpand (14 ms) 2023-01-11T22:07:49.5115669Z [ RUN ] VmapTest.TestBatchedTensorUnsqueeze 2023-01-11T22:07:49.5116530Z [ OK ] VmapTest.TestBatchedTensorUnsqueeze (0 ms) 2023-01-11T22:07:49.5116920Z [ RUN ] VmapTest.TestBatchedTensorSqueeze 2023-01-11T22:07:49.5118208Z [ OK ] VmapTest.TestBatchedTensorSqueeze (0 ms) 2023-01-11T22:07:49.5118547Z [ RUN ] VmapTest.TestBatchedTensorTranspose 2023-01-11T22:07:49.5120773Z [ OK ] VmapTest.TestBatchedTensorTranspose (0 ms) 2023-01-11T22:07:49.5121292Z [ RUN ] VmapTest.TestBatchedTensorPermute 2023-01-11T22:07:49.5122941Z [ OK ] VmapTest.TestBatchedTensorPermute (0 ms) 2023-01-11T22:07:49.5123347Z [ RUN ] VmapTest.TestMultiBatchVmapTransformBatchedBatched 2023-01-11T22:07:49.5148119Z [ OK ] VmapTest.TestMultiBatchVmapTransformBatchedBatched (2 ms) 2023-01-11T22:07:49.5148624Z [ RUN ] VmapTest.TestMultiBatchVmapTransformBatchedUnbatched 2023-01-11T22:07:49.5154661Z [ OK ] VmapTest.TestMultiBatchVmapTransformBatchedUnbatched (0 ms) 2023-01-11T22:07:49.5155175Z [ RUN ] VmapTest.TestMultiBatchVmapTransformMaxLevels 2023-01-11T22:07:49.5159621Z [ OK ] VmapTest.TestMultiBatchVmapTransformMaxLevels (0 ms) 2023-01-11T22:07:49.5160130Z [ RUN ] VmapTest.TestMultiBatchVmapTransformMultipleTensors 2023-01-11T22:07:49.5164450Z [ OK ] VmapTest.TestMultiBatchVmapTransformMultipleTensors (0 ms) 2023-01-11T22:07:49.5164952Z [----------] 23 tests from VmapTest (31 ms total) 2023-01-11T22:07:49.5165112Z 2023-01-11T22:07:49.5165278Z [----------] Global test environment tear-down 2023-01-11T22:07:49.5165583Z [==========] 23 tests from 1 test suite ran. (31 ms total) 2023-01-11T22:07:49.5165842Z [ PASSED ] 23 tests. 2023-01-11T22:07:49.5872845Z + ./operators_test 2023-01-11T22:07:49.9014154Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:49.9014850Z [==========] Running 4 tests from 1 test suite. 2023-01-11T22:07:49.9015144Z [----------] Global test environment set-up. 2023-01-11T22:07:49.9015449Z [----------] 4 tests from OperatorsTest 2023-01-11T22:07:49.9015762Z [ RUN ] OperatorsTest.TestFunctionDecltype 2023-01-11T22:07:49.9020250Z [ OK ] OperatorsTest.TestFunctionDecltype (0 ms) 2023-01-11T22:07:49.9020757Z [ RUN ] OperatorsTest.TestMethodOnlyDecltype 2023-01-11T22:07:49.9021396Z [ OK ] OperatorsTest.TestMethodOnlyDecltype (0 ms) 2023-01-11T22:07:49.9021724Z [ RUN ] OperatorsTest.Test_ATEN_FN 2023-01-11T22:07:49.9049995Z [ OK ] OperatorsTest.Test_ATEN_FN (2 ms) 2023-01-11T22:07:49.9050393Z [ RUN ] OperatorsTest.TestOutVariantIsFaithful 2023-01-11T22:07:49.9050842Z [ OK ] OperatorsTest.TestOutVariantIsFaithful (0 ms) 2023-01-11T22:07:49.9051380Z [----------] 4 tests from OperatorsTest (3 ms total) 2023-01-11T22:07:49.9051524Z 2023-01-11T22:07:49.9051691Z [----------] Global test environment tear-down 2023-01-11T22:07:49.9052005Z [==========] 4 tests from 1 test suite ran. (3 ms total) 2023-01-11T22:07:49.9052263Z [ PASSED ] 4 tests. 2023-01-11T22:07:49.9746302Z + [[ -x ./cudnn_test ]] 2023-01-11T22:07:49.9746824Z + [[ -x ./cuda_generator_test ]] 2023-01-11T22:07:49.9747113Z + ./cuda_generator_test 2023-01-11T22:07:50.3131763Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:50.3132539Z [==========] Running 11 tests from 1 test suite. 2023-01-11T22:07:50.3133321Z [----------] Global test environment set-up. 2023-01-11T22:07:50.3133661Z [----------] 11 tests from CUDAGeneratorImpl 2023-01-11T22:07:50.3134042Z [ RUN ] CUDAGeneratorImpl.TestPhiloxEngineReproducibility 2023-01-11T22:07:50.3134549Z [ OK ] CUDAGeneratorImpl.TestPhiloxEngineReproducibility (0 ms) 2023-01-11T22:07:50.3134963Z [ RUN ] CUDAGeneratorImpl.TestPhiloxEngineOffset1 2023-01-11T22:07:50.3135400Z [ OK ] CUDAGeneratorImpl.TestPhiloxEngineOffset1 (0 ms) 2023-01-11T22:07:50.3135794Z [ RUN ] CUDAGeneratorImpl.TestPhiloxEngineOffset2 2023-01-11T22:07:50.3136222Z [ OK ] CUDAGeneratorImpl.TestPhiloxEngineOffset2 (0 ms) 2023-01-11T22:07:50.3136611Z [ RUN ] CUDAGeneratorImpl.TestPhiloxEngineOffset3 2023-01-11T22:07:50.3137099Z [ OK ] CUDAGeneratorImpl.TestPhiloxEngineOffset3 (0 ms) 2023-01-11T22:07:50.3137535Z [ RUN ] CUDAGeneratorImpl.TestPhiloxEngineIndex 2023-01-11T22:07:50.3137918Z [ OK ] CUDAGeneratorImpl.TestPhiloxEngineIndex (0 ms) 2023-01-11T22:07:50.3138344Z [ RUN ] CUDAGeneratorImpl.TestGeneratorDynamicCast 2023-01-11T22:07:50.3138746Z [ OK ] CUDAGeneratorImpl.TestGeneratorDynamicCast (0 ms) 2023-01-11T22:07:50.3139182Z [ RUN ] CUDAGeneratorImpl.TestDefaultGenerator 2023-01-11T22:07:50.3139543Z [ OK ] CUDAGeneratorImpl.TestDefaultGenerator (0 ms) 2023-01-11T22:07:50.3139938Z [ RUN ] CUDAGeneratorImpl.TestCloning 2023-01-11T22:07:50.3140267Z [ OK ] CUDAGeneratorImpl.TestCloning (0 ms) 2023-01-11T22:07:50.3140708Z [ RUN ] CUDAGeneratorImpl.TestMultithreadingGetSetCurrentSeed 2023-01-11T22:07:50.3141179Z [ OK ] CUDAGeneratorImpl.TestMultithreadingGetSetCurrentSeed (0 ms) 2023-01-11T22:07:50.3141637Z [ RUN ] CUDAGeneratorImpl.TestRNGForking 2023-01-11T22:07:50.3141977Z [ OK ] CUDAGeneratorImpl.TestRNGForking (0 ms) 2023-01-11T22:07:50.3142448Z [ RUN ] CUDAGeneratorImpl.TestMultithreadRNG 2023-01-11T22:07:50.3142814Z [ OK ] CUDAGeneratorImpl.TestMultithreadRNG (0 ms) 2023-01-11T22:07:50.3143232Z [----------] 11 tests from CUDAGeneratorImpl (0 ms total) 2023-01-11T22:07:50.3143400Z 2023-01-11T22:07:50.3143556Z [----------] Global test environment tear-down 2023-01-11T22:07:50.3143920Z [==========] 11 tests from 1 test suite ran. (0 ms total) 2023-01-11T22:07:50.3144182Z [ PASSED ] 11 tests. 2023-01-11T22:07:50.3855051Z + [[ -x ./apply_test ]] 2023-01-11T22:07:50.3855360Z + [[ -x ./stream_test ]] 2023-01-11T22:07:50.3855587Z + [[ -x ./cuda_half_test ]] 2023-01-11T22:07:50.3855774Z + ./cuda_half_test 2023-01-11T22:07:50.6966617Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:50.6967442Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:07:50.6967871Z [----------] Global test environment set-up. 2023-01-11T22:07:50.6968138Z [----------] 1 test from HalfCuda 2023-01-11T22:07:50.6968411Z [ RUN ] HalfCuda.HalfCuda 2023-01-11T22:07:50.6968682Z [ OK ] HalfCuda.HalfCuda (0 ms) 2023-01-11T22:07:50.6968976Z [----------] 1 test from HalfCuda (0 ms total) 2023-01-11T22:07:50.6969227Z 2023-01-11T22:07:50.6969394Z [----------] Global test environment tear-down 2023-01-11T22:07:50.6969699Z [==========] 1 test from 1 test suite ran. (0 ms total) 2023-01-11T22:07:50.6969957Z [ PASSED ] 1 test. 2023-01-11T22:07:50.7654705Z + [[ -x ./cuda_vectorized_test ]] 2023-01-11T22:07:50.7654991Z + ./cuda_vectorized_test 2023-01-11T22:07:51.0793425Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:51.0794190Z [==========] Running 2 tests from 1 test suite. 2023-01-11T22:07:51.0794939Z [----------] Global test environment set-up. 2023-01-11T22:07:51.0795469Z [----------] 2 tests from TestVectorizedMemoryAccess 2023-01-11T22:07:51.0796036Z [ RUN ] TestVectorizedMemoryAccess.CanVectorizeUpTo 2023-01-11T22:07:51.0796702Z [ OK ] TestVectorizedMemoryAccess.CanVectorizeUpTo (0 ms) 2023-01-11T22:07:51.0797342Z [ RUN ] TestVectorizedMemoryAccess.CopyKernel 2023-01-11T22:07:51.0797948Z [ OK ] TestVectorizedMemoryAccess.CopyKernel (0 ms) 2023-01-11T22:07:51.0798586Z [----------] 2 tests from TestVectorizedMemoryAccess (0 ms total) 2023-01-11T22:07:51.0798885Z 2023-01-11T22:07:51.0799161Z [----------] Global test environment tear-down 2023-01-11T22:07:51.0799668Z [==========] 2 tests from 1 test suite ran. (0 ms total) 2023-01-11T22:07:51.0800209Z [ PASSED ] 2 tests. 2023-01-11T22:07:51.1491165Z + [[ -x ./cuda_distributions_test ]] 2023-01-11T22:07:51.1491480Z + ./cuda_distributions_test 2023-01-11T22:07:51.4629416Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:51.4630115Z [==========] Running 4 tests from 2 test suites. 2023-01-11T22:07:51.4630638Z [----------] Global test environment set-up. 2023-01-11T22:07:51.4631132Z [----------] 3 tests from DistributionsTest 2023-01-11T22:07:51.4631529Z [ RUN ] DistributionsTest.TestPhiloxIncrementSmallUniformTensor 2023-01-11T22:07:51.4632000Z [ OK ] DistributionsTest.TestPhiloxIncrementSmallUniformTensor (0 ms) 2023-01-11T22:07:51.4632471Z [ RUN ] DistributionsTest.TestPhiloxIncrementBigUniformTensor 2023-01-11T22:07:51.4632943Z [ OK ] DistributionsTest.TestPhiloxIncrementBigUniformTensor (0 ms) 2023-01-11T22:07:51.4633426Z [ RUN ] DistributionsTest.TestPhiloxIncrementSmallMultinomialTensor 2023-01-11T22:07:51.4633937Z [ OK ] DistributionsTest.TestPhiloxIncrementSmallMultinomialTensor (0 ms) 2023-01-11T22:07:51.4634367Z [----------] 3 tests from DistributionsTest (0 ms total) 2023-01-11T22:07:51.4634532Z 2023-01-11T22:07:51.4634704Z [----------] 1 test from RandomPermutationTest 2023-01-11T22:07:51.4635035Z [ RUN ] RandomPermutationTest.TestIslandShuffle 2023-01-11T22:07:51.4635414Z [ OK ] RandomPermutationTest.TestIslandShuffle (0 ms) 2023-01-11T22:07:51.4635787Z [----------] 1 test from RandomPermutationTest (0 ms total) 2023-01-11T22:07:51.4635953Z 2023-01-11T22:07:51.4636107Z [----------] Global test environment tear-down 2023-01-11T22:07:51.4636416Z [==========] 4 tests from 2 test suites ran. (0 ms total) 2023-01-11T22:07:51.4636666Z [ PASSED ] 4 tests. 2023-01-11T22:07:51.5321113Z + [[ -x ./cuda_optional_test ]] 2023-01-11T22:07:51.8634876Z + ./cuda_optional_test 2023-01-11T22:07:51.8635468Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:51.8636270Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:07:51.8636790Z [----------] Global test environment set-up. 2023-01-11T22:07:51.8637085Z [----------] 1 test from OptionalTest 2023-01-11T22:07:51.8637396Z [ RUN ] OptionalTest.OptionalTestCUDA 2023-01-11T22:07:51.8637722Z [ OK ] OptionalTest.OptionalTestCUDA (0 ms) 2023-01-11T22:07:51.8638038Z [----------] 1 test from OptionalTest (0 ms total) 2023-01-11T22:07:51.8638186Z 2023-01-11T22:07:51.8638347Z [----------] Global test environment tear-down 2023-01-11T22:07:51.8638650Z [==========] 1 test from 1 test suite ran. (0 ms total) 2023-01-11T22:07:51.8638894Z [ PASSED ] 1 test. 2023-01-11T22:07:51.9339347Z + [[ -x ./cuda_tensor_interop_test ]] 2023-01-11T22:07:51.9339757Z + [[ -x ./cuda_complex_test ]] 2023-01-11T22:07:51.9340070Z + ./cuda_complex_test 2023-01-11T22:07:52.2477147Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:52.2477908Z [==========] Running 11 tests from 7 test suites. 2023-01-11T22:07:52.2478286Z [----------] Global test environment set-up. 2023-01-11T22:07:52.2478601Z [----------] 2 tests from TestMemory 2023-01-11T22:07:52.2478944Z [ RUN ] TestMemory.ReinterpretCast 2023-01-11T22:07:52.2479470Z [ OK ] TestMemory.ReinterpretCast (0 ms) 2023-01-11T22:07:52.2479945Z [ RUN ] TestMemory.ThrustReinterpretCast 2023-01-11T22:07:52.2480369Z [ OK ] TestMemory.ThrustReinterpretCast (0 ms) 2023-01-11T22:07:52.2480830Z [----------] 2 tests from TestMemory (0 ms total) 2023-01-11T22:07:52.2481024Z 2023-01-11T22:07:52.2481493Z [----------] 2 tests from TestConstructors 2023-01-11T22:07:52.2481953Z [ RUN ] TestConstructors.FromThrust 2023-01-11T22:07:52.2482454Z [ OK ] TestConstructors.FromThrust (0 ms) 2023-01-11T22:07:52.2482956Z [ RUN ] TestConstructors.UnorderedMap 2023-01-11T22:07:52.2483521Z [ OK ] TestConstructors.UnorderedMap (0 ms) 2023-01-11T22:07:52.2484120Z [----------] 2 tests from TestConstructors (0 ms total) 2023-01-11T22:07:52.2484288Z 2023-01-11T22:07:52.2484440Z [----------] 1 test from TestAssignment 2023-01-11T22:07:52.2484741Z [ RUN ] TestAssignment.FromThrust 2023-01-11T22:07:52.2485030Z [ OK ] TestAssignment.FromThrust (0 ms) 2023-01-11T22:07:52.2485351Z [----------] 1 test from TestAssignment (0 ms total) 2023-01-11T22:07:52.2485502Z 2023-01-11T22:07:52.2485675Z [----------] 1 test from TestArithmeticIntScalar 2023-01-11T22:07:52.2485981Z [ RUN ] TestArithmeticIntScalar.All 2023-01-11T22:07:52.2486283Z [ OK ] TestArithmeticIntScalar.All (0 ms) 2023-01-11T22:07:52.2486630Z [----------] 1 test from TestArithmeticIntScalar (0 ms total) 2023-01-11T22:07:52.2486805Z 2023-01-11T22:07:52.2486937Z [----------] 1 test from TestIO 2023-01-11T22:07:52.2487161Z [ RUN ] TestIO.All 2023-01-11T22:07:52.2487398Z [ OK ] TestIO.All (0 ms) 2023-01-11T22:07:52.2487669Z [----------] 1 test from TestIO (0 ms total) 2023-01-11T22:07:52.2487807Z 2023-01-11T22:07:52.2487939Z [----------] 1 test from TestStd 2023-01-11T22:07:52.2488192Z [ RUN ] TestStd.BasicFunctions 2023-01-11T22:07:52.2488481Z [ OK ] TestStd.BasicFunctions (0 ms) 2023-01-11T22:07:52.2488776Z [----------] 1 test from TestStd (0 ms total) 2023-01-11T22:07:52.2488903Z 2023-01-11T22:07:52.2489443Z [----------] 3 tests from DeviceTests 2023-01-11T22:07:52.2489801Z [ RUN ] DeviceTests.ThrustConversion 2023-01-11T22:07:52.2490125Z [ OK ] DeviceTests.ThrustConversion (0 ms) 2023-01-11T22:07:52.2490414Z [ RUN ] DeviceTests.StdFunctions 2023-01-11T22:07:52.2490711Z [ OK ] DeviceTests.StdFunctions (0 ms) 2023-01-11T22:07:52.2491013Z [ RUN ] DeviceTests.ReinterpretCast 2023-01-11T22:07:52.2491317Z [ OK ] DeviceTests.ReinterpretCast (0 ms) 2023-01-11T22:07:52.2491640Z [----------] 3 tests from DeviceTests (0 ms total) 2023-01-11T22:07:52.2491788Z 2023-01-11T22:07:52.2491954Z [----------] Global test environment tear-down 2023-01-11T22:07:52.2492265Z [==========] 11 tests from 7 test suites ran. (0 ms total) 2023-01-11T22:07:52.2492507Z [ PASSED ] 11 tests. 2023-01-11T22:07:52.3187270Z + [[ -x ./cuda_complex_math_test ]] 2023-01-11T22:07:52.3187505Z + ./cuda_complex_math_test 2023-01-11T22:07:52.6304704Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:52.6305578Z [==========] Running 30 tests from 24 test suites. 2023-01-11T22:07:52.6306697Z [----------] Global test environment set-up. 2023-01-11T22:07:52.6307237Z [----------] 2 tests from TestExponentialDevice 2023-01-11T22:07:52.6307817Z [ RUN ] TestExponentialDevice.IPi 2023-01-11T22:07:52.6308322Z [ OK ] TestExponentialDevice.IPi (0 ms) 2023-01-11T22:07:52.6308820Z [ RUN ] TestExponentialDevice.EulerFormula 2023-01-11T22:07:52.6309289Z [ OK ] TestExponentialDevice.EulerFormula (0 ms) 2023-01-11T22:07:52.6309658Z [----------] 2 tests from TestExponentialDevice (0 ms total) 2023-01-11T22:07:52.6309886Z 2023-01-11T22:07:52.6310069Z [----------] 1 test from TestLogDevice 2023-01-11T22:07:52.6310414Z [ RUN ] TestLogDevice.Definition 2023-01-11T22:07:52.6310795Z [ OK ] TestLogDevice.Definition (0 ms) 2023-01-11T22:07:52.6311567Z [----------] 1 test from TestLogDevice (0 ms total) 2023-01-11T22:07:52.6311741Z 2023-01-11T22:07:52.6311897Z [----------] 1 test from TestLog10Device 2023-01-11T22:07:52.6312172Z [ RUN ] TestLog10Device.Rev 2023-01-11T22:07:52.6312444Z [ OK ] TestLog10Device.Rev (0 ms) 2023-01-11T22:07:52.6312748Z [----------] 1 test from TestLog10Device (0 ms total) 2023-01-11T22:07:52.6312989Z 2023-01-11T22:07:52.6313286Z [----------] 1 test from TestLog2Device 2023-01-11T22:07:52.6313767Z [ RUN ] TestLog2Device.Rev 2023-01-11T22:07:52.6314185Z [ OK ] TestLog2Device.Rev (0 ms) 2023-01-11T22:07:52.6314676Z [----------] 1 test from TestLog2Device (0 ms total) 2023-01-11T22:07:52.6314932Z 2023-01-11T22:07:52.6315184Z [----------] 3 tests from TestLog1pDevice 2023-01-11T22:07:52.6315628Z [ RUN ] TestLog1pDevice.Normal 2023-01-11T22:07:52.6316126Z [ OK ] TestLog1pDevice.Normal (0 ms) 2023-01-11T22:07:52.6316636Z [ RUN ] TestLog1pDevice.Small 2023-01-11T22:07:52.6317150Z [ OK ] TestLog1pDevice.Small (0 ms) 2023-01-11T22:07:52.6317653Z [ RUN ] TestLog1pDevice.Extreme 2023-01-11T22:07:52.6318033Z [ OK ] TestLog1pDevice.Extreme (0 ms) 2023-01-11T22:07:52.6318348Z [----------] 3 tests from TestLog1pDevice (0 ms total) 2023-01-11T22:07:52.6318503Z 2023-01-11T22:07:52.6318647Z [----------] 1 test from TestPowSqrtDevice 2023-01-11T22:07:52.6318929Z [ RUN ] TestPowSqrtDevice.Equal 2023-01-11T22:07:52.6319218Z [ OK ] TestPowSqrtDevice.Equal (0 ms) 2023-01-11T22:07:52.6319536Z [----------] 1 test from TestPowSqrtDevice (0 ms total) 2023-01-11T22:07:52.6319681Z 2023-01-11T22:07:52.6319825Z [----------] 1 test from TestPowDevice 2023-01-11T22:07:52.6320092Z [ RUN ] TestPowDevice.Square 2023-01-11T22:07:52.6320371Z [ OK ] TestPowDevice.Square (0 ms) 2023-01-11T22:07:52.6320703Z [----------] 1 test from TestPowDevice (0 ms total) 2023-01-11T22:07:52.6320853Z 2023-01-11T22:07:52.6321014Z [----------] 1 test from TestSinCosSinhCoshDevice 2023-01-11T22:07:52.6321332Z [ RUN ] TestSinCosSinhCoshDevice.Identity 2023-01-11T22:07:52.6321672Z [ OK ] TestSinCosSinhCoshDevice.Identity (0 ms) 2023-01-11T22:07:52.6322032Z [----------] 1 test from TestSinCosSinhCoshDevice (0 ms total) 2023-01-11T22:07:52.6322191Z 2023-01-11T22:07:52.6322334Z [----------] 1 test from TestTanDevice 2023-01-11T22:07:52.6322605Z [ RUN ] TestTanDevice.Identity 2023-01-11T22:07:52.6322893Z [ OK ] TestTanDevice.Identity (0 ms) 2023-01-11T22:07:52.6323186Z [----------] 1 test from TestTanDevice (0 ms total) 2023-01-11T22:07:52.6323335Z 2023-01-11T22:07:52.6323479Z [----------] 1 test from TestTanhDevice 2023-01-11T22:07:52.6323752Z [ RUN ] TestTanhDevice.Identity 2023-01-11T22:07:52.6324032Z [ OK ] TestTanhDevice.Identity (0 ms) 2023-01-11T22:07:52.6324428Z [----------] 1 test from TestTanhDevice (0 ms total) 2023-01-11T22:07:52.6324579Z 2023-01-11T22:07:52.6324759Z [----------] 1 test from TestRevTrigonometricDevice 2023-01-11T22:07:52.6325075Z [ RUN ] TestRevTrigonometricDevice.Rev 2023-01-11T22:07:52.6325391Z [ OK ] TestRevTrigonometricDevice.Rev (0 ms) 2023-01-11T22:07:52.6325748Z [----------] 1 test from TestRevTrigonometricDevice (0 ms total) 2023-01-11T22:07:52.6325922Z 2023-01-11T22:07:52.6326093Z [----------] 1 test from TestRevHyperbolicDevice 2023-01-11T22:07:52.6326386Z [ RUN ] TestRevHyperbolicDevice.Rev 2023-01-11T22:07:52.6326698Z [ OK ] TestRevHyperbolicDevice.Rev (0 ms) 2023-01-11T22:07:52.6327048Z [----------] 1 test from TestRevHyperbolicDevice (0 ms total) 2023-01-11T22:07:52.6327220Z 2023-01-11T22:07:52.6327427Z [----------] 2 tests from TestExponentialHost 2023-01-11T22:07:52.6327710Z [ RUN ] TestExponentialHost.IPi 2023-01-11T22:07:52.6328010Z [ OK ] TestExponentialHost.IPi (0 ms) 2023-01-11T22:07:52.6328327Z [ RUN ] TestExponentialHost.EulerFormula 2023-01-11T22:07:52.6328654Z [ OK ] TestExponentialHost.EulerFormula (0 ms) 2023-01-11T22:07:52.6329009Z [----------] 2 tests from TestExponentialHost (0 ms total) 2023-01-11T22:07:52.6329395Z 2023-01-11T22:07:52.6329614Z [----------] 1 test from TestLogHost 2023-01-11T22:07:52.6329961Z [ RUN ] TestLogHost.Definition 2023-01-11T22:07:52.6330378Z [ OK ] TestLogHost.Definition (0 ms) 2023-01-11T22:07:52.6330964Z [----------] 1 test from TestLogHost (0 ms total) 2023-01-11T22:07:52.6331180Z 2023-01-11T22:07:52.6331329Z [----------] 1 test from TestLog10Host 2023-01-11T22:07:52.6331587Z [ RUN ] TestLog10Host.Rev 2023-01-11T22:07:52.6331854Z [ OK ] TestLog10Host.Rev (0 ms) 2023-01-11T22:07:52.6332258Z [----------] 1 test from TestLog10Host (0 ms total) 2023-01-11T22:07:52.6332486Z 2023-01-11T22:07:52.6332732Z [----------] 1 test from TestLog2Host 2023-01-11T22:07:52.6333209Z [ RUN ] TestLog2Host.Rev 2023-01-11T22:07:52.6333495Z [ OK ] TestLog2Host.Rev (0 ms) 2023-01-11T22:07:52.6333779Z [----------] 1 test from TestLog2Host (0 ms total) 2023-01-11T22:07:52.6333930Z 2023-01-11T22:07:52.6334080Z [----------] 3 tests from TestLog1pHost 2023-01-11T22:07:52.6334355Z [ RUN ] TestLog1pHost.Normal 2023-01-11T22:07:52.6334635Z [ OK ] TestLog1pHost.Normal (0 ms) 2023-01-11T22:07:52.6334896Z [ RUN ] TestLog1pHost.Small 2023-01-11T22:07:52.6335165Z [ OK ] TestLog1pHost.Small (0 ms) 2023-01-11T22:07:52.6335438Z [ RUN ] TestLog1pHost.Extreme 2023-01-11T22:07:52.6335709Z [ OK ] TestLog1pHost.Extreme (0 ms) 2023-01-11T22:07:52.6336019Z [----------] 3 tests from TestLog1pHost (0 ms total) 2023-01-11T22:07:52.6336169Z 2023-01-11T22:07:52.6336319Z [----------] 1 test from TestPowSqrtHost 2023-01-11T22:07:52.6336583Z [ RUN ] TestPowSqrtHost.Equal 2023-01-11T22:07:52.6336869Z [ OK ] TestPowSqrtHost.Equal (0 ms) 2023-01-11T22:07:52.6337178Z [----------] 1 test from TestPowSqrtHost (0 ms total) 2023-01-11T22:07:52.6337328Z 2023-01-11T22:07:52.6337471Z [----------] 1 test from TestPowHost 2023-01-11T22:07:52.6337716Z [ RUN ] TestPowHost.Square 2023-01-11T22:07:52.6337989Z [ OK ] TestPowHost.Square (0 ms) 2023-01-11T22:07:52.6338284Z [----------] 1 test from TestPowHost (0 ms total) 2023-01-11T22:07:52.6338428Z 2023-01-11T22:07:52.6338583Z [----------] 1 test from TestSinCosSinhCoshHost 2023-01-11T22:07:52.6338894Z [ RUN ] TestSinCosSinhCoshHost.Identity 2023-01-11T22:07:52.6339222Z [ OK ] TestSinCosSinhCoshHost.Identity (0 ms) 2023-01-11T22:07:52.6339684Z [----------] 1 test from TestSinCosSinhCoshHost (0 ms total) 2023-01-11T22:07:52.6339839Z 2023-01-11T22:07:52.6339977Z [----------] 1 test from TestTanHost 2023-01-11T22:07:52.6340240Z [ RUN ] TestTanHost.Identity 2023-01-11T22:07:52.6340514Z [ OK ] TestTanHost.Identity (0 ms) 2023-01-11T22:07:52.6340802Z [----------] 1 test from TestTanHost (0 ms total) 2023-01-11T22:07:52.6340946Z 2023-01-11T22:07:52.6341086Z [----------] 1 test from TestTanhHost 2023-01-11T22:07:52.6341371Z [ RUN ] TestTanhHost.Identity 2023-01-11T22:07:52.6341650Z [ OK ] TestTanhHost.Identity (0 ms) 2023-01-11T22:07:52.6341939Z [----------] 1 test from TestTanhHost (0 ms total) 2023-01-11T22:07:52.6342084Z 2023-01-11T22:07:52.6342387Z [----------] 1 test from TestRevTrigonometricHost 2023-01-11T22:07:52.6342705Z [ RUN ] TestRevTrigonometricHost.Rev 2023-01-11T22:07:52.6343013Z [ OK ] TestRevTrigonometricHost.Rev (0 ms) 2023-01-11T22:07:52.6343362Z [----------] 1 test from TestRevTrigonometricHost (0 ms total) 2023-01-11T22:07:52.6343534Z 2023-01-11T22:07:52.6343701Z [----------] 1 test from TestRevHyperbolicHost 2023-01-11T22:07:52.6343994Z [ RUN ] TestRevHyperbolicHost.Rev 2023-01-11T22:07:52.6344282Z [ OK ] TestRevHyperbolicHost.Rev (0 ms) 2023-01-11T22:07:52.6344616Z [----------] 1 test from TestRevHyperbolicHost (0 ms total) 2023-01-11T22:07:52.6344779Z 2023-01-11T22:07:52.6344944Z [----------] Global test environment tear-down 2023-01-11T22:07:52.6345241Z [==========] 30 tests from 24 test suites ran. (0 ms total) 2023-01-11T22:07:52.6345497Z [ PASSED ] 30 tests. 2023-01-11T22:07:52.7017516Z + [[ -x ./cuda_cub_test ]] 2023-01-11T22:07:52.7017852Z + ./cuda_cub_test 2023-01-11T22:07:53.0140026Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:53.0140791Z [==========] Running 3 tests from 3 test suites. 2023-01-11T22:07:53.0141099Z [----------] Global test environment set-up. 2023-01-11T22:07:53.0141387Z [----------] 1 test from NumBits 2023-01-11T22:07:53.0141638Z [ RUN ] NumBits.CubTest 2023-01-11T22:07:53.0141897Z [ OK ] NumBits.CubTest (0 ms) 2023-01-11T22:07:53.0142169Z [----------] 1 test from NumBits (0 ms total) 2023-01-11T22:07:53.0142395Z 2023-01-11T22:07:53.0142567Z [----------] 1 test from InclusiveScanSplit 2023-01-11T22:07:53.0142861Z [ RUN ] InclusiveScanSplit.CubTest 2023-01-11T22:07:53.0143171Z [ OK ] InclusiveScanSplit.CubTest (0 ms) 2023-01-11T22:07:53.0143494Z [----------] 1 test from InclusiveScanSplit (0 ms total) 2023-01-11T22:07:53.0143663Z 2023-01-11T22:07:53.0143822Z [----------] 1 test from ExclusiveScanSplit 2023-01-11T22:07:53.0144113Z [ RUN ] ExclusiveScanSplit.CubTest 2023-01-11T22:07:53.0144410Z [ OK ] ExclusiveScanSplit.CubTest (0 ms) 2023-01-11T22:07:53.0144742Z [----------] 1 test from ExclusiveScanSplit (0 ms total) 2023-01-11T22:07:53.0144901Z 2023-01-11T22:07:53.0145067Z [----------] Global test environment tear-down 2023-01-11T22:07:53.0145373Z [==========] 3 tests from 3 test suites ran. (0 ms total) 2023-01-11T22:07:53.0145618Z [ PASSED ] 3 tests. 2023-01-11T22:07:53.0832025Z + [[ -x ./cuda_atomic_ops_test ]] 2023-01-11T22:07:53.0832312Z + ./cuda_atomic_ops_test 2023-01-11T22:07:53.3949915Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:07:53.3950606Z [==========] Running 4 tests from 1 test suite. 2023-01-11T22:07:53.3950935Z [----------] Global test environment set-up. 2023-01-11T22:07:53.3951247Z [----------] 4 tests from TestAtomicOps 2023-01-11T22:07:53.3951785Z [ RUN ] TestAtomicOps.TestAtomicAdd 2023-01-11T22:07:53.3952109Z [ OK ] TestAtomicOps.TestAtomicAdd (0 ms) 2023-01-11T22:07:53.3952423Z [ RUN ] TestAtomicOps.TestAtomicMul 2023-01-11T22:07:53.3952726Z [ OK ] TestAtomicOps.TestAtomicMul (0 ms) 2023-01-11T22:07:53.3953035Z [ RUN ] TestAtomicOps.TestAtomicMax 2023-01-11T22:07:53.3953351Z [ OK ] TestAtomicOps.TestAtomicMax (0 ms) 2023-01-11T22:07:53.3953648Z [ RUN ] TestAtomicOps.TestAtomicMin 2023-01-11T22:07:53.3953963Z [ OK ] TestAtomicOps.TestAtomicMin (0 ms) 2023-01-11T22:07:53.3954291Z [----------] 4 tests from TestAtomicOps (0 ms total) 2023-01-11T22:07:53.3954446Z 2023-01-11T22:07:53.3954600Z [----------] Global test environment tear-down 2023-01-11T22:07:53.3954972Z [==========] 4 tests from 1 test suite ran. (0 ms total) 2023-01-11T22:07:53.3955237Z [ PASSED ] 4 tests. 2023-01-11T22:07:53.4641268Z + '[' ON == ON ']' 2023-01-11T22:07:53.4641732Z + valgrind --suppressions=/var/lib/jenkins/workspace/aten/tools/valgrind.sup --error-exitcode=1 ./basic '--gtest_filter=-*CUDA' 2023-01-11T22:07:53.5011602Z ==24418== Memcheck, a memory error detector 2023-01-11T22:07:53.5012318Z ==24418== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al. 2023-01-11T22:07:53.5012742Z ==24418== Using Valgrind-3.16.1 and LibVEX; rerun with -h for copyright info 2023-01-11T22:07:53.5013062Z ==24418== Command: ./basic --gtest_filter=-*CUDA 2023-01-11T22:07:53.5013260Z ==24418== 2023-01-11T22:07:56.8168451Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8169179Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8169804Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8170446Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8171078Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8171676Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8172203Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8172763Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8174280Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8174747Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8175270Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8175735Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8176189Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8176728Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8177251Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8177666Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8178050Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8178519Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8178957Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8179353Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8179708Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8180066Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8180473Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8180871Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8181175Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8181610Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8181938Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8182660Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8183035Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8183500Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8183872Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8184308Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8184692Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8185088Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8185613Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8186020Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8186397Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8186944Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8187376Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8187834Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8188228Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8188618Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8188966Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8189434Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8189906Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8190234Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8190740Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8191243Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8191618Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8192037Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8192438Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8192799Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8193342Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8193735Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8194157Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8194683Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8195206Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8195550Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8195975Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8196438Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8196870Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8197419Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8197871Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8198328Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8198776Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8199258Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8199620Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8200000Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8200324Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8200616Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8200957Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8201280Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8201664Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8202007Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8202333Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8202640Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8202964Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8203285Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8203591Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8203916Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8204237Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8204576Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8204901Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8205225Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8205523Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8205856Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8206162Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8206461Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8206795Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8207102Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8207403Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8207741Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8208060Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8208346Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8208678Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8209001Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8209595Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8210080Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8210611Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8211090Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8211659Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8212201Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8212503Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8212826Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8213151Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8213559Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8214131Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8214713Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8215247Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8215572Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8215890Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8216192Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8216750Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8217315Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8217838Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8218445Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8219012Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8219693Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8220083Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8220390Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8220694Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8221031Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8221358Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8221647Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8222022Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8222583Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8223126Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8223768Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8224311Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8224888Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8225631Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8226333Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8227353Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8228066Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8228754Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8229397Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8230103Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8230794Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8231445Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8232182Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8232862Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8233507Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8234236Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8234909Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8235553Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8236281Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8236951Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8237599Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8238336Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8239028Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8239660Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8240383Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8241066Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8241689Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8242419Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8243104Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8243722Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8244448Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8245138Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8245788Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8246499Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8247188Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8247942Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8248662Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8249420Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8249993Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8250396Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8250722Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8251023Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8251358Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8251665Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8252044Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8252383Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8252695Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8252997Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8253336Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8253642Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8253943Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8254279Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8254602Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8254887Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8255222Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8255543Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8255827Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8256165Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8256482Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8256769Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8257103Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8257419Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8257717Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8258040Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8258358Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8258659Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8258982Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8259297Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8259595Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8259919Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8260237Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8260536Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8260871Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8261176Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8261473Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8261809Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8262113Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8262488Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8262829Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8263135Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8263543Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8263882Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8264201Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8264487Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8264822Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8265146Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8265435Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8265771Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8266090Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8266408Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8266745Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8267066Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8267364Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8267687Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8268005Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8268302Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8268625Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8268946Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8269245Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8269568Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8269889Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8270187Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8270526Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8270829Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8271126Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8271459Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8271765Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8272062Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8272399Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8272702Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8272999Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8273336Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8273654Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8273946Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8274295Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8274612Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8274900Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8275236Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8275556Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8275842Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8276176Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8276492Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8276790Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8277115Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8277434Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8277769Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8278090Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8278408Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8278707Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8279029Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8279344Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8279642Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8279974Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8280280Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8280607Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8280944Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8281250Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8281551Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8281884Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8282189Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8282489Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8282821Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8283137Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8283422Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8283753Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8284074Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8284358Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8284694Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8285010Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8285296Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8285630Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8285947Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8286244Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8286562Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8286880Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8287176Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8287499Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8287816Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8288116Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8288433Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8288748Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8289174Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8289537Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8289842Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8290143Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8290479Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8290787Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8291094Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8291431Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8291803Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8292107Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8292444Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8292765Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8293054Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8293393Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8293713Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8293999Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8294333Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8294653Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8294977Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8295317Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8295638Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8295936Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8296256Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8296574Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8296871Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8297191Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8297510Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8297808Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8298131Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8298449Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8298750Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8299085Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8299390Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8299690Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8300024Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8300328Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8300627Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8300959Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8301265Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8301562Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8301898Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8302216Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8302576Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8302912Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8303233Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8303521Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8303860Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8304181Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8304466Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8304803Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8305125Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8305470Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8305794Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8306155Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8306453Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8306775Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8307093Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8307393Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8307713Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8308031Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8308330Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8308666Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8309003Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8309307Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8309642Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8309951Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8310249Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8310586Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8310890Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8311188Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8311524Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8311841Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8312129Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8312463Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8312782Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8313069Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8313402Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8313721Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8314007Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8314344Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8314662Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8314957Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8315277Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8315595Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8315895Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8316220Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8316537Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8316836Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8317158Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8317474Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8317773Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8318108Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8318412Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8318707Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8319040Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8319346Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8319647Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8319980Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8320338Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8320626Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8320959Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8321276Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8321560Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8321896Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8322212Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8322498Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8322836Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8323186Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8323487Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8323812Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8324128Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8324428Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8324751Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8325067Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8325364Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8325686Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8326004Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8326303Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8326641Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8326949Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8327244Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8327580Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8327884Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8328182Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8328515Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8328819Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8329249Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8329594Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8329917Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8330205Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8330546Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8330867Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8331159Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8331496Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8331813Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8332098Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8332432Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8332748Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8333046Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8333365Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8333683Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8333983Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8334306Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8334699Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8335004Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8335326Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8335646Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8335950Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8336288Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8336595Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8336900Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8337236Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8337585Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8337888Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8338224Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8338528Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8338827Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8339160Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8339477Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8339762Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8340101Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8340426Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8340711Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8341051Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8341370Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8341657Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8341990Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8342373Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8342681Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8343005Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8343327Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8343633Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8343958Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8344278Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8344581Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8344907Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8345234Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8345539Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8345872Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8346176Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8346478Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8346811Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8347114Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8347414Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8347746Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8348049Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8348350Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8348686Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8349044Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8349328Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8349663Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8349982Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8350266Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8350600Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8350916Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8351200Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8351534Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8351887Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8352189Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8352514Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8352831Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8353129Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8353451Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8353770Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8354068Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8354388Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8354705Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8355003Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8355340Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8355645Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8355947Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8356279Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8356584Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8356882Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8357215Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8357524Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8357821Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8358153Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8358472Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8358762Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8359096Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8359416Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8359702Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8360033Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8360350Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8360635Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8360968Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8361285Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8361583Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8361903Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8362220Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8362520Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8362839Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8363208Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8363502Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8363824Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8364142Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8364442Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8364782Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8365090Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8365392Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8365728Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8366065Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8366368Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8366702Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8367008Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8367305Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8367639Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8367954Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8368239Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8368573Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8368890Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8369308Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8369653Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8369973Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8370262Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8370602Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8370920Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8371222Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8371545Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8371862Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8372162Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8372481Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8372800Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:56.8373099Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:56.8373422Z --24418-- When reading debug info from /opt/conda/lib/libstdc++.so.6.0.29: 2023-01-11T22:07:56.8373772Z --24418-- parse_CU_Header: is neither DWARF2 nor DWARF3 nor DWARF4 2023-01-11T22:07:57.2822160Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2822770Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2823380Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2823784Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2824100Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2824422Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2824728Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2825057Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2825371Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2825675Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2826000Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2826485Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2826784Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2827111Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2827414Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2827717Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2828042Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2828359Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2828644Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2828967Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2829336Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2834969Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2835594Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2836102Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2836642Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2837241Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2837827Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2838377Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2838960Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2839527Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2840075Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2840570Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2841040Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2841496Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2841982Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2842440Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2842917Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2857178Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2857497Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2857801Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2858129Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2858433Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2858737Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2859067Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2859386Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2859677Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2860000Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2860312Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2860599Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2860921Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2861235Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2861640Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2861964Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2862278Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2862659Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2862972Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2863442Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2863740Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2864052Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2864364Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2864662Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2864973Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2865283Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2865585Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2865912Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2866213Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2866565Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2866893Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2867195Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2867496Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2867821Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2868120Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2868419Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2868743Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2869052Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2869341Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2869663Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2869977Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2870265Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2870590Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2870902Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2871188Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2871508Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2871817Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2872115Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2872423Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2872732Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2873027Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2873338Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2873650Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2873946Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2874257Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2874567Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2874863Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2875170Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2875479Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2875777Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2876096Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2876396Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2876691Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2877014Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2877311Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2877650Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2877973Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2878272Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2878571Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2878893Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2879200Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2879487Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2879810Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2880120Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2880407Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2880761Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2881075Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2881363Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2881685Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2881997Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2882293Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2882603Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2882913Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2883212Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2883522Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2883828Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2884127Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2884436Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2884748Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2885047Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2885368Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2885667Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2885966Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2886285Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2886583Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2886881Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2887203Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2887498Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2887800Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2888118Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2888428Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2888711Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2889144Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2889456Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2889740Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2890062Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2890370Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2890657Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2890979Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2891293Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2891578Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2891994Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2892304Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2892602Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2892910Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2893219Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2893515Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2893824Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2894133Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2894433Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2894781Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2895095Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2895389Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2895715Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2896014Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2896310Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2896631Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2896927Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2897225Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2897548Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2897847Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2898145Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2898473Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2898782Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2899071Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2899397Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2899706Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2899990Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2900311Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2900619Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2900903Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2901219Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2901526Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2901824Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2902134Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2902528Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2902834Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2903142Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2903452Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2903750Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2904061Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2904375Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2904672Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2904992Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2905288Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2905619Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2906004Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2906351Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2906649Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2906974Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2907274Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2907603Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2907928Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2908243Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2908533Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2908856Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2909202Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2909489Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2909812Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2910125Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2910414Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2910739Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2911050Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2911336Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2911656Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2911965Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2912264Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2912574Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2912884Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2913180Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2913491Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2913802Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2914100Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2914408Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2914719Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2915018Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2915337Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2915635Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2915932Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2916259Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2916555Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2916855Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2917179Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2917476Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2917781Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2918105Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2918417Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2918701Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2919020Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2919331Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2919616Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2919942Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2920249Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2920570Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2920889Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2921195Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2921491Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2921798Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2922104Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2922397Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2922707Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2923021Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2923390Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2923700Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2924011Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2924309Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2924630Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2924924Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2925223Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2925544Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2925843Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2926141Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2926461Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2926755Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2927056Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2927376Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2927688Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2927971Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2928292Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2928600Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2928886Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2929316Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2929628Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2929913Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2930236Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2930550Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2930836Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2931167Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2931477Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2931776Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2932083Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2932389Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2932687Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2932998Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2933307Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2933603Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2933914Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2934226Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2934525Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2934914Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2935211Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2935507Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2935828Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2936126Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2936422Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2936746Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2937046Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2937341Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2937731Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2938044Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2938330Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2938649Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2938958Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2939241Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2939560Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2939867Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2940152Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2940473Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2940779Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2941075Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2941385Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2941693Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2941990Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2942345Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2942666Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2942963Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2943274Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2943588Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2943886Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2944207Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2944504Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2944805Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2945128Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2945432Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2945730Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2946051Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2946347Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2946644Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2946964Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2947272Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2947555Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2947870Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2948179Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.2948460Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.2948783Z --24418-- When reading debug info from /opt/conda/lib/libgcc_s.so.1: 2023-01-11T22:07:57.2949163Z --24418-- parse_CU_Header: is neither DWARF2 nor DWARF3 nor DWARF4 2023-01-11T22:07:57.6679893Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6680534Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6680885Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6681202Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6681549Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6681878Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6682169Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6682506Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6682999Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6683290Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6683632Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6683953Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6690729Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6691438Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6691791Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6692104Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6692456Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6692790Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6693092Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6693440Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6693751Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6694060Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6694582Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6694893Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6695217Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6695591Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6695894Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6696199Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6696531Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6696844Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6697136Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6697464Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6697782Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6698067Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6698393Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6698706Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6698988Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6699323Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6699635Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6699937Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6700256Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6700569Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6700865Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6701182Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6701655Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6701954Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6702271Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6702669Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6702976Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6703492Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6703833Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6704182Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6704538Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6705020Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6705405Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6705747Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6706095Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6706419Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6706753Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6707141Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6707431Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6707827Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6708144Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6714486Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6715101Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6715691Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6716000Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6716474Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6716903Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6717350Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6717962Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6718309Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6718610Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6718930Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6719253Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6719552Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6719892Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6720196Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6720511Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6720845Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6721150Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6721451Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6721786Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6722102Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6722389Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6722718Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6723033Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6723322Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6723650Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6724072Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6727667Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6728176Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6728667Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6729002Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6729459Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6729940Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6730466Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6730938Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6731494Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6731860Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6732197Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6732513Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6732816Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6733151Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6733456Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6733758Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6734080Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6734379Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6734682Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6735010Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6735395Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6735685Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6736019Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6736333Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6736619Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6736947Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6737260Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6737542Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6737873Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6738186Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6738482Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6738799Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6739127Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6739429Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6739744Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6740055Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6740356Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6740687Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6740988Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6741285Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6741617Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6741917Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6742257Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6742675Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6743066Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6743367Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6743698Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6744014Z --24418-- Ignoring non-Dwarf2/3/4 block in .debug_info 2023-01-11T22:07:57.6744299Z --24418-- WARNING: Serious error when reading debug info 2023-01-11T22:07:57.6744628Z --24418-- When reading debug info from /opt/conda/lib/libgomp.so.1.0.0: 2023-01-11T22:07:57.6744977Z --24418-- parse_CU_Header: is neither DWARF2 nor DWARF3 nor DWARF4 2023-01-11T22:07:58.6589932Z ==24418== Warning: set address range perms: large range [0x59eb4000, 0x6ed02000) (defined) 2023-01-11T22:08:41.4424500Z Running main() from /var/lib/jenkins/workspace/third_party/googletest/googletest/src/gtest_main.cc 2023-01-11T22:08:41.4633758Z Note: Google Test filter = -*CUDA 2023-01-11T22:08:41.4686831Z [==========] Running 4 tests from 1 test suite. 2023-01-11T22:08:41.4703739Z [----------] Global test environment set-up. 2023-01-11T22:08:41.4732093Z [----------] 4 tests from BasicTest 2023-01-11T22:08:41.4747258Z [ RUN ] BasicTest.BasicTestCPU 2023-01-11T22:08:42.5886128Z 311 ms 2023-01-11T22:08:47.5406735Z 4920 ms 2023-01-11T22:08:54.1207601Z 6572 ms 2023-01-11T22:08:54.7627033Z [ OK ] BasicTest.BasicTestCPU (13285 ms) 2023-01-11T22:08:54.7632814Z [ RUN ] BasicTest.BasicTestHalfCPU 2023-01-11T22:08:54.9529402Z 134 ms 2023-01-11T22:09:00.0073506Z 5046 ms 2023-01-11T22:09:06.9574277Z 6945 ms 2023-01-11T22:09:07.0852700Z [ OK ] BasicTest.BasicTestHalfCPU (12321 ms) 2023-01-11T22:09:07.0853044Z [ RUN ] BasicTest.FactoryMethodsTest 2023-01-11T22:09:07.1213999Z [ OK ] BasicTest.FactoryMethodsTest (35 ms) 2023-01-11T22:09:07.1214616Z [ RUN ] BasicTest.BasicStdTestCPU 2023-01-11T22:09:07.1612507Z Simple example: called once 2023-01-11T22:09:07.2827688Z throw: call_once will retry 2023-01-11T22:09:07.2859348Z throw: call_once will retry 2023-01-11T22:09:07.3266175Z throw: call_once will retry 2023-01-11T22:09:07.3288345Z Didn't throw, call_once will not attempt again 2023-01-11T22:09:07.3318266Z [ OK ] BasicTest.BasicStdTestCPU (209 ms) 2023-01-11T22:09:07.3327803Z [----------] 4 tests from BasicTest (25857 ms total) 2023-01-11T22:09:07.3327990Z 2023-01-11T22:09:07.3338718Z [----------] Global test environment tear-down 2023-01-11T22:09:07.3366060Z [==========] 4 tests from 1 test suite ran. (25874 ms total) 2023-01-11T22:09:07.3380285Z [ PASSED ] 4 tests. 2023-01-11T22:09:09.4213793Z ==24418== 2023-01-11T22:09:09.4217499Z ==24418== HEAP SUMMARY: 2023-01-11T22:09:09.4217792Z ==24418== in use at exit: 687,403 bytes in 4,089 blocks 2023-01-11T22:09:09.4220453Z ==24418== total heap usage: 1,929,215 allocs, 1,925,126 frees, 311,460,255 bytes allocated 2023-01-11T22:09:09.4220872Z ==24418== 2023-01-11T22:09:09.9631578Z ==24418== LEAK SUMMARY: 2023-01-11T22:09:09.9632021Z ==24418== definitely lost: 0 bytes in 0 blocks 2023-01-11T22:09:09.9632417Z ==24418== indirectly lost: 0 bytes in 0 blocks 2023-01-11T22:09:09.9632664Z ==24418== possibly lost: 1,584 bytes in 3 blocks 2023-01-11T22:09:09.9632888Z ==24418== still reachable: 685,819 bytes in 4,086 blocks 2023-01-11T22:09:09.9633121Z ==24418== suppressed: 0 bytes in 0 blocks 2023-01-11T22:09:09.9633546Z ==24418== Rerun with --leak-check=full to see details of leaked memory 2023-01-11T22:09:09.9633759Z ==24418== 2023-01-11T22:09:09.9634017Z ==24418== For lists of detected and suppressed errors, rerun with: -s 2023-01-11T22:09:09.9634311Z ==24418== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from 4) 2023-01-11T22:09:10.0118626Z + [[ -x ./tensor_interop_test ]] 2023-01-11T22:09:10.0118934Z + popd 2023-01-11T22:09:10.0119179Z ~/workspace 2023-01-11T22:09:10.0120896Z + [[ -n '' ]] 2023-01-11T22:09:10.0121357Z + assert_git_not_dirty 2023-01-11T22:09:10.0121756Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:09:10.0122080Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:09:10.0125025Z ++ git status --porcelain 2023-01-11T22:09:10.0958022Z + git_status= 2023-01-11T22:09:10.0958463Z + [[ -n '' ]] 2023-01-11T22:09:10.0958745Z + test_vec256 2023-01-11T22:09:10.0959197Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *asan* ]] 2023-01-11T22:09:10.0959667Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:09:10.0959951Z + echo 'Testing vec256 instructions' 2023-01-11T22:09:10.0960153Z Testing vec256 instructions 2023-01-11T22:09:10.0960409Z + mkdir -p test/test-reports/vec256 2023-01-11T22:09:10.1005066Z + pushd build/bin 2023-01-11T22:09:10.1005293Z ~/workspace/build/bin ~/workspace 2023-01-11T22:09:10.1008203Z ++ find . -maxdepth 1 -executable -name 'vec256_test*' 2023-01-11T22:09:10.1074057Z + vec256_tests= 2023-01-11T22:09:10.1074320Z + popd 2023-01-11T22:09:10.1074618Z ~/workspace 2023-01-11T22:09:10.1074804Z + assert_git_not_dirty 2023-01-11T22:09:10.1075141Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:09:10.1075450Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:09:10.1077906Z ++ git status --porcelain 2023-01-11T22:09:10.1883399Z + git_status= 2023-01-11T22:09:10.1883836Z + [[ -n '' ]] 2023-01-11T22:09:10.1884104Z + test_libtorch 2023-01-11T22:09:10.1884541Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:09:10.1884941Z + echo 'Testing libtorch' 2023-01-11T22:09:10.1885264Z Testing libtorch 2023-01-11T22:09:10.1885940Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libbackend_with_compiler.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:09:10.1893693Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libjitbackend_test.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:09:10.1901963Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libc10.so /opt/conda/lib/python3.10/site-packages/torch/lib/libc10_cuda.so /opt/conda/lib/python3.10/site-packages/torch/lib/libc10d_cuda_test.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:09:10.1910853Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libshm.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:09:10.1920698Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_global_deps.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorchbind_test.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:09:10.1928802Z + ln -sf '/opt/conda/lib/python3.10/site-packages/torch/lib/libtbb*' /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:09:10.1938012Z + TEST_REPORTS_DIR=test/test-reports/cpp-unittest/test_libtorch 2023-01-11T22:09:10.1938663Z + mkdir -p test/test-reports/cpp-unittest/test_libtorch 2023-01-11T22:09:10.1939305Z + python tools/download_mnist.py --quiet -d test/cpp/api/mnist 2023-01-11T22:09:10.1962065Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *-tsan* ]] 2023-01-11T22:09:10.1962564Z + python test/cpp/jit/tests_setup.py setup 2023-01-11T22:09:10.2364312Z Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz ... 2023-01-11T22:09:10.5387389Z Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz ... 2023-01-11T22:09:10.5585400Z Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz ... 2023-01-11T22:09:10.6792875Z Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz ... 2023-01-11T22:09:11.5734933Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *cuda* ]] 2023-01-11T22:09:11.5735486Z + /opt/conda/lib/python3.10/site-packages/torch/bin/test_jit --gtest_output=xml:test/test-reports/cpp-unittest/test_libtorch/test_jit.xml 2023-01-11T22:09:11.9884458Z CUDA not available. Disabling CUDA and MultiCUDA tests 2023-01-11T22:09:11.9892217Z Note: Google Test filter = *-*_CUDA:*_MultiCUDA 2023-01-11T22:09:11.9892777Z [==========] Running 569 tests from 119 test suites. 2023-01-11T22:09:11.9893113Z [----------] Global test environment set-up. 2023-01-11T22:09:11.9893425Z [----------] 2 tests from AddIfThenElseOpTest 2023-01-11T22:09:11.9893761Z [ RUN ] AddIfThenElseOpTest.AddIfThenElseOpSimple 2023-01-11T22:09:11.9954380Z [ OK ] AddIfThenElseOpTest.AddIfThenElseOpSimple (6 ms) 2023-01-11T22:09:11.9955024Z [ RUN ] AddIfThenElseOpTest.NoIfThenElseOpMultipleOutputs 2023-01-11T22:09:11.9955704Z [ OK ] AddIfThenElseOpTest.NoIfThenElseOpMultipleOutputs (0 ms) 2023-01-11T22:09:11.9956103Z [----------] 2 tests from AddIfThenElseOpTest (6 ms total) 2023-01-11T22:09:11.9956285Z 2023-01-11T22:09:11.9956515Z [----------] 15 tests from TopologicalMoveTest 2023-01-11T22:09:11.9956899Z [ RUN ] TopologicalMoveTest.SplitsDeps 2023-01-11T22:09:11.9957493Z [ OK ] TopologicalMoveTest.SplitsDeps (0 ms) 2023-01-11T22:09:11.9957987Z [ RUN ] TopologicalMoveTest.MoveAfterBackwardSimple 2023-01-11T22:09:11.9958404Z [ OK ] TopologicalMoveTest.MoveAfterBackwardSimple (0 ms) 2023-01-11T22:09:11.9958985Z [ RUN ] TopologicalMoveTest.MoveAfterBackwardInvalid 2023-01-11T22:09:11.9959687Z [ OK ] TopologicalMoveTest.MoveAfterBackwardInvalid (0 ms) 2023-01-11T22:09:11.9960356Z [ RUN ] TopologicalMoveTest.MoveAfterNoOp 2023-01-11T22:09:11.9961006Z [ OK ] TopologicalMoveTest.MoveAfterNoOp (0 ms) 2023-01-11T22:09:11.9961485Z [ RUN ] TopologicalMoveTest.MoveAfterBackwardMultipleDeps 2023-01-11T22:09:11.9962254Z [ OK ] TopologicalMoveTest.MoveAfterBackwardMultipleDeps (0 ms) 2023-01-11T22:09:11.9963026Z [ RUN ] TopologicalMoveTest.MoveAfterBackwardNonZeroWorkingSet 2023-01-11T22:09:11.9963758Z [ OK ] TopologicalMoveTest.MoveAfterBackwardNonZeroWorkingSet (0 ms) 2023-01-11T22:09:11.9964505Z [ RUN ] TopologicalMoveTest.MoveAfterForwardSimple 2023-01-11T22:09:11.9965020Z [ OK ] TopologicalMoveTest.MoveAfterForwardSimple (0 ms) 2023-01-11T22:09:11.9965676Z [ RUN ] TopologicalMoveTest.MoveAfterForwardNonZeroWorkingSet 2023-01-11T22:09:11.9966452Z [ OK ] TopologicalMoveTest.MoveAfterForwardNonZeroWorkingSet (0 ms) 2023-01-11T22:09:11.9967163Z [ RUN ] TopologicalMoveTest.MoveBeforeForwardSimple 2023-01-11T22:09:11.9967907Z [ OK ] TopologicalMoveTest.MoveBeforeForwardSimple (0 ms) 2023-01-11T22:09:11.9968438Z [ RUN ] TopologicalMoveTest.MoveBeforeBackwardSimple 2023-01-11T22:09:11.9969331Z [ OK ] TopologicalMoveTest.MoveBeforeBackwardSimple (0 ms) 2023-01-11T22:09:11.9969991Z [ RUN ] TopologicalMoveTest.MoveBeforeNoOp 2023-01-11T22:09:11.9970602Z [ OK ] TopologicalMoveTest.MoveBeforeNoOp (0 ms) 2023-01-11T22:09:11.9971150Z [ RUN ] TopologicalMoveTest.MoveBeforeForwardWithDeps 2023-01-11T22:09:11.9971854Z [ OK ] TopologicalMoveTest.MoveBeforeForwardWithDeps (0 ms) 2023-01-11T22:09:11.9972274Z [ RUN ] TopologicalMoveTest.MoveBeforeBackwardWithDeps 2023-01-11T22:09:11.9973011Z [ OK ] TopologicalMoveTest.MoveBeforeBackwardWithDeps (0 ms) 2023-01-11T22:09:11.9973523Z [ RUN ] TopologicalMoveTest.DepsDisallowMove 2023-01-11T22:09:11.9974268Z [ OK ] TopologicalMoveTest.DepsDisallowMove (0 ms) 2023-01-11T22:09:11.9974921Z [ RUN ] TopologicalMoveTest.MoveAfterBeforeWithDeps 2023-01-11T22:09:11.9975336Z [ OK ] TopologicalMoveTest.MoveAfterBeforeWithDeps (0 ms) 2023-01-11T22:09:11.9975858Z [----------] 15 tests from TopologicalMoveTest (1 ms total) 2023-01-11T22:09:11.9976029Z 2023-01-11T22:09:11.9976188Z [----------] 6 tests from AliasAnalysisTest 2023-01-11T22:09:11.9976544Z [ RUN ] AliasAnalysisTest.AliasingMutationBlocksMoves 2023-01-11T22:09:12.0013557Z [ OK ] AliasAnalysisTest.AliasingMutationBlocksMoves (3 ms) 2023-01-11T22:09:12.0014140Z [ RUN ] AliasAnalysisTest.AliasingMutationBlocksMoves2 2023-01-11T22:09:12.0014720Z [ OK ] AliasAnalysisTest.AliasingMutationBlocksMoves2 (0 ms) 2023-01-11T22:09:12.0015227Z [ RUN ] AliasAnalysisTest.SideEffectsBlockMoves 2023-01-11T22:09:12.0015789Z [ OK ] AliasAnalysisTest.SideEffectsBlockMoves (0 ms) 2023-01-11T22:09:12.0016450Z [ RUN ] AliasAnalysisTest.MovingAcrossInnerBlocks 2023-01-11T22:09:12.0016857Z [ OK ] AliasAnalysisTest.MovingAcrossInnerBlocks (0 ms) 2023-01-11T22:09:12.0017228Z [ RUN ] AliasAnalysisTest.NoneHasNoWriters 2023-01-11T22:09:12.0017702Z [ OK ] AliasAnalysisTest.NoneHasNoWriters (0 ms) 2023-01-11T22:09:12.0018220Z [ RUN ] AliasAnalysisTest.SafeToChangeAliasingRelationship 2023-01-11T22:09:12.0018895Z [ OK ] AliasAnalysisTest.SafeToChangeAliasingRelationship (0 ms) 2023-01-11T22:09:12.0019404Z [----------] 6 tests from AliasAnalysisTest (4 ms total) 2023-01-11T22:09:12.0019574Z 2023-01-11T22:09:12.0019735Z [----------] 4 tests from WriteTrackingTest 2023-01-11T22:09:12.0020077Z [ RUN ] WriteTrackingTest.Basic 2023-01-11T22:09:12.0020855Z [ OK ] WriteTrackingTest.Basic (0 ms) 2023-01-11T22:09:12.0021638Z [ RUN ] WriteTrackingTest.IsMutable 2023-01-11T22:09:12.0024608Z [ OK ] WriteTrackingTest.IsMutable (0 ms) 2023-01-11T22:09:12.0025144Z [ RUN ] WriteTrackingTest.IsImmutable 2023-01-11T22:09:12.0025739Z [ OK ] WriteTrackingTest.IsImmutable (0 ms) 2023-01-11T22:09:12.0026268Z [ RUN ] WriteTrackingTest.HasWriters 2023-01-11T22:09:12.0026806Z [ OK ] WriteTrackingTest.HasWriters (0 ms) 2023-01-11T22:09:12.0027415Z [----------] 4 tests from WriteTrackingTest (0 ms total) 2023-01-11T22:09:12.0027702Z 2023-01-11T22:09:12.0028041Z [----------] 13 tests from ContainerAliasingTest 2023-01-11T22:09:12.0028568Z [ RUN ] ContainerAliasingTest.MayContainAlias 2023-01-11T22:09:12.0029007Z [ OK ] ContainerAliasingTest.MayContainAlias (0 ms) 2023-01-11T22:09:12.0029492Z [ RUN ] ContainerAliasingTest.MayContainAlias_cast 2023-01-11T22:09:12.0030071Z [ OK ] ContainerAliasingTest.MayContainAlias_cast (0 ms) 2023-01-11T22:09:12.0030858Z [ RUN ] ContainerAliasingTest.PrimitveValuesDontAliasContainers 2023-01-11T22:09:12.0031699Z [ OK ] ContainerAliasingTest.PrimitveValuesDontAliasContainers (0 ms) 2023-01-11T22:09:12.0032290Z [ RUN ] ContainerAliasingTest.UnionAliasing 2023-01-11T22:09:12.0032929Z [ OK ] ContainerAliasingTest.UnionAliasing (0 ms) 2023-01-11T22:09:12.0033363Z [ RUN ] ContainerAliasingTest.InputsCanAliasOutputs 2023-01-11T22:09:12.0033784Z [ OK ] ContainerAliasingTest.InputsCanAliasOutputs (0 ms) 2023-01-11T22:09:12.0034350Z [ RUN ] ContainerAliasingTest.NestedTupleConstruct 2023-01-11T22:09:12.0035096Z [ OK ] ContainerAliasingTest.NestedTupleConstruct (0 ms) 2023-01-11T22:09:12.0035498Z [ RUN ] ContainerAliasingTest.NestedTypes 2023-01-11T22:09:12.0035977Z [ OK ] ContainerAliasingTest.NestedTypes (0 ms) 2023-01-11T22:09:12.0036343Z [ RUN ] ContainerAliasingTest.Simple 2023-01-11T22:09:12.0036945Z [ OK ] ContainerAliasingTest.Simple (0 ms) 2023-01-11T22:09:12.0037387Z [ RUN ] ContainerAliasingTest.Lists 2023-01-11T22:09:12.0037894Z [ OK ] ContainerAliasingTest.Lists (0 ms) 2023-01-11T22:09:12.0038386Z [ RUN ] ContainerAliasingTest.Lists2 2023-01-11T22:09:12.0038974Z [ OK ] ContainerAliasingTest.Lists2 (0 ms) 2023-01-11T22:09:12.0039538Z [ RUN ] ContainerAliasingTest.Conservative 2023-01-11T22:09:12.0040135Z [ OK ] ContainerAliasingTest.Conservative (0 ms) 2023-01-11T22:09:12.0040846Z [ RUN ] ContainerAliasingTest.MovesAcrossContainedWrites 2023-01-11T22:09:12.0041639Z [ OK ] ContainerAliasingTest.MovesAcrossContainedWrites (0 ms) 2023-01-11T22:09:12.0042112Z [ RUN ] ContainerAliasingTest.MovesAcrossContainedWritesNested 2023-01-11T22:09:12.0042786Z [ OK ] ContainerAliasingTest.MovesAcrossContainedWritesNested (0 ms) 2023-01-11T22:09:12.0043469Z [----------] 13 tests from ContainerAliasingTest (1 ms total) 2023-01-11T22:09:12.0043644Z 2023-01-11T22:09:12.0043834Z [----------] 3 tests from WildcardsTest 2023-01-11T22:09:12.0044108Z [ RUN ] WildcardsTest.Basic 2023-01-11T22:09:12.0044541Z [ OK ] WildcardsTest.Basic (0 ms) 2023-01-11T22:09:12.0045214Z [ RUN ] WildcardsTest.TypeIsolation 2023-01-11T22:09:12.0045524Z [ OK ] WildcardsTest.TypeIsolation (0 ms) 2023-01-11T22:09:12.0045897Z [ RUN ] WildcardsTest.InvariantContainerAliasing 2023-01-11T22:09:12.0046610Z [ OK ] WildcardsTest.InvariantContainerAliasing (0 ms) 2023-01-11T22:09:12.0047029Z [----------] 3 tests from WildcardsTest (0 ms total) 2023-01-11T22:09:12.0047186Z 2023-01-11T22:09:12.0047360Z [----------] 18 tests from AliasRegistrationTest 2023-01-11T22:09:12.0047745Z [ RUN ] AliasRegistrationTest.ConservativeWithInferredSchema 2023-01-11T22:09:12.0048206Z [ OK ] AliasRegistrationTest.ConservativeWithInferredSchema (0 ms) 2023-01-11T22:09:12.0048654Z [ RUN ] AliasRegistrationTest.ConservativeWithSpecifiedSchema 2023-01-11T22:09:12.0049299Z [ OK ] AliasRegistrationTest.ConservativeWithSpecifiedSchema (0 ms) 2023-01-11T22:09:12.0049825Z [ RUN ] AliasRegistrationTest.ConservativeWithAliasingAnnotationsShouldError 2023-01-11T22:09:12.0138347Z [ OK ] AliasRegistrationTest.ConservativeWithAliasingAnnotationsShouldError (9 ms) 2023-01-11T22:09:12.0138998Z [ RUN ] AliasRegistrationTest.ConservativeWithAliasingAnnotationsShouldError2 2023-01-11T22:09:12.0185338Z [ OK ] AliasRegistrationTest.ConservativeWithAliasingAnnotationsShouldError2 (4 ms) 2023-01-11T22:09:12.0185894Z [ RUN ] AliasRegistrationTest.FromSchemaWithInferredSchemaShouldError 2023-01-11T22:09:12.0199377Z [ OK ] AliasRegistrationTest.FromSchemaWithInferredSchemaShouldError (1 ms) 2023-01-11T22:09:12.0199844Z [ RUN ] AliasRegistrationTest.FromSchemaInferredPure 2023-01-11T22:09:12.0201207Z [ OK ] AliasRegistrationTest.FromSchemaInferredPure (0 ms) 2023-01-11T22:09:12.0201602Z [ RUN ] AliasRegistrationTest.FromSchemaAliased 2023-01-11T22:09:12.0202647Z [ OK ] AliasRegistrationTest.FromSchemaAliased (0 ms) 2023-01-11T22:09:12.0203016Z [ RUN ] AliasRegistrationTest.FromSchemaPure 2023-01-11T22:09:12.0204405Z [ OK ] AliasRegistrationTest.FromSchemaPure (0 ms) 2023-01-11T22:09:12.0204824Z [ RUN ] AliasRegistrationTest.PureNoSchema 2023-01-11T22:09:12.0205725Z [ OK ] AliasRegistrationTest.PureNoSchema (0 ms) 2023-01-11T22:09:12.0206161Z [ RUN ] AliasRegistrationTest.PureWithSchema 2023-01-11T22:09:12.0207138Z [ OK ] AliasRegistrationTest.PureWithSchema (0 ms) 2023-01-11T22:09:12.0207543Z [ RUN ] AliasRegistrationTest.PureWithAnnotationsShouldError 2023-01-11T22:09:12.0240777Z [ OK ] AliasRegistrationTest.PureWithAnnotationsShouldError (3 ms) 2023-01-11T22:09:12.0241459Z [ RUN ] AliasRegistrationTest.AliasMoveAtenListOp 2023-01-11T22:09:12.0242048Z [ OK ] AliasRegistrationTest.AliasMoveAtenListOp (0 ms) 2023-01-11T22:09:12.0242802Z [ RUN ] AliasRegistrationTest.AliasMoveForTupleConstructWithSingleUseAsGraphOutput 2023-01-11T22:09:12.0243791Z [ OK ] AliasRegistrationTest.AliasMoveForTupleConstructWithSingleUseAsGraphOutput (0 ms) 2023-01-11T22:09:12.0244635Z [ RUN ] AliasRegistrationTest.RecursiveSubgraphTupleContainment 2023-01-11T22:09:12.0245230Z [ OK ] AliasRegistrationTest.RecursiveSubgraphTupleContainment (0 ms) 2023-01-11T22:09:12.0245902Z [ RUN ] AliasRegistrationTest.WildcardAliasForTupleConstructWithUses 2023-01-11T22:09:12.0246517Z [ OK ] AliasRegistrationTest.WildcardAliasForTupleConstructWithUses (0 ms) 2023-01-11T22:09:12.0246988Z [ RUN ] AliasRegistrationTest.ATenSplitIntListAliasCheck 2023-01-11T22:09:12.0247415Z [ OK ] AliasRegistrationTest.ATenSplitIntListAliasCheck (0 ms) 2023-01-11T22:09:12.0247830Z [ RUN ] AliasRegistrationTest.ATenSplitIntAliasCheck 2023-01-11T22:09:12.0248246Z [ OK ] AliasRegistrationTest.ATenSplitIntAliasCheck (0 ms) 2023-01-11T22:09:12.0248684Z [ RUN ] AliasRegistrationTest.PureWithAnnotationsShouldError2 2023-01-11T22:09:12.0280178Z [ OK ] AliasRegistrationTest.PureWithAnnotationsShouldError2 (3 ms) 2023-01-11T22:09:12.0280995Z [----------] 18 tests from AliasRegistrationTest (23 ms total) 2023-01-11T22:09:12.0281303Z 2023-01-11T22:09:12.0281628Z [----------] 2 tests from IRNonDeterminismTest 2023-01-11T22:09:12.0282167Z [ RUN ] IRNonDeterminismTest.Basic 2023-01-11T22:09:12.0282740Z [ OK ] IRNonDeterminismTest.Basic (0 ms) 2023-01-11T22:09:12.0283307Z [ RUN ] IRNonDeterminismTest.DropoutSpecialCase 2023-01-11T22:09:12.0283934Z [ OK ] IRNonDeterminismTest.DropoutSpecialCase (0 ms) 2023-01-11T22:09:12.0284503Z [----------] 2 tests from IRNonDeterminismTest (0 ms total) 2023-01-11T22:09:12.0284764Z 2023-01-11T22:09:12.0285118Z [----------] 1 test from NonDeterminismBackwardsCompatibility 2023-01-11T22:09:12.0286034Z [ RUN ] NonDeterminismBackwardsCompatibility.BackwardsCompatibility 2023-01-11T22:09:12.0286991Z [ OK ] NonDeterminismBackwardsCompatibility.BackwardsCompatibility (0 ms) 2023-01-11T22:09:12.0287852Z [----------] 1 test from NonDeterminismBackwardsCompatibility (0 ms total) 2023-01-11T22:09:12.0288221Z 2023-01-11T22:09:12.0288486Z [----------] 3 tests from AutodiffTest 2023-01-11T22:09:12.0289007Z [ RUN ] AutodiffTest.ADFormulas 2023-01-11T22:09:12.0752168Z [ OK ] AutodiffTest.ADFormulas (46 ms) 2023-01-11T22:09:12.0752510Z [ RUN ] AutodiffTest.Differentiate 2023-01-11T22:09:12.0757837Z [ OK ] AutodiffTest.Differentiate (0 ms) 2023-01-11T22:09:12.0758203Z [ RUN ] AutodiffTest.DifferentiateWithRequiresGrad 2023-01-11T22:09:12.0776789Z [ OK ] AutodiffTest.DifferentiateWithRequiresGrad (1 ms) 2023-01-11T22:09:12.0777471Z [----------] 3 tests from AutodiffTest (49 ms total) 2023-01-11T22:09:12.0777630Z 2023-01-11T22:09:12.0777843Z [----------] 1 test from AutodiffRemoveUnusedGradientsTest 2023-01-11T22:09:12.0778214Z [ RUN ] AutodiffRemoveUnusedGradientsTest.Linear 2023-01-11T22:09:12.0790153Z [ OK ] AutodiffRemoveUnusedGradientsTest.Linear (1 ms) 2023-01-11T22:09:12.0790926Z [----------] 1 test from AutodiffRemoveUnusedGradientsTest (1 ms total) 2023-01-11T22:09:12.0791168Z 2023-01-11T22:09:12.0791329Z [----------] 1 test from UpgraderLoad 2023-01-11T22:09:12.0791711Z [ RUN ] UpgraderLoad.CanPopulateUpgradersGraph 2023-01-11T22:09:12.0832683Z [ OK ] UpgraderLoad.CanPopulateUpgradersGraph (4 ms) 2023-01-11T22:09:12.0833090Z [----------] 1 test from UpgraderLoad (4 ms total) 2023-01-11T22:09:12.0833245Z 2023-01-11T22:09:12.0833407Z [----------] 4 tests from OpReplacementTest 2023-01-11T22:09:12.0833747Z [ RUN ] OpReplacementTest.ReplaceDivInSimpleFunction 2023-01-11T22:09:12.0834934Z [ OK ] OpReplacementTest.ReplaceDivInSimpleFunction (0 ms) 2023-01-11T22:09:12.0835387Z [ RUN ] OpReplacementTest.ReplaceTwoOpsInSimpleFunction 2023-01-11T22:09:12.0836942Z [ OK ] OpReplacementTest.ReplaceTwoOpsInSimpleFunction (0 ms) 2023-01-11T22:09:12.0837353Z [ RUN ] OpReplacementTest.ReplaceDivInNestedFunction 2023-01-11T22:09:12.0839228Z [ OK ] OpReplacementTest.ReplaceDivInNestedFunction (0 ms) 2023-01-11T22:09:12.0839739Z [ RUN ] OpReplacementTest.ReplaceTestSubcmulInSimpleFunction 2023-01-11T22:09:12.0840751Z [ OK ] OpReplacementTest.ReplaceTestSubcmulInSimpleFunction (0 ms) 2023-01-11T22:09:12.0841373Z [----------] 4 tests from OpReplacementTest (0 ms total) 2023-01-11T22:09:12.0841634Z 2023-01-11T22:09:12.0841799Z [----------] 4 tests from UpgraderUtils 2023-01-11T22:09:12.0842110Z [ RUN ] UpgraderUtils.FindCorrectUpgrader 2023-01-11T22:09:12.0842445Z [ OK ] UpgraderUtils.FindCorrectUpgrader (0 ms) 2023-01-11T22:09:12.0842784Z [ RUN ] UpgraderUtils.IsVersionMapSorted 2023-01-11T22:09:12.0843125Z [ OK ] UpgraderUtils.IsVersionMapSorted (0 ms) 2023-01-11T22:09:12.0843444Z [ RUN ] UpgraderUtils.FindIfOpIsCurrent 2023-01-11T22:09:12.0843903Z [ OK ] UpgraderUtils.FindIfOpIsCurrent (0 ms) 2023-01-11T22:09:12.0844378Z [ RUN ] UpgraderUtils.CanLoadHistoricOp 2023-01-11T22:09:12.0844825Z [ OK ] UpgraderUtils.CanLoadHistoricOp (0 ms) 2023-01-11T22:09:12.0845399Z [----------] 4 tests from UpgraderUtils (0 ms total) 2023-01-11T22:09:12.0845570Z 2023-01-11T22:09:12.0845725Z [----------] 9 tests from BackendTest 2023-01-11T22:09:12.0845996Z [ RUN ] BackendTest.ToBackend 2023-01-11T22:09:12.0890885Z [ OK ] BackendTest.ToBackend (4 ms) 2023-01-11T22:09:12.0891208Z [ RUN ] BackendTest.ToBackendNotAvailable 2023-01-11T22:09:12.0912721Z [W backend_detail.cpp:393] Warning: Backend [test_backend_unavailable] is not available. Execution of this Module is still possible by saving and loading on a device where the backend is available. (function codegen_backend_module) 2023-01-11T22:09:12.0929969Z [ OK ] BackendTest.ToBackendNotAvailable (3 ms) 2023-01-11T22:09:12.0930290Z [ RUN ] BackendTest.TestCompiler 2023-01-11T22:09:12.0987999Z [ OK ] BackendTest.TestCompiler (5 ms) 2023-01-11T22:09:12.0988393Z [ RUN ] BackendTest.TestCompilerWithStringTable 2023-01-11T22:09:12.1042407Z [ OK ] BackendTest.TestCompilerWithStringTable (5 ms) 2023-01-11T22:09:12.1042801Z [ RUN ] BackendTest.TestComposite 2023-01-11T22:09:12.1146627Z [ OK ] BackendTest.TestComposite (10 ms) 2023-01-11T22:09:12.1147126Z [ RUN ] BackendTest.TestPrimDtype 2023-01-11T22:09:12.1152793Z [ OK ] BackendTest.TestPrimDtype (0 ms) 2023-01-11T22:09:12.1153229Z [ RUN ] BackendTest.TestCompositeWithSetStates 2023-01-11T22:09:12.1255866Z [ OK ] BackendTest.TestCompositeWithSetStates (10 ms) 2023-01-11T22:09:12.1256377Z [ RUN ] BackendTest.TestConsistencyOfCompositeWithSetStates 2023-01-11T22:09:12.1445658Z [ OK ] BackendTest.TestConsistencyOfCompositeWithSetStates (18 ms) 2023-01-11T22:09:12.1446153Z [ RUN ] BackendTest.TestCompilerNotSupport 2023-01-11T22:09:12.1465437Z [ OK ] BackendTest.TestCompilerNotSupport (1 ms) 2023-01-11T22:09:12.1466082Z [----------] 9 tests from BackendTest (62 ms total) 2023-01-11T22:09:12.1466241Z 2023-01-11T22:09:12.1466411Z [----------] 6 tests from BackendTestDebugInfo 2023-01-11T22:09:12.1466724Z [ RUN ] BackendTestDebugInfo.TestCompiler 2023-01-11T22:09:12.1592883Z [ OK ] BackendTestDebugInfo.TestCompiler (12 ms) 2023-01-11T22:09:12.1593306Z [ RUN ] BackendTestDebugInfo.TestCompilerWithStringTable 2023-01-11T22:09:12.1733108Z [ OK ] BackendTestDebugInfo.TestCompilerWithStringTable (14 ms) 2023-01-11T22:09:12.1733639Z [ RUN ] BackendTestDebugInfo.TestExceptionStackForCompilerWithModuleHierarchy 2023-01-11T22:09:12.1870653Z [ OK ] BackendTestDebugInfo.TestExceptionStackForCompilerWithModuleHierarchy (13 ms) 2023-01-11T22:09:12.1871417Z [ RUN ] BackendTestDebugInfo.TestExceptionStackForCompilerWithTwoLevelModuleHierarchy 2023-01-11T22:09:12.2002784Z [ OK ] BackendTestDebugInfo.TestExceptionStackForCompilerWithTwoLevelModuleHierarchy (13 ms) 2023-01-11T22:09:12.2003426Z [ RUN ] BackendTestDebugInfo.TestExceptionStackForCompilerWithLoweredSubModule 2023-01-11T22:09:12.2141331Z [ OK ] BackendTestDebugInfo.TestExceptionStackForCompilerWithLoweredSubModule (13 ms) 2023-01-11T22:09:12.2142025Z [ RUN ] BackendTestDebugInfo.TestExceptionStackForCompilerWithSelectiveLoweredSubModule 2023-01-11T22:09:12.2273856Z [ OK ] BackendTestDebugInfo.TestExceptionStackForCompilerWithSelectiveLoweredSubModule (13 ms) 2023-01-11T22:09:12.2274384Z [----------] 6 tests from BackendTestDebugInfo (80 ms total) 2023-01-11T22:09:12.2274548Z 2023-01-11T22:09:12.2274704Z [----------] 4 tests from ClassImportTest 2023-01-11T22:09:12.2274989Z [ RUN ] ClassImportTest.Basic 2023-01-11T22:09:12.2280224Z [ OK ] ClassImportTest.Basic (0 ms) 2023-01-11T22:09:12.2280558Z [ RUN ] ClassImportTest.ScriptObject 2023-01-11T22:09:12.2306418Z [ OK ] ClassImportTest.ScriptObject (2 ms) 2023-01-11T22:09:12.2306862Z [ RUN ] ClassImportTest.ClassDerive 2023-01-11T22:09:12.2307559Z [ OK ] ClassImportTest.ClassDerive (0 ms) 2023-01-11T22:09:12.2307905Z [ RUN ] ClassImportTest.CustomClass 2023-01-11T22:09:12.2309622Z [ OK ] ClassImportTest.CustomClass (0 ms) 2023-01-11T22:09:12.2310307Z [----------] 4 tests from ClassImportTest (3 ms total) 2023-01-11T22:09:12.2310611Z 2023-01-11T22:09:12.2310879Z [----------] 1 test from ClassParserTest 2023-01-11T22:09:12.2311364Z [ RUN ] ClassParserTest.Basic 2023-01-11T22:09:12.2311662Z [ OK ] ClassParserTest.Basic (0 ms) 2023-01-11T22:09:12.2311982Z [----------] 1 test from ClassParserTest (0 ms total) 2023-01-11T22:09:12.2312123Z 2023-01-11T22:09:12.2312272Z [----------] 3 tests from ClassTypeTest 2023-01-11T22:09:12.2312564Z [ RUN ] ClassTypeTest.AddRemoveAttr 2023-01-11T22:09:12.2312878Z [ OK ] ClassTypeTest.AddRemoveAttr (0 ms) 2023-01-11T22:09:12.2313181Z [ RUN ] ClassTypeTest.AddRemoveConstant 2023-01-11T22:09:12.2313512Z [ OK ] ClassTypeTest.AddRemoveConstant (0 ms) 2023-01-11T22:09:12.2313869Z [ RUN ] ClassTypeTest.IdenticalTypesDifferentCus 2023-01-11T22:09:12.2336408Z [ OK ] ClassTypeTest.IdenticalTypesDifferentCus (2 ms) 2023-01-11T22:09:12.2337026Z [----------] 3 tests from ClassTypeTest (2 ms total) 2023-01-11T22:09:12.2337326Z 2023-01-11T22:09:12.2337532Z [----------] 2 tests from TestCodeTemplate 2023-01-11T22:09:12.2337821Z [ RUN ] TestCodeTemplate.Copying 2023-01-11T22:09:12.2338113Z [ OK ] TestCodeTemplate.Copying (0 ms) 2023-01-11T22:09:12.2338416Z [ RUN ] TestCodeTemplate.Formatting 2023-01-11T22:09:12.2338842Z [ OK ] TestCodeTemplate.Formatting (0 ms) 2023-01-11T22:09:12.2339180Z [----------] 2 tests from TestCodeTemplate (0 ms total) 2023-01-11T22:09:12.2339325Z 2023-01-11T22:09:12.2339477Z [----------] 13 tests from ConcatOptTest 2023-01-11T22:09:12.2339838Z [ RUN ] ConcatOptTest.SimpleCommonInputsEliminationPrefix 2023-01-11T22:09:12.2392790Z [ OK ] ConcatOptTest.SimpleCommonInputsEliminationPrefix (5 ms) 2023-01-11T22:09:12.2393396Z [ RUN ] ConcatOptTest.SimpleCommonInputsEliminationSuffix 2023-01-11T22:09:12.2432529Z [ OK ] ConcatOptTest.SimpleCommonInputsEliminationSuffix (3 ms) 2023-01-11T22:09:12.2433296Z [ RUN ] ConcatOptTest.CommonInputsEliminationWithDifferentOrderInputs 2023-01-11T22:09:12.2461601Z [ OK ] ConcatOptTest.CommonInputsEliminationWithDifferentOrderInputs (2 ms) 2023-01-11T22:09:12.2462292Z [ RUN ] ConcatOptTest.MoreCommonInputsElimination 2023-01-11T22:09:12.2529902Z [ OK ] ConcatOptTest.MoreCommonInputsElimination (6 ms) 2023-01-11T22:09:12.2530385Z [ RUN ] ConcatOptTest.ExpandConcat 2023-01-11T22:09:12.2554238Z [ OK ] ConcatOptTest.ExpandConcat (2 ms) 2023-01-11T22:09:12.2554774Z [ RUN ] ConcatOptTest.ConcatWithoutResultShape 2023-01-11T22:09:12.2575366Z [ OK ] ConcatOptTest.ConcatWithoutResultShape (2 ms) 2023-01-11T22:09:12.2575957Z [ RUN ] ConcatOptTest.ConcatWithoutInputShape 2023-01-11T22:09:12.2597450Z [ OK ] ConcatOptTest.ConcatWithoutInputShape (2 ms) 2023-01-11T22:09:12.2597991Z [ RUN ] ConcatOptTest.UseVariadicCat 2023-01-11T22:09:12.2647592Z [ OK ] ConcatOptTest.UseVariadicCat (5 ms) 2023-01-11T22:09:12.2648097Z [ RUN ] ConcatOptTest.UseVariadicCatWithMultipleListUses 2023-01-11T22:09:12.2667098Z [ OK ] ConcatOptTest.UseVariadicCatWithMultipleListUses (1 ms) 2023-01-11T22:09:12.2667784Z [ RUN ] ConcatOptTest.UseVariadicCatWithListMutationAfterCat 2023-01-11T22:09:12.2692669Z [ OK ] ConcatOptTest.UseVariadicCatWithListMutationAfterCat (2 ms) 2023-01-11T22:09:12.2693398Z [ RUN ] ConcatOptTest.UseVariadicCatWithListMutationBeforeCat 2023-01-11T22:09:12.2721219Z [ OK ] ConcatOptTest.UseVariadicCatWithListMutationBeforeCat (2 ms) 2023-01-11T22:09:12.2721942Z [ RUN ] ConcatOptTest.UseVariadicCatWithMultipleListMutations 2023-01-11T22:09:12.2764421Z [ OK ] ConcatOptTest.UseVariadicCatWithMultipleListMutations (4 ms) 2023-01-11T22:09:12.2765216Z [ RUN ] ConcatOptTest.RemoveListMutationUseVariadicCatAndCommonInputsElimination 2023-01-11T22:09:12.2800984Z [ OK ] ConcatOptTest.RemoveListMutationUseVariadicCatAndCommonInputsElimination (3 ms) 2023-01-11T22:09:12.2801609Z [----------] 13 tests from ConcatOptTest (46 ms total) 2023-01-11T22:09:12.2801830Z 2023-01-11T22:09:12.2802042Z [----------] 1 test from OptimizeConcatTest 2023-01-11T22:09:12.2802505Z [ RUN ] OptimizeConcatTest.UseVariadicCatReplaceMultiple 2023-01-11T22:09:12.2832714Z [ OK ] OptimizeConcatTest.UseVariadicCatReplaceMultiple (3 ms) 2023-01-11T22:09:12.2834448Z [----------] 1 test from OptimizeConcatTest (3 ms total) 2023-01-11T22:09:12.2834767Z 2023-01-11T22:09:12.2835046Z [----------] 3 tests from ConcatOpt 2023-01-11T22:09:12.2835752Z [ RUN ] ConcatOpt.CombineConcatsSimpleCase 2023-01-11T22:09:12.2836348Z [ OK ] ConcatOpt.CombineConcatsSimpleCase (0 ms) 2023-01-11T22:09:12.2836937Z [ RUN ] ConcatOpt.CombineConcatsLongChain 2023-01-11T22:09:12.2837917Z [ OK ] ConcatOpt.CombineConcatsLongChain (0 ms) 2023-01-11T22:09:12.2838478Z [ RUN ] ConcatOpt.CombineConcatsMutation 2023-01-11T22:09:12.2839982Z [ OK ] ConcatOpt.CombineConcatsMutation (0 ms) 2023-01-11T22:09:12.2840759Z [----------] 3 tests from ConcatOpt (0 ms total) 2023-01-11T22:09:12.2840956Z 2023-01-11T22:09:12.2841184Z [----------] 4 tests from ConstantPoolingTest 2023-01-11T22:09:12.2841550Z [ RUN ] ConstantPoolingTest.Int 2023-01-11T22:09:12.2841929Z [ OK ] ConstantPoolingTest.Int (0 ms) 2023-01-11T22:09:12.2842368Z [ RUN ] ConstantPoolingTest.PoolingAcrossBlocks 2023-01-11T22:09:12.2842850Z [ OK ] ConstantPoolingTest.PoolingAcrossBlocks (0 ms) 2023-01-11T22:09:12.2843344Z [ RUN ] ConstantPoolingTest.PoolingDifferentDevices 2023-01-11T22:09:12.2845553Z [ OK ] ConstantPoolingTest.PoolingDifferentDevices (0 ms) 2023-01-11T22:09:12.2846067Z [ RUN ] ConstantPoolingTest.DictConstantPooling 2023-01-11T22:09:12.2846627Z [ OK ] ConstantPoolingTest.DictConstantPooling (0 ms) 2023-01-11T22:09:12.2847970Z [----------] 4 tests from ConstantPoolingTest (0 ms total) 2023-01-11T22:09:12.2848200Z 2023-01-11T22:09:12.2848408Z [----------] 1 test from CleanupPassTest 2023-01-11T22:09:12.2848759Z [ RUN ] CleanupPassTest.Basic 2023-01-11T22:09:12.2849442Z [ OK ] CleanupPassTest.Basic (0 ms) 2023-01-11T22:09:12.2849862Z [----------] 1 test from CleanupPassTest (0 ms total) 2023-01-11T22:09:12.2850061Z 2023-01-11T22:09:12.2850305Z [----------] 1 test from CreateAutodiffSubgraphsTest 2023-01-11T22:09:12.2850726Z [ RUN ] CreateAutodiffSubgraphsTest.Basic 2023-01-11T22:09:12.2853548Z [ OK ] CreateAutodiffSubgraphsTest.Basic (0 ms) 2023-01-11T22:09:12.2854049Z [----------] 1 test from CreateAutodiffSubgraphsTest (0 ms total) 2023-01-11T22:09:12.2854285Z 2023-01-11T22:09:12.2854491Z [----------] 4 tests from CustomClassTest 2023-01-11T22:09:12.2854885Z [ RUN ] CustomClassTest.TorchbindIValueAPI 2023-01-11T22:09:12.2859114Z [ OK ] CustomClassTest.TorchbindIValueAPI (0 ms) 2023-01-11T22:09:12.2859555Z [ RUN ] CustomClassTest.ScalarTypeClass 2023-01-11T22:09:12.2861902Z [ OK ] CustomClassTest.ScalarTypeClass (0 ms) 2023-01-11T22:09:12.2862375Z [ RUN ] CustomClassTest.TestDocString 2023-01-11T22:09:12.2862796Z [ OK ] CustomClassTest.TestDocString (0 ms) 2023-01-11T22:09:12.2863202Z [ RUN ] CustomClassTest.Serialization 2023-01-11T22:09:12.2883847Z [ OK ] CustomClassTest.Serialization (2 ms) 2023-01-11T22:09:12.2884201Z [----------] 4 tests from CustomClassTest (3 ms total) 2023-01-11T22:09:12.2884363Z 2023-01-11T22:09:12.2884529Z [----------] 5 tests from CustomOperatorTest 2023-01-11T22:09:12.2884835Z [ RUN ] CustomOperatorTest.InferredSchema 2023-01-11T22:09:12.2886935Z [ OK ] CustomOperatorTest.InferredSchema (0 ms) 2023-01-11T22:09:12.2887281Z [ RUN ] CustomOperatorTest.ExplicitSchema 2023-01-11T22:09:12.2889262Z [ OK ] CustomOperatorTest.ExplicitSchema (0 ms) 2023-01-11T22:09:12.2889627Z [ RUN ] CustomOperatorTest.ListParameters 2023-01-11T22:09:12.2890582Z [ OK ] CustomOperatorTest.ListParameters (0 ms) 2023-01-11T22:09:12.2890994Z [ RUN ] CustomOperatorTest.ListParameters2 2023-01-11T22:09:12.2892714Z [ OK ] CustomOperatorTest.ListParameters2 (0 ms) 2023-01-11T22:09:12.2893110Z [ RUN ] CustomOperatorTest.Aliasing 2023-01-11T22:09:12.2894808Z [ OK ] CustomOperatorTest.Aliasing (0 ms) 2023-01-11T22:09:12.2895530Z [----------] 5 tests from CustomOperatorTest (1 ms total) 2023-01-11T22:09:12.2895812Z 2023-01-11T22:09:12.2896205Z [----------] 2 tests from TestCustomOperator 2023-01-11T22:09:12.2896856Z [ RUN ] TestCustomOperator.OperatorGeneratorUndeclared 2023-01-11T22:09:12.2897285Z [ OK ] TestCustomOperator.OperatorGeneratorUndeclared (0 ms) 2023-01-11T22:09:12.2897912Z [ RUN ] TestCustomOperator.OperatorGeneratorBasic 2023-01-11T22:09:12.2898462Z [ OK ] TestCustomOperator.OperatorGeneratorBasic (0 ms) 2023-01-11T22:09:12.2899108Z [----------] 2 tests from TestCustomOperator (0 ms total) 2023-01-11T22:09:12.2899413Z 2023-01-11T22:09:12.2899732Z [----------] 1 test from EliminateDeadCodeTest 2023-01-11T22:09:12.2900047Z [ RUN ] EliminateDeadCodeTest.Basic 2023-01-11T22:09:12.2900369Z [ OK ] EliminateDeadCodeTest.Basic (0 ms) 2023-01-11T22:09:12.2900710Z [----------] 1 test from EliminateDeadCodeTest (0 ms total) 2023-01-11T22:09:12.2900876Z 2023-01-11T22:09:12.2901016Z [----------] 2 tests from FuserTest 2023-01-11T22:09:12.2901417Z [ RUN ] FuserTest.FusionAliasing 2023-01-11T22:09:12.2902609Z [ OK ] FuserTest.FusionAliasing (0 ms) 2023-01-11T22:09:12.2902952Z [ RUN ] FuserTest.KernelCaching 2023-01-11T22:09:12.2905631Z [ OK ] FuserTest.KernelCaching (0 ms) 2023-01-11T22:09:12.2906211Z [----------] 2 tests from FuserTest (0 ms total) 2023-01-11T22:09:12.2906452Z 2023-01-11T22:09:12.2906614Z [----------] 1 test from GraphExecutorTest 2023-01-11T22:09:12.2906927Z [ RUN ] GraphExecutorTest.runAsync_executor 2023-01-11T22:09:12.2936907Z [ OK ] GraphExecutorTest.runAsync_executor (3 ms) 2023-01-11T22:09:12.2937722Z [----------] 1 test from GraphExecutorTest (3 ms total) 2023-01-11T22:09:12.2938121Z 2023-01-11T22:09:12.2938498Z [----------] 5 tests from GraphIteratorTest 2023-01-11T22:09:12.2939296Z [ RUN ] GraphIteratorTest.ConstantReturnGraph 2023-01-11T22:09:12.2940120Z [ OK ] GraphIteratorTest.ConstantReturnGraph (0 ms) 2023-01-11T22:09:12.2940769Z [ RUN ] GraphIteratorTest.GraphWithParameters 2023-01-11T22:09:12.2941299Z [ OK ] GraphIteratorTest.GraphWithParameters (0 ms) 2023-01-11T22:09:12.2941751Z [ RUN ] GraphIteratorTest.GraphWithIf 2023-01-11T22:09:12.2942388Z [ OK ] GraphIteratorTest.GraphWithIf (0 ms) 2023-01-11T22:09:12.2942916Z [ RUN ] GraphIteratorTest.GraphWithNestedIf 2023-01-11T22:09:12.2943258Z [ OK ] GraphIteratorTest.GraphWithNestedIf (0 ms) 2023-01-11T22:09:12.2943598Z [ RUN ] GraphIteratorTest.GraphWithLoop 2023-01-11T22:09:12.2943932Z [ OK ] GraphIteratorTest.GraphWithLoop (0 ms) 2023-01-11T22:09:12.2944279Z [----------] 5 tests from GraphIteratorTest (0 ms total) 2023-01-11T22:09:12.2944426Z 2023-01-11T22:09:12.2944617Z [----------] 1 test from CSDebugInfoSerializaitionTest 2023-01-11T22:09:12.2944987Z [ RUN ] CSDebugInfoSerializaitionTest.TwoSubmodules 2023-01-11T22:09:12.2947141Z [ OK ] CSDebugInfoSerializaitionTest.TwoSubmodules (0 ms) 2023-01-11T22:09:12.2947872Z [----------] 1 test from CSDebugInfoSerializaitionTest (0 ms total) 2023-01-11T22:09:12.2948065Z 2023-01-11T22:09:12.2948210Z [----------] 1 test from InlinerTest 2023-01-11T22:09:12.2948467Z [ RUN ] InlinerTest.Basic 2023-01-11T22:09:12.2950168Z [ OK ] InlinerTest.Basic (0 ms) 2023-01-11T22:09:12.2950695Z [----------] 1 test from InlinerTest (0 ms total) 2023-01-11T22:09:12.2950960Z 2023-01-11T22:09:12.2951117Z [----------] 1 test from InterfaceTest 2023-01-11T22:09:12.2951452Z [ RUN ] InterfaceTest.ModuleInterfaceSerialization 2023-01-11T22:09:12.2963697Z [ OK ] InterfaceTest.ModuleInterfaceSerialization (1 ms) 2023-01-11T22:09:12.2964357Z [----------] 1 test from InterfaceTest (1 ms total) 2023-01-11T22:09:12.2964522Z 2023-01-11T22:09:12.2964749Z [----------] 4 tests from TypeCheckTest 2023-01-11T22:09:12.2965114Z [ RUN ] TypeCheckTest.MatchingType 2023-01-11T22:09:12.2965722Z [ OK ] TypeCheckTest.MatchingType (0 ms) 2023-01-11T22:09:12.2966272Z [ RUN ] TypeCheckTest.SizeMismatch 2023-01-11T22:09:12.2966825Z [ OK ] TypeCheckTest.SizeMismatch (0 ms) 2023-01-11T22:09:12.2967358Z [ RUN ] TypeCheckTest.GradientMismatch 2023-01-11T22:09:12.2967915Z [ OK ] TypeCheckTest.GradientMismatch (0 ms) 2023-01-11T22:09:12.2968513Z [ RUN ] TypeCheckTest.ScalarTypeMismatch 2023-01-11T22:09:12.2969290Z [ OK ] TypeCheckTest.ScalarTypeMismatch (0 ms) 2023-01-11T22:09:12.2969890Z [----------] 4 tests from TypeCheckTest (0 ms total) 2023-01-11T22:09:12.2970123Z 2023-01-11T22:09:12.2970284Z [----------] 3 tests from InterpreterTest 2023-01-11T22:09:12.2970610Z [ RUN ] InterpreterTest.IgnorableArgsInSchema 2023-01-11T22:09:12.2972692Z [ OK ] InterpreterTest.IgnorableArgsInSchema (0 ms) 2023-01-11T22:09:12.2973086Z [ RUN ] InterpreterTest.IgnorableArgsInSchemaWithOut 2023-01-11T22:09:12.2973496Z [ OK ] InterpreterTest.IgnorableArgsInSchemaWithOut (0 ms) 2023-01-11T22:09:12.2973866Z [ RUN ] InterpreterTest.runAsyncBasicTest 2023-01-11T22:09:12.2992275Z [ OK ] InterpreterTest.runAsyncBasicTest (1 ms) 2023-01-11T22:09:12.2992735Z [----------] 3 tests from InterpreterTest (2 ms total) 2023-01-11T22:09:12.2992952Z 2023-01-11T22:09:12.2993218Z [----------] 1 test from EnableRethrowCaughtExceptionTest 2023-01-11T22:09:12.2993966Z [ RUN ] EnableRethrowCaughtExceptionTest.EnableRethrowCaughtExceptionTestRethrowsCaughtException 2023-01-11T22:09:12.3205386Z [ OK ] EnableRethrowCaughtExceptionTest.EnableRethrowCaughtExceptionTestRethrowsCaughtException (21 ms) 2023-01-11T22:09:12.3206030Z [----------] 1 test from EnableRethrowCaughtExceptionTest (21 ms total) 2023-01-11T22:09:12.3206337Z 2023-01-11T22:09:12.3206514Z [----------] 4 tests from IRTest 2023-01-11T22:09:12.3206818Z [ RUN ] IRTest.Attributes 2023-01-11T22:09:12.3207232Z [ OK ] IRTest.Attributes (0 ms) 2023-01-11T22:09:12.3207615Z [ RUN ] IRTest.Blocks 2023-01-11T22:09:12.3207961Z [ OK ] IRTest.Blocks (0 ms) 2023-01-11T22:09:12.3208344Z [ RUN ] IRTest.CommonAncestor 2023-01-11T22:09:12.3208738Z [ OK ] IRTest.CommonAncestor (0 ms) 2023-01-11T22:09:12.3209303Z [ RUN ] IRTest.OperatorMap 2023-01-11T22:09:12.3209763Z [ OK ] IRTest.OperatorMap (0 ms) 2023-01-11T22:09:12.3210171Z [----------] 4 tests from IRTest (0 ms total) 2023-01-11T22:09:12.3210375Z 2023-01-11T22:09:12.3210581Z [----------] 21 tests from IRParserTest 2023-01-11T22:09:12.3210967Z [ RUN ] IRParserTest.Basic 2023-01-11T22:09:12.3211395Z [ OK ] IRParserTest.Basic (0 ms) 2023-01-11T22:09:12.3211792Z [ RUN ] IRParserTest.NestedBlock 2023-01-11T22:09:12.3212242Z [ OK ] IRParserTest.NestedBlock (0 ms) 2023-01-11T22:09:12.3212512Z [ RUN ] IRParserTest.If 2023-01-11T22:09:12.3212888Z [ OK ] IRParserTest.If (0 ms) 2023-01-11T22:09:12.3213281Z [ RUN ] IRParserTest.If2 2023-01-11T22:09:12.3213691Z [ OK ] IRParserTest.If2 (0 ms) 2023-01-11T22:09:12.3214152Z [ RUN ] IRParserTest.InferredTypeIsTensor 2023-01-11T22:09:12.3214657Z [ OK ] IRParserTest.InferredTypeIsTensor (0 ms) 2023-01-11T22:09:12.3215114Z [ RUN ] IRParserTest.ValueReuse 2023-01-11T22:09:12.3215487Z [ OK ] IRParserTest.ValueReuse (0 ms) 2023-01-11T22:09:12.3215826Z [ RUN ] IRParserTest.Attributes 2023-01-11T22:09:12.3216209Z [ OK ] IRParserTest.Attributes (0 ms) 2023-01-11T22:09:12.3216591Z [ RUN ] IRParserTest.OptionalTypes 2023-01-11T22:09:12.3216994Z [ OK ] IRParserTest.OptionalTypes (0 ms) 2023-01-11T22:09:12.3217562Z [ RUN ] IRParserTest.StarTensor 2023-01-11T22:09:12.3218043Z [ OK ] IRParserTest.StarTensor (0 ms) 2023-01-11T22:09:12.3218384Z [ RUN ] IRParserTest.UnshapedTensor 2023-01-11T22:09:12.3218830Z [ OK ] IRParserTest.UnshapedTensor (0 ms) 2023-01-11T22:09:12.3219306Z [ RUN ] IRParserTest.ShapedTensor 2023-01-11T22:09:12.3219779Z [ OK ] IRParserTest.ShapedTensor (0 ms) 2023-01-11T22:09:12.3220320Z [ RUN ] IRParserTest.NestedContrainer 2023-01-11T22:09:12.3220947Z [ OK ] IRParserTest.NestedContrainer (0 ms) 2023-01-11T22:09:12.3221432Z [ RUN ] IRParserTest.MalformedShapeAnnotation 2023-01-11T22:09:12.3222064Z [ OK ] IRParserTest.MalformedShapeAnnotation (0 ms) 2023-01-11T22:09:12.3222543Z [ RUN ] IRParserTest.FileCheck 2023-01-11T22:09:12.3222842Z [ OK ] IRParserTest.FileCheck (0 ms) 2023-01-11T22:09:12.3223110Z [ RUN ] IRParserTest.Strides 2023-01-11T22:09:12.3223388Z [ OK ] IRParserTest.Strides (0 ms) 2023-01-11T22:09:12.3223685Z [ RUN ] IRParserTest.MalformedStrides 2023-01-11T22:09:12.3223994Z [ OK ] IRParserTest.MalformedStrides (0 ms) 2023-01-11T22:09:12.3224297Z [ RUN ] IRParserTest.TensorShapes 2023-01-11T22:09:12.3224598Z [ OK ] IRParserTest.TensorShapes (0 ms) 2023-01-11T22:09:12.3224944Z [ RUN ] IRParserTest.DeviceAndRequiresGradTensors 2023-01-11T22:09:12.3225323Z [ OK ] IRParserTest.DeviceAndRequiresGradTensors (0 ms) 2023-01-11T22:09:12.3225657Z [ RUN ] IRParserTest.ListConstant 2023-01-11T22:09:12.3225957Z [ OK ] IRParserTest.ListConstant (0 ms) 2023-01-11T22:09:12.3226261Z [ RUN ] IRParserTest.PartialStarTensor 2023-01-11T22:09:12.3226589Z [ OK ] IRParserTest.PartialStarTensor (0 ms) 2023-01-11T22:09:12.3226931Z [ RUN ] IRParserTest.ComplexTensorAttributes 2023-01-11T22:09:12.3227277Z [ OK ] IRParserTest.ComplexTensorAttributes (0 ms) 2023-01-11T22:09:12.3227680Z [----------] 21 tests from IRParserTest (1 ms total) 2023-01-11T22:09:12.3227832Z 2023-01-11T22:09:12.3227977Z [----------] 2 tests from JitTypeTest 2023-01-11T22:09:12.3228306Z [ RUN ] JitTypeTest.IsComplete 2023-01-11T22:09:12.3228586Z [ OK ] JitTypeTest.IsComplete (0 ms) 2023-01-11T22:09:12.3228869Z [ RUN ] JitTypeTest.UnifyTypes 2023-01-11T22:09:12.3229163Z [ OK ] JitTypeTest.UnifyTypes (0 ms) 2023-01-11T22:09:12.3229458Z [----------] 2 tests from JitTypeTest (0 ms total) 2023-01-11T22:09:12.3229606Z 2023-01-11T22:09:12.3229777Z [----------] 42 tests from LiteInterpreterTest 2023-01-11T22:09:12.3230106Z [ RUN ] LiteInterpreterTest.UpsampleNearest2d 2023-01-11T22:09:12.3234379Z [ OK ] LiteInterpreterTest.UpsampleNearest2d (1 ms) 2023-01-11T22:09:12.3234834Z [ RUN ] LiteInterpreterTest.CheckAttrAccess 2023-01-11T22:09:12.3235788Z [ OK ] LiteInterpreterTest.CheckAttrAccess (0 ms) 2023-01-11T22:09:12.3236152Z [ RUN ] LiteInterpreterTest.MethodInvocation 2023-01-11T22:09:12.3260851Z [ OK ] LiteInterpreterTest.MethodInvocation (2 ms) 2023-01-11T22:09:12.3261182Z [ RUN ] LiteInterpreterTest.Conv 2023-01-11T22:09:12.3285474Z [ OK ] LiteInterpreterTest.Conv (2 ms) 2023-01-11T22:09:12.3285886Z [ RUN ] LiteInterpreterTest.Inline 2023-01-11T22:09:12.3294975Z [ OK ] LiteInterpreterTest.Inline (0 ms) 2023-01-11T22:09:12.3295283Z [ RUN ] LiteInterpreterTest.Tuple 2023-01-11T22:09:12.3301639Z [ OK ] LiteInterpreterTest.Tuple (0 ms) 2023-01-11T22:09:12.3302000Z [ RUN ] LiteInterpreterTest.AtenFormat 2023-01-11T22:09:12.3307610Z [ OK ] LiteInterpreterTest.AtenFormat (0 ms) 2023-01-11T22:09:12.3308006Z [ RUN ] LiteInterpreterTest.PrimDevice 2023-01-11T22:09:12.3311591Z [ OK ] LiteInterpreterTest.PrimDevice (0 ms) 2023-01-11T22:09:12.3311942Z [ RUN ] LiteInterpreterTest.Dict 2023-01-11T22:09:12.3318230Z [ OK ] LiteInterpreterTest.Dict (0 ms) 2023-01-11T22:09:12.3318560Z [ RUN ] LiteInterpreterTest.List 2023-01-11T22:09:12.3326728Z [ OK ] LiteInterpreterTest.List (0 ms) 2023-01-11T22:09:12.3327313Z [ RUN ] LiteInterpreterTest.PrimOverload 2023-01-11T22:09:12.3327790Z [ OK ] LiteInterpreterTest.PrimOverload (0 ms) 2023-01-11T22:09:12.3328103Z [ RUN ] LiteInterpreterTest.Prim 2023-01-11T22:09:12.3331408Z [ OK ] LiteInterpreterTest.Prim (0 ms) 2023-01-11T22:09:12.3331928Z [ RUN ] LiteInterpreterTest.PrimScalar 2023-01-11T22:09:12.3335954Z [ OK ] LiteInterpreterTest.PrimScalar (0 ms) 2023-01-11T22:09:12.3336583Z [ RUN ] LiteInterpreterTest.LoadOrigJit 2023-01-11T22:09:12.3391937Z [ OK ] LiteInterpreterTest.LoadOrigJit (5 ms) 2023-01-11T22:09:12.3392530Z [ RUN ] LiteInterpreterTest.WrongMethodName 2023-01-11T22:09:12.3411990Z [ OK ] LiteInterpreterTest.WrongMethodName (1 ms) 2023-01-11T22:09:12.3412549Z [ RUN ] LiteInterpreterTest.SetState 2023-01-11T22:09:12.3436056Z [ OK ] LiteInterpreterTest.SetState (2 ms) 2023-01-11T22:09:12.3436650Z [ RUN ] LiteInterpreterTest.BuiltinClass 2023-01-11T22:09:12.3443844Z [ OK ] LiteInterpreterTest.BuiltinClass (0 ms) 2023-01-11T22:09:12.3444453Z [ RUN ] LiteInterpreterTest.BuiltinFunction 2023-01-11T22:09:12.3447533Z [ OK ] LiteInterpreterTest.BuiltinFunction (0 ms) 2023-01-11T22:09:12.3448206Z [ RUN ] LiteInterpreterTest.GetRuntimeByteCodeVersion 2023-01-11T22:09:12.3448742Z [ OK ] LiteInterpreterTest.GetRuntimeByteCodeVersion (0 ms) 2023-01-11T22:09:12.3449294Z [ RUN ] LiteInterpreterTest.GetRuntimeOperatorsVersion 2023-01-11T22:09:12.3449718Z [ OK ] LiteInterpreterTest.GetRuntimeOperatorsVersion (0 ms) 2023-01-11T22:09:12.3450140Z [ RUN ] LiteInterpreterTest.GetByteCodeVersion 2023-01-11T22:09:12.3452173Z [ OK ] LiteInterpreterTest.GetByteCodeVersion (0 ms) 2023-01-11T22:09:12.3452574Z [ RUN ] LiteInterpreterTest.GetContainTypes 2023-01-11T22:09:12.3454548Z [ OK ] LiteInterpreterTest.GetContainTypes (0 ms) 2023-01-11T22:09:12.3454988Z [ RUN ] LiteInterpreterTest.BackPortByteCodeModelAllVersions 2023-01-11T22:09:12.4338693Z [ OK ] LiteInterpreterTest.BackPortByteCodeModelAllVersions (88 ms) 2023-01-11T22:09:12.4339216Z [ RUN ] LiteInterpreterTest.GetRuntimeOpsAndInfo 2023-01-11T22:09:12.4401262Z [ OK ] LiteInterpreterTest.GetRuntimeOpsAndInfo (6 ms) 2023-01-11T22:09:12.4401646Z [ RUN ] LiteInterpreterTest.isCompatibleSuccess 2023-01-11T22:09:12.4455596Z [ OK ] LiteInterpreterTest.isCompatibleSuccess (5 ms) 2023-01-11T22:09:12.4455987Z [ RUN ] LiteInterpreterTest.isCompatibleFail 2023-01-11T22:09:12.4546490Z [ OK ] LiteInterpreterTest.isCompatibleFail (9 ms) 2023-01-11T22:09:12.4546843Z [ RUN ] LiteInterpreterTest.Eval 2023-01-11T22:09:12.4556436Z [ OK ] LiteInterpreterTest.Eval (1 ms) 2023-01-11T22:09:12.4556797Z [ RUN ] LiteInterpreterTest.FindWrongMethodName 2023-01-11T22:09:12.4560683Z [ OK ] LiteInterpreterTest.FindWrongMethodName (0 ms) 2023-01-11T22:09:12.4561071Z [ RUN ] LiteInterpreterTest.FindAndRunMethod 2023-01-11T22:09:12.4567735Z [ OK ] LiteInterpreterTest.FindAndRunMethod (0 ms) 2023-01-11T22:09:12.4568346Z [ RUN ] LiteInterpreterTest.RunMethodVariadic 2023-01-11T22:09:12.4574681Z [ OK ] LiteInterpreterTest.RunMethodVariadic (0 ms) 2023-01-11T22:09:12.4575058Z [ RUN ] LiteInterpreterTest.DuplicateSetState 2023-01-11T22:09:12.4585050Z [ OK ] LiteInterpreterTest.DuplicateSetState (1 ms) 2023-01-11T22:09:12.4585398Z [ RUN ] LiteInterpreterTest.ExtraFiles 2023-01-11T22:09:12.4590333Z [ OK ] LiteInterpreterTest.ExtraFiles (0 ms) 2023-01-11T22:09:12.4590868Z [ RUN ] LiteInterpreterTest.OpNameExportFetchRootOperators 2023-01-11T22:09:12.4599660Z [ OK ] LiteInterpreterTest.OpNameExportFetchRootOperators (0 ms) 2023-01-11T22:09:12.4600131Z [ RUN ] LiteInterpreterTest.DefaultArgsConv 2023-01-11T22:09:12.4613699Z [ OK ] LiteInterpreterTest.DefaultArgsConv (1 ms) 2023-01-11T22:09:12.4614203Z [ RUN ] LiteInterpreterTest.DefaultArgsPinv 2023-01-11T22:09:12.4662096Z [ OK ] LiteInterpreterTest.DefaultArgsPinv (4 ms) 2023-01-11T22:09:12.4662989Z [ RUN ] LiteInterpreterTest.DefaultArgsTensorinvSpecifyDefault 2023-01-11T22:09:12.4705005Z [ OK ] LiteInterpreterTest.DefaultArgsTensorinvSpecifyDefault (4 ms) 2023-01-11T22:09:12.4705653Z [ RUN ] LiteInterpreterTest.DefaultArgsPinvWithOutArg 2023-01-11T22:09:12.4724221Z [ OK ] LiteInterpreterTest.DefaultArgsPinvWithOutArg (1 ms) 2023-01-11T22:09:12.4724945Z [ RUN ] LiteInterpreterTest.DefaultArgsWithOutArg 2023-01-11T22:09:12.4732576Z [ OK ] LiteInterpreterTest.DefaultArgsWithOutArg (0 ms) 2023-01-11T22:09:12.4733228Z [ RUN ] LiteInterpreterTest.TestExceptionStackWithTwoLevelModuleHierarchy 2023-01-11T22:09:12.4830964Z [ OK ] LiteInterpreterTest.TestExceptionStackWithTwoLevelModuleHierarchy (9 ms) 2023-01-11T22:09:12.4831499Z [ RUN ] LiteInterpreterTest.OperatorCacheDifferentiatesDefaultArgs 2023-01-11T22:09:12.4863654Z [ OK ] LiteInterpreterTest.OperatorCacheDifferentiatesDefaultArgs (3 ms) 2023-01-11T22:09:12.4864150Z [ RUN ] LiteInterpreterTest.OperatorSize1 2023-01-11T22:09:12.4868055Z [ OK ] LiteInterpreterTest.OperatorSize1 (0 ms) 2023-01-11T22:09:12.4868523Z [ RUN ] LiteInterpreterTest.OperatorTest2 2023-01-11T22:09:12.4885418Z [ OK ] LiteInterpreterTest.OperatorTest2 (1 ms) 2023-01-11T22:09:12.4885909Z [----------] 42 tests from LiteInterpreterTest (166 ms total) 2023-01-11T22:09:12.4886086Z 2023-01-11T22:09:12.4886234Z [----------] 3 tests from RunTimeTest 2023-01-11T22:09:12.4886524Z [ RUN ] RunTimeTest.ParseBytecode 2023-01-11T22:09:12.4886821Z [ OK ] RunTimeTest.ParseBytecode (0 ms) 2023-01-11T22:09:12.4887134Z [ RUN ] RunTimeTest.ParseOperator 2023-01-11T22:09:12.4887440Z [ OK ] RunTimeTest.ParseOperator (0 ms) 2023-01-11T22:09:12.4887740Z [ RUN ] RunTimeTest.RuntimeCall 2023-01-11T22:09:12.4888019Z [ OK ] RunTimeTest.RuntimeCall (0 ms) 2023-01-11T22:09:12.4888331Z [----------] 3 tests from RunTimeTest (0 ms total) 2023-01-11T22:09:12.4888480Z 2023-01-11T22:09:12.4888668Z [----------] 11 tests from LiteInterpreterUpgraderTest 2023-01-11T22:09:12.4889014Z [ RUN ] LiteInterpreterUpgraderTest.DivTensorV2 2023-01-11T22:09:12.4891954Z [ OK ] LiteInterpreterUpgraderTest.DivTensorV2 (0 ms) 2023-01-11T22:09:12.4892348Z [ RUN ] LiteInterpreterUpgraderTest.DivTensorOutV2 2023-01-11T22:09:12.4896478Z [ OK ] LiteInterpreterUpgraderTest.DivTensorOutV2 (0 ms) 2023-01-11T22:09:12.4896878Z [ RUN ] LiteInterpreterUpgraderTest.DivTensorInplaceV2 2023-01-11T22:09:12.4905665Z [ OK ] LiteInterpreterUpgraderTest.DivTensorInplaceV2 (0 ms) 2023-01-11T22:09:12.4906082Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarFloatV2 2023-01-11T22:09:12.4916698Z [ OK ] LiteInterpreterUpgraderTest.DivScalarFloatV2 (1 ms) 2023-01-11T22:09:12.4917248Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarReciprocalFloatV2 2023-01-11T22:09:12.4921276Z expect output: 0.5000 2023-01-11T22:09:12.4921571Z [ CPUFloatType{1} ]actual output: 0.5000 2023-01-11T22:09:12.4922001Z [ CPUFloatType{1} ][ OK ] LiteInterpreterUpgraderTest.DivScalarReciprocalFloatV2 (0 ms) 2023-01-11T22:09:12.4922483Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarReciprocalIntV2 2023-01-11T22:09:12.4925781Z [ OK ] LiteInterpreterUpgraderTest.DivScalarReciprocalIntV2 (0 ms) 2023-01-11T22:09:12.4926228Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarScalarV2 2023-01-11T22:09:12.4929528Z [ OK ] LiteInterpreterUpgraderTest.DivScalarScalarV2 (0 ms) 2023-01-11T22:09:12.4929951Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarIntV2 2023-01-11T22:09:12.4942496Z [ OK ] LiteInterpreterUpgraderTest.DivScalarIntV2 (1 ms) 2023-01-11T22:09:12.4942919Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarInplaceFloatV2 2023-01-11T22:09:12.4946738Z [ OK ] LiteInterpreterUpgraderTest.DivScalarInplaceFloatV2 (0 ms) 2023-01-11T22:09:12.4947189Z [ RUN ] LiteInterpreterUpgraderTest.DivScalarInplaceIntV2 2023-01-11T22:09:12.4950818Z [ OK ] LiteInterpreterUpgraderTest.DivScalarInplaceIntV2 (0 ms) 2023-01-11T22:09:12.4951231Z [ RUN ] LiteInterpreterUpgraderTest.Upgrader 2023-01-11T22:09:12.4951603Z [ OK ] LiteInterpreterUpgraderTest.Upgrader (0 ms) 2023-01-11T22:09:12.4951997Z [----------] 11 tests from LiteInterpreterUpgraderTest (6 ms total) 2023-01-11T22:09:12.4952182Z 2023-01-11T22:09:12.4952371Z [----------] 29 tests from LiteInterpreterDirectTest 2023-01-11T22:09:12.4952722Z [ RUN ] LiteInterpreterDirectTest.UpsampleNearest2d 2023-01-11T22:09:12.4959442Z [ OK ] LiteInterpreterDirectTest.UpsampleNearest2d (0 ms) 2023-01-11T22:09:12.4959893Z [ RUN ] LiteInterpreterDirectTest.CheckAttrAccess 2023-01-11T22:09:12.4960275Z [ OK ] LiteInterpreterDirectTest.CheckAttrAccess (0 ms) 2023-01-11T22:09:12.4960664Z [ RUN ] LiteInterpreterDirectTest.MethodInvocation 2023-01-11T22:09:12.4965089Z hello 2023-01-11T22:09:12.4965277Z hello 3 2023-01-11T22:09:12.4972600Z hello 2023-01-11T22:09:12.4972819Z hello 3 2023-01-11T22:09:12.4977918Z hello 2023-01-11T22:09:12.4978225Z hello 3 2023-01-11T22:09:12.4978591Z [ OK ] LiteInterpreterDirectTest.MethodInvocation (1 ms) 2023-01-11T22:09:12.4978963Z [ RUN ] LiteInterpreterDirectTest.Conv 2023-01-11T22:09:12.4992120Z [ OK ] LiteInterpreterDirectTest.Conv (1 ms) 2023-01-11T22:09:12.4992552Z [ RUN ] LiteInterpreterDirectTest.Inline 2023-01-11T22:09:12.4998531Z [ OK ] LiteInterpreterDirectTest.Inline (0 ms) 2023-01-11T22:09:12.4998893Z [ RUN ] LiteInterpreterDirectTest.Tuple 2023-01-11T22:09:12.5002437Z [ OK ] LiteInterpreterDirectTest.Tuple (0 ms) 2023-01-11T22:09:12.5002777Z [ RUN ] LiteInterpreterDirectTest.Dict 2023-01-11T22:09:12.5006252Z [ OK ] LiteInterpreterDirectTest.Dict (0 ms) 2023-01-11T22:09:12.5006588Z [ RUN ] LiteInterpreterDirectTest.Prim 2023-01-11T22:09:12.5008996Z [ OK ] LiteInterpreterDirectTest.Prim (0 ms) 2023-01-11T22:09:12.5009529Z [ RUN ] LiteInterpreterDirectTest.PrimScalar 2023-01-11T22:09:12.5012432Z [ OK ] LiteInterpreterDirectTest.PrimScalar (0 ms) 2023-01-11T22:09:12.5012808Z [ RUN ] LiteInterpreterDirectTest.WrongMethodName 2023-01-11T22:09:12.5030717Z [ OK ] LiteInterpreterDirectTest.WrongMethodName (1 ms) 2023-01-11T22:09:12.5031093Z [ RUN ] LiteInterpreterDirectTest.SetState 2023-01-11T22:09:12.5047499Z [ OK ] LiteInterpreterDirectTest.SetState (1 ms) 2023-01-11T22:09:12.5047873Z [ RUN ] LiteInterpreterDirectTest.BuiltinFunction 2023-01-11T22:09:12.5049870Z [ OK ] LiteInterpreterDirectTest.BuiltinFunction (0 ms) 2023-01-11T22:09:12.5050650Z [ RUN ] LiteInterpreterDirectTest.GetRuntimeByteCodeVersion 2023-01-11T22:09:12.5051103Z [ OK ] LiteInterpreterDirectTest.GetRuntimeByteCodeVersion (0 ms) 2023-01-11T22:09:12.5051551Z [ RUN ] LiteInterpreterDirectTest.GetRuntimeOperatorsVersion 2023-01-11T22:09:12.5052015Z [ OK ] LiteInterpreterDirectTest.GetRuntimeOperatorsVersion (0 ms) 2023-01-11T22:09:12.5052440Z [ RUN ] LiteInterpreterDirectTest.GetByteCodeVersion 2023-01-11T22:09:12.5052916Z [ OK ] LiteInterpreterDirectTest.GetByteCodeVersion (0 ms) 2023-01-11T22:09:12.5053330Z [ RUN ] LiteInterpreterDirectTest.GetRuntimeOpsAndInfo 2023-01-11T22:09:12.5096552Z [ OK ] LiteInterpreterDirectTest.GetRuntimeOpsAndInfo (4 ms) 2023-01-11T22:09:12.5096926Z [ RUN ] LiteInterpreterDirectTest.Eval 2023-01-11T22:09:12.5102816Z [ OK ] LiteInterpreterDirectTest.Eval (0 ms) 2023-01-11T22:09:12.5103191Z [ RUN ] LiteInterpreterDirectTest.FindWrongMethodName 2023-01-11T22:09:12.5105124Z [ OK ] LiteInterpreterDirectTest.FindWrongMethodName (0 ms) 2023-01-11T22:09:12.5105512Z [ RUN ] LiteInterpreterDirectTest.FindAndRunMethod 2023-01-11T22:09:12.5110635Z [ OK ] LiteInterpreterDirectTest.FindAndRunMethod (0 ms) 2023-01-11T22:09:12.5111066Z [ RUN ] LiteInterpreterDirectTest.RunMethodVariadic 2023-01-11T22:09:12.5115276Z [ OK ] LiteInterpreterDirectTest.RunMethodVariadic (0 ms) 2023-01-11T22:09:12.5115828Z [ RUN ] LiteInterpreterDirectTest.DuplicateSetState 2023-01-11T22:09:12.5120240Z [ OK ] LiteInterpreterDirectTest.DuplicateSetState (0 ms) 2023-01-11T22:09:12.5120915Z [ RUN ] LiteInterpreterDirectTest.OpNameExportFetchRootOperators 2023-01-11T22:09:12.5125286Z [ OK ] LiteInterpreterDirectTest.OpNameExportFetchRootOperators (0 ms) 2023-01-11T22:09:12.5125908Z [ RUN ] LiteInterpreterDirectTest.DefaultArgsConv 2023-01-11T22:09:12.5135591Z [ OK ] LiteInterpreterDirectTest.DefaultArgsConv (0 ms) 2023-01-11T22:09:12.5136391Z [ RUN ] LiteInterpreterDirectTest.DefaultArgsPinv 2023-01-11T22:09:12.5173059Z [ OK ] LiteInterpreterDirectTest.DefaultArgsPinv (3 ms) 2023-01-11T22:09:12.5173858Z [ RUN ] LiteInterpreterDirectTest.DefaultArgsTensorinvSpecifyDefault 2023-01-11T22:09:12.5180640Z [ OK ] LiteInterpreterDirectTest.DefaultArgsTensorinvSpecifyDefault (0 ms) 2023-01-11T22:09:12.5181277Z [ RUN ] LiteInterpreterDirectTest.DefaultArgsPinvWithOutArg 2023-01-11T22:09:12.5200394Z [ OK ] LiteInterpreterDirectTest.DefaultArgsPinvWithOutArg (1 ms) 2023-01-11T22:09:12.5201111Z [ RUN ] LiteInterpreterDirectTest.DefaultArgsWithOutArg 2023-01-11T22:09:12.5205974Z [ OK ] LiteInterpreterDirectTest.DefaultArgsWithOutArg (0 ms) 2023-01-11T22:09:12.5206702Z [ RUN ] LiteInterpreterDirectTest.TestExceptionStackWithTwoLevelModuleHierarchy 2023-01-11T22:09:12.5304026Z [ OK ] LiteInterpreterDirectTest.TestExceptionStackWithTwoLevelModuleHierarchy (9 ms) 2023-01-11T22:09:12.5304709Z [ RUN ] LiteInterpreterDirectTest.OperatorCacheDifferentiatesDefaultArgs 2023-01-11T22:09:12.5323192Z [ OK ] LiteInterpreterDirectTest.OperatorCacheDifferentiatesDefaultArgs (1 ms) 2023-01-11T22:09:12.5323877Z [----------] 29 tests from LiteInterpreterDirectTest (37 ms total) 2023-01-11T22:09:12.5324051Z 2023-01-11T22:09:12.5324205Z [----------] 7 tests from LiteTrainerTest 2023-01-11T22:09:12.5324595Z [ RUN ] LiteTrainerTest.Params 2023-01-11T22:09:12.5405726Z [ OK ] LiteTrainerTest.Params (8 ms) 2023-01-11T22:09:12.5406230Z [ RUN ] LiteTrainerTest.SGD 2023-01-11T22:09:12.5476433Z [ OK ] LiteTrainerTest.SGD (7 ms) 2023-01-11T22:09:12.5476904Z [ RUN ] LiteTrainerTest.SequentialSampler 2023-01-11T22:09:12.5477415Z [ OK ] LiteTrainerTest.SequentialSampler (0 ms) 2023-01-11T22:09:12.5478175Z [ RUN ] LiteTrainerTest.RandomSamplerReturnsIndicesInCorrectRange 2023-01-11T22:09:12.5478727Z [ OK ] LiteTrainerTest.RandomSamplerReturnsIndicesInCorrectRange (0 ms) 2023-01-11T22:09:12.5479221Z [ RUN ] LiteTrainerTest.RandomSamplerReturnsLessValuesForLastBatch 2023-01-11T22:09:12.5479807Z [ OK ] LiteTrainerTest.RandomSamplerReturnsLessValuesForLastBatch (0 ms) 2023-01-11T22:09:12.5480249Z [ RUN ] LiteTrainerTest.RandomSamplerResetsWell 2023-01-11T22:09:12.5480630Z [ OK ] LiteTrainerTest.RandomSamplerResetsWell (0 ms) 2023-01-11T22:09:12.5481040Z [ RUN ] LiteTrainerTest.RandomSamplerResetsWithNewSizeWell 2023-01-11T22:09:12.5481476Z [ OK ] LiteTrainerTest.RandomSamplerResetsWithNewSizeWell (0 ms) 2023-01-11T22:09:12.5481973Z [----------] 7 tests from LiteTrainerTest (15 ms total) 2023-01-11T22:09:12.5482136Z 2023-01-11T22:09:12.5482279Z [----------] 6 tests from MobileTest 2023-01-11T22:09:12.5482624Z [ RUN ] MobileTest.SaveLoadParametersEmpty 2023-01-11T22:09:12.5483251Z [ OK ] MobileTest.SaveLoadParametersEmpty (0 ms) 2023-01-11T22:09:12.5483915Z [ RUN ] MobileTest.SaveParametersDefaultsToZip 2023-01-11T22:09:12.5484411Z [ OK ] MobileTest.SaveParametersDefaultsToZip (0 ms) 2023-01-11T22:09:12.5484777Z [ RUN ] MobileTest.SaveParametersCanUseFlatbuffer 2023-01-11T22:09:12.5485174Z [ OK ] MobileTest.SaveParametersCanUseFlatbuffer (0 ms) 2023-01-11T22:09:12.5485619Z [ RUN ] MobileTest.SaveLoadParametersUsingFlatbuffers 2023-01-11T22:09:12.5486026Z [ OK ] MobileTest.SaveLoadParametersUsingFlatbuffers (0 ms) 2023-01-11T22:09:12.5486459Z [ RUN ] MobileTest.LoadParametersUnexpectedFormatShouldThrow 2023-01-11T22:09:12.5507838Z [ OK ] MobileTest.LoadParametersUnexpectedFormatShouldThrow (2 ms) 2023-01-11T22:09:12.5508274Z [ RUN ] MobileTest.LoadParametersEmptyDataShouldThrow 2023-01-11T22:09:12.5529966Z [ OK ] MobileTest.LoadParametersEmptyDataShouldThrow (2 ms) 2023-01-11T22:09:12.5530671Z [----------] 6 tests from MobileTest (5 ms total) 2023-01-11T22:09:12.5530917Z 2023-01-11T22:09:12.5531078Z [----------] 1 test from MemoryDAGTest 2023-01-11T22:09:12.5531350Z [ RUN ] MemoryDAGTest.Basic 2023-01-11T22:09:12.5531616Z [ OK ] MemoryDAGTest.Basic (0 ms) 2023-01-11T22:09:12.5531930Z [----------] 1 test from MemoryDAGTest (0 ms total) 2023-01-11T22:09:12.5532081Z 2023-01-11T22:09:12.5532241Z [----------] 1 test from InternedStringsTest 2023-01-11T22:09:12.5532524Z [ RUN ] InternedStringsTest.Basic 2023-01-11T22:09:12.5556106Z [ OK ] InternedStringsTest.Basic (2 ms) 2023-01-11T22:09:12.5556731Z [----------] 1 test from InternedStringsTest (2 ms total) 2023-01-11T22:09:12.5556917Z 2023-01-11T22:09:12.5557078Z [----------] 1 test from FromQualStringTest 2023-01-11T22:09:12.5557353Z [ RUN ] FromQualStringTest.Basic 2023-01-11T22:09:12.5566099Z [ OK ] FromQualStringTest.Basic (0 ms) 2023-01-11T22:09:12.5566714Z [----------] 1 test from FromQualStringTest (0 ms total) 2023-01-11T22:09:12.5567028Z 2023-01-11T22:09:12.5567186Z [----------] 1 test from THNNConvTest 2023-01-11T22:09:12.5567489Z [ RUN ] THNNConvTest.Basic 2023-01-11T22:09:12.5579555Z [ OK ] THNNConvTest.Basic (1 ms) 2023-01-11T22:09:12.5580256Z [----------] 1 test from THNNConvTest (1 ms total) 2023-01-11T22:09:12.5580491Z 2023-01-11T22:09:12.5580726Z [----------] 1 test from ATenNativeBatchNormTest 2023-01-11T22:09:12.5581045Z [ RUN ] ATenNativeBatchNormTest.Basic 2023-01-11T22:09:12.5590698Z [ OK ] ATenNativeBatchNormTest.Basic (1 ms) 2023-01-11T22:09:12.5591614Z [----------] 1 test from ATenNativeBatchNormTest (1 ms total) 2023-01-11T22:09:12.5591873Z 2023-01-11T22:09:12.5592170Z [----------] 2 tests from CustomFusionTest 2023-01-11T22:09:12.5592875Z [ RUN ] CustomFusionTest.Basic 2023-01-11T22:09:12.5593568Z [ OK ] CustomFusionTest.Basic (0 ms) 2023-01-11T22:09:12.5594190Z [ RUN ] CustomFusionTest.NestedBlocks 2023-01-11T22:09:12.5594725Z [ OK ] CustomFusionTest.NestedBlocks (0 ms) 2023-01-11T22:09:12.5595336Z [----------] 2 tests from CustomFusionTest (0 ms total) 2023-01-11T22:09:12.5595643Z 2023-01-11T22:09:12.5595840Z [----------] 1 test from ControlFlowTest 2023-01-11T22:09:12.5596111Z [ RUN ] ControlFlowTest.Basic 2023-01-11T22:09:12.5603244Z [ OK ] ControlFlowTest.Basic (0 ms) 2023-01-11T22:09:12.5603844Z [----------] 1 test from ControlFlowTest (0 ms total) 2023-01-11T22:09:12.5604135Z 2023-01-11T22:09:12.5604285Z [----------] 1 test from ProtoTest 2023-01-11T22:09:12.5604533Z [ RUN ] ProtoTest.Basic 2023-01-11T22:09:12.5604797Z [ OK ] ProtoTest.Basic (0 ms) 2023-01-11T22:09:12.5605088Z [----------] 1 test from ProtoTest (0 ms total) 2023-01-11T22:09:12.5605234Z 2023-01-11T22:09:12.5605380Z [----------] 9 tests from SchemaParserTest 2023-01-11T22:09:12.5605687Z [ RUN ] SchemaParserTest.NestedArrays 2023-01-11T22:09:12.5606013Z [ OK ] SchemaParserTest.NestedArrays (0 ms) 2023-01-11T22:09:12.5606314Z [ RUN ] SchemaParserTest.OutVariant 2023-01-11T22:09:12.5606626Z [ OK ] SchemaParserTest.OutVariant (0 ms) 2023-01-11T22:09:12.5606938Z [ RUN ] SchemaParserTest.NamedReturns 2023-01-11T22:09:12.5607261Z [ OK ] SchemaParserTest.NamedReturns (0 ms) 2023-01-11T22:09:12.5607549Z [ RUN ] SchemaParserTest.Futures 2023-01-11T22:09:12.5607848Z [ OK ] SchemaParserTest.Futures (0 ms) 2023-01-11T22:09:12.5608172Z [ RUN ] SchemaParserTest.AnnotatedAliasSets 2023-01-11T22:09:12.5608512Z [ OK ] SchemaParserTest.AnnotatedAliasSets (0 ms) 2023-01-11T22:09:12.5608895Z [ RUN ] SchemaParserTest.TensorListAnnotatedAliasSets 2023-01-11T22:09:12.5609456Z [ OK ] SchemaParserTest.TensorListAnnotatedAliasSets (0 ms) 2023-01-11T22:09:12.5609860Z [ RUN ] SchemaParserTest.AnnotatedAliasWithoutBeforeSet 2023-01-11T22:09:12.5611841Z [ OK ] SchemaParserTest.AnnotatedAliasWithoutBeforeSet (0 ms) 2023-01-11T22:09:12.5612535Z [ RUN ] SchemaParserTest.BeforeAfterSets 2023-01-11T22:09:12.5613172Z [ OK ] SchemaParserTest.BeforeAfterSets (0 ms) 2023-01-11T22:09:12.5613768Z [ RUN ] SchemaParserTest.BeforeAfterSets2 2023-01-11T22:09:12.5614189Z [ OK ] SchemaParserTest.BeforeAfterSets2 (0 ms) 2023-01-11T22:09:12.5614796Z [----------] 9 tests from SchemaParserTest (0 ms total) 2023-01-11T22:09:12.5615091Z 2023-01-11T22:09:12.5615269Z [----------] 2 tests from TopologicalIndexTest 2023-01-11T22:09:12.5615573Z [ RUN ] TopologicalIndexTest.Basic 2023-01-11T22:09:12.5615880Z [ OK ] TopologicalIndexTest.Basic (0 ms) 2023-01-11T22:09:12.5616190Z [ RUN ] TopologicalIndexTest.Reindex 2023-01-11T22:09:12.5616496Z [ OK ] TopologicalIndexTest.Reindex (0 ms) 2023-01-11T22:09:12.5616961Z [----------] 2 tests from TopologicalIndexTest (0 ms total) 2023-01-11T22:09:12.5617130Z 2023-01-11T22:09:12.5617290Z [----------] 7 tests from RecordFunctionTest 2023-01-11T22:09:12.5617622Z [ RUN ] RecordFunctionTest.TracedTestInputsOutputs 2023-01-11T22:09:12.5618022Z [ OK ] RecordFunctionTest.TracedTestInputsOutputs (0 ms) 2023-01-11T22:09:12.5618393Z [ RUN ] RecordFunctionTest.SampledCallbacks 2023-01-11T22:09:12.5675202Z [ OK ] RecordFunctionTest.SampledCallbacks (6 ms) 2023-01-11T22:09:12.5675837Z [ RUN ] RecordFunctionTest.RecordFunctionGuard 2023-01-11T22:09:12.5676214Z [ OK ] RecordFunctionTest.RecordFunctionGuard (0 ms) 2023-01-11T22:09:12.5676551Z [ RUN ] RecordFunctionTest.Callbacks 2023-01-11T22:09:12.5677887Z [ OK ] RecordFunctionTest.Callbacks (0 ms) 2023-01-11T22:09:12.5678353Z [ RUN ] RecordFunctionTest.ShouldRun 2023-01-11T22:09:12.5678772Z [ OK ] RecordFunctionTest.ShouldRun (0 ms) 2023-01-11T22:09:12.5679167Z [ RUN ] RecordFunctionTest.Basic 2023-01-11T22:09:12.5680185Z [ OK ] RecordFunctionTest.Basic (0 ms) 2023-01-11T22:09:12.5680798Z [ RUN ] RecordFunctionTest.OperatorNameOverload 2023-01-11T22:09:12.5681401Z [ OK ] RecordFunctionTest.OperatorNameOverload (0 ms) 2023-01-11T22:09:12.5681915Z [----------] 7 tests from RecordFunctionTest (7 ms total) 2023-01-11T22:09:12.5682084Z 2023-01-11T22:09:12.5682264Z [----------] 1 test from ThreadLocalDebugInfoTest 2023-01-11T22:09:12.5682769Z [ RUN ] ThreadLocalDebugInfoTest.Basic 2023-01-11T22:09:12.5683200Z [ OK ] ThreadLocalDebugInfoTest.Basic (0 ms) 2023-01-11T22:09:12.5683722Z [----------] 1 test from ThreadLocalDebugInfoTest (0 ms total) 2023-01-11T22:09:12.5684046Z 2023-01-11T22:09:12.5684301Z [----------] 1 test from TestSymIntArrayRef 2023-01-11T22:09:12.5684818Z [ RUN ] TestSymIntArrayRef.BasicConversion 2023-01-11T22:09:12.5685406Z [ OK ] TestSymIntArrayRef.BasicConversion (0 ms) 2023-01-11T22:09:12.5686035Z [----------] 1 test from TestSymIntArrayRef (0 ms total) 2023-01-11T22:09:12.5686259Z 2023-01-11T22:09:12.5686452Z [----------] 4 tests from TestSymInt 2023-01-11T22:09:12.5686808Z [ RUN ] TestSymInt.NarrowCopyWithSymbolicInt 2023-01-11T22:09:12.5687153Z [ OK ] TestSymInt.NarrowCopyWithSymbolicInt (0 ms) 2023-01-11T22:09:12.5687469Z [ RUN ] TestSymInt.NarrowCopy 2023-01-11T22:09:12.5687762Z [ OK ] TestSymInt.NarrowCopy (0 ms) 2023-01-11T22:09:12.5688050Z [ RUN ] TestSymInt.AddSymbolicInt 2023-01-11T22:09:12.5688340Z [ OK ] TestSymInt.AddSymbolicInt (0 ms) 2023-01-11T22:09:12.5688673Z [ RUN ] TestSymInt.TestSymIntToSymNodeDispatch 2023-01-11T22:09:12.5689194Z [ OK ] TestSymInt.TestSymIntToSymNodeDispatch (0 ms) 2023-01-11T22:09:12.5689537Z [----------] 4 tests from TestSymInt (0 ms total) 2023-01-11T22:09:12.5689682Z 2023-01-11T22:09:12.5689840Z [----------] 1 test from FallbackGraphsTest 2023-01-11T22:09:12.5690134Z [ RUN ] FallbackGraphsTest.Basic 2023-01-11T22:09:12.5694143Z [ OK ] FallbackGraphsTest.Basic (0 ms) 2023-01-11T22:09:12.5694829Z [----------] 1 test from FallbackGraphsTest (0 ms total) 2023-01-11T22:09:12.5695144Z 2023-01-11T22:09:12.5695321Z [----------] 1 test from NoneSchemaMatchTest 2023-01-11T22:09:12.5695682Z [ RUN ] NoneSchemaMatchTest.Basic 2023-01-11T22:09:12.5696176Z [ OK ] NoneSchemaMatchTest.Basic (0 ms) 2023-01-11T22:09:12.5696532Z [----------] 1 test from NoneSchemaMatchTest (0 ms total) 2023-01-11T22:09:12.5696699Z 2023-01-11T22:09:12.5696863Z [----------] 1 test from PassManagementTest 2023-01-11T22:09:12.5697277Z [ RUN ] PassManagementTest.Basic 2023-01-11T22:09:12.5697590Z [ OK ] PassManagementTest.Basic (0 ms) 2023-01-11T22:09:12.5697922Z [----------] 1 test from PassManagementTest (0 ms total) 2023-01-11T22:09:12.5698084Z 2023-01-11T22:09:12.5698238Z [----------] 5 tests from LoopPeelerTest 2023-01-11T22:09:12.5698551Z [ RUN ] LoopPeelerTest.NoInductionVariableUse 2023-01-11T22:09:12.5700103Z [ OK ] LoopPeelerTest.NoInductionVariableUse (0 ms) 2023-01-11T22:09:12.5700494Z [ RUN ] LoopPeelerTest.YesInductionVariableUse 2023-01-11T22:09:12.5703362Z [ OK ] LoopPeelerTest.YesInductionVariableUse (0 ms) 2023-01-11T22:09:12.5703752Z [ RUN ] LoopPeelerTest.LoopWithTerminationCondition 2023-01-11T22:09:12.5707643Z [ OK ] LoopPeelerTest.LoopWithTerminationCondition (0 ms) 2023-01-11T22:09:12.5708035Z [ RUN ] LoopPeelerTest.SimpleNestedLoops 2023-01-11T22:09:12.5713304Z [ OK ] LoopPeelerTest.SimpleNestedLoops (0 ms) 2023-01-11T22:09:12.5713664Z [ RUN ] LoopPeelerTest.SimpleNestedLoops2 2023-01-11T22:09:12.5721369Z [ OK ] LoopPeelerTest.SimpleNestedLoops2 (0 ms) 2023-01-11T22:09:12.5721797Z [----------] 5 tests from LoopPeelerTest (2 ms total) 2023-01-11T22:09:12.5721951Z 2023-01-11T22:09:12.5722097Z [----------] 1 test from JitTracing 2023-01-11T22:09:12.5722383Z [ RUN ] JitTracing.Basic 2023-01-11T22:09:12.5857343Z [ OK ] JitTracing.Basic (13 ms) 2023-01-11T22:09:12.5857763Z [----------] 1 test from JitTracing (13 ms total) 2023-01-11T22:09:12.5857924Z 2023-01-11T22:09:12.5858148Z [----------] 1 test from InsertAndEliminateRedundantGuardsTest 2023-01-11T22:09:12.5858606Z [ RUN ] InsertAndEliminateRedundantGuardsTest.Basic 2023-01-11T22:09:12.5863718Z [ OK ] InsertAndEliminateRedundantGuardsTest.Basic (0 ms) 2023-01-11T22:09:12.5864538Z [----------] 1 test from InsertAndEliminateRedundantGuardsTest (0 ms total) 2023-01-11T22:09:12.5864915Z 2023-01-11T22:09:12.5865208Z [----------] 1 test from InsertBailOutsTest 2023-01-11T22:09:12.5865561Z [ RUN ] InsertBailOutsTest.Basic 2023-01-11T22:09:12.5872860Z [ OK ] InsertBailOutsTest.Basic (0 ms) 2023-01-11T22:09:12.5873465Z [----------] 1 test from InsertBailOutsTest (0 ms total) 2023-01-11T22:09:12.5873674Z 2023-01-11T22:09:12.5873827Z [----------] 2 tests from ProfilerTest 2023-01-11T22:09:12.5874095Z [ RUN ] ProfilerTest.Basic 2023-01-11T22:09:12.5980708Z [ OK ] ProfilerTest.Basic (10 ms) 2023-01-11T22:09:12.5981121Z [ RUN ] ProfilerTest.OptionalProfiling 2023-01-11T22:09:12.5982896Z [ OK ] ProfilerTest.OptionalProfiling (0 ms) 2023-01-11T22:09:12.5983267Z [----------] 2 tests from ProfilerTest (10 ms total) 2023-01-11T22:09:12.5983428Z 2023-01-11T22:09:12.5983566Z [----------] 2 tests from CallStackTest 2023-01-11T22:09:12.5983831Z [ RUN ] CallStackTest.Basic 2023-01-11T22:09:12.5987557Z [ OK ] CallStackTest.Basic (0 ms) 2023-01-11T22:09:12.5987820Z [ RUN ] CallStackTest.Caching 2023-01-11T22:09:12.5991127Z [ OK ] CallStackTest.Caching (0 ms) 2023-01-11T22:09:12.5991501Z [----------] 2 tests from CallStackTest (0 ms total) 2023-01-11T22:09:12.5991653Z 2023-01-11T22:09:12.5991822Z [----------] 2 tests from InlinedCallStackTest 2023-01-11T22:09:12.5992136Z [ RUN ] InlinedCallStackTest.BlockAnnotation 2023-01-11T22:09:12.5997770Z [ OK ] InlinedCallStackTest.BlockAnnotation (0 ms) 2023-01-11T22:09:12.5998225Z [ RUN ] InlinedCallStackTest.SelfCallMethods 2023-01-11T22:09:12.6007571Z [ OK ] InlinedCallStackTest.SelfCallMethods (0 ms) 2023-01-11T22:09:12.6008033Z [----------] 2 tests from InlinedCallStackTest (1 ms total) 2023-01-11T22:09:12.6008381Z 2023-01-11T22:09:12.6008644Z [----------] 1 test from AutogradSymbolsTest 2023-01-11T22:09:12.6009216Z [ RUN ] AutogradSymbolsTest.Basic 2023-01-11T22:09:12.6009635Z [ OK ] AutogradSymbolsTest.Basic (0 ms) 2023-01-11T22:09:12.6010075Z [----------] 1 test from AutogradSymbolsTest (0 ms total) 2023-01-11T22:09:12.6010238Z 2023-01-11T22:09:12.6010420Z [----------] 1 test from DefaultArgTypeHintingTest 2023-01-11T22:09:12.6010742Z [ RUN ] DefaultArgTypeHintingTest.Basic 2023-01-11T22:09:12.6011069Z [ OK ] DefaultArgTypeHintingTest.Basic (0 ms) 2023-01-11T22:09:12.6011433Z [----------] 1 test from DefaultArgTypeHintingTest (0 ms total) 2023-01-11T22:09:12.6011608Z 2023-01-11T22:09:12.6011825Z [----------] 5 tests from FuturesTest 2023-01-11T22:09:12.6012075Z [ RUN ] FuturesTest.Basic 2023-01-11T22:09:12.6012344Z [ OK ] FuturesTest.Basic (0 ms) 2023-01-11T22:09:12.6012604Z [ RUN ] FuturesTest.Error 2023-01-11T22:09:12.6022503Z [ OK ] FuturesTest.Error (1 ms) 2023-01-11T22:09:12.6022968Z [ RUN ] FuturesTest.Then 2023-01-11T22:09:12.6023501Z [ OK ] FuturesTest.Then (0 ms) 2023-01-11T22:09:12.6023914Z [ RUN ] FuturesTest.CollectAll 2023-01-11T22:09:12.6024195Z [ OK ] FuturesTest.CollectAll (0 ms) 2023-01-11T22:09:12.6024485Z [ RUN ] FuturesTest.CollectAny 2023-01-11T22:09:12.6024770Z [ OK ] FuturesTest.CollectAny (0 ms) 2023-01-11T22:09:12.6025109Z [----------] 5 tests from FuturesTest (1 ms total) 2023-01-11T22:09:12.6025335Z 2023-01-11T22:09:12.6025601Z [----------] 1 test from TLSFutureCallbacksTest 2023-01-11T22:09:12.6026096Z [ RUN ] TLSFutureCallbacksTest.Basic 2023-01-11T22:09:12.6026538Z [ OK ] TLSFutureCallbacksTest.Basic (0 ms) 2023-01-11T22:09:12.6026884Z [----------] 1 test from TLSFutureCallbacksTest (0 ms total) 2023-01-11T22:09:12.6027056Z 2023-01-11T22:09:12.6027250Z [----------] 1 test from ProfilerDisableInCallbackTest 2023-01-11T22:09:12.6027602Z [ RUN ] ProfilerDisableInCallbackTest.Basic 2023-01-11T22:09:12.6029237Z [ OK ] ProfilerDisableInCallbackTest.Basic (0 ms) 2023-01-11T22:09:12.6029932Z [----------] 1 test from ProfilerDisableInCallbackTest (0 ms total) 2023-01-11T22:09:12.6030259Z 2023-01-11T22:09:12.6030431Z [----------] 2 tests from RecordDebugHandles 2023-01-11T22:09:12.6030734Z [ RUN ] RecordDebugHandles.Basic 2023-01-11T22:09:12.6031921Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T22:09:12.6033678Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T22:09:12.6034387Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T22:09:12.6034818Z [ OK ] RecordDebugHandles.Basic (0 ms) 2023-01-11T22:09:12.6035238Z [ RUN ] RecordDebugHandles.ScopedCallbacks 2023-01-11T22:09:12.6035871Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T22:09:12.6039962Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T22:09:12.6040610Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T22:09:12.6041264Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T22:09:12.6045134Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T22:09:12.6045785Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T22:09:12.6046352Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:300] Completed Stage: Warm Up 2023-01-11T22:09:12.6052592Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:306] Completed Stage: Collection 2023-01-11T22:09:12.6053414Z STAGE:2023-01-11 22:09:12 24550:24550 ActivityProfilerController.cpp:310] Completed Stage: Post Processing 2023-01-11T22:09:12.6053824Z [ OK ] RecordDebugHandles.ScopedCallbacks (1 ms) 2023-01-11T22:09:12.6054186Z [----------] 2 tests from RecordDebugHandles (2 ms total) 2023-01-11T22:09:12.6054352Z 2023-01-11T22:09:12.6054494Z [----------] 1 test from IValueKWargsTest 2023-01-11T22:09:12.6054775Z [ RUN ] IValueKWargsTest.Basic 2023-01-11T22:09:12.6058277Z [ OK ] IValueKWargsTest.Basic (0 ms) 2023-01-11T22:09:12.6058919Z [----------] 1 test from IValueKWargsTest (0 ms total) 2023-01-11T22:09:12.6059120Z 2023-01-11T22:09:12.6059299Z [----------] 1 test from ComputeFlopsTest 2023-01-11T22:09:12.6059611Z [ RUN ] ComputeFlopsTest.Basic 2023-01-11T22:09:12.6060047Z [W util.cpp:501] Warning: Failed to compute flops for op aten::conv2d because both input and weight must be size 4. (function computeFlops) 2023-01-11T22:09:12.6060665Z [W util.cpp:516] Warning: Failed to compute flops for op aten::conv2d because stride must be size 2 and cannot be 0. (function computeFlops) 2023-01-11T22:09:12.6061232Z [W util.cpp:472] Warning: Calculating flops for aten::conv2d requires groups, padding, stride, dilation, input_size, and weight_size in saved arguments. (function computeFlops) 2023-01-11T22:09:12.6062044Z [W util.cpp:545] Warning: Calculating flops for aten::mm requires mat1_size and mat2_size in saved arguments. (function computeFlops) 2023-01-11T22:09:12.6062839Z [ OK ] ComputeFlopsTest.Basic (0 ms) 2023-01-11T22:09:12.6063169Z [----------] 1 test from ComputeFlopsTest (0 ms total) 2023-01-11T22:09:12.6063335Z 2023-01-11T22:09:12.6063486Z [----------] 1 test from TestConstant 2023-01-11T22:09:12.6063766Z [ RUN ] TestConstant.TensorGrad 2023-01-11T22:09:12.6064064Z [ OK ] TestConstant.TensorGrad (0 ms) 2023-01-11T22:09:12.6064364Z [----------] 1 test from TestConstant (0 ms total) 2023-01-11T22:09:12.6064514Z 2023-01-11T22:09:12.6064661Z [----------] 1 test from TestMutation 2023-01-11T22:09:12.6064936Z [ RUN ] TestMutation.Basic 2023-01-11T22:09:12.6065197Z [ OK ] TestMutation.Basic (0 ms) 2023-01-11T22:09:12.6065501Z [----------] 1 test from TestMutation (0 ms total) 2023-01-11T22:09:12.6065649Z 2023-01-11T22:09:12.6065857Z [----------] 1 test from TestInplaceToFunctionalActivation 2023-01-11T22:09:12.6066232Z [ RUN ] TestInplaceToFunctionalActivation.Basic 2023-01-11T22:09:12.6066601Z [ OK ] TestInplaceToFunctionalActivation.Basic (0 ms) 2023-01-11T22:09:12.6067016Z [----------] 1 test from TestInplaceToFunctionalActivation (0 ms total) 2023-01-11T22:09:12.6067210Z 2023-01-11T22:09:12.6067377Z [----------] 1 test from TestRegisterShapeOp 2023-01-11T22:09:12.6067660Z [ RUN ] TestRegisterShapeOp.Basic 2023-01-11T22:09:12.7243974Z [ OK ] TestRegisterShapeOp.Basic (117 ms) 2023-01-11T22:09:12.7244454Z [----------] 1 test from TestRegisterShapeOp (117 ms total) 2023-01-11T22:09:12.7244634Z 2023-01-11T22:09:12.7244917Z [----------] 1 test from TestFunctionalToInplaceActivation 2023-01-11T22:09:12.7245305Z [ RUN ] TestFunctionalToInplaceActivation.Basic 2023-01-11T22:09:12.7245759Z [ OK ] TestFunctionalToInplaceActivation.Basic (0 ms) 2023-01-11T22:09:12.7246174Z [----------] 1 test from TestFunctionalToInplaceActivation (0 ms total) 2023-01-11T22:09:12.7246421Z 2023-01-11T22:09:12.7246612Z [----------] 2 tests from TestFunctionExecutor 2023-01-11T22:09:12.7247143Z [ RUN ] TestFunctionExecutor.SimpleExecutorTest 2023-01-11T22:09:12.7248551Z [ OK ] TestFunctionExecutor.SimpleExecutorTest (0 ms) 2023-01-11T22:09:12.7248932Z [ RUN ] TestFunctionExecutor.RunDecompositionTest 2023-01-11T22:09:12.7265447Z [ OK ] TestFunctionExecutor.RunDecompositionTest (1 ms) 2023-01-11T22:09:12.7265938Z [----------] 2 tests from TestFunctionExecutor (2 ms total) 2023-01-11T22:09:12.7266113Z 2023-01-11T22:09:12.7266298Z [----------] 1 test from TestShapeGraphLinting 2023-01-11T22:09:12.7266656Z [ RUN ] TestShapeGraphLinting.Basic 2023-01-11T22:09:12.7270836Z [ OK ] TestShapeGraphLinting.Basic (0 ms) 2023-01-11T22:09:12.7271468Z [----------] 1 test from TestShapeGraphLinting (0 ms total) 2023-01-11T22:09:12.7271919Z 2023-01-11T22:09:12.7272104Z [----------] 1 test from Composed 2023-01-11T22:09:12.7272377Z [ RUN ] Composed.ComposedOp 2023-01-11T22:09:13.0254292Z [ OK ] Composed.ComposedOp (298 ms) 2023-01-11T22:09:13.0254777Z [----------] 1 test from Composed (298 ms total) 2023-01-11T22:09:13.0254929Z 2023-01-11T22:09:13.0255085Z [----------] 1 test from ConstantPropagation 2023-01-11T22:09:13.0255464Z [ RUN ] ConstantPropagation.CustomClassesCanBePropagated 2023-01-11T22:09:13.0260356Z [ OK ] ConstantPropagation.CustomClassesCanBePropagated (0 ms) 2023-01-11T22:09:13.0260997Z [----------] 1 test from ConstantPropagation (0 ms total) 2023-01-11T22:09:13.0261247Z 2023-01-11T22:09:13.0261540Z [----------] 19 tests from MobileTypeParserTest 2023-01-11T22:09:13.0262047Z [ RUN ] MobileTypeParserTest.Int 2023-01-11T22:09:13.0262705Z [ OK ] MobileTypeParserTest.Int (0 ms) 2023-01-11T22:09:13.0263201Z [ RUN ] MobileTypeParserTest.NestedContainersAnnotationStr 2023-01-11T22:09:13.0263639Z [ OK ] MobileTypeParserTest.NestedContainersAnnotationStr (0 ms) 2023-01-11T22:09:13.0264048Z [ RUN ] MobileTypeParserTest.TorchBindClass 2023-01-11T22:09:13.0264407Z [ OK ] MobileTypeParserTest.TorchBindClass (0 ms) 2023-01-11T22:09:13.0264765Z [ RUN ] MobileTypeParserTest.ListOfTorchBindClass 2023-01-11T22:09:13.0265160Z [ OK ] MobileTypeParserTest.ListOfTorchBindClass (0 ms) 2023-01-11T22:09:13.0265616Z [ RUN ] MobileTypeParserTest.NestedContainersAnnotationStrWithSpaces 2023-01-11T22:09:13.0266149Z [ OK ] MobileTypeParserTest.NestedContainersAnnotationStrWithSpaces (0 ms) 2023-01-11T22:09:13.0279224Z [ RUN ] MobileTypeParserTest.NamedTuple 2023-01-11T22:09:13.0279867Z [ OK ] MobileTypeParserTest.NamedTuple (0 ms) 2023-01-11T22:09:13.0280292Z [ RUN ] MobileTypeParserTest.DictNestedNamedTupleTypeList 2023-01-11T22:09:13.0280750Z [ OK ] MobileTypeParserTest.DictNestedNamedTupleTypeList (0 ms) 2023-01-11T22:09:13.0281229Z [ RUN ] MobileTypeParserTest.NamedTupleNestedNamedTupleTypeList 2023-01-11T22:09:13.0281704Z [ OK ] MobileTypeParserTest.NamedTupleNestedNamedTupleTypeList (0 ms) 2023-01-11T22:09:13.0282158Z [ RUN ] MobileTypeParserTest.NamedTupleNestedNamedTuple 2023-01-11T22:09:13.0282592Z [ OK ] MobileTypeParserTest.NamedTupleNestedNamedTuple (0 ms) 2023-01-11T22:09:13.0282938Z [ RUN ] MobileTypeParserTest.Empty 2023-01-11T22:09:13.0295886Z [ OK ] MobileTypeParserTest.Empty (3 ms) 2023-01-11T22:09:13.0296224Z [ RUN ] MobileTypeParserTest.TypoRaises 2023-01-11T22:09:13.0333760Z [ OK ] MobileTypeParserTest.TypoRaises (3 ms) 2023-01-11T22:09:13.0334219Z [ RUN ] MobileTypeParserTest.MismatchBracketRaises 2023-01-11T22:09:13.0384067Z [ OK ] MobileTypeParserTest.MismatchBracketRaises (5 ms) 2023-01-11T22:09:13.0384717Z [ RUN ] MobileTypeParserTest.MismatchBracketRaises2 2023-01-11T22:09:13.0421770Z [ OK ] MobileTypeParserTest.MismatchBracketRaises2 (3 ms) 2023-01-11T22:09:13.0422285Z [ RUN ] MobileTypeParserTest.DictWithoutValueRaises 2023-01-11T22:09:13.0454255Z [ OK ] MobileTypeParserTest.DictWithoutValueRaises (3 ms) 2023-01-11T22:09:13.0454705Z [ RUN ] MobileTypeParserTest.ListArgCountMismatchRaises 2023-01-11T22:09:13.0492357Z [ OK ] MobileTypeParserTest.ListArgCountMismatchRaises (3 ms) 2023-01-11T22:09:13.0492831Z [ RUN ] MobileTypeParserTest.DictArgCountMismatchRaises 2023-01-11T22:09:13.0524354Z [ OK ] MobileTypeParserTest.DictArgCountMismatchRaises (3 ms) 2023-01-11T22:09:13.0524923Z [ RUN ] MobileTypeParserTest.ValidTypeWithExtraStuffRaises 2023-01-11T22:09:13.0545875Z [ OK ] MobileTypeParserTest.ValidTypeWithExtraStuffRaises (2 ms) 2023-01-11T22:09:13.0546302Z [ RUN ] MobileTypeParserTest.NonIdentifierRaises 2023-01-11T22:09:13.0567014Z [ OK ] MobileTypeParserTest.NonIdentifierRaises (2 ms) 2023-01-11T22:09:13.0567466Z [ RUN ] MobileTypeParserTest.DictNestedNamedTupleTypeListRaises 2023-01-11T22:09:13.0610744Z [ OK ] MobileTypeParserTest.DictNestedNamedTupleTypeListRaises (4 ms) 2023-01-11T22:09:13.0611452Z [----------] 19 tests from MobileTypeParserTest (35 ms total) 2023-01-11T22:09:13.0611628Z 2023-01-11T22:09:13.0611782Z [----------] 13 tests from ModuleAPITest 2023-01-11T22:09:13.0612066Z [ RUN ] ModuleAPITest.MethodRunAsync 2023-01-11T22:09:13.0635835Z [ OK ] ModuleAPITest.MethodRunAsync (2 ms) 2023-01-11T22:09:13.0636240Z [ RUN ] ModuleAPITest.Clone 2023-01-11T22:09:13.0636598Z [ OK ] ModuleAPITest.Clone (0 ms) 2023-01-11T22:09:13.0637024Z [ RUN ] ModuleAPITest.CloneWithModuleInterface 2023-01-11T22:09:13.0643943Z [ OK ] ModuleAPITest.CloneWithModuleInterface (0 ms) 2023-01-11T22:09:13.0644425Z [ RUN ] ModuleAPITest.Copy 2023-01-11T22:09:13.0644805Z [ OK ] ModuleAPITest.Copy (0 ms) 2023-01-11T22:09:13.0645100Z [ RUN ] ModuleAPITest.DeepCopy 2023-01-11T22:09:13.0645496Z [ OK ] ModuleAPITest.DeepCopy (0 ms) 2023-01-11T22:09:13.0645934Z [ RUN ] ModuleAPITest.DeepCopyString 2023-01-11T22:09:13.0646492Z [ OK ] ModuleAPITest.DeepCopyString (0 ms) 2023-01-11T22:09:13.0646993Z [ RUN ] ModuleAPITest.DeepCopyEnum 2023-01-11T22:09:13.0647306Z [ OK ] ModuleAPITest.DeepCopyEnum (0 ms) 2023-01-11T22:09:13.0647640Z [ RUN ] ModuleAPITest.DeepCopyPreservesAliasing 2023-01-11T22:09:13.0648026Z [ OK ] ModuleAPITest.DeepCopyPreservesAliasing (0 ms) 2023-01-11T22:09:13.0648352Z [ RUN ] ModuleAPITest.Constants 2023-01-11T22:09:13.0648637Z [ OK ] ModuleAPITest.Constants (0 ms) 2023-01-11T22:09:13.0648932Z [ RUN ] ModuleAPITest.Parameters 2023-01-11T22:09:13.0649382Z [ OK ] ModuleAPITest.Parameters (0 ms) 2023-01-11T22:09:13.0649654Z [ RUN ] ModuleAPITest.Define 2023-01-11T22:09:13.0652669Z [ OK ] ModuleAPITest.Define (0 ms) 2023-01-11T22:09:13.0652957Z [ RUN ] ModuleAPITest.Freezing 2023-01-11T22:09:13.0681434Z [ OK ] ModuleAPITest.Freezing (2 ms) 2023-01-11T22:09:13.0681739Z [ RUN ] ModuleAPITest.OfiFreezesTraining 2023-01-11T22:09:13.0709767Z [ OK ] ModuleAPITest.OfiFreezesTraining (2 ms) 2023-01-11T22:09:13.0710286Z [----------] 13 tests from ModuleAPITest (9 ms total) 2023-01-11T22:09:13.0710540Z 2023-01-11T22:09:13.0710869Z [----------] 6 tests from PeepholeOptimizeTest 2023-01-11T22:09:13.0711336Z [ RUN ] PeepholeOptimizeTest.IsAndIsNot 2023-01-11T22:09:13.0711922Z [ OK ] PeepholeOptimizeTest.IsAndIsNot (0 ms) 2023-01-11T22:09:13.0712447Z [ RUN ] PeepholeOptimizeTest.IsAndIsNot2 2023-01-11T22:09:13.0712959Z [ OK ] PeepholeOptimizeTest.IsAndIsNot2 (0 ms) 2023-01-11T22:09:13.0713300Z [ RUN ] PeepholeOptimizeTest.IsAndIsNot3 2023-01-11T22:09:13.0713637Z [ OK ] PeepholeOptimizeTest.IsAndIsNot3 (0 ms) 2023-01-11T22:09:13.0714095Z [ RUN ] PeepholeOptimizeTest.UnwrapOptional 2023-01-11T22:09:13.0714642Z [ OK ] PeepholeOptimizeTest.UnwrapOptional (0 ms) 2023-01-11T22:09:13.0715174Z [ RUN ] PeepholeOptimizeTest.UnwrapOptional2 2023-01-11T22:09:13.0715869Z [ OK ] PeepholeOptimizeTest.UnwrapOptional2 (0 ms) 2023-01-11T22:09:13.0716231Z [ RUN ] PeepholeOptimizeTest.AddMMFusion 2023-01-11T22:09:13.0716667Z [ OK ] PeepholeOptimizeTest.AddMMFusion (0 ms) 2023-01-11T22:09:13.0717031Z [----------] 6 tests from PeepholeOptimizeTest (0 ms total) 2023-01-11T22:09:13.0717205Z 2023-01-11T22:09:13.0717352Z [----------] 5 tests from QualifiedNameTest 2023-01-11T22:09:13.0717675Z [ RUN ] QualifiedNameTest.PrefixConstruction 2023-01-11T22:09:13.0718033Z [ OK ] QualifiedNameTest.PrefixConstruction (0 ms) 2023-01-11T22:09:13.0718386Z [ RUN ] QualifiedNameTest.DottedConstruction 2023-01-11T22:09:13.0718732Z [ OK ] QualifiedNameTest.DottedConstruction (0 ms) 2023-01-11T22:09:13.0719073Z [ RUN ] QualifiedNameTest.BadInputRaises 2023-01-11T22:09:13.0762816Z [ OK ] QualifiedNameTest.BadInputRaises (4 ms) 2023-01-11T22:09:13.0763240Z [ RUN ] QualifiedNameTest.Equality 2023-01-11T22:09:13.0763557Z [ OK ] QualifiedNameTest.Equality (0 ms) 2023-01-11T22:09:13.0763868Z [ RUN ] QualifiedNameTest.IsPrefixOf 2023-01-11T22:09:13.0764188Z [ OK ] QualifiedNameTest.IsPrefixOf (0 ms) 2023-01-11T22:09:13.0764512Z [----------] 5 tests from QualifiedNameTest (4 ms total) 2023-01-11T22:09:13.0764673Z 2023-01-11T22:09:13.0764862Z [----------] 6 tests from SerializationTest 2023-01-11T22:09:13.0765215Z [ RUN ] SerializationTest.ExtraFilesHookPreference 2023-01-11T22:09:13.0765744Z [W export_module.cpp:587] Warning: An extra files hook attempted to write metadata.json but this is already written in extra files and so will be skipped. This warning will only appear once per process. (function operator()) 2023-01-11T22:09:13.0770674Z [ OK ] SerializationTest.ExtraFilesHookPreference (0 ms) 2023-01-11T22:09:13.0771149Z [ RUN ] SerializationTest.ExtraFileHooksNoSecret 2023-01-11T22:09:13.0771934Z [ OK ] SerializationTest.ExtraFileHooksNoSecret (0 ms) 2023-01-11T22:09:13.0772470Z [ RUN ] SerializationTest.ExtraFileHooksWithSecret 2023-01-11T22:09:13.0772993Z [ OK ] SerializationTest.ExtraFileHooksWithSecret (0 ms) 2023-01-11T22:09:13.0773337Z [ RUN ] SerializationTest.TypeTags 2023-01-11T22:09:13.0775892Z [ OK ] SerializationTest.TypeTags (0 ms) 2023-01-11T22:09:13.0776216Z [ RUN ] SerializationTest.ParentDirNotExist 2023-01-11T22:09:13.0829977Z [ OK ] SerializationTest.ParentDirNotExist (5 ms) 2023-01-11T22:09:13.0830691Z [ RUN ] SerializationTest.CalculateNecessaryArgsTest 2023-01-11T22:09:13.0831132Z [ OK ] SerializationTest.CalculateNecessaryArgsTest (0 ms) 2023-01-11T22:09:13.0831510Z [----------] 6 tests from SerializationTest (6 ms total) 2023-01-11T22:09:13.0831672Z 2023-01-11T22:09:13.0831838Z [----------] 3 tests from TestSourceRoundTrip 2023-01-11T22:09:13.0832177Z [ RUN ] TestSourceRoundTrip.UpsampleNearest2d 2023-01-11T22:09:13.0845320Z [ OK ] TestSourceRoundTrip.UpsampleNearest2d (1 ms) 2023-01-11T22:09:13.0845712Z [ RUN ] TestSourceRoundTrip.CheckAttrAccess 2023-01-11T22:09:13.0846252Z [ OK ] TestSourceRoundTrip.CheckAttrAccess (0 ms) 2023-01-11T22:09:13.0846594Z [ RUN ] TestSourceRoundTrip.MethodInvocation 2023-01-11T22:09:13.0894967Z [ OK ] TestSourceRoundTrip.MethodInvocation (4 ms) 2023-01-11T22:09:13.0895443Z [----------] 3 tests from TestSourceRoundTrip (6 ms total) 2023-01-11T22:09:13.0895617Z 2023-01-11T22:09:13.0895762Z [----------] 1 test from TestSaveLoad 2023-01-11T22:09:13.0896055Z [ RUN ] TestSaveLoad.LoadWithoutDebugInfo 2023-01-11T22:09:13.0915886Z [ OK ] TestSaveLoad.LoadWithoutDebugInfo (2 ms) 2023-01-11T22:09:13.0916230Z [----------] 1 test from TestSaveLoad (2 ms total) 2023-01-11T22:09:13.0916386Z 2023-01-11T22:09:13.0916667Z [----------] 2 tests from FunctionSchemaIsAliasingTest 2023-01-11T22:09:13.0916996Z [ RUN ] FunctionSchemaIsAliasingTest.Basic 2023-01-11T22:09:13.0917351Z [ OK ] FunctionSchemaIsAliasingTest.Basic (0 ms) 2023-01-11T22:09:13.0917725Z [ RUN ] FunctionSchemaIsAliasingTest.InvalidArgument 2023-01-11T22:09:13.0938412Z [ OK ] FunctionSchemaIsAliasingTest.InvalidArgument (2 ms) 2023-01-11T22:09:13.0938845Z [----------] 2 tests from FunctionSchemaIsAliasingTest (2 ms total) 2023-01-11T22:09:13.0939073Z 2023-01-11T22:09:13.0939289Z [----------] 2 tests from FunctionSchemaIsMutableTest 2023-01-11T22:09:13.0939627Z [ RUN ] FunctionSchemaIsMutableTest.Basic 2023-01-11T22:09:13.0939962Z [ OK ] FunctionSchemaIsMutableTest.Basic (0 ms) 2023-01-11T22:09:13.0940332Z [ RUN ] FunctionSchemaIsMutableTest.InvalidArgument 2023-01-11T22:09:13.0971327Z [ OK ] FunctionSchemaIsMutableTest.InvalidArgument (3 ms) 2023-01-11T22:09:13.0971777Z [----------] 2 tests from FunctionSchemaIsMutableTest (3 ms total) 2023-01-11T22:09:13.0972008Z 2023-01-11T22:09:13.0972222Z [----------] 5 tests from SchemaInfoIsMutableTest 2023-01-11T22:09:13.0972699Z [ RUN ] SchemaInfoIsMutableTest.Basic 2023-01-11T22:09:13.0973163Z [ OK ] SchemaInfoIsMutableTest.Basic (0 ms) 2023-01-11T22:09:13.0973507Z [ RUN ] SchemaInfoIsMutableTest.InvalidArgument 2023-01-11T22:09:13.1005602Z [ OK ] SchemaInfoIsMutableTest.InvalidArgument (3 ms) 2023-01-11T22:09:13.1006311Z [ RUN ] SchemaInfoIsMutableTest.AliasingInputs 2023-01-11T22:09:13.1006917Z [ OK ] SchemaInfoIsMutableTest.AliasingInputs (0 ms) 2023-01-11T22:09:13.1007529Z [ RUN ] SchemaInfoIsMutableTest.InstanceNorm 2023-01-11T22:09:13.1008139Z [ OK ] SchemaInfoIsMutableTest.InstanceNorm (0 ms) 2023-01-11T22:09:13.1008776Z [ RUN ] SchemaInfoIsMutableTest.BatchNorm 2023-01-11T22:09:13.1009401Z [ OK ] SchemaInfoIsMutableTest.BatchNorm (0 ms) 2023-01-11T22:09:13.1009770Z [----------] 5 tests from SchemaInfoIsMutableTest (3 ms total) 2023-01-11T22:09:13.1009946Z 2023-01-11T22:09:13.1010150Z [----------] 2 tests from SchemaInfoIsNonDeterministicTest 2023-01-11T22:09:13.1010519Z [ RUN ] SchemaInfoIsNonDeterministicTest.Basic 2023-01-11T22:09:13.1010876Z [ OK ] SchemaInfoIsNonDeterministicTest.Basic (0 ms) 2023-01-11T22:09:13.1011255Z [ RUN ] SchemaInfoIsNonDeterministicTest.Dropout 2023-01-11T22:09:13.1011645Z [ OK ] SchemaInfoIsNonDeterministicTest.Dropout (0 ms) 2023-01-11T22:09:13.1012049Z [----------] 2 tests from SchemaInfoIsNonDeterministicTest (0 ms total) 2023-01-11T22:09:13.1012243Z 2023-01-11T22:09:13.1012428Z [----------] 3 tests from FunctionSchemaMayAliasTest 2023-01-11T22:09:13.1012762Z [ RUN ] FunctionSchemaMayAliasTest.Basic 2023-01-11T22:09:13.1013100Z [ OK ] FunctionSchemaMayAliasTest.Basic (0 ms) 2023-01-11T22:09:13.1013552Z [ RUN ] FunctionSchemaMayAliasTest.InvalidArgument 2023-01-11T22:09:13.1036956Z [ OK ] FunctionSchemaMayAliasTest.InvalidArgument (2 ms) 2023-01-11T22:09:13.1037646Z [ RUN ] FunctionSchemaMayAliasTest.Wildcard 2023-01-11T22:09:13.1038082Z [ OK ] FunctionSchemaMayAliasTest.Wildcard (0 ms) 2023-01-11T22:09:13.1038679Z [----------] 3 tests from FunctionSchemaMayAliasTest (2 ms total) 2023-01-11T22:09:13.1038981Z 2023-01-11T22:09:13.1039278Z [----------] 7 tests from SchemaInfoMayAliasTest 2023-01-11T22:09:13.1039832Z [ RUN ] SchemaInfoMayAliasTest.AliasingInputs 2023-01-11T22:09:13.1040405Z [ OK ] SchemaInfoMayAliasTest.AliasingInputs (0 ms) 2023-01-11T22:09:13.1040945Z [ RUN ] SchemaInfoMayAliasTest.AliasingOutputs 2023-01-11T22:09:13.1041607Z [ OK ] SchemaInfoMayAliasTest.AliasingOutputs (0 ms) 2023-01-11T22:09:13.1042148Z [ RUN ] SchemaInfoMayAliasTest.AliasingInputOutput 2023-01-11T22:09:13.1042775Z [ OK ] SchemaInfoMayAliasTest.AliasingInputOutput (0 ms) 2023-01-11T22:09:13.1043356Z [ RUN ] SchemaInfoMayAliasTest.MultipleWildcardInputs 2023-01-11T22:09:13.1043941Z [ OK ] SchemaInfoMayAliasTest.MultipleWildcardInputs (0 ms) 2023-01-11T22:09:13.1044526Z [ RUN ] SchemaInfoMayAliasTest.MultipleNonWildcardInputs 2023-01-11T22:09:13.1045084Z [W schema_info.cpp:333] Warning: alias::a appears twice in same argument list which will make aliasing checks more conservative. (function operator()) 2023-01-11T22:09:13.1045674Z [ OK ] SchemaInfoMayAliasTest.MultipleNonWildcardInputs (0 ms) 2023-01-11T22:09:13.1046271Z [ RUN ] SchemaInfoMayAliasTest.MultipleNonWildcardOutputs 2023-01-11T22:09:13.1046766Z [W schema_info.cpp:333] Warning: alias::a appears twice in same argument list which will make aliasing checks more conservative. (function operator()) 2023-01-11T22:09:13.1047247Z [ OK ] SchemaInfoMayAliasTest.MultipleNonWildcardOutputs (0 ms) 2023-01-11T22:09:13.1047649Z [ RUN ] SchemaInfoMayAliasTest.MismatchingTypes 2023-01-11T22:09:13.1048027Z [ OK ] SchemaInfoMayAliasTest.MismatchingTypes (0 ms) 2023-01-11T22:09:13.1048396Z [----------] 7 tests from SchemaInfoMayAliasTest (0 ms total) 2023-01-11T22:09:13.1048568Z 2023-01-11T22:09:13.1048773Z [----------] 3 tests from FunctionSchemaMayContainAliasTest 2023-01-11T22:09:13.1049299Z [ RUN ] FunctionSchemaMayContainAliasTest.Basic 2023-01-11T22:09:13.1049664Z [ OK ] FunctionSchemaMayContainAliasTest.Basic (0 ms) 2023-01-11T22:09:13.1050043Z [ RUN ] FunctionSchemaMayContainAliasTest.Wildcard 2023-01-11T22:09:13.1050542Z [ OK ] FunctionSchemaMayContainAliasTest.Wildcard (0 ms) 2023-01-11T22:09:13.1051137Z [ RUN ] FunctionSchemaMayContainAliasTest.InputAndOutputContainers 2023-01-11T22:09:13.1051698Z [ OK ] FunctionSchemaMayContainAliasTest.InputAndOutputContainers (0 ms) 2023-01-11T22:09:13.1052168Z [----------] 3 tests from FunctionSchemaMayContainAliasTest (0 ms total) 2023-01-11T22:09:13.1052361Z 2023-01-11T22:09:13.1052552Z [----------] 6 tests from SchemaInfoMayContainAliasTest 2023-01-11T22:09:13.1052943Z [ RUN ] SchemaInfoMayContainAliasTest.ContainAliasInputsEqual 2023-01-11T22:09:13.1053410Z [ OK ] SchemaInfoMayContainAliasTest.ContainAliasInputsEqual (0 ms) 2023-01-11T22:09:13.1053889Z [ RUN ] SchemaInfoMayContainAliasTest.ContainAliasInputsContained 2023-01-11T22:09:13.1054512Z [ OK ] SchemaInfoMayContainAliasTest.ContainAliasInputsContained (0 ms) 2023-01-11T22:09:13.1055227Z [ RUN ] SchemaInfoMayContainAliasTest.ContainAliasOutputs 2023-01-11T22:09:13.1055672Z [ OK ] SchemaInfoMayContainAliasTest.ContainAliasOutputs (0 ms) 2023-01-11T22:09:13.1056216Z [ RUN ] SchemaInfoMayContainAliasTest.ContainAliasInputOutput 2023-01-11T22:09:13.1056671Z [ OK ] SchemaInfoMayContainAliasTest.ContainAliasInputOutput (0 ms) 2023-01-11T22:09:13.1057135Z [ RUN ] SchemaInfoMayContainAliasTest.InputAndOutputContainers 2023-01-11T22:09:13.1057604Z [ OK ] SchemaInfoMayContainAliasTest.InputAndOutputContainers (0 ms) 2023-01-11T22:09:13.1058018Z [ RUN ] SchemaInfoMayContainAliasTest.Wildcard 2023-01-11T22:09:13.1058375Z [ OK ] SchemaInfoMayContainAliasTest.Wildcard (0 ms) 2023-01-11T22:09:13.1058770Z [----------] 6 tests from SchemaInfoMayContainAliasTest (0 ms total) 2023-01-11T22:09:13.1058954Z 2023-01-11T22:09:13.1059114Z [----------] 2 tests from SchemaMatchingTest 2023-01-11T22:09:13.1059447Z [ RUN ] SchemaMatchingTest.VarType 2023-01-11T22:09:13.1059770Z [ OK ] SchemaMatchingTest.VarType (0 ms) 2023-01-11T22:09:13.1060075Z [ RUN ] SchemaMatchingTest.VarType2 2023-01-11T22:09:13.1060388Z [ OK ] SchemaMatchingTest.VarType2 (0 ms) 2023-01-11T22:09:13.1060712Z [----------] 2 tests from SchemaMatchingTest (0 ms total) 2023-01-11T22:09:13.1060875Z 2023-01-11T22:09:13.1061022Z [----------] 6 tests from StackOptTest 2023-01-11T22:09:13.1061315Z [ RUN ] StackOptTest.UseVariadicStack 2023-01-11T22:09:13.1159884Z [ OK ] StackOptTest.UseVariadicStack (10 ms) 2023-01-11T22:09:13.1160444Z [ RUN ] StackOptTest.UseVariadicStackReplaceMultiple 2023-01-11T22:09:13.1217120Z [ OK ] StackOptTest.UseVariadicStackReplaceMultiple (5 ms) 2023-01-11T22:09:13.1217561Z [ RUN ] StackOptTest.UseVariadicStackWithMultipleListUses 2023-01-11T22:09:13.1241183Z [ OK ] StackOptTest.UseVariadicStackWithMultipleListUses (2 ms) 2023-01-11T22:09:13.1241642Z [ RUN ] StackOptTest.UseVariadicStackWithListMutationAfterCat 2023-01-11T22:09:13.1275645Z [ OK ] StackOptTest.UseVariadicStackWithListMutationAfterCat (3 ms) 2023-01-11T22:09:13.1276110Z [ RUN ] StackOptTest.UseVariadicStackWithListMutationBeforeCat 2023-01-11T22:09:13.1321223Z [ OK ] StackOptTest.UseVariadicStackWithListMutationBeforeCat (4 ms) 2023-01-11T22:09:13.1321715Z [ RUN ] StackOptTest.UseVariadicStackWithMultipleListMutations 2023-01-11T22:09:13.1391862Z [ OK ] StackOptTest.UseVariadicStackWithMultipleListMutations (6 ms) 2023-01-11T22:09:13.1392733Z [----------] 6 tests from StackOptTest (33 ms total) 2023-01-11T22:09:13.1393058Z 2023-01-11T22:09:13.1393417Z [----------] 16 tests from SubgraphMatcherTest 2023-01-11T22:09:13.1394095Z [ RUN ] SubgraphMatcherTest.Trivial1 2023-01-11T22:09:13.1394713Z [ OK ] SubgraphMatcherTest.Trivial1 (0 ms) 2023-01-11T22:09:13.1395267Z [ RUN ] SubgraphMatcherTest.Trivial2 2023-01-11T22:09:13.1395858Z [ OK ] SubgraphMatcherTest.Trivial2 (0 ms) 2023-01-11T22:09:13.1396422Z [ RUN ] SubgraphMatcherTest.Trivial3 2023-01-11T22:09:13.1396992Z [ OK ] SubgraphMatcherTest.Trivial3 (0 ms) 2023-01-11T22:09:13.1397552Z [ RUN ] SubgraphMatcherTest.Trivial4 2023-01-11T22:09:13.1398145Z [ OK ] SubgraphMatcherTest.Trivial4 (0 ms) 2023-01-11T22:09:13.1398684Z [ RUN ] SubgraphMatcherTest.Linear1 2023-01-11T22:09:13.1399214Z [ OK ] SubgraphMatcherTest.Linear1 (0 ms) 2023-01-11T22:09:13.1399796Z [ RUN ] SubgraphMatcherTest.Linear2 2023-01-11T22:09:13.1400356Z [ OK ] SubgraphMatcherTest.Linear2 (0 ms) 2023-01-11T22:09:13.1400888Z [ RUN ] SubgraphMatcherTest.Diamond1 2023-01-11T22:09:13.1401472Z [ OK ] SubgraphMatcherTest.Diamond1 (0 ms) 2023-01-11T22:09:13.1402033Z [ RUN ] SubgraphMatcherTest.Diamond2 2023-01-11T22:09:13.1402821Z [ OK ] SubgraphMatcherTest.Diamond2 (0 ms) 2023-01-11T22:09:13.1403368Z [ RUN ] SubgraphMatcherTest.XPattern 2023-01-11T22:09:13.1403932Z [ OK ] SubgraphMatcherTest.XPattern (0 ms) 2023-01-11T22:09:13.1404518Z [ RUN ] SubgraphMatcherTest.MultipleMatches 2023-01-11T22:09:13.1405139Z [ OK ] SubgraphMatcherTest.MultipleMatches (0 ms) 2023-01-11T22:09:13.1405782Z [ RUN ] SubgraphMatcherTest.OverlappingMatches 2023-01-11T22:09:13.1406453Z [ OK ] SubgraphMatcherTest.OverlappingMatches (0 ms) 2023-01-11T22:09:13.1407104Z [ RUN ] SubgraphMatcherTest.MatchInBasicBlocks1 2023-01-11T22:09:13.1407775Z [ OK ] SubgraphMatcherTest.MatchInBasicBlocks1 (0 ms) 2023-01-11T22:09:13.1408573Z [ RUN ] SubgraphMatcherTest.MatchInBasicBlocks2 2023-01-11T22:09:13.1409427Z [ OK ] SubgraphMatcherTest.MatchInBasicBlocks2 (0 ms) 2023-01-11T22:09:13.1410057Z [ RUN ] SubgraphMatcherTest.MatchesAttributes 2023-01-11T22:09:13.1410477Z [ OK ] SubgraphMatcherTest.MatchesAttributes (0 ms) 2023-01-11T22:09:13.1410821Z [ RUN ] SubgraphMatcherTest.BadPattern 2023-01-11T22:09:13.1444466Z [ OK ] SubgraphMatcherTest.BadPattern (4 ms) 2023-01-11T22:09:13.1445067Z [ RUN ] SubgraphMatcherTest.MultiOutput 2023-01-11T22:09:13.1445651Z [ OK ] SubgraphMatcherTest.MultiOutput (0 ms) 2023-01-11T22:09:13.1446294Z [----------] 16 tests from SubgraphMatcherTest (5 ms total) 2023-01-11T22:09:13.1446565Z 2023-01-11T22:09:13.1446873Z [----------] 4 tests from SubgraphRewriterTest 2023-01-11T22:09:13.1447434Z [ RUN ] SubgraphRewriterTest.FilterMatch 2023-01-11T22:09:13.1448075Z [ OK ] SubgraphRewriterTest.FilterMatch (0 ms) 2023-01-11T22:09:13.1448656Z [ RUN ] SubgraphRewriterTest.FilterNoMatch 2023-01-11T22:09:13.1449435Z [ OK ] SubgraphRewriterTest.FilterNoMatch (0 ms) 2023-01-11T22:09:13.1450058Z [ RUN ] SubgraphRewriterTest.MultiOutput 2023-01-11T22:09:13.1454142Z [ OK ] SubgraphRewriterTest.MultiOutput (0 ms) 2023-01-11T22:09:13.1454722Z [ RUN ] SubgraphRewriterTest.OutputType 2023-01-11T22:09:13.1455325Z [ OK ] SubgraphRewriterTest.OutputType (0 ms) 2023-01-11T22:09:13.1455917Z [----------] 4 tests from SubgraphRewriterTest (0 ms total) 2023-01-11T22:09:13.1456197Z 2023-01-11T22:09:13.1456462Z [----------] 3 tests from SubgraphUtilsTest 2023-01-11T22:09:13.1456956Z [ RUN ] SubgraphUtilsTest.Basic 2023-01-11T22:09:13.1460276Z [ OK ] SubgraphUtilsTest.Basic (0 ms) 2023-01-11T22:09:13.1460860Z [ RUN ] SubgraphUtilsTest.MergeSubgraphs 2023-01-11T22:09:13.1464304Z [ OK ] SubgraphUtilsTest.MergeSubgraphs (0 ms) 2023-01-11T22:09:13.1465108Z [ RUN ] SubgraphUtilsTest.GraphName 2023-01-11T22:09:13.1466540Z [ OK ] SubgraphUtilsTest.GraphName (0 ms) 2023-01-11T22:09:13.1468372Z [----------] 3 tests from SubgraphUtilsTest (0 ms total) 2023-01-11T22:09:13.1468526Z 2023-01-11T22:09:13.1468684Z [----------] 8 tests from UnionTypeTest 2023-01-11T22:09:13.1469001Z [ RUN ] UnionTypeTest.UnionOperatorEquals 2023-01-11T22:09:13.1469370Z [ OK ] UnionTypeTest.UnionOperatorEquals (0 ms) 2023-01-11T22:09:13.1469737Z [ RUN ] UnionTypeTest.UnionCreate_OptionalT1AndOptionalT2 2023-01-11T22:09:13.1470136Z [ OK ] UnionTypeTest.UnionCreate_OptionalT1AndOptionalT2 (0 ms) 2023-01-11T22:09:13.1470505Z [ RUN ] UnionTypeTest.UnionCreate_OptionalTAndT 2023-01-11T22:09:13.1470865Z [ OK ] UnionTypeTest.UnionCreate_OptionalTAndT (0 ms) 2023-01-11T22:09:13.1471243Z [ RUN ] UnionTypeTest.UnionCreate_TupleWithSubtypingRelationship 2023-01-11T22:09:13.1471813Z [ OK ] UnionTypeTest.UnionCreate_TupleWithSubtypingRelationship (0 ms) 2023-01-11T22:09:13.1472195Z [ RUN ] UnionTypeTest.UnionCreate_ContainerTAndT 2023-01-11T22:09:13.1472539Z [ OK ] UnionTypeTest.UnionCreate_ContainerTAndT (0 ms) 2023-01-11T22:09:13.1472941Z [ RUN ] UnionTypeTest.UnionCreate_OptionalContainerTAndContainerTAndT 2023-01-11T22:09:13.1473390Z [ OK ] UnionTypeTest.UnionCreate_OptionalContainerTAndContainerTAndT (0 ms) 2023-01-11T22:09:13.1473772Z [ RUN ] UnionTypeTest.Subtyping_NumberType 2023-01-11T22:09:13.1474091Z [ OK ] UnionTypeTest.Subtyping_NumberType (0 ms) 2023-01-11T22:09:13.1474427Z [ RUN ] UnionTypeTest.Subtyping_OptionalType 2023-01-11T22:09:13.1474767Z [ OK ] UnionTypeTest.Subtyping_OptionalType (0 ms) 2023-01-11T22:09:13.1475195Z [----------] 8 tests from UnionTypeTest (0 ms total) 2023-01-11T22:09:13.1475365Z 2023-01-11T22:09:13.1475539Z [----------] 2 tests from ScriptProfileTest 2023-01-11T22:09:13.1475835Z [ RUN ] ScriptProfileTest.Basic 2023-01-11T22:09:13.1476135Z [ OK ] ScriptProfileTest.Basic (0 ms) 2023-01-11T22:09:13.1476435Z [ RUN ] ScriptProfileTest.CallingOrder 2023-01-11T22:09:13.1499932Z [ OK ] ScriptProfileTest.CallingOrder (3 ms) 2023-01-11T22:09:13.1500604Z [----------] 2 tests from ScriptProfileTest (3 ms total) 2023-01-11T22:09:13.1500844Z 2023-01-11T22:09:13.1500999Z [----------] 7 tests from ShapeAnalysisTest 2023-01-11T22:09:13.1501333Z [ RUN ] ShapeAnalysisTest.DynamicShapesFusion 2023-01-11T22:09:13.1572958Z [ OK ] ShapeAnalysisTest.DynamicShapesFusion (7 ms) 2023-01-11T22:09:13.1573446Z [ RUN ] ShapeAnalysisTest.MovingConstantOutOfFusionGroups 2023-01-11T22:09:13.1589685Z [ OK ] ShapeAnalysisTest.MovingConstantOutOfFusionGroups (1 ms) 2023-01-11T22:09:13.1590107Z [ RUN ] ShapeAnalysisTest.SymbolicShapeAPI 2023-01-11T22:09:13.1662275Z [ OK ] ShapeAnalysisTest.SymbolicShapeAPI (7 ms) 2023-01-11T22:09:13.1662696Z [ RUN ] ShapeAnalysisTest.BoundedSymbolicShapes 2023-01-11T22:09:13.1668540Z [ OK ] ShapeAnalysisTest.BoundedSymbolicShapes (0 ms) 2023-01-11T22:09:13.1668922Z [ RUN ] ShapeAnalysisTest.SymbolicShapeCaching 2023-01-11T22:09:13.1674970Z [ OK ] ShapeAnalysisTest.SymbolicShapeCaching (0 ms) 2023-01-11T22:09:13.1675353Z [ RUN ] ShapeAnalysisTest.ShapeCacheMultipleFns 2023-01-11T22:09:13.1703434Z [ OK ] ShapeAnalysisTest.ShapeCacheMultipleFns (2 ms) 2023-01-11T22:09:13.1703824Z [ RUN ] ShapeAnalysisTest.TestShapeMultipleReturns 2023-01-11T22:09:13.1716284Z [ OK ] ShapeAnalysisTest.TestShapeMultipleReturns (1 ms) 2023-01-11T22:09:13.1717618Z [----------] 7 tests from ShapeAnalysisTest (21 ms total) 2023-01-11T22:09:13.1717915Z 2023-01-11T22:09:13.1718164Z [----------] 5 tests from JitLoggingTest 2023-01-11T22:09:13.1718677Z [ RUN ] JitLoggingTest.CheckSetLoggingLevel 2023-01-11T22:09:13.1719250Z [ OK ] JitLoggingTest.CheckSetLoggingLevel (0 ms) 2023-01-11T22:09:13.1719832Z [ RUN ] JitLoggingTest.CheckSetMultipleLogLevels 2023-01-11T22:09:13.1720511Z [ OK ] JitLoggingTest.CheckSetMultipleLogLevels (0 ms) 2023-01-11T22:09:13.1721183Z [ RUN ] JitLoggingTest.CheckLoggingLevelAfterUnset 2023-01-11T22:09:13.1721858Z [ OK ] JitLoggingTest.CheckLoggingLevelAfterUnset (0 ms) 2023-01-11T22:09:13.1722523Z [ RUN ] JitLoggingTest.CheckAfterChangingLevel 2023-01-11T22:09:13.1723192Z [ OK ] JitLoggingTest.CheckAfterChangingLevel (0 ms) 2023-01-11T22:09:13.1723860Z [ RUN ] JitLoggingTest.CheckOutputStreamSetting 2023-01-11T22:09:13.1724521Z [ OK ] JitLoggingTest.CheckOutputStreamSetting (0 ms) 2023-01-11T22:09:13.1725274Z [----------] 5 tests from JitLoggingTest (0 ms total) 2023-01-11T22:09:13.1725516Z 2023-01-11T22:09:13.1725768Z [----------] 9 tests from FileFormatTest 2023-01-11T22:09:13.1726333Z [ RUN ] FileFormatTest.IdentifiesFlatbufferStream 2023-01-11T22:09:13.1727027Z [ OK ] FileFormatTest.IdentifiesFlatbufferStream (0 ms) 2023-01-11T22:09:13.1727619Z [ RUN ] FileFormatTest.IdentifiesZipStream 2023-01-11T22:09:13.1728116Z [ OK ] FileFormatTest.IdentifiesZipStream (0 ms) 2023-01-11T22:09:13.1728772Z [ RUN ] FileFormatTest.FlatbufferTakesPrecedence 2023-01-11T22:09:13.1729562Z [ OK ] FileFormatTest.FlatbufferTakesPrecedence (0 ms) 2023-01-11T22:09:13.1730284Z [ RUN ] FileFormatTest.HandlesUnknownStream 2023-01-11T22:09:13.1730867Z [ OK ] FileFormatTest.HandlesUnknownStream (0 ms) 2023-01-11T22:09:13.1731453Z [ RUN ] FileFormatTest.ShortStreamIsUnknown 2023-01-11T22:09:13.1732040Z [ OK ] FileFormatTest.ShortStreamIsUnknown (0 ms) 2023-01-11T22:09:13.1732628Z [ RUN ] FileFormatTest.EmptyStreamIsUnknown 2023-01-11T22:09:13.1733241Z [ OK ] FileFormatTest.EmptyStreamIsUnknown (0 ms) 2023-01-11T22:09:13.1733813Z [ RUN ] FileFormatTest.BadStreamIsUnknown 2023-01-11T22:09:13.1734303Z [ OK ] FileFormatTest.BadStreamIsUnknown (0 ms) 2023-01-11T22:09:13.1734873Z [ RUN ] FileFormatTest.StreamOffsetIsObservedAndRestored 2023-01-11T22:09:13.1735504Z [ OK ] FileFormatTest.StreamOffsetIsObservedAndRestored (0 ms) 2023-01-11T22:09:13.1736177Z [ RUN ] FileFormatTest.HandlesMissingFile 2023-01-11T22:09:13.1736680Z [ OK ] FileFormatTest.HandlesMissingFile (0 ms) 2023-01-11T22:09:13.1737197Z [----------] 9 tests from FileFormatTest (0 ms total) 2023-01-11T22:09:13.1737432Z 2023-01-11T22:09:13.1737706Z [----------] 35 tests from FlatbufferTest 2023-01-11T22:09:13.1738228Z [ RUN ] FlatbufferTest.UpsampleNearest2d 2023-01-11T22:09:13.1740462Z [ OK ] FlatbufferTest.UpsampleNearest2d (2 ms) 2023-01-11T22:09:13.1741152Z [ RUN ] FlatbufferTest.UpsampleNearest2dWithCopyTensorMemory 2023-01-11T22:09:13.1751557Z [ OK ] FlatbufferTest.UpsampleNearest2dWithCopyTensorMemory (1 ms) 2023-01-11T22:09:13.1752018Z [ RUN ] FlatbufferTest.CheckAttrAccess 2023-01-11T22:09:13.1752345Z [ OK ] FlatbufferTest.CheckAttrAccess (0 ms) 2023-01-11T22:09:13.1752674Z [ RUN ] FlatbufferTest.MethodInvocation 2023-01-11T22:09:13.1772096Z [ OK ] FlatbufferTest.MethodInvocation (2 ms) 2023-01-11T22:09:13.1772441Z [ RUN ] FlatbufferTest.FlatbufferBackPortTest 2023-01-11T22:09:13.1801496Z [ OK ] FlatbufferTest.FlatbufferBackPortTest (2 ms) 2023-01-11T22:09:13.1801926Z [ RUN ] FlatbufferTest.ExtraFiles 2023-01-11T22:09:13.1805106Z [ OK ] FlatbufferTest.ExtraFiles (0 ms) 2023-01-11T22:09:13.1805381Z [ RUN ] FlatbufferTest.Conv 2023-01-11T22:09:13.1824929Z [ OK ] FlatbufferTest.Conv (1 ms) 2023-01-11T22:09:13.1825377Z [ RUN ] FlatbufferTest.ConvWithCopyTensorMemory 2023-01-11T22:09:13.1844936Z [ OK ] FlatbufferTest.ConvWithCopyTensorMemory (1 ms) 2023-01-11T22:09:13.1845371Z [ RUN ] FlatbufferTest.Inline 2023-01-11T22:09:13.1852377Z [ OK ] FlatbufferTest.Inline (0 ms) 2023-01-11T22:09:13.1852767Z [ RUN ] FlatbufferTest.InlineWithCopyTensorMemory 2023-01-11T22:09:13.1858937Z [ OK ] FlatbufferTest.InlineWithCopyTensorMemory (0 ms) 2023-01-11T22:09:13.1859300Z [ RUN ] FlatbufferTest.Tuple 2023-01-11T22:09:13.1864014Z [ OK ] FlatbufferTest.Tuple (0 ms) 2023-01-11T22:09:13.1864444Z [ RUN ] FlatbufferTest.Dict 2023-01-11T22:09:13.1868588Z [ OK ] FlatbufferTest.Dict (0 ms) 2023-01-11T22:09:13.1868886Z [ RUN ] FlatbufferTest.Prim 2023-01-11T22:09:13.1872015Z [ OK ] FlatbufferTest.Prim (0 ms) 2023-01-11T22:09:13.1872311Z [ RUN ] FlatbufferTest.PrimScalar 2023-01-11T22:09:13.1875908Z [ OK ] FlatbufferTest.PrimScalar (0 ms) 2023-01-11T22:09:13.1876548Z [ RUN ] FlatbufferTest.WrongMethodName 2023-01-11T22:09:13.1910964Z [ OK ] FlatbufferTest.WrongMethodName (3 ms) 2023-01-11T22:09:13.1911531Z [ RUN ] FlatbufferTest.SetState 2023-01-11T22:09:13.1930589Z [ OK ] FlatbufferTest.SetState (1 ms) 2023-01-11T22:09:13.1931171Z [ RUN ] FlatbufferTest.BuiltinClass 2023-01-11T22:09:13.1936347Z [ OK ] FlatbufferTest.BuiltinClass (0 ms) 2023-01-11T22:09:13.1936883Z [ RUN ] FlatbufferTest.BuiltinFunction 2023-01-11T22:09:13.1938679Z [ OK ] FlatbufferTest.BuiltinFunction (0 ms) 2023-01-11T22:09:13.1939235Z [ RUN ] FlatbufferTest.Eval 2023-01-11T22:09:13.1944312Z [ OK ] FlatbufferTest.Eval (0 ms) 2023-01-11T22:09:13.1944912Z [ RUN ] FlatbufferTest.FindWrongMethodName 2023-01-11T22:09:13.1947442Z [ OK ] FlatbufferTest.FindWrongMethodName (0 ms) 2023-01-11T22:09:13.1948018Z [ RUN ] FlatbufferTest.FindAndRunMethod 2023-01-11T22:09:13.1953317Z [ OK ] FlatbufferTest.FindAndRunMethod (0 ms) 2023-01-11T22:09:13.1953669Z [ RUN ] FlatbufferTest.RunMethodVariadic 2023-01-11T22:09:13.1958550Z [ OK ] FlatbufferTest.RunMethodVariadic (0 ms) 2023-01-11T22:09:13.1958875Z [ RUN ] FlatbufferTest.DuplicateSetState 2023-01-11T22:09:13.1967062Z [ OK ] FlatbufferTest.DuplicateSetState (0 ms) 2023-01-11T22:09:13.1967467Z [ RUN ] FlatbufferTest.OpNameExportFetchRootOperators 2023-01-11T22:09:13.1973410Z [ OK ] FlatbufferTest.OpNameExportFetchRootOperators (0 ms) 2023-01-11T22:09:13.1973771Z [ RUN ] FlatbufferTest.DefaultArgsConv 2023-01-11T22:09:13.1986477Z [ OK ] FlatbufferTest.DefaultArgsConv (1 ms) 2023-01-11T22:09:13.1986915Z [ RUN ] FlatbufferTest.DefaultArgsPinv 2023-01-11T22:09:13.2040126Z [ OK ] FlatbufferTest.DefaultArgsPinv (5 ms) 2023-01-11T22:09:13.2040586Z [ RUN ] FlatbufferTest.DefaultArgsTensorinvSpecifyDefault 2023-01-11T22:09:13.2050503Z [ OK ] FlatbufferTest.DefaultArgsTensorinvSpecifyDefault (1 ms) 2023-01-11T22:09:13.2050918Z [ RUN ] FlatbufferTest.DefaultArgsPinvWithOutArg 2023-01-11T22:09:13.2070619Z [ OK ] FlatbufferTest.DefaultArgsPinvWithOutArg (1 ms) 2023-01-11T22:09:13.2071062Z [ RUN ] FlatbufferTest.DefaultArgsWithOutArg 2023-01-11T22:09:13.2080121Z [ OK ] FlatbufferTest.DefaultArgsWithOutArg (0 ms) 2023-01-11T22:09:13.2080554Z [ RUN ] FlatbufferTest.OperatorCacheDifferentiatesDefaultArgs 2023-01-11T22:09:13.2103571Z [ OK ] FlatbufferTest.OperatorCacheDifferentiatesDefaultArgs (2 ms) 2023-01-11T22:09:13.2103987Z [ RUN ] FlatbufferTest.OperatorSize1 2023-01-11T22:09:13.2106743Z [ OK ] FlatbufferTest.OperatorSize1 (0 ms) 2023-01-11T22:09:13.2107163Z [ RUN ] FlatbufferTest.BoolAndDoubleList 2023-01-11T22:09:13.2107512Z [ OK ] FlatbufferTest.BoolAndDoubleList (0 ms) 2023-01-11T22:09:13.2107888Z [ RUN ] FlatbufferTest.OperatorTest2 2023-01-11T22:09:13.2117710Z [ OK ] FlatbufferTest.OperatorTest2 (1 ms) 2023-01-11T22:09:13.2118312Z [ RUN ] FlatbufferTest.DetachedBufferSmoke 2023-01-11T22:09:13.2118832Z [ OK ] FlatbufferTest.DetachedBufferSmoke (0 ms) 2023-01-11T22:09:13.2119465Z [ RUN ] FlatbufferTest.DetachedBufferNullOwner 2023-01-11T22:09:13.2120231Z [ OK ] FlatbufferTest.DetachedBufferNullOwner (0 ms) 2023-01-11T22:09:13.2120595Z [----------] 35 tests from FlatbufferTest (39 ms total) 2023-01-11T22:09:13.2120755Z 2023-01-11T22:09:13.2120923Z [----------] 3 tests from TestSourceFlatbuffer 2023-01-11T22:09:13.2121260Z [ RUN ] TestSourceFlatbuffer.UpsampleNearest2d 2023-01-11T22:09:13.2134435Z [ OK ] TestSourceFlatbuffer.UpsampleNearest2d (1 ms) 2023-01-11T22:09:13.2134840Z [ RUN ] TestSourceFlatbuffer.CheckAttrAccess 2023-01-11T22:09:13.2135388Z [ OK ] TestSourceFlatbuffer.CheckAttrAccess (0 ms) 2023-01-11T22:09:13.2135784Z [ RUN ] TestSourceFlatbuffer.MethodInvocation 2023-01-11T22:09:13.2187749Z [ OK ] TestSourceFlatbuffer.MethodInvocation (5 ms) 2023-01-11T22:09:13.2188356Z [----------] 3 tests from TestSourceFlatbuffer (6 ms total) 2023-01-11T22:09:13.2188529Z 2023-01-11T22:09:13.2188718Z [----------] 10 tests from FlatbufferUpgraderTest 2023-01-11T22:09:13.2189048Z [ RUN ] FlatbufferUpgraderTest.DivTensorV2 2023-01-11T22:09:13.2201853Z [ OK ] FlatbufferUpgraderTest.DivTensorV2 (1 ms) 2023-01-11T22:09:13.2202468Z [ RUN ] FlatbufferUpgraderTest.DivTensorOutV2 2023-01-11T22:09:13.2206895Z [ OK ] FlatbufferUpgraderTest.DivTensorOutV2 (0 ms) 2023-01-11T22:09:13.2207500Z [ RUN ] FlatbufferUpgraderTest.DivTensorInplaceV2 2023-01-11T22:09:13.2213737Z [ OK ] FlatbufferUpgraderTest.DivTensorInplaceV2 (0 ms) 2023-01-11T22:09:13.2214343Z [ RUN ] FlatbufferUpgraderTest.DivScalarFloatV2 2023-01-11T22:09:13.2218205Z [ OK ] FlatbufferUpgraderTest.DivScalarFloatV2 (0 ms) 2023-01-11T22:09:13.2218839Z [ RUN ] FlatbufferUpgraderTest.DivScalarReciprocalFloatV2 2023-01-11T22:09:13.2230638Z [ OK ] FlatbufferUpgraderTest.DivScalarReciprocalFloatV2 (1 ms) 2023-01-11T22:09:13.2231278Z [ RUN ] FlatbufferUpgraderTest.DivScalarReciprocalIntV2 2023-01-11T22:09:13.2237214Z [ OK ] FlatbufferUpgraderTest.DivScalarReciprocalIntV2 (0 ms) 2023-01-11T22:09:13.2237821Z [ RUN ] FlatbufferUpgraderTest.DivScalarScalarV2 2023-01-11T22:09:13.2241096Z [ OK ] FlatbufferUpgraderTest.DivScalarScalarV2 (0 ms) 2023-01-11T22:09:13.2241708Z [ RUN ] FlatbufferUpgraderTest.DivScalarIntV2 2023-01-11T22:09:13.2250849Z [ OK ] FlatbufferUpgraderTest.DivScalarIntV2 (0 ms) 2023-01-11T22:09:13.2251499Z [ RUN ] FlatbufferUpgraderTest.DivScalarInplaceFloatV2 2023-01-11T22:09:13.2259531Z [ OK ] FlatbufferUpgraderTest.DivScalarInplaceFloatV2 (0 ms) 2023-01-11T22:09:13.2260163Z [ RUN ] FlatbufferUpgraderTest.DivScalarInplaceIntV2 2023-01-11T22:09:13.2263137Z [ OK ] FlatbufferUpgraderTest.DivScalarInplaceIntV2 (0 ms) 2023-01-11T22:09:13.2263818Z [----------] 10 tests from FlatbufferUpgraderTest (7 ms total) 2023-01-11T22:09:13.2264140Z 2023-01-11T22:09:13.2264570Z [----------] 12 tests from AliasAnalysisTest/BatchAndInstanceNormFixture 2023-01-11T22:09:13.2265237Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/0 2023-01-11T22:09:13.2266045Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/0 (0 ms) 2023-01-11T22:09:13.2266907Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/1 2023-01-11T22:09:13.2267762Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/1 (0 ms) 2023-01-11T22:09:13.2268628Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/2 2023-01-11T22:09:13.2269529Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/2 (0 ms) 2023-01-11T22:09:13.2270394Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/3 2023-01-11T22:09:13.2271492Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNorm/3 (0 ms) 2023-01-11T22:09:13.2272460Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/0 2023-01-11T22:09:13.2273567Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/0 (0 ms) 2023-01-11T22:09:13.2274625Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/1 2023-01-11T22:09:13.2275416Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/1 (0 ms) 2023-01-11T22:09:13.2276052Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/2 2023-01-11T22:09:13.2276654Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/2 (0 ms) 2023-01-11T22:09:13.2277251Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/3 2023-01-11T22:09:13.2277846Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchAndInstanceNormTrainingUnknown/3 (0 ms) 2023-01-11T22:09:13.2278417Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/0 2023-01-11T22:09:13.2278992Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/0 (0 ms) 2023-01-11T22:09:13.2279561Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/1 2023-01-11T22:09:13.2280133Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/1 (0 ms) 2023-01-11T22:09:13.2280690Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/2 2023-01-11T22:09:13.2281264Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/2 (0 ms) 2023-01-11T22:09:13.2281837Z [ RUN ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/3 2023-01-11T22:09:13.2282416Z [ OK ] AliasAnalysisTest/BatchAndInstanceNormFixture.BatchNormTrainingWithNoMeanOrVar/3 (0 ms) 2023-01-11T22:09:13.2282907Z [----------] 12 tests from AliasAnalysisTest/BatchAndInstanceNormFixture (1 ms total) 2023-01-11T22:09:13.2283106Z 2023-01-11T22:09:13.2283348Z [----------] 10 tests from PyTorch/LiteInterpreterDynamicTypeTestFixture 2023-01-11T22:09:13.2283792Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/0 2023-01-11T22:09:14.0474656Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/0 (819 ms) 2023-01-11T22:09:14.0475203Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/1 2023-01-11T22:09:15.2095088Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/1 (1162 ms) 2023-01-11T22:09:15.2095672Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/2 2023-01-11T22:09:16.6073740Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/2 (1397 ms) 2023-01-11T22:09:16.6074282Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/3 2023-01-11T22:09:17.9647122Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/3 (1357 ms) 2023-01-11T22:09:17.9647675Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/4 2023-01-11T22:09:19.3075843Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/4 (1342 ms) 2023-01-11T22:09:19.3076384Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/5 2023-01-11T22:09:20.6770294Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/5 (1369 ms) 2023-01-11T22:09:20.6771066Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/6 2023-01-11T22:09:22.0333967Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/6 (1356 ms) 2023-01-11T22:09:22.0334475Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/7 2023-01-11T22:09:23.3440545Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/7 (1310 ms) 2023-01-11T22:09:23.3441060Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/8 2023-01-11T22:09:24.5271054Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/8 (1183 ms) 2023-01-11T22:09:24.5271578Z [ RUN ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/9 2023-01-11T22:09:25.7089279Z [ OK ] PyTorch/LiteInterpreterDynamicTypeTestFixture.Conformance/9 (1181 ms) 2023-01-11T22:09:25.7089833Z [----------] 10 tests from PyTorch/LiteInterpreterDynamicTypeTestFixture (12481 ms total) 2023-01-11T22:09:25.7090072Z 2023-01-11T22:09:25.7090250Z [----------] Global test environment tear-down 2023-01-11T22:09:25.7155676Z [==========] 569 tests from 119 test suites ran. (13719 ms total) 2023-01-11T22:09:25.7155958Z [ PASSED ] 569 tests. 2023-01-11T22:09:25.8000962Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *cuda* ]] 2023-01-11T22:09:25.8001260Z + [[ nogpu_AVX512 != *nogpu* ]] 2023-01-11T22:09:25.8001703Z + /opt/conda/lib/python3.10/site-packages/torch/bin/test_lazy --gtest_output=xml:test/test-reports/cpp-unittest/test_libtorch/test_lazy.xml 2023-01-11T22:09:26.1539354Z CUDA not available. Disabling CUDA and MultiCUDA tests 2023-01-11T22:09:26.1542195Z Note: Google Test filter = *-*_CUDA:*_MultiCUDA 2023-01-11T22:09:26.1542708Z [==========] Running 611 tests from 10 test suites. 2023-01-11T22:09:26.1543257Z [----------] Global test environment set-up. 2023-01-11T22:09:26.1543719Z [----------] 11 tests from BackendDeviceTest 2023-01-11T22:09:26.1544048Z [ RUN ] BackendDeviceTest.BackendDeviceType 2023-01-11T22:09:26.1544404Z [ OK ] BackendDeviceTest.BackendDeviceType (0 ms) 2023-01-11T22:09:26.1544716Z [ RUN ] BackendDeviceTest.Basic1 2023-01-11T22:09:26.1545013Z [ OK ] BackendDeviceTest.Basic1 (0 ms) 2023-01-11T22:09:26.1545304Z [ RUN ] BackendDeviceTest.Basic2 2023-01-11T22:09:26.1545601Z [ OK ] BackendDeviceTest.Basic2 (0 ms) 2023-01-11T22:09:26.1545876Z [ RUN ] BackendDeviceTest.Basic3 2023-01-11T22:09:26.1546169Z [ OK ] BackendDeviceTest.Basic3 (0 ms) 2023-01-11T22:09:26.1546456Z [ RUN ] BackendDeviceTest.Basic4 2023-01-11T22:09:26.1546735Z [ OK ] BackendDeviceTest.Basic4 (0 ms) 2023-01-11T22:09:26.1547028Z [ RUN ] BackendDeviceTest.Compare 2023-01-11T22:09:26.1547327Z [ OK ] BackendDeviceTest.Compare (0 ms) 2023-01-11T22:09:26.1547612Z [ RUN ] BackendDeviceTest.Ostream 2023-01-11T22:09:26.1547917Z [ OK ] BackendDeviceTest.Ostream (0 ms) 2023-01-11T22:09:26.1548215Z [ RUN ] BackendDeviceTest.FromAten 2023-01-11T22:09:26.1597707Z [ OK ] BackendDeviceTest.FromAten (5 ms) 2023-01-11T22:09:26.1598214Z [ RUN ] BackendDeviceTest.ToAten 2023-01-11T22:09:26.1598698Z [ OK ] BackendDeviceTest.ToAten (0 ms) 2023-01-11T22:09:26.1599201Z [ RUN ] BackendDeviceTest.GetBackendDevice1 2023-01-11T22:09:26.1600105Z [ OK ] BackendDeviceTest.GetBackendDevice1 (0 ms) 2023-01-11T22:09:26.1600691Z [ RUN ] BackendDeviceTest.GetBackendDevice2 2023-01-11T22:09:26.1601122Z [ OK ] BackendDeviceTest.GetBackendDevice2 (0 ms) 2023-01-11T22:09:26.1601623Z [----------] 11 tests from BackendDeviceTest (5 ms total) 2023-01-11T22:09:26.1601878Z 2023-01-11T22:09:26.1602097Z [----------] 2 tests from CacheTest 2023-01-11T22:09:26.1602784Z [ RUN ] CacheTest.BasicTest 2023-01-11T22:09:26.1603236Z [ OK ] CacheTest.BasicTest (0 ms) 2023-01-11T22:09:26.1603570Z [ RUN ] CacheTest.ShapeCacheTestForDynamicShape 2023-01-11T22:09:26.1603937Z [ OK ] CacheTest.ShapeCacheTestForDynamicShape (0 ms) 2023-01-11T22:09:26.1604351Z [----------] 2 tests from CacheTest (0 ms total) 2023-01-11T22:09:26.1605541Z 2023-01-11T22:09:26.1605714Z [----------] 5 tests from IrTest 2023-01-11T22:09:26.1605957Z [ RUN ] IrTest.BasicTest 2023-01-11T22:09:26.1606228Z [ OK ] IrTest.BasicTest (0 ms) 2023-01-11T22:09:26.1606493Z [ RUN ] IrTest.MetaDataTest 2023-01-11T22:09:26.1606857Z [ OK ] IrTest.MetaDataTest (0 ms) 2023-01-11T22:09:26.1607192Z [ RUN ] IrTest.TsNodeTest 2023-01-11T22:09:26.1607461Z [ OK ] IrTest.TsNodeTest (0 ms) 2023-01-11T22:09:26.1607738Z [ RUN ] IrTest.DimensionNodeTest 2023-01-11T22:09:26.1608020Z [ OK ] IrTest.DimensionNodeTest (0 ms) 2023-01-11T22:09:26.1608328Z [ RUN ] IrTest.DimensionIsDynamicTest 2023-01-11T22:09:26.1608649Z [ OK ] IrTest.DimensionIsDynamicTest (0 ms) 2023-01-11T22:09:26.1608944Z [----------] 5 tests from IrTest (0 ms total) 2023-01-11T22:09:26.1609202Z 2023-01-11T22:09:26.1609347Z [----------] 2 tests from IrUtilTest 2023-01-11T22:09:26.1609615Z [ RUN ] IrUtilTest.BasicTest 2023-01-11T22:09:26.1609893Z [ OK ] IrUtilTest.BasicTest (0 ms) 2023-01-11T22:09:26.1610154Z [ RUN ] IrUtilTest.TestCircle 2023-01-11T22:09:26.1626325Z [ OK ] IrUtilTest.TestCircle (2 ms) 2023-01-11T22:09:26.1627043Z [----------] 2 tests from IrUtilTest (2 ms total) 2023-01-11T22:09:26.1627316Z 2023-01-11T22:09:26.1627547Z [----------] 2 tests from HashTest 2023-01-11T22:09:26.1627939Z [ RUN ] HashTest.Scalar 2023-01-11T22:09:26.1628195Z [ OK ] HashTest.Scalar (0 ms) 2023-01-11T22:09:26.1628433Z [ RUN ] HashTest.Sanity 2023-01-11T22:09:26.1628689Z [ OK ] HashTest.Sanity (0 ms) 2023-01-11T22:09:26.1628972Z [----------] 2 tests from HashTest (0 ms total) 2023-01-11T22:09:26.1629113Z 2023-01-11T22:09:26.1629280Z [----------] 3 tests from PermutationUtilTest 2023-01-11T22:09:26.1629615Z [ RUN ] PermutationUtilTest.TestInversePermutation 2023-01-11T22:09:26.1657006Z [ OK ] PermutationUtilTest.TestInversePermutation (2 ms) 2023-01-11T22:09:26.1657557Z [ RUN ] PermutationUtilTest.TestIsPermutation 2023-01-11T22:09:26.1657939Z [ OK ] PermutationUtilTest.TestIsPermutation (0 ms) 2023-01-11T22:09:26.1658312Z [ RUN ] PermutationUtilTest.TestPermute 2023-01-11T22:09:26.1677371Z [ OK ] PermutationUtilTest.TestPermute (2 ms) 2023-01-11T22:09:26.1677944Z [----------] 3 tests from PermutationUtilTest (4 ms total) 2023-01-11T22:09:26.1678211Z 2023-01-11T22:09:26.1678409Z [----------] 7 tests from ShapeTest 2023-01-11T22:09:26.1678785Z [ RUN ] ShapeTest.Basic1 2023-01-11T22:09:26.1679201Z [ OK ] ShapeTest.Basic1 (0 ms) 2023-01-11T22:09:26.1679486Z [ RUN ] ShapeTest.Basic2 2023-01-11T22:09:26.1679755Z [ OK ] ShapeTest.Basic2 (0 ms) 2023-01-11T22:09:26.1680039Z [ RUN ] ShapeTest.Basic3 2023-01-11T22:09:26.1680419Z [ OK ] ShapeTest.Basic3 (0 ms) 2023-01-11T22:09:26.1680831Z [ RUN ] ShapeTest.SetScalarType 2023-01-11T22:09:26.1681297Z [ OK ] ShapeTest.SetScalarType (0 ms) 2023-01-11T22:09:26.1681812Z [ RUN ] ShapeTest.SetSize 2023-01-11T22:09:26.1682174Z [ OK ] ShapeTest.SetSize (0 ms) 2023-01-11T22:09:26.1682417Z [ RUN ] ShapeTest.Equal 2023-01-11T22:09:26.1682831Z [ OK ] ShapeTest.Equal (0 ms) 2023-01-11T22:09:26.1683085Z [ RUN ] ShapeTest.Ostream 2023-01-11T22:09:26.1683335Z [ OK ] ShapeTest.Ostream (0 ms) 2023-01-11T22:09:26.1683629Z [----------] 7 tests from ShapeTest (0 ms total) 2023-01-11T22:09:26.1683777Z 2023-01-11T22:09:26.1683924Z [----------] 2 tests from TrieCacheTest 2023-01-11T22:09:26.1684213Z [ RUN ] TrieCacheTest.TestSinglePath 2023-01-11T22:09:26.1684521Z [ OK ] TrieCacheTest.TestSinglePath (0 ms) 2023-01-11T22:09:26.1684891Z [ RUN ] TrieCacheTest.TestTwoPaths 2023-01-11T22:09:26.1685199Z [ OK ] TrieCacheTest.TestTwoPaths (0 ms) 2023-01-11T22:09:26.1685511Z [----------] 2 tests from TrieCacheTest (0 ms total) 2023-01-11T22:09:26.1685662Z 2023-01-11T22:09:26.1685861Z [----------] 3 tests from UtilTest 2023-01-11T22:09:26.1686139Z [ RUN ] UtilTest.ExceptionCleanup 2023-01-11T22:09:26.1686447Z [ OK ] UtilTest.ExceptionCleanup (0 ms) 2023-01-11T22:09:26.1686707Z [ RUN ] UtilTest.MaybeRef 2023-01-11T22:09:26.1686967Z [ OK ] UtilTest.MaybeRef (0 ms) 2023-01-11T22:09:26.1687213Z [ RUN ] UtilTest.Iota 2023-01-11T22:09:26.1687466Z [ OK ] UtilTest.Iota (0 ms) 2023-01-11T22:09:26.1687801Z [----------] 3 tests from UtilTest (0 ms total) 2023-01-11T22:09:26.1687972Z 2023-01-11T22:09:26.1688140Z [----------] 574 tests from LazyOpsTest 2023-01-11T22:09:26.1688530Z [ RUN ] LazyOpsTest.TestScalarTensor 2023-01-11T22:09:26.1816130Z [ OK ] LazyOpsTest.TestScalarTensor (12 ms) 2023-01-11T22:09:26.1816429Z [ RUN ] LazyOpsTest.TestClone 2023-01-11T22:09:26.1846458Z [ OK ] LazyOpsTest.TestClone (2 ms) 2023-01-11T22:09:26.1846993Z [ RUN ] LazyOpsTest.TestTo 2023-01-11T22:09:26.1847443Z [ OK ] LazyOpsTest.TestTo (0 ms) 2023-01-11T22:09:26.1847989Z [ RUN ] LazyOpsTest.TestIsFloatingPoint 2023-01-11T22:09:26.1848578Z [ OK ] LazyOpsTest.TestIsFloatingPoint (0 ms) 2023-01-11T22:09:26.1848901Z [ RUN ] LazyOpsTest.TestIsSigned 2023-01-11T22:09:26.1849474Z [ OK ] LazyOpsTest.TestIsSigned (0 ms) 2023-01-11T22:09:26.1849759Z [ RUN ] LazyOpsTest.TestCastByte 2023-01-11T22:09:26.2221431Z [ OK ] LazyOpsTest.TestCastByte (37 ms) 2023-01-11T22:09:26.2221957Z [ RUN ] LazyOpsTest.TestCastChar 2023-01-11T22:09:26.2224270Z [ OK ] LazyOpsTest.TestCastChar (0 ms) 2023-01-11T22:09:26.2224824Z [ RUN ] LazyOpsTest.TestCastShort 2023-01-11T22:09:26.2227208Z [ OK ] LazyOpsTest.TestCastShort (0 ms) 2023-01-11T22:09:26.2227787Z [ RUN ] LazyOpsTest.TestCastInt 2023-01-11T22:09:26.2230316Z [ OK ] LazyOpsTest.TestCastInt (0 ms) 2023-01-11T22:09:26.2230898Z [ RUN ] LazyOpsTest.TestCastLong 2023-01-11T22:09:26.2233401Z [ OK ] LazyOpsTest.TestCastLong (0 ms) 2023-01-11T22:09:26.2233782Z [ RUN ] LazyOpsTest.TestCastFloat 2023-01-11T22:09:26.2234128Z [ OK ] LazyOpsTest.TestCastFloat (0 ms) 2023-01-11T22:09:26.2234520Z [ RUN ] LazyOpsTest.TestRetainType 2023-01-11T22:09:26.2235205Z [ OK ] LazyOpsTest.TestRetainType (0 ms) 2023-01-11T22:09:26.2235577Z [ RUN ] LazyOpsTest.TestLogicalTypeWithInterop 2023-01-11T22:09:26.2276029Z [ OK ] LazyOpsTest.TestLogicalTypeWithInterop (4 ms) 2023-01-11T22:09:26.2276353Z [ RUN ] LazyOpsTest.TestAdd 2023-01-11T22:09:26.2278941Z [ OK ] LazyOpsTest.TestAdd (0 ms) 2023-01-11T22:09:26.2279243Z [ RUN ] LazyOpsTest.TestAddHalf 2023-01-11T22:09:26.2281999Z [ OK ] LazyOpsTest.TestAddHalf (0 ms) 2023-01-11T22:09:26.2282324Z [ RUN ] LazyOpsTest.TestAddMixedPrecision 2023-01-11T22:09:26.2287105Z [ OK ] LazyOpsTest.TestAddMixedPrecision (0 ms) 2023-01-11T22:09:26.2287434Z [ RUN ] LazyOpsTest.TestAddInPlace 2023-01-11T22:09:26.2291923Z [ OK ] LazyOpsTest.TestAddInPlace (0 ms) 2023-01-11T22:09:26.2292319Z [ RUN ] LazyOpsTest.TestAddScalar 2023-01-11T22:09:26.2294884Z [ OK ] LazyOpsTest.TestAddScalar (0 ms) 2023-01-11T22:09:26.2295207Z [ RUN ] LazyOpsTest.TestAddScalarInPlace 2023-01-11T22:09:26.2298929Z [ OK ] LazyOpsTest.TestAddScalarInPlace (0 ms) 2023-01-11T22:09:26.2299253Z [ RUN ] LazyOpsTest.TestAddZeroSizeDim 2023-01-11T22:09:26.2301811Z [ OK ] LazyOpsTest.TestAddZeroSizeDim (0 ms) 2023-01-11T22:09:26.2302108Z [ RUN ] LazyOpsTest.TestSub 2023-01-11T22:09:26.2305204Z [ OK ] LazyOpsTest.TestSub (0 ms) 2023-01-11T22:09:26.2305495Z [ RUN ] LazyOpsTest.TestSubInPlace 2023-01-11T22:09:26.2320105Z [ OK ] LazyOpsTest.TestSubInPlace (1 ms) 2023-01-11T22:09:26.2320411Z [ RUN ] LazyOpsTest.TestSubScalar 2023-01-11T22:09:26.2323071Z [ OK ] LazyOpsTest.TestSubScalar (0 ms) 2023-01-11T22:09:26.2323397Z [ RUN ] LazyOpsTest.TestSubScalarInPlace 2023-01-11T22:09:26.2327043Z [ OK ] LazyOpsTest.TestSubScalarInPlace (0 ms) 2023-01-11T22:09:26.2327344Z [ RUN ] LazyOpsTest.TestMul 2023-01-11T22:09:26.2329802Z [ OK ] LazyOpsTest.TestMul (0 ms) 2023-01-11T22:09:26.2330111Z [ RUN ] LazyOpsTest.TestMulInPlace 2023-01-11T22:09:26.2333893Z [ OK ] LazyOpsTest.TestMulInPlace (0 ms) 2023-01-11T22:09:26.2334271Z [ RUN ] LazyOpsTest.TestMulScalar 2023-01-11T22:09:26.2336524Z [ OK ] LazyOpsTest.TestMulScalar (0 ms) 2023-01-11T22:09:26.2336848Z [ RUN ] LazyOpsTest.TestMulScalarInPlace 2023-01-11T22:09:26.2340401Z [ OK ] LazyOpsTest.TestMulScalarInPlace (0 ms) 2023-01-11T22:09:26.2340693Z [ RUN ] LazyOpsTest.TestDiv 2023-01-11T22:09:26.2425445Z [ OK ] LazyOpsTest.TestDiv (8 ms) 2023-01-11T22:09:26.2426032Z [ RUN ] LazyOpsTest.TestDivWithRoundingMode 2023-01-11T22:09:26.2731598Z [ OK ] LazyOpsTest.TestDivWithRoundingMode (30 ms) 2023-01-11T22:09:26.2732199Z [ RUN ] LazyOpsTest.TestDivInPlace 2023-01-11T22:09:26.2735432Z [ OK ] LazyOpsTest.TestDivInPlace (0 ms) 2023-01-11T22:09:26.2735964Z [ RUN ] LazyOpsTest.TestDivInPlaceWithRoundingMode 2023-01-11T22:09:26.2745687Z [ OK ] LazyOpsTest.TestDivInPlaceWithRoundingMode (1 ms) 2023-01-11T22:09:26.2746280Z [ RUN ] LazyOpsTest.TestDivScalar 2023-01-11T22:09:26.2773878Z [ OK ] LazyOpsTest.TestDivScalar (2 ms) 2023-01-11T22:09:26.2774463Z [ RUN ] LazyOpsTest.TestDivScalarInPlace 2023-01-11T22:09:26.2780353Z [ OK ] LazyOpsTest.TestDivScalarInPlace (0 ms) 2023-01-11T22:09:26.2780905Z [ RUN ] LazyOpsTest.TestDivOut 2023-01-11T22:09:26.2784499Z [ OK ] LazyOpsTest.TestDivOut (0 ms) 2023-01-11T22:09:26.2785125Z [ RUN ] LazyOpsTest.TestRsubScalar 2023-01-11T22:09:26.2787701Z [ OK ] LazyOpsTest.TestRsubScalar (0 ms) 2023-01-11T22:09:26.2788218Z [ RUN ] LazyOpsTest.TestNe 2023-01-11T22:09:26.2790252Z [ OK ] LazyOpsTest.TestNe (0 ms) 2023-01-11T22:09:26.2790766Z [ RUN ] LazyOpsTest.TestNeInplace 2023-01-11T22:09:26.2794820Z [ OK ] LazyOpsTest.TestNeInplace (0 ms) 2023-01-11T22:09:26.2795332Z [ RUN ] LazyOpsTest.TestEq 2023-01-11T22:09:26.2797546Z [ OK ] LazyOpsTest.TestEq (0 ms) 2023-01-11T22:09:26.2798077Z [ RUN ] LazyOpsTest.TestEqInplace 2023-01-11T22:09:26.2801806Z [ OK ] LazyOpsTest.TestEqInplace (0 ms) 2023-01-11T22:09:26.2802231Z [ RUN ] LazyOpsTest.TestGe 2023-01-11T22:09:26.2804363Z [ OK ] LazyOpsTest.TestGe (0 ms) 2023-01-11T22:09:26.2804722Z [ RUN ] LazyOpsTest.TestGeInplace 2023-01-11T22:09:26.2818566Z [ OK ] LazyOpsTest.TestGeInplace (1 ms) 2023-01-11T22:09:26.2818857Z [ RUN ] LazyOpsTest.TestLe 2023-01-11T22:09:26.2821108Z [ OK ] LazyOpsTest.TestLe (0 ms) 2023-01-11T22:09:26.2821440Z [ RUN ] LazyOpsTest.TestLeInplace 2023-01-11T22:09:26.2825716Z [ OK ] LazyOpsTest.TestLeInplace (0 ms) 2023-01-11T22:09:26.2826027Z [ RUN ] LazyOpsTest.TestGt 2023-01-11T22:09:26.2828605Z [ OK ] LazyOpsTest.TestGt (0 ms) 2023-01-11T22:09:26.2828926Z [ RUN ] LazyOpsTest.TestGtInplace 2023-01-11T22:09:26.2833154Z [ OK ] LazyOpsTest.TestGtInplace (0 ms) 2023-01-11T22:09:26.2833457Z [ RUN ] LazyOpsTest.TestLt 2023-01-11T22:09:26.2835732Z [ OK ] LazyOpsTest.TestLt (0 ms) 2023-01-11T22:09:26.2836067Z [ RUN ] LazyOpsTest.TestLtInplace 2023-01-11T22:09:26.2840230Z [ OK ] LazyOpsTest.TestLtInplace (0 ms) 2023-01-11T22:09:26.2840594Z [ RUN ] LazyOpsTest.TestNeScalar 2023-01-11T22:09:26.2842869Z [ OK ] LazyOpsTest.TestNeScalar (0 ms) 2023-01-11T22:09:26.2843217Z [ RUN ] LazyOpsTest.TestEqScalar 2023-01-11T22:09:26.2845524Z [ OK ] LazyOpsTest.TestEqScalar (0 ms) 2023-01-11T22:09:26.2845836Z [ RUN ] LazyOpsTest.TestGeScalar 2023-01-11T22:09:26.2847818Z [ OK ] LazyOpsTest.TestGeScalar (0 ms) 2023-01-11T22:09:26.2848194Z [ RUN ] LazyOpsTest.TestGeScalarInplace 2023-01-11T22:09:26.2863630Z [ OK ] LazyOpsTest.TestGeScalarInplace (1 ms) 2023-01-11T22:09:26.2864218Z [ RUN ] LazyOpsTest.TestLeScalar 2023-01-11T22:09:26.2866588Z [ OK ] LazyOpsTest.TestLeScalar (0 ms) 2023-01-11T22:09:26.2867147Z [ RUN ] LazyOpsTest.TestLeScalarInplace 2023-01-11T22:09:26.2871834Z [ OK ] LazyOpsTest.TestLeScalarInplace (0 ms) 2023-01-11T22:09:26.2872373Z [ RUN ] LazyOpsTest.TestGtScalar 2023-01-11T22:09:26.2874783Z [ OK ] LazyOpsTest.TestGtScalar (0 ms) 2023-01-11T22:09:26.2875337Z [ RUN ] LazyOpsTest.TestGtScalarInplace 2023-01-11T22:09:26.2880176Z [ OK ] LazyOpsTest.TestGtScalarInplace (0 ms) 2023-01-11T22:09:26.2880701Z [ RUN ] LazyOpsTest.TestLtScalar 2023-01-11T22:09:26.2882887Z [ OK ] LazyOpsTest.TestLtScalar (0 ms) 2023-01-11T22:09:26.2883444Z [ RUN ] LazyOpsTest.TestLtScalarInplace 2023-01-11T22:09:26.2888161Z [ OK ] LazyOpsTest.TestLtScalarInplace (0 ms) 2023-01-11T22:09:26.2888736Z [ RUN ] LazyOpsTest.TestIntegerAdd 2023-01-11T22:09:26.2900631Z [ OK ] LazyOpsTest.TestIntegerAdd (1 ms) 2023-01-11T22:09:26.2901172Z [ RUN ] LazyOpsTest.TestSVD 2023-01-11T22:09:26.2981860Z [ OK ] LazyOpsTest.TestSVD (8 ms) 2023-01-11T22:09:26.2982400Z [ RUN ] LazyOpsTest.TestQR 2023-01-11T22:09:26.2983064Z [W BatchLinearAlgebra.cpp:2459] Warning: torch.qr is deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch release. 2023-01-11T22:09:26.2983521Z The boolean parameter 'some' has been replaced with a string parameter 'mode'. 2023-01-11T22:09:26.2983760Z Q, R = torch.qr(A, some) 2023-01-11T22:09:26.2984006Z should be replaced with 2023-01-11T22:09:26.2984429Z Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (function operator()) 2023-01-11T22:09:26.3002333Z [ OK ] LazyOpsTest.TestQR (2 ms) 2023-01-11T22:09:26.3002970Z [ RUN ] LazyOpsTest.TestSymEig 2023-01-11T22:09:26.3003519Z [W BatchLinearAlgebra.cpp:2910] Warning: torch.symeig is deprecated in favor of torch.linalg.eigh and will be removed in a future PyTorch release. 2023-01-11T22:09:26.3004294Z The default behavior has changed from using the upper triangular portion of the matrix by default to using the lower triangular portion. 2023-01-11T22:09:26.3004715Z L, _ = torch.symeig(A, upper=upper) 2023-01-11T22:09:26.3004981Z should be replaced with 2023-01-11T22:09:26.3005377Z L = torch.linalg.eigvalsh(A, UPLO='U' if upper else 'L') 2023-01-11T22:09:26.3005653Z and 2023-01-11T22:09:26.3005891Z L, V = torch.symeig(A, eigenvectors=True) 2023-01-11T22:09:26.3006173Z should be replaced with 2023-01-11T22:09:26.3006596Z L, V = torch.linalg.eigh(A, UPLO='U' if upper else 'L') (function operator()) 2023-01-11T22:09:26.3021233Z [ OK ] LazyOpsTest.TestSymEig (1 ms) 2023-01-11T22:09:26.3021617Z [ RUN ] LazyOpsTest.TestCholesky 2023-01-11T22:09:26.3022830Z [W BatchLinearAlgebra.cpp:1730] Warning: torch.cholesky is deprecated in favor of torch.linalg.cholesky and will be removed in a future PyTorch release. 2023-01-11T22:09:26.3023278Z L = torch.cholesky(A) 2023-01-11T22:09:26.3023521Z should be replaced with 2023-01-11T22:09:26.3023794Z L = torch.linalg.cholesky(A) 2023-01-11T22:09:26.3024035Z and 2023-01-11T22:09:26.3025075Z U = torch.cholesky(A, upper=True) 2023-01-11T22:09:26.3025351Z should be replaced with 2023-01-11T22:09:26.3025627Z U = torch.linalg.cholesky(A).mH(). 2023-01-11T22:09:26.3026051Z This transform will produce equivalent results for all valid (symmetric positive definite) inputs. (function operator()) 2023-01-11T22:09:26.3030749Z [ OK ] LazyOpsTest.TestCholesky (0 ms) 2023-01-11T22:09:26.3031222Z [ RUN ] LazyOpsTest.TestLogDet 2023-01-11T22:09:26.3058970Z [ OK ] LazyOpsTest.TestLogDet (2 ms) 2023-01-11T22:09:26.3059516Z [ RUN ] LazyOpsTest.TestTriangularSolve 2023-01-11T22:09:26.3060062Z [W BatchLinearAlgebra.cpp:2225] Warning: torch.triangular_solve is deprecated in favor of torch.linalg.solve_triangularand will be removed in a future PyTorch release. 2023-01-11T22:09:26.3060659Z torch.linalg.solve_triangular has its arguments reversed and does not return a copy of one of the inputs. 2023-01-11T22:09:26.3061055Z X = torch.triangular_solve(B, A).solution 2023-01-11T22:09:26.3061334Z should be replaced with 2023-01-11T22:09:26.3061637Z X = torch.linalg.solve_triangular(A, B). (function operator()) 2023-01-11T22:09:26.3276323Z [ OK ] LazyOpsTest.TestTriangularSolve (21 ms) 2023-01-11T22:09:26.3276652Z [ RUN ] LazyOpsTest.TestKthValue 2023-01-11T22:09:26.3308894Z [ OK ] LazyOpsTest.TestKthValue (3 ms) 2023-01-11T22:09:26.3309248Z [ RUN ] LazyOpsTest.TestTopK 2023-01-11T22:09:26.3486656Z [ OK ] LazyOpsTest.TestTopK (17 ms) 2023-01-11T22:09:26.3486956Z [ RUN ] LazyOpsTest.TestSort 2023-01-11T22:09:26.3553711Z [ OK ] LazyOpsTest.TestSort (6 ms) 2023-01-11T22:09:26.3554039Z [ RUN ] LazyOpsTest.TestSortDescWithMinValue 2023-01-11T22:09:26.3558894Z [ OK ] LazyOpsTest.TestSortDescWithMinValue (0 ms) 2023-01-11T22:09:26.3559204Z [ RUN ] LazyOpsTest.TestArgSort 2023-01-11T22:09:26.3570994Z [ OK ] LazyOpsTest.TestArgSort (1 ms) 2023-01-11T22:09:26.3571276Z [ RUN ] LazyOpsTest.TestMin 2023-01-11T22:09:26.3574534Z [ OK ] LazyOpsTest.TestMin (0 ms) 2023-01-11T22:09:26.3574791Z [ RUN ] LazyOpsTest.TestMax 2023-01-11T22:09:26.3577784Z [ OK ] LazyOpsTest.TestMax (0 ms) 2023-01-11T22:09:26.3578124Z [ RUN ] LazyOpsTest.TestUnaryMin 2023-01-11T22:09:26.3580995Z [ OK ] LazyOpsTest.TestUnaryMin (0 ms) 2023-01-11T22:09:26.3581383Z [ RUN ] LazyOpsTest.TestUnaryMax 2023-01-11T22:09:26.3583970Z [ OK ] LazyOpsTest.TestUnaryMax (0 ms) 2023-01-11T22:09:26.3584307Z [ RUN ] LazyOpsTest.TestAll 2023-01-11T22:09:26.3594473Z [ OK ] LazyOpsTest.TestAll (1 ms) 2023-01-11T22:09:26.3594928Z [ RUN ] LazyOpsTest.TestAllDim 2023-01-11T22:09:26.3596992Z [ OK ] LazyOpsTest.TestAllDim (0 ms) 2023-01-11T22:09:26.3597333Z [ RUN ] LazyOpsTest.TestAllDimKeep 2023-01-11T22:09:26.3599245Z [ OK ] LazyOpsTest.TestAllDimKeep (0 ms) 2023-01-11T22:09:26.3599593Z [ RUN ] LazyOpsTest.TestAmax 2023-01-11T22:09:26.3634916Z [ OK ] LazyOpsTest.TestAmax (3 ms) 2023-01-11T22:09:26.3635272Z [ RUN ] LazyOpsTest.TestAmin 2023-01-11T22:09:26.3670071Z [ OK ] LazyOpsTest.TestAmin (3 ms) 2023-01-11T22:09:26.3670400Z [ RUN ] LazyOpsTest.TestAny 2023-01-11T22:09:26.3691133Z [ OK ] LazyOpsTest.TestAny (2 ms) 2023-01-11T22:09:26.3691459Z [ RUN ] LazyOpsTest.TestAnyDim 2023-01-11T22:09:26.3693873Z [ OK ] LazyOpsTest.TestAnyDim (0 ms) 2023-01-11T22:09:26.3694174Z [ RUN ] LazyOpsTest.TestAnyDimKeep 2023-01-11T22:09:26.3696036Z [ OK ] LazyOpsTest.TestAnyDimKeep (0 ms) 2023-01-11T22:09:26.3696568Z [ RUN ] LazyOpsTest.TestMean 2023-01-11T22:09:26.3699330Z [ OK ] LazyOpsTest.TestMean (0 ms) 2023-01-11T22:09:26.3699844Z [ RUN ] LazyOpsTest.TestMeanCast 2023-01-11T22:09:26.3701992Z [ OK ] LazyOpsTest.TestMeanCast (0 ms) 2023-01-11T22:09:26.3702609Z [ RUN ] LazyOpsTest.TestMeanInDim 2023-01-11T22:09:26.3719829Z [ OK ] LazyOpsTest.TestMeanInDim (1 ms) 2023-01-11T22:09:26.3720387Z [ RUN ] LazyOpsTest.TestMeanInDims 2023-01-11T22:09:26.3725878Z [ OK ] LazyOpsTest.TestMeanInDims (0 ms) 2023-01-11T22:09:26.3726464Z [ RUN ] LazyOpsTest.TestMeanInDimsKeepCast 2023-01-11T22:09:26.3732401Z [ OK ] LazyOpsTest.TestMeanInDimsKeepCast (0 ms) 2023-01-11T22:09:26.3732979Z [ RUN ] LazyOpsTest.TestMeanInDimOut 2023-01-11T22:09:26.3761410Z [ OK ] LazyOpsTest.TestMeanInDimOut (2 ms) 2023-01-11T22:09:26.3761930Z [ RUN ] LazyOpsTest.TestStd 2023-01-11T22:09:26.3767813Z [ OK ] LazyOpsTest.TestStd (0 ms) 2023-01-11T22:09:26.3768342Z [ RUN ] LazyOpsTest.TestStdInDim 2023-01-11T22:09:26.3837945Z [ OK ] LazyOpsTest.TestStdInDim (6 ms) 2023-01-11T22:09:26.3838515Z [ RUN ] LazyOpsTest.TestStdWithCorrection 2023-01-11T22:09:26.3872002Z [ OK ] LazyOpsTest.TestStdWithCorrection (3 ms) 2023-01-11T22:09:26.3872551Z [ RUN ] LazyOpsTest.TestStdMeanWithCorrection 2023-01-11T22:09:26.3884961Z [ OK ] LazyOpsTest.TestStdMeanWithCorrection (1 ms) 2023-01-11T22:09:26.3885522Z [ RUN ] LazyOpsTest.TestSum 2023-01-11T22:09:26.3887798Z [ OK ] LazyOpsTest.TestSum (0 ms) 2023-01-11T22:09:26.3888332Z [ RUN ] LazyOpsTest.TestSumCast 2023-01-11T22:09:26.3891255Z [ OK ] LazyOpsTest.TestSumCast (0 ms) 2023-01-11T22:09:26.3891789Z [ RUN ] LazyOpsTest.TestSumU8 2023-01-11T22:09:26.3893289Z [ OK ] LazyOpsTest.TestSumU8 (0 ms) 2023-01-11T22:09:26.3893569Z [ RUN ] LazyOpsTest.TestSumInDim 2023-01-11T22:09:26.3910042Z [ OK ] LazyOpsTest.TestSumInDim (1 ms) 2023-01-11T22:09:26.3910400Z [ RUN ] LazyOpsTest.TestSumInDims 2023-01-11T22:09:26.3915942Z [ OK ] LazyOpsTest.TestSumInDims (0 ms) 2023-01-11T22:09:26.3916275Z [ RUN ] LazyOpsTest.TestSumInDimsKeep 2023-01-11T22:09:26.3921937Z [ OK ] LazyOpsTest.TestSumInDimsKeep (0 ms) 2023-01-11T22:09:26.3922315Z [ RUN ] LazyOpsTest.TestSumInDimsKeepCast 2023-01-11T22:09:26.3927835Z [ OK ] LazyOpsTest.TestSumInDimsKeepCast (0 ms) 2023-01-11T22:09:26.3928180Z [ RUN ] LazyOpsTest.TestVar 2023-01-11T22:09:26.3930095Z [ OK ] LazyOpsTest.TestVar (0 ms) 2023-01-11T22:09:26.3930424Z [ RUN ] LazyOpsTest.TestVarWithDim 2023-01-11T22:09:26.3935883Z [ OK ] LazyOpsTest.TestVarWithDim (0 ms) 2023-01-11T22:09:26.3936209Z [ RUN ] LazyOpsTest.TestVarWithCorrection 2023-01-11T22:09:26.3943595Z [ OK ] LazyOpsTest.TestVarWithCorrection (0 ms) 2023-01-11T22:09:26.3943973Z [ RUN ] LazyOpsTest.TestVarMeanWithCorrection 2023-01-11T22:09:26.3956658Z [ OK ] LazyOpsTest.TestVarMeanWithCorrection (1 ms) 2023-01-11T22:09:26.3957102Z [ RUN ] LazyOpsTest.TestMaxInDim 2023-01-11T22:09:26.4015818Z [ OK ] LazyOpsTest.TestMaxInDim (5 ms) 2023-01-11T22:09:26.4016214Z [ RUN ] LazyOpsTest.TestMinInDim 2023-01-11T22:09:26.4027708Z [ OK ] LazyOpsTest.TestMinInDim (1 ms) 2023-01-11T22:09:26.4028122Z [ RUN ] LazyOpsTest.TestNorm 2023-01-11T22:09:26.4031606Z [ OK ] LazyOpsTest.TestNorm (0 ms) 2023-01-11T22:09:26.4032012Z [ RUN ] LazyOpsTest.TestNormInDim 2023-01-11T22:09:26.4038772Z [ OK ] LazyOpsTest.TestNormInDim (0 ms) 2023-01-11T22:09:26.4039348Z [ RUN ] LazyOpsTest.TestNormInDims 2023-01-11T22:09:26.4045658Z [ OK ] LazyOpsTest.TestNormInDims (0 ms) 2023-01-11T22:09:26.4046240Z [ RUN ] LazyOpsTest.TestNormInDimsKeep 2023-01-11T22:09:26.4053361Z [ OK ] LazyOpsTest.TestNormInDimsKeep (0 ms) 2023-01-11T22:09:26.4054008Z [ RUN ] LazyOpsTest.TestNormalTwoTensor 2023-01-11T22:09:26.4060114Z [ OK ] LazyOpsTest.TestNormalTwoTensor (0 ms) 2023-01-11T22:09:26.4060556Z [ RUN ] LazyOpsTest.TestNormalDoubleMean 2023-01-11T22:09:26.4066811Z [ OK ] LazyOpsTest.TestNormalDoubleMean (0 ms) 2023-01-11T22:09:26.4067129Z [ RUN ] LazyOpsTest.TestNormalDoubleStd 2023-01-11T22:09:26.4069628Z [ OK ] LazyOpsTest.TestNormalDoubleStd (0 ms) 2023-01-11T22:09:26.4069972Z [ RUN ] LazyOpsTest.TestNormalInPlace 2023-01-11T22:09:26.4073014Z [ OK ] LazyOpsTest.TestNormalInPlace (0 ms) 2023-01-11T22:09:26.4073352Z [ RUN ] LazyOpsTest.TestUniformInPlace 2023-01-11T22:09:26.4075927Z [ OK ] LazyOpsTest.TestUniformInPlace (0 ms) 2023-01-11T22:09:26.4076256Z [ RUN ] LazyOpsTest.TestRandomInPlace 2023-01-11T22:09:26.4128843Z [ OK ] LazyOpsTest.TestRandomInPlace (5 ms) 2023-01-11T22:09:26.4129374Z [ RUN ] LazyOpsTest.TestRandomInPlaceDefaultFrom 2023-01-11T22:09:26.4179927Z [ OK ] LazyOpsTest.TestRandomInPlaceDefaultFrom (5 ms) 2023-01-11T22:09:26.4180299Z [ RUN ] LazyOpsTest.TestRandomInPlaceDefault 2023-01-11T22:09:26.4192867Z [ OK ] LazyOpsTest.TestRandomInPlaceDefault (1 ms) 2023-01-11T22:09:26.4193214Z [ RUN ] LazyOpsTest.TestNormGeneral 2023-01-11T22:09:26.4196665Z [ OK ] LazyOpsTest.TestNormGeneral (0 ms) 2023-01-11T22:09:26.4196966Z [ RUN ] LazyOpsTest.TestNormNuclear 2023-01-11T22:09:26.4200818Z [ OK ] LazyOpsTest.TestNormNuclear (0 ms) 2023-01-11T22:09:26.4201163Z [ RUN ] LazyOpsTest.TestFrobeniusNormInDim 2023-01-11T22:09:26.4201669Z [W LinearAlgebra.cpp:2783] Warning: at::frobenius_norm is deprecated and it is just left for JIT compatibility. It will be removed in a future PyTorch release. Please use `linalg.vector_norm(A, 2., dim, keepdim)` instead (function operator()) 2023-01-11T22:09:26.4207220Z [ OK ] LazyOpsTest.TestFrobeniusNormInDim (0 ms) 2023-01-11T22:09:26.4207663Z [ RUN ] LazyOpsTest.TestFrobeniusNormInDims 2023-01-11T22:09:26.4214083Z [ OK ] LazyOpsTest.TestFrobeniusNormInDims (0 ms) 2023-01-11T22:09:26.4214423Z [ RUN ] LazyOpsTest.TestGroupNorm 2023-01-11T22:09:26.4253434Z [ OK ] LazyOpsTest.TestGroupNorm (3 ms) 2023-01-11T22:09:26.4254054Z [ RUN ] LazyOpsTest.TestGroupNormBackward 2023-01-11T22:09:26.4725688Z [ OK ] LazyOpsTest.TestGroupNormBackward (47 ms) 2023-01-11T22:09:26.4726148Z [ RUN ] LazyOpsTest.TestInstanceNorm 2023-01-11T22:09:26.4752032Z [ OK ] LazyOpsTest.TestInstanceNorm (2 ms) 2023-01-11T22:09:26.4752446Z [ RUN ] LazyOpsTest.TestLayerNorm 2023-01-11T22:09:26.4788308Z [ OK ] LazyOpsTest.TestLayerNorm (3 ms) 2023-01-11T22:09:26.4788801Z [ RUN ] LazyOpsTest.TestLayerNormBackward 2023-01-11T22:09:26.5027818Z [ OK ] LazyOpsTest.TestLayerNormBackward (23 ms) 2023-01-11T22:09:26.5028270Z [ RUN ] LazyOpsTest.TestNuclearNorm 2023-01-11T22:09:26.5029295Z [W LinearAlgebra.cpp:2837] Warning: at::nuclear_norm is deprecated and it is just left for JIT compatibility. It will be removed in a future PyTorch release. Please use `linalg.matrix_norm(A, 'nuc', dim, keepdim)` instead (function operator()) 2023-01-11T22:09:26.5036040Z [ OK ] LazyOpsTest.TestNuclearNorm (0 ms) 2023-01-11T22:09:26.5036726Z [ RUN ] LazyOpsTest.TestPairwiseDistance 2023-01-11T22:09:26.5699026Z [ OK ] LazyOpsTest.TestPairwiseDistance (66 ms) 2023-01-11T22:09:26.5699698Z [ RUN ] LazyOpsTest.TestCosineSimilarity 2023-01-11T22:09:26.5744469Z [ OK ] LazyOpsTest.TestCosineSimilarity (4 ms) 2023-01-11T22:09:26.5745146Z [ RUN ] LazyOpsTest.TestCosineEmbeddingLoss 2023-01-11T22:09:26.6352048Z [ OK ] LazyOpsTest.TestCosineEmbeddingLoss (60 ms) 2023-01-11T22:09:26.6352637Z [ RUN ] LazyOpsTest.TestHingeEmbeddingLoss 2023-01-11T22:09:26.6390440Z [ OK ] LazyOpsTest.TestHingeEmbeddingLoss (3 ms) 2023-01-11T22:09:26.6391054Z [ RUN ] LazyOpsTest.TestTripletMarginLoss 2023-01-11T22:09:26.9149955Z [ OK ] LazyOpsTest.TestTripletMarginLoss (275 ms) 2023-01-11T22:09:26.9150728Z [ RUN ] LazyOpsTest.TestBinaryCrossEntropy 2023-01-11T22:09:26.9169386Z [ OK ] LazyOpsTest.TestBinaryCrossEntropy (2 ms) 2023-01-11T22:09:26.9169997Z [ RUN ] LazyOpsTest.TestMarginRankingLoss 2023-01-11T22:09:26.9851597Z [ OK ] LazyOpsTest.TestMarginRankingLoss (68 ms) 2023-01-11T22:09:26.9852249Z [ RUN ] LazyOpsTest.TestBCEWithLogits 2023-01-11T22:09:26.9866494Z [ OK ] LazyOpsTest.TestBCEWithLogits (1 ms) 2023-01-11T22:09:26.9867129Z [ RUN ] LazyOpsTest.TestKlDiv 2023-01-11T22:09:26.9887465Z [ OK ] LazyOpsTest.TestKlDiv (2 ms) 2023-01-11T22:09:26.9887954Z [ RUN ] LazyOpsTest.TestProd 2023-01-11T22:09:26.9889279Z [ OK ] LazyOpsTest.TestProd (0 ms) 2023-01-11T22:09:26.9889775Z [ RUN ] LazyOpsTest.TestProdCast 2023-01-11T22:09:26.9890305Z [ OK ] LazyOpsTest.TestProdCast (0 ms) 2023-01-11T22:09:26.9890796Z [ RUN ] LazyOpsTest.TestProdInDim 2023-01-11T22:09:26.9895481Z [ OK ] LazyOpsTest.TestProdInDim (0 ms) 2023-01-11T22:09:26.9896071Z [ RUN ] LazyOpsTest.TestProdInDimKeepCast 2023-01-11T22:09:26.9900172Z [ OK ] LazyOpsTest.TestProdInDimKeepCast (0 ms) 2023-01-11T22:09:26.9900740Z [ RUN ] LazyOpsTest.TestProdInDimKeep 2023-01-11T22:09:26.9905129Z [ OK ] LazyOpsTest.TestProdInDimKeep (0 ms) 2023-01-11T22:09:26.9905673Z [ RUN ] LazyOpsTest.TestCumSum 2023-01-11T22:09:26.9920025Z [ OK ] LazyOpsTest.TestCumSum (1 ms) 2023-01-11T22:09:26.9920575Z [ RUN ] LazyOpsTest.TestCumSumCast 2023-01-11T22:09:26.9935966Z [ OK ] LazyOpsTest.TestCumSumCast (1 ms) 2023-01-11T22:09:26.9936509Z [ RUN ] LazyOpsTest.TestCumSumLong 2023-01-11T22:09:26.9948999Z [ OK ] LazyOpsTest.TestCumSumLong (1 ms) 2023-01-11T22:09:26.9949603Z [ RUN ] LazyOpsTest.TestCumSumCastLong 2023-01-11T22:09:26.9962087Z [ OK ] LazyOpsTest.TestCumSumCastLong (1 ms) 2023-01-11T22:09:26.9962914Z [ RUN ] LazyOpsTest.TestCumProd 2023-01-11T22:09:26.9967373Z [ OK ] LazyOpsTest.TestCumProd (0 ms) 2023-01-11T22:09:26.9972211Z [ RUN ] LazyOpsTest.TestCumProdCast 2023-01-11T22:09:26.9972773Z [ OK ] LazyOpsTest.TestCumProdCast (0 ms) 2023-01-11T22:09:26.9973241Z [ RUN ] LazyOpsTest.TestCumProdLong 2023-01-11T22:09:26.9981463Z [ OK ] LazyOpsTest.TestCumProdLong (0 ms) 2023-01-11T22:09:26.9982054Z [ RUN ] LazyOpsTest.TestCumProdCastLong 2023-01-11T22:09:26.9990848Z [ OK ] LazyOpsTest.TestCumProdCastLong (0 ms) 2023-01-11T22:09:26.9991383Z [ RUN ] LazyOpsTest.TestArgMin 2023-01-11T22:09:26.9991872Z [ OK ] LazyOpsTest.TestArgMin (0 ms) 2023-01-11T22:09:26.9992550Z [ RUN ] LazyOpsTest.TestArgMinDim 2023-01-11T22:09:26.9993229Z [ OK ] LazyOpsTest.TestArgMinDim (0 ms) 2023-01-11T22:09:26.9993730Z [ RUN ] LazyOpsTest.TestArgMinDimKeep 2023-01-11T22:09:26.9994482Z [ OK ] LazyOpsTest.TestArgMinDimKeep (0 ms) 2023-01-11T22:09:26.9995037Z [ RUN ] LazyOpsTest.TestArgMinSameValue 2023-01-11T22:09:26.9995594Z [ OK ] LazyOpsTest.TestArgMinSameValue (0 ms) 2023-01-11T22:09:26.9996108Z [ RUN ] LazyOpsTest.TestArgMinWrapper 2023-01-11T22:09:26.9996901Z [ OK ] LazyOpsTest.TestArgMinWrapper (0 ms) 2023-01-11T22:09:26.9997420Z [ RUN ] LazyOpsTest.TestArgMax 2023-01-11T22:09:26.9997905Z [ OK ] LazyOpsTest.TestArgMax (0 ms) 2023-01-11T22:09:26.9998396Z [ RUN ] LazyOpsTest.TestArgMaxDim 2023-01-11T22:09:26.9999183Z [ OK ] LazyOpsTest.TestArgMaxDim (0 ms) 2023-01-11T22:09:26.9999674Z [ RUN ] LazyOpsTest.TestArgMaxDimKeep 2023-01-11T22:09:27.0000588Z [ OK ] LazyOpsTest.TestArgMaxDimKeep (0 ms) 2023-01-11T22:09:27.0001122Z [ RUN ] LazyOpsTest.TestArgMaxSameValue 2023-01-11T22:09:27.0001712Z [ OK ] LazyOpsTest.TestArgMaxSameValue (0 ms) 2023-01-11T22:09:27.0002202Z [ RUN ] LazyOpsTest.TestArgMaxWrapper 2023-01-11T22:09:27.0003195Z [ OK ] LazyOpsTest.TestArgMaxWrapper (0 ms) 2023-01-11T22:09:27.0003745Z [ RUN ] LazyOpsTest.TestAsin 2023-01-11T22:09:27.0005044Z [ OK ] LazyOpsTest.TestAsin (0 ms) 2023-01-11T22:09:27.0005582Z [ RUN ] LazyOpsTest.TestAsinh 2023-01-11T22:09:27.0006879Z [ OK ] LazyOpsTest.TestAsinh (0 ms) 2023-01-11T22:09:27.0007447Z [ RUN ] LazyOpsTest.TestAsinhInPlace 2023-01-11T22:09:27.0009681Z [ OK ] LazyOpsTest.TestAsinhInPlace (0 ms) 2023-01-11T22:09:27.0010249Z [ RUN ] LazyOpsTest.TestSin 2023-01-11T22:09:27.0011547Z [ OK ] LazyOpsTest.TestSin (0 ms) 2023-01-11T22:09:27.0012051Z [ RUN ] LazyOpsTest.TestSinh 2023-01-11T22:09:27.0013197Z [ OK ] LazyOpsTest.TestSinh (0 ms) 2023-01-11T22:09:27.0013727Z [ RUN ] LazyOpsTest.TestAcos 2023-01-11T22:09:27.0014810Z [ OK ] LazyOpsTest.TestAcos (0 ms) 2023-01-11T22:09:27.0015349Z [ RUN ] LazyOpsTest.TestAcosh 2023-01-11T22:09:27.0016501Z [ OK ] LazyOpsTest.TestAcosh (0 ms) 2023-01-11T22:09:27.0017094Z [ RUN ] LazyOpsTest.TestAcoshInPlace 2023-01-11T22:09:27.0019060Z [ OK ] LazyOpsTest.TestAcoshInPlace (0 ms) 2023-01-11T22:09:27.0019642Z [ RUN ] LazyOpsTest.TestCos 2023-01-11T22:09:27.0023399Z [ OK ] LazyOpsTest.TestCos (0 ms) 2023-01-11T22:09:27.0023926Z [ RUN ] LazyOpsTest.TestCosh 2023-01-11T22:09:27.0024617Z [ OK ] LazyOpsTest.TestCosh (0 ms) 2023-01-11T22:09:27.0025135Z [ RUN ] LazyOpsTest.TestAtan 2023-01-11T22:09:27.0026178Z [ OK ] LazyOpsTest.TestAtan (0 ms) 2023-01-11T22:09:27.0026851Z [ RUN ] LazyOpsTest.TestAtanh 2023-01-11T22:09:27.0027860Z [ OK ] LazyOpsTest.TestAtanh (0 ms) 2023-01-11T22:09:27.0028443Z [ RUN ] LazyOpsTest.TestAtanhInPlace 2023-01-11T22:09:27.0030532Z [ OK ] LazyOpsTest.TestAtanhInPlace (0 ms) 2023-01-11T22:09:27.0031152Z [ RUN ] LazyOpsTest.TestAtan2 2023-01-11T22:09:27.0032433Z [ OK ] LazyOpsTest.TestAtan2 (0 ms) 2023-01-11T22:09:27.0032962Z [ RUN ] LazyOpsTest.TestTan 2023-01-11T22:09:27.0034231Z [ OK ] LazyOpsTest.TestTan (0 ms) 2023-01-11T22:09:27.0034755Z [ RUN ] LazyOpsTest.TestTanh 2023-01-11T22:09:27.0038922Z [ OK ] LazyOpsTest.TestTanh (0 ms) 2023-01-11T22:09:27.0039529Z [ RUN ] LazyOpsTest.TestClampMinMax 2023-01-11T22:09:27.0043334Z [ OK ] LazyOpsTest.TestClampMinMax (0 ms) 2023-01-11T22:09:27.0043887Z [ RUN ] LazyOpsTest.TestClampMin 2023-01-11T22:09:27.0046900Z [ OK ] LazyOpsTest.TestClampMin (0 ms) 2023-01-11T22:09:27.0047421Z [ RUN ] LazyOpsTest.TestClampMax 2023-01-11T22:09:27.0050733Z [ OK ] LazyOpsTest.TestClampMax (0 ms) 2023-01-11T22:09:27.0051278Z [ RUN ] LazyOpsTest.TestClampMinExplicit 2023-01-11T22:09:27.0054088Z [ OK ] LazyOpsTest.TestClampMinExplicit (0 ms) 2023-01-11T22:09:27.0054635Z [ RUN ] LazyOpsTest.TestClampMaxExplicit 2023-01-11T22:09:27.0055230Z [ OK ] LazyOpsTest.TestClampMaxExplicit (0 ms) 2023-01-11T22:09:27.0055880Z [ RUN ] LazyOpsTest.TestClampMinExplicitInPlace 2023-01-11T22:09:27.0059631Z [ OK ] LazyOpsTest.TestClampMinExplicitInPlace (0 ms) 2023-01-11T22:09:27.0060245Z [ RUN ] LazyOpsTest.TestClampMaxExplicitInPlace 2023-01-11T22:09:27.0061050Z [ OK ] LazyOpsTest.TestClampMaxExplicitInPlace (0 ms) 2023-01-11T22:09:27.0061560Z [ RUN ] LazyOpsTest.TestCeil 2023-01-11T22:09:27.0062327Z [ OK ] LazyOpsTest.TestCeil (0 ms) 2023-01-11T22:09:27.0062858Z [ RUN ] LazyOpsTest.TestFloor 2023-01-11T22:09:27.0066419Z [ OK ] LazyOpsTest.TestFloor (0 ms) 2023-01-11T22:09:27.0066883Z [ RUN ] LazyOpsTest.TestRound 2023-01-11T22:09:27.0067755Z [ OK ] LazyOpsTest.TestRound (0 ms) 2023-01-11T22:09:27.0068272Z [ RUN ] LazyOpsTest.TestTrunc 2023-01-11T22:09:27.0072374Z [ OK ] LazyOpsTest.TestTrunc (0 ms) 2023-01-11T22:09:27.0072931Z [ RUN ] LazyOpsTest.TestFrac 2023-01-11T22:09:27.0076227Z [ OK ] LazyOpsTest.TestFrac (0 ms) 2023-01-11T22:09:27.0076869Z [ RUN ] LazyOpsTest.TestNeg 2023-01-11T22:09:27.0079727Z [ OK ] LazyOpsTest.TestNeg (0 ms) 2023-01-11T22:09:27.0080225Z [ RUN ] LazyOpsTest.TestBitwiseNot 2023-01-11T22:09:27.0082375Z [ OK ] LazyOpsTest.TestBitwiseNot (0 ms) 2023-01-11T22:09:27.0082946Z [ RUN ] LazyOpsTest.TestBitwiseNotInPlace 2023-01-11T22:09:27.0085532Z [ OK ] LazyOpsTest.TestBitwiseNotInPlace (0 ms) 2023-01-11T22:09:27.0086034Z [ RUN ] LazyOpsTest.TestSign 2023-01-11T22:09:27.0086623Z [ OK ] LazyOpsTest.TestSign (0 ms) 2023-01-11T22:09:27.0087059Z [ RUN ] LazyOpsTest.TestSignByte 2023-01-11T22:09:27.0087532Z [ OK ] LazyOpsTest.TestSignByte (0 ms) 2023-01-11T22:09:27.0087998Z [ RUN ] LazyOpsTest.TestAbs 2023-01-11T22:09:27.0091298Z [ OK ] LazyOpsTest.TestAbs (0 ms) 2023-01-11T22:09:27.0091762Z [ RUN ] LazyOpsTest.TestAbsByte 2023-01-11T22:09:27.0093671Z [ OK ] LazyOpsTest.TestAbsByte (0 ms) 2023-01-11T22:09:27.0094141Z [ RUN ] LazyOpsTest.TestEmptyLike 2023-01-11T22:09:27.0094645Z [ OK ] LazyOpsTest.TestEmptyLike (0 ms) 2023-01-11T22:09:27.0095164Z [ RUN ] LazyOpsTest.TestEmptyLikeOptions 2023-01-11T22:09:27.0095854Z [ OK ] LazyOpsTest.TestEmptyLikeOptions (0 ms) 2023-01-11T22:09:27.0096333Z [ RUN ] LazyOpsTest.TestEmpty 2023-01-11T22:09:27.0096795Z [ OK ] LazyOpsTest.TestEmpty (0 ms) 2023-01-11T22:09:27.0097230Z [ RUN ] LazyOpsTest.TestZeroInPlace 2023-01-11T22:09:27.0098123Z [ OK ] LazyOpsTest.TestZeroInPlace (0 ms) 2023-01-11T22:09:27.0098612Z [ RUN ] LazyOpsTest.TestZerosLike 2023-01-11T22:09:27.0099584Z [ OK ] LazyOpsTest.TestZerosLike (0 ms) 2023-01-11T22:09:27.0100098Z [ RUN ] LazyOpsTest.TestZerosLikeOptions 2023-01-11T22:09:27.0100802Z [ OK ] LazyOpsTest.TestZerosLikeOptions (0 ms) 2023-01-11T22:09:27.0101345Z [ RUN ] LazyOpsTest.TestZeros 2023-01-11T22:09:27.0104882Z [ OK ] LazyOpsTest.TestZeros (0 ms) 2023-01-11T22:09:27.0105400Z [ RUN ] LazyOpsTest.TestOnes 2023-01-11T22:09:27.0109317Z [ OK ] LazyOpsTest.TestOnes (0 ms) 2023-01-11T22:09:27.0109799Z [ RUN ] LazyOpsTest.TestOnesLike 2023-01-11T22:09:27.0110278Z [ OK ] LazyOpsTest.TestOnesLike (0 ms) 2023-01-11T22:09:27.0110784Z [ RUN ] LazyOpsTest.TestOnesLikeOptions 2023-01-11T22:09:27.0111668Z [ OK ] LazyOpsTest.TestOnesLikeOptions (0 ms) 2023-01-11T22:09:27.0112019Z [ RUN ] LazyOpsTest.TestFull 2023-01-11T22:09:27.0116269Z [ OK ] LazyOpsTest.TestFull (0 ms) 2023-01-11T22:09:27.0116713Z [ RUN ] LazyOpsTest.TestFullLike 2023-01-11T22:09:27.0117277Z [ OK ] LazyOpsTest.TestFullLike (0 ms) 2023-01-11T22:09:27.0117762Z [ RUN ] LazyOpsTest.TestFullLikeOptions 2023-01-11T22:09:27.0118300Z [ OK ] LazyOpsTest.TestFullLikeOptions (0 ms) 2023-01-11T22:09:27.0118694Z [ RUN ] LazyOpsTest.TestARange 2023-01-11T22:09:27.0133694Z [ OK ] LazyOpsTest.TestARange (1 ms) 2023-01-11T22:09:27.0134011Z [ RUN ] LazyOpsTest.TestARangeOut 2023-01-11T22:09:27.0134483Z [W RangeFactories.cpp:216] Warning: The number of elements in the out tensor of shape [4] is 4 which does not match the computed number of elements 200. Note that this may occur as a result of rounding error. The out tensor will be resized to a tensor of shape (200,). (function operator()) 2023-01-11T22:09:27.0136560Z [ OK ] LazyOpsTest.TestARangeOut (0 ms) 2023-01-11T22:09:27.0136897Z [ RUN ] LazyOpsTest.TestDimARange 2023-01-11T22:09:27.0140828Z [ OK ] LazyOpsTest.TestDimARange (0 ms) 2023-01-11T22:09:27.0141158Z [ RUN ] LazyOpsTest.TestBartlettWindow 2023-01-11T22:09:27.0168034Z [ OK ] LazyOpsTest.TestBartlettWindow (2 ms) 2023-01-11T22:09:27.0168390Z [ RUN ] LazyOpsTest.TestBlackmanWindow 2023-01-11T22:09:27.0190351Z [ OK ] LazyOpsTest.TestBlackmanWindow (2 ms) 2023-01-11T22:09:27.0190719Z [ RUN ] LazyOpsTest.TestHammingWindow 2023-01-11T22:09:27.0206146Z [ OK ] LazyOpsTest.TestHammingWindow (1 ms) 2023-01-11T22:09:27.0206473Z [ RUN ] LazyOpsTest.TestHannWindow 2023-01-11T22:09:27.0778973Z [ OK ] LazyOpsTest.TestHannWindow (57 ms) 2023-01-11T22:09:27.0779402Z [ RUN ] LazyOpsTest.TestLogSigmoid 2023-01-11T22:09:27.0783372Z [ OK ] LazyOpsTest.TestLogSigmoid (0 ms) 2023-01-11T22:09:27.0783828Z [ RUN ] LazyOpsTest.TestLogSigmoidForward 2023-01-11T22:09:27.0789031Z [ OK ] LazyOpsTest.TestLogSigmoidForward (0 ms) 2023-01-11T22:09:27.0789467Z [ RUN ] LazyOpsTest.TestLogsumexp 2023-01-11T22:09:27.0827782Z [ OK ] LazyOpsTest.TestLogsumexp (3 ms) 2023-01-11T22:09:27.0828090Z [ RUN ] LazyOpsTest.TestSiLU 2023-01-11T22:09:27.0831059Z [ OK ] LazyOpsTest.TestSiLU (0 ms) 2023-01-11T22:09:27.0831349Z [ RUN ] LazyOpsTest.TestSigmoid 2023-01-11T22:09:27.0834354Z [ OK ] LazyOpsTest.TestSigmoid (0 ms) 2023-01-11T22:09:27.0834644Z [ RUN ] LazyOpsTest.TestMatmul_1x1 2023-01-11T22:09:27.0836394Z [ OK ] LazyOpsTest.TestMatmul_1x1 (0 ms) 2023-01-11T22:09:27.0836698Z [ RUN ] LazyOpsTest.TestMatmul_2x1 2023-01-11T22:09:27.0840188Z [ OK ] LazyOpsTest.TestMatmul_2x1 (0 ms) 2023-01-11T22:09:27.0840471Z [ RUN ] LazyOpsTest.TestMatmul_1x2 2023-01-11T22:09:27.0845724Z [ OK ] LazyOpsTest.TestMatmul_1x2 (0 ms) 2023-01-11T22:09:27.0846020Z [ RUN ] LazyOpsTest.TestMatmul_2x2 2023-01-11T22:09:27.0849865Z [ OK ] LazyOpsTest.TestMatmul_2x2 (0 ms) 2023-01-11T22:09:27.0850276Z [ RUN ] LazyOpsTest.TestMatmulBcast 2023-01-11T22:09:27.0858841Z [ OK ] LazyOpsTest.TestMatmulBcast (0 ms) 2023-01-11T22:09:27.0860040Z [ RUN ] LazyOpsTest.TestDot 2023-01-11T22:09:27.0860413Z [ OK ] LazyOpsTest.TestDot (0 ms) 2023-01-11T22:09:27.0860797Z [ RUN ] LazyOpsTest.TestTensorDot 2023-01-11T22:09:27.0869466Z [ OK ] LazyOpsTest.TestTensorDot (0 ms) 2023-01-11T22:09:27.0869832Z [ RUN ] LazyOpsTest.TestGer 2023-01-11T22:09:27.0882011Z [ OK ] LazyOpsTest.TestGer (1 ms) 2023-01-11T22:09:27.0882461Z [ RUN ] LazyOpsTest.TestMv 2023-01-11T22:09:27.0885605Z [ OK ] LazyOpsTest.TestMv (0 ms) 2023-01-11T22:09:27.0885964Z [ RUN ] LazyOpsTest.TestMvOut 2023-01-11T22:09:27.0898925Z [ OK ] LazyOpsTest.TestMvOut (1 ms) 2023-01-11T22:09:27.0899362Z [ RUN ] LazyOpsTest.TestBatchAddBatchMatMul 2023-01-11T22:09:27.0903420Z [ OK ] LazyOpsTest.TestBatchAddBatchMatMul (0 ms) 2023-01-11T22:09:27.0903924Z [ RUN ] LazyOpsTest.TestBatchAddBatchMatMulInPlace 2023-01-11T22:09:27.0908374Z [ OK ] LazyOpsTest.TestBatchAddBatchMatMulInPlace (0 ms) 2023-01-11T22:09:27.0908844Z [ RUN ] LazyOpsTest.TestBatchMatMul 2023-01-11T22:09:27.0911949Z [ OK ] LazyOpsTest.TestBatchMatMul (0 ms) 2023-01-11T22:09:27.0913548Z [ RUN ] LazyOpsTest.TestChainMatMul 2023-01-11T22:09:27.0914331Z [W LinearAlgebra.cpp:1077] Warning: torch.chain_matmul is deprecated and will be removed in a future PyTorch release. Use torch.linalg.multi_dot instead, which accepts a list of two or more tensors rather than multiple parameters. (function operator()) 2023-01-11T22:09:27.0919274Z [ OK ] LazyOpsTest.TestChainMatMul (0 ms) 2023-01-11T22:09:27.0919637Z [ RUN ] LazyOpsTest.TestLinear 2023-01-11T22:09:27.0927960Z [ OK ] LazyOpsTest.TestLinear (0 ms) 2023-01-11T22:09:27.0928508Z [ RUN ] LazyOpsTest.TestPinverse 2023-01-11T22:09:27.0946928Z [ OK ] LazyOpsTest.TestPinverse (1 ms) 2023-01-11T22:09:27.0947499Z [ RUN ] LazyOpsTest.TestEinsumOuter 2023-01-11T22:09:27.0953726Z [ OK ] LazyOpsTest.TestEinsumOuter (0 ms) 2023-01-11T22:09:27.0954345Z [ RUN ] LazyOpsTest.TestEinsumOuterBackward 2023-01-11T22:09:27.0976575Z [ OK ] LazyOpsTest.TestEinsumOuterBackward (2 ms) 2023-01-11T22:09:27.0977203Z [ RUN ] LazyOpsTest.TestEinsumBatchMatMul 2023-01-11T22:09:27.0988036Z [ OK ] LazyOpsTest.TestEinsumBatchMatMul (1 ms) 2023-01-11T22:09:27.0988543Z [ RUN ] LazyOpsTest.TestEinsumPyTorchLowerBilinear 2023-01-11T22:09:27.1005357Z [ OK ] LazyOpsTest.TestEinsumPyTorchLowerBilinear (1 ms) 2023-01-11T22:09:27.1005871Z [ RUN ] LazyOpsTest.TestEinsumPyTorchLowerDiagonal 2023-01-11T22:09:27.1010271Z [ OK ] LazyOpsTest.TestEinsumPyTorchLowerDiagonal (0 ms) 2023-01-11T22:09:27.1010795Z [ RUN ] LazyOpsTest.TestEinsumPyTorchLowerBatchDiagonal 2023-01-11T22:09:27.1015589Z [ OK ] LazyOpsTest.TestEinsumPyTorchLowerBatchDiagonal (0 ms) 2023-01-11T22:09:27.1016292Z [ RUN ] LazyOpsTest.TestEinsumPyTorchLowerBatchPermute 2023-01-11T22:09:27.1019391Z [ OK ] LazyOpsTest.TestEinsumPyTorchLowerBatchPermute (0 ms) 2023-01-11T22:09:27.1019919Z [ RUN ] LazyOpsTest.TestEinsumPyTorchLowerRepeatedAxis 2023-01-11T22:09:27.1029750Z [ OK ] LazyOpsTest.TestEinsumPyTorchLowerRepeatedAxis (1 ms) 2023-01-11T22:09:27.1030205Z [ RUN ] LazyOpsTest.TestBilinear 2023-01-11T22:09:27.1162542Z [ OK ] LazyOpsTest.TestBilinear (13 ms) 2023-01-11T22:09:27.1163013Z [ RUN ] LazyOpsTest.TestUpsampleNearest2D 2023-01-11T22:09:27.1167138Z [ OK ] LazyOpsTest.TestUpsampleNearest2D (0 ms) 2023-01-11T22:09:27.1167768Z [ RUN ] LazyOpsTest.TestUpsampleNearest2DBackward 2023-01-11T22:09:27.1178749Z [ OK ] LazyOpsTest.TestUpsampleNearest2DBackward (1 ms) 2023-01-11T22:09:27.1179282Z [ RUN ] LazyOpsTest.TestUpsampleNearest2DWithScale 2023-01-11T22:09:27.1183845Z [ OK ] LazyOpsTest.TestUpsampleNearest2DWithScale (0 ms) 2023-01-11T22:09:27.1184718Z [ RUN ] LazyOpsTest.TestUpsampleNearest2DBackwardWithScale 2023-01-11T22:09:27.1195416Z [ OK ] LazyOpsTest.TestUpsampleNearest2DBackwardWithScale (1 ms) 2023-01-11T22:09:27.1195948Z [ RUN ] LazyOpsTest.TestUpsampleBilinear2D 2023-01-11T22:09:27.1203797Z [ OK ] LazyOpsTest.TestUpsampleBilinear2D (0 ms) 2023-01-11T22:09:27.1204161Z [ RUN ] LazyOpsTest.TestUpsampleBilinear2DBackward 2023-01-11T22:09:27.1225808Z [ OK ] LazyOpsTest.TestUpsampleBilinear2DBackward (2 ms) 2023-01-11T22:09:27.1226285Z [ RUN ] LazyOpsTest.TestAddCMul 2023-01-11T22:09:27.1229259Z [ OK ] LazyOpsTest.TestAddCMul (0 ms) 2023-01-11T22:09:27.1229602Z [ RUN ] LazyOpsTest.TestAddCDiv 2023-01-11T22:09:27.1232634Z [ OK ] LazyOpsTest.TestAddCDiv (0 ms) 2023-01-11T22:09:27.1233028Z [ RUN ] LazyOpsTest.TestAddCDivWithBroadcast 2023-01-11T22:09:27.1235812Z [ OK ] LazyOpsTest.TestAddCDivWithBroadcast (0 ms) 2023-01-11T22:09:27.1236238Z [ RUN ] LazyOpsTest.TestSize 2023-01-11T22:09:27.1236520Z [ OK ] LazyOpsTest.TestSize (0 ms) 2023-01-11T22:09:27.1236785Z [ RUN ] LazyOpsTest.TestSelect 2023-01-11T22:09:27.1323168Z [ OK ] LazyOpsTest.TestSelect (8 ms) 2023-01-11T22:09:27.1323532Z [ RUN ] LazyOpsTest.TestBernoulliScalarProb 2023-01-11T22:09:27.1328464Z [ OK ] LazyOpsTest.TestBernoulliScalarProb (0 ms) 2023-01-11T22:09:27.1328941Z [ RUN ] LazyOpsTest.TestBernoulliTensorProb 2023-01-11T22:09:27.1332416Z [ OK ] LazyOpsTest.TestBernoulliTensorProb (0 ms) 2023-01-11T22:09:27.1332918Z [ RUN ] LazyOpsTest.TestBernoulliScalarProbInPlace 2023-01-11T22:09:27.1336372Z [ OK ] LazyOpsTest.TestBernoulliScalarProbInPlace (0 ms) 2023-01-11T22:09:27.1336880Z [ RUN ] LazyOpsTest.TestBernoulliTensorProbInPlace 2023-01-11T22:09:27.1340530Z [ OK ] LazyOpsTest.TestBernoulliTensorProbInPlace (0 ms) 2023-01-11T22:09:27.1341059Z [ RUN ] LazyOpsTest.TestDropout 2023-01-11T22:09:27.1344432Z [ OK ] LazyOpsTest.TestDropout (0 ms) 2023-01-11T22:09:27.1344855Z [ RUN ] LazyOpsTest.TestDropoutInPlace 2023-01-11T22:09:27.1349665Z [ OK ] LazyOpsTest.TestDropoutInPlace (0 ms) 2023-01-11T22:09:27.1350315Z [ RUN ] LazyOpsTest.TestRandperm 2023-01-11T22:09:27.1351790Z [ OK ] LazyOpsTest.TestRandperm (0 ms) 2023-01-11T22:09:27.1352558Z [ RUN ] LazyOpsTest.TestSlice 2023-01-11T22:09:27.1361369Z [ OK ] LazyOpsTest.TestSlice (0 ms) 2023-01-11T22:09:27.1361745Z [ RUN ] LazyOpsTest.TestTake 2023-01-11T22:09:27.1363266Z [ OK ] LazyOpsTest.TestTake (0 ms) 2023-01-11T22:09:27.1364177Z [ RUN ] LazyOpsTest.TestTakeBackward 2023-01-11T22:09:27.1374231Z [ OK ] LazyOpsTest.TestTakeBackward (1 ms) 2023-01-11T22:09:27.1374615Z [ RUN ] LazyOpsTest.TestStack 2023-01-11T22:09:27.1398036Z [ OK ] LazyOpsTest.TestStack (2 ms) 2023-01-11T22:09:27.1398359Z [ RUN ] LazyOpsTest.TestCat 2023-01-11T22:09:27.1405212Z [ OK ] LazyOpsTest.TestCat (0 ms) 2023-01-11T22:09:27.1405492Z [ RUN ] LazyOpsTest.TestUnbind 2023-01-11T22:09:27.1417060Z [ OK ] LazyOpsTest.TestUnbind (1 ms) 2023-01-11T22:09:27.1417369Z [ RUN ] LazyOpsTest.TestRepeat 2023-01-11T22:09:27.1428328Z [ OK ] LazyOpsTest.TestRepeat (1 ms) 2023-01-11T22:09:27.1428793Z [ RUN ] LazyOpsTest.TestGather 2023-01-11T22:09:27.1435320Z [ OK ] LazyOpsTest.TestGather (0 ms) 2023-01-11T22:09:27.1435627Z [ RUN ] LazyOpsTest.TestScatter 2023-01-11T22:09:27.1438855Z [ OK ] LazyOpsTest.TestScatter (0 ms) 2023-01-11T22:09:27.1439335Z [ RUN ] LazyOpsTest.TestScatterR1 2023-01-11T22:09:27.1440148Z [ OK ] LazyOpsTest.TestScatterR1 (0 ms) 2023-01-11T22:09:27.1440482Z [ RUN ] LazyOpsTest.TestScatterR3 2023-01-11T22:09:27.1443060Z [ OK ] LazyOpsTest.TestScatterR3 (0 ms) 2023-01-11T22:09:27.1443493Z [ RUN ] LazyOpsTest.TestScatterBiggerSource 2023-01-11T22:09:27.1446009Z [ OK ] LazyOpsTest.TestScatterBiggerSource (0 ms) 2023-01-11T22:09:27.1446346Z [ RUN ] LazyOpsTest.TestScatterScalar 2023-01-11T22:09:27.1448666Z [ OK ] LazyOpsTest.TestScatterScalar (0 ms) 2023-01-11T22:09:27.1449249Z [ RUN ] LazyOpsTest.TestScatterReduceAdd 2023-01-11T22:09:27.1452177Z [ OK ] LazyOpsTest.TestScatterReduceAdd (0 ms) 2023-01-11T22:09:27.1452518Z [ RUN ] LazyOpsTest.TestScatterAdd 2023-01-11T22:09:27.1459252Z [ OK ] LazyOpsTest.TestScatterAdd (0 ms) 2023-01-11T22:09:27.1459598Z [ RUN ] LazyOpsTest.TestScatterAddInPlace 2023-01-11T22:09:27.1467056Z [ OK ] LazyOpsTest.TestScatterAddInPlace (0 ms) 2023-01-11T22:09:27.1467479Z [ RUN ] LazyOpsTest.TestIndexSelect 2023-01-11T22:09:27.1556876Z [ OK ] LazyOpsTest.TestIndexSelect (8 ms) 2023-01-11T22:09:27.1557320Z [ RUN ] LazyOpsTest.TestIndexSelectRank0 2023-01-11T22:09:27.1579912Z [ OK ] LazyOpsTest.TestIndexSelectRank0 (2 ms) 2023-01-11T22:09:27.1580305Z [ RUN ] LazyOpsTest.TestInverse 2023-01-11T22:09:27.1585172Z [ OK ] LazyOpsTest.TestInverse (0 ms) 2023-01-11T22:09:27.1585702Z [ RUN ] LazyOpsTest.TestIsnan 2023-01-11T22:09:27.1586268Z [ OK ] LazyOpsTest.TestIsnan (0 ms) 2023-01-11T22:09:27.1586606Z [ RUN ] LazyOpsTest.TestExpand 2023-01-11T22:09:27.1589550Z [ OK ] LazyOpsTest.TestExpand (0 ms) 2023-01-11T22:09:27.1590228Z [ RUN ] LazyOpsTest.TestExpandBack 2023-01-11T22:09:27.1593198Z [ OK ] LazyOpsTest.TestExpandBack (0 ms) 2023-01-11T22:09:27.1593544Z [ RUN ] LazyOpsTest.TestExpandAs 2023-01-11T22:09:27.1596872Z [ OK ] LazyOpsTest.TestExpandAs (0 ms) 2023-01-11T22:09:27.1597285Z [ RUN ] LazyOpsTest.TestEye 2023-01-11T22:09:27.1597855Z [ OK ] LazyOpsTest.TestEye (0 ms) 2023-01-11T22:09:27.1598251Z [ RUN ] LazyOpsTest.TestEyeWide 2023-01-11T22:09:27.1599011Z [ OK ] LazyOpsTest.TestEyeWide (0 ms) 2023-01-11T22:09:27.1599429Z [ RUN ] LazyOpsTest.TestEyeNarrow 2023-01-11T22:09:27.1599778Z [ OK ] LazyOpsTest.TestEyeNarrow (0 ms) 2023-01-11T22:09:27.1600128Z [ RUN ] LazyOpsTest.TestBroadcastTensors 2023-01-11T22:09:27.1605957Z [ OK ] LazyOpsTest.TestBroadcastTensors (0 ms) 2023-01-11T22:09:27.1606394Z [ RUN ] LazyOpsTest.TestOneIndex 2023-01-11T22:09:27.1620589Z [ OK ] LazyOpsTest.TestOneIndex (1 ms) 2023-01-11T22:09:27.1621028Z [ RUN ] LazyOpsTest.TestOneIndexTransfer 2023-01-11T22:09:27.1631941Z [ OK ] LazyOpsTest.TestOneIndexTransfer (1 ms) 2023-01-11T22:09:27.1632432Z [ RUN ] LazyOpsTest.TestNonzero 2023-01-11T22:09:27.1633431Z [ OK ] LazyOpsTest.TestNonzero (0 ms) 2023-01-11T22:09:27.1633842Z [ RUN ] LazyOpsTest.TestMaskedSelect 2023-01-11T22:09:27.1634927Z [ OK ] LazyOpsTest.TestMaskedSelect (0 ms) 2023-01-11T22:09:27.1635340Z [ RUN ] LazyOpsTest.TestMaskedScatter 2023-01-11T22:09:27.1638003Z [ OK ] LazyOpsTest.TestMaskedScatter (0 ms) 2023-01-11T22:09:27.1638569Z [ RUN ] LazyOpsTest.TestMultiIndexHeadNull 2023-01-11T22:09:27.1647433Z [ OK ] LazyOpsTest.TestMultiIndexHeadNull (0 ms) 2023-01-11T22:09:27.1647915Z [ RUN ] LazyOpsTest.TestMultiIndexMiddleNull 2023-01-11T22:09:27.1657249Z [ OK ] LazyOpsTest.TestMultiIndexMiddleNull (0 ms) 2023-01-11T22:09:27.1657776Z [ RUN ] LazyOpsTest.TestMultiIndexTailNull 2023-01-11T22:09:27.1666267Z [ OK ] LazyOpsTest.TestMultiIndexTailNull (0 ms) 2023-01-11T22:09:27.1666936Z [ RUN ] LazyOpsTest.TestMultiIndexMiddleBroadcast 2023-01-11T22:09:27.1675705Z [ OK ] LazyOpsTest.TestMultiIndexMiddleBroadcast (0 ms) 2023-01-11T22:09:27.1676200Z [ RUN ] LazyOpsTest.TestMultiIndexTailBroadcast 2023-01-11T22:09:27.1684459Z [ OK ] LazyOpsTest.TestMultiIndexTailBroadcast (0 ms) 2023-01-11T22:09:27.1685023Z [ RUN ] LazyOpsTest.TestMaskIndex 2023-01-11T22:09:27.1688977Z [ OK ] LazyOpsTest.TestMaskIndex (0 ms) 2023-01-11T22:09:27.1689506Z [ RUN ] LazyOpsTest.TestOneIndexPut 2023-01-11T22:09:27.1721190Z [ OK ] LazyOpsTest.TestOneIndexPut (3 ms) 2023-01-11T22:09:27.1721599Z [ RUN ] LazyOpsTest.TestOneIndexPutInPlace 2023-01-11T22:09:27.1746647Z [ OK ] LazyOpsTest.TestOneIndexPutInPlace (2 ms) 2023-01-11T22:09:27.1747015Z [ RUN ] LazyOpsTest.TestOneIndexPutTransfer 2023-01-11T22:09:27.1764849Z [ OK ] LazyOpsTest.TestOneIndexPutTransfer (1 ms) 2023-01-11T22:09:27.1765199Z [ RUN ] LazyOpsTest.TestMultiIndexPut 2023-01-11T22:09:27.1785087Z [ OK ] LazyOpsTest.TestMultiIndexPut (2 ms) 2023-01-11T22:09:27.1785717Z [ RUN ] LazyOpsTest.TestMultiIndexPutHeadNull 2023-01-11T22:09:27.1814829Z [ OK ] LazyOpsTest.TestMultiIndexPutHeadNull (2 ms) 2023-01-11T22:09:27.1815336Z [ RUN ] LazyOpsTest.TestMultiIndexPutMiddleNull 2023-01-11T22:09:27.1831886Z [ OK ] LazyOpsTest.TestMultiIndexPutMiddleNull (1 ms) 2023-01-11T22:09:27.1832391Z [ RUN ] LazyOpsTest.TestMultiIndexPutTailNull 2023-01-11T22:09:27.1848990Z [ OK ] LazyOpsTest.TestMultiIndexPutTailNull (1 ms) 2023-01-11T22:09:27.1849635Z [ RUN ] LazyOpsTest.TestMultiIndexPutMiddleBroadcast 2023-01-11T22:09:27.1869110Z [ OK ] LazyOpsTest.TestMultiIndexPutMiddleBroadcast (1 ms) 2023-01-11T22:09:27.1869811Z [ RUN ] LazyOpsTest.TestMultiIndexPutTailBroadcast 2023-01-11T22:09:27.1888185Z [ OK ] LazyOpsTest.TestMultiIndexPutTailBroadcast (1 ms) 2023-01-11T22:09:27.1888670Z [ RUN ] LazyOpsTest.TestMaskIndexPut 2023-01-11T22:09:27.1909092Z [ OK ] LazyOpsTest.TestMaskIndexPut (2 ms) 2023-01-11T22:09:27.1909509Z [ RUN ] LazyOpsTest.TestIndexPutImpl 2023-01-11T22:09:27.1934752Z [ OK ] LazyOpsTest.TestIndexPutImpl (2 ms) 2023-01-11T22:09:27.1935177Z [ RUN ] LazyOpsTest.TestIndexFillWithScalar 2023-01-11T22:09:27.1966980Z [ OK ] LazyOpsTest.TestIndexFillWithScalar (3 ms) 2023-01-11T22:09:27.1967465Z [ RUN ] LazyOpsTest.TestIndexFillWithScalarInPlace 2023-01-11T22:09:27.1996738Z [ OK ] LazyOpsTest.TestIndexFillWithScalarInPlace (2 ms) 2023-01-11T22:09:27.1997148Z [ RUN ] LazyOpsTest.TestIndexFillWithTensor 2023-01-11T22:09:27.2025250Z [ OK ] LazyOpsTest.TestIndexFillWithTensor (2 ms) 2023-01-11T22:09:27.2025666Z [ RUN ] LazyOpsTest.TestIndexFillWithTensorInPlace 2023-01-11T22:09:27.2058755Z [ OK ] LazyOpsTest.TestIndexFillWithTensorInPlace (3 ms) 2023-01-11T22:09:27.2059122Z [ RUN ] LazyOpsTest.TestIndexFillRank0 2023-01-11T22:09:27.2086437Z [ OK ] LazyOpsTest.TestIndexFillRank0 (2 ms) 2023-01-11T22:09:27.2086868Z [ RUN ] LazyOpsTest.TestIndexAdd 2023-01-11T22:09:27.2157812Z [ OK ] LazyOpsTest.TestIndexAdd (7 ms) 2023-01-11T22:09:27.2158162Z [ RUN ] LazyOpsTest.TestIndexAddInPlace 2023-01-11T22:09:27.2210539Z [ OK ] LazyOpsTest.TestIndexAddInPlace (5 ms) 2023-01-11T22:09:27.2210868Z [ RUN ] LazyOpsTest.TestIndexAddRank0 2023-01-11T22:09:27.2232443Z [ OK ] LazyOpsTest.TestIndexAddRank0 (2 ms) 2023-01-11T22:09:27.2232779Z [ RUN ] LazyOpsTest.TestIndexCopy 2023-01-11T22:09:27.2255121Z [ OK ] LazyOpsTest.TestIndexCopy (2 ms) 2023-01-11T22:09:27.2255482Z [ RUN ] LazyOpsTest.TestIndexCopyInPlace 2023-01-11T22:09:27.2283592Z [ OK ] LazyOpsTest.TestIndexCopyInPlace (2 ms) 2023-01-11T22:09:27.2283947Z [ RUN ] LazyOpsTest.TestIndexCopyRank0 2023-01-11T22:09:27.2304742Z [ OK ] LazyOpsTest.TestIndexCopyRank0 (2 ms) 2023-01-11T22:09:27.2305085Z [ RUN ] LazyOpsTest.TestRelu 2023-01-11T22:09:27.2307738Z [ OK ] LazyOpsTest.TestRelu (0 ms) 2023-01-11T22:09:27.2308083Z [ RUN ] LazyOpsTest.TestReluInPlace 2023-01-11T22:09:27.2311755Z [ OK ] LazyOpsTest.TestReluInPlace (0 ms) 2023-01-11T22:09:27.2312177Z [ RUN ] LazyOpsTest.TestHardshrink 2023-01-11T22:09:27.2312960Z [ OK ] LazyOpsTest.TestHardshrink (0 ms) 2023-01-11T22:09:27.2313284Z [ RUN ] LazyOpsTest.TestHardSigmoid 2023-01-11T22:09:27.2316392Z [ OK ] LazyOpsTest.TestHardSigmoid (0 ms) 2023-01-11T22:09:27.2316755Z [ RUN ] LazyOpsTest.TestHardSigmoidInPlace 2023-01-11T22:09:27.2319926Z [ OK ] LazyOpsTest.TestHardSigmoidInPlace (0 ms) 2023-01-11T22:09:27.2320276Z [ RUN ] LazyOpsTest.TestHardSigmoidBackward 2023-01-11T22:09:27.2329284Z [ OK ] LazyOpsTest.TestHardSigmoidBackward (0 ms) 2023-01-11T22:09:27.2329625Z [ RUN ] LazyOpsTest.TestSoftshrink 2023-01-11T22:09:27.2330741Z [ OK ] LazyOpsTest.TestSoftshrink (0 ms) 2023-01-11T22:09:27.2331166Z [ RUN ] LazyOpsTest.TestHardtanh 2023-01-11T22:09:27.2331978Z [ OK ] LazyOpsTest.TestHardtanh (0 ms) 2023-01-11T22:09:27.2332381Z [ RUN ] LazyOpsTest.TestHardtanhInPlace 2023-01-11T22:09:27.2334132Z [ OK ] LazyOpsTest.TestHardtanhInPlace (0 ms) 2023-01-11T22:09:27.2334464Z [ RUN ] LazyOpsTest.TestLeakyRelu 2023-01-11T22:09:27.2337375Z [ OK ] LazyOpsTest.TestLeakyRelu (0 ms) 2023-01-11T22:09:27.2337696Z [ RUN ] LazyOpsTest.TestLeakyReluInPlace 2023-01-11T22:09:27.2341438Z [ OK ] LazyOpsTest.TestLeakyReluInPlace (0 ms) 2023-01-11T22:09:27.2341755Z [ RUN ] LazyOpsTest.TestExp 2023-01-11T22:09:27.2344809Z [ OK ] LazyOpsTest.TestExp (0 ms) 2023-01-11T22:09:27.2345087Z [ RUN ] LazyOpsTest.TestExpm1 2023-01-11T22:09:27.2346894Z [ OK ] LazyOpsTest.TestExpm1 (0 ms) 2023-01-11T22:09:27.2347469Z [ RUN ] LazyOpsTest.TestLog 2023-01-11T22:09:27.2350655Z [ OK ] LazyOpsTest.TestLog (0 ms) 2023-01-11T22:09:27.2351073Z [ RUN ] LazyOpsTest.TestLog2 2023-01-11T22:09:27.2353923Z [ OK ] LazyOpsTest.TestLog2 (0 ms) 2023-01-11T22:09:27.2354299Z [ RUN ] LazyOpsTest.TestLog10 2023-01-11T22:09:27.2355446Z [ OK ] LazyOpsTest.TestLog10 (0 ms) 2023-01-11T22:09:27.2355838Z [ RUN ] LazyOpsTest.TestLog1p 2023-01-11T22:09:27.2356728Z [ OK ] LazyOpsTest.TestLog1p (0 ms) 2023-01-11T22:09:27.2357058Z [ RUN ] LazyOpsTest.TestErf 2023-01-11T22:09:27.2358387Z [ OK ] LazyOpsTest.TestErf (0 ms) 2023-01-11T22:09:27.2358718Z [ RUN ] LazyOpsTest.TestErfc 2023-01-11T22:09:27.2359592Z [ OK ] LazyOpsTest.TestErfc (0 ms) 2023-01-11T22:09:27.2360007Z [ RUN ] LazyOpsTest.TestErfinv 2023-01-11T22:09:27.2361062Z [ OK ] LazyOpsTest.TestErfinv (0 ms) 2023-01-11T22:09:27.2361355Z [ RUN ] LazyOpsTest.TestSqrt 2023-01-11T22:09:27.2364413Z [ OK ] LazyOpsTest.TestSqrt (0 ms) 2023-01-11T22:09:27.2364709Z [ RUN ] LazyOpsTest.TestRsqrt 2023-01-11T22:09:27.2367683Z [ OK ] LazyOpsTest.TestRsqrt (0 ms) 2023-01-11T22:09:27.2368236Z [ RUN ] LazyOpsTest.TestReciprocal 2023-01-11T22:09:27.2371081Z [ OK ] LazyOpsTest.TestReciprocal (0 ms) 2023-01-11T22:09:27.2371672Z [ RUN ] LazyOpsTest.TestPowTensorScalar 2023-01-11T22:09:27.2374201Z [ OK ] LazyOpsTest.TestPowTensorScalar (0 ms) 2023-01-11T22:09:27.2374800Z [ RUN ] LazyOpsTest.TestPowTensorScalarInPlace 2023-01-11T22:09:27.2378128Z [ OK ] LazyOpsTest.TestPowTensorScalarInPlace (0 ms) 2023-01-11T22:09:27.2378731Z [ RUN ] LazyOpsTest.TestPowTensorTensor 2023-01-11T22:09:27.2381366Z [ OK ] LazyOpsTest.TestPowTensorTensor (0 ms) 2023-01-11T22:09:27.2381955Z [ RUN ] LazyOpsTest.TestPowTensorTensorInPlace 2023-01-11T22:09:27.2395021Z [ OK ] LazyOpsTest.TestPowTensorTensorInPlace (1 ms) 2023-01-11T22:09:27.2395648Z [ RUN ] LazyOpsTest.TestPowTensorTensorBroadcast 2023-01-11T22:09:27.2398301Z [ OK ] LazyOpsTest.TestPowTensorTensorBroadcast (0 ms) 2023-01-11T22:09:27.2398879Z [ RUN ] LazyOpsTest.TestPowScalarTensor 2023-01-11T22:09:27.2399503Z [ OK ] LazyOpsTest.TestPowScalarTensor (0 ms) 2023-01-11T22:09:27.2400099Z [ RUN ] LazyOpsTest.TestPowIntExponent 2023-01-11T22:09:27.2402523Z [ OK ] LazyOpsTest.TestPowIntExponent (0 ms) 2023-01-11T22:09:27.2403102Z [ RUN ] LazyOpsTest.TestFmodScalar 2023-01-11T22:09:27.2403903Z [ OK ] LazyOpsTest.TestFmodScalar (0 ms) 2023-01-11T22:09:27.2404501Z [ RUN ] LazyOpsTest.TestFmodScalarInPlace 2023-01-11T22:09:27.2405580Z [ OK ] LazyOpsTest.TestFmodScalarInPlace (0 ms) 2023-01-11T22:09:27.2406160Z [ RUN ] LazyOpsTest.TestFmodTensor 2023-01-11T22:09:27.2406972Z [ OK ] LazyOpsTest.TestFmodTensor (0 ms) 2023-01-11T22:09:27.2407544Z [ RUN ] LazyOpsTest.TestFmodTensorInPlace 2023-01-11T22:09:27.2421312Z [ OK ] LazyOpsTest.TestFmodTensorInPlace (1 ms) 2023-01-11T22:09:27.2421910Z [ RUN ] LazyOpsTest.TestRemainderScalar 2023-01-11T22:09:27.2424646Z [ OK ] LazyOpsTest.TestRemainderScalar (0 ms) 2023-01-11T22:09:27.2425240Z [ RUN ] LazyOpsTest.TestRemainderScalarInPlace 2023-01-11T22:09:27.2429128Z [ OK ] LazyOpsTest.TestRemainderScalarInPlace (0 ms) 2023-01-11T22:09:27.2429635Z [ RUN ] LazyOpsTest.TestRemainderTensor 2023-01-11T22:09:27.2431903Z [ OK ] LazyOpsTest.TestRemainderTensor (0 ms) 2023-01-11T22:09:27.2432539Z [ RUN ] LazyOpsTest.TestRemainderTensorInPlace 2023-01-11T22:09:27.2436495Z [ OK ] LazyOpsTest.TestRemainderTensorInPlace (0 ms) 2023-01-11T22:09:27.2437108Z [ RUN ] LazyOpsTest.TestWhere 2023-01-11T22:09:27.2437639Z [W TensorCompare.cpp:493] Warning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead. (function operator()) 2023-01-11T22:09:27.2438197Z [ OK ] LazyOpsTest.TestWhere (0 ms) 2023-01-11T22:09:27.2438531Z [ RUN ] LazyOpsTest.TestWhereBroadcast 2023-01-11T22:09:27.2439615Z [ OK ] LazyOpsTest.TestWhereBroadcast (0 ms) 2023-01-11T22:09:27.2439914Z [ RUN ] LazyOpsTest.TestThreshold 2023-01-11T22:09:27.2442668Z [ OK ] LazyOpsTest.TestThreshold (0 ms) 2023-01-11T22:09:27.2443121Z [ RUN ] LazyOpsTest.TestThresholdBackward 2023-01-11T22:09:27.2451631Z [ OK ] LazyOpsTest.TestThresholdBackward (0 ms) 2023-01-11T22:09:27.2451972Z [ RUN ] LazyOpsTest.TestThresholdInPlace 2023-01-11T22:09:27.2454959Z [ OK ] LazyOpsTest.TestThresholdInPlace (0 ms) 2023-01-11T22:09:27.2455265Z [ RUN ] LazyOpsTest.TestElu 2023-01-11T22:09:27.2458909Z [ OK ] LazyOpsTest.TestElu (0 ms) 2023-01-11T22:09:27.2459211Z [ RUN ] LazyOpsTest.TestEluInPlace 2023-01-11T22:09:27.2462544Z [ OK ] LazyOpsTest.TestEluInPlace (0 ms) 2023-01-11T22:09:27.2462894Z [ RUN ] LazyOpsTest.TestSelu 2023-01-11T22:09:27.2465625Z [ OK ] LazyOpsTest.TestSelu (0 ms) 2023-01-11T22:09:27.2465930Z [ RUN ] LazyOpsTest.TestSeluInPlace 2023-01-11T22:09:27.2469355Z [ OK ] LazyOpsTest.TestSeluInPlace (0 ms) 2023-01-11T22:09:27.2469692Z [ RUN ] LazyOpsTest.TestCelu 2023-01-11T22:09:27.2470950Z [ OK ] LazyOpsTest.TestCelu (0 ms) 2023-01-11T22:09:27.2471259Z [ RUN ] LazyOpsTest.TestCeluInPlace 2023-01-11T22:09:27.2472933Z [ OK ] LazyOpsTest.TestCeluInPlace (0 ms) 2023-01-11T22:09:27.2473338Z [ RUN ] LazyOpsTest.TestGelu 2023-01-11T22:09:27.2480548Z [ OK ] LazyOpsTest.TestGelu (0 ms) 2023-01-11T22:09:27.2480924Z [ RUN ] LazyOpsTest.TestAddMatMul 2023-01-11T22:09:27.2499469Z [ OK ] LazyOpsTest.TestAddMatMul (1 ms) 2023-01-11T22:09:27.2500004Z [ RUN ] LazyOpsTest.TestEmbedding 2023-01-11T22:09:27.2504195Z [ OK ] LazyOpsTest.TestEmbedding (0 ms) 2023-01-11T22:09:27.2504586Z [ RUN ] LazyOpsTest.TestOneHot 2023-01-11T22:09:27.2512030Z [ OK ] LazyOpsTest.TestOneHot (0 ms) 2023-01-11T22:09:27.2512415Z [ RUN ] LazyOpsTest.TestTranspose 2023-01-11T22:09:27.2515038Z [ OK ] LazyOpsTest.TestTranspose (0 ms) 2023-01-11T22:09:27.2515463Z [ RUN ] LazyOpsTest.TestTransposeInPlace 2023-01-11T22:09:27.2519263Z [ OK ] LazyOpsTest.TestTransposeInPlace (0 ms) 2023-01-11T22:09:27.2519725Z [ RUN ] LazyOpsTest.TestReshape 2023-01-11T22:09:27.2526042Z [ OK ] LazyOpsTest.TestReshape (0 ms) 2023-01-11T22:09:27.2526440Z [ RUN ] LazyOpsTest.TestResize 2023-01-11T22:09:27.2531376Z [ OK ] LazyOpsTest.TestResize (0 ms) 2023-01-11T22:09:27.2531788Z [ RUN ] LazyOpsTest.TestViewResize 2023-01-11T22:09:27.2537666Z [ OK ] LazyOpsTest.TestViewResize (0 ms) 2023-01-11T22:09:27.2538046Z [ RUN ] LazyOpsTest.TestView 2023-01-11T22:09:27.2544756Z [ OK ] LazyOpsTest.TestView (0 ms) 2023-01-11T22:09:27.2545128Z [ RUN ] LazyOpsTest.TestViewMod 2023-01-11T22:09:27.2561434Z [ OK ] LazyOpsTest.TestViewMod (1 ms) 2023-01-11T22:09:27.2561823Z [ RUN ] LazyOpsTest.TestViewModComplex 2023-01-11T22:09:27.2580962Z [ OK ] LazyOpsTest.TestViewModComplex (1 ms) 2023-01-11T22:09:27.2581411Z [ RUN ] LazyOpsTest.TestViewOfViewMod 2023-01-11T22:09:27.2604171Z [ OK ] LazyOpsTest.TestViewOfViewMod (2 ms) 2023-01-11T22:09:27.2604526Z [ RUN ] LazyOpsTest.TestViewSqueezeAddInPlace 2023-01-11T22:09:27.2615769Z [ OK ] LazyOpsTest.TestViewSqueezeAddInPlace (1 ms) 2023-01-11T22:09:27.2616098Z [ RUN ] LazyOpsTest.TestUnsafeView 2023-01-11T22:09:27.2621972Z [ OK ] LazyOpsTest.TestUnsafeView (0 ms) 2023-01-11T22:09:27.2622308Z [ RUN ] LazyOpsTest.TestNarrow 2023-01-11T22:09:27.2638988Z [ OK ] LazyOpsTest.TestNarrow (1 ms) 2023-01-11T22:09:27.2639328Z [ RUN ] LazyOpsTest.TestNarrowUpdate 2023-01-11T22:09:27.2667026Z [ OK ] LazyOpsTest.TestNarrowUpdate (2 ms) 2023-01-11T22:09:27.2667475Z [ RUN ] LazyOpsTest.TestNarrowUpdateBaseCheck 2023-01-11T22:09:27.2690432Z [ OK ] LazyOpsTest.TestNarrowUpdateBaseCheck (2 ms) 2023-01-11T22:09:27.2690808Z [ RUN ] LazyOpsTest.TestNarrowUpdateTwoSlices 2023-01-11T22:09:27.2807422Z [ OK ] LazyOpsTest.TestNarrowUpdateTwoSlices (11 ms) 2023-01-11T22:09:27.2807776Z [ RUN ] LazyOpsTest.TestNarrowUpdateView 2023-01-11T22:09:27.2841875Z [ OK ] LazyOpsTest.TestNarrowUpdateView (3 ms) 2023-01-11T22:09:27.2842246Z [ RUN ] LazyOpsTest.TestNarrowInNarrowUpdate 2023-01-11T22:09:27.2885202Z [ OK ] LazyOpsTest.TestNarrowInNarrowUpdate (4 ms) 2023-01-11T22:09:27.2885529Z [ RUN ] LazyOpsTest.TestNarrowCopy 2023-01-11T22:09:27.2894173Z [ OK ] LazyOpsTest.TestNarrowCopy (0 ms) 2023-01-11T22:09:27.2894479Z [ RUN ] LazyOpsTest.TestViewAs 2023-01-11T22:09:27.2903327Z [ OK ] LazyOpsTest.TestViewAs (0 ms) 2023-01-11T22:09:27.2903663Z [ RUN ] LazyOpsTest.TestLogSoftmax 2023-01-11T22:09:27.2926711Z [ OK ] LazyOpsTest.TestLogSoftmax (2 ms) 2023-01-11T22:09:27.2927140Z [ RUN ] LazyOpsTest.TestLogSoftmaxCast 2023-01-11T22:09:27.2957458Z [ OK ] LazyOpsTest.TestLogSoftmaxCast (3 ms) 2023-01-11T22:09:27.2957896Z [ RUN ] LazyOpsTest.TestLogSoftmaxWrapper 2023-01-11T22:09:27.2980722Z [ OK ] LazyOpsTest.TestLogSoftmaxWrapper (2 ms) 2023-01-11T22:09:27.2981125Z [ RUN ] LazyOpsTest.TestSoftmax 2023-01-11T22:09:27.3003535Z [ OK ] LazyOpsTest.TestSoftmax (2 ms) 2023-01-11T22:09:27.3003930Z [ RUN ] LazyOpsTest.TestSoftmaxCast 2023-01-11T22:09:27.3037458Z [ OK ] LazyOpsTest.TestSoftmaxCast (3 ms) 2023-01-11T22:09:27.3037821Z [ RUN ] LazyOpsTest.TestSoftmaxWrapper 2023-01-11T22:09:27.3061990Z [ OK ] LazyOpsTest.TestSoftmaxWrapper (2 ms) 2023-01-11T22:09:27.3062309Z [ RUN ] LazyOpsTest.TestSoftplus 2023-01-11T22:09:27.3065497Z [ OK ] LazyOpsTest.TestSoftplus (0 ms) 2023-01-11T22:09:27.3065916Z [ RUN ] LazyOpsTest.TestMaxPool1D 2023-01-11T22:09:27.3162750Z [ OK ] LazyOpsTest.TestMaxPool1D (9 ms) 2023-01-11T22:09:27.3163176Z [ RUN ] LazyOpsTest.TestMaxPool2D 2023-01-11T22:09:27.3227773Z [ OK ] LazyOpsTest.TestMaxPool2D (6 ms) 2023-01-11T22:09:27.3228234Z [ RUN ] LazyOpsTest.TestMaxPool2DWithIndices 2023-01-11T22:09:27.3359591Z [ OK ] LazyOpsTest.TestMaxPool2DWithIndices (13 ms) 2023-01-11T22:09:27.3360125Z [ RUN ] LazyOpsTest.TestMaxPool2DNonSquare 2023-01-11T22:09:27.3423390Z [ OK ] LazyOpsTest.TestMaxPool2DNonSquare (6 ms) 2023-01-11T22:09:27.3423822Z [ RUN ] LazyOpsTest.TestMaxPool3D 2023-01-11T22:09:27.3442186Z [ OK ] LazyOpsTest.TestMaxPool3D (1 ms) 2023-01-11T22:09:27.3442643Z [ RUN ] LazyOpsTest.TestMaxPool3DWithIndices 2023-01-11T22:09:27.3468091Z [ OK ] LazyOpsTest.TestMaxPool3DWithIndices (2 ms) 2023-01-11T22:09:27.3468838Z [ RUN ] LazyOpsTest.TestMaxPool3DIncompleteAttributes 2023-01-11T22:09:27.3480636Z [ OK ] LazyOpsTest.TestMaxPool3DIncompleteAttributes (1 ms) 2023-01-11T22:09:27.3481024Z [ RUN ] LazyOpsTest.TestMaxPool3DNonSquare 2023-01-11T22:09:27.3497463Z [ OK ] LazyOpsTest.TestMaxPool3DNonSquare (1 ms) 2023-01-11T22:09:27.3498076Z [ RUN ] LazyOpsTest.TestMaxPool2DNoBatch 2023-01-11T22:09:27.3561310Z [ OK ] LazyOpsTest.TestMaxPool2DNoBatch (6 ms) 2023-01-11T22:09:27.3561776Z [ RUN ] LazyOpsTest.TestMaxPool3DNoBatch 2023-01-11T22:09:27.3580089Z [ OK ] LazyOpsTest.TestMaxPool3DNoBatch (1 ms) 2023-01-11T22:09:27.3580492Z [ RUN ] LazyOpsTest.TestAvgPool1D 2023-01-11T22:09:27.3656484Z [ OK ] LazyOpsTest.TestAvgPool1D (7 ms) 2023-01-11T22:09:27.3656884Z [ RUN ] LazyOpsTest.TestAvgPool2D 2023-01-11T22:09:27.3714129Z [ OK ] LazyOpsTest.TestAvgPool2D (5 ms) 2023-01-11T22:09:27.3714970Z [ RUN ] LazyOpsTest.TestAvgPool2DNonSquare 2023-01-11T22:09:27.3770403Z [ OK ] LazyOpsTest.TestAvgPool2DNonSquare (5 ms) 2023-01-11T22:09:27.3770831Z [ RUN ] LazyOpsTest.TestAvgPool3D 2023-01-11T22:09:27.3784993Z [ OK ] LazyOpsTest.TestAvgPool3D (1 ms) 2023-01-11T22:09:27.3785641Z [ RUN ] LazyOpsTest.TestAvgPool3DIncompleteAttributes 2023-01-11T22:09:27.3796391Z [ OK ] LazyOpsTest.TestAvgPool3DIncompleteAttributes (1 ms) 2023-01-11T22:09:27.3796885Z [ RUN ] LazyOpsTest.TestAvgPool3DNonSquare 2023-01-11T22:09:27.3808093Z [ OK ] LazyOpsTest.TestAvgPool3DNonSquare (1 ms) 2023-01-11T22:09:27.3808520Z [ RUN ] LazyOpsTest.TestAvgPool2DNoBatch 2023-01-11T22:09:27.3860831Z [ OK ] LazyOpsTest.TestAvgPool2DNoBatch (5 ms) 2023-01-11T22:09:27.3861402Z [ RUN ] LazyOpsTest.TestAvgPool3DNoBatch 2023-01-11T22:09:27.3874937Z [ OK ] LazyOpsTest.TestAvgPool3DNoBatch (1 ms) 2023-01-11T22:09:27.3875388Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool2D 2023-01-11T22:09:27.3882419Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool2D (0 ms) 2023-01-11T22:09:27.3882914Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool3D 2023-01-11T22:09:27.4082005Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool3D (19 ms) 2023-01-11T22:09:27.4082518Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool3DNoBatch 2023-01-11T22:09:27.4099323Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool3DNoBatch (1 ms) 2023-01-11T22:09:27.4099820Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool2DNoBatch 2023-01-11T22:09:27.4107468Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool2DNoBatch (0 ms) 2023-01-11T22:09:27.4107963Z [ RUN ] LazyOpsTest.TestMaxUnpool2D 2023-01-11T22:09:27.4124851Z [ OK ] LazyOpsTest.TestMaxUnpool2D (1 ms) 2023-01-11T22:09:27.4125277Z [ RUN ] LazyOpsTest.TestMaxUnpool3D 2023-01-11T22:09:27.4140421Z [ OK ] LazyOpsTest.TestMaxUnpool3D (1 ms) 2023-01-11T22:09:27.4141105Z [ RUN ] LazyOpsTest.TestNllLoss 2023-01-11T22:09:27.4141518Z /var/lib/jenkins/workspace/test/cpp/lazy/test_lazy_ops.cpp:8173: Skipped 2023-01-11T22:09:27.4141792Z 2023-01-11T22:09:27.4142060Z [ SKIPPED ] LazyOpsTest.TestNllLoss (0 ms) 2023-01-11T22:09:27.4142642Z [ RUN ] LazyOpsTest.TestNllLoss2d 2023-01-11T22:09:27.4217872Z [ OK ] LazyOpsTest.TestNllLoss2d (7 ms) 2023-01-11T22:09:27.4218414Z [ RUN ] LazyOpsTest.TestSmoothL1Loss 2023-01-11T22:09:27.4235838Z [ OK ] LazyOpsTest.TestSmoothL1Loss (1 ms) 2023-01-11T22:09:27.4236237Z [ RUN ] LazyOpsTest.TestL1Loss 2023-01-11T22:09:27.4246999Z [ OK ] LazyOpsTest.TestL1Loss (1 ms) 2023-01-11T22:09:27.4247421Z [ RUN ] LazyOpsTest.TestL1LossBackward 2023-01-11T22:09:27.4283616Z [ OK ] LazyOpsTest.TestL1LossBackward (3 ms) 2023-01-11T22:09:27.4284144Z [ RUN ] LazyOpsTest.TestMseLoss 2023-01-11T22:09:27.4286765Z [ OK ] LazyOpsTest.TestMseLoss (0 ms) 2023-01-11T22:09:27.4287255Z [ RUN ] LazyOpsTest.TestMseLossBackward 2023-01-11T22:09:27.4309216Z [ OK ] LazyOpsTest.TestMseLossBackward (2 ms) 2023-01-11T22:09:27.4309581Z [ RUN ] LazyOpsTest.TestBatchNorm1D 2023-01-11T22:09:27.4328916Z [ OK ] LazyOpsTest.TestBatchNorm1D (1 ms) 2023-01-11T22:09:27.4329407Z [ RUN ] LazyOpsTest.TestBatchNorm2D 2023-01-11T22:09:27.4348595Z [ OK ] LazyOpsTest.TestBatchNorm2D (1 ms) 2023-01-11T22:09:27.4349123Z [ RUN ] LazyOpsTest.TestDim 2023-01-11T22:09:27.4349781Z [ OK ] LazyOpsTest.TestDim (0 ms) 2023-01-11T22:09:27.4350286Z [ RUN ] LazyOpsTest.TestContiguous 2023-01-11T22:09:27.4350766Z [ OK ] LazyOpsTest.TestContiguous (0 ms) 2023-01-11T22:09:27.4351082Z [ RUN ] LazyOpsTest.TestSqueezeAll 2023-01-11T22:09:27.4352699Z [ OK ] LazyOpsTest.TestSqueezeAll (0 ms) 2023-01-11T22:09:27.4353096Z [ RUN ] LazyOpsTest.TestSqueezeAllInPlace 2023-01-11T22:09:27.4356594Z [ OK ] LazyOpsTest.TestSqueezeAllInPlace (0 ms) 2023-01-11T22:09:27.4357151Z [ RUN ] LazyOpsTest.TestSqueezeOne 2023-01-11T22:09:27.4378382Z [ OK ] LazyOpsTest.TestSqueezeOne (2 ms) 2023-01-11T22:09:27.4378750Z [ RUN ] LazyOpsTest.TestSqueezeOneInPlace 2023-01-11T22:09:27.4402887Z [ OK ] LazyOpsTest.TestSqueezeOneInPlace (2 ms) 2023-01-11T22:09:27.4403219Z [ RUN ] LazyOpsTest.TestUnsqueeze 2023-01-11T22:09:27.4417395Z [ OK ] LazyOpsTest.TestUnsqueeze (1 ms) 2023-01-11T22:09:27.4417724Z [ RUN ] LazyOpsTest.TestUnsqueezeInPlace 2023-01-11T22:09:27.4434530Z [ OK ] LazyOpsTest.TestUnsqueezeInPlace (1 ms) 2023-01-11T22:09:27.4434848Z [ RUN ] LazyOpsTest.TestMaskedFill 2023-01-11T22:09:27.4437646Z [ OK ] LazyOpsTest.TestMaskedFill (0 ms) 2023-01-11T22:09:27.4437975Z [ RUN ] LazyOpsTest.TestMaskedFillInPlace 2023-01-11T22:09:27.4441195Z [ OK ] LazyOpsTest.TestMaskedFillInPlace (0 ms) 2023-01-11T22:09:27.4441535Z [ RUN ] LazyOpsTest.TestMaskedFillBroadcast 2023-01-11T22:09:27.4444354Z [ OK ] LazyOpsTest.TestMaskedFillBroadcast (0 ms) 2023-01-11T22:09:27.4444669Z [ RUN ] LazyOpsTest.TestFill 2023-01-11T22:09:27.4448396Z [ OK ] LazyOpsTest.TestFill (0 ms) 2023-01-11T22:09:27.4448689Z [ RUN ] LazyOpsTest.TestFillWithRank0 2023-01-11T22:09:27.4450312Z [ OK ] LazyOpsTest.TestFillWithRank0 (0 ms) 2023-01-11T22:09:27.4450676Z [ RUN ] LazyOpsTest.TestPermute 2023-01-11T22:09:27.4481237Z [ OK ] LazyOpsTest.TestPermute (3 ms) 2023-01-11T22:09:27.4481654Z [ RUN ] LazyOpsTest.TestPermuteMod 2023-01-11T22:09:27.4591647Z [ OK ] LazyOpsTest.TestPermuteMod (10 ms) 2023-01-11T22:09:27.4591939Z [ RUN ] LazyOpsTest.TestFlip 2023-01-11T22:09:27.4624881Z [ OK ] LazyOpsTest.TestFlip (3 ms) 2023-01-11T22:09:27.4625305Z [ RUN ] LazyOpsTest.TestPixelShuffle 2023-01-11T22:09:27.4631669Z [ OK ] LazyOpsTest.TestPixelShuffle (0 ms) 2023-01-11T22:09:27.4632074Z [ RUN ] LazyOpsTest.TestSumToSize 2023-01-11T22:09:27.4636108Z [ OK ] LazyOpsTest.TestSumToSize (0 ms) 2023-01-11T22:09:27.4636575Z [ RUN ] LazyOpsTest.TestTransposeDims 2023-01-11T22:09:27.4640181Z [ OK ] LazyOpsTest.TestTransposeDims (0 ms) 2023-01-11T22:09:27.4640636Z [ RUN ] LazyOpsTest.TestTransposeDimsMod 2023-01-11T22:09:27.4650565Z [ OK ] LazyOpsTest.TestTransposeDimsMod (0 ms) 2023-01-11T22:09:27.4651187Z [ RUN ] LazyOpsTest.TestTransposeDimsInPlace 2023-01-11T22:09:27.4655028Z [ OK ] LazyOpsTest.TestTransposeDimsInPlace (0 ms) 2023-01-11T22:09:27.4655456Z [ RUN ] LazyOpsTest.TestSplit 2023-01-11T22:09:27.4676945Z [ OK ] LazyOpsTest.TestSplit (2 ms) 2023-01-11T22:09:27.4677373Z [ RUN ] LazyOpsTest.TestSplitEmpty 2023-01-11T22:09:27.4678096Z [ OK ] LazyOpsTest.TestSplitEmpty (0 ms) 2023-01-11T22:09:27.4678430Z [ RUN ] LazyOpsTest.TestSplitWithSizes 2023-01-11T22:09:27.4691905Z [ OK ] LazyOpsTest.TestSplitWithSizes (1 ms) 2023-01-11T22:09:27.4692329Z [ RUN ] LazyOpsTest.TestCrossImplicitDim 2023-01-11T22:09:27.4695177Z [ OK ] LazyOpsTest.TestCrossImplicitDim (0 ms) 2023-01-11T22:09:27.4695727Z [ RUN ] LazyOpsTest.TestCrossExplicitDim 2023-01-11T22:09:27.4698851Z [ OK ] LazyOpsTest.TestCrossExplicitDim (0 ms) 2023-01-11T22:09:27.4699512Z [ RUN ] LazyOpsTest.TestCrossZeroDim 2023-01-11T22:09:27.4699972Z [ OK ] LazyOpsTest.TestCrossZeroDim (0 ms) 2023-01-11T22:09:27.4700349Z [ RUN ] LazyOpsTest.TestTriu 2023-01-11T22:09:27.4728561Z [ OK ] LazyOpsTest.TestTriu (2 ms) 2023-01-11T22:09:27.4729245Z [ RUN ] LazyOpsTest.TestTriuNonSquare 2023-01-11T22:09:27.4756733Z [ OK ] LazyOpsTest.TestTriuNonSquare (2 ms) 2023-01-11T22:09:27.4757277Z [ RUN ] LazyOpsTest.TestTriuBatch 2023-01-11T22:09:27.4785038Z [ OK ] LazyOpsTest.TestTriuBatch (2 ms) 2023-01-11T22:09:27.4785572Z [ RUN ] LazyOpsTest.TestTril 2023-01-11T22:09:27.4813141Z [ OK ] LazyOpsTest.TestTril (2 ms) 2023-01-11T22:09:27.4813521Z [ RUN ] LazyOpsTest.TestTrilNonSquare 2023-01-11T22:09:27.4841647Z [ OK ] LazyOpsTest.TestTrilNonSquare (2 ms) 2023-01-11T22:09:27.4842099Z [ RUN ] LazyOpsTest.TestTrilBatch 2023-01-11T22:09:27.4869974Z [ OK ] LazyOpsTest.TestTrilBatch (2 ms) 2023-01-11T22:09:27.4870397Z [ RUN ] LazyOpsTest.TestTriuInPlace 2023-01-11T22:09:27.4906159Z [ OK ] LazyOpsTest.TestTriuInPlace (3 ms) 2023-01-11T22:09:27.4906576Z [ RUN ] LazyOpsTest.TestTrilInPlace 2023-01-11T22:09:27.4941697Z [ OK ] LazyOpsTest.TestTrilInPlace (3 ms) 2023-01-11T22:09:27.4942098Z [ RUN ] LazyOpsTest.TestTrace 2023-01-11T22:09:27.4944532Z [ OK ] LazyOpsTest.TestTrace (0 ms) 2023-01-11T22:09:27.4944918Z [ RUN ] LazyOpsTest.TestTraceWide 2023-01-11T22:09:27.4947203Z [ OK ] LazyOpsTest.TestTraceWide (0 ms) 2023-01-11T22:09:27.4947540Z [ RUN ] LazyOpsTest.TestTraceNarrow 2023-01-11T22:09:27.4949724Z [ OK ] LazyOpsTest.TestTraceNarrow (0 ms) 2023-01-11T22:09:27.4950130Z [ RUN ] LazyOpsTest.TestDiagRank1 2023-01-11T22:09:27.5136856Z [ OK ] LazyOpsTest.TestDiagRank1 (18 ms) 2023-01-11T22:09:27.5137222Z [ RUN ] LazyOpsTest.TestDiagRank2 2023-01-11T22:09:27.5175719Z [ OK ] LazyOpsTest.TestDiagRank2 (3 ms) 2023-01-11T22:09:27.5176273Z [ RUN ] LazyOpsTest.TestDiagFlat 2023-01-11T22:09:27.5705001Z [ OK ] LazyOpsTest.TestDiagFlat (52 ms) 2023-01-11T22:09:27.5705439Z [ RUN ] LazyOpsTest.TestDiagonal 2023-01-11T22:09:27.5733875Z [ OK ] LazyOpsTest.TestDiagonal (3 ms) 2023-01-11T22:09:27.5734358Z [ RUN ] LazyOpsTest.TestDiagonalUpdate 2023-01-11T22:09:27.5828717Z [ OK ] LazyOpsTest.TestDiagonalUpdate (9 ms) 2023-01-11T22:09:27.5829094Z [ RUN ] LazyOpsTest.TestDiagonalNonSquare 2023-01-11T22:09:27.5856845Z [ OK ] LazyOpsTest.TestDiagonalNonSquare (2 ms) 2023-01-11T22:09:27.5857203Z [ RUN ] LazyOpsTest.TestDiagonalBatch 2023-01-11T22:09:27.5884833Z [ OK ] LazyOpsTest.TestDiagonalBatch (2 ms) 2023-01-11T22:09:27.5885205Z [ RUN ] LazyOpsTest.TestFlatten 2023-01-11T22:09:27.5951941Z [ OK ] LazyOpsTest.TestFlatten (6 ms) 2023-01-11T22:09:27.5952254Z [ RUN ] LazyOpsTest.TestLogicalAnd 2023-01-11T22:09:27.5971101Z [ OK ] LazyOpsTest.TestLogicalAnd (1 ms) 2023-01-11T22:09:27.5971408Z [ RUN ] LazyOpsTest.TestBitwiseAnd 2023-01-11T22:09:27.5973965Z [ OK ] LazyOpsTest.TestBitwiseAnd (0 ms) 2023-01-11T22:09:27.5974310Z [ RUN ] LazyOpsTest.TestBitwiseAndInPlace 2023-01-11T22:09:27.5977041Z [ OK ] LazyOpsTest.TestBitwiseAndInPlace (0 ms) 2023-01-11T22:09:27.5977385Z [ RUN ] LazyOpsTest.TestBitwiseAndScalar 2023-01-11T22:09:27.5980024Z [ OK ] LazyOpsTest.TestBitwiseAndScalar (0 ms) 2023-01-11T22:09:27.5980398Z [ RUN ] LazyOpsTest.TestBitwiseAndScalarInPlace 2023-01-11T22:09:27.5983528Z [ OK ] LazyOpsTest.TestBitwiseAndScalarInPlace (0 ms) 2023-01-11T22:09:27.5983908Z [ RUN ] LazyOpsTest.TestBitwiseAndPromotion 2023-01-11T22:09:27.5988303Z [ OK ] LazyOpsTest.TestBitwiseAndPromotion (0 ms) 2023-01-11T22:09:27.5988647Z [ RUN ] LazyOpsTest.TestBitwiseOr 2023-01-11T22:09:27.5991270Z [ OK ] LazyOpsTest.TestBitwiseOr (0 ms) 2023-01-11T22:09:27.5991602Z [ RUN ] LazyOpsTest.TestBitwiseOrInPlace 2023-01-11T22:09:27.5994269Z [ OK ] LazyOpsTest.TestBitwiseOrInPlace (0 ms) 2023-01-11T22:09:27.5994595Z [ RUN ] LazyOpsTest.TestBitwiseOrScalar 2023-01-11T22:09:27.5997024Z [ OK ] LazyOpsTest.TestBitwiseOrScalar (0 ms) 2023-01-11T22:09:27.5997388Z [ RUN ] LazyOpsTest.TestBitwiseOrScalarInPlace 2023-01-11T22:09:27.6000248Z [ OK ] LazyOpsTest.TestBitwiseOrScalarInPlace (0 ms) 2023-01-11T22:09:27.6000613Z [ RUN ] LazyOpsTest.TestBitwiseXor 2023-01-11T22:09:27.6001262Z [ OK ] LazyOpsTest.TestBitwiseXor (0 ms) 2023-01-11T22:09:27.6001628Z [ RUN ] LazyOpsTest.TestBitwiseXorInPlace 2023-01-11T22:09:27.6002507Z [ OK ] LazyOpsTest.TestBitwiseXorInPlace (0 ms) 2023-01-11T22:09:27.6003005Z [ RUN ] LazyOpsTest.TestBitwiseXorScalar 2023-01-11T22:09:27.6003509Z [ OK ] LazyOpsTest.TestBitwiseXorScalar (0 ms) 2023-01-11T22:09:27.6004024Z [ RUN ] LazyOpsTest.TestBitwiseXorScalarInPlace 2023-01-11T22:09:27.6004601Z [ OK ] LazyOpsTest.TestBitwiseXorScalarInPlace (0 ms) 2023-01-11T22:09:27.6004999Z [ RUN ] LazyOpsTest.TestLshift 2023-01-11T22:09:27.6005910Z [ OK ] LazyOpsTest.TestLshift (0 ms) 2023-01-11T22:09:27.6006233Z [ RUN ] LazyOpsTest.TestLshiftInPlace 2023-01-11T22:09:27.6007773Z [ OK ] LazyOpsTest.TestLshiftInPlace (0 ms) 2023-01-11T22:09:27.6008279Z [ RUN ] LazyOpsTest.TestLshiftScalar 2023-01-11T22:09:27.6009016Z [ OK ] LazyOpsTest.TestLshiftScalar (0 ms) 2023-01-11T22:09:27.6009665Z [ RUN ] LazyOpsTest.TestLshiftScalarInPlace 2023-01-11T22:09:27.6010754Z [ OK ] LazyOpsTest.TestLshiftScalarInPlace (0 ms) 2023-01-11T22:09:27.6011350Z [ RUN ] LazyOpsTest.TestRshift 2023-01-11T22:09:27.6012026Z [ OK ] LazyOpsTest.TestRshift (0 ms) 2023-01-11T22:09:27.6012616Z [ RUN ] LazyOpsTest.TestRshiftInPlace 2023-01-11T22:09:27.6013902Z [ OK ] LazyOpsTest.TestRshiftInPlace (0 ms) 2023-01-11T22:09:27.6014495Z [ RUN ] LazyOpsTest.TestRshiftScalar 2023-01-11T22:09:27.6015189Z [ OK ] LazyOpsTest.TestRshiftScalar (0 ms) 2023-01-11T22:09:27.6015808Z [ RUN ] LazyOpsTest.TestRshiftScalarInPlace 2023-01-11T22:09:27.6016608Z [ OK ] LazyOpsTest.TestRshiftScalarInPlace (0 ms) 2023-01-11T22:09:27.6017344Z [ RUN ] LazyOpsTest.TestMeshgrid 2023-01-11T22:09:27.6017723Z [W TensorShape.cpp:3452] Warning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (function operator()) 2023-01-11T22:09:27.6027369Z [ OK ] LazyOpsTest.TestMeshgrid (1 ms) 2023-01-11T22:09:27.6027948Z [ RUN ] LazyOpsTest.TestConstantPad 2023-01-11T22:09:27.6031775Z [ OK ] LazyOpsTest.TestConstantPad (0 ms) 2023-01-11T22:09:27.6032426Z [ RUN ] LazyOpsTest.TestConstantPadIncomplete 2023-01-11T22:09:27.6036420Z [ OK ] LazyOpsTest.TestConstantPadIncomplete (0 ms) 2023-01-11T22:09:27.6037176Z [ RUN ] LazyOpsTest.TestReflectionPad2dRank3 2023-01-11T22:09:27.6037956Z [ OK ] LazyOpsTest.TestReflectionPad2dRank3 (0 ms) 2023-01-11T22:09:27.6038629Z [ RUN ] LazyOpsTest.TestReflectionPad2dRank4 2023-01-11T22:09:27.6039861Z [ OK ] LazyOpsTest.TestReflectionPad2dRank4 (0 ms) 2023-01-11T22:09:27.6040351Z [ RUN ] LazyOpsTest.TestReflectionPad2dBackward 2023-01-11T22:09:27.6049938Z [ OK ] LazyOpsTest.TestReflectionPad2dBackward (0 ms) 2023-01-11T22:09:27.6050404Z [ RUN ] LazyOpsTest.TestReplicationPad1d 2023-01-11T22:09:27.6051986Z [ OK ] LazyOpsTest.TestReplicationPad1d (0 ms) 2023-01-11T22:09:27.6053279Z [ RUN ] LazyOpsTest.TestReplicationPad1dZeroPad 2023-01-11T22:09:27.6053771Z [ OK ] LazyOpsTest.TestReplicationPad1dZeroPad (0 ms) 2023-01-11T22:09:27.6054244Z [ RUN ] LazyOpsTest.TestReplicationPad1dBackward 2023-01-11T22:09:27.6060073Z [ OK ] LazyOpsTest.TestReplicationPad1dBackward (0 ms) 2023-01-11T22:09:27.6060601Z [ RUN ] LazyOpsTest.TestReplicationPad2d 2023-01-11T22:09:27.6062427Z [ OK ] LazyOpsTest.TestReplicationPad2d (0 ms) 2023-01-11T22:09:27.6063257Z [ RUN ] LazyOpsTest.TestReplicationPad2dZeroPad 2023-01-11T22:09:27.6063968Z [ OK ] LazyOpsTest.TestReplicationPad2dZeroPad (0 ms) 2023-01-11T22:09:27.6064660Z [ RUN ] LazyOpsTest.TestReplicationPad2dBackward 2023-01-11T22:09:27.6070958Z [ OK ] LazyOpsTest.TestReplicationPad2dBackward (0 ms) 2023-01-11T22:09:27.6071475Z [ RUN ] LazyOpsTest.TestAsStrided 2023-01-11T22:09:27.6081823Z [ OK ] LazyOpsTest.TestAsStrided (1 ms) 2023-01-11T22:09:27.6082221Z [ RUN ] LazyOpsTest.TestAsStridedInPlace 2023-01-11T22:09:27.6097729Z [ OK ] LazyOpsTest.TestAsStridedInPlace (1 ms) 2023-01-11T22:09:27.6098189Z [ RUN ] LazyOpsTest.TestAsStridedWithOffset 2023-01-11T22:09:27.6103197Z [ OK ] LazyOpsTest.TestAsStridedWithOffset (0 ms) 2023-01-11T22:09:27.6103767Z [ RUN ] LazyOpsTest.TestAsStridedWithInplaceCopy 2023-01-11T22:09:27.6111893Z [ OK ] LazyOpsTest.TestAsStridedWithInplaceCopy (0 ms) 2023-01-11T22:09:27.6112352Z [ RUN ] LazyOpsTest.TestEmptyStrided 2023-01-11T22:09:27.6112777Z [ OK ] LazyOpsTest.TestEmptyStrided (0 ms) 2023-01-11T22:09:27.6113186Z [ RUN ] LazyOpsTest.TestAvgPool2DBackward 2023-01-11T22:09:27.6270934Z [ OK ] LazyOpsTest.TestAvgPool2DBackward (15 ms) 2023-01-11T22:09:27.6271582Z [ RUN ] LazyOpsTest.TestAvgPool3DBackward 2023-01-11T22:09:27.6369013Z [ OK ] LazyOpsTest.TestAvgPool3DBackward (9 ms) 2023-01-11T22:09:27.6369707Z [ RUN ] LazyOpsTest.TestAvgPool2DNoBatchBackward 2023-01-11T22:09:27.6560451Z [ OK ] LazyOpsTest.TestAvgPool2DNoBatchBackward (19 ms) 2023-01-11T22:09:27.6560967Z [ RUN ] LazyOpsTest.TestAvgPool3DNoBatchBackward 2023-01-11T22:09:27.6666731Z [ OK ] LazyOpsTest.TestAvgPool3DNoBatchBackward (10 ms) 2023-01-11T22:09:27.6667185Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool3DNoBatchBackward 2023-01-11T22:09:27.6706321Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool3DNoBatchBackward (3 ms) 2023-01-11T22:09:27.6706851Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool3DBackward 2023-01-11T22:09:27.6765188Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool3DBackward (5 ms) 2023-01-11T22:09:27.6765778Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool2DBackward 2023-01-11T22:09:27.6790210Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool2DBackward (2 ms) 2023-01-11T22:09:27.6790738Z [ RUN ] LazyOpsTest.TestAdaptiveAvgPool2DNoBatchBackward 2023-01-11T22:09:27.6814152Z [ OK ] LazyOpsTest.TestAdaptiveAvgPool2DNoBatchBackward (2 ms) 2023-01-11T22:09:27.6814590Z [ RUN ] LazyOpsTest.TestConv2D 2023-01-11T22:09:27.7923465Z [ OK ] LazyOpsTest.TestConv2D (110 ms) 2023-01-11T22:09:27.7924502Z [ RUN ] LazyOpsTest.TestConv2DBackward 2023-01-11T22:09:28.2066894Z [ OK ] LazyOpsTest.TestConv2DBackward (414 ms) 2023-01-11T22:09:28.2067756Z [ RUN ] LazyOpsTest.TestTransposedConv2DBackward 2023-01-11T22:09:28.5081052Z [ OK ] LazyOpsTest.TestTransposedConv2DBackward (301 ms) 2023-01-11T22:09:28.5081937Z [ RUN ] LazyOpsTest.TestConv3DBackward 2023-01-11T22:09:28.7895438Z [ OK ] LazyOpsTest.TestConv3DBackward (281 ms) 2023-01-11T22:09:28.7896381Z [ RUN ] LazyOpsTest.TestTransposedConv3DBackward 2023-01-11T22:09:29.4320422Z [ OK ] LazyOpsTest.TestTransposedConv3DBackward (642 ms) 2023-01-11T22:09:29.4320926Z [ RUN ] LazyOpsTest.TestMaxPool2DBackward 2023-01-11T22:09:29.4419990Z [ OK ] LazyOpsTest.TestMaxPool2DBackward (10 ms) 2023-01-11T22:09:29.4420445Z [ RUN ] LazyOpsTest.TestMaxPool3DBackward 2023-01-11T22:09:29.4474085Z [ OK ] LazyOpsTest.TestMaxPool3DBackward (5 ms) 2023-01-11T22:09:29.4474539Z [ RUN ] LazyOpsTest.TestMaxPool2DNoBatchBackward 2023-01-11T22:09:29.4572606Z [ OK ] LazyOpsTest.TestMaxPool2DNoBatchBackward (9 ms) 2023-01-11T22:09:29.4573096Z [ RUN ] LazyOpsTest.TestMaxPool3DNoBatchBackward 2023-01-11T22:09:29.4626041Z [ OK ] LazyOpsTest.TestMaxPool3DNoBatchBackward (5 ms) 2023-01-11T22:09:29.4626551Z [ RUN ] LazyOpsTest.TestMaxUnpool2DBackward 2023-01-11T22:09:29.4822662Z [ OK ] LazyOpsTest.TestMaxUnpool2DBackward (19 ms) 2023-01-11T22:09:29.4823147Z [ RUN ] LazyOpsTest.TestMaxUnpool3DBackward 2023-01-11T22:09:29.4972654Z [ OK ] LazyOpsTest.TestMaxUnpool3DBackward (15 ms) 2023-01-11T22:09:29.4973110Z [ RUN ] LazyOpsTest.TestTanhBackward 2023-01-11T22:09:29.4983219Z [ OK ] LazyOpsTest.TestTanhBackward (1 ms) 2023-01-11T22:09:29.4983676Z [ RUN ] LazyOpsTest.TestSigmoidBackward 2023-01-11T22:09:29.4993539Z [ OK ] LazyOpsTest.TestSigmoidBackward (1 ms) 2023-01-11T22:09:29.4994006Z [ RUN ] LazyOpsTest.TestLogSigmoidBackward 2023-01-11T22:09:29.5003693Z [ OK ] LazyOpsTest.TestLogSigmoidBackward (1 ms) 2023-01-11T22:09:29.5004134Z [ RUN ] LazyOpsTest.TestLogSoftmaxBackward 2023-01-11T22:09:29.5090901Z [ OK ] LazyOpsTest.TestLogSoftmaxBackward (8 ms) 2023-01-11T22:09:29.5091338Z [ RUN ] LazyOpsTest.TestSoftmaxBackward 2023-01-11T22:09:29.5175827Z [ OK ] LazyOpsTest.TestSoftmaxBackward (8 ms) 2023-01-11T22:09:29.5176252Z [ RUN ] LazyOpsTest.TestSoftplusBackward 2023-01-11T22:09:29.5186794Z [ OK ] LazyOpsTest.TestSoftplusBackward (1 ms) 2023-01-11T22:09:29.5187208Z [ RUN ] LazyOpsTest.TestReluBackward 2023-01-11T22:09:29.5196368Z [ OK ] LazyOpsTest.TestReluBackward (0 ms) 2023-01-11T22:09:29.5196791Z [ RUN ] LazyOpsTest.TestRreluBackward 2023-01-11T22:09:29.5207333Z [ OK ] LazyOpsTest.TestRreluBackward (1 ms) 2023-01-11T22:09:29.5207896Z [ RUN ] LazyOpsTest.TestHardshrinkBackward 2023-01-11T22:09:29.5217245Z [ OK ] LazyOpsTest.TestHardshrinkBackward (0 ms) 2023-01-11T22:09:29.5217595Z [ RUN ] LazyOpsTest.TestSoftshrinkBackward 2023-01-11T22:09:29.5226692Z [ OK ] LazyOpsTest.TestSoftshrinkBackward (0 ms) 2023-01-11T22:09:29.5227029Z [ RUN ] LazyOpsTest.TestHardtanhBackward 2023-01-11T22:09:29.5232094Z [ OK ] LazyOpsTest.TestHardtanhBackward (0 ms) 2023-01-11T22:09:29.5232418Z [ RUN ] LazyOpsTest.TestEluBackward 2023-01-11T22:09:29.5242522Z [ OK ] LazyOpsTest.TestEluBackward (1 ms) 2023-01-11T22:09:29.5242857Z [ RUN ] LazyOpsTest.TestGeluBackward 2023-01-11T22:09:29.5259706Z [ OK ] LazyOpsTest.TestGeluBackward (1 ms) 2023-01-11T22:09:29.5260358Z [ RUN ] LazyOpsTest.TestLeakyReluBackward 2023-01-11T22:09:29.5270247Z [ OK ] LazyOpsTest.TestLeakyReluBackward (1 ms) 2023-01-11T22:09:29.5270741Z [ RUN ] LazyOpsTest.TestTransposeBackward 2023-01-11T22:09:29.5279155Z [ OK ] LazyOpsTest.TestTransposeBackward (0 ms) 2023-01-11T22:09:29.5279596Z [ RUN ] LazyOpsTest.TestAddMatMulBackward 2023-01-11T22:09:29.5348072Z [ OK ] LazyOpsTest.TestAddMatMulBackward (6 ms) 2023-01-11T22:09:29.5348640Z [ RUN ] LazyOpsTest.TestBinaryCrossEntropyBackward 2023-01-11T22:09:29.5413100Z [ OK ] LazyOpsTest.TestBinaryCrossEntropyBackward (6 ms) 2023-01-11T22:09:29.5413766Z [ RUN ] LazyOpsTest.TestNllLossBackward 2023-01-11T22:09:29.5414102Z /var/lib/jenkins/workspace/test/cpp/lazy/test_lazy_ops.cpp:10954: Skipped 2023-01-11T22:09:29.5414275Z 2023-01-11T22:09:29.5414479Z [ SKIPPED ] LazyOpsTest.TestNllLossBackward (0 ms) 2023-01-11T22:09:29.5414817Z [ RUN ] LazyOpsTest.TestNllLoss2dBackward 2023-01-11T22:09:29.5698636Z [ OK ] LazyOpsTest.TestNllLoss2dBackward (28 ms) 2023-01-11T22:09:29.5699124Z [ RUN ] LazyOpsTest.TestSmoothL1LossBackward 2023-01-11T22:09:29.5759509Z [ OK ] LazyOpsTest.TestSmoothL1LossBackward (6 ms) 2023-01-11T22:09:29.5759848Z [ RUN ] LazyOpsTest.TestViewBackward 2023-01-11T22:09:29.5781793Z [ OK ] LazyOpsTest.TestViewBackward (2 ms) 2023-01-11T22:09:29.5782191Z [ RUN ] LazyOpsTest.TestBatchNorm2DBackward 2023-01-11T22:09:29.5835141Z [ OK ] LazyOpsTest.TestBatchNorm2DBackward (5 ms) 2023-01-11T22:09:29.5835641Z [ RUN ] LazyOpsTest.TestBatchNorm3DBackward 2023-01-11T22:09:29.5887259Z [ OK ] LazyOpsTest.TestBatchNorm3DBackward (5 ms) 2023-01-11T22:09:29.5887753Z [ RUN ] LazyOpsTest.TestBCEWithLogitsBackward 2023-01-11T22:09:29.6251576Z [ OK ] LazyOpsTest.TestBCEWithLogitsBackward (36 ms) 2023-01-11T22:09:29.6252048Z [ RUN ] LazyOpsTest.TestKlDivBackward 2023-01-11T22:09:29.6329200Z [ OK ] LazyOpsTest.TestKlDivBackward (7 ms) 2023-01-11T22:09:29.6329547Z [ RUN ] LazyOpsTest.TestEmbeddingBackward 2023-01-11T22:09:29.7112623Z [ OK ] LazyOpsTest.TestEmbeddingBackward (78 ms) 2023-01-11T22:09:29.7113098Z [ RUN ] LazyOpsTest.TestAmpForeachNonFiniteCheckAndUnscale 2023-01-11T22:09:29.7113465Z /var/lib/jenkins/workspace/test/cpp/lazy/test_lazy_ops.cpp:11351: Skipped 2023-01-11T22:09:29.7113636Z 2023-01-11T22:09:29.7113900Z [ SKIPPED ] LazyOpsTest.TestAmpForeachNonFiniteCheckAndUnscale (0 ms) 2023-01-11T22:09:29.7114430Z [ RUN ] LazyOpsTest.TestAmpUpdateScale 2023-01-11T22:09:29.7114960Z /var/lib/jenkins/workspace/test/cpp/lazy/test_lazy_ops.cpp:11400: Skipped 2023-01-11T22:09:29.7115173Z 2023-01-11T22:09:29.7115377Z [ SKIPPED ] LazyOpsTest.TestAmpUpdateScale (0 ms) 2023-01-11T22:09:29.7115744Z [ RUN ] LazyOpsTest.TestEarlySyncLiveTensors 2023-01-11T22:09:29.7116355Z [ OK ] LazyOpsTest.TestEarlySyncLiveTensors (0 ms) 2023-01-11T22:09:29.7116669Z [ RUN ] LazyOpsTest.TestLerp 2023-01-11T22:09:29.7116964Z [ OK ] LazyOpsTest.TestLerp (0 ms) 2023-01-11T22:09:29.7117311Z [ RUN ] LazyOpsTest.TestLerpScalar 2023-01-11T22:09:29.7117697Z [ OK ] LazyOpsTest.TestLerpScalar (0 ms) 2023-01-11T22:09:29.7118181Z [ RUN ] LazyOpsTest.TestLerpInplace 2023-01-11T22:09:29.7118501Z [ OK ] LazyOpsTest.TestLerpInplace (0 ms) 2023-01-11T22:09:29.7118829Z [ RUN ] LazyOpsTest.TestLerpScalarInplace 2023-01-11T22:09:29.7120281Z [ OK ] LazyOpsTest.TestLerpScalarInplace (0 ms) 2023-01-11T22:09:29.7120587Z [ RUN ] LazyOpsTest.TestLerpOut 2023-01-11T22:09:29.7122334Z [ OK ] LazyOpsTest.TestLerpOut (0 ms) 2023-01-11T22:09:29.7122723Z [ RUN ] LazyOpsTest.TestLerpScalarOut 2023-01-11T22:09:29.7124040Z [ OK ] LazyOpsTest.TestLerpScalarOut (0 ms) 2023-01-11T22:09:29.7124506Z [ RUN ] LazyOpsTest.IsAliasOf 2023-01-11T22:09:29.7125049Z [ OK ] LazyOpsTest.IsAliasOf (0 ms) 2023-01-11T22:09:29.7125523Z [----------] 574 tests from LazyOpsTest (3543 ms total) 2023-01-11T22:09:29.7125687Z 2023-01-11T22:09:29.7125843Z [----------] Global test environment tear-down 2023-01-11T22:09:29.7184511Z [==========] 611 tests from 10 test suites ran. (3558 ms total) 2023-01-11T22:09:29.7184843Z [ PASSED ] 607 tests. 2023-01-11T22:09:29.7185113Z [ SKIPPED ] 4 tests, listed below: 2023-01-11T22:09:29.7185383Z [ SKIPPED ] LazyOpsTest.TestNllLoss 2023-01-11T22:09:29.7185697Z [ SKIPPED ] LazyOpsTest.TestNllLossBackward 2023-01-11T22:09:29.7186095Z [ SKIPPED ] LazyOpsTest.TestAmpForeachNonFiniteCheckAndUnscale 2023-01-11T22:09:29.7186459Z [ SKIPPED ] LazyOpsTest.TestAmpUpdateScale 2023-01-11T22:09:29.8057665Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *-tsan* ]] 2023-01-11T22:09:29.8057959Z + python test/cpp/jit/tests_setup.py shutdown 2023-01-11T22:09:31.1415499Z + wait 2023-01-11T22:09:31.1415904Z + OMP_NUM_THREADS=2 2023-01-11T22:09:31.1416323Z + TORCH_CPP_TEST_MNIST_PATH=test/cpp/api/mnist 2023-01-11T22:09:31.1416962Z + /opt/conda/lib/python3.10/site-packages/torch/bin/test_api '--gtest_filter=-IMethodTest.*' --gtest_output=xml:test/test-reports/cpp-unittest/test_libtorch/test_api.xml 2023-01-11T22:09:31.5326457Z CUDA not available. Disabling CUDA and MultiCUDA tests 2023-01-11T22:09:31.5334194Z Note: Google Test filter = -IMethodTest.*:*_CUDA:*_MultiCUDA 2023-01-11T22:09:31.5334807Z [==========] Running 992 tests from 48 test suites. 2023-01-11T22:09:31.5335141Z [----------] Global test environment set-up. 2023-01-11T22:09:31.5335459Z [----------] 9 tests from AutogradAPITests 2023-01-11T22:09:31.5335768Z [ RUN ] AutogradAPITests.BackwardSimpleTest 2023-01-11T22:09:31.5346527Z [ OK ] AutogradAPITests.BackwardSimpleTest (1 ms) 2023-01-11T22:09:31.5347138Z [ RUN ] AutogradAPITests.BackwardTest 2023-01-11T22:09:31.5347939Z [W engine.cpp:1134] Warning: Using backward() with create_graph=True will create a reference cycle between the parameter and its gradient which can cause a memory leak. We recommend using autograd.grad when creating the graph to avoid this. If you have to use this function, make sure to reset the .grad fields of your parameters to None after use to break the cycle and avoid the leak. (function operator()) 2023-01-11T22:09:31.5350215Z [ OK ] AutogradAPITests.BackwardTest (0 ms) 2023-01-11T22:09:31.5350796Z [ RUN ] AutogradAPITests.GradSimpleTest 2023-01-11T22:09:31.5352448Z [ OK ] AutogradAPITests.GradSimpleTest (0 ms) 2023-01-11T22:09:31.5353024Z [ RUN ] AutogradAPITests.GradTest 2023-01-11T22:09:31.5368565Z [ OK ] AutogradAPITests.GradTest (1 ms) 2023-01-11T22:09:31.5369507Z [ RUN ] AutogradAPITests.GradNonLeafTest 2023-01-11T22:09:31.5372117Z [W TensorBody.h:485] Warning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (function grad) 2023-01-11T22:09:31.5374239Z [W TensorBody.h:485] Warning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (function grad) 2023-01-11T22:09:31.5375579Z [W TensorBody.h:485] Warning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (function grad) 2023-01-11T22:09:31.5377022Z [W TensorBody.h:485] Warning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (function grad) 2023-01-11T22:09:31.5377746Z [ OK ] AutogradAPITests.GradNonLeafTest (0 ms) 2023-01-11T22:09:31.5378101Z [ RUN ] AutogradAPITests.GradUnreachableTest 2023-01-11T22:09:31.5438633Z [ OK ] AutogradAPITests.GradUnreachableTest (6 ms) 2023-01-11T22:09:31.5438976Z [ RUN ] AutogradAPITests.EmptyInput 2023-01-11T22:09:31.5465839Z [ OK ] AutogradAPITests.EmptyInput (2 ms) 2023-01-11T22:09:31.5466223Z [ RUN ] AutogradAPITests.RetainGrad 2023-01-11T22:09:31.5470472Z [ OK ] AutogradAPITests.RetainGrad (0 ms) 2023-01-11T22:09:31.5470861Z [ RUN ] AutogradAPITests.AnomalyMode 2023-01-11T22:09:31.5471253Z [W anomaly_mode.cpp:27] Warning: This mode should be enabled only for debugging as the different tests will slow down your program execution. (function operator()) 2023-01-11T22:09:31.7079919Z [ OK ] AutogradAPITests.AnomalyMode (160 ms) 2023-01-11T22:09:31.7080315Z [----------] 9 tests from AutogradAPITests (174 ms total) 2023-01-11T22:09:31.7080491Z 2023-01-11T22:09:31.7080645Z [----------] 33 tests from CustomAutogradTest 2023-01-11T22:09:31.7081013Z [ RUN ] CustomAutogradTest.GradUnreachableDiscoveryTest 2023-01-11T22:09:31.7095294Z [ OK ] CustomAutogradTest.GradUnreachableDiscoveryTest (1 ms) 2023-01-11T22:09:31.7095681Z [ RUN ] CustomAutogradTest.CustomFunction 2023-01-11T22:09:31.7098256Z [ OK ] CustomAutogradTest.CustomFunction (0 ms) 2023-01-11T22:09:31.7098700Z [ RUN ] CustomAutogradTest.CustomFunctionWithTensorList 2023-01-11T22:09:31.7100481Z [ OK ] CustomAutogradTest.CustomFunctionWithTensorList (0 ms) 2023-01-11T22:09:31.7100968Z [ RUN ] CustomAutogradTest.GraphTaskTrimEdges 2023-01-11T22:09:31.7104303Z [ OK ] CustomAutogradTest.GraphTaskTrimEdges (0 ms) 2023-01-11T22:09:31.7104932Z [ RUN ] CustomAutogradTest.FunctionReturnsInput 2023-01-11T22:09:31.7105584Z [ OK ] CustomAutogradTest.FunctionReturnsInput (0 ms) 2023-01-11T22:09:31.7105960Z [ RUN ] CustomAutogradTest.FunctionReturnsUndefined 2023-01-11T22:09:31.7108375Z [ OK ] CustomAutogradTest.FunctionReturnsUndefined (0 ms) 2023-01-11T22:09:31.7108800Z [ RUN ] CustomAutogradTest.MaterializeGrads 2023-01-11T22:09:31.7109253Z [ OK ] CustomAutogradTest.MaterializeGrads (0 ms) 2023-01-11T22:09:31.7109795Z [ RUN ] CustomAutogradTest.DontMaterializeGrads 2023-01-11T22:09:31.7110625Z [ OK ] CustomAutogradTest.DontMaterializeGrads (0 ms) 2023-01-11T22:09:31.7111038Z [ RUN ] CustomAutogradTest.NoGradCustomFunction 2023-01-11T22:09:31.7111570Z [ OK ] CustomAutogradTest.NoGradCustomFunction (0 ms) 2023-01-11T22:09:31.7111907Z [ RUN ] CustomAutogradTest.MarkDirty 2023-01-11T22:09:31.7124435Z [ OK ] CustomAutogradTest.MarkDirty (1 ms) 2023-01-11T22:09:31.7124921Z [ RUN ] CustomAutogradTest.MarkNonDifferentiable 2023-01-11T22:09:31.7125782Z [ OK ] CustomAutogradTest.MarkNonDifferentiable (0 ms) 2023-01-11T22:09:31.7126246Z [ RUN ] CustomAutogradTest.MarkNonDifferentiableMixed 2023-01-11T22:09:31.7128591Z [ OK ] CustomAutogradTest.MarkNonDifferentiableMixed (0 ms) 2023-01-11T22:09:31.7129263Z [ RUN ] CustomAutogradTest.MarkNonDifferentiableNone 2023-01-11T22:09:31.7129732Z [ OK ] CustomAutogradTest.MarkNonDifferentiableNone (0 ms) 2023-01-11T22:09:31.7130124Z [ RUN ] CustomAutogradTest.ReturnLeafInplace 2023-01-11T22:09:31.7131914Z [ OK ] CustomAutogradTest.ReturnLeafInplace (0 ms) 2023-01-11T22:09:31.7132388Z [ RUN ] CustomAutogradTest.ReturnDuplicateInplace 2023-01-11T22:09:31.7176066Z [ OK ] CustomAutogradTest.ReturnDuplicateInplace (4 ms) 2023-01-11T22:09:31.7176740Z [ RUN ] CustomAutogradTest.ReturnDuplicate 2023-01-11T22:09:31.7177205Z [ OK ] CustomAutogradTest.ReturnDuplicate (0 ms) 2023-01-11T22:09:31.7177621Z [ RUN ] CustomAutogradTest.SaveEmptyForBackward 2023-01-11T22:09:31.7178458Z [ OK ] CustomAutogradTest.SaveEmptyForBackward (0 ms) 2023-01-11T22:09:31.7178939Z [ RUN ] CustomAutogradTest.InvalidGradients 2023-01-11T22:09:31.7237679Z [ OK ] CustomAutogradTest.InvalidGradients (5 ms) 2023-01-11T22:09:31.7238414Z [ RUN ] CustomAutogradTest.NoGradInput 2023-01-11T22:09:31.7238882Z [ OK ] CustomAutogradTest.NoGradInput (0 ms) 2023-01-11T22:09:31.7239393Z [ RUN ] CustomAutogradTest.TooManyGrads 2023-01-11T22:09:31.7239993Z [ OK ] CustomAutogradTest.TooManyGrads (0 ms) 2023-01-11T22:09:31.7240465Z [ RUN ] CustomAutogradTest.DepNoGrad 2023-01-11T22:09:31.7240902Z [ OK ] CustomAutogradTest.DepNoGrad (0 ms) 2023-01-11T22:09:31.7241374Z [ RUN ] CustomAutogradTest.Reentrant 2023-01-11T22:09:31.7241957Z [ OK ] CustomAutogradTest.Reentrant (0 ms) 2023-01-11T22:09:31.7242371Z [ RUN ] CustomAutogradTest.DeepReentrant 2023-01-11T22:09:32.1825776Z [ OK ] CustomAutogradTest.DeepReentrant (458 ms) 2023-01-11T22:09:32.1826180Z [ RUN ] CustomAutogradTest.ReentrantPriority 2023-01-11T22:09:32.1831816Z [ OK ] CustomAutogradTest.ReentrantPriority (0 ms) 2023-01-11T22:09:32.1832150Z [ RUN ] CustomAutogradTest.Hooks 2023-01-11T22:09:32.1873963Z [ OK ] CustomAutogradTest.Hooks (4 ms) 2023-01-11T22:09:32.1874290Z [ RUN ] CustomAutogradTest.HooksInplace 2023-01-11T22:09:32.1877084Z [ OK ] CustomAutogradTest.HooksInplace (0 ms) 2023-01-11T22:09:32.1877470Z [ RUN ] CustomAutogradTest.HooksInplaceWithRetainsGrad 2023-01-11T22:09:32.1880552Z [ OK ] CustomAutogradTest.HooksInplaceWithRetainsGrad (0 ms) 2023-01-11T22:09:32.1880984Z [ RUN ] CustomAutogradTest.HooksInplaceTwiceWithRetainsGrad 2023-01-11T22:09:32.1884117Z [ OK ] CustomAutogradTest.HooksInplaceTwiceWithRetainsGrad (0 ms) 2023-01-11T22:09:32.1884553Z [ RUN ] CustomAutogradTest.HookNone 2023-01-11T22:09:32.1885505Z [ OK ] CustomAutogradTest.HookNone (0 ms) 2023-01-11T22:09:32.1885834Z [ RUN ] CustomAutogradTest.BackwardWithInputs 2023-01-11T22:09:32.1887852Z [ OK ] CustomAutogradTest.BackwardWithInputs (0 ms) 2023-01-11T22:09:32.1888308Z [ RUN ] CustomAutogradTest.BackwardWithEmptyInputs 2023-01-11T22:09:32.1900850Z [ OK ] CustomAutogradTest.BackwardWithEmptyInputs (1 ms) 2023-01-11T22:09:32.1901299Z [ RUN ] CustomAutogradTest.BackwardWithNonLeafInputs 2023-01-11T22:09:32.1903559Z [ OK ] CustomAutogradTest.BackwardWithNonLeafInputs (0 ms) 2023-01-11T22:09:32.1904195Z [ RUN ] CustomAutogradTest.BackwardWithCreateGraphWarns 2023-01-11T22:09:32.1904947Z [ OK ] CustomAutogradTest.BackwardWithCreateGraphWarns (0 ms) 2023-01-11T22:09:32.1905420Z [----------] 33 tests from CustomAutogradTest (482 ms total) 2023-01-11T22:09:32.1905591Z 2023-01-11T22:09:32.1905803Z [----------] 13 tests from TestAutogradNotImplementedFallback 2023-01-11T22:09:32.1906226Z [ RUN ] TestAutogradNotImplementedFallback.RetSingleNonTensor 2023-01-11T22:09:32.1909254Z [ OK ] TestAutogradNotImplementedFallback.RetSingleNonTensor (0 ms) 2023-01-11T22:09:32.1909743Z [ RUN ] TestAutogradNotImplementedFallback.InplaceOp 2023-01-11T22:09:32.1954711Z [ OK ] TestAutogradNotImplementedFallback.InplaceOp (4 ms) 2023-01-11T22:09:32.1955153Z [ RUN ] TestAutogradNotImplementedFallback.DoubleInplaceOp 2023-01-11T22:09:32.1994184Z [ OK ] TestAutogradNotImplementedFallback.DoubleInplaceOp (3 ms) 2023-01-11T22:09:32.1994606Z [ RUN ] TestAutogradNotImplementedFallback.OptOp 2023-01-11T22:09:32.1998006Z [ OK ] TestAutogradNotImplementedFallback.OptOp (0 ms) 2023-01-11T22:09:32.1998458Z [ RUN ] TestAutogradNotImplementedFallback.OutOfPlaceAddition 2023-01-11T22:09:32.2031767Z [ OK ] TestAutogradNotImplementedFallback.OutOfPlaceAddition (3 ms) 2023-01-11T22:09:32.2032244Z [ RUN ] TestAutogradNotImplementedFallback.RetTupleNonTensor 2023-01-11T22:09:32.2065764Z [ OK ] TestAutogradNotImplementedFallback.RetTupleNonTensor (3 ms) 2023-01-11T22:09:32.2066185Z [ RUN ] TestAutogradNotImplementedFallback.ViewOp 2023-01-11T22:09:32.2130888Z [ OK ] TestAutogradNotImplementedFallback.ViewOp (6 ms) 2023-01-11T22:09:32.2131380Z [ RUN ] TestAutogradNotImplementedFallback.ViewOpWithExtraArg 2023-01-11T22:09:32.2164851Z [ OK ] TestAutogradNotImplementedFallback.ViewOpWithExtraArg (3 ms) 2023-01-11T22:09:32.2165323Z [ RUN ] TestAutogradNotImplementedFallback.RetTensorVectorView 2023-01-11T22:09:32.2167062Z [ OK ] TestAutogradNotImplementedFallback.RetTensorVectorView (0 ms) 2023-01-11T22:09:32.2167514Z [ RUN ] TestAutogradNotImplementedFallback.DoubleViewOP 2023-01-11T22:09:32.2187083Z [ OK ] TestAutogradNotImplementedFallback.DoubleViewOP (1 ms) 2023-01-11T22:09:32.2187531Z [ RUN ] TestAutogradNotImplementedFallback.NonFirstViewOP 2023-01-11T22:09:32.2217443Z [ OK ] TestAutogradNotImplementedFallback.NonFirstViewOP (3 ms) 2023-01-11T22:09:32.2217892Z [ RUN ] TestAutogradNotImplementedFallback.RetTensorVector 2023-01-11T22:09:32.2251340Z [ OK ] TestAutogradNotImplementedFallback.RetTensorVector (3 ms) 2023-01-11T22:09:32.2251787Z [ RUN ] TestAutogradNotImplementedFallback.TensorlistOp 2023-01-11T22:09:32.2276731Z [ OK ] TestAutogradNotImplementedFallback.TensorlistOp (2 ms) 2023-01-11T22:09:32.2277262Z [----------] 13 tests from TestAutogradNotImplementedFallback (37 ms total) 2023-01-11T22:09:32.2277593Z 2023-01-11T22:09:32.2277859Z [----------] 18 tests from AnyModuleTest 2023-01-11T22:09:32.2278364Z [ RUN ] AnyModuleTest.SimpleReturnType 2023-01-11T22:09:32.2278699Z [ OK ] AnyModuleTest.SimpleReturnType (0 ms) 2023-01-11T22:09:32.2279084Z [ RUN ] AnyModuleTest.SimpleReturnTypeAndSingleArgument 2023-01-11T22:09:32.2279499Z [ OK ] AnyModuleTest.SimpleReturnTypeAndSingleArgument (0 ms) 2023-01-11T22:09:32.2279925Z [ RUN ] AnyModuleTest.StringLiteralReturnTypeAndArgument 2023-01-11T22:09:32.2280500Z [ OK ] AnyModuleTest.StringLiteralReturnTypeAndArgument (0 ms) 2023-01-11T22:09:32.2280918Z [ RUN ] AnyModuleTest.StringReturnTypeWithConstArgument 2023-01-11T22:09:32.2281348Z [ OK ] AnyModuleTest.StringReturnTypeWithConstArgument (0 ms) 2023-01-11T22:09:32.2281860Z [ RUN ] AnyModuleTest.TensorReturnTypeAndStringArgumentsWithFunkyQualifications 2023-01-11T22:09:32.2284074Z [ OK ] AnyModuleTest.TensorReturnTypeAndStringArgumentsWithFunkyQualifications (0 ms) 2023-01-11T22:09:32.2284648Z [ RUN ] AnyModuleTest.WrongArgumentType 2023-01-11T22:09:32.2290818Z [ OK ] AnyModuleTest.WrongArgumentType (1 ms) 2023-01-11T22:09:32.2291429Z [ RUN ] AnyModuleTest.WrongNumberOfArguments 2023-01-11T22:09:32.2326843Z [ OK ] AnyModuleTest.WrongNumberOfArguments (3 ms) 2023-01-11T22:09:32.2327610Z [ RUN ] AnyModuleTest.PassingArgumentsToModuleWithDefaultArgumentsInForwardMethod 2023-01-11T22:09:32.2407763Z [ OK ] AnyModuleTest.PassingArgumentsToModuleWithDefaultArgumentsInForwardMethod (8 ms) 2023-01-11T22:09:32.2408469Z [ RUN ] AnyModuleTest.GetWithCorrectTypeSucceeds 2023-01-11T22:09:32.2408850Z [ OK ] AnyModuleTest.GetWithCorrectTypeSucceeds (0 ms) 2023-01-11T22:09:32.2409373Z [ RUN ] AnyModuleTest.GetWithIncorrectTypeThrows 2023-01-11T22:09:32.2418249Z [ OK ] AnyModuleTest.GetWithIncorrectTypeThrows (1 ms) 2023-01-11T22:09:32.2418943Z [ RUN ] AnyModuleTest.PtrWithBaseClassSucceeds 2023-01-11T22:09:32.2419404Z [ OK ] AnyModuleTest.PtrWithBaseClassSucceeds (0 ms) 2023-01-11T22:09:32.2419788Z [ RUN ] AnyModuleTest.PtrWithGoodDowncastSuccceeds 2023-01-11T22:09:32.2420186Z [ OK ] AnyModuleTest.PtrWithGoodDowncastSuccceeds (0 ms) 2023-01-11T22:09:32.2420555Z [ RUN ] AnyModuleTest.PtrWithBadDowncastThrows 2023-01-11T22:09:32.2439358Z [ OK ] AnyModuleTest.PtrWithBadDowncastThrows (2 ms) 2023-01-11T22:09:32.2439752Z [ RUN ] AnyModuleTest.DefaultStateIsEmpty 2023-01-11T22:09:32.2440112Z [ OK ] AnyModuleTest.DefaultStateIsEmpty (0 ms) 2023-01-11T22:09:32.2440484Z [ RUN ] AnyModuleTest.AllMethodsThrowForEmptyAnyModule 2023-01-11T22:09:32.2492536Z [ OK ] AnyModuleTest.AllMethodsThrowForEmptyAnyModule (5 ms) 2023-01-11T22:09:32.2493283Z [ RUN ] AnyModuleTest.CanMoveAssignDifferentModules 2023-01-11T22:09:32.2493959Z [ OK ] AnyModuleTest.CanMoveAssignDifferentModules (0 ms) 2023-01-11T22:09:32.2494550Z [ RUN ] AnyModuleTest.ConstructsFromModuleHolder 2023-01-11T22:09:32.2495101Z [ OK ] AnyModuleTest.ConstructsFromModuleHolder (0 ms) 2023-01-11T22:09:32.2495786Z [ RUN ] AnyModuleTest.ConvertsVariableToTensorCorrectly 2023-01-11T22:09:32.2496206Z [ OK ] AnyModuleTest.ConvertsVariableToTensorCorrectly (0 ms) 2023-01-11T22:09:32.2496590Z [----------] 18 tests from AnyModuleTest (21 ms total) 2023-01-11T22:09:32.2496925Z 2023-01-11T22:09:32.2497073Z [----------] 12 tests from AnyValueTest 2023-01-11T22:09:32.2497420Z [ RUN ] AnyValueTest.CorrectlyAccessesIntWhenCorrectType 2023-01-11T22:09:32.2497870Z [ OK ] AnyValueTest.CorrectlyAccessesIntWhenCorrectType (0 ms) 2023-01-11T22:09:32.2498337Z [ RUN ] AnyValueTest.CorrectlyAccessesStringLiteralWhenCorrectType 2023-01-11T22:09:32.2498843Z [ OK ] AnyValueTest.CorrectlyAccessesStringLiteralWhenCorrectType (0 ms) 2023-01-11T22:09:32.2499300Z [ RUN ] AnyValueTest.CorrectlyAccessesStringWhenCorrectType 2023-01-11T22:09:32.2499751Z [ OK ] AnyValueTest.CorrectlyAccessesStringWhenCorrectType (0 ms) 2023-01-11T22:09:32.2500201Z [ RUN ] AnyValueTest.CorrectlyAccessesPointersWhenCorrectType 2023-01-11T22:09:32.2500728Z [ OK ] AnyValueTest.CorrectlyAccessesPointersWhenCorrectType (0 ms) 2023-01-11T22:09:32.2501187Z [ RUN ] AnyValueTest.CorrectlyAccessesReferencesWhenCorrectType 2023-01-11T22:09:32.2501670Z [ OK ] AnyValueTest.CorrectlyAccessesReferencesWhenCorrectType (0 ms) 2023-01-11T22:09:32.2502120Z [ RUN ] AnyValueTest.TryGetReturnsNullptrForTheWrongType 2023-01-11T22:09:32.2502601Z [ OK ] AnyValueTest.TryGetReturnsNullptrForTheWrongType (0 ms) 2023-01-11T22:09:32.2502999Z [ RUN ] AnyValueTest.GetThrowsForTheWrongType 2023-01-11T22:09:32.2517280Z [ OK ] AnyValueTest.GetThrowsForTheWrongType (2 ms) 2023-01-11T22:09:32.2517957Z [ RUN ] AnyValueTest.MoveConstructionIsAllowed 2023-01-11T22:09:32.2518364Z [ OK ] AnyValueTest.MoveConstructionIsAllowed (0 ms) 2023-01-11T22:09:32.2518727Z [ RUN ] AnyValueTest.MoveAssignmentIsAllowed 2023-01-11T22:09:32.2519090Z [ OK ] AnyValueTest.MoveAssignmentIsAllowed (0 ms) 2023-01-11T22:09:32.2519430Z [ RUN ] AnyValueTest.TypeInfoIsCorrectForInt 2023-01-11T22:09:32.2519787Z [ OK ] AnyValueTest.TypeInfoIsCorrectForInt (0 ms) 2023-01-11T22:09:32.2520177Z [ RUN ] AnyValueTest.TypeInfoIsCorrectForStringLiteral 2023-01-11T22:09:32.2520598Z [ OK ] AnyValueTest.TypeInfoIsCorrectForStringLiteral (0 ms) 2023-01-11T22:09:32.2520978Z [ RUN ] AnyValueTest.TypeInfoIsCorrectForString 2023-01-11T22:09:32.2521355Z [ OK ] AnyValueTest.TypeInfoIsCorrectForString (0 ms) 2023-01-11T22:09:32.2521712Z [----------] 12 tests from AnyValueTest (2 ms total) 2023-01-11T22:09:32.2521866Z 2023-01-11T22:09:32.2521994Z [----------] 50 tests from DataTest 2023-01-11T22:09:32.2522290Z [ RUN ] DataTest.DatasetCallsGetCorrectly 2023-01-11T22:09:32.2532743Z [ OK ] DataTest.DatasetCallsGetCorrectly (1 ms) 2023-01-11T22:09:32.2533425Z [ RUN ] DataTest.TransformCallsGetApplyCorrectly 2023-01-11T22:09:32.2533842Z [ OK ] DataTest.TransformCallsGetApplyCorrectly (0 ms) 2023-01-11T22:09:32.2534255Z [ RUN ] DataTest.ChunkDataSetWithInvalidInitParameter 2023-01-11T22:09:32.2601941Z [ OK ] DataTest.ChunkDataSetWithInvalidInitParameter (6 ms) 2023-01-11T22:09:32.2602324Z [ RUN ] DataTest.InfiniteStreamDataset 2023-01-11T22:09:32.2602661Z [ OK ] DataTest.InfiniteStreamDataset (0 ms) 2023-01-11T22:09:32.2602984Z [ RUN ] DataTest.NoSequencerIsIdentity 2023-01-11T22:09:32.2615127Z [ OK ] DataTest.NoSequencerIsIdentity (1 ms) 2023-01-11T22:09:32.2615566Z [ RUN ] DataTest.OrderedSequencerIsSetUpWell 2023-01-11T22:09:32.2615932Z [ OK ] DataTest.OrderedSequencerIsSetUpWell (0 ms) 2023-01-11T22:09:32.2616301Z [ RUN ] DataTest.OrderedSequencerReOrdersValues 2023-01-11T22:09:32.2616674Z [ OK ] DataTest.OrderedSequencerReOrdersValues (0 ms) 2023-01-11T22:09:32.2617056Z [ RUN ] DataTest.BatchLambdaAppliesFunctionToBatch 2023-01-11T22:09:32.2617577Z [ OK ] DataTest.BatchLambdaAppliesFunctionToBatch (0 ms) 2023-01-11T22:09:32.2617961Z [ RUN ] DataTest.LambdaAppliesFunctionToExample 2023-01-11T22:09:32.2618325Z [ OK ] DataTest.LambdaAppliesFunctionToExample (0 ms) 2023-01-11T22:09:32.2618664Z [ RUN ] DataTest.CollateReducesBatch 2023-01-11T22:09:32.2618981Z [ OK ] DataTest.CollateReducesBatch (0 ms) 2023-01-11T22:09:32.2619285Z [ RUN ] DataTest.CollationReducesBatch 2023-01-11T22:09:32.2619610Z [ OK ] DataTest.CollationReducesBatch (0 ms) 2023-01-11T22:09:32.2619989Z [ RUN ] DataTest.SequentialSamplerReturnsIndicesInOrder 2023-01-11T22:09:32.2620464Z [ OK ] DataTest.SequentialSamplerReturnsIndicesInOrder (0 ms) 2023-01-11T22:09:32.2620920Z [ RUN ] DataTest.SequentialSamplerReturnsLessValuesForLastBatch 2023-01-11T22:09:32.2621402Z [ OK ] DataTest.SequentialSamplerReturnsLessValuesForLastBatch (0 ms) 2023-01-11T22:09:32.2621814Z [ RUN ] DataTest.SequentialSamplerResetsWell 2023-01-11T22:09:32.2622160Z [ OK ] DataTest.SequentialSamplerResetsWell (0 ms) 2023-01-11T22:09:32.2622621Z [ RUN ] DataTest.SequentialSamplerResetsWithNewSizeWell 2023-01-11T22:09:32.2623053Z [ OK ] DataTest.SequentialSamplerResetsWithNewSizeWell (0 ms) 2023-01-11T22:09:32.2623471Z [ RUN ] DataTest.CanSaveAndLoadSequentialSampler 2023-01-11T22:09:32.2766965Z [ OK ] DataTest.CanSaveAndLoadSequentialSampler (15 ms) 2023-01-11T22:09:32.2767637Z [ RUN ] DataTest.RandomSamplerReturnsIndicesInCorrectRange 2023-01-11T22:09:32.2768217Z [ OK ] DataTest.RandomSamplerReturnsIndicesInCorrectRange (0 ms) 2023-01-11T22:09:32.2768720Z [ RUN ] DataTest.RandomSamplerReturnsLessValuesForLastBatch 2023-01-11T22:09:32.2769470Z [ OK ] DataTest.RandomSamplerReturnsLessValuesForLastBatch (0 ms) 2023-01-11T22:09:32.2769866Z [ RUN ] DataTest.RandomSamplerResetsWell 2023-01-11T22:09:32.2770251Z [ OK ] DataTest.RandomSamplerResetsWell (0 ms) 2023-01-11T22:09:32.2770626Z [ RUN ] DataTest.RandomSamplerResetsWithNewSizeWell 2023-01-11T22:09:32.2771088Z [ OK ] DataTest.RandomSamplerResetsWithNewSizeWell (0 ms) 2023-01-11T22:09:32.2771550Z [ RUN ] DataTest.SavingAndLoadingRandomSamplerYieldsSameSequence 2023-01-11T22:09:32.2773294Z [ OK ] DataTest.SavingAndLoadingRandomSamplerYieldsSameSequence (0 ms) 2023-01-11T22:09:32.2773897Z [ RUN ] DataTest.StreamSamplerReturnsTheBatchSizeAndThenRemainder 2023-01-11T22:09:32.2774626Z [ OK ] DataTest.StreamSamplerReturnsTheBatchSizeAndThenRemainder (0 ms) 2023-01-11T22:09:32.2775059Z [ RUN ] DataTest.StreamSamplerResetsWell 2023-01-11T22:09:32.2775502Z [ OK ] DataTest.StreamSamplerResetsWell (0 ms) 2023-01-11T22:09:32.2775870Z [ RUN ] DataTest.StreamSamplerResetsWithNewSizeWell 2023-01-11T22:09:32.2776435Z [ OK ] DataTest.StreamSamplerResetsWithNewSizeWell (0 ms) 2023-01-11T22:09:32.2776939Z [ RUN ] DataTest.TensorDatasetConstructsFromSingleTensor 2023-01-11T22:09:32.2777473Z [ OK ] DataTest.TensorDatasetConstructsFromSingleTensor (0 ms) 2023-01-11T22:09:32.2777992Z [ RUN ] DataTest.TensorDatasetConstructsFromInitializerListOfTensors 2023-01-11T22:09:32.2778503Z [ OK ] DataTest.TensorDatasetConstructsFromInitializerListOfTensors (0 ms) 2023-01-11T22:09:32.2778923Z [ RUN ] DataTest.StackTransformWorksForExample 2023-01-11T22:09:32.2780728Z [ OK ] DataTest.StackTransformWorksForExample (0 ms) 2023-01-11T22:09:32.2781190Z [ RUN ] DataTest.StackTransformWorksForTensorExample 2023-01-11T22:09:32.2782084Z [ OK ] DataTest.StackTransformWorksForTensorExample (0 ms) 2023-01-11T22:09:32.2782801Z [ RUN ] DataTest.TensorTransformWorksForAnyTargetType 2023-01-11T22:09:32.2784206Z [ OK ] DataTest.TensorTransformWorksForAnyTargetType (0 ms) 2023-01-11T22:09:32.2784781Z [ RUN ] DataTest.TensorLambdaWorksforAnyTargetType 2023-01-11T22:09:32.2785311Z [ OK ] DataTest.TensorLambdaWorksforAnyTargetType (0 ms) 2023-01-11T22:09:32.2785659Z [ RUN ] DataTest.NormalizeTransform 2023-01-11T22:09:32.2791893Z [ OK ] DataTest.NormalizeTransform (0 ms) 2023-01-11T22:09:32.2792238Z [ RUN ] DataTest.MapDoesNotCopy 2023-01-11T22:09:32.2792555Z [ OK ] DataTest.MapDoesNotCopy (0 ms) 2023-01-11T22:09:32.2793052Z [ RUN ] DataTest.QueuePushAndPopFromSameThread 2023-01-11T22:09:32.2793435Z [ OK ] DataTest.QueuePushAndPopFromSameThread (0 ms) 2023-01-11T22:09:32.2793819Z [ RUN ] DataTest.QueuePopWithTimeoutThrowsUponTimeout 2023-01-11T22:09:32.2904574Z [ OK ] DataTest.QueuePopWithTimeoutThrowsUponTimeout (11 ms) 2023-01-11T22:09:32.2905029Z [ RUN ] DataTest.QueuePushAndPopFromDifferentThreads 2023-01-11T22:09:32.3110862Z [ OK ] DataTest.QueuePushAndPopFromDifferentThreads (20 ms) 2023-01-11T22:09:32.3111287Z [ RUN ] DataTest.QueueClearEmptiesTheQueue 2023-01-11T22:09:32.3132852Z [ OK ] DataTest.QueueClearEmptiesTheQueue (2 ms) 2023-01-11T22:09:32.3133545Z [ RUN ] DataTest.DataShuttleCanPushAndPopJob 2023-01-11T22:09:32.3133967Z [ OK ] DataTest.DataShuttleCanPushAndPopJob (0 ms) 2023-01-11T22:09:32.3134343Z [ RUN ] DataTest.DataShuttleCanPushAndPopResult 2023-01-11T22:09:32.3134732Z [ OK ] DataTest.DataShuttleCanPushAndPopResult (0 ms) 2023-01-11T22:09:32.3135190Z [ RUN ] DataTest.DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight 2023-01-11T22:09:32.3135714Z [ OK ] DataTest.DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight (0 ms) 2023-01-11T22:09:32.3136211Z [ RUN ] DataTest.DataShuttleDrainMeansPopResultReturnsNullopt 2023-01-11T22:09:32.3136685Z [ OK ] DataTest.DataShuttleDrainMeansPopResultReturnsNullopt (0 ms) 2023-01-11T22:09:32.3137083Z [ RUN ] DataTest.DataShuttlePopResultTimesOut 2023-01-11T22:09:32.3245550Z [ OK ] DataTest.DataShuttlePopResultTimesOut (11 ms) 2023-01-11T22:09:32.3246163Z [ RUN ] DataTest.SharedBatchDatasetReallyIsShared 2023-01-11T22:09:32.3260185Z [ OK ] DataTest.SharedBatchDatasetReallyIsShared (1 ms) 2023-01-11T22:09:32.3260689Z [ RUN ] DataTest.SharedBatchDatasetDoesNotIncurCopyWhenPassedDatasetObject 2023-01-11T22:09:32.3261278Z [ OK ] DataTest.SharedBatchDatasetDoesNotIncurCopyWhenPassedDatasetObject (0 ms) 2023-01-11T22:09:32.3261743Z [ RUN ] DataTest.CanUseCustomTypeAsIndexType 2023-01-11T22:09:32.3262117Z [ OK ] DataTest.CanUseCustomTypeAsIndexType (0 ms) 2023-01-11T22:09:32.3262655Z [ RUN ] DataTest.DistributedRandomSamplerSingleReplicaProduceCorrectSamples 2023-01-11T22:09:32.3275463Z [ OK ] DataTest.DistributedRandomSamplerSingleReplicaProduceCorrectSamples (1 ms) 2023-01-11T22:09:32.3276335Z [ RUN ] DataTest.DistributedRandomSamplerMultiReplicaProduceCorrectSamples 2023-01-11T22:09:32.3277258Z [ OK ] DataTest.DistributedRandomSamplerMultiReplicaProduceCorrectSamples (0 ms) 2023-01-11T22:09:32.3278034Z [ RUN ] DataTest.CanSaveAndLoadDistributedRandomSampler 2023-01-11T22:09:32.3283837Z [ OK ] DataTest.CanSaveAndLoadDistributedRandomSampler (0 ms) 2023-01-11T22:09:32.3284720Z [ RUN ] DataTest.DistributedSequentialSamplerSingleReplicaProduceCorrectSamples 2023-01-11T22:09:32.3285710Z [ OK ] DataTest.DistributedSequentialSamplerSingleReplicaProduceCorrectSamples (0 ms) 2023-01-11T22:09:32.3286888Z [ RUN ] DataTest.DistributedSequentialSamplerMultiReplicaProduceCorrectSamples 2023-01-11T22:09:32.3288038Z [ OK ] DataTest.DistributedSequentialSamplerMultiReplicaProduceCorrectSamples (0 ms) 2023-01-11T22:09:32.3289005Z [ RUN ] DataTest.CanSaveAndLoadDistributedSequentialSampler 2023-01-11T22:09:32.3290049Z [ OK ] DataTest.CanSaveAndLoadDistributedSequentialSampler (0 ms) 2023-01-11T22:09:32.3290772Z [----------] 50 tests from DataTest (76 ms total) 2023-01-11T22:09:32.3291039Z 2023-01-11T22:09:32.3291318Z [----------] 37 tests from DataLoaderTest 2023-01-11T22:09:32.3291990Z [ RUN ] DataLoaderTest.DataLoaderOptionsDefaultAsExpected 2023-01-11T22:09:32.3292964Z [ OK ] DataLoaderTest.DataLoaderOptionsDefaultAsExpected (0 ms) 2023-01-11T22:09:32.3293825Z [ RUN ] DataLoaderTest.DataLoaderOptionsCoalesceOptionalValues 2023-01-11T22:09:32.3294726Z [ OK ] DataLoaderTest.DataLoaderOptionsCoalesceOptionalValues (0 ms) 2023-01-11T22:09:32.3295543Z [ RUN ] DataLoaderTest.MakeDataLoaderDefaultsAsExpected 2023-01-11T22:09:32.3296344Z [ OK ] DataLoaderTest.MakeDataLoaderDefaultsAsExpected (0 ms) 2023-01-11T22:09:32.3297363Z [ RUN ] DataLoaderTest.MakeDataLoaderThrowsWhenConstructingSamplerWithUnsizedDataset 2023-01-11T22:09:32.3302127Z [ OK ] DataLoaderTest.MakeDataLoaderThrowsWhenConstructingSamplerWithUnsizedDataset (1 ms) 2023-01-11T22:09:32.3302991Z [ RUN ] DataLoaderTest.IteratorsCompareEqualToThemselves 2023-01-11T22:09:32.3303744Z [ OK ] DataLoaderTest.IteratorsCompareEqualToThemselves (0 ms) 2023-01-11T22:09:32.3304574Z [ RUN ] DataLoaderTest.ValidIteratorsCompareUnequalToEachOther 2023-01-11T22:09:32.3305212Z [ OK ] DataLoaderTest.ValidIteratorsCompareUnequalToEachOther (0 ms) 2023-01-11T22:09:32.3305682Z [ RUN ] DataLoaderTest.SentinelIteratorsCompareEqualToEachOther 2023-01-11T22:09:32.3306164Z [ OK ] DataLoaderTest.SentinelIteratorsCompareEqualToEachOther (0 ms) 2023-01-11T22:09:32.3306658Z [ RUN ] DataLoaderTest.IteratorsCompareEqualToSentinelWhenExhausted 2023-01-11T22:09:32.3307154Z [ OK ] DataLoaderTest.IteratorsCompareEqualToSentinelWhenExhausted (0 ms) 2023-01-11T22:09:32.3307570Z [ RUN ] DataLoaderTest.IteratorsShareState 2023-01-11T22:09:32.3307920Z [ OK ] DataLoaderTest.IteratorsShareState (0 ms) 2023-01-11T22:09:32.3308317Z [ RUN ] DataLoaderTest.CanDereferenceIteratorMultipleTimes 2023-01-11T22:09:32.3308758Z [ OK ] DataLoaderTest.CanDereferenceIteratorMultipleTimes (0 ms) 2023-01-11T22:09:32.3309167Z [ RUN ] DataLoaderTest.CanUseIteratorAlgorithms 2023-01-11T22:09:32.3309547Z [ OK ] DataLoaderTest.CanUseIteratorAlgorithms (0 ms) 2023-01-11T22:09:32.3309990Z [ RUN ] DataLoaderTest.CallingBeginWhileOtherIteratorIsInFlightThrows 2023-01-11T22:09:32.3319064Z [ OK ] DataLoaderTest.CallingBeginWhileOtherIteratorIsInFlightThrows (1 ms) 2023-01-11T22:09:32.3319573Z [ RUN ] DataLoaderTest.IncrementingExhaustedValidIteratorThrows 2023-01-11T22:09:32.3331125Z [ OK ] DataLoaderTest.IncrementingExhaustedValidIteratorThrows (1 ms) 2023-01-11T22:09:32.3331599Z [ RUN ] DataLoaderTest.DereferencingExhaustedValidIteratorThrows 2023-01-11T22:09:32.3343098Z [ OK ] DataLoaderTest.DereferencingExhaustedValidIteratorThrows (1 ms) 2023-01-11T22:09:32.3343565Z [ RUN ] DataLoaderTest.IncrementingSentinelIteratorThrows 2023-01-11T22:09:32.3354811Z [ OK ] DataLoaderTest.IncrementingSentinelIteratorThrows (1 ms) 2023-01-11T22:09:32.3355246Z [ RUN ] DataLoaderTest.DereferencingSentinelIteratorThrows 2023-01-11T22:09:32.3366692Z [ OK ] DataLoaderTest.DereferencingSentinelIteratorThrows (1 ms) 2023-01-11T22:09:32.3367326Z [ RUN ] DataLoaderTest.YieldsCorrectBatchSize 2023-01-11T22:09:32.3367807Z [ OK ] DataLoaderTest.YieldsCorrectBatchSize (0 ms) 2023-01-11T22:09:32.3368389Z [ RUN ] DataLoaderTest.ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse 2023-01-11T22:09:32.3369162Z [ OK ] DataLoaderTest.ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse (0 ms) 2023-01-11T22:09:32.3369815Z [ RUN ] DataLoaderTest.DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue 2023-01-11T22:09:32.3370476Z [ OK ] DataLoaderTest.DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue (0 ms) 2023-01-11T22:09:32.3371084Z [ RUN ] DataLoaderTest.RespectsTimeout 2023-01-11T22:09:32.3484334Z [ OK ] DataLoaderTest.RespectsTimeout (11 ms) 2023-01-11T22:09:32.3485014Z [ RUN ] DataLoaderTest.EnforcesOrderingAmongThreadsWhenConfigured 2023-01-11T22:09:32.3510416Z [ OK ] DataLoaderTest.EnforcesOrderingAmongThreadsWhenConfigured (2 ms) 2023-01-11T22:09:32.3510857Z [ RUN ] DataLoaderTest.Reset 2023-01-11T22:09:32.3511223Z [ OK ] DataLoaderTest.Reset (0 ms) 2023-01-11T22:09:32.3511606Z [ RUN ] DataLoaderTest.TestExceptionsArePropagatedFromWorkers 2023-01-11T22:09:32.3515499Z [ OK ] DataLoaderTest.TestExceptionsArePropagatedFromWorkers (0 ms) 2023-01-11T22:09:32.3516237Z [ RUN ] DataLoaderTest.StatefulDatasetWithNoWorkers 2023-01-11T22:09:32.3516722Z [ OK ] DataLoaderTest.StatefulDatasetWithNoWorkers (0 ms) 2023-01-11T22:09:32.3517155Z [ RUN ] DataLoaderTest.StatefulDatasetWithManyWorkers 2023-01-11T22:09:32.3534280Z [ OK ] DataLoaderTest.StatefulDatasetWithManyWorkers (1 ms) 2023-01-11T22:09:32.3534975Z [ RUN ] DataLoaderTest.StatefulDatasetWithMap 2023-01-11T22:09:32.3535678Z [ OK ] DataLoaderTest.StatefulDatasetWithMap (0 ms) 2023-01-11T22:09:32.3536057Z [ RUN ] DataLoaderTest.StatefulDatasetWithCollate 2023-01-11T22:09:32.3537004Z [ OK ] DataLoaderTest.StatefulDatasetWithCollate (0 ms) 2023-01-11T22:09:32.3537616Z [ RUN ] DataLoaderTest.ChunkDataSetGetBatch 2023-01-11T22:09:32.3638224Z [ OK ] DataLoaderTest.ChunkDataSetGetBatch (10 ms) 2023-01-11T22:09:32.3638949Z [ RUN ] DataLoaderTest.ChunkDataSetWithBatchSizeMismatch 2023-01-11T22:09:32.3651983Z [ OK ] DataLoaderTest.ChunkDataSetWithBatchSizeMismatch (1 ms) 2023-01-11T22:09:32.3652625Z [ RUN ] DataLoaderTest.ChunkDataSetWithEmptyBatch 2023-01-11T22:09:32.3653228Z [ OK ] DataLoaderTest.ChunkDataSetWithEmptyBatch (0 ms) 2023-01-11T22:09:32.3653700Z [ RUN ] DataLoaderTest.ChunkDataSetGetBatchWithUnevenBatchSize 2023-01-11T22:09:32.3654625Z [ OK ] DataLoaderTest.ChunkDataSetGetBatchWithUnevenBatchSize (0 ms) 2023-01-11T22:09:32.3655476Z [ RUN ] DataLoaderTest.CanAccessChunkSamplerWithChunkDataSet 2023-01-11T22:09:32.3656194Z [ OK ] DataLoaderTest.CanAccessChunkSamplerWithChunkDataSet (0 ms) 2023-01-11T22:09:32.3656940Z [ RUN ] DataLoaderTest.ChunkDatasetDoesNotHang 2023-01-11T22:09:32.3657330Z [ OK ] DataLoaderTest.ChunkDatasetDoesNotHang (0 ms) 2023-01-11T22:09:32.3657668Z [ RUN ] DataLoaderTest.ChunkDatasetSave 2023-01-11T22:09:32.3821547Z [ OK ] DataLoaderTest.ChunkDatasetSave (16 ms) 2023-01-11T22:09:32.3822099Z [ RUN ] DataLoaderTest.ChunkDatasetLoad 2023-01-11T22:09:32.3825963Z [ OK ] DataLoaderTest.ChunkDatasetLoad (0 ms) 2023-01-11T22:09:32.3826567Z [ RUN ] DataLoaderTest.ChunkDatasetCrossChunkShuffle 2023-01-11T22:09:32.3829681Z [ OK ] DataLoaderTest.ChunkDatasetCrossChunkShuffle (0 ms) 2023-01-11T22:09:32.3830334Z [ RUN ] DataLoaderTest.CustomPreprocessPolicy 2023-01-11T22:09:32.3832601Z [ OK ] DataLoaderTest.CustomPreprocessPolicy (0 ms) 2023-01-11T22:09:32.3833451Z [----------] 37 tests from DataLoaderTest (54 ms total) 2023-01-11T22:09:32.3833743Z 2023-01-11T22:09:32.3833991Z [----------] 1 test from EnumTest 2023-01-11T22:09:32.3834449Z [ RUN ] EnumTest.AllEnums 2023-01-11T22:09:32.3834739Z [ OK ] EnumTest.AllEnums (0 ms) 2023-01-11T22:09:32.3835030Z [----------] 1 test from EnumTest (0 ms total) 2023-01-11T22:09:32.3835175Z 2023-01-11T22:09:32.3835341Z [----------] 6 tests from ExpandingArrayTest 2023-01-11T22:09:32.3835823Z [ RUN ] ExpandingArrayTest.CanConstructFromInitializerList 2023-01-11T22:09:32.3836278Z [ OK ] ExpandingArrayTest.CanConstructFromInitializerList (0 ms) 2023-01-11T22:09:32.3836698Z [ RUN ] ExpandingArrayTest.CanConstructFromVector 2023-01-11T22:09:32.3837090Z [ OK ] ExpandingArrayTest.CanConstructFromVector (0 ms) 2023-01-11T22:09:32.3837461Z [ RUN ] ExpandingArrayTest.CanConstructFromArray 2023-01-11T22:09:32.3837845Z [ OK ] ExpandingArrayTest.CanConstructFromArray (0 ms) 2023-01-11T22:09:32.3838244Z [ RUN ] ExpandingArrayTest.CanConstructFromSingleValue 2023-01-11T22:09:32.3838654Z [ OK ] ExpandingArrayTest.CanConstructFromSingleValue (0 ms) 2023-01-11T22:09:32.3839240Z [ RUN ] ExpandingArrayTest.ThrowsWhenConstructedWithIncorrectNumberOfArgumentsInInitializerList 2023-01-11T22:09:32.3844170Z [ OK ] ExpandingArrayTest.ThrowsWhenConstructedWithIncorrectNumberOfArgumentsInInitializerList (1 ms) 2023-01-11T22:09:32.3844918Z [ RUN ] ExpandingArrayTest.ThrowsWhenConstructedWithIncorrectNumberOfArgumentsInVector 2023-01-11T22:09:32.3854499Z [ OK ] ExpandingArrayTest.ThrowsWhenConstructedWithIncorrectNumberOfArgumentsInVector (1 ms) 2023-01-11T22:09:32.3855017Z [----------] 6 tests from ExpandingArrayTest (2 ms total) 2023-01-11T22:09:32.3855185Z 2023-01-11T22:09:32.3855324Z [----------] 10 tests from FFTTest 2023-01-11T22:09:32.3855569Z [ RUN ] FFTTest.fft 2023-01-11T22:09:32.3974531Z [ OK ] FFTTest.fft (11 ms) 2023-01-11T22:09:32.3974795Z [ RUN ] FFTTest.fft_real 2023-01-11T22:09:32.3976352Z [ OK ] FFTTest.fft_real (0 ms) 2023-01-11T22:09:32.3976634Z [ RUN ] FFTTest.fft_pad 2023-01-11T22:09:32.3989024Z [ OK ] FFTTest.fft_pad (1 ms) 2023-01-11T22:09:32.3989333Z [ RUN ] FFTTest.fft_norm 2023-01-11T22:09:32.3991949Z [ OK ] FFTTest.fft_norm (0 ms) 2023-01-11T22:09:32.3992258Z [ RUN ] FFTTest.ifft 2023-01-11T22:09:32.3995057Z [ OK ] FFTTest.ifft (0 ms) 2023-01-11T22:09:32.3995315Z [ RUN ] FFTTest.fft_ifft 2023-01-11T22:09:32.4172723Z [ OK ] FFTTest.fft_ifft (17 ms) 2023-01-11T22:09:32.4172984Z [ RUN ] FFTTest.rfft 2023-01-11T22:09:32.4196378Z [ OK ] FFTTest.rfft (2 ms) 2023-01-11T22:09:32.4196669Z [ RUN ] FFTTest.rfft_irfft 2023-01-11T22:09:32.4197979Z [ OK ] FFTTest.rfft_irfft (0 ms) 2023-01-11T22:09:32.4198234Z [ RUN ] FFTTest.ihfft 2023-01-11T22:09:32.4202327Z [ OK ] FFTTest.ihfft (0 ms) 2023-01-11T22:09:32.4202573Z [ RUN ] FFTTest.hfft_ihfft 2023-01-11T22:09:32.4246992Z [ OK ] FFTTest.hfft_ihfft (4 ms) 2023-01-11T22:09:32.4247381Z [----------] 10 tests from FFTTest (39 ms total) 2023-01-11T22:09:32.4247532Z 2023-01-11T22:09:32.4247686Z [----------] 132 tests from FunctionalTest 2023-01-11T22:09:32.4247966Z [ RUN ] FunctionalTest.Conv1d 2023-01-11T22:09:32.4269886Z [ OK ] FunctionalTest.Conv1d (2 ms) 2023-01-11T22:09:32.4270199Z [ RUN ] FunctionalTest.Conv2dEven 2023-01-11T22:09:32.4275702Z [ OK ] FunctionalTest.Conv2dEven (0 ms) 2023-01-11T22:09:32.4276123Z [ RUN ] FunctionalTest.Conv2dUneven 2023-01-11T22:09:32.4278244Z [ OK ] FunctionalTest.Conv2dUneven (0 ms) 2023-01-11T22:09:32.4278557Z [ RUN ] FunctionalTest.Conv3d 2023-01-11T22:09:32.4281960Z [ OK ] FunctionalTest.Conv3d (0 ms) 2023-01-11T22:09:32.4282328Z [ RUN ] FunctionalTest.MaxPool1d 2023-01-11T22:09:32.4308238Z [ OK ] FunctionalTest.MaxPool1d (2 ms) 2023-01-11T22:09:32.4308737Z [ RUN ] FunctionalTest.MaxPool2d 2023-01-11T22:09:32.4309292Z [ OK ] FunctionalTest.MaxPool2d (0 ms) 2023-01-11T22:09:32.4309775Z [ RUN ] FunctionalTest.MaxPool2dBackward 2023-01-11T22:09:32.4310733Z [ OK ] FunctionalTest.MaxPool2dBackward (0 ms) 2023-01-11T22:09:32.4311165Z [ RUN ] FunctionalTest.MaxPool3d 2023-01-11T22:09:32.4311757Z [ OK ] FunctionalTest.MaxPool3d (0 ms) 2023-01-11T22:09:32.4312218Z [ RUN ] FunctionalTest.AvgPool1d 2023-01-11T22:09:32.4313232Z [ OK ] FunctionalTest.AvgPool1d (0 ms) 2023-01-11T22:09:32.4313696Z [ RUN ] FunctionalTest.AvgPool2d 2023-01-11T22:09:32.4314133Z [ OK ] FunctionalTest.AvgPool2d (0 ms) 2023-01-11T22:09:32.4314561Z [ RUN ] FunctionalTest.AvgPool3d 2023-01-11T22:09:32.4314864Z [ OK ] FunctionalTest.AvgPool3d (0 ms) 2023-01-11T22:09:32.4315171Z [ RUN ] FunctionalTest.FractionalMaxPool2d 2023-01-11T22:09:32.4317717Z [ OK ] FunctionalTest.FractionalMaxPool2d (0 ms) 2023-01-11T22:09:32.4318080Z [ RUN ] FunctionalTest.FractionalMaxPool3d 2023-01-11T22:09:32.4319848Z [ OK ] FunctionalTest.FractionalMaxPool3d (0 ms) 2023-01-11T22:09:32.4320270Z [ RUN ] FunctionalTest.LPPool1d 2023-01-11T22:09:32.4321873Z [ OK ] FunctionalTest.LPPool1d (0 ms) 2023-01-11T22:09:32.4322195Z [ RUN ] FunctionalTest.LPPool2d 2023-01-11T22:09:32.4323092Z [ OK ] FunctionalTest.LPPool2d (0 ms) 2023-01-11T22:09:32.4323429Z [ RUN ] FunctionalTest.CosineSimilarity 2023-01-11T22:09:32.4325094Z [ OK ] FunctionalTest.CosineSimilarity (0 ms) 2023-01-11T22:09:32.4325462Z [ RUN ] FunctionalTest.SmoothL1LossDefaultOptions 2023-01-11T22:09:32.4327446Z [ OK ] FunctionalTest.SmoothL1LossDefaultOptions (0 ms) 2023-01-11T22:09:32.4327870Z [ RUN ] FunctionalTest.SmoothL1LossBeta 2023-01-11T22:09:32.4329346Z [ OK ] FunctionalTest.SmoothL1LossBeta (0 ms) 2023-01-11T22:09:32.4329736Z [ RUN ] FunctionalTest.SmoothL1LossNoReduction 2023-01-11T22:09:32.4330791Z [ OK ] FunctionalTest.SmoothL1LossNoReduction (0 ms) 2023-01-11T22:09:32.4331439Z [ RUN ] FunctionalTest.HuberLossDefaultOptions 2023-01-11T22:09:32.4332635Z [ OK ] FunctionalTest.HuberLossDefaultOptions (0 ms) 2023-01-11T22:09:32.4333227Z [ RUN ] FunctionalTest.HuberLossDelta 2023-01-11T22:09:32.4333872Z [ OK ] FunctionalTest.HuberLossDelta (0 ms) 2023-01-11T22:09:32.4334478Z [ RUN ] FunctionalTest.HuberLossNoReduction 2023-01-11T22:09:32.4336098Z [ OK ] FunctionalTest.HuberLossNoReduction (0 ms) 2023-01-11T22:09:32.4336770Z [ RUN ] FunctionalTest.SoftMarginLossDefaultOptions 2023-01-11T22:09:32.4338086Z [ OK ] FunctionalTest.SoftMarginLossDefaultOptions (0 ms) 2023-01-11T22:09:32.4338830Z [ RUN ] FunctionalTest.MultiLabelSoftMarginLossDefaultOptions 2023-01-11T22:09:32.4342181Z [ OK ] FunctionalTest.MultiLabelSoftMarginLossDefaultOptions (0 ms) 2023-01-11T22:09:32.4342890Z [ RUN ] FunctionalTest.SoftMarginLossNoReduction 2023-01-11T22:09:32.4344135Z [ OK ] FunctionalTest.SoftMarginLossNoReduction (0 ms) 2023-01-11T22:09:32.4344837Z [ RUN ] FunctionalTest.MultiLabelSoftMarginLossWeightedNoReduction 2023-01-11T22:09:32.4347615Z [ OK ] FunctionalTest.MultiLabelSoftMarginLossWeightedNoReduction (0 ms) 2023-01-11T22:09:32.4348254Z [ RUN ] FunctionalTest.PairwiseDistance 2023-01-11T22:09:32.4349191Z [ OK ] FunctionalTest.PairwiseDistance (0 ms) 2023-01-11T22:09:32.4349745Z [ RUN ] FunctionalTest.PDist 2023-01-11T22:09:32.4351045Z [ OK ] FunctionalTest.PDist (0 ms) 2023-01-11T22:09:32.4351607Z [ RUN ] FunctionalTest.AdaptiveMaxPool1d 2023-01-11T22:09:32.4352630Z [ OK ] FunctionalTest.AdaptiveMaxPool1d (0 ms) 2023-01-11T22:09:32.4353328Z [ RUN ] FunctionalTest.AdaptiveMaxPool2d 2023-01-11T22:09:32.4353883Z [ OK ] FunctionalTest.AdaptiveMaxPool2d (0 ms) 2023-01-11T22:09:32.4354448Z [ RUN ] FunctionalTest.AdaptiveMaxPool3d 2023-01-11T22:09:32.4355004Z [ OK ] FunctionalTest.AdaptiveMaxPool3d (0 ms) 2023-01-11T22:09:32.4355532Z [ RUN ] FunctionalTest.AdaptiveAvgPool1d 2023-01-11T22:09:32.4356113Z [ OK ] FunctionalTest.AdaptiveAvgPool1d (0 ms) 2023-01-11T22:09:32.4356685Z [ RUN ] FunctionalTest.AdaptiveAvgPool2d 2023-01-11T22:09:32.4357150Z [ OK ] FunctionalTest.AdaptiveAvgPool2d (0 ms) 2023-01-11T22:09:32.4357468Z [ RUN ] FunctionalTest.AdaptiveAvgPool3d 2023-01-11T22:09:32.4357882Z [ OK ] FunctionalTest.AdaptiveAvgPool3d (0 ms) 2023-01-11T22:09:32.4358183Z [ RUN ] FunctionalTest.L1Loss 2023-01-11T22:09:32.4359590Z [ OK ] FunctionalTest.L1Loss (0 ms) 2023-01-11T22:09:32.4360048Z [ RUN ] FunctionalTest.MSELoss 2023-01-11T22:09:32.4360656Z [ OK ] FunctionalTest.MSELoss (0 ms) 2023-01-11T22:09:32.4361009Z [ RUN ] FunctionalTest.BCELoss 2023-01-11T22:09:32.4362210Z [ OK ] FunctionalTest.BCELoss (0 ms) 2023-01-11T22:09:32.4362563Z [ RUN ] FunctionalTest.KLDivLoss 2023-01-11T22:09:32.4363565Z [W loss.h:57] Warning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. (function kl_div) 2023-01-11T22:09:32.4364111Z [ OK ] FunctionalTest.KLDivLoss (0 ms) 2023-01-11T22:09:32.4364416Z [ RUN ] FunctionalTest.HingeEmbeddingLoss 2023-01-11T22:09:32.4365949Z [ OK ] FunctionalTest.HingeEmbeddingLoss (0 ms) 2023-01-11T22:09:32.4366276Z [ RUN ] FunctionalTest.GridSample 2023-01-11T22:09:32.4368356Z [W vision.h:87] Warning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. (function grid_sample) 2023-01-11T22:09:32.4370397Z [ OK ] FunctionalTest.GridSample (0 ms) 2023-01-11T22:09:32.4370711Z [ RUN ] FunctionalTest.AffineGrid 2023-01-11T22:09:32.4509845Z [ OK ] FunctionalTest.AffineGrid (13 ms) 2023-01-11T22:09:32.4510273Z [ RUN ] FunctionalTest.MultiMarginLoss 2023-01-11T22:09:32.4511507Z [ OK ] FunctionalTest.MultiMarginLoss (0 ms) 2023-01-11T22:09:32.4511897Z [ RUN ] FunctionalTest.CosineEmbeddingLoss 2023-01-11T22:09:32.4513855Z [ OK ] FunctionalTest.CosineEmbeddingLoss (0 ms) 2023-01-11T22:09:32.4514305Z [ RUN ] FunctionalTest.MultiLabelMarginLossDefaultOptions 2023-01-11T22:09:32.4516031Z [ OK ] FunctionalTest.MultiLabelMarginLossDefaultOptions (0 ms) 2023-01-11T22:09:32.4516622Z [ RUN ] FunctionalTest.MultiLabelMarginLossNoReduction 2023-01-11T22:09:32.4517549Z [ OK ] FunctionalTest.MultiLabelMarginLossNoReduction (0 ms) 2023-01-11T22:09:32.4517988Z [ RUN ] FunctionalTest.TripletMarginLoss 2023-01-11T22:09:32.4519210Z [ OK ] FunctionalTest.TripletMarginLoss (0 ms) 2023-01-11T22:09:32.4519696Z [ RUN ] FunctionalTest.TripletMarginWithDistanceLossDefaultParity 2023-01-11T22:09:32.4659287Z [ OK ] FunctionalTest.TripletMarginWithDistanceLossDefaultParity (13 ms) 2023-01-11T22:09:32.4659713Z [ RUN ] FunctionalTest.NLLLoss 2023-01-11T22:09:32.4661176Z [ OK ] FunctionalTest.NLLLoss (0 ms) 2023-01-11T22:09:32.4661550Z [ RUN ] FunctionalTest.CrossEntropy 2023-01-11T22:09:32.4665544Z [ OK ] FunctionalTest.CrossEntropy (0 ms) 2023-01-11T22:09:32.4665872Z [ RUN ] FunctionalTest.MaxUnpool1d 2023-01-11T22:09:32.4668677Z [ OK ] FunctionalTest.MaxUnpool1d (0 ms) 2023-01-11T22:09:32.4668974Z [ RUN ] FunctionalTest.MaxUnpool2d 2023-01-11T22:09:32.4671012Z [ OK ] FunctionalTest.MaxUnpool2d (0 ms) 2023-01-11T22:09:32.4671355Z [ RUN ] FunctionalTest.MaxUnpool3d 2023-01-11T22:09:32.4672619Z [ OK ] FunctionalTest.MaxUnpool3d (0 ms) 2023-01-11T22:09:32.4673100Z [ RUN ] FunctionalTest.ELU 2023-01-11T22:09:32.4685585Z [ OK ] FunctionalTest.ELU (1 ms) 2023-01-11T22:09:32.4686075Z [ RUN ] FunctionalTest.SELU 2023-01-11T22:09:32.4689652Z [ OK ] FunctionalTest.SELU (0 ms) 2023-01-11T22:09:32.4690147Z [ RUN ] FunctionalTest.GLU 2023-01-11T22:09:32.4691391Z [ OK ] FunctionalTest.GLU (0 ms) 2023-01-11T22:09:32.4691884Z [ RUN ] FunctionalTest.GELU 2023-01-11T22:09:32.4695999Z [ OK ] FunctionalTest.GELU (0 ms) 2023-01-11T22:09:32.4696516Z [ RUN ] FunctionalTest.TanhGELU 2023-01-11T22:09:32.4697590Z [ OK ] FunctionalTest.TanhGELU (0 ms) 2023-01-11T22:09:32.4698115Z [ RUN ] FunctionalTest.Hardshrink 2023-01-11T22:09:32.4705842Z [ OK ] FunctionalTest.Hardshrink (0 ms) 2023-01-11T22:09:32.4706381Z [ RUN ] FunctionalTest.OneHot 2023-01-11T22:09:32.4709047Z [ OK ] FunctionalTest.OneHot (0 ms) 2023-01-11T22:09:32.4709427Z [ RUN ] FunctionalTest.Hardtanh 2023-01-11T22:09:32.4732424Z [ OK ] FunctionalTest.Hardtanh (2 ms) 2023-01-11T22:09:32.4732785Z [ RUN ] FunctionalTest.LeakyReLU 2023-01-11T22:09:32.4740072Z [ OK ] FunctionalTest.LeakyReLU (0 ms) 2023-01-11T22:09:32.4740622Z [ RUN ] FunctionalTest.LogSigmoid 2023-01-11T22:09:32.4742212Z [ OK ] FunctionalTest.LogSigmoid (0 ms) 2023-01-11T22:09:32.4742828Z [ RUN ] FunctionalTest.GumbelSoftmax 2023-01-11T22:09:32.4773422Z [ OK ] FunctionalTest.GumbelSoftmax (3 ms) 2023-01-11T22:09:32.4773823Z [ RUN ] FunctionalTest.Softmax 2023-01-11T22:09:32.4774844Z [ OK ] FunctionalTest.Softmax (0 ms) 2023-01-11T22:09:32.4775143Z [ RUN ] FunctionalTest.Softmin 2023-01-11T22:09:32.4776748Z [ OK ] FunctionalTest.Softmin (0 ms) 2023-01-11T22:09:32.4777099Z [ RUN ] FunctionalTest.LogSoftmax 2023-01-11T22:09:32.4778403Z [ OK ] FunctionalTest.LogSoftmax (0 ms) 2023-01-11T22:09:32.4778734Z [ RUN ] FunctionalTest.PReLU 2023-01-11T22:09:32.4780578Z [ OK ] FunctionalTest.PReLU (0 ms) 2023-01-11T22:09:32.4780932Z [ RUN ] FunctionalTest.LayerNorm 2023-01-11T22:09:32.4781872Z [ OK ] FunctionalTest.LayerNorm (0 ms) 2023-01-11T22:09:32.4782232Z [ RUN ] FunctionalTest.GroupNorm 2023-01-11T22:09:32.4782993Z [ OK ] FunctionalTest.GroupNorm (0 ms) 2023-01-11T22:09:32.4783580Z [ RUN ] FunctionalTest.LocalResponseNorm 2023-01-11T22:09:32.4784962Z [ OK ] FunctionalTest.LocalResponseNorm (0 ms) 2023-01-11T22:09:32.4785372Z [ RUN ] FunctionalTest.Linear 2023-01-11T22:09:32.4788101Z [ OK ] FunctionalTest.Linear (0 ms) 2023-01-11T22:09:32.4788870Z [ RUN ] FunctionalTest.Embedding 2023-01-11T22:09:32.4789754Z [ OK ] FunctionalTest.Embedding (0 ms) 2023-01-11T22:09:32.4790382Z [ RUN ] FunctionalTest.EmbeddingBag 2023-01-11T22:09:32.4795464Z [ OK ] FunctionalTest.EmbeddingBag (0 ms) 2023-01-11T22:09:32.4796059Z [ RUN ] FunctionalTest.Bilinear 2023-01-11T22:09:32.4799112Z [ OK ] FunctionalTest.Bilinear (0 ms) 2023-01-11T22:09:32.4799891Z [ RUN ] FunctionalTest.Normalize 2023-01-11T22:09:32.4804257Z [ OK ] FunctionalTest.Normalize (0 ms) 2023-01-11T22:09:32.4804748Z [ RUN ] FunctionalTest.ReLU 2023-01-11T22:09:32.4807423Z [ OK ] FunctionalTest.ReLU (0 ms) 2023-01-11T22:09:32.4807894Z [ RUN ] FunctionalTest.ReLUDefaultOptions 2023-01-11T22:09:32.4808578Z [ OK ] FunctionalTest.ReLUDefaultOptions (0 ms) 2023-01-11T22:09:32.4809273Z [ RUN ] FunctionalTest.ReLU6 2023-01-11T22:09:32.4812521Z [ OK ] FunctionalTest.ReLU6 (0 ms) 2023-01-11T22:09:32.4813141Z [ RUN ] FunctionalTest.ReLU6DefaultOptions 2023-01-11T22:09:32.4813516Z [ OK ] FunctionalTest.ReLU6DefaultOptions (0 ms) 2023-01-11T22:09:32.4813823Z [ RUN ] FunctionalTest.RReLU 2023-01-11T22:09:32.4843953Z [ OK ] FunctionalTest.RReLU (3 ms) 2023-01-11T22:09:32.4844269Z [ RUN ] FunctionalTest.RReLUDefaultOptions 2023-01-11T22:09:32.4846145Z [ OK ] FunctionalTest.RReLUDefaultOptions (0 ms) 2023-01-11T22:09:32.4846697Z [ RUN ] FunctionalTest.CELU 2023-01-11T22:09:32.4856422Z [ OK ] FunctionalTest.CELU (1 ms) 2023-01-11T22:09:32.4856975Z [ RUN ] FunctionalTest.CELUDefaultOptions 2023-01-11T22:09:32.4858936Z [ OK ] FunctionalTest.CELUDefaultOptions (0 ms) 2023-01-11T22:09:32.4859467Z [ RUN ] FunctionalTest.PixelShuffle 2023-01-11T22:09:32.4859946Z [ OK ] FunctionalTest.PixelShuffle (0 ms) 2023-01-11T22:09:32.4860435Z [ RUN ] FunctionalTest.PixelUnshuffle 2023-01-11T22:09:32.4861300Z [ OK ] FunctionalTest.PixelUnshuffle (0 ms) 2023-01-11T22:09:32.4861770Z [ RUN ] FunctionalTest.Softplus 2023-01-11T22:09:32.4868503Z [ OK ] FunctionalTest.Softplus (0 ms) 2023-01-11T22:09:32.4868946Z [ RUN ] FunctionalTest.SoftplusDefaultOptions 2023-01-11T22:09:32.4869498Z [ OK ] FunctionalTest.SoftplusDefaultOptions (0 ms) 2023-01-11T22:09:32.4869898Z [ RUN ] FunctionalTest.Fold 2023-01-11T22:09:32.4871345Z [ OK ] FunctionalTest.Fold (0 ms) 2023-01-11T22:09:32.4871777Z [ RUN ] FunctionalTest.Unfold 2023-01-11T22:09:32.4872822Z [ OK ] FunctionalTest.Unfold (0 ms) 2023-01-11T22:09:32.4873255Z [ RUN ] FunctionalTest.Softshrink 2023-01-11T22:09:32.4879158Z [ OK ] FunctionalTest.Softshrink (0 ms) 2023-01-11T22:09:32.4879620Z [ RUN ] FunctionalTest.SoftshrinkDefaultOptions 2023-01-11T22:09:32.4882055Z [ OK ] FunctionalTest.SoftshrinkDefaultOptions (0 ms) 2023-01-11T22:09:32.4882679Z [ RUN ] FunctionalTest.Softsign 2023-01-11T22:09:32.4883206Z [ OK ] FunctionalTest.Softsign (0 ms) 2023-01-11T22:09:32.4883528Z [ RUN ] FunctionalTest.Mish 2023-01-11T22:09:32.4884526Z [ OK ] FunctionalTest.Mish (0 ms) 2023-01-11T22:09:32.4885027Z [ RUN ] FunctionalTest.Tanhshrink 2023-01-11T22:09:32.4885572Z [ OK ] FunctionalTest.Tanhshrink (0 ms) 2023-01-11T22:09:32.4886112Z [ RUN ] FunctionalTest.Threshold 2023-01-11T22:09:32.4898345Z [ OK ] FunctionalTest.Threshold (1 ms) 2023-01-11T22:09:32.4899109Z [ RUN ] FunctionalTest.BatchNorm1d 2023-01-11T22:09:32.4899633Z [ OK ] FunctionalTest.BatchNorm1d (0 ms) 2023-01-11T22:09:32.4900237Z [ RUN ] FunctionalTest.BatchNorm1dDefaultOptions 2023-01-11T22:09:32.4901014Z [ OK ] FunctionalTest.BatchNorm1dDefaultOptions (0 ms) 2023-01-11T22:09:32.4901596Z [ RUN ] FunctionalTest.BatchNorm2d 2023-01-11T22:09:32.4902137Z [ OK ] FunctionalTest.BatchNorm2d (0 ms) 2023-01-11T22:09:32.4902842Z [ RUN ] FunctionalTest.BatchNorm2dDefaultOptions 2023-01-11T22:09:32.4904024Z [ OK ] FunctionalTest.BatchNorm2dDefaultOptions (0 ms) 2023-01-11T22:09:32.4904597Z [ RUN ] FunctionalTest.BatchNorm3d 2023-01-11T22:09:32.4905341Z [ OK ] FunctionalTest.BatchNorm3d (0 ms) 2023-01-11T22:09:32.4905972Z [ RUN ] FunctionalTest.BatchNorm3dDefaultOptions 2023-01-11T22:09:32.4906759Z [ OK ] FunctionalTest.BatchNorm3dDefaultOptions (0 ms) 2023-01-11T22:09:32.4907301Z [ RUN ] FunctionalTest.InstanceNorm1d 2023-01-11T22:09:32.4909416Z [ OK ] FunctionalTest.InstanceNorm1d (0 ms) 2023-01-11T22:09:32.4910119Z [ RUN ] FunctionalTest.InstanceNorm1dDefaultOptions 2023-01-11T22:09:32.4910940Z [ OK ] FunctionalTest.InstanceNorm1dDefaultOptions (0 ms) 2023-01-11T22:09:32.4911524Z [ RUN ] FunctionalTest.InstanceNorm2d 2023-01-11T22:09:32.4913440Z [ OK ] FunctionalTest.InstanceNorm2d (0 ms) 2023-01-11T22:09:32.4913805Z [ RUN ] FunctionalTest.InstanceNorm2dDefaultOptions 2023-01-11T22:09:32.4915405Z [ OK ] FunctionalTest.InstanceNorm2dDefaultOptions (0 ms) 2023-01-11T22:09:32.4915748Z [ RUN ] FunctionalTest.InstanceNorm3d 2023-01-11T22:09:32.4918852Z [ OK ] FunctionalTest.InstanceNorm3d (0 ms) 2023-01-11T22:09:32.4919212Z [ RUN ] FunctionalTest.InstanceNorm3dDefaultOptions 2023-01-11T22:09:32.4921742Z [ OK ] FunctionalTest.InstanceNorm3dDefaultOptions (0 ms) 2023-01-11T22:09:32.4922202Z [ RUN ] FunctionalTest.Interpolate 2023-01-11T22:09:32.4923093Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4924386Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4925520Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4926560Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4927751Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4928735Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4930481Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.4932190Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:32.5007962Z [ OK ] FunctionalTest.Interpolate (8 ms) 2023-01-11T22:09:32.5008390Z [ RUN ] FunctionalTest.Pad1 2023-01-11T22:09:32.5009345Z [ OK ] FunctionalTest.Pad1 (0 ms) 2023-01-11T22:09:32.5009703Z [ RUN ] FunctionalTest.Pad2 2023-01-11T22:09:32.5011320Z [ OK ] FunctionalTest.Pad2 (0 ms) 2023-01-11T22:09:32.5011672Z [ RUN ] FunctionalTest.Pad3 2023-01-11T22:09:32.5016230Z [ OK ] FunctionalTest.Pad3 (0 ms) 2023-01-11T22:09:32.5016696Z [ RUN ] FunctionalTest.Pad4 2023-01-11T22:09:32.5017760Z [ OK ] FunctionalTest.Pad4 (0 ms) 2023-01-11T22:09:32.5018064Z [ RUN ] FunctionalTest.Pad5 2023-01-11T22:09:32.5020663Z [ OK ] FunctionalTest.Pad5 (0 ms) 2023-01-11T22:09:32.5020981Z [ RUN ] FunctionalTest.Pad6 2023-01-11T22:09:32.5024316Z [ OK ] FunctionalTest.Pad6 (0 ms) 2023-01-11T22:09:32.5024589Z [ RUN ] FunctionalTest.Pad7 2023-01-11T22:09:32.5024869Z [ OK ] FunctionalTest.Pad7 (0 ms) 2023-01-11T22:09:32.5025151Z [ RUN ] FunctionalTest.Pad8 2023-01-11T22:09:32.5025415Z [ OK ] FunctionalTest.Pad8 (0 ms) 2023-01-11T22:09:32.5025696Z [ RUN ] FunctionalTest.CTCLoss 2023-01-11T22:09:32.5135534Z [ OK ] FunctionalTest.CTCLoss (11 ms) 2023-01-11T22:09:32.5135875Z [ RUN ] FunctionalTest.PoissonNLLLoss 2023-01-11T22:09:32.5137784Z [ OK ] FunctionalTest.PoissonNLLLoss (0 ms) 2023-01-11T22:09:32.5138372Z [ RUN ] FunctionalTest.MarginRankingLoss 2023-01-11T22:09:32.5141348Z [ OK ] FunctionalTest.MarginRankingLoss (0 ms) 2023-01-11T22:09:32.5141697Z [ RUN ] FunctionalTest.ConvTranspose1d 2023-01-11T22:09:32.5144347Z [ OK ] FunctionalTest.ConvTranspose1d (0 ms) 2023-01-11T22:09:32.5144715Z [ RUN ] FunctionalTest.ConvTranspose2dEven 2023-01-11T22:09:32.5149114Z [ OK ] FunctionalTest.ConvTranspose2dEven (0 ms) 2023-01-11T22:09:32.5149494Z [ RUN ] FunctionalTest.ConvTranspose2dUneven 2023-01-11T22:09:32.5153175Z [ OK ] FunctionalTest.ConvTranspose2dUneven (0 ms) 2023-01-11T22:09:32.5153642Z [ RUN ] FunctionalTest.ConvTranspose3d 2023-01-11T22:09:32.5156604Z [ OK ] FunctionalTest.ConvTranspose3d (0 ms) 2023-01-11T22:09:32.5156929Z [ RUN ] FunctionalTest.AlphaDropout 2023-01-11T22:09:32.5166717Z [ OK ] FunctionalTest.AlphaDropout (0 ms) 2023-01-11T22:09:32.5167068Z [ RUN ] FunctionalTest.FeatureAlphaDropout 2023-01-11T22:09:32.5175900Z [ OK ] FunctionalTest.FeatureAlphaDropout (0 ms) 2023-01-11T22:09:32.5176237Z [ RUN ] FunctionalTest.Dropout 2023-01-11T22:09:32.5181196Z [ OK ] FunctionalTest.Dropout (0 ms) 2023-01-11T22:09:32.5181522Z [ RUN ] FunctionalTest.Dropout2d 2023-01-11T22:09:32.5187714Z [ OK ] FunctionalTest.Dropout2d (0 ms) 2023-01-11T22:09:32.5188135Z [ RUN ] FunctionalTest.Dropout3d 2023-01-11T22:09:32.5193258Z [ OK ] FunctionalTest.Dropout3d (0 ms) 2023-01-11T22:09:32.5193583Z [ RUN ] FunctionalTest.isfinite 2023-01-11T22:09:32.5199291Z [ OK ] FunctionalTest.isfinite (0 ms) 2023-01-11T22:09:32.5199591Z [ RUN ] FunctionalTest.isinf 2023-01-11T22:09:32.5203805Z [ OK ] FunctionalTest.isinf (0 ms) 2023-01-11T22:09:32.5204107Z [ RUN ] FunctionalTest.AllClose 2023-01-11T22:09:32.5267514Z [ OK ] FunctionalTest.AllClose (6 ms) 2023-01-11T22:09:32.5267858Z [ RUN ] FunctionalTest.BCEWithLogitsLoss 2023-01-11T22:09:32.5304989Z [ OK ] FunctionalTest.BCEWithLogitsLoss (3 ms) 2023-01-11T22:09:32.5305607Z [----------] 132 tests from FunctionalTest (105 ms total) 2023-01-11T22:09:32.5305868Z 2023-01-11T22:09:32.5306023Z [----------] 1 test from IntegrationTest 2023-01-11T22:09:32.5306315Z [ RUN ] IntegrationTest.CartPole 2023-01-11T22:09:45.0737636Z [ OK ] IntegrationTest.CartPole (12543 ms) 2023-01-11T22:09:45.0738305Z [----------] 1 test from IntegrationTest (12543 ms total) 2023-01-11T22:09:45.0738548Z 2023-01-11T22:09:45.0738693Z [----------] 9 tests from InitTest 2023-01-11T22:09:45.0739012Z [ RUN ] InitTest.ProducesPyTorchValues_XavierUniform 2023-01-11T22:09:45.0768985Z [ OK ] InitTest.ProducesPyTorchValues_XavierUniform (2 ms) 2023-01-11T22:09:45.0769793Z [ RUN ] InitTest.ProducesPyTorchValues_XavierNormal 2023-01-11T22:09:45.0781972Z [ OK ] InitTest.ProducesPyTorchValues_XavierNormal (1 ms) 2023-01-11T22:09:45.0782697Z [ RUN ] InitTest.ProducesPyTorchValues_KaimingNormal 2023-01-11T22:09:45.0796553Z [ OK ] InitTest.ProducesPyTorchValues_KaimingNormal (1 ms) 2023-01-11T22:09:45.0797226Z [ RUN ] InitTest.ProducesPyTorchValues_KaimingUniform 2023-01-11T22:09:45.0810033Z [ OK ] InitTest.ProducesPyTorchValues_KaimingUniform (1 ms) 2023-01-11T22:09:45.0810762Z [ RUN ] InitTest.CanInitializeTensorThatRequiresGrad 2023-01-11T22:09:45.0837228Z [ OK ] InitTest.CanInitializeTensorThatRequiresGrad (2 ms) 2023-01-11T22:09:45.0837728Z [ RUN ] InitTest.CalculateGainWithTanh 2023-01-11T22:09:45.0838122Z [ OK ] InitTest.CalculateGainWithTanh (0 ms) 2023-01-11T22:09:45.0838480Z [ RUN ] InitTest.CalculateGainWithRelu 2023-01-11T22:09:45.0838850Z [ OK ] InitTest.CalculateGainWithRelu (0 ms) 2023-01-11T22:09:45.0839230Z [ RUN ] InitTest.CalculateGainWithLeakyRelu 2023-01-11T22:09:45.0839619Z [ OK ] InitTest.CalculateGainWithLeakyRelu (0 ms) 2023-01-11T22:09:45.0840033Z [ RUN ] InitTest.CanInitializeCnnWithOrthogonal 2023-01-11T22:09:45.0851912Z [ OK ] InitTest.CanInitializeCnnWithOrthogonal (1 ms) 2023-01-11T22:09:45.0852530Z [----------] 9 tests from InitTest (11 ms total) 2023-01-11T22:09:45.0852783Z 2023-01-11T22:09:45.0853310Z [----------] 6 tests from TorchScriptTest 2023-01-11T22:09:45.0853995Z [ RUN ] TorchScriptTest.CanCompileMultipleFunctions 2023-01-11T22:09:45.1232263Z [ OK ] TorchScriptTest.CanCompileMultipleFunctions (37 ms) 2023-01-11T22:09:45.1233048Z [ RUN ] TorchScriptTest.TestNestedIValueModuleArgMatching 2023-01-11T22:09:45.1270272Z [ OK ] TorchScriptTest.TestNestedIValueModuleArgMatching (3 ms) 2023-01-11T22:09:45.1270992Z [ RUN ] TorchScriptTest.TestDictArgMatching 2023-01-11T22:09:45.1273956Z [ OK ] TorchScriptTest.TestDictArgMatching (0 ms) 2023-01-11T22:09:45.1274573Z [ RUN ] TorchScriptTest.TestTupleArgMatching 2023-01-11T22:09:45.1275455Z [ OK ] TorchScriptTest.TestTupleArgMatching (0 ms) 2023-01-11T22:09:45.1276285Z [ RUN ] TorchScriptTest.TestOptionalArgMatching 2023-01-11T22:09:45.1281847Z [ OK ] TorchScriptTest.TestOptionalArgMatching (0 ms) 2023-01-11T22:09:45.1282403Z [ RUN ] TorchScriptTest.TestPickle 2023-01-11T22:09:45.1283001Z [ OK ] TorchScriptTest.TestPickle (0 ms) 2023-01-11T22:09:45.1283645Z [----------] 6 tests from TorchScriptTest (43 ms total) 2023-01-11T22:09:45.1283969Z 2023-01-11T22:09:45.1284269Z [----------] 3 tests from MakeUniqueTest 2023-01-11T22:09:45.1284914Z [ RUN ] MakeUniqueTest.ForwardRvaluesCorrectly 2023-01-11T22:09:45.1285681Z [ OK ] MakeUniqueTest.ForwardRvaluesCorrectly (0 ms) 2023-01-11T22:09:45.1286434Z [ RUN ] MakeUniqueTest.ForwardLvaluesCorrectly 2023-01-11T22:09:45.1287183Z [ OK ] MakeUniqueTest.ForwardLvaluesCorrectly (0 ms) 2023-01-11T22:09:45.1287981Z [ RUN ] MakeUniqueTest.CanConstructUniquePtrOfArray 2023-01-11T22:09:45.1288828Z [ OK ] MakeUniqueTest.CanConstructUniquePtrOfArray (0 ms) 2023-01-11T22:09:45.1289916Z [----------] 3 tests from MakeUniqueTest (0 ms total) 2023-01-11T22:09:45.1290181Z 2023-01-11T22:09:45.1290441Z [----------] 2 tests from MetaTensorTest 2023-01-11T22:09:45.1290956Z [ RUN ] MetaTensorTest.MetaDeviceApi 2023-01-11T22:09:45.1291537Z [ OK ] MetaTensorTest.MetaDeviceApi (0 ms) 2023-01-11T22:09:45.1292090Z [ RUN ] MetaTensorTest.MetaNamespaceApi 2023-01-11T22:09:45.1292678Z [ OK ] MetaTensorTest.MetaNamespaceApi (0 ms) 2023-01-11T22:09:45.1293267Z [----------] 2 tests from MetaTensorTest (0 ms total) 2023-01-11T22:09:45.1293538Z 2023-01-11T22:09:45.1293777Z [----------] 2 tests from UtilsTest 2023-01-11T22:09:45.1294209Z [ RUN ] UtilsTest.WarnOnce 2023-01-11T22:09:45.1294675Z [ OK ] UtilsTest.WarnOnce (0 ms) 2023-01-11T22:09:45.1295232Z [ RUN ] UtilsTest.AmbiguousOperatorDefaults 2023-01-11T22:09:45.1295849Z [ OK ] UtilsTest.AmbiguousOperatorDefaults (0 ms) 2023-01-11T22:09:45.1296449Z [----------] 2 tests from UtilsTest (0 ms total) 2023-01-11T22:09:45.1296700Z 2023-01-11T22:09:45.1296942Z [----------] 1 test from NoGradTest 2023-01-11T22:09:45.1297446Z [ RUN ] NoGradTest.SetsGradModeCorrectly 2023-01-11T22:09:45.1320647Z [ OK ] NoGradTest.SetsGradModeCorrectly (3 ms) 2023-01-11T22:09:45.1321198Z [----------] 1 test from NoGradTest (3 ms total) 2023-01-11T22:09:45.1321427Z 2023-01-11T22:09:45.1321679Z [----------] 3 tests from AutogradTest 2023-01-11T22:09:45.1322157Z [ RUN ] AutogradTest.CanTakeDerivatives 2023-01-11T22:09:45.1322713Z [ OK ] AutogradTest.CanTakeDerivatives (0 ms) 2023-01-11T22:09:45.1323356Z [ RUN ] AutogradTest.CanTakeDerivativesOfZeroDimTensors 2023-01-11T22:09:45.1324071Z [ OK ] AutogradTest.CanTakeDerivativesOfZeroDimTensors (0 ms) 2023-01-11T22:09:45.1324708Z [ RUN ] AutogradTest.CanPassCustomGradientInputs 2023-01-11T22:09:45.1325743Z [ OK ] AutogradTest.CanPassCustomGradientInputs (0 ms) 2023-01-11T22:09:45.1326406Z [----------] 3 tests from AutogradTest (0 ms total) 2023-01-11T22:09:45.1326681Z 2023-01-11T22:09:45.1326972Z [----------] 1 test from OptionalArrayRefTest 2023-01-11T22:09:45.1327615Z [ RUN ] OptionalArrayRefTest.DanglingPointerFix 2023-01-11T22:09:45.1328366Z [ OK ] OptionalArrayRefTest.DanglingPointerFix (0 ms) 2023-01-11T22:09:45.1329322Z [----------] 1 test from OptionalArrayRefTest (0 ms total) 2023-01-11T22:09:45.1329650Z 2023-01-11T22:09:45.1329939Z [----------] 52 tests from ModuleTest 2023-01-11T22:09:45.1330620Z [ RUN ] ModuleTest.CanEnableAndDisableTrainingMode 2023-01-11T22:09:45.1331596Z [ OK ] ModuleTest.CanEnableAndDisableTrainingMode (0 ms) 2023-01-11T22:09:45.1332326Z [ RUN ] ModuleTest.ZeroGrad 2023-01-11T22:09:45.1332820Z [ OK ] ModuleTest.ZeroGrad (0 ms) 2023-01-11T22:09:45.1333361Z [ RUN ] ModuleTest.ZeroGradWithUndefined 2023-01-11T22:09:45.1333949Z [ OK ] ModuleTest.ZeroGradWithUndefined (0 ms) 2023-01-11T22:09:45.1334668Z [ RUN ] ModuleTest.RegisterModuleThrowsForEmptyOrDottedName 2023-01-11T22:09:45.1355397Z [ OK ] ModuleTest.RegisterModuleThrowsForEmptyOrDottedName (2 ms) 2023-01-11T22:09:45.1356275Z [ RUN ] ModuleTest.RegisterModuleThrowsForDuplicateModuleName 2023-01-11T22:09:45.1375383Z [ OK ] ModuleTest.RegisterModuleThrowsForDuplicateModuleName (1 ms) 2023-01-11T22:09:45.1376256Z [ RUN ] ModuleTest.ReplaceModuleThrowsForUnknownModuleName 2023-01-11T22:09:45.1388845Z [ OK ] ModuleTest.ReplaceModuleThrowsForUnknownModuleName (1 ms) 2023-01-11T22:09:45.1389536Z [ RUN ] ModuleTest.ReplaceModule 2023-01-11T22:09:45.1390054Z [ OK ] ModuleTest.ReplaceModule (0 ms) 2023-01-11T22:09:45.1390592Z [ RUN ] ModuleTest.UnregisterModule 2023-01-11T22:09:45.1406497Z [ OK ] ModuleTest.UnregisterModule (1 ms) 2023-01-11T22:09:45.1407242Z [ RUN ] ModuleTest.RegisterParameterThrowsForEmptyOrDottedName 2023-01-11T22:09:45.1439470Z [ OK ] ModuleTest.RegisterParameterThrowsForEmptyOrDottedName (3 ms) 2023-01-11T22:09:45.1440384Z [ RUN ] ModuleTest.RegisterParameterThrowsForDuplicateModuleName 2023-01-11T22:09:45.1462168Z [ OK ] ModuleTest.RegisterParameterThrowsForDuplicateModuleName (2 ms) 2023-01-11T22:09:45.1463089Z [ RUN ] ModuleTest.RegisterParameterUndefinedTensor 2023-01-11T22:09:45.1463807Z [ OK ] ModuleTest.RegisterParameterUndefinedTensor (0 ms) 2023-01-11T22:09:45.1464591Z [ RUN ] ModuleTest.RegisterBufferThrowsForEmptyOrDottedName 2023-01-11T22:09:45.1495536Z [ OK ] ModuleTest.RegisterBufferThrowsForEmptyOrDottedName (3 ms) 2023-01-11T22:09:45.1496393Z [ RUN ] ModuleTest.RegisterBufferThrowsForDuplicateModuleName 2023-01-11T22:09:45.1518448Z [ OK ] ModuleTest.RegisterBufferThrowsForDuplicateModuleName (2 ms) 2023-01-11T22:09:45.1519149Z [ RUN ] ModuleTest.CanGetName 2023-01-11T22:09:45.1519653Z [ OK ] ModuleTest.CanGetName (0 ms) 2023-01-11T22:09:45.1520200Z [ RUN ] ModuleTest.AsCastsModulesCorrectly 2023-01-11T22:09:45.1520820Z [ OK ] ModuleTest.AsCastsModulesCorrectly (0 ms) 2023-01-11T22:09:45.1521568Z [ RUN ] ModuleTest.DeviceOrDtypeConversionSkipsUndefinedTensor 2023-01-11T22:09:45.1522428Z [ OK ] ModuleTest.DeviceOrDtypeConversionSkipsUndefinedTensor (0 ms) 2023-01-11T22:09:45.1523331Z [ RUN ] ModuleTest.ParametersAndBuffersAccessorSkipsUndefinedTensor 2023-01-11T22:09:45.1524277Z [ OK ] ModuleTest.ParametersAndBuffersAccessorSkipsUndefinedTensor (0 ms) 2023-01-11T22:09:45.1525385Z [ RUN ] ModuleTest.CallingCloneOnModuleThatDoesNotOverrideCloneThrows 2023-01-11T22:09:45.1538300Z [ OK ] ModuleTest.CallingCloneOnModuleThatDoesNotOverrideCloneThrows (1 ms) 2023-01-11T22:09:45.1539238Z [ RUN ] ModuleTest.CallingCloneOnModuleThatDoesOverrideCloneDoesNotThrow 2023-01-11T22:09:45.1540210Z [ OK ] ModuleTest.CallingCloneOnModuleThatDoesOverrideCloneDoesNotThrow (0 ms) 2023-01-11T22:09:45.1541176Z [ RUN ] ModuleTest.CloneCreatesDistinctParameters 2023-01-11T22:09:45.1546702Z [ OK ] ModuleTest.CloneCreatesDistinctParameters (0 ms) 2023-01-11T22:09:45.1547411Z [ RUN ] ModuleTest.ClonePreservesExternalReferences 2023-01-11T22:09:45.1548603Z [ OK ] ModuleTest.ClonePreservesExternalReferences (0 ms) 2023-01-11T22:09:45.1549591Z [ RUN ] ModuleTest.CloneCopiesTheValuesOfVariablesOfSubmodules 2023-01-11T22:09:45.1550258Z [ OK ] ModuleTest.CloneCopiesTheValuesOfVariablesOfSubmodules (0 ms) 2023-01-11T22:09:45.1550770Z [ RUN ] ModuleTest.HasCorrectNumberOfParameters 2023-01-11T22:09:45.1551270Z [ OK ] ModuleTest.HasCorrectNumberOfParameters (0 ms) 2023-01-11T22:09:45.1551720Z [ RUN ] ModuleTest.ContainsParametersWithTheCorrectName 2023-01-11T22:09:45.1552195Z [ OK ] ModuleTest.ContainsParametersWithTheCorrectName (0 ms) 2023-01-11T22:09:45.1552582Z [ RUN ] ModuleTest.HasCorrectNumberOfBuffers 2023-01-11T22:09:45.1552940Z [ OK ] ModuleTest.HasCorrectNumberOfBuffers (0 ms) 2023-01-11T22:09:45.1553312Z [ RUN ] ModuleTest.ContainsBuffersWithTheCorrectName 2023-01-11T22:09:45.1553722Z [ OK ] ModuleTest.ContainsBuffersWithTheCorrectName (0 ms) 2023-01-11T22:09:45.1554238Z [ RUN ] ModuleTest.DefaultConstructorOfModuleHolderCallsDefaultConstructorOfImpl 2023-01-11T22:09:45.1554838Z [ OK ] ModuleTest.DefaultConstructorOfModuleHolderCallsDefaultConstructorOfImpl (0 ms) 2023-01-11T22:09:45.1555435Z [ RUN ] ModuleTest.ValueConstructorOfModuleHolderCallsCorrectConstructorInImpl 2023-01-11T22:09:45.1556033Z [ OK ] ModuleTest.ValueConstructorOfModuleHolderCallsCorrectConstructorInImpl (0 ms) 2023-01-11T22:09:45.1556587Z [ RUN ] ModuleTest.NullptrConstructorLeavesTheModuleHolderInEmptyState 2023-01-11T22:09:45.1563474Z [ OK ] ModuleTest.NullptrConstructorLeavesTheModuleHolderInEmptyState (1 ms) 2023-01-11T22:09:45.1564174Z [ RUN ] ModuleTest.ModulesReturnsExpectedSubmodulesForFlatModel 2023-01-11T22:09:45.1564753Z [ OK ] ModuleTest.ModulesReturnsExpectedSubmodulesForFlatModel (0 ms) 2023-01-11T22:09:45.1565523Z [ RUN ] ModuleTest.ModulesExcludesSelfWhenIncludeSelfSetToFalse 2023-01-11T22:09:45.1566269Z [ OK ] ModuleTest.ModulesExcludesSelfWhenIncludeSelfSetToFalse (0 ms) 2023-01-11T22:09:45.1567013Z [ RUN ] ModuleTest.NamedModulesReturnsExpectedNamedSubmodulesForFlatModel 2023-01-11T22:09:45.1567901Z [ OK ] ModuleTest.NamedModulesReturnsExpectedNamedSubmodulesForFlatModel (0 ms) 2023-01-11T22:09:45.1568819Z [ RUN ] ModuleTest.NamedModulesExcludesSelfWhenIncludeSelfSetToFalse 2023-01-11T22:09:45.1569812Z [ OK ] ModuleTest.NamedModulesExcludesSelfWhenIncludeSelfSetToFalse (0 ms) 2023-01-11T22:09:45.1570714Z [ RUN ] ModuleTest.ChildrenReturnsExpectedSubmodulesForFlatModel 2023-01-11T22:09:45.1571607Z [ OK ] ModuleTest.ChildrenReturnsExpectedSubmodulesForFlatModel (0 ms) 2023-01-11T22:09:45.1572573Z [ RUN ] ModuleTest.NamedChildrenReturnsExpectedNamedSubmodulesForFlatModel 2023-01-11T22:09:45.1573610Z [ OK ] ModuleTest.NamedChildrenReturnsExpectedNamedSubmodulesForFlatModel (0 ms) 2023-01-11T22:09:45.1574147Z [ RUN ] ModuleTest.ParametersReturnsExpectedTensorsForFlatModel 2023-01-11T22:09:45.1574762Z [ OK ] ModuleTest.ParametersReturnsExpectedTensorsForFlatModel (0 ms) 2023-01-11T22:09:45.1575250Z [ RUN ] ModuleTest.NamedParametersReturnsExpectedTensorsForFlatModel 2023-01-11T22:09:45.1575772Z [ OK ] ModuleTest.NamedParametersReturnsExpectedTensorsForFlatModel (0 ms) 2023-01-11T22:09:45.1576259Z [ RUN ] ModuleTest.BuffersReturnsExpectedTensorsForFlatModel 2023-01-11T22:09:45.1576708Z [ OK ] ModuleTest.BuffersReturnsExpectedTensorsForFlatModel (0 ms) 2023-01-11T22:09:45.1577183Z [ RUN ] ModuleTest.NamedBuffersReturnsExpectedTensorsForFlatModel 2023-01-11T22:09:45.1577680Z [ OK ] ModuleTest.NamedBuffersReturnsExpectedTensorsForFlatModel (0 ms) 2023-01-11T22:09:45.1578211Z [ RUN ] ModuleTest.ModulesReturnsExpectedSubmodulesForDeepModel 2023-01-11T22:09:45.1578706Z [ OK ] ModuleTest.ModulesReturnsExpectedSubmodulesForDeepModel (0 ms) 2023-01-11T22:09:45.1579225Z [ RUN ] ModuleTest.NamedModulesReturnsExpectedNamedSubmodulesForDeepModel 2023-01-11T22:09:45.1579777Z [ OK ] ModuleTest.NamedModulesReturnsExpectedNamedSubmodulesForDeepModel (0 ms) 2023-01-11T22:09:45.1580295Z [ RUN ] ModuleTest.ChildrensReturnsExpectedSubmodulesForDeepModel 2023-01-11T22:09:45.1580777Z [ OK ] ModuleTest.ChildrensReturnsExpectedSubmodulesForDeepModel (0 ms) 2023-01-11T22:09:45.1581308Z [ RUN ] ModuleTest.NamedChildrensReturnsExpectedNamedSubmodulesForDeepModel 2023-01-11T22:09:45.1581879Z [ OK ] ModuleTest.NamedChildrensReturnsExpectedNamedSubmodulesForDeepModel (0 ms) 2023-01-11T22:09:45.1582330Z [ RUN ] ModuleTest.ModuleApplyIteratesCorreclty 2023-01-11T22:09:45.1582807Z [ OK ] ModuleTest.ModuleApplyIteratesCorreclty (0 ms) 2023-01-11T22:09:45.1583204Z [ RUN ] ModuleTest.ConstModuleApplyIteratesCorreclty 2023-01-11T22:09:45.1583623Z [ OK ] ModuleTest.ConstModuleApplyIteratesCorreclty (0 ms) 2023-01-11T22:09:45.1584017Z [ RUN ] ModuleTest.NamedModuleApplyIteratesCorreclty 2023-01-11T22:09:45.1584428Z [ OK ] ModuleTest.NamedModuleApplyIteratesCorreclty (0 ms) 2023-01-11T22:09:45.1584853Z [ RUN ] ModuleTest.ConstNamedModuleApplyIteratesCorreclty 2023-01-11T22:09:45.1585284Z [ OK ] ModuleTest.ConstNamedModuleApplyIteratesCorreclty (0 ms) 2023-01-11T22:09:45.1585716Z [ RUN ] ModuleTest.ModulePointerApplyIteratesCorreclty 2023-01-11T22:09:45.1586142Z [ OK ] ModuleTest.ModulePointerApplyIteratesCorreclty (0 ms) 2023-01-11T22:09:45.1586576Z [ RUN ] ModuleTest.NamedModulePointerApplyIteratesCorreclty 2023-01-11T22:09:45.1587018Z [ OK ] ModuleTest.NamedModulePointerApplyIteratesCorreclty (0 ms) 2023-01-11T22:09:45.1587507Z [ RUN ] ModuleTest.ThrowsWhenAttemptingtoGetTopLevelModuleAsSharedPtr 2023-01-11T22:09:45.1601195Z [ OK ] ModuleTest.ThrowsWhenAttemptingtoGetTopLevelModuleAsSharedPtr (2 ms) 2023-01-11T22:09:45.1601826Z [ RUN ] ModuleTest.PrettyPrint 2023-01-11T22:09:45.1602135Z [ OK ] ModuleTest.PrettyPrint (0 ms) 2023-01-11T22:09:45.1602548Z [ RUN ] ModuleTest.CanCallForwardOnNonTensorForwardThroughPimpl 2023-01-11T22:09:45.1603033Z [ OK ] ModuleTest.CanCallForwardOnNonTensorForwardThroughPimpl (0 ms) 2023-01-11T22:09:45.1603429Z [----------] 52 tests from ModuleTest (27 ms total) 2023-01-11T22:09:45.1603583Z 2023-01-11T22:09:45.1603736Z [----------] 11 tests from ModuleDictTest 2023-01-11T22:09:45.1604047Z [ RUN ] ModuleDictTest.ConstructsFromList 2023-01-11T22:09:45.1604381Z [ OK ] ModuleDictTest.ConstructsFromList (0 ms) 2023-01-11T22:09:45.1604745Z [ RUN ] ModuleDictTest.ConstructsFromordereddict 2023-01-11T22:09:45.1605126Z [ OK ] ModuleDictTest.ConstructsFromordereddict (0 ms) 2023-01-11T22:09:45.1605606Z [ RUN ] ModuleDictTest.UpdatePopClearContains 2023-01-11T22:09:45.1614605Z [ OK ] ModuleDictTest.UpdatePopClearContains (1 ms) 2023-01-11T22:09:45.1615211Z [ RUN ] ModuleDictTest.UpdateExist 2023-01-11T22:09:45.1615553Z [ OK ] ModuleDictTest.UpdateExist (0 ms) 2023-01-11T22:09:45.1615827Z [ RUN ] ModuleDictTest.Keys 2023-01-11T22:09:45.1626984Z [ OK ] ModuleDictTest.Keys (1 ms) 2023-01-11T22:09:45.1627365Z [ RUN ] ModuleDictTest.Values 2023-01-11T22:09:45.1627670Z [ OK ] ModuleDictTest.Values (0 ms) 2023-01-11T22:09:45.1628103Z [ RUN ] ModuleDictTest.SanityCheckForHoldingStandardModules 2023-01-11T22:09:45.1629394Z [ OK ] ModuleDictTest.SanityCheckForHoldingStandardModules (0 ms) 2023-01-11T22:09:45.1630130Z [ RUN ] ModuleDictTest.HasReferenceSemantics 2023-01-11T22:09:45.1630520Z [ OK ] ModuleDictTest.HasReferenceSemantics (0 ms) 2023-01-11T22:09:45.1630844Z [ RUN ] ModuleDictTest.IsCloneable 2023-01-11T22:09:45.1633639Z [ OK ] ModuleDictTest.IsCloneable (0 ms) 2023-01-11T22:09:45.1634359Z [ RUN ] ModuleDictTest.RegistersElementsAsSubmodules 2023-01-11T22:09:45.1635147Z [ OK ] ModuleDictTest.RegistersElementsAsSubmodules (0 ms) 2023-01-11T22:09:45.1635775Z [ RUN ] ModuleDictTest.PrettyPrintModuleDict 2023-01-11T22:09:45.1636651Z [ OK ] ModuleDictTest.PrettyPrintModuleDict (0 ms) 2023-01-11T22:09:45.1637294Z [----------] 11 tests from ModuleDictTest (3 ms total) 2023-01-11T22:09:45.1637538Z 2023-01-11T22:09:45.1637808Z [----------] 15 tests from ModuleListTest 2023-01-11T22:09:45.1638447Z [ RUN ] ModuleListTest.ConstructsFromSharedPointer 2023-01-11T22:09:45.1638877Z [ OK ] ModuleListTest.ConstructsFromSharedPointer (0 ms) 2023-01-11T22:09:45.1639258Z [ RUN ] ModuleListTest.ConstructsFromConcreteType 2023-01-11T22:09:45.1639644Z [ OK ] ModuleListTest.ConstructsFromConcreteType (0 ms) 2023-01-11T22:09:45.1640027Z [ RUN ] ModuleListTest.ConstructsFromModuleHolder 2023-01-11T22:09:45.1640416Z [ OK ] ModuleListTest.ConstructsFromModuleHolder (0 ms) 2023-01-11T22:09:45.1640773Z [ RUN ] ModuleListTest.PushBackAddsAnElement 2023-01-11T22:09:45.1641131Z [ OK ] ModuleListTest.PushBackAddsAnElement (0 ms) 2023-01-11T22:09:45.1641452Z [ RUN ] ModuleListTest.Insertion 2023-01-11T22:09:45.1641735Z [ OK ] ModuleListTest.Insertion (0 ms) 2023-01-11T22:09:45.1642034Z [ RUN ] ModuleListTest.AccessWithAt 2023-01-11T22:09:45.1662423Z [ OK ] ModuleListTest.AccessWithAt (2 ms) 2023-01-11T22:09:45.1663031Z [ RUN ] ModuleListTest.AccessWithPtr 2023-01-11T22:09:45.1685059Z [ OK ] ModuleListTest.AccessWithPtr (2 ms) 2023-01-11T22:09:45.1685747Z [ RUN ] ModuleListTest.SanityCheckForHoldingStandardModules 2023-01-11T22:09:45.1686614Z [ OK ] ModuleListTest.SanityCheckForHoldingStandardModules (0 ms) 2023-01-11T22:09:45.1687424Z [ RUN ] ModuleListTest.ExtendPushesModulesFromOtherModuleList 2023-01-11T22:09:45.1688258Z [ OK ] ModuleListTest.ExtendPushesModulesFromOtherModuleList (0 ms) 2023-01-11T22:09:45.1688666Z [ RUN ] ModuleListTest.HasReferenceSemantics 2023-01-11T22:09:45.1689155Z [ OK ] ModuleListTest.HasReferenceSemantics (0 ms) 2023-01-11T22:09:45.1689467Z [ RUN ] ModuleListTest.IsCloneable 2023-01-11T22:09:45.1692156Z [ OK ] ModuleListTest.IsCloneable (0 ms) 2023-01-11T22:09:45.1692536Z [ RUN ] ModuleListTest.RegistersElementsAsSubmodules 2023-01-11T22:09:45.1692994Z [ OK ] ModuleListTest.RegistersElementsAsSubmodules (0 ms) 2023-01-11T22:09:45.1693565Z [ RUN ] ModuleListTest.NestingIsPossible 2023-01-11T22:09:45.1694087Z [ OK ] ModuleListTest.NestingIsPossible (0 ms) 2023-01-11T22:09:45.1694566Z [ RUN ] ModuleListTest.PrettyPrintModuleList 2023-01-11T22:09:45.1695078Z [ OK ] ModuleListTest.PrettyPrintModuleList (0 ms) 2023-01-11T22:09:45.1695428Z [ RUN ] ModuleListTest.RangeBasedForLoop 2023-01-11T22:09:45.1695773Z [ OK ] ModuleListTest.RangeBasedForLoop (0 ms) 2023-01-11T22:09:45.1696102Z [----------] 15 tests from ModuleListTest (5 ms total) 2023-01-11T22:09:45.1696259Z 2023-01-11T22:09:45.1696409Z [----------] 256 tests from ModulesTest 2023-01-11T22:09:45.1696673Z [ RUN ] ModulesTest.Conv1d 2023-01-11T22:09:45.1715916Z [ OK ] ModulesTest.Conv1d (2 ms) 2023-01-11T22:09:45.1716286Z [ RUN ] ModulesTest.Conv1dSameStrided 2023-01-11T22:09:45.1752281Z [ OK ] ModulesTest.Conv1dSameStrided (3 ms) 2023-01-11T22:09:45.1752835Z [ RUN ] ModulesTest.Conv2dEven 2023-01-11T22:09:45.1756451Z [ OK ] ModulesTest.Conv2dEven (0 ms) 2023-01-11T22:09:45.1756984Z [ RUN ] ModulesTest.Conv2dUneven 2023-01-11T22:09:45.1759490Z [ OK ] ModulesTest.Conv2dUneven (0 ms) 2023-01-11T22:09:45.1760036Z [ RUN ] ModulesTest.Conv2dSameStrided 2023-01-11T22:09:45.1806711Z [ OK ] ModulesTest.Conv2dSameStrided (4 ms) 2023-01-11T22:09:45.1807235Z [ RUN ] ModulesTest.Conv3d 2023-01-11T22:09:45.1812123Z [ OK ] ModulesTest.Conv3d (0 ms) 2023-01-11T22:09:45.1812643Z [ RUN ] ModulesTest.Conv3dSameStrided 2023-01-11T22:09:45.1874925Z [ OK ] ModulesTest.Conv3dSameStrided (6 ms) 2023-01-11T22:09:45.1875507Z [ RUN ] ModulesTest.ConvTranspose1d 2023-01-11T22:09:45.1878538Z [ OK ] ModulesTest.ConvTranspose1d (0 ms) 2023-01-11T22:09:45.1878873Z [ RUN ] ModulesTest.ConvTranspose2dEven 2023-01-11T22:09:45.1883667Z [ OK ] ModulesTest.ConvTranspose2dEven (0 ms) 2023-01-11T22:09:45.1884008Z [ RUN ] ModulesTest.ConvTranspose2dUneven 2023-01-11T22:09:45.1887731Z [ OK ] ModulesTest.ConvTranspose2dUneven (0 ms) 2023-01-11T22:09:45.1888061Z [ RUN ] ModulesTest.ConvTranspose3d 2023-01-11T22:09:45.1891617Z [ OK ] ModulesTest.ConvTranspose3d (0 ms) 2023-01-11T22:09:45.1891901Z [ RUN ] ModulesTest.MaxPool1d 2023-01-11T22:09:45.1910180Z [ OK ] ModulesTest.MaxPool1d (1 ms) 2023-01-11T22:09:45.1910616Z [ RUN ] ModulesTest.MaxPool1dReturnIndices 2023-01-11T22:09:45.1911279Z [ OK ] ModulesTest.MaxPool1dReturnIndices (0 ms) 2023-01-11T22:09:45.1911718Z [ RUN ] ModulesTest.MaxPool2dEven 2023-01-11T22:09:45.1913040Z [ OK ] ModulesTest.MaxPool2dEven (0 ms) 2023-01-11T22:09:45.1913460Z [ RUN ] ModulesTest.MaxPool2dUneven 2023-01-11T22:09:45.1914645Z [ OK ] ModulesTest.MaxPool2dUneven (0 ms) 2023-01-11T22:09:45.1915071Z [ RUN ] ModulesTest.MaxPool2dReturnIndices 2023-01-11T22:09:45.1916286Z [ OK ] ModulesTest.MaxPool2dReturnIndices (0 ms) 2023-01-11T22:09:45.1916853Z [ RUN ] ModulesTest.MaxPool3d 2023-01-11T22:09:45.1918139Z [ OK ] ModulesTest.MaxPool3d (0 ms) 2023-01-11T22:09:45.1918722Z [ RUN ] ModulesTest.MaxPool3dReturnIndices 2023-01-11T22:09:45.1919684Z [ OK ] ModulesTest.MaxPool3dReturnIndices (0 ms) 2023-01-11T22:09:45.1920244Z [ RUN ] ModulesTest.AvgPool1d 2023-01-11T22:09:45.1921510Z [ OK ] ModulesTest.AvgPool1d (0 ms) 2023-01-11T22:09:45.1922052Z [ RUN ] ModulesTest.AvgPool2dEven 2023-01-11T22:09:45.1922901Z [ OK ] ModulesTest.AvgPool2dEven (0 ms) 2023-01-11T22:09:45.1923560Z [ RUN ] ModulesTest.AvgPool2dUneven 2023-01-11T22:09:45.1924087Z [ OK ] ModulesTest.AvgPool2dUneven (0 ms) 2023-01-11T22:09:45.1924627Z [ RUN ] ModulesTest.AvgPool3d 2023-01-11T22:09:45.1925444Z [ OK ] ModulesTest.AvgPool3d (0 ms) 2023-01-11T22:09:45.1925991Z [ RUN ] ModulesTest.FractionalMaxPool2d 2023-01-11T22:09:45.1927359Z [ OK ] ModulesTest.FractionalMaxPool2d (0 ms) 2023-01-11T22:09:45.1928005Z [ RUN ] ModulesTest.FractionalMaxPool2dReturnIndices 2023-01-11T22:09:45.1928848Z [ OK ] ModulesTest.FractionalMaxPool2dReturnIndices (0 ms) 2023-01-11T22:09:45.1929618Z [ RUN ] ModulesTest.FractionalMaxPool3d 2023-01-11T22:09:45.1931158Z [ OK ] ModulesTest.FractionalMaxPool3d (0 ms) 2023-01-11T22:09:45.1931928Z [ RUN ] ModulesTest.FractionalMaxPool3dReturnIndices 2023-01-11T22:09:45.1932618Z [ OK ] ModulesTest.FractionalMaxPool3dReturnIndices (0 ms) 2023-01-11T22:09:45.1933170Z [ RUN ] ModulesTest.LPPool1d 2023-01-11T22:09:45.1934046Z [ OK ] ModulesTest.LPPool1d (0 ms) 2023-01-11T22:09:45.1934538Z [ RUN ] ModulesTest.LPPool2d 2023-01-11T22:09:45.1935378Z [ OK ] ModulesTest.LPPool2d (0 ms) 2023-01-11T22:09:45.1935768Z [ RUN ] ModulesTest.Identity 2023-01-11T22:09:45.1936640Z [ OK ] ModulesTest.Identity (0 ms) 2023-01-11T22:09:45.1936922Z [ RUN ] ModulesTest.Flatten 2023-01-11T22:09:45.1939352Z [ OK ] ModulesTest.Flatten (0 ms) 2023-01-11T22:09:45.1939887Z [ RUN ] ModulesTest.Unflatten 2023-01-11T22:09:45.1940595Z [W TensorImpl.h:1816] Warning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (function operator()) 2023-01-11T22:09:45.1941088Z [ OK ] ModulesTest.Unflatten (0 ms) 2023-01-11T22:09:45.1941463Z [ RUN ] ModulesTest.AdaptiveMaxPool1d 2023-01-11T22:09:45.1969830Z [ OK ] ModulesTest.AdaptiveMaxPool1d (0 ms) 2023-01-11T22:09:45.1970372Z [ RUN ] ModulesTest.AdaptiveMaxPool1dReturnIndices 2023-01-11T22:09:45.1970827Z [ OK ] ModulesTest.AdaptiveMaxPool1dReturnIndices (0 ms) 2023-01-11T22:09:45.1971245Z [ RUN ] ModulesTest.AdaptiveMaxPool2dEven 2023-01-11T22:09:45.1971583Z [ OK ] ModulesTest.AdaptiveMaxPool2dEven (0 ms) 2023-01-11T22:09:45.1971985Z [ RUN ] ModulesTest.AdaptiveMaxPool2dUneven 2023-01-11T22:09:45.1972336Z [ OK ] ModulesTest.AdaptiveMaxPool2dUneven (0 ms) 2023-01-11T22:09:45.1972722Z [ RUN ] ModulesTest.AdaptiveMaxPool2dReturnIndicesEven 2023-01-11T22:09:45.1973139Z [ OK ] ModulesTest.AdaptiveMaxPool2dReturnIndicesEven (0 ms) 2023-01-11T22:09:45.1973559Z [ RUN ] ModulesTest.AdaptiveMaxPool2dReturnIndicesUneven 2023-01-11T22:09:45.1973992Z [ OK ] ModulesTest.AdaptiveMaxPool2dReturnIndicesUneven (0 ms) 2023-01-11T22:09:45.1974344Z [ RUN ] ModulesTest.AdaptiveMaxPool3d 2023-01-11T22:09:45.1974665Z [ OK ] ModulesTest.AdaptiveMaxPool3d (0 ms) 2023-01-11T22:09:45.1975017Z [ RUN ] ModulesTest.AdaptiveMaxPool3dReturnIndices 2023-01-11T22:09:45.1975396Z [ OK ] ModulesTest.AdaptiveMaxPool3dReturnIndices (0 ms) 2023-01-11T22:09:45.1975744Z [ RUN ] ModulesTest.AdaptiveAvgPool1d 2023-01-11T22:09:45.1976064Z [ OK ] ModulesTest.AdaptiveAvgPool1d (0 ms) 2023-01-11T22:09:45.1976389Z [ RUN ] ModulesTest.AdaptiveAvgPool2dEven 2023-01-11T22:09:45.1976718Z [ OK ] ModulesTest.AdaptiveAvgPool2dEven (0 ms) 2023-01-11T22:09:45.1977064Z [ RUN ] ModulesTest.AdaptiveAvgPool2dUneven 2023-01-11T22:09:45.1977414Z [ OK ] ModulesTest.AdaptiveAvgPool2dUneven (0 ms) 2023-01-11T22:09:45.1977864Z [ RUN ] ModulesTest.AdaptiveAvgPool3d 2023-01-11T22:09:45.1978187Z [ OK ] ModulesTest.AdaptiveAvgPool3d (0 ms) 2023-01-11T22:09:45.1978487Z [ RUN ] ModulesTest.MaxUnpool1d 2023-01-11T22:09:45.1978771Z [ OK ] ModulesTest.MaxUnpool1d (0 ms) 2023-01-11T22:09:45.1979080Z [ RUN ] ModulesTest.MaxPool1d_MaxUnpool1d 2023-01-11T22:09:45.1979398Z [ OK ] ModulesTest.MaxPool1d_MaxUnpool1d (0 ms) 2023-01-11T22:09:45.1979694Z [ RUN ] ModulesTest.MaxUnpool2d 2023-01-11T22:09:45.1979973Z [ OK ] ModulesTest.MaxUnpool2d (0 ms) 2023-01-11T22:09:45.1980282Z [ RUN ] ModulesTest.MaxPool2d_MaxUnpool2d 2023-01-11T22:09:45.1980598Z [ OK ] ModulesTest.MaxPool2d_MaxUnpool2d (0 ms) 2023-01-11T22:09:45.1980925Z [ RUN ] ModulesTest.MaxUnpool3d 2023-01-11T22:09:45.1981223Z [ OK ] ModulesTest.MaxUnpool3d (0 ms) 2023-01-11T22:09:45.1981536Z [ RUN ] ModulesTest.MaxUnpool3dOutputSize 2023-01-11T22:09:45.1985719Z [ OK ] ModulesTest.MaxUnpool3dOutputSize (1 ms) 2023-01-11T22:09:45.1986299Z [ RUN ] ModulesTest.MaxPool3d_MaxUnpool3d 2023-01-11T22:09:45.3034555Z [ OK ] ModulesTest.MaxPool3d_MaxUnpool3d (104 ms) 2023-01-11T22:09:45.3034906Z [ RUN ] ModulesTest.Linear 2023-01-11T22:09:45.3039247Z [ OK ] ModulesTest.Linear (0 ms) 2023-01-11T22:09:45.3039795Z [ RUN ] ModulesTest.LocalResponseNorm 2023-01-11T22:09:45.3043608Z [ OK ] ModulesTest.LocalResponseNorm (0 ms) 2023-01-11T22:09:45.3044145Z [ RUN ] ModulesTest.LayerNorm 2023-01-11T22:09:45.3045898Z [ OK ] ModulesTest.LayerNorm (0 ms) 2023-01-11T22:09:45.3046449Z [ RUN ] ModulesTest.GroupNorm 2023-01-11T22:09:45.3047996Z [ OK ] ModulesTest.GroupNorm (0 ms) 2023-01-11T22:09:45.3048511Z [ RUN ] ModulesTest.Bilinear 2023-01-11T22:09:45.3051825Z [ OK ] ModulesTest.Bilinear (0 ms) 2023-01-11T22:09:45.3052311Z [ RUN ] ModulesTest.Fold 2023-01-11T22:09:45.3077843Z [ OK ] ModulesTest.Fold (2 ms) 2023-01-11T22:09:45.3078336Z [ RUN ] ModulesTest.Unfold 2023-01-11T22:09:45.3144716Z [ OK ] ModulesTest.Unfold (6 ms) 2023-01-11T22:09:45.3145275Z [ RUN ] ModulesTest.SimpleContainer 2023-01-11T22:09:45.3163166Z [ OK ] ModulesTest.SimpleContainer (1 ms) 2023-01-11T22:09:45.3163672Z [ RUN ] ModulesTest.EmbeddingBasic 2023-01-11T22:09:45.3164762Z [ OK ] ModulesTest.EmbeddingBasic (0 ms) 2023-01-11T22:09:45.3165884Z [ RUN ] ModulesTest.EmbeddingList 2023-01-11T22:09:45.3166455Z [ OK ] ModulesTest.EmbeddingList (0 ms) 2023-01-11T22:09:45.3167020Z [ RUN ] ModulesTest.EmbeddingFromPretrained 2023-01-11T22:09:45.3167721Z [ OK ] ModulesTest.EmbeddingFromPretrained (0 ms) 2023-01-11T22:09:45.3168365Z [ RUN ] ModulesTest.EmbeddingBagFromPretrained 2023-01-11T22:09:45.3169672Z [ OK ] ModulesTest.EmbeddingBagFromPretrained (0 ms) 2023-01-11T22:09:45.3170234Z [ RUN ] ModulesTest.AlphaDropout 2023-01-11T22:09:45.3171393Z [ OK ] ModulesTest.AlphaDropout (0 ms) 2023-01-11T22:09:45.3171985Z [ RUN ] ModulesTest.FeatureAlphaDropout 2023-01-11T22:09:45.3172785Z [ OK ] ModulesTest.FeatureAlphaDropout (0 ms) 2023-01-11T22:09:45.3173336Z [ RUN ] ModulesTest.Dropout 2023-01-11T22:09:45.3174973Z [ OK ] ModulesTest.Dropout (0 ms) 2023-01-11T22:09:45.3175595Z [ RUN ] ModulesTest.Dropout2d 2023-01-11T22:09:45.3180350Z [ OK ] ModulesTest.Dropout2d (0 ms) 2023-01-11T22:09:45.3180854Z [ RUN ] ModulesTest.Dropout3d 2023-01-11T22:09:45.3187780Z [ OK ] ModulesTest.Dropout3d (0 ms) 2023-01-11T22:09:45.3188640Z [ RUN ] ModulesTest.Parameters 2023-01-11T22:09:45.3189189Z [ OK ] ModulesTest.Parameters (0 ms) 2023-01-11T22:09:45.3189788Z [ RUN ] ModulesTest.FunctionalCallsSuppliedFunction 2023-01-11T22:09:45.3190397Z [ OK ] ModulesTest.FunctionalCallsSuppliedFunction (0 ms) 2023-01-11T22:09:45.3190861Z [ RUN ] ModulesTest.FunctionalWithTorchFunction 2023-01-11T22:09:45.3191274Z [ OK ] ModulesTest.FunctionalWithTorchFunction (0 ms) 2023-01-11T22:09:45.3191690Z [ RUN ] ModulesTest.FunctionalArgumentBinding 2023-01-11T22:09:45.3192165Z [ OK ] ModulesTest.FunctionalArgumentBinding (0 ms) 2023-01-11T22:09:45.3192714Z [ RUN ] ModulesTest.BatchNorm1dStateful 2023-01-11T22:09:45.3193216Z [ OK ] ModulesTest.BatchNorm1dStateful (0 ms) 2023-01-11T22:09:45.3193571Z [ RUN ] ModulesTest.BatchNorm1dStateless 2023-01-11T22:09:45.3193986Z [ OK ] ModulesTest.BatchNorm1dStateless (0 ms) 2023-01-11T22:09:45.3194291Z [ RUN ] ModulesTest.BatchNorm1d 2023-01-11T22:09:45.3194621Z [ OK ] ModulesTest.BatchNorm1d (0 ms) 2023-01-11T22:09:45.3194984Z [ RUN ] ModulesTest.BatchNorm2dStateful 2023-01-11T22:09:45.3195304Z [ OK ] ModulesTest.BatchNorm2dStateful (0 ms) 2023-01-11T22:09:45.3195834Z [ RUN ] ModulesTest.BatchNorm2dStateless 2023-01-11T22:09:45.3196317Z [ OK ] ModulesTest.BatchNorm2dStateless (0 ms) 2023-01-11T22:09:45.3196674Z [ RUN ] ModulesTest.BatchNorm2d 2023-01-11T22:09:45.3197206Z [ OK ] ModulesTest.BatchNorm2d (0 ms) 2023-01-11T22:09:45.3197674Z [ RUN ] ModulesTest.BatchNorm3dStateful 2023-01-11T22:09:45.3198015Z [ OK ] ModulesTest.BatchNorm3dStateful (0 ms) 2023-01-11T22:09:45.3198330Z [ RUN ] ModulesTest.BatchNorm3dStateless 2023-01-11T22:09:45.3198674Z [ OK ] ModulesTest.BatchNorm3dStateless (0 ms) 2023-01-11T22:09:45.3198977Z [ RUN ] ModulesTest.BatchNorm3d 2023-01-11T22:09:45.3201609Z [ OK ] ModulesTest.BatchNorm3d (0 ms) 2023-01-11T22:09:45.3202210Z [ RUN ] ModulesTest.InstanceNorm1dStateful 2023-01-11T22:09:45.3202653Z [ OK ] ModulesTest.InstanceNorm1dStateful (0 ms) 2023-01-11T22:09:45.3203009Z [ RUN ] ModulesTest.InstanceNorm1dStateless 2023-01-11T22:09:45.3203454Z [ OK ] ModulesTest.InstanceNorm1dStateless (0 ms) 2023-01-11T22:09:45.3203970Z [ RUN ] ModulesTest.InstanceNorm1d 2023-01-11T22:09:45.3204533Z [ OK ] ModulesTest.InstanceNorm1d (0 ms) 2023-01-11T22:09:45.3205120Z [ RUN ] ModulesTest.InstanceNorm2dStateful 2023-01-11T22:09:45.3205787Z [ OK ] ModulesTest.InstanceNorm2dStateful (0 ms) 2023-01-11T22:09:45.3206165Z [ RUN ] ModulesTest.InstanceNorm2dStateless 2023-01-11T22:09:45.3206585Z [ OK ] ModulesTest.InstanceNorm2dStateless (0 ms) 2023-01-11T22:09:45.3206980Z [ RUN ] ModulesTest.InstanceNorm2d 2023-01-11T22:09:45.3208179Z [ OK ] ModulesTest.InstanceNorm2d (0 ms) 2023-01-11T22:09:45.3208804Z [ RUN ] ModulesTest.InstanceNorm3dStateful 2023-01-11T22:09:45.3209345Z [ OK ] ModulesTest.InstanceNorm3dStateful (0 ms) 2023-01-11T22:09:45.3209696Z [ RUN ] ModulesTest.InstanceNorm3dStateless 2023-01-11T22:09:45.3210048Z [ OK ] ModulesTest.InstanceNorm3dStateless (0 ms) 2023-01-11T22:09:45.3210370Z [ RUN ] ModulesTest.InstanceNorm3d 2023-01-11T22:09:45.3214649Z [ OK ] ModulesTest.InstanceNorm3d (0 ms) 2023-01-11T22:09:45.3215212Z [ RUN ] ModulesTest.L1Loss 2023-01-11T22:09:45.3215965Z [ OK ] ModulesTest.L1Loss (0 ms) 2023-01-11T22:09:45.3216435Z [ RUN ] ModulesTest.MSELoss 2023-01-11T22:09:45.3217193Z [ OK ] ModulesTest.MSELoss (0 ms) 2023-01-11T22:09:45.3217631Z [ RUN ] ModulesTest.BCELoss 2023-01-11T22:09:45.3218581Z [ OK ] ModulesTest.BCELoss (0 ms) 2023-01-11T22:09:45.3219011Z [ RUN ] ModulesTest.KLDivLoss 2023-01-11T22:09:45.3220223Z [W loss.h:57] Warning: reduction: 'mean' divides the total loss by both the batch size and the support size.'batchmean' divides only by the batch size, and aligns with the KL div math definition.'mean' will be changed to behave the same as 'batchmean' in the next major release. (function kl_div) 2023-01-11T22:09:45.3220939Z [ OK ] ModulesTest.KLDivLoss (0 ms) 2023-01-11T22:09:45.3221295Z [ RUN ] ModulesTest.HingeEmbeddingLoss 2023-01-11T22:09:45.3222479Z [ OK ] ModulesTest.HingeEmbeddingLoss (0 ms) 2023-01-11T22:09:45.3223099Z [ RUN ] ModulesTest.MultiMarginLoss 2023-01-11T22:09:45.3223725Z [ OK ] ModulesTest.MultiMarginLoss (0 ms) 2023-01-11T22:09:45.3224319Z [ RUN ] ModulesTest.CosineEmbeddingLoss 2023-01-11T22:09:45.3228179Z [ OK ] ModulesTest.CosineEmbeddingLoss (0 ms) 2023-01-11T22:09:45.3228718Z [ RUN ] ModulesTest.SmoothL1LossDefaultOptions 2023-01-11T22:09:45.3229465Z [ OK ] ModulesTest.SmoothL1LossDefaultOptions (0 ms) 2023-01-11T22:09:45.3230068Z [ RUN ] ModulesTest.HuberLossDefaultOptions 2023-01-11T22:09:45.3230770Z [ OK ] ModulesTest.HuberLossDefaultOptions (0 ms) 2023-01-11T22:09:45.3231466Z [ RUN ] ModulesTest.MultiLabelMarginLossDefaultOptions 2023-01-11T22:09:45.3232460Z [ OK ] ModulesTest.MultiLabelMarginLossDefaultOptions (0 ms) 2023-01-11T22:09:45.3233115Z [ RUN ] ModulesTest.SmoothL1LossNoReduction 2023-01-11T22:09:45.3233828Z [ OK ] ModulesTest.SmoothL1LossNoReduction (0 ms) 2023-01-11T22:09:45.3234459Z [ RUN ] ModulesTest.HuberLossNoReduction 2023-01-11T22:09:45.3235117Z [ OK ] ModulesTest.HuberLossNoReduction (0 ms) 2023-01-11T22:09:45.3235689Z [ RUN ] ModulesTest.MultiLabelMarginLossNoReduction 2023-01-11T22:09:45.3236419Z [ OK ] ModulesTest.MultiLabelMarginLossNoReduction (0 ms) 2023-01-11T22:09:45.3237050Z [ RUN ] ModulesTest.SmoothL1LossBeta 2023-01-11T22:09:45.3237623Z [ OK ] ModulesTest.SmoothL1LossBeta (0 ms) 2023-01-11T22:09:45.3237941Z [ RUN ] ModulesTest.HuberLossDelta 2023-01-11T22:09:45.3239307Z [ OK ] ModulesTest.HuberLossDelta (0 ms) 2023-01-11T22:09:45.3239680Z [ RUN ] ModulesTest.TripletMarginLoss 2023-01-11T22:09:45.3242223Z [ OK ] ModulesTest.TripletMarginLoss (0 ms) 2023-01-11T22:09:45.3242790Z [ RUN ] ModulesTest.TripletMarginWithDistanceLossDefaultParity 2023-01-11T22:09:45.3397095Z [ OK ] ModulesTest.TripletMarginWithDistanceLossDefaultParity (15 ms) 2023-01-11T22:09:45.3397587Z [ RUN ] ModulesTest.TripletMarginWithDistanceLossFunctionalParity 2023-01-11T22:09:45.3669803Z [ OK ] ModulesTest.TripletMarginWithDistanceLossFunctionalParity (27 ms) 2023-01-11T22:09:45.3670208Z [ RUN ] ModulesTest.NLLLoss 2023-01-11T22:09:45.3671983Z [ OK ] ModulesTest.NLLLoss (0 ms) 2023-01-11T22:09:45.3672295Z [ RUN ] ModulesTest.CrossEntropyLoss 2023-01-11T22:09:45.3678946Z [ OK ] ModulesTest.CrossEntropyLoss (0 ms) 2023-01-11T22:09:45.3679269Z [ RUN ] ModulesTest.CosineSimilarity 2023-01-11T22:09:45.3682446Z [ OK ] ModulesTest.CosineSimilarity (0 ms) 2023-01-11T22:09:45.3682844Z [ RUN ] ModulesTest.SoftMarginLossDefaultOptions 2023-01-11T22:09:45.3684444Z [ OK ] ModulesTest.SoftMarginLossDefaultOptions (0 ms) 2023-01-11T22:09:45.3684869Z [ RUN ] ModulesTest.MultiLabelSoftMarginLossDefaultOptions 2023-01-11T22:09:45.3687454Z [ OK ] ModulesTest.MultiLabelSoftMarginLossDefaultOptions (0 ms) 2023-01-11T22:09:45.3687943Z [ RUN ] ModulesTest.SoftMarginLossNoReduction 2023-01-11T22:09:45.3689427Z [ OK ] ModulesTest.SoftMarginLossNoReduction (0 ms) 2023-01-11T22:09:45.3689999Z [ RUN ] ModulesTest.MultiLabelSoftMarginLossWeightedNoReduction 2023-01-11T22:09:45.3692478Z [ OK ] ModulesTest.MultiLabelSoftMarginLossWeightedNoReduction (0 ms) 2023-01-11T22:09:45.3692913Z [ RUN ] ModulesTest.PairwiseDistance 2023-01-11T22:09:45.3694204Z [ OK ] ModulesTest.PairwiseDistance (0 ms) 2023-01-11T22:09:45.3694556Z [ RUN ] ModulesTest.ELU 2023-01-11T22:09:45.3706933Z [ OK ] ModulesTest.ELU (1 ms) 2023-01-11T22:09:45.3707352Z [ RUN ] ModulesTest.SELU 2023-01-11T22:09:45.3709581Z [ OK ] ModulesTest.SELU (0 ms) 2023-01-11T22:09:45.3709931Z [ RUN ] ModulesTest.Hardshrink 2023-01-11T22:09:45.3717452Z [ OK ] ModulesTest.Hardshrink (0 ms) 2023-01-11T22:09:45.3717828Z [ RUN ] ModulesTest.Hardtanh 2023-01-11T22:09:45.3746499Z [ OK ] ModulesTest.Hardtanh (2 ms) 2023-01-11T22:09:45.3746914Z [ RUN ] ModulesTest.HardtanhMinValGEMaxVal 2023-01-11T22:09:45.3823351Z [ OK ] ModulesTest.HardtanhMinValGEMaxVal (7 ms) 2023-01-11T22:09:45.3823743Z [ RUN ] ModulesTest.LeakyReLU 2023-01-11T22:09:45.3834473Z [ OK ] ModulesTest.LeakyReLU (1 ms) 2023-01-11T22:09:45.3834860Z [ RUN ] ModulesTest.LogSigmoid 2023-01-11T22:09:45.3836177Z [ OK ] ModulesTest.LogSigmoid (0 ms) 2023-01-11T22:09:45.3836486Z [ RUN ] ModulesTest.Softmax 2023-01-11T22:09:45.3837852Z [ OK ] ModulesTest.Softmax (0 ms) 2023-01-11T22:09:45.3838239Z [ RUN ] ModulesTest.Softmin 2023-01-11T22:09:45.3839262Z [ OK ] ModulesTest.Softmin (0 ms) 2023-01-11T22:09:45.3839785Z [ RUN ] ModulesTest.LogSoftmax 2023-01-11T22:09:45.3840685Z [ OK ] ModulesTest.LogSoftmax (0 ms) 2023-01-11T22:09:45.3841321Z [ RUN ] ModulesTest.AdaptiveLogSoftmaxWithLoss 2023-01-11T22:09:45.3869369Z [ OK ] ModulesTest.AdaptiveLogSoftmaxWithLoss (2 ms) 2023-01-11T22:09:45.3869917Z [ RUN ] ModulesTest.Softmax2d 2023-01-11T22:09:45.3883065Z [ OK ] ModulesTest.Softmax2d (1 ms) 2023-01-11T22:09:45.3883574Z [ RUN ] ModulesTest.PReLU 2023-01-11T22:09:45.3887815Z [ OK ] ModulesTest.PReLU (0 ms) 2023-01-11T22:09:45.3888323Z [ RUN ] ModulesTest.ReLU 2023-01-11T22:09:45.3890397Z [ OK ] ModulesTest.ReLU (0 ms) 2023-01-11T22:09:45.3890898Z [ RUN ] ModulesTest.ReLU6 2023-01-11T22:09:45.3892820Z [ OK ] ModulesTest.ReLU6 (0 ms) 2023-01-11T22:09:45.3893330Z [ RUN ] ModulesTest.RReLU 2023-01-11T22:09:45.3928237Z [ OK ] ModulesTest.RReLU (3 ms) 2023-01-11T22:09:45.3928750Z [ RUN ] ModulesTest.CELU 2023-01-11T22:09:45.3938828Z [ OK ] ModulesTest.CELU (1 ms) 2023-01-11T22:09:45.3939297Z [ RUN ] ModulesTest.GLU 2023-01-11T22:09:45.3941126Z [ OK ] ModulesTest.GLU (0 ms) 2023-01-11T22:09:45.3941676Z [ RUN ] ModulesTest.GELU 2023-01-11T22:09:45.3943495Z [ OK ] ModulesTest.GELU (0 ms) 2023-01-11T22:09:45.3944008Z [ RUN ] ModulesTest.TanhGELU 2023-01-11T22:09:45.3944759Z [ OK ] ModulesTest.TanhGELU (0 ms) 2023-01-11T22:09:45.3945267Z [ RUN ] ModulesTest.Mish 2023-01-11T22:09:45.3946228Z [ OK ] ModulesTest.Mish (0 ms) 2023-01-11T22:09:45.3946873Z [ RUN ] ModulesTest.Sigmoid 2023-01-11T22:09:45.3947484Z [ OK ] ModulesTest.Sigmoid (0 ms) 2023-01-11T22:09:45.3948310Z [ RUN ] ModulesTest.PixelShuffle 2023-01-11T22:09:45.3950119Z [ OK ] ModulesTest.PixelShuffle (0 ms) 2023-01-11T22:09:45.3950764Z [ RUN ] ModulesTest.PixelUnshuffle 2023-01-11T22:09:45.3952781Z [ OK ] ModulesTest.PixelUnshuffle (0 ms) 2023-01-11T22:09:45.3953362Z [ RUN ] ModulesTest.Softplus 2023-01-11T22:09:45.3960748Z [ OK ] ModulesTest.Softplus (0 ms) 2023-01-11T22:09:45.3961102Z [ RUN ] ModulesTest.Softshrink 2023-01-11T22:09:45.3967108Z [ OK ] ModulesTest.Softshrink (0 ms) 2023-01-11T22:09:45.3967518Z [ RUN ] ModulesTest.Softsign 2023-01-11T22:09:45.3967925Z [ OK ] ModulesTest.Softsign (0 ms) 2023-01-11T22:09:45.3968264Z [ RUN ] ModulesTest.Tanh 2023-01-11T22:09:45.3968772Z [ OK ] ModulesTest.Tanh (0 ms) 2023-01-11T22:09:45.3969332Z [ RUN ] ModulesTest.Tanhshrink 2023-01-11T22:09:45.3969776Z [ OK ] ModulesTest.Tanhshrink (0 ms) 2023-01-11T22:09:45.3970108Z [ RUN ] ModulesTest.Threshold 2023-01-11T22:09:45.3982218Z [ OK ] ModulesTest.Threshold (1 ms) 2023-01-11T22:09:45.3982829Z [ RUN ] ModulesTest.Upsampling1D 2023-01-11T22:09:45.3985295Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3986688Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3988677Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3990046Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3992046Z [ OK ] ModulesTest.Upsampling1D (0 ms) 2023-01-11T22:09:45.3992477Z [ RUN ] ModulesTest.Upsampling2D 2023-01-11T22:09:45.3993410Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3994614Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3996615Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3997704Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.3999447Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4000814Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4003072Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4004287Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4006359Z [ OK ] ModulesTest.Upsampling2D (1 ms) 2023-01-11T22:09:45.4006913Z [ RUN ] ModulesTest.Upsampling3D 2023-01-11T22:09:45.4008670Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4010285Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4012704Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4014029Z [W upsampling.h:66] Warning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. (function _interp_output_size) 2023-01-11T22:09:45.4015301Z [ OK ] ModulesTest.Upsampling3D (0 ms) 2023-01-11T22:09:45.4015798Z [ RUN ] ModulesTest.CTCLoss 2023-01-11T22:09:45.4018397Z [ OK ] ModulesTest.CTCLoss (0 ms) 2023-01-11T22:09:45.4018935Z [ RUN ] ModulesTest.PoissonNLLLoss 2023-01-11T22:09:45.4020681Z [ OK ] ModulesTest.PoissonNLLLoss (0 ms) 2023-01-11T22:09:45.4021249Z [ RUN ] ModulesTest.MarginRankingLoss 2023-01-11T22:09:45.4024084Z [ OK ] ModulesTest.MarginRankingLoss (0 ms) 2023-01-11T22:09:45.4024717Z [ RUN ] ModulesTest.BCEWithLogitsLoss 2023-01-11T22:09:45.4083125Z [ OK ] ModulesTest.BCEWithLogitsLoss (5 ms) 2023-01-11T22:09:45.4083725Z [ RUN ] ModulesTest.MultiheadAttention 2023-01-11T22:09:54.6269848Z [ OK ] ModulesTest.MultiheadAttention (9218 ms) 2023-01-11T22:09:54.6270542Z [ RUN ] ModulesTest.PrettyPrintIdentity 2023-01-11T22:09:54.6271218Z [ OK ] ModulesTest.PrettyPrintIdentity (0 ms) 2023-01-11T22:09:54.6271803Z [ RUN ] ModulesTest.PrettyPrintFlatten 2023-01-11T22:09:54.6272435Z [ OK ] ModulesTest.PrettyPrintFlatten (0 ms) 2023-01-11T22:09:54.6273042Z [ RUN ] ModulesTest.PrettyPrintUnflatten 2023-01-11T22:09:54.6273691Z [ OK ] ModulesTest.PrettyPrintUnflatten (0 ms) 2023-01-11T22:09:54.6274172Z [ RUN ] ModulesTest.ReflectionPad1d 2023-01-11T22:09:54.6274773Z [ OK ] ModulesTest.ReflectionPad1d (0 ms) 2023-01-11T22:09:54.6275199Z [ RUN ] ModulesTest.ReflectionPad2d 2023-01-11T22:09:54.6275514Z [ OK ] ModulesTest.ReflectionPad2d (0 ms) 2023-01-11T22:09:54.6275814Z [ RUN ] ModulesTest.ReflectionPad3d 2023-01-11T22:09:54.6277753Z [ OK ] ModulesTest.ReflectionPad3d (0 ms) 2023-01-11T22:09:54.6278097Z [ RUN ] ModulesTest.ReplicationPad1d 2023-01-11T22:09:54.6279660Z [ OK ] ModulesTest.ReplicationPad1d (0 ms) 2023-01-11T22:09:54.6279989Z [ RUN ] ModulesTest.ReplicationPad2d 2023-01-11T22:09:54.6281905Z [ OK ] ModulesTest.ReplicationPad2d (0 ms) 2023-01-11T22:09:54.6282233Z [ RUN ] ModulesTest.ReplicationPad3d 2023-01-11T22:09:54.6285872Z [ OK ] ModulesTest.ReplicationPad3d (0 ms) 2023-01-11T22:09:54.6286403Z [ RUN ] ModulesTest.ZeroPad2d 2023-01-11T22:09:54.6288252Z [ OK ] ModulesTest.ZeroPad2d (0 ms) 2023-01-11T22:09:54.6288821Z [ RUN ] ModulesTest.ConstantPad1d 2023-01-11T22:09:54.6289945Z [ OK ] ModulesTest.ConstantPad1d (0 ms) 2023-01-11T22:09:54.6290532Z [ RUN ] ModulesTest.ConstantPad2d 2023-01-11T22:09:54.6292300Z [ OK ] ModulesTest.ConstantPad2d (0 ms) 2023-01-11T22:09:54.6292862Z [ RUN ] ModulesTest.ConstantPad3d 2023-01-11T22:09:54.6296394Z [ OK ] ModulesTest.ConstantPad3d (0 ms) 2023-01-11T22:09:54.6296981Z [ RUN ] ModulesTest.CrossMapLRN2d 2023-01-11T22:09:54.6303153Z [ OK ] ModulesTest.CrossMapLRN2d (0 ms) 2023-01-11T22:09:54.6303687Z [ RUN ] ModulesTest.RNNCell 2023-01-11T22:09:54.6306107Z [ OK ] ModulesTest.RNNCell (0 ms) 2023-01-11T22:09:54.6306643Z [ RUN ] ModulesTest.LSTMCell 2023-01-11T22:09:54.6310569Z [ OK ] ModulesTest.LSTMCell (0 ms) 2023-01-11T22:09:54.6311111Z [ RUN ] ModulesTest.GRUCell 2023-01-11T22:09:54.6314691Z [ OK ] ModulesTest.GRUCell (0 ms) 2023-01-11T22:09:54.6315129Z [ RUN ] ModulesTest.PrettyPrintLinear 2023-01-11T22:09:54.6315788Z [ OK ] ModulesTest.PrettyPrintLinear (0 ms) 2023-01-11T22:09:54.6316216Z [ RUN ] ModulesTest.PrettyPrintBilinear 2023-01-11T22:09:54.6316652Z [ OK ] ModulesTest.PrettyPrintBilinear (0 ms) 2023-01-11T22:09:54.6317050Z [ RUN ] ModulesTest.PrettyPrintConv 2023-01-11T22:09:54.6317461Z [ OK ] ModulesTest.PrettyPrintConv (0 ms) 2023-01-11T22:09:54.6317897Z [ RUN ] ModulesTest.PrettyPrintConvTranspose 2023-01-11T22:09:54.6322756Z [ OK ] ModulesTest.PrettyPrintConvTranspose (0 ms) 2023-01-11T22:09:54.6323402Z [ RUN ] ModulesTest.PrettyPrintUpsample 2023-01-11T22:09:54.6323981Z [ OK ] ModulesTest.PrettyPrintUpsample (0 ms) 2023-01-11T22:09:54.6324520Z [ RUN ] ModulesTest.PrettyPrintFold 2023-01-11T22:09:54.6325233Z [ OK ] ModulesTest.PrettyPrintFold (0 ms) 2023-01-11T22:09:54.6325748Z [ RUN ] ModulesTest.PrettyPrintUnfold 2023-01-11T22:09:54.6326417Z [ OK ] ModulesTest.PrettyPrintUnfold (0 ms) 2023-01-11T22:09:54.6327037Z [ RUN ] ModulesTest.PrettyPrintMaxPool 2023-01-11T22:09:54.6327661Z [ OK ] ModulesTest.PrettyPrintMaxPool (0 ms) 2023-01-11T22:09:54.6328278Z [ RUN ] ModulesTest.PrettyPrintAvgPool 2023-01-11T22:09:54.6328911Z [ OK ] ModulesTest.PrettyPrintAvgPool (0 ms) 2023-01-11T22:09:54.6329775Z [ RUN ] ModulesTest.PrettyPrinFractionalMaxPool 2023-01-11T22:09:54.6330508Z [ OK ] ModulesTest.PrettyPrinFractionalMaxPool (0 ms) 2023-01-11T22:09:54.6331166Z [ RUN ] ModulesTest.PrettyPrintLPPool 2023-01-11T22:09:54.6331777Z [ OK ] ModulesTest.PrettyPrintLPPool (0 ms) 2023-01-11T22:09:54.6332464Z [ RUN ] ModulesTest.PrettyPrintAdaptiveMaxPool 2023-01-11T22:09:54.6333237Z [ OK ] ModulesTest.PrettyPrintAdaptiveMaxPool (0 ms) 2023-01-11T22:09:54.6333857Z [ RUN ] ModulesTest.PrettyPrintAdaptiveAvgPool 2023-01-11T22:09:54.6334473Z [ OK ] ModulesTest.PrettyPrintAdaptiveAvgPool (0 ms) 2023-01-11T22:09:54.6335065Z [ RUN ] ModulesTest.PrettyPrintMaxUnpool 2023-01-11T22:09:54.6335633Z [ OK ] ModulesTest.PrettyPrintMaxUnpool (0 ms) 2023-01-11T22:09:54.6336188Z [ RUN ] ModulesTest.PrettyPrintDropout 2023-01-11T22:09:54.6336744Z [ OK ] ModulesTest.PrettyPrintDropout (0 ms) 2023-01-11T22:09:54.6337307Z [ RUN ] ModulesTest.PrettyPrintDropout2d 2023-01-11T22:09:54.6337851Z [ OK ] ModulesTest.PrettyPrintDropout2d (0 ms) 2023-01-11T22:09:54.6338431Z [ RUN ] ModulesTest.PrettyPrintDropout3d 2023-01-11T22:09:54.6339020Z [ OK ] ModulesTest.PrettyPrintDropout3d (0 ms) 2023-01-11T22:09:54.6339607Z [ RUN ] ModulesTest.PrettyPrintFunctional 2023-01-11T22:09:54.6340258Z [ OK ] ModulesTest.PrettyPrintFunctional (0 ms) 2023-01-11T22:09:54.6340837Z [ RUN ] ModulesTest.PrettyPrintBatchNorm1d 2023-01-11T22:09:54.6341321Z [ OK ] ModulesTest.PrettyPrintBatchNorm1d (0 ms) 2023-01-11T22:09:54.6341825Z [ RUN ] ModulesTest.PrettyPrintBatchNorm2d 2023-01-11T22:09:54.6342363Z [ OK ] ModulesTest.PrettyPrintBatchNorm2d (0 ms) 2023-01-11T22:09:54.6342974Z [ RUN ] ModulesTest.PrettyPrintBatchNorm3d 2023-01-11T22:09:54.6343543Z [ OK ] ModulesTest.PrettyPrintBatchNorm3d (0 ms) 2023-01-11T22:09:54.6344141Z [ RUN ] ModulesTest.PrettyPrintInstanceNorm1d 2023-01-11T22:09:54.6344736Z [ OK ] ModulesTest.PrettyPrintInstanceNorm1d (0 ms) 2023-01-11T22:09:54.6345384Z [ RUN ] ModulesTest.PrettyPrintInstanceNorm2d 2023-01-11T22:09:54.6346037Z [ OK ] ModulesTest.PrettyPrintInstanceNorm2d (0 ms) 2023-01-11T22:09:54.6346688Z [ RUN ] ModulesTest.PrettyPrintInstanceNorm3d 2023-01-11T22:09:54.6347514Z [ OK ] ModulesTest.PrettyPrintInstanceNorm3d (0 ms) 2023-01-11T22:09:54.6348139Z [ RUN ] ModulesTest.PrettyPrintLayerNorm 2023-01-11T22:09:54.6348745Z [ OK ] ModulesTest.PrettyPrintLayerNorm (0 ms) 2023-01-11T22:09:54.6349327Z [ RUN ] ModulesTest.PrettyPrintGroupNorm 2023-01-11T22:09:54.6349938Z [ OK ] ModulesTest.PrettyPrintGroupNorm (0 ms) 2023-01-11T22:09:54.6350580Z [ RUN ] ModulesTest.PrettyPrintLocalResponseNorm 2023-01-11T22:09:54.6351256Z [ OK ] ModulesTest.PrettyPrintLocalResponseNorm (0 ms) 2023-01-11T22:09:54.6351890Z [ RUN ] ModulesTest.PrettyPrintEmbedding 2023-01-11T22:09:54.6352499Z [ OK ] ModulesTest.PrettyPrintEmbedding (0 ms) 2023-01-11T22:09:54.6353186Z [ RUN ] ModulesTest.PrettyPrintEmbeddingBag 2023-01-11T22:09:54.6353814Z [ OK ] ModulesTest.PrettyPrintEmbeddingBag (0 ms) 2023-01-11T22:09:54.6354414Z [ RUN ] ModulesTest.PrettyPrintL1Loss 2023-01-11T22:09:54.6354998Z [ OK ] ModulesTest.PrettyPrintL1Loss (0 ms) 2023-01-11T22:09:54.6355570Z [ RUN ] ModulesTest.PrettyPrintKLDivLoss 2023-01-11T22:09:54.6356176Z [ OK ] ModulesTest.PrettyPrintKLDivLoss (0 ms) 2023-01-11T22:09:54.6356764Z [ RUN ] ModulesTest.PrettyPrintMSELoss 2023-01-11T22:09:54.6357397Z [ OK ] ModulesTest.PrettyPrintMSELoss (0 ms) 2023-01-11T22:09:54.6357978Z [ RUN ] ModulesTest.PrettyPrintBCELoss 2023-01-11T22:09:54.6358569Z [ OK ] ModulesTest.PrettyPrintBCELoss (0 ms) 2023-01-11T22:09:54.6359198Z [ RUN ] ModulesTest.PrettyPrintHingeEmbeddingLoss 2023-01-11T22:09:54.6359850Z [ OK ] ModulesTest.PrettyPrintHingeEmbeddingLoss (0 ms) 2023-01-11T22:09:54.6360457Z [ RUN ] ModulesTest.PrettyPrintCosineEmbeddingLoss 2023-01-11T22:09:54.6361139Z [ OK ] ModulesTest.PrettyPrintCosineEmbeddingLoss (0 ms) 2023-01-11T22:09:54.6361829Z [ RUN ] ModulesTest.PrettyPrintTripletMarginLoss 2023-01-11T22:09:54.6362533Z [ OK ] ModulesTest.PrettyPrintTripletMarginLoss (0 ms) 2023-01-11T22:09:54.6363298Z [ RUN ] ModulesTest.PrettyPrintTripletMarginWithDistanceLoss 2023-01-11T22:09:54.6364128Z [ OK ] ModulesTest.PrettyPrintTripletMarginWithDistanceLoss (0 ms) 2023-01-11T22:09:54.6364825Z [ RUN ] ModulesTest.PrettyPrintNLLLoss 2023-01-11T22:09:54.6365411Z [ OK ] ModulesTest.PrettyPrintNLLLoss (0 ms) 2023-01-11T22:09:54.6366044Z [ RUN ] ModulesTest.PrettyPrinCrossEntropyLoss 2023-01-11T22:09:54.6366704Z [ OK ] ModulesTest.PrettyPrinCrossEntropyLoss (0 ms) 2023-01-11T22:09:54.6367411Z [ RUN ] ModulesTest.PrettyPrintMultiLabelMarginLoss 2023-01-11T22:09:54.6368139Z [ OK ] ModulesTest.PrettyPrintMultiLabelMarginLoss (0 ms) 2023-01-11T22:09:54.6368882Z [ RUN ] ModulesTest.PrettyPrintMultiLabelSoftMarginLoss 2023-01-11T22:09:54.6369785Z [ OK ] ModulesTest.PrettyPrintMultiLabelSoftMarginLoss (0 ms) 2023-01-11T22:09:54.6370498Z [ RUN ] ModulesTest.PrettyPrintSoftMarginLoss 2023-01-11T22:09:54.6371145Z [ OK ] ModulesTest.PrettyPrintSoftMarginLoss (0 ms) 2023-01-11T22:09:54.6371811Z [ RUN ] ModulesTest.PrettyPrintCosineSimilarity 2023-01-11T22:09:54.6372499Z [ OK ] ModulesTest.PrettyPrintCosineSimilarity (0 ms) 2023-01-11T22:09:54.6373177Z [ RUN ] ModulesTest.PrettyPrintPairwiseDistance 2023-01-11T22:09:54.6373853Z [ OK ] ModulesTest.PrettyPrintPairwiseDistance (0 ms) 2023-01-11T22:09:54.6374514Z [ RUN ] ModulesTest.PrettyPrintReflectionPad 2023-01-11T22:09:54.6375180Z [ OK ] ModulesTest.PrettyPrintReflectionPad (0 ms) 2023-01-11T22:09:54.6375797Z [ RUN ] ModulesTest.PrettyPrintReplicationPad 2023-01-11T22:09:54.6376544Z [ OK ] ModulesTest.PrettyPrintReplicationPad (0 ms) 2023-01-11T22:09:54.6377117Z [ RUN ] ModulesTest.PrettyPrintZeroPad2d 2023-01-11T22:09:54.6377668Z [ OK ] ModulesTest.PrettyPrintZeroPad2d (0 ms) 2023-01-11T22:09:54.6378243Z [ RUN ] ModulesTest.PrettyPrintConstantPad 2023-01-11T22:09:54.6378822Z [ OK ] ModulesTest.PrettyPrintConstantPad (0 ms) 2023-01-11T22:09:54.6379386Z [ RUN ] ModulesTest.PrettyPrintNestedModel 2023-01-11T22:09:54.6379963Z [ OK ] ModulesTest.PrettyPrintNestedModel (0 ms) 2023-01-11T22:09:54.6380501Z [ RUN ] ModulesTest.PrettyPrintELU 2023-01-11T22:09:54.6381049Z [ OK ] ModulesTest.PrettyPrintELU (0 ms) 2023-01-11T22:09:54.6381572Z [ RUN ] ModulesTest.PrettyPrintSELU 2023-01-11T22:09:54.6382265Z [ OK ] ModulesTest.PrettyPrintSELU (0 ms) 2023-01-11T22:09:54.6382886Z [ RUN ] ModulesTest.PrettyPrintGLU 2023-01-11T22:09:54.6383432Z [ OK ] ModulesTest.PrettyPrintGLU (0 ms) 2023-01-11T22:09:54.6384013Z [ RUN ] ModulesTest.PrettyPrintHardshrink 2023-01-11T22:09:54.6384629Z [ OK ] ModulesTest.PrettyPrintHardshrink (0 ms) 2023-01-11T22:09:54.6385228Z [ RUN ] ModulesTest.PrettyPrintHardtanh 2023-01-11T22:09:54.6385812Z [ OK ] ModulesTest.PrettyPrintHardtanh (0 ms) 2023-01-11T22:09:54.6386409Z [ RUN ] ModulesTest.PrettyPrintLeakyReLU 2023-01-11T22:09:54.6387020Z [ OK ] ModulesTest.PrettyPrintLeakyReLU (0 ms) 2023-01-11T22:09:54.6387611Z [ RUN ] ModulesTest.PrettyPrintLogSigmoid 2023-01-11T22:09:54.6388230Z [ OK ] ModulesTest.PrettyPrintLogSigmoid (0 ms) 2023-01-11T22:09:54.6388823Z [ RUN ] ModulesTest.PrettyPrintSoftmax 2023-01-11T22:09:54.6389398Z [ OK ] ModulesTest.PrettyPrintSoftmax (0 ms) 2023-01-11T22:09:54.6389967Z [ RUN ] ModulesTest.PrettyPrintSoftmin 2023-01-11T22:09:54.6390556Z [ OK ] ModulesTest.PrettyPrintSoftmin (0 ms) 2023-01-11T22:09:54.6391146Z [ RUN ] ModulesTest.PrettyPrintLogSoftmax 2023-01-11T22:09:54.6391751Z [ OK ] ModulesTest.PrettyPrintLogSoftmax (0 ms) 2023-01-11T22:09:54.6392348Z [ RUN ] ModulesTest.PrettyPrintSoftmax2d 2023-01-11T22:09:54.6392955Z [ OK ] ModulesTest.PrettyPrintSoftmax2d (0 ms) 2023-01-11T22:09:54.6393511Z [ RUN ] ModulesTest.PrettyPrintPReLU 2023-01-11T22:09:54.6394089Z [ OK ] ModulesTest.PrettyPrintPReLU (0 ms) 2023-01-11T22:09:54.6394648Z [ RUN ] ModulesTest.PrettyPrintReLU 2023-01-11T22:09:54.6395198Z [ OK ] ModulesTest.PrettyPrintReLU (0 ms) 2023-01-11T22:09:54.6395765Z [ RUN ] ModulesTest.PrettyPrintReLU6 2023-01-11T22:09:54.6396300Z [ OK ] ModulesTest.PrettyPrintReLU6 (0 ms) 2023-01-11T22:09:54.6396839Z [ RUN ] ModulesTest.PrettyPrintRReLU 2023-01-11T22:09:54.6397411Z [ OK ] ModulesTest.PrettyPrintRReLU (0 ms) 2023-01-11T22:09:54.6397960Z [ RUN ] ModulesTest.PrettyPrintCELU 2023-01-11T22:09:54.6398521Z [ OK ] ModulesTest.PrettyPrintCELU (0 ms) 2023-01-11T22:09:54.6399073Z [ RUN ] ModulesTest.PrettyPrintSigmoid 2023-01-11T22:09:54.6399662Z [ OK ] ModulesTest.PrettyPrintSigmoid (0 ms) 2023-01-11T22:09:54.6400269Z [ RUN ] ModulesTest.PrettyPrintPixelShuffle 2023-01-11T22:09:54.6400895Z [ OK ] ModulesTest.PrettyPrintPixelShuffle (0 ms) 2023-01-11T22:09:54.6401537Z [ RUN ] ModulesTest.PrettyPrintPixelUnshuffle 2023-01-11T22:09:54.6402197Z [ OK ] ModulesTest.PrettyPrintPixelUnshuffle (0 ms) 2023-01-11T22:09:54.6402809Z [ RUN ] ModulesTest.PrettyPrintSoftplus 2023-01-11T22:09:54.6403412Z [ OK ] ModulesTest.PrettyPrintSoftplus (0 ms) 2023-01-11T22:09:54.6404117Z [ RUN ] ModulesTest.PrettyPrintSoftshrink 2023-01-11T22:09:54.6404736Z [ OK ] ModulesTest.PrettyPrintSoftshrink (0 ms) 2023-01-11T22:09:54.6405314Z [ RUN ] ModulesTest.PrettyPrintSoftsign 2023-01-11T22:09:54.6405908Z [ OK ] ModulesTest.PrettyPrintSoftsign (0 ms) 2023-01-11T22:09:54.6406475Z [ RUN ] ModulesTest.PrettyPrintTanh 2023-01-11T22:09:54.6407020Z [ OK ] ModulesTest.PrettyPrintTanh (0 ms) 2023-01-11T22:09:54.6407596Z [ RUN ] ModulesTest.PrettyPrintTanhshrink 2023-01-11T22:09:54.6408208Z [ OK ] ModulesTest.PrettyPrintTanhshrink (0 ms) 2023-01-11T22:09:54.6408793Z [ RUN ] ModulesTest.PrettyPrintThreshold 2023-01-11T22:09:54.6409528Z [ OK ] ModulesTest.PrettyPrintThreshold (0 ms) 2023-01-11T22:09:54.6410255Z [ RUN ] ModulesTest.PrettyPrintCTCLoss 2023-01-11T22:09:54.6410855Z [ OK ] ModulesTest.PrettyPrintCTCLoss (0 ms) 2023-01-11T22:09:54.6411448Z [ RUN ] ModulesTest.PrettyPrintPoissonNLLLoss 2023-01-11T22:09:54.6412110Z [ OK ] ModulesTest.PrettyPrintPoissonNLLLoss (0 ms) 2023-01-11T22:09:54.6412780Z [ RUN ] ModulesTest.PrettyPrintMarginRankingLoss 2023-01-11T22:09:54.6413458Z [ OK ] ModulesTest.PrettyPrintMarginRankingLoss (0 ms) 2023-01-11T22:09:54.6414122Z [ RUN ] ModulesTest.PrettyPrintCrossMapLRN2d 2023-01-11T22:09:54.6414771Z [ OK ] ModulesTest.PrettyPrintCrossMapLRN2d (0 ms) 2023-01-11T22:09:54.6415389Z [ RUN ] ModulesTest.PrettyPrintAlphaDropout 2023-01-11T22:09:54.6416030Z [ OK ] ModulesTest.PrettyPrintAlphaDropout (0 ms) 2023-01-11T22:09:54.6416704Z [ RUN ] ModulesTest.PrettyPrintFeatureAlphaDropout 2023-01-11T22:09:54.6417432Z [ OK ] ModulesTest.PrettyPrintFeatureAlphaDropout (0 ms) 2023-01-11T22:09:54.6418121Z [ RUN ] ModulesTest.PrettyPrintBCEWithLogitsLoss 2023-01-11T22:09:54.6418816Z [ OK ] ModulesTest.PrettyPrintBCEWithLogitsLoss (0 ms) 2023-01-11T22:09:54.6419508Z [ RUN ] ModulesTest.PrettyPrintMultiheadAttention 2023-01-11T22:09:54.6420196Z [ OK ] ModulesTest.PrettyPrintMultiheadAttention (0 ms) 2023-01-11T22:09:54.6420825Z [ RUN ] ModulesTest.PrettyPrintRNNCell 2023-01-11T22:09:54.6421413Z [ OK ] ModulesTest.PrettyPrintRNNCell (0 ms) 2023-01-11T22:09:54.6421978Z [ RUN ] ModulesTest.PrettyPrintLSTMCell 2023-01-11T22:09:54.6422648Z [ OK ] ModulesTest.PrettyPrintLSTMCell (0 ms) 2023-01-11T22:09:54.6423233Z [ RUN ] ModulesTest.PrettyPrintGRUCell 2023-01-11T22:09:54.6423861Z [ OK ] ModulesTest.PrettyPrintGRUCell (0 ms) 2023-01-11T22:09:54.6424557Z [ RUN ] ModulesTest.PrettyPrintAdaptiveLogSoftmaxWithLoss 2023-01-11T22:09:54.6425378Z [ OK ] ModulesTest.PrettyPrintAdaptiveLogSoftmaxWithLoss (0 ms) 2023-01-11T22:09:54.6426082Z [----------] 256 tests from ModulesTest (9464 ms total) 2023-01-11T22:09:54.6426352Z 2023-01-11T22:09:54.6426593Z [----------] 1 test from NestedTest 2023-01-11T22:09:54.6427020Z [ RUN ] NestedTest.Nested 2023-01-11T22:09:54.6427557Z [W NestedTensorImpl.cpp:179] Warning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (function operator()) 2023-01-11T22:09:54.6428213Z [ OK ] NestedTest.Nested (0 ms) 2023-01-11T22:09:54.6428702Z [----------] 1 test from NestedTest (0 ms total) 2023-01-11T22:09:54.6428944Z 2023-01-11T22:09:54.6429225Z [----------] 10 tests from ParameterDictTest 2023-01-11T22:09:54.6429793Z [ RUN ] ParameterDictTest.ConstructFromTensor 2023-01-11T22:09:54.6430391Z [ OK ] ParameterDictTest.ConstructFromTensor (0 ms) 2023-01-11T22:09:54.6430959Z [ RUN ] ParameterDictTest.ConstructFromOrderedDict 2023-01-11T22:09:54.6431898Z [ OK ] ParameterDictTest.ConstructFromOrderedDict (0 ms) 2023-01-11T22:09:54.6432590Z [ RUN ] ParameterDictTest.InsertAndContains 2023-01-11T22:09:54.6433229Z [ OK ] ParameterDictTest.InsertAndContains (0 ms) 2023-01-11T22:09:54.6433897Z [ RUN ] ParameterDictTest.InsertAndClear 2023-01-11T22:09:54.6434559Z [ OK ] ParameterDictTest.InsertAndClear (0 ms) 2023-01-11T22:09:54.6435191Z [ RUN ] ParameterDictTest.InsertAndPop 2023-01-11T22:09:54.6435844Z [ OK ] ParameterDictTest.InsertAndPop (1 ms) 2023-01-11T22:09:54.6436486Z [ RUN ] ParameterDictTest.SimpleUpdate 2023-01-11T22:09:54.6437133Z [ OK ] ParameterDictTest.SimpleUpdate (1 ms) 2023-01-11T22:09:54.6437809Z [ RUN ] ParameterDictTest.Keys 2023-01-11T22:09:54.6438386Z [ OK ] ParameterDictTest.Keys (0 ms) 2023-01-11T22:09:54.6438950Z [ RUN ] ParameterDictTest.Values 2023-01-11T22:09:54.6439687Z [ OK ] ParameterDictTest.Values (0 ms) 2023-01-11T22:09:54.6440243Z [ RUN ] ParameterDictTest.Get 2023-01-11T22:09:54.6440793Z [ OK ] ParameterDictTest.Get (0 ms) 2023-01-11T22:09:54.6441446Z [ RUN ] ParameterDictTest.PrettyPrintParameterDict 2023-01-11T22:09:54.6442236Z [ OK ] ParameterDictTest.PrettyPrintParameterDict (0 ms) 2023-01-11T22:09:54.6442987Z [----------] 10 tests from ParameterDictTest (3 ms total) 2023-01-11T22:09:54.6443304Z 2023-01-11T22:09:54.6443624Z [----------] 8 tests from ParameterListTest 2023-01-11T22:09:54.6444462Z [ RUN ] ParameterListTest.ConstructsFromSharedPointer 2023-01-11T22:09:54.6445419Z [ OK ] ParameterListTest.ConstructsFromSharedPointer (0 ms) 2023-01-11T22:09:54.6446207Z [ RUN ] ParameterListTest.isEmpty 2023-01-11T22:09:54.6446852Z [ OK ] ParameterListTest.isEmpty (0 ms) 2023-01-11T22:09:54.6447620Z [ RUN ] ParameterListTest.PushBackAddsAnElement 2023-01-11T22:09:54.6448470Z [ OK ] ParameterListTest.PushBackAddsAnElement (0 ms) 2023-01-11T22:09:54.6449414Z [ RUN ] ParameterListTest.ForEachLoop 2023-01-11T22:09:54.6450157Z [ OK ] ParameterListTest.ForEachLoop (0 ms) 2023-01-11T22:09:54.6450898Z [ RUN ] ParameterListTest.AccessWithAt 2023-01-11T22:09:54.6451486Z [ OK ] ParameterListTest.AccessWithAt (4 ms) 2023-01-11T22:09:54.6452230Z [ RUN ] ParameterListTest.ExtendPushesParametersFromOtherParameterList 2023-01-11T22:09:54.6453103Z [ OK ] ParameterListTest.ExtendPushesParametersFromOtherParameterList (0 ms) 2023-01-11T22:09:54.6453801Z [ RUN ] ParameterListTest.PrettyPrintParameterList 2023-01-11T22:09:54.6454425Z [ OK ] ParameterListTest.PrettyPrintParameterList (0 ms) 2023-01-11T22:09:54.6455035Z [ RUN ] ParameterListTest.IncrementAdd 2023-01-11T22:09:54.6455590Z [ OK ] ParameterListTest.IncrementAdd (0 ms) 2023-01-11T22:09:54.6456167Z [----------] 8 tests from ParameterListTest (5 ms total) 2023-01-11T22:09:54.6456415Z 2023-01-11T22:09:54.6456673Z [----------] 1 test from NamespaceTests 2023-01-11T22:09:54.6457316Z [ RUN ] NamespaceTests.NotLeakingSymbolsFromTorchAutogradNamespace 2023-01-11T22:09:54.6458165Z [ OK ] NamespaceTests.NotLeakingSymbolsFromTorchAutogradNamespace (0 ms) 2023-01-11T22:09:54.6458845Z [----------] 1 test from NamespaceTests (0 ms total) 2023-01-11T22:09:54.6459097Z 2023-01-11T22:09:54.6459349Z [----------] 7 tests from NNUtilsTest 2023-01-11T22:09:54.6459805Z [ RUN ] NNUtilsTest.ClipGradNorm 2023-01-11T22:09:54.6460321Z [ OK ] NNUtilsTest.ClipGradNorm (2 ms) 2023-01-11T22:09:54.6460868Z [ RUN ] NNUtilsTest.ClipGradNormErrorIfNonfinite 2023-01-11T22:09:54.8229912Z [ OK ] NNUtilsTest.ClipGradNormErrorIfNonfinite (177 ms) 2023-01-11T22:09:54.8230638Z [ RUN ] NNUtilsTest.ClipGradValue 2023-01-11T22:09:54.8231236Z [ OK ] NNUtilsTest.ClipGradValue (0 ms) 2023-01-11T22:09:54.8231852Z [ RUN ] NNUtilsTest.ConvertParameters 2023-01-11T22:09:54.8235863Z [ OK ] NNUtilsTest.ConvertParameters (0 ms) 2023-01-11T22:09:54.8236391Z [ RUN ] NNUtilsTest.PackSequence 2023-01-11T22:09:54.8622248Z [ OK ] NNUtilsTest.PackSequence (38 ms) 2023-01-11T22:09:54.8622889Z [ RUN ] NNUtilsTest.PackPaddedSequence 2023-01-11T22:09:54.8785644Z [ OK ] NNUtilsTest.PackPaddedSequence (16 ms) 2023-01-11T22:09:54.8786191Z [ RUN ] NNUtilsTest.PadSequence 2023-01-11T22:09:54.8841743Z [ OK ] NNUtilsTest.PadSequence (5 ms) 2023-01-11T22:09:54.8842161Z [----------] 7 tests from NNUtilsTest (240 ms total) 2023-01-11T22:09:54.8842337Z 2023-01-11T22:09:54.8842508Z [----------] 3 tests from PackedSequenceTest 2023-01-11T22:09:54.8842809Z [ RUN ] PackedSequenceTest.WrongOrder 2023-01-11T22:09:54.8882523Z [ OK ] PackedSequenceTest.WrongOrder (4 ms) 2023-01-11T22:09:54.8882851Z [ RUN ] PackedSequenceTest.TotalLength 2023-01-11T22:09:54.8957975Z [ OK ] PackedSequenceTest.TotalLength (7 ms) 2023-01-11T22:09:54.8958281Z [ RUN ] PackedSequenceTest.To 2023-01-11T22:09:54.8959966Z [ OK ] PackedSequenceTest.To (0 ms) 2023-01-11T22:09:54.8960335Z [----------] 3 tests from PackedSequenceTest (11 ms total) 2023-01-11T22:09:54.8960511Z 2023-01-11T22:09:54.8960645Z [----------] 34 tests from OptimTest 2023-01-11T22:09:54.8960946Z [ RUN ] OptimTest.OptimizerAccessors 2023-01-11T22:09:54.8986806Z [ OK ] OptimTest.OptimizerAccessors (2 ms) 2023-01-11T22:09:54.8987124Z [ RUN ] OptimTest.OldInterface 2023-01-11T22:09:54.8988587Z [ OK ] OptimTest.OldInterface (0 ms) 2023-01-11T22:09:54.8988932Z [ RUN ] OptimTest.XORConvergence_SGD 2023-01-11T22:09:56.2710795Z [ OK ] OptimTest.XORConvergence_SGD (1371 ms) 2023-01-11T22:09:56.2711566Z [ RUN ] OptimTest.XORConvergence_LBFGS 2023-01-11T22:09:57.2151065Z [ OK ] OptimTest.XORConvergence_LBFGS (943 ms) 2023-01-11T22:09:57.2151841Z [ RUN ] OptimTest.XORConvergence_Adagrad 2023-01-11T22:09:57.7399839Z [ OK ] OptimTest.XORConvergence_Adagrad (524 ms) 2023-01-11T22:09:57.7400208Z [ RUN ] OptimTest.XORConvergence_RMSprop 2023-01-11T22:09:58.2588964Z [ OK ] OptimTest.XORConvergence_RMSprop (518 ms) 2023-01-11T22:09:58.2589544Z [ RUN ] OptimTest.XORConvergence_RMSpropWithMomentum 2023-01-11T22:09:59.7199205Z [ OK ] OptimTest.XORConvergence_RMSpropWithMomentum (1460 ms) 2023-01-11T22:09:59.7200089Z [ RUN ] OptimTest.XORConvergence_Adam 2023-01-11T22:10:00.2921131Z [ OK ] OptimTest.XORConvergence_Adam (572 ms) 2023-01-11T22:10:00.2922062Z [ RUN ] OptimTest.XORConvergence_AdamWithAmsgrad 2023-01-11T22:10:00.8667635Z [ OK ] OptimTest.XORConvergence_AdamWithAmsgrad (574 ms) 2023-01-11T22:10:00.8668106Z [ RUN ] OptimTest.ProducesPyTorchValues_Adam 2023-01-11T22:10:01.0569313Z [ OK ] OptimTest.ProducesPyTorchValues_Adam (190 ms) 2023-01-11T22:10:01.0569850Z [ RUN ] OptimTest.ProducesPyTorchValues_AdamWithWeightDecay 2023-01-11T22:10:01.2529904Z [ OK ] OptimTest.ProducesPyTorchValues_AdamWithWeightDecay (196 ms) 2023-01-11T22:10:01.2530387Z [ RUN ] OptimTest.ProducesPyTorchValues_AdamWithWeightDecayAndAMSGrad 2023-01-11T22:10:01.4556813Z [ OK ] OptimTest.ProducesPyTorchValues_AdamWithWeightDecayAndAMSGrad (202 ms) 2023-01-11T22:10:01.4557528Z [ RUN ] OptimTest.XORConvergence_AdamW 2023-01-11T22:10:02.0381788Z [ OK ] OptimTest.XORConvergence_AdamW (582 ms) 2023-01-11T22:10:02.0382195Z [ RUN ] OptimTest.XORConvergence_AdamWWithAmsgrad 2023-01-11T22:10:02.6215951Z [ OK ] OptimTest.XORConvergence_AdamWWithAmsgrad (583 ms) 2023-01-11T22:10:02.6216528Z [ RUN ] OptimTest.ProducesPyTorchValues_AdamW 2023-01-11T22:10:02.8196910Z [ OK ] OptimTest.ProducesPyTorchValues_AdamW (198 ms) 2023-01-11T22:10:02.8197375Z [ RUN ] OptimTest.ProducesPyTorchValues_AdamWWithoutWeightDecay 2023-01-11T22:10:03.0113252Z [ OK ] OptimTest.ProducesPyTorchValues_AdamWWithoutWeightDecay (191 ms) 2023-01-11T22:10:03.0113980Z [ RUN ] OptimTest.ProducesPyTorchValues_AdamWWithAMSGrad 2023-01-11T22:10:03.2157089Z [ OK ] OptimTest.ProducesPyTorchValues_AdamWWithAMSGrad (204 ms) 2023-01-11T22:10:03.2157621Z [ RUN ] OptimTest.ProducesPyTorchValues_Adagrad 2023-01-11T22:10:03.3745939Z [ OK ] OptimTest.ProducesPyTorchValues_Adagrad (158 ms) 2023-01-11T22:10:03.3746437Z [ RUN ] OptimTest.ProducesPyTorchValues_AdagradWithWeightDecay 2023-01-11T22:10:03.5394197Z [ OK ] OptimTest.ProducesPyTorchValues_AdagradWithWeightDecay (164 ms) 2023-01-11T22:10:03.5394674Z [ RUN ] OptimTest.ProducesPyTorchValues_AdagradWithWeightDecayAndLRDecay 2023-01-11T22:10:03.7045698Z [ OK ] OptimTest.ProducesPyTorchValues_AdagradWithWeightDecayAndLRDecay (165 ms) 2023-01-11T22:10:03.7046135Z [ RUN ] OptimTest.ProducesPyTorchValues_RMSprop 2023-01-11T22:10:03.8718205Z [ OK ] OptimTest.ProducesPyTorchValues_RMSprop (167 ms) 2023-01-11T22:10:03.8718684Z [ RUN ] OptimTest.ProducesPyTorchValues_RMSpropWithWeightDecay 2023-01-11T22:10:04.0462645Z [ OK ] OptimTest.ProducesPyTorchValues_RMSpropWithWeightDecay (174 ms) 2023-01-11T22:10:04.0463186Z [ RUN ] OptimTest.ProducesPyTorchValues_RMSpropWithWeightDecayAndCentered 2023-01-11T22:10:04.2359548Z [ OK ] OptimTest.ProducesPyTorchValues_RMSpropWithWeightDecayAndCentered (189 ms) 2023-01-11T22:10:04.2360091Z [ RUN ] OptimTest.ProducesPyTorchValues_RMSpropWithWeightDecayAndCenteredAndMomentum 2023-01-11T22:10:04.4350485Z [ OK ] OptimTest.ProducesPyTorchValues_RMSpropWithWeightDecayAndCenteredAndMomentum (199 ms) 2023-01-11T22:10:04.4350974Z [ RUN ] OptimTest.ProducesPyTorchValues_SGD 2023-01-11T22:10:04.5640019Z [ OK ] OptimTest.ProducesPyTorchValues_SGD (128 ms) 2023-01-11T22:10:04.5640607Z [ RUN ] OptimTest.ProducesPyTorchValues_SGDWithWeightDecay 2023-01-11T22:10:04.7005061Z [ OK ] OptimTest.ProducesPyTorchValues_SGDWithWeightDecay (136 ms) 2023-01-11T22:10:04.7005679Z [ RUN ] OptimTest.ProducesPyTorchValues_SGDWithWeightDecayAndMomentum 2023-01-11T22:10:04.8548548Z [ OK ] OptimTest.ProducesPyTorchValues_SGDWithWeightDecayAndMomentum (154 ms) 2023-01-11T22:10:04.8549208Z [ RUN ] OptimTest.ProducesPyTorchValues_SGDWithWeightDecayAndNesterovMomentum 2023-01-11T22:10:05.0145449Z [ OK ] OptimTest.ProducesPyTorchValues_SGDWithWeightDecayAndNesterovMomentum (159 ms) 2023-01-11T22:10:05.0146050Z [ RUN ] OptimTest.ProducesPyTorchValues_LBFGS 2023-01-11T22:10:05.1609456Z [ OK ] OptimTest.ProducesPyTorchValues_LBFGS (146 ms) 2023-01-11T22:10:05.1610080Z [ RUN ] OptimTest.ProducesPyTorchValues_LBFGS_with_line_search 2023-01-11T22:10:05.8231009Z [ OK ] OptimTest.ProducesPyTorchValues_LBFGS_with_line_search (662 ms) 2023-01-11T22:10:05.8231565Z [ RUN ] OptimTest.ZeroGrad 2023-01-11T22:10:05.8231858Z [ OK ] OptimTest.ZeroGrad (0 ms) 2023-01-11T22:10:05.8232183Z [ RUN ] OptimTest.ExternalVectorOfParameters 2023-01-11T22:10:05.8233402Z [ OK ] OptimTest.ExternalVectorOfParameters (0 ms) 2023-01-11T22:10:05.8234000Z [ RUN ] OptimTest.AddParameter_LBFGS 2023-01-11T22:10:05.8235084Z [ OK ] OptimTest.AddParameter_LBFGS (0 ms) 2023-01-11T22:10:05.8235647Z [ RUN ] OptimTest.CheckLRChange_StepLR_Adam 2023-01-11T22:10:05.8236176Z [ OK ] OptimTest.CheckLRChange_StepLR_Adam (0 ms) 2023-01-11T22:10:05.8236503Z [----------] 34 tests from OptimTest (10927 ms total) 2023-01-11T22:10:05.8236655Z 2023-01-11T22:10:05.8236812Z [----------] 29 tests from OrderedDictTest 2023-01-11T22:10:05.8237175Z [ RUN ] OrderedDictTest.IsEmptyAfterDefaultConstruction 2023-01-11T22:10:05.8237699Z [ OK ] OrderedDictTest.IsEmptyAfterDefaultConstruction (0 ms) 2023-01-11T22:10:05.8238169Z [ RUN ] OrderedDictTest.InsertAddsElementsWhenTheyAreYetNotPresent 2023-01-11T22:10:05.8238677Z [ OK ] OrderedDictTest.InsertAddsElementsWhenTheyAreYetNotPresent (0 ms) 2023-01-11T22:10:05.8239144Z [ RUN ] OrderedDictTest.GetReturnsValuesWhenTheyArePresent 2023-01-11T22:10:05.8239574Z [ OK ] OrderedDictTest.GetReturnsValuesWhenTheyArePresent (0 ms) 2023-01-11T22:10:05.8240034Z [ RUN ] OrderedDictTest.GetThrowsWhenPassedKeysThatAreNotPresent 2023-01-11T22:10:05.8261785Z [ OK ] OrderedDictTest.GetThrowsWhenPassedKeysThatAreNotPresent (2 ms) 2023-01-11T22:10:05.8262231Z [ RUN ] OrderedDictTest.CanInitializeFromList 2023-01-11T22:10:05.8262739Z [ OK ] OrderedDictTest.CanInitializeFromList (0 ms) 2023-01-11T22:10:05.8263253Z [ RUN ] OrderedDictTest.InsertThrowsWhenPassedElementsThatArePresent 2023-01-11T22:10:05.8284348Z [ OK ] OrderedDictTest.InsertThrowsWhenPassedElementsThatArePresent (2 ms) 2023-01-11T22:10:05.8284841Z [ RUN ] OrderedDictTest.FrontReturnsTheFirstItem 2023-01-11T22:10:05.8285235Z [ OK ] OrderedDictTest.FrontReturnsTheFirstItem (0 ms) 2023-01-11T22:10:05.8285601Z [ RUN ] OrderedDictTest.FrontThrowsWhenEmpty 2023-01-11T22:10:05.8295244Z [ OK ] OrderedDictTest.FrontThrowsWhenEmpty (1 ms) 2023-01-11T22:10:05.8295605Z [ RUN ] OrderedDictTest.BackReturnsTheLastItem 2023-01-11T22:10:05.8295982Z [ OK ] OrderedDictTest.BackReturnsTheLastItem (0 ms) 2023-01-11T22:10:05.8296338Z [ RUN ] OrderedDictTest.BackThrowsWhenEmpty 2023-01-11T22:10:05.8306148Z [ OK ] OrderedDictTest.BackThrowsWhenEmpty (1 ms) 2023-01-11T22:10:05.8306711Z [ RUN ] OrderedDictTest.FindReturnsPointersToValuesWhenPresent 2023-01-11T22:10:05.8307198Z [ OK ] OrderedDictTest.FindReturnsPointersToValuesWhenPresent (0 ms) 2023-01-11T22:10:05.8307731Z [ RUN ] OrderedDictTest.FindReturnsNullPointersWhenPasesdKeysThatAreNotPresent 2023-01-11T22:10:05.8308323Z [ OK ] OrderedDictTest.FindReturnsNullPointersWhenPasesdKeysThatAreNotPresent (0 ms) 2023-01-11T22:10:05.8309049Z [ RUN ] OrderedDictTest.SubscriptOperatorThrowsWhenPassedKeysThatAreNotPresent 2023-01-11T22:10:05.8309995Z [ OK ] OrderedDictTest.SubscriptOperatorThrowsWhenPassedKeysThatAreNotPresent (0 ms) 2023-01-11T22:10:05.8310758Z [ RUN ] OrderedDictTest.SubscriptOperatorReturnsItemsPositionallyWhenPassedIntegers 2023-01-11T22:10:05.8311387Z [ OK ] OrderedDictTest.SubscriptOperatorReturnsItemsPositionallyWhenPassedIntegers (0 ms) 2023-01-11T22:10:05.8312004Z [ RUN ] OrderedDictTest.SubscriptOperatorsThrowswhenPassedKeysThatAreNotPresent 2023-01-11T22:10:05.8330952Z [ OK ] OrderedDictTest.SubscriptOperatorsThrowswhenPassedKeysThatAreNotPresent (2 ms) 2023-01-11T22:10:05.8331581Z [ RUN ] OrderedDictTest.UpdateInsertsAllItemsFromAnotherOrderedDict 2023-01-11T22:10:05.8332238Z [ OK ] OrderedDictTest.UpdateInsertsAllItemsFromAnotherOrderedDict (0 ms) 2023-01-11T22:10:05.8332694Z [ RUN ] OrderedDictTest.UpdateAlsoChecksForDuplicates 2023-01-11T22:10:05.8343131Z [ OK ] OrderedDictTest.UpdateAlsoChecksForDuplicates (1 ms) 2023-01-11T22:10:05.8343848Z [ RUN ] OrderedDictTest.CanIterateItems 2023-01-11T22:10:05.8344440Z [ OK ] OrderedDictTest.CanIterateItems (0 ms) 2023-01-11T22:10:05.8345005Z [ RUN ] OrderedDictTest.EraseWorks 2023-01-11T22:10:05.8345554Z [ OK ] OrderedDictTest.EraseWorks (0 ms) 2023-01-11T22:10:05.8346148Z [ RUN ] OrderedDictTest.ClearMakesTheDictEmpty 2023-01-11T22:10:05.8346818Z [ OK ] OrderedDictTest.ClearMakesTheDictEmpty (0 ms) 2023-01-11T22:10:05.8347606Z [ RUN ] OrderedDictTest.CanCopyConstruct 2023-01-11T22:10:05.8348206Z [ OK ] OrderedDictTest.CanCopyConstruct (0 ms) 2023-01-11T22:10:05.8348794Z [ RUN ] OrderedDictTest.CanCopyAssign 2023-01-11T22:10:05.8349375Z [ OK ] OrderedDictTest.CanCopyAssign (0 ms) 2023-01-11T22:10:05.8349959Z [ RUN ] OrderedDictTest.CanMoveConstruct 2023-01-11T22:10:05.8350550Z [ OK ] OrderedDictTest.CanMoveConstruct (0 ms) 2023-01-11T22:10:05.8351127Z [ RUN ] OrderedDictTest.CanMoveAssign 2023-01-11T22:10:05.8351699Z [ OK ] OrderedDictTest.CanMoveAssign (0 ms) 2023-01-11T22:10:05.8352289Z [ RUN ] OrderedDictTest.CanInsertWithBraces 2023-01-11T22:10:05.8352937Z [ OK ] OrderedDictTest.CanInsertWithBraces (0 ms) 2023-01-11T22:10:05.8353685Z [ RUN ] OrderedDictTest.ErrorMessagesIncludeTheKeyDescription 2023-01-11T22:10:05.8370155Z [ OK ] OrderedDictTest.ErrorMessagesIncludeTheKeyDescription (2 ms) 2023-01-11T22:10:05.8370895Z [ RUN ] OrderedDictTest.KeysReturnsAllKeys 2023-01-11T22:10:05.8371511Z [ OK ] OrderedDictTest.KeysReturnsAllKeys (0 ms) 2023-01-11T22:10:05.8372134Z [ RUN ] OrderedDictTest.ValuesReturnsAllValues 2023-01-11T22:10:05.8372768Z [ OK ] OrderedDictTest.ValuesReturnsAllValues (0 ms) 2023-01-11T22:10:05.8373398Z [ RUN ] OrderedDictTest.ItemsReturnsAllItems 2023-01-11T22:10:05.8374032Z [ OK ] OrderedDictTest.ItemsReturnsAllItems (0 ms) 2023-01-11T22:10:05.8374654Z [----------] 29 tests from OrderedDictTest (13 ms total) 2023-01-11T22:10:05.8374931Z 2023-01-11T22:10:05.8375170Z [----------] 13 tests from RNNTest 2023-01-11T22:10:05.8375652Z [ RUN ] RNNTest.CheckOutputSizes 2023-01-11T22:10:05.8440603Z [ OK ] RNNTest.CheckOutputSizes (6 ms) 2023-01-11T22:10:05.8441163Z [ RUN ] RNNTest.CheckOutputSizesProj 2023-01-11T22:10:05.8506838Z [ OK ] RNNTest.CheckOutputSizesProj (6 ms) 2023-01-11T22:10:05.8507592Z [ RUN ] RNNTest.CheckOutputValuesMatchPyTorch 2023-01-11T22:10:05.8512579Z [ OK ] RNNTest.CheckOutputValuesMatchPyTorch (0 ms) 2023-01-11T22:10:05.8513242Z [ RUN ] RNNTest.EndToEndLSTM 2023-01-11T22:10:07.5615473Z [ OK ] RNNTest.EndToEndLSTM (1710 ms) 2023-01-11T22:10:07.5616238Z [ RUN ] RNNTest.EndToEndLSTMProj 2023-01-11T22:10:09.2522753Z [ OK ] RNNTest.EndToEndLSTMProj (1690 ms) 2023-01-11T22:10:09.2523412Z [ RUN ] RNNTest.EndToEndGRU 2023-01-11T22:10:10.7661361Z [ OK ] RNNTest.EndToEndGRU (1513 ms) 2023-01-11T22:10:10.7661936Z [ RUN ] RNNTest.EndToEndRNNRelu 2023-01-11T22:10:11.5944975Z [ OK ] RNNTest.EndToEndRNNRelu (828 ms) 2023-01-11T22:10:11.5945740Z [ RUN ] RNNTest.EndToEndRNNTanh 2023-01-11T22:10:12.5261076Z [ OK ] RNNTest.EndToEndRNNTanh (931 ms) 2023-01-11T22:10:12.5261652Z [ RUN ] RNNTest.PrettyPrintRNNs 2023-01-11T22:10:12.5283371Z [ OK ] RNNTest.PrettyPrintRNNs (2 ms) 2023-01-11T22:10:12.5283974Z [ RUN ] RNNTest.BidirectionalFlattenParameters 2023-01-11T22:10:12.5390412Z [ OK ] RNNTest.BidirectionalFlattenParameters (10 ms) 2023-01-11T22:10:12.5391041Z [ RUN ] RNNTest.BidirectionalGRUReverseForward 2023-01-11T22:10:12.5403898Z [ OK ] RNNTest.BidirectionalGRUReverseForward (1 ms) 2023-01-11T22:10:12.5404639Z [ RUN ] RNNTest.BidirectionalLSTMReverseForward 2023-01-11T22:10:12.5416343Z [ OK ] RNNTest.BidirectionalLSTMReverseForward (1 ms) 2023-01-11T22:10:12.5417054Z [ RUN ] RNNTest.UsePackedSequenceAsInput 2023-01-11T22:10:12.5434538Z [ OK ] RNNTest.UsePackedSequenceAsInput (1 ms) 2023-01-11T22:10:12.5435442Z [----------] 13 tests from RNNTest (6706 ms total) 2023-01-11T22:10:12.5435717Z 2023-01-11T22:10:12.5436007Z [----------] 19 tests from SequentialTest 2023-01-11T22:10:12.5436520Z [ RUN ] SequentialTest.CanContainThings 2023-01-11T22:10:12.5436976Z [ OK ] SequentialTest.CanContainThings (0 ms) 2023-01-11T22:10:12.5437490Z [ RUN ] SequentialTest.ConstructsFromSharedPointer 2023-01-11T22:10:12.5437952Z [ OK ] SequentialTest.ConstructsFromSharedPointer (0 ms) 2023-01-11T22:10:12.5438489Z [ RUN ] SequentialTest.ConstructsFromConcreteType 2023-01-11T22:10:12.5438866Z [ OK ] SequentialTest.ConstructsFromConcreteType (0 ms) 2023-01-11T22:10:12.5439248Z [ RUN ] SequentialTest.ConstructsFromModuleHolder 2023-01-11T22:10:12.5439631Z [ OK ] SequentialTest.ConstructsFromModuleHolder (0 ms) 2023-01-11T22:10:12.5439983Z [ RUN ] SequentialTest.PushBackAddsAnElement 2023-01-11T22:10:12.5440347Z [ OK ] SequentialTest.PushBackAddsAnElement (0 ms) 2023-01-11T22:10:12.5440674Z [ RUN ] SequentialTest.AccessWithAt 2023-01-11T22:10:12.5470677Z [ OK ] SequentialTest.AccessWithAt (3 ms) 2023-01-11T22:10:12.5471258Z [ RUN ] SequentialTest.AccessWithPtr 2023-01-11T22:10:12.5494212Z [ OK ] SequentialTest.AccessWithPtr (2 ms) 2023-01-11T22:10:12.5494994Z [ RUN ] SequentialTest.CallingForwardOnEmptySequentialIsDisallowed 2023-01-11T22:10:12.5506785Z [ OK ] SequentialTest.CallingForwardOnEmptySequentialIsDisallowed (1 ms) 2023-01-11T22:10:12.5507615Z [ RUN ] SequentialTest.CallingForwardChainsCorrectly 2023-01-11T22:10:12.5508368Z [ OK ] SequentialTest.CallingForwardChainsCorrectly (0 ms) 2023-01-11T22:10:12.5509196Z [ RUN ] SequentialTest.CallingForwardWithTheWrongReturnTypeThrows 2023-01-11T22:10:12.5518766Z [ OK ] SequentialTest.CallingForwardWithTheWrongReturnTypeThrows (1 ms) 2023-01-11T22:10:12.5519871Z [ RUN ] SequentialTest.TheReturnTypeOfForwardDefaultsToTensor 2023-01-11T22:10:12.5520886Z [ OK ] SequentialTest.TheReturnTypeOfForwardDefaultsToTensor (0 ms) 2023-01-11T22:10:12.5521832Z [ RUN ] SequentialTest.ForwardReturnsTheLastValue 2023-01-11T22:10:12.5522640Z [ OK ] SequentialTest.ForwardReturnsTheLastValue (0 ms) 2023-01-11T22:10:12.5523573Z [ RUN ] SequentialTest.SanityCheckForHoldingStandardModules 2023-01-11T22:10:12.5525101Z [ OK ] SequentialTest.SanityCheckForHoldingStandardModules (0 ms) 2023-01-11T22:10:12.5526099Z [ RUN ] SequentialTest.ExtendPushesModulesFromOtherSequential 2023-01-11T22:10:12.5527229Z [ OK ] SequentialTest.ExtendPushesModulesFromOtherSequential (0 ms) 2023-01-11T22:10:12.5527936Z [ RUN ] SequentialTest.HasReferenceSemantics 2023-01-11T22:10:12.5528571Z [ OK ] SequentialTest.HasReferenceSemantics (0 ms) 2023-01-11T22:10:12.5529330Z [ RUN ] SequentialTest.IsCloneable 2023-01-11T22:10:12.5531702Z [ OK ] SequentialTest.IsCloneable (0 ms) 2023-01-11T22:10:12.5532280Z [ RUN ] SequentialTest.RegistersElementsAsSubmodules 2023-01-11T22:10:12.5532984Z [ OK ] SequentialTest.RegistersElementsAsSubmodules (0 ms) 2023-01-11T22:10:12.5533795Z [ RUN ] SequentialTest.PrettyPrintSequential 2023-01-11T22:10:12.5535346Z [ OK ] SequentialTest.PrettyPrintSequential (0 ms) 2023-01-11T22:10:12.5536119Z [ RUN ] SequentialTest.ModuleForwardMethodOptionalArg 2023-01-11T22:10:12.5567562Z [ OK ] SequentialTest.ModuleForwardMethodOptionalArg (3 ms) 2023-01-11T22:10:12.5568356Z [----------] 19 tests from SequentialTest (13 ms total) 2023-01-11T22:10:12.5568543Z 2023-01-11T22:10:12.5568732Z [----------] 11 tests from TransformerTest 2023-01-11T22:10:12.5569411Z [ RUN ] TransformerTest.TransformerEncoderLayer 2023-01-11T22:10:12.5658255Z [ OK ] TransformerTest.TransformerEncoderLayer (8 ms) 2023-01-11T22:10:12.5659179Z [ RUN ] TransformerTest.TransformerDecoderLayer 2023-01-11T22:10:12.5738804Z [ OK ] TransformerTest.TransformerDecoderLayer (8 ms) 2023-01-11T22:10:12.5739739Z [ RUN ] TransformerTest.TransformerDecoderLayer_gelu 2023-01-11T22:10:12.5785390Z [ OK ] TransformerTest.TransformerDecoderLayer_gelu (4 ms) 2023-01-11T22:10:12.5786252Z [ RUN ] TransformerTest.TransformerEncoder 2023-01-11T22:10:12.5946450Z [ OK ] TransformerTest.TransformerEncoder (16 ms) 2023-01-11T22:10:12.5947443Z [ RUN ] TransformerTest.PrettyPrintTransformerEncoderLayer 2023-01-11T22:10:12.5949789Z [ OK ] TransformerTest.PrettyPrintTransformerEncoderLayer (0 ms) 2023-01-11T22:10:12.5950303Z [ RUN ] TransformerTest.PrettyPrintTransformerEncoder 2023-01-11T22:10:12.5958076Z [ OK ] TransformerTest.PrettyPrintTransformerEncoder (0 ms) 2023-01-11T22:10:12.5958699Z [ RUN ] TransformerTest.PrettyPrintTransformerDecoderLayer 2023-01-11T22:10:12.5959844Z [ OK ] TransformerTest.PrettyPrintTransformerDecoderLayer (0 ms) 2023-01-11T22:10:12.5960433Z [ RUN ] TransformerTest.TransformerDecoder 2023-01-11T22:10:12.6395122Z [ OK ] TransformerTest.TransformerDecoder (43 ms) 2023-01-11T22:10:12.6395545Z [ RUN ] TransformerTest.PrettyPrintTransformerDecoder 2023-01-11T22:10:12.6405123Z [ OK ] TransformerTest.PrettyPrintTransformerDecoder (1 ms) 2023-01-11T22:10:12.6405504Z [ RUN ] TransformerTest.Transformer 2023-01-11T22:10:12.6560518Z [ OK ] TransformerTest.Transformer (15 ms) 2023-01-11T22:10:12.6560893Z [ RUN ] TransformerTest.TransformerArgsCorrectness 2023-01-11T22:10:12.6620077Z [ OK ] TransformerTest.TransformerArgsCorrectness (5 ms) 2023-01-11T22:10:12.6620481Z [----------] 11 tests from TransformerTest (105 ms total) 2023-01-11T22:10:12.6620657Z 2023-01-11T22:10:12.6620840Z [----------] 23 tests from SerializeTest 2023-01-11T22:10:12.6621157Z [ RUN ] SerializeTest.KeysFunc 2023-01-11T22:10:12.6624470Z [ OK ] SerializeTest.KeysFunc (0 ms) 2023-01-11T22:10:12.6624846Z [ RUN ] SerializeTest.TryReadFunc 2023-01-11T22:10:12.6627230Z [ OK ] SerializeTest.TryReadFunc (0 ms) 2023-01-11T22:10:12.6627526Z [ RUN ] SerializeTest.Basic 2023-01-11T22:10:12.6629596Z [ OK ] SerializeTest.Basic (0 ms) 2023-01-11T22:10:12.6629888Z [ RUN ] SerializeTest.MathBits 2023-01-11T22:10:12.6705756Z [ OK ] SerializeTest.MathBits (7 ms) 2023-01-11T22:10:12.6706061Z [ RUN ] SerializeTest.BasicToFile 2023-01-11T22:10:12.6709235Z [ OK ] SerializeTest.BasicToFile (0 ms) 2023-01-11T22:10:12.6709538Z [ RUN ] SerializeTest.BasicViaFunc 2023-01-11T22:10:12.6712790Z [ OK ] SerializeTest.BasicViaFunc (0 ms) 2023-01-11T22:10:12.6713075Z [ RUN ] SerializeTest.Resized 2023-01-11T22:10:12.6714963Z [ OK ] SerializeTest.Resized (0 ms) 2023-01-11T22:10:12.6715248Z [ RUN ] SerializeTest.Sliced 2023-01-11T22:10:12.6717270Z [ OK ] SerializeTest.Sliced (0 ms) 2023-01-11T22:10:12.6717574Z [ RUN ] SerializeTest.NonContiguous 2023-01-11T22:10:12.6719662Z [ OK ] SerializeTest.NonContiguous (0 ms) 2023-01-11T22:10:12.6719975Z [ RUN ] SerializeTest.ErrorOnMissingKey 2023-01-11T22:10:12.6798821Z [ OK ] SerializeTest.ErrorOnMissingKey (7 ms) 2023-01-11T22:10:12.6799120Z [ RUN ] SerializeTest.XOR 2023-01-11T22:10:12.8542252Z [ OK ] SerializeTest.XOR (174 ms) 2023-01-11T22:10:12.8542763Z [ RUN ] SerializeTest.Optim 2023-01-11T22:10:12.8563929Z [ OK ] SerializeTest.Optim (2 ms) 2023-01-11T22:10:12.8564231Z [ RUN ] SerializeTest.Optim_Adagrad 2023-01-11T22:10:12.8593902Z [ OK ] SerializeTest.Optim_Adagrad (2 ms) 2023-01-11T22:10:12.8594233Z [ RUN ] SerializeTest.Optim_SGD 2023-01-11T22:10:12.8620925Z [ OK ] SerializeTest.Optim_SGD (2 ms) 2023-01-11T22:10:12.8621249Z [ RUN ] SerializeTest.Optim_Adam 2023-01-11T22:10:12.8655360Z [ OK ] SerializeTest.Optim_Adam (3 ms) 2023-01-11T22:10:12.8655693Z [ RUN ] SerializeTest.Optim_AdamW 2023-01-11T22:10:12.8689418Z [ OK ] SerializeTest.Optim_AdamW (3 ms) 2023-01-11T22:10:12.8689723Z [ RUN ] SerializeTest.Optim_RMSprop 2023-01-11T22:10:12.8722419Z [ OK ] SerializeTest.Optim_RMSprop (3 ms) 2023-01-11T22:10:12.8722747Z [ RUN ] SerializeTest.Optim_LBFGS 2023-01-11T22:10:12.8755586Z [ OK ] SerializeTest.Optim_LBFGS (3 ms) 2023-01-11T22:10:12.8756115Z [ RUN ] SerializeTest.CanSerializeModulesWithIntermediateModulesWithoutParametersOrBuffers 2023-01-11T22:10:12.8759786Z [ OK ] SerializeTest.CanSerializeModulesWithIntermediateModulesWithoutParametersOrBuffers (0 ms) 2023-01-11T22:10:12.8760287Z [ RUN ] SerializeTest.VectorOfTensors 2023-01-11T22:10:12.8762224Z [ OK ] SerializeTest.VectorOfTensors (0 ms) 2023-01-11T22:10:12.8762511Z [ RUN ] SerializeTest.IValue 2023-01-11T22:10:12.8765004Z [ OK ] SerializeTest.IValue (0 ms) 2023-01-11T22:10:12.8765577Z [ RUN ] SerializeTest.UnserializableSubmoduleIsSkippedWhenSavingModule 2023-01-11T22:10:12.8766596Z [ OK ] SerializeTest.UnserializableSubmoduleIsSkippedWhenSavingModule (0 ms) 2023-01-11T22:10:12.8767145Z [ RUN ] SerializeTest.UnserializableSubmoduleIsIgnoredWhenLoadingModule 2023-01-11T22:10:12.8772072Z [ OK ] SerializeTest.UnserializableSubmoduleIsIgnoredWhenLoadingModule (0 ms) 2023-01-11T22:10:12.8772766Z [----------] 23 tests from SerializeTest (215 ms total) 2023-01-11T22:10:12.8773057Z 2023-01-11T22:10:12.8773291Z [----------] 1 test from SpecialTest 2023-01-11T22:10:12.8773617Z [ RUN ] SpecialTest.special 2023-01-11T22:10:12.8773904Z [ OK ] SpecialTest.special (0 ms) 2023-01-11T22:10:12.8774274Z [----------] 1 test from SpecialTest (0 ms total) 2023-01-11T22:10:12.8774415Z 2023-01-11T22:10:12.8774560Z [----------] 5 tests from TestStatic 2023-01-11T22:10:12.8774812Z [ RUN ] TestStatic.AllOf 2023-01-11T22:10:12.8775077Z [ OK ] TestStatic.AllOf (0 ms) 2023-01-11T22:10:12.8775314Z [ RUN ] TestStatic.AnyOf 2023-01-11T22:10:12.8775579Z [ OK ] TestStatic.AnyOf (0 ms) 2023-01-11T22:10:12.8775862Z [ RUN ] TestStatic.EnableIfModule 2023-01-11T22:10:12.8776162Z [ OK ] TestStatic.EnableIfModule (0 ms) 2023-01-11T22:10:12.8776618Z [ RUN ] TestStatic.ReturnTypeOfForward 2023-01-11T22:10:12.8776948Z [ OK ] TestStatic.ReturnTypeOfForward (0 ms) 2023-01-11T22:10:12.8777231Z [ RUN ] TestStatic.Apply 2023-01-11T22:10:12.8777482Z [ OK ] TestStatic.Apply (0 ms) 2023-01-11T22:10:12.8777776Z [----------] 5 tests from TestStatic (0 ms total) 2023-01-11T22:10:12.8777922Z 2023-01-11T22:10:12.8778067Z [----------] 45 tests from TensorTest 2023-01-11T22:10:12.8778312Z [ RUN ] TensorTest.ToDtype 2023-01-11T22:10:12.8782534Z [ OK ] TensorTest.ToDtype (0 ms) 2023-01-11T22:10:12.8782954Z [ RUN ] TensorTest.ToTensorAndTensorAttributes 2023-01-11T22:10:12.8783322Z [ OK ] TensorTest.ToTensorAndTensorAttributes (0 ms) 2023-01-11T22:10:12.8783792Z [ RUN ] TensorTest.ToOptionsWithRequiresGrad 2023-01-11T22:10:12.8806739Z [ OK ] TensorTest.ToOptionsWithRequiresGrad (2 ms) 2023-01-11T22:10:12.8807204Z [ RUN ] TensorTest.ToDoesNotCopyWhenOptionsAreAllTheSame 2023-01-11T22:10:12.8807750Z [ OK ] TensorTest.ToDoesNotCopyWhenOptionsAreAllTheSame (0 ms) 2023-01-11T22:10:12.8808170Z [ RUN ] TensorTest.AtTensorCtorScalar 2023-01-11T22:10:12.8808603Z [ OK ] TensorTest.AtTensorCtorScalar (0 ms) 2023-01-11T22:10:12.8808917Z [ RUN ] TensorTest.AtTensorCtorSingleDim 2023-01-11T22:10:12.8810118Z [ OK ] TensorTest.AtTensorCtorSingleDim (0 ms) 2023-01-11T22:10:12.8810546Z [ RUN ] TensorTest.AtTensorCastRealToComplex 2023-01-11T22:10:12.8810915Z [ OK ] TensorTest.AtTensorCastRealToComplex (0 ms) 2023-01-11T22:10:12.8811316Z [ RUN ] TensorTest.AtTensorCastComplexToRealErrorChecks 2023-01-11T22:10:12.8862380Z [ OK ] TensorTest.AtTensorCastComplexToRealErrorChecks (5 ms) 2023-01-11T22:10:12.8862871Z [ RUN ] TensorTest.TorchTensorCtorScalarIntegralType 2023-01-11T22:10:12.8863295Z [ OK ] TensorTest.TorchTensorCtorScalarIntegralType (0 ms) 2023-01-11T22:10:12.8863697Z [ RUN ] TensorTest.TorchTensorCtorScalarFloatingType 2023-01-11T22:10:12.8864090Z [ OK ] TensorTest.TorchTensorCtorScalarFloatingType (0 ms) 2023-01-11T22:10:12.8864477Z [ RUN ] TensorTest.TorchTensorCtorScalarBoolType 2023-01-11T22:10:12.8864858Z [ OK ] TensorTest.TorchTensorCtorScalarBoolType (0 ms) 2023-01-11T22:10:12.8865247Z [ RUN ] TensorTest.TorchTensorCtorSingleDimIntegralType 2023-01-11T22:10:12.8867643Z [ OK ] TensorTest.TorchTensorCtorSingleDimIntegralType (0 ms) 2023-01-11T22:10:12.8868240Z [ RUN ] TensorTest.TorchTensorCtorSingleDimFloatingType 2023-01-11T22:10:12.8868913Z [ OK ] TensorTest.TorchTensorCtorSingleDimFloatingType (0 ms) 2023-01-11T22:10:12.8869632Z [ RUN ] TensorTest.TorchTensorCtorSingleDimBoolType 2023-01-11T22:10:12.8870079Z [ OK ] TensorTest.TorchTensorCtorSingleDimBoolType (0 ms) 2023-01-11T22:10:12.8870483Z [ RUN ] TensorTest.TorchTensorCtorMultiDimIntegralType 2023-01-11T22:10:12.8873313Z [ OK ] TensorTest.TorchTensorCtorMultiDimIntegralType (0 ms) 2023-01-11T22:10:12.8873717Z [ RUN ] TensorTest.TorchTensorCtorMultiDimFloatingType 2023-01-11T22:10:12.8875989Z [ OK ] TensorTest.TorchTensorCtorMultiDimFloatingType (0 ms) 2023-01-11T22:10:12.8876446Z [ RUN ] TensorTest.TorchTensorCtorMultiDimBoolType 2023-01-11T22:10:12.8876831Z [ OK ] TensorTest.TorchTensorCtorMultiDimBoolType (0 ms) 2023-01-11T22:10:12.8877234Z [ RUN ] TensorTest.TorchTensorCtorMultiDimWithOptions 2023-01-11T22:10:12.8877809Z [ OK ] TensorTest.TorchTensorCtorMultiDimWithOptions (0 ms) 2023-01-11T22:10:12.8878269Z [ RUN ] TensorTest.TorchTensorCtorMultiDimErrorChecks 2023-01-11T22:10:12.8935720Z [ OK ] TensorTest.TorchTensorCtorMultiDimErrorChecks (5 ms) 2023-01-11T22:10:12.8936501Z [ RUN ] TensorTest.TorchTensorCastRealToComplex 2023-01-11T22:10:12.8937195Z [ OK ] TensorTest.TorchTensorCastRealToComplex (0 ms) 2023-01-11T22:10:12.8937932Z [ RUN ] TensorTest.TorchTensorCastComplexToRealErrorChecks 2023-01-11T22:10:12.8938631Z [W Copy.cpp:276] Warning: Casting complex values to real discards the imaginary part (function operator()) 2023-01-11T22:10:12.8949728Z [ OK ] TensorTest.TorchTensorCastComplexToRealErrorChecks (1 ms) 2023-01-11T22:10:12.8950422Z [ RUN ] TensorTest.TorchTensorCtorZeroSizedDim 2023-01-11T22:10:12.8951043Z [ OK ] TensorTest.TorchTensorCtorZeroSizedDim (0 ms) 2023-01-11T22:10:12.8951862Z [ RUN ] TensorTest.TorchTensorCtorWithoutSpecifyingDtype 2023-01-11T22:10:12.8952665Z [ OK ] TensorTest.TorchTensorCtorWithoutSpecifyingDtype (0 ms) 2023-01-11T22:10:12.8953440Z [ RUN ] TensorTest.TorchTensorCtorWithNonDtypeOptions 2023-01-11T22:10:12.8954188Z [ OK ] TensorTest.TorchTensorCtorWithNonDtypeOptions (0 ms) 2023-01-11T22:10:12.8954773Z [ RUN ] TensorTest.Arange 2023-01-11T22:10:12.8955240Z [ OK ] TensorTest.Arange (0 ms) 2023-01-11T22:10:12.8955820Z [ RUN ] TensorTest.PrettyPrintTensorDataContainer 2023-01-11T22:10:12.8956526Z [ OK ] TensorTest.PrettyPrintTensorDataContainer (0 ms) 2023-01-11T22:10:12.8957327Z [ RUN ] TensorTest.TensorDataContainerCallingAccessorOfWrongType 2023-01-11T22:10:12.9018324Z [ OK ] TensorTest.TensorDataContainerCallingAccessorOfWrongType (6 ms) 2023-01-11T22:10:12.9019010Z [ RUN ] TensorTest.FromBlob 2023-01-11T22:10:12.9019439Z [ OK ] TensorTest.FromBlob (0 ms) 2023-01-11T22:10:12.9019906Z [ RUN ] TensorTest.FromBlobUsesDeleter 2023-01-11T22:10:12.9020492Z [ OK ] TensorTest.FromBlobUsesDeleter (0 ms) 2023-01-11T22:10:12.9020874Z [ RUN ] TensorTest.FromBlobWithStrides 2023-01-11T22:10:12.9021198Z [ OK ] TensorTest.FromBlobWithStrides (0 ms) 2023-01-11T22:10:12.9021475Z [ RUN ] TensorTest.Item 2023-01-11T22:10:12.9021719Z [ OK ] TensorTest.Item (0 ms) 2023-01-11T22:10:12.9022020Z [ RUN ] TensorTest.DataPtr 2023-01-11T22:10:12.9022287Z [ OK ] TensorTest.DataPtr (0 ms) 2023-01-11T22:10:12.9022532Z [ RUN ] TensorTest.Data 2023-01-11T22:10:12.9022856Z [ OK ] TensorTest.Data (0 ms) 2023-01-11T22:10:12.9023133Z [ RUN ] TensorTest.BackwardAndGrad 2023-01-11T22:10:12.9023431Z [ OK ] TensorTest.BackwardAndGrad (0 ms) 2023-01-11T22:10:12.9023754Z [ RUN ] TensorTest.BackwardCreatesOnesGrad 2023-01-11T22:10:12.9024098Z [ OK ] TensorTest.BackwardCreatesOnesGrad (0 ms) 2023-01-11T22:10:12.9024431Z [ RUN ] TensorTest.BackwardNonScalarOutputs 2023-01-11T22:10:12.9052271Z [ OK ] TensorTest.BackwardNonScalarOutputs (3 ms) 2023-01-11T22:10:12.9052782Z [ RUN ] TensorTest.IsLeaf 2023-01-11T22:10:12.9053255Z [ OK ] TensorTest.IsLeaf (0 ms) 2023-01-11T22:10:12.9053712Z [ RUN ] TensorTest.OutputNr 2023-01-11T22:10:12.9054117Z [ OK ] TensorTest.OutputNr (0 ms) 2023-01-11T22:10:12.9054379Z [ RUN ] TensorTest.Version 2023-01-11T22:10:12.9063473Z [ OK ] TensorTest.Version (0 ms) 2023-01-11T22:10:12.9063847Z [ RUN ] TensorTest.Detach 2023-01-11T22:10:12.9064115Z [ OK ] TensorTest.Detach (0 ms) 2023-01-11T22:10:12.9064398Z [ RUN ] TensorTest.DetachInplace 2023-01-11T22:10:12.9064713Z [ OK ] TensorTest.DetachInplace (0 ms) 2023-01-11T22:10:12.9064978Z [ RUN ] TensorTest.SetData 2023-01-11T22:10:12.9065372Z [ OK ] TensorTest.SetData (0 ms) 2023-01-11T22:10:12.9065667Z [ RUN ] TensorTest.RequiresGradInplace 2023-01-11T22:10:12.9079953Z [ OK ] TensorTest.RequiresGradInplace (2 ms) 2023-01-11T22:10:12.9080308Z [ RUN ] TensorTest.StdDimension 2023-01-11T22:10:12.9080672Z [ OK ] TensorTest.StdDimension (0 ms) 2023-01-11T22:10:12.9080965Z [ RUN ] TensorTest.ReshapeAlias 2023-01-11T22:10:12.9083194Z [ OK ] TensorTest.ReshapeAlias (0 ms) 2023-01-11T22:10:12.9083746Z [----------] 45 tests from TensorTest (30 ms total) 2023-01-11T22:10:12.9084033Z 2023-01-11T22:10:12.9084252Z [----------] 36 tests from TensorIndexingTest 2023-01-11T22:10:12.9084547Z [ RUN ] TensorIndexingTest.Slice 2023-01-11T22:10:12.9084958Z [ OK ] TensorIndexingTest.Slice (0 ms) 2023-01-11T22:10:12.9085270Z [ RUN ] TensorIndexingTest.TensorIndex 2023-01-11T22:10:12.9095769Z [ OK ] TensorIndexingTest.TensorIndex (1 ms) 2023-01-11T22:10:12.9096105Z [ RUN ] TensorIndexingTest.TestNoIndices 2023-01-11T22:10:12.9183520Z [ OK ] TensorIndexingTest.TestNoIndices (8 ms) 2023-01-11T22:10:12.9183976Z [ RUN ] TensorIndexingTest.TestAdvancedIndexingWithListOfTensor 2023-01-11T22:10:12.9185142Z [ OK ] TensorIndexingTest.TestAdvancedIndexingWithListOfTensor (0 ms) 2023-01-11T22:10:12.9185669Z [ RUN ] TensorIndexingTest.TestSingleInt 2023-01-11T22:10:12.9186011Z [ OK ] TensorIndexingTest.TestSingleInt (0 ms) 2023-01-11T22:10:12.9186509Z [ RUN ] TensorIndexingTest.TestMultipleInt 2023-01-11T22:10:12.9186963Z [ OK ] TensorIndexingTest.TestMultipleInt (0 ms) 2023-01-11T22:10:12.9187380Z [ RUN ] TensorIndexingTest.TestNone 2023-01-11T22:10:12.9187739Z [ OK ] TensorIndexingTest.TestNone (0 ms) 2023-01-11T22:10:12.9188099Z [ RUN ] TensorIndexingTest.TestStep 2023-01-11T22:10:12.9188488Z [ OK ] TensorIndexingTest.TestStep (0 ms) 2023-01-11T22:10:12.9188886Z [ RUN ] TensorIndexingTest.TestStepAssignment 2023-01-11T22:10:12.9189250Z [ OK ] TensorIndexingTest.TestStepAssignment (0 ms) 2023-01-11T22:10:12.9189643Z [ RUN ] TensorIndexingTest.TestBoolIndices 2023-01-11T22:10:12.9190750Z [ OK ] TensorIndexingTest.TestBoolIndices (0 ms) 2023-01-11T22:10:12.9191418Z [ RUN ] TensorIndexingTest.TestBoolIndicesAccumulate 2023-01-11T22:10:12.9192067Z [ OK ] TensorIndexingTest.TestBoolIndicesAccumulate (0 ms) 2023-01-11T22:10:12.9192653Z [ RUN ] TensorIndexingTest.TestMultipleBoolIndices 2023-01-11T22:10:12.9193324Z [ OK ] TensorIndexingTest.TestMultipleBoolIndices (0 ms) 2023-01-11T22:10:12.9193794Z [ RUN ] TensorIndexingTest.TestByteMask 2023-01-11T22:10:12.9194376Z [ OK ] TensorIndexingTest.TestByteMask (0 ms) 2023-01-11T22:10:12.9195015Z [ RUN ] TensorIndexingTest.TestByteMaskAccumulate 2023-01-11T22:10:12.9195701Z [ OK ] TensorIndexingTest.TestByteMaskAccumulate (0 ms) 2023-01-11T22:10:12.9196378Z [ RUN ] TensorIndexingTest.TestMultipleByteMask 2023-01-11T22:10:12.9197028Z [ OK ] TensorIndexingTest.TestMultipleByteMask (0 ms) 2023-01-11T22:10:12.9197642Z [ RUN ] TensorIndexingTest.TestByteMask2d 2023-01-11T22:10:12.9198259Z [ OK ] TensorIndexingTest.TestByteMask2d (0 ms) 2023-01-11T22:10:12.9198842Z [ RUN ] TensorIndexingTest.TestIntIndices 2023-01-11T22:10:12.9199433Z [ OK ] TensorIndexingTest.TestIntIndices (0 ms) 2023-01-11T22:10:12.9200060Z [ RUN ] TensorIndexingTest.TestIntIndices2d 2023-01-11T22:10:12.9200649Z [ OK ] TensorIndexingTest.TestIntIndices2d (0 ms) 2023-01-11T22:10:12.9201005Z [ RUN ] TensorIndexingTest.TestIntIndicesBroadcast 2023-01-11T22:10:12.9201522Z [ OK ] TensorIndexingTest.TestIntIndicesBroadcast (0 ms) 2023-01-11T22:10:12.9201880Z [ RUN ] TensorIndexingTest.TestEmptyIndex 2023-01-11T22:10:12.9202210Z [ OK ] TensorIndexingTest.TestEmptyIndex (0 ms) 2023-01-11T22:10:12.9202558Z [ RUN ] TensorIndexingTest.TestEmptyNdimIndex 2023-01-11T22:10:12.9257772Z [ OK ] TensorIndexingTest.TestEmptyNdimIndex (5 ms) 2023-01-11T22:10:12.9258381Z [ RUN ] TensorIndexingTest.TestEmptyNdimIndexBool 2023-01-11T22:10:12.9278977Z [ OK ] TensorIndexingTest.TestEmptyNdimIndexBool (2 ms) 2023-01-11T22:10:12.9279646Z [ RUN ] TensorIndexingTest.TestEmptySlice 2023-01-11T22:10:12.9280129Z [ OK ] TensorIndexingTest.TestEmptySlice (0 ms) 2023-01-11T22:10:12.9280800Z [ RUN ] TensorIndexingTest.TestIndexGetitemCopyBoolsSlices 2023-01-11T22:10:12.9281423Z [ OK ] TensorIndexingTest.TestIndexGetitemCopyBoolsSlices (0 ms) 2023-01-11T22:10:12.9281851Z [ RUN ] TensorIndexingTest.TestIndexSetitemBoolsSlices 2023-01-11T22:10:12.9369760Z [ OK ] TensorIndexingTest.TestIndexSetitemBoolsSlices (8 ms) 2023-01-11T22:10:12.9370417Z [ RUN ] TensorIndexingTest.TestIndexScalarWithBoolMask 2023-01-11T22:10:12.9371163Z [ OK ] TensorIndexingTest.TestIndexScalarWithBoolMask (0 ms) 2023-01-11T22:10:12.9371783Z [ RUN ] TensorIndexingTest.TestSetitemExpansionError 2023-01-11T22:10:12.9488711Z [ OK ] TensorIndexingTest.TestSetitemExpansionError (11 ms) 2023-01-11T22:10:12.9489497Z [ RUN ] TensorIndexingTest.TestGetitemScalars 2023-01-11T22:10:12.9596911Z [ OK ] TensorIndexingTest.TestGetitemScalars (10 ms) 2023-01-11T22:10:12.9597495Z [ RUN ] TensorIndexingTest.TestSetitemScalars 2023-01-11T22:10:12.9704482Z [ OK ] TensorIndexingTest.TestSetitemScalars (10 ms) 2023-01-11T22:10:12.9705180Z [ RUN ] TensorIndexingTest.TestBasicAdvancedCombined 2023-01-11T22:10:12.9706001Z [ OK ] TensorIndexingTest.TestBasicAdvancedCombined (0 ms) 2023-01-11T22:10:12.9706671Z [ RUN ] TensorIndexingTest.TestIntAssignment 2023-01-11T22:10:12.9707239Z [ OK ] TensorIndexingTest.TestIntAssignment (0 ms) 2023-01-11T22:10:12.9707803Z [ RUN ] TensorIndexingTest.TestByteTensorAssignment 2023-01-11T22:10:12.9708500Z [ OK ] TensorIndexingTest.TestByteTensorAssignment (0 ms) 2023-01-11T22:10:12.9709098Z [ RUN ] TensorIndexingTest.TestVariableSlicing 2023-01-11T22:10:12.9709763Z [ OK ] TensorIndexingTest.TestVariableSlicing (0 ms) 2023-01-11T22:10:12.9710244Z [ RUN ] TensorIndexingTest.TestEllipsisTensor 2023-01-11T22:10:12.9710608Z [ OK ] TensorIndexingTest.TestEllipsisTensor (0 ms) 2023-01-11T22:10:12.9710960Z [ RUN ] TensorIndexingTest.TestOutOfBoundIndex 2023-01-11T22:10:12.9808205Z [ OK ] TensorIndexingTest.TestOutOfBoundIndex (9 ms) 2023-01-11T22:10:12.9808571Z [ RUN ] TensorIndexingTest.TestZeroDimIndex 2023-01-11T22:10:12.9829417Z [ OK ] TensorIndexingTest.TestZeroDimIndex (2 ms) 2023-01-11T22:10:12.9829806Z [----------] 36 tests from TensorIndexingTest (74 ms total) 2023-01-11T22:10:12.9829985Z 2023-01-11T22:10:12.9830136Z [----------] 18 tests from NumpyTests 2023-01-11T22:10:12.9830413Z [ RUN ] NumpyTests.TestNoneIndex 2023-01-11T22:10:12.9830698Z [ OK ] NumpyTests.TestNoneIndex (0 ms) 2023-01-11T22:10:12.9831008Z [ RUN ] NumpyTests.TestEmptyFancyIndex 2023-01-11T22:10:12.9882837Z [ OK ] NumpyTests.TestEmptyFancyIndex (5 ms) 2023-01-11T22:10:12.9883228Z [ RUN ] NumpyTests.TestEllipsisIndex 2023-01-11T22:10:12.9884036Z [ OK ] NumpyTests.TestEllipsisIndex (0 ms) 2023-01-11T22:10:12.9884548Z [ RUN ] NumpyTests.TestSingleIntIndex 2023-01-11T22:10:12.9906385Z [ OK ] NumpyTests.TestSingleIntIndex (2 ms) 2023-01-11T22:10:12.9906786Z [ RUN ] NumpyTests.TestSingleBoolIndex 2023-01-11T22:10:12.9907167Z [ OK ] NumpyTests.TestSingleBoolIndex (0 ms) 2023-01-11T22:10:12.9907571Z [ RUN ] NumpyTests.TestBooleanShapeMismatch 2023-01-11T22:10:13.0117796Z [ OK ] NumpyTests.TestBooleanShapeMismatch (21 ms) 2023-01-11T22:10:13.0118278Z [ RUN ] NumpyTests.TestBooleanIndexingOnedim 2023-01-11T22:10:13.0118915Z [ OK ] NumpyTests.TestBooleanIndexingOnedim (0 ms) 2023-01-11T22:10:13.0119300Z [ RUN ] NumpyTests.TestBooleanAssignmentValueMismatch 2023-01-11T22:10:13.0270547Z [ OK ] NumpyTests.TestBooleanAssignmentValueMismatch (15 ms) 2023-01-11T22:10:13.0271031Z [ RUN ] NumpyTests.TestBooleanIndexingTwodim 2023-01-11T22:10:13.0271586Z [ OK ] NumpyTests.TestBooleanIndexingTwodim (0 ms) 2023-01-11T22:10:13.0272004Z [ RUN ] NumpyTests.TestBooleanIndexingWeirdness 2023-01-11T22:10:13.0382418Z [ OK ] NumpyTests.TestBooleanIndexingWeirdness (11 ms) 2023-01-11T22:10:13.0382907Z [ RUN ] NumpyTests.TestBooleanIndexingWeirdnessTensors 2023-01-11T22:10:13.0492268Z [ OK ] NumpyTests.TestBooleanIndexingWeirdnessTensors (10 ms) 2023-01-11T22:10:13.0492674Z [ RUN ] NumpyTests.TestBooleanIndexingAlldims 2023-01-11T22:10:13.0493105Z [ OK ] NumpyTests.TestBooleanIndexingAlldims (0 ms) 2023-01-11T22:10:13.0493607Z [ RUN ] NumpyTests.TestBooleanListIndexing 2023-01-11T22:10:13.0494405Z [ OK ] NumpyTests.TestBooleanListIndexing (0 ms) 2023-01-11T22:10:13.0494823Z [ RUN ] NumpyTests.TestEverythingReturnsViews 2023-01-11T22:10:13.0495192Z [ OK ] NumpyTests.TestEverythingReturnsViews (0 ms) 2023-01-11T22:10:13.0495543Z [ RUN ] NumpyTests.TestBroaderrorsIndexing 2023-01-11T22:10:13.0710116Z [ OK ] NumpyTests.TestBroaderrorsIndexing (21 ms) 2023-01-11T22:10:13.0710509Z [ RUN ] NumpyTests.TestTrivialFancyOutOfBounds 2023-01-11T22:10:13.0981678Z [ OK ] NumpyTests.TestTrivialFancyOutOfBounds (27 ms) 2023-01-11T22:10:13.1010306Z [ RUN ] NumpyTests.TestIndexIsLarger 2023-01-11T22:10:13.1010932Z [ OK ] NumpyTests.TestIndexIsLarger (0 ms) 2023-01-11T22:10:13.1011505Z [ RUN ] NumpyTests.TestBroadcastSubspace 2023-01-11T22:10:13.1012114Z [ OK ] NumpyTests.TestBroadcastSubspace (0 ms) 2023-01-11T22:10:13.1012711Z [----------] 18 tests from NumpyTests (115 ms total) 2023-01-11T22:10:13.1012983Z 2023-01-11T22:10:13.1013251Z [----------] 5 tests from TensorOptionsTest 2023-01-11T22:10:13.1013863Z [ RUN ] TensorOptionsTest.DefaultsToTheRightValues 2023-01-11T22:10:13.1014592Z [ OK ] TensorOptionsTest.DefaultsToTheRightValues (0 ms) 2023-01-11T22:10:13.1015423Z [ RUN ] TensorOptionsTest.UtilityFunctionsReturnTheRightTensorOptions 2023-01-11T22:10:13.1016391Z [ OK ] TensorOptionsTest.UtilityFunctionsReturnTheRightTensorOptions (0 ms) 2023-01-11T22:10:13.1017232Z [ RUN ] TensorOptionsTest.ConstructsWellFromCPUTypes 2023-01-11T22:10:13.1017983Z [ OK ] TensorOptionsTest.ConstructsWellFromCPUTypes (0 ms) 2023-01-11T22:10:13.1018717Z [ RUN ] TensorOptionsTest.ConstructsWellFromCPUTensors 2023-01-11T22:10:13.1019461Z [ OK ] TensorOptionsTest.ConstructsWellFromCPUTensors (0 ms) 2023-01-11T22:10:13.1020223Z [ RUN ] TensorOptionsTest.ConstructsWellFromVariables 2023-01-11T22:10:13.1020963Z [ OK ] TensorOptionsTest.ConstructsWellFromVariables (0 ms) 2023-01-11T22:10:13.1021891Z [----------] 5 tests from TensorOptionsTest (0 ms total) 2023-01-11T22:10:13.1022178Z 2023-01-11T22:10:13.1022421Z [----------] 1 test from DeviceTest 2023-01-11T22:10:13.1023048Z [ RUN ] DeviceTest.ParsesCorrectlyFromString 2023-01-11T22:10:13.1074887Z [ OK ] DeviceTest.ParsesCorrectlyFromString (8 ms) 2023-01-11T22:10:13.1075497Z [----------] 1 test from DeviceTest (8 ms total) 2023-01-11T22:10:13.1075740Z 2023-01-11T22:10:13.1076010Z [----------] 3 tests from DefaultDtypeTest 2023-01-11T22:10:13.1076587Z [ RUN ] DefaultDtypeTest.CanSetAndGetDefaultDtype 2023-01-11T22:10:13.1077235Z [ OK ] DefaultDtypeTest.CanSetAndGetDefaultDtype (0 ms) 2023-01-11T22:10:13.1077909Z [ RUN ] DefaultDtypeTest.NewTensorOptionsHasCorrectDefault 2023-01-11T22:10:13.1078625Z [ OK ] DefaultDtypeTest.NewTensorOptionsHasCorrectDefault (0 ms) 2023-01-11T22:10:13.1079184Z [ RUN ] DefaultDtypeTest.NewTensorsHaveCorrectDefaultDtype 2023-01-11T22:10:13.1079769Z [ OK ] DefaultDtypeTest.NewTensorsHaveCorrectDefaultDtype (0 ms) 2023-01-11T22:10:13.1080275Z [----------] 3 tests from DefaultDtypeTest (0 ms total) 2023-01-11T22:10:13.1080482Z 2023-01-11T22:10:13.1080683Z [----------] 1 test from TorchIncludeTest 2023-01-11T22:10:13.1081077Z [ RUN ] TorchIncludeTest.GetSetNumThreads 2023-01-11T22:10:13.1228953Z [ OK ] TorchIncludeTest.GetSetNumThreads (15 ms) 2023-01-11T22:10:13.1229646Z [----------] 1 test from TorchIncludeTest (15 ms total) 2023-01-11T22:10:13.1229813Z 2023-01-11T22:10:13.1229976Z [----------] 28 tests from InferenceModeTest 2023-01-11T22:10:13.1230287Z [ RUN ] InferenceModeTest.TestTLSState 2023-01-11T22:10:13.1230613Z [ OK ] InferenceModeTest.TestTLSState (0 ms) 2023-01-11T22:10:13.1230981Z [ RUN ] InferenceModeTest.TestInferenceTensorCreation 2023-01-11T22:10:13.1231400Z [ OK ] InferenceModeTest.TestInferenceTensorCreation (0 ms) 2023-01-11T22:10:13.1231797Z [ RUN ] InferenceModeTest.TestExistingAutogradSession 2023-01-11T22:10:13.1300299Z [ OK ] InferenceModeTest.TestExistingAutogradSession (7 ms) 2023-01-11T22:10:13.1300863Z [ RUN ] InferenceModeTest.TestInferenceTensorInInferenceModeFunctionalOp 2023-01-11T22:10:13.1301416Z [ OK ] InferenceModeTest.TestInferenceTensorInInferenceModeFunctionalOp (0 ms) 2023-01-11T22:10:13.1301946Z [ RUN ] InferenceModeTest.TestInferenceTensorInInferenceModeInplaceOp 2023-01-11T22:10:13.1302471Z [ OK ] InferenceModeTest.TestInferenceTensorInInferenceModeInplaceOp (0 ms) 2023-01-11T22:10:13.1303062Z [ RUN ] InferenceModeTest.TestInferenceTensorInInferenceModeViewOp 2023-01-11T22:10:13.1303552Z [ OK ] InferenceModeTest.TestInferenceTensorInInferenceModeViewOp (0 ms) 2023-01-11T22:10:13.1304067Z [ RUN ] InferenceModeTest.TestInferenceTensorInNormalModeFunctionalOp 2023-01-11T22:10:13.1304589Z [ OK ] InferenceModeTest.TestInferenceTensorInNormalModeFunctionalOp (0 ms) 2023-01-11T22:10:13.1305094Z [ RUN ] InferenceModeTest.TestInferenceTensorInNormalModeInplaceOp 2023-01-11T22:10:13.1354096Z [ OK ] InferenceModeTest.TestInferenceTensorInNormalModeInplaceOp (5 ms) 2023-01-11T22:10:13.1354853Z [ RUN ] InferenceModeTest.TestInferenceTensorInNormalModeViewOp 2023-01-11T22:10:13.1355565Z [ OK ] InferenceModeTest.TestInferenceTensorInNormalModeViewOp (0 ms) 2023-01-11T22:10:13.1356120Z [ RUN ] InferenceModeTest.TestNormalTensorInplaceOutputInInferenceMode 2023-01-11T22:10:13.1356694Z [ OK ] InferenceModeTest.TestNormalTensorInplaceOutputInInferenceMode (0 ms) 2023-01-11T22:10:13.1357210Z [ RUN ] InferenceModeTest.TestNormalTensorInplaceOutputInNormalMode 2023-01-11T22:10:13.1357854Z [ OK ] InferenceModeTest.TestNormalTensorInplaceOutputInNormalMode (0 ms) 2023-01-11T22:10:13.1358341Z [ RUN ] InferenceModeTest.TestNormalTensorViewOutputInInferenceMode 2023-01-11T22:10:13.1358843Z [ OK ] InferenceModeTest.TestNormalTensorViewOutputInInferenceMode (0 ms) 2023-01-11T22:10:13.1359331Z [ RUN ] InferenceModeTest.TestNormalTensorViewOutputInNormalMode 2023-01-11T22:10:13.1388755Z [ OK ] InferenceModeTest.TestNormalTensorViewOutputInNormalMode (3 ms) 2023-01-11T22:10:13.1389286Z [ RUN ] InferenceModeTest.TestMixInferenceAndNormalTensorFunctionalOp 2023-01-11T22:10:13.1420480Z [ OK ] InferenceModeTest.TestMixInferenceAndNormalTensorFunctionalOp (3 ms) 2023-01-11T22:10:13.1421250Z [ RUN ] InferenceModeTest.TestMixInferenceAndNormalTensorInplaceOp 2023-01-11T22:10:13.1502216Z [ OK ] InferenceModeTest.TestMixInferenceAndNormalTensorInplaceOp (8 ms) 2023-01-11T22:10:13.1502848Z [ RUN ] InferenceModeTest.TestMixInferenceAndNormalTensorViewOp 2023-01-11T22:10:13.1503411Z [ OK ] InferenceModeTest.TestMixInferenceAndNormalTensorViewOp (0 ms) 2023-01-11T22:10:13.1503859Z [ RUN ] InferenceModeTest.TestHandleDirectViewOnRebase 2023-01-11T22:10:13.1534080Z [ OK ] InferenceModeTest.TestHandleDirectViewOnRebase (3 ms) 2023-01-11T22:10:13.1534498Z [ RUN ] InferenceModeTest.TestHandleInDirectViewOnRebase 2023-01-11T22:10:13.1556825Z [ OK ] InferenceModeTest.TestHandleInDirectViewOnRebase (2 ms) 2023-01-11T22:10:13.1557480Z [ RUN ] InferenceModeTest.TestCreationMetaPropagation 2023-01-11T22:10:13.1618425Z [ OK ] InferenceModeTest.TestCreationMetaPropagation (6 ms) 2023-01-11T22:10:13.1618870Z [ RUN ] InferenceModeTest.TestCreationMetaPropagationInput 2023-01-11T22:10:13.1741055Z [ OK ] InferenceModeTest.TestCreationMetaPropagationInput (12 ms) 2023-01-11T22:10:13.1741501Z [ RUN ] InferenceModeTest.TestInplaceCopyOnInferenceTensor 2023-01-11T22:10:13.1813198Z [ OK ] InferenceModeTest.TestInplaceCopyOnInferenceTensor (7 ms) 2023-01-11T22:10:13.1813641Z [ RUN ] InferenceModeTest.TestSetRequiresGradInNormalMode 2023-01-11T22:10:13.1824330Z [ OK ] InferenceModeTest.TestSetRequiresGradInNormalMode (1 ms) 2023-01-11T22:10:13.1824794Z [ RUN ] InferenceModeTest.TestAccessVersionCounter 2023-01-11T22:10:13.1858016Z [ OK ] InferenceModeTest.TestAccessVersionCounter (3 ms) 2023-01-11T22:10:13.1858573Z [ RUN ] InferenceModeTest.TestInplaceUpdateInferenceTensorWithNormalTensor 2023-01-11T22:10:13.1929829Z [ OK ] InferenceModeTest.TestInplaceUpdateInferenceTensorWithNormalTensor (7 ms) 2023-01-11T22:10:13.1930694Z [ RUN ] InferenceModeTest.TestComplexViewInInferenceMode 2023-01-11T22:10:13.1931380Z [ OK ] InferenceModeTest.TestComplexViewInInferenceMode (0 ms) 2023-01-11T22:10:13.1932153Z [ RUN ] InferenceModeTest.TestComplexViewInNormalMode 2023-01-11T22:10:13.1932891Z [ OK ] InferenceModeTest.TestComplexViewInNormalMode (0 ms) 2023-01-11T22:10:13.1933579Z [ RUN ] InferenceModeTest.TestCustomFunction 2023-01-11T22:10:13.1934243Z [ OK ] InferenceModeTest.TestCustomFunction (0 ms) 2023-01-11T22:10:13.1935030Z [ RUN ] InferenceModeTest.TestLegacyAutoNonVariableTypeModeWarning 2023-01-11T22:10:13.1935936Z [ OK ] InferenceModeTest.TestLegacyAutoNonVariableTypeModeWarning (0 ms) 2023-01-11T22:10:13.1936714Z [----------] 28 tests from InferenceModeTest (70 ms total) 2023-01-11T22:10:13.1937001Z 2023-01-11T22:10:13.1937266Z [----------] 4 tests from GradModeTest 2023-01-11T22:10:13.1937839Z [ RUN ] GradModeTest.TestRequiresGradFunctionalOp 2023-01-11T22:10:13.1938716Z [ OK ] GradModeTest.TestRequiresGradFunctionalOp (0 ms) 2023-01-11T22:10:13.1939398Z [ RUN ] GradModeTest.TestRequiresGradInplaceOp 2023-01-11T22:10:13.1940071Z [ OK ] GradModeTest.TestRequiresGradInplaceOp (0 ms) 2023-01-11T22:10:13.1940703Z [ RUN ] GradModeTest.TestRequiresGradViewOp 2023-01-11T22:10:13.1941333Z [ OK ] GradModeTest.TestRequiresGradViewOp (0 ms) 2023-01-11T22:10:13.1941998Z [ RUN ] GradModeTest.TestRequiresGradViewOpExiting 2023-01-11T22:10:13.1966679Z [ OK ] GradModeTest.TestRequiresGradViewOpExiting (3 ms) 2023-01-11T22:10:13.1967329Z [----------] 4 tests from GradModeTest (3 ms total) 2023-01-11T22:10:13.1967581Z 2023-01-11T22:10:13.1967840Z [----------] 3 tests from OperationTest 2023-01-11T22:10:13.1968419Z [ RUN ] OperationTest.Lerp 2023-01-11T22:10:13.1976106Z [ OK ] OperationTest.Lerp (0 ms) 2023-01-11T22:10:13.1976592Z [ RUN ] OperationTest.Cross 2023-01-11T22:10:13.2009867Z [ OK ] OperationTest.Cross (3 ms) 2023-01-11T22:10:13.2010402Z [ RUN ] OperationTest.Linear_out 2023-01-11T22:10:13.2013727Z [ OK ] OperationTest.Linear_out (0 ms) 2023-01-11T22:10:13.2014362Z [----------] 3 tests from OperationTest (4 ms total) 2023-01-11T22:10:13.2014657Z 2023-01-11T22:10:13.2014990Z [----------] Global test environment tear-down 2023-01-11T22:10:13.2115307Z [==========] 992 tests from 48 test suites ran. (41667 ms total) 2023-01-11T22:10:13.2115720Z [ PASSED ] 992 tests. 2023-01-11T22:10:13.2955619Z + /opt/conda/lib/python3.10/site-packages/torch/bin/test_tensorexpr --gtest_output=xml:test/test-reports/cpp-unittest/test_libtorch/test_tensorexpr.xml 2023-01-11T22:10:13.6643969Z CUDA not available. Disabling CUDA and MultiCUDA tests 2023-01-11T22:10:13.6649234Z Note: Google Test filter = *-*_CUDA:*_MultiCUDA 2023-01-11T22:10:13.6649788Z [==========] Running 801 tests from 25 test suites. 2023-01-11T22:10:13.6650254Z [----------] Global test environment set-up. 2023-01-11T22:10:13.6650537Z [----------] 1 test from Approx 2023-01-11T22:10:13.6650778Z [ RUN ] Approx.log_vml 2023-01-11T22:10:14.8453985Z [ OK ] Approx.log_vml (1180 ms) 2023-01-11T22:10:14.8454588Z [----------] 1 test from Approx (1180 ms total) 2023-01-11T22:10:14.8454853Z 2023-01-11T22:10:14.8455062Z [----------] 34 tests from ATen 2023-01-11T22:10:14.8455454Z [ RUN ] ATen._cast_Float 2023-01-11T22:10:14.8456359Z [ OK ] ATen._cast_Float (0 ms) 2023-01-11T22:10:14.8456792Z [ RUN ] ATen.negInt 2023-01-11T22:10:14.8460866Z [ OK ] ATen.negInt (0 ms) 2023-01-11T22:10:14.8461302Z [ RUN ] ATen.negFloat 2023-01-11T22:10:14.8465308Z [ OK ] ATen.negFloat (0 ms) 2023-01-11T22:10:14.8465764Z [ RUN ] ATen.addInt 2023-01-11T22:10:14.8472350Z [ OK ] ATen.addInt (0 ms) 2023-01-11T22:10:14.8472768Z [ RUN ] ATen.addFloat 2023-01-11T22:10:14.8479530Z [ OK ] ATen.addFloat (0 ms) 2023-01-11T22:10:14.8479965Z [ RUN ] ATen.subInt 2023-01-11T22:10:14.8486371Z [ OK ] ATen.subInt (0 ms) 2023-01-11T22:10:14.8486811Z [ RUN ] ATen.subFloat 2023-01-11T22:10:14.8493531Z [ OK ] ATen.subFloat (0 ms) 2023-01-11T22:10:14.8493948Z [ RUN ] ATen.lerp 2023-01-11T22:10:14.8502038Z [ OK ] ATen.lerp (0 ms) 2023-01-11T22:10:14.8502480Z [ RUN ] ATen.addcmulInt 2023-01-11T22:10:14.8510584Z [ OK ] ATen.addcmulInt (0 ms) 2023-01-11T22:10:14.8511034Z [ RUN ] ATen.addcmulFloat 2023-01-11T22:10:14.8519156Z [ OK ] ATen.addcmulFloat (0 ms) 2023-01-11T22:10:14.8519604Z [ RUN ] ATen.mulInt 2023-01-11T22:10:14.8524285Z [ OK ] ATen.mulInt (0 ms) 2023-01-11T22:10:14.8524713Z [ RUN ] ATen.mulFloat 2023-01-11T22:10:14.8529719Z [ OK ] ATen.mulFloat (0 ms) 2023-01-11T22:10:14.8530164Z [ RUN ] ATen.divInt 2023-01-11T22:10:14.8534796Z [ OK ] ATen.divInt (0 ms) 2023-01-11T22:10:14.8535234Z [ RUN ] ATen.divFloat 2023-01-11T22:10:14.8539996Z [ OK ] ATen.divFloat (0 ms) 2023-01-11T22:10:14.8540417Z [ RUN ] ATen.maxInt 2023-01-11T22:10:14.8545666Z [ OK ] ATen.maxInt (0 ms) 2023-01-11T22:10:14.8546068Z [ RUN ] ATen.maxFloat 2023-01-11T22:10:14.8549890Z [ OK ] ATen.maxFloat (0 ms) 2023-01-11T22:10:14.8550364Z [ RUN ] ATen.minInt 2023-01-11T22:10:14.8554219Z [ OK ] ATen.minInt (0 ms) 2023-01-11T22:10:14.8554899Z [ RUN ] ATen.minFloat 2023-01-11T22:10:14.8558693Z [ OK ] ATen.minFloat (0 ms) 2023-01-11T22:10:14.8559185Z [ RUN ] ATen.reluInt 2023-01-11T22:10:14.8562003Z [ OK ] ATen.reluInt (0 ms) 2023-01-11T22:10:14.8562462Z [ RUN ] ATen.reluFloat 2023-01-11T22:10:14.8565566Z [ OK ] ATen.reluFloat (0 ms) 2023-01-11T22:10:14.8566063Z [ RUN ] ATen.logFloat 2023-01-11T22:10:14.8569012Z [ OK ] ATen.logFloat (0 ms) 2023-01-11T22:10:14.8569651Z [ RUN ] ATen.fastLogFloat 2023-01-11T22:10:14.8717218Z [ OK ] ATen.fastLogFloat (14 ms) 2023-01-11T22:10:14.8717828Z [ RUN ] ATen.fastTanhFloat 2023-01-11T22:10:14.8774630Z [ OK ] ATen.fastTanhFloat (5 ms) 2023-01-11T22:10:14.8775178Z [ RUN ] ATen.fastSigmoidFloat 2023-01-11T22:10:14.8850645Z [ OK ] ATen.fastSigmoidFloat (7 ms) 2023-01-11T22:10:14.8851131Z [ RUN ] ATen.log10Float 2023-01-11T22:10:14.8853893Z [ OK ] ATen.log10Float (0 ms) 2023-01-11T22:10:14.8854402Z [ RUN ] ATen.log2Float 2023-01-11T22:10:14.8857225Z [ OK ] ATen.log2Float (0 ms) 2023-01-11T22:10:14.8857690Z [ RUN ] ATen.expFloat 2023-01-11T22:10:14.8860537Z [ OK ] ATen.expFloat (0 ms) 2023-01-11T22:10:14.8861024Z [ RUN ] ATen.erfFloat 2023-01-11T22:10:14.8864041Z [ OK ] ATen.erfFloat (0 ms) 2023-01-11T22:10:14.8864529Z [ RUN ] ATen.cosFloat 2023-01-11T22:10:14.8867807Z [ OK ] ATen.cosFloat (0 ms) 2023-01-11T22:10:14.8868266Z [ RUN ] ATen.eqInt 2023-01-11T22:10:14.8872546Z [ OK ] ATen.eqInt (0 ms) 2023-01-11T22:10:14.8873003Z [ RUN ] ATen.geInt 2023-01-11T22:10:14.8877221Z [ OK ] ATen.geInt (0 ms) 2023-01-11T22:10:14.8877644Z [ RUN ] ATen.gtInt 2023-01-11T22:10:14.8882142Z [ OK ] ATen.gtInt (0 ms) 2023-01-11T22:10:14.8882584Z [ RUN ] ATen.leInt 2023-01-11T22:10:14.8887001Z [ OK ] ATen.leInt (0 ms) 2023-01-11T22:10:14.8887437Z [ RUN ] ATen.ltInt 2023-01-11T22:10:14.8892107Z [ OK ] ATen.ltInt (0 ms) 2023-01-11T22:10:14.8892611Z [----------] 34 tests from ATen (44 ms total) 2023-01-11T22:10:14.8892873Z 2023-01-11T22:10:14.8893044Z [----------] 26 tests from BoundsInference 2023-01-11T22:10:14.8893317Z [ RUN ] BoundsInference._1 2023-01-11T22:10:14.8894985Z [ OK ] BoundsInference._1 (0 ms) 2023-01-11T22:10:14.8895467Z [ RUN ] BoundsInference._2 2023-01-11T22:10:14.8897266Z [ OK ] BoundsInference._2 (0 ms) 2023-01-11T22:10:14.8897574Z [ RUN ] BoundsInference._3 2023-01-11T22:10:14.8899780Z [ OK ] BoundsInference._3 (0 ms) 2023-01-11T22:10:14.8900081Z [ RUN ] BoundsInference._4 2023-01-11T22:10:14.8905380Z [ OK ] BoundsInference._4 (0 ms) 2023-01-11T22:10:14.8905681Z [ RUN ] BoundsInference._5 2023-01-11T22:10:14.8918176Z [ OK ] BoundsInference._5 (1 ms) 2023-01-11T22:10:14.8918455Z [ RUN ] BoundsInference._6 2023-01-11T22:10:14.8926877Z [ OK ] BoundsInference._6 (0 ms) 2023-01-11T22:10:14.8927162Z [ RUN ] BoundsInference.Adjacent 2023-01-11T22:10:14.8932445Z [ OK ] BoundsInference.Adjacent (0 ms) 2023-01-11T22:10:14.8932793Z [ RUN ] BoundsInference.MultipleTopLoopLoad 2023-01-11T22:10:14.8937480Z [ OK ] BoundsInference.MultipleTopLoopLoad (0 ms) 2023-01-11T22:10:14.8938130Z [ RUN ] BoundsInference.MultipleTopLoopStore 2023-01-11T22:10:14.8942082Z [ OK ] BoundsInference.MultipleTopLoopStore (0 ms) 2023-01-11T22:10:14.8942716Z [ RUN ] BoundsInference.CacheReads 2023-01-11T22:10:14.8968595Z [ OK ] BoundsInference.CacheReads (2 ms) 2023-01-11T22:10:14.8969256Z [ RUN ] BoundsInference.Flattened 2023-01-11T22:10:14.8980720Z [ OK ] BoundsInference.Flattened (1 ms) 2023-01-11T22:10:14.8981304Z [ RUN ] BoundsInference.GetPotentialHazards 2023-01-11T22:10:14.8982018Z [ OK ] BoundsInference.GetPotentialHazards (0 ms) 2023-01-11T22:10:14.8982733Z [ RUN ] BoundsInference.GetPotentialHazardsLoopNoHazard 2023-01-11T22:10:14.8985788Z [ OK ] BoundsInference.GetPotentialHazardsLoopNoHazard (0 ms) 2023-01-11T22:10:14.8986399Z [ RUN ] BoundsInference.GetPotentialHazardsLoopCall 2023-01-11T22:10:14.8990274Z [ OK ] BoundsInference.GetPotentialHazardsLoopCall (0 ms) 2023-01-11T22:10:14.8990879Z [ RUN ] BoundsInference.GetPotentialHazardsLoopSplit 2023-01-11T22:10:14.9001608Z [ OK ] BoundsInference.GetPotentialHazardsLoopSplit (1 ms) 2023-01-11T22:10:14.9002287Z [ RUN ] BoundsInference.HasConflictingOverlapSameBufferWithPartialOverlap 2023-01-11T22:10:14.9006734Z [ OK ] BoundsInference.HasConflictingOverlapSameBufferWithPartialOverlap (0 ms) 2023-01-11T22:10:14.9007394Z [ RUN ] BoundsInference.HasConflictingOverlapSameBufferWithFullOverlap 2023-01-11T22:10:14.9008507Z [ OK ] BoundsInference.HasConflictingOverlapSameBufferWithFullOverlap (0 ms) 2023-01-11T22:10:14.9009359Z [ RUN ] BoundsInference.HasConflictingOverlapSameBufferWithFullOverlapRAW 2023-01-11T22:10:14.9010822Z [ OK ] BoundsInference.HasConflictingOverlapSameBufferWithFullOverlapRAW (0 ms) 2023-01-11T22:10:14.9011509Z [ RUN ] BoundsInference.HasConflictingOverlapSameBufferNotOverlapping 2023-01-11T22:10:14.9013700Z [ OK ] BoundsInference.HasConflictingOverlapSameBufferNotOverlapping (0 ms) 2023-01-11T22:10:14.9014362Z [ RUN ] BoundsInference.HasConflictingOverlap2DBufferWithOverlap 2023-01-11T22:10:14.9027697Z [ OK ] BoundsInference.HasConflictingOverlap2DBufferWithOverlap (1 ms) 2023-01-11T22:10:14.9028358Z [ RUN ] BoundsInference.HasConflictingOverlap2DBufferWithNoOverlap 2023-01-11T22:10:14.9037352Z [ OK ] BoundsInference.HasConflictingOverlap2DBufferWithNoOverlap (0 ms) 2023-01-11T22:10:14.9037854Z [ RUN ] BoundsInference.HasConflictingOverlapDifferentBuffers 2023-01-11T22:10:14.9040141Z [ OK ] BoundsInference.HasConflictingOverlapDifferentBuffers (0 ms) 2023-01-11T22:10:14.9040622Z [ RUN ] BoundsInference.HasConflictingOverlapDueToRAWDependence 2023-01-11T22:10:14.9043046Z [ OK ] BoundsInference.HasConflictingOverlapDueToRAWDependence (0 ms) 2023-01-11T22:10:14.9043551Z [ RUN ] BoundsInference.HasConflictingOverlapDueToWARDependence 2023-01-11T22:10:14.9045543Z [ OK ] BoundsInference.HasConflictingOverlapDueToWARDependence (0 ms) 2023-01-11T22:10:14.9046013Z [ RUN ] BoundsInference.HasConflictingOverlapWithLoads 2023-01-11T22:10:14.9048097Z [ OK ] BoundsInference.HasConflictingOverlapWithLoads (0 ms) 2023-01-11T22:10:14.9048479Z [ RUN ] BoundsInference.IsOverlapping 2023-01-11T22:10:14.9069941Z [ OK ] BoundsInference.IsOverlapping (2 ms) 2023-01-11T22:10:14.9070382Z [----------] 26 tests from BoundsInference (17 ms total) 2023-01-11T22:10:14.9070551Z 2023-01-11T22:10:14.9070673Z [----------] 4 tests from Conv 2023-01-11T22:10:14.9070940Z [ RUN ] Conv.DepthwiseConv2D 2023-01-11T22:10:15.1630936Z [ OK ] Conv.DepthwiseConv2D (255 ms) 2023-01-11T22:10:15.1631356Z [ RUN ] Conv.DepthwiseConv2DNoBias 2023-01-11T22:10:15.4160369Z [ OK ] Conv.DepthwiseConv2DNoBias (252 ms) 2023-01-11T22:10:15.4160841Z [ RUN ] Conv.DepthwiseConv2DDynamicShapes 2023-01-11T22:10:15.6093954Z [ OK ] Conv.DepthwiseConv2DDynamicShapes (193 ms) 2023-01-11T22:10:15.6094372Z [ RUN ] Conv.Conv2D 2023-01-11T22:10:16.5944082Z [ OK ] Conv.Conv2D (984 ms) 2023-01-11T22:10:16.5944794Z [----------] 4 tests from Conv (1687 ms total) 2023-01-11T22:10:16.5945186Z 2023-01-11T22:10:16.5945457Z [----------] 28 tests from CppPrinter 2023-01-11T22:10:16.5946083Z [ RUN ] CppPrinter.IntImm 2023-01-11T22:10:16.5946674Z [ OK ] CppPrinter.IntImm (0 ms) 2023-01-11T22:10:16.5947120Z [ RUN ] CppPrinter.FloatImm 2023-01-11T22:10:16.5947753Z [ OK ] CppPrinter.FloatImm (0 ms) 2023-01-11T22:10:16.5948249Z [ RUN ] CppPrinter.FloatImm1 2023-01-11T22:10:16.5948592Z [ OK ] CppPrinter.FloatImm1 (0 ms) 2023-01-11T22:10:16.5948996Z [ RUN ] CppPrinter.DoubleImm 2023-01-11T22:10:16.5949433Z [ OK ] CppPrinter.DoubleImm (0 ms) 2023-01-11T22:10:16.5949839Z [ RUN ] CppPrinter.DoubleImm1 2023-01-11T22:10:16.5950172Z [ OK ] CppPrinter.DoubleImm1 (0 ms) 2023-01-11T22:10:16.5950444Z [ RUN ] CppPrinter.HalfImm 2023-01-11T22:10:16.5950714Z [ OK ] CppPrinter.HalfImm (0 ms) 2023-01-11T22:10:16.5950972Z [ RUN ] CppPrinter.Add 2023-01-11T22:10:16.5951217Z [ OK ] CppPrinter.Add (0 ms) 2023-01-11T22:10:16.5951482Z [ RUN ] CppPrinter.AddExpr1 2023-01-11T22:10:16.5951760Z [ OK ] CppPrinter.AddExpr1 (0 ms) 2023-01-11T22:10:16.5952030Z [ RUN ] CppPrinter.AddExpr2 2023-01-11T22:10:16.5952291Z [ OK ] CppPrinter.AddExpr2 (0 ms) 2023-01-11T22:10:16.5952563Z [ RUN ] CppPrinter.AddExpr3 2023-01-11T22:10:16.5952837Z [ OK ] CppPrinter.AddExpr3 (0 ms) 2023-01-11T22:10:16.5953081Z [ RUN ] CppPrinter.Mod 2023-01-11T22:10:16.5953338Z [ OK ] CppPrinter.Mod (0 ms) 2023-01-11T22:10:16.5953603Z [ RUN ] CppPrinter.ModFloat 2023-01-11T22:10:16.5953866Z [ OK ] CppPrinter.ModFloat (0 ms) 2023-01-11T22:10:16.5954127Z [ RUN ] CppPrinter.Max 2023-01-11T22:10:16.5954383Z [ OK ] CppPrinter.Max (0 ms) 2023-01-11T22:10:16.5954631Z [ RUN ] CppPrinter.MaxFloat 2023-01-11T22:10:16.5954905Z [ OK ] CppPrinter.MaxFloat (0 ms) 2023-01-11T22:10:16.5955172Z [ RUN ] CppPrinter.MaxHalf 2023-01-11T22:10:16.5955430Z [ OK ] CppPrinter.MaxHalf (0 ms) 2023-01-11T22:10:16.5955687Z [ RUN ] CppPrinter.And 2023-01-11T22:10:16.5955943Z [ OK ] CppPrinter.And (0 ms) 2023-01-11T22:10:16.5956234Z [ RUN ] CppPrinter.CompareSelect 2023-01-11T22:10:16.5956524Z [ OK ] CppPrinter.CompareSelect (0 ms) 2023-01-11T22:10:16.5956814Z [ RUN ] CppPrinter.IfThenElse 2023-01-11T22:10:16.5957102Z [ OK ] CppPrinter.IfThenElse (0 ms) 2023-01-11T22:10:16.5957374Z [ RUN ] CppPrinter.AllocateFree 2023-01-11T22:10:16.5957668Z [ OK ] CppPrinter.AllocateFree (0 ms) 2023-01-11T22:10:16.5961125Z [ RUN ] CppPrinter.LoadStore 2023-01-11T22:10:16.5961635Z [ OK ] CppPrinter.LoadStore (0 ms) 2023-01-11T22:10:16.5962134Z [ RUN ] CppPrinter.Var 2023-01-11T22:10:16.5962615Z [ OK ] CppPrinter.Var (0 ms) 2023-01-11T22:10:16.5963053Z [ RUN ] CppPrinter.Cast 2023-01-11T22:10:16.5963521Z [ OK ] CppPrinter.Cast (0 ms) 2023-01-11T22:10:16.5963830Z [ RUN ] CppPrinter.BitCast 2023-01-11T22:10:16.5964086Z [ OK ] CppPrinter.BitCast (0 ms) 2023-01-11T22:10:16.5964342Z [ RUN ] CppPrinter.Let 2023-01-11T22:10:16.5964600Z [ OK ] CppPrinter.Let (0 ms) 2023-01-11T22:10:16.5964838Z [ RUN ] CppPrinter.For 2023-01-11T22:10:16.5965236Z [ OK ] CppPrinter.For (0 ms) 2023-01-11T22:10:16.5965490Z [ RUN ] CppPrinter.Cond 2023-01-11T22:10:16.5965750Z [ OK ] CppPrinter.Cond (0 ms) 2023-01-11T22:10:16.5966012Z [ RUN ] CppPrinter.Intrinsics 2023-01-11T22:10:16.5966296Z [ OK ] CppPrinter.Intrinsics (0 ms) 2023-01-11T22:10:16.5966582Z [ RUN ] CppPrinter.ExternalCall 2023-01-11T22:10:16.5966866Z [ OK ] CppPrinter.ExternalCall (0 ms) 2023-01-11T22:10:16.5967186Z [----------] 28 tests from CppPrinter (0 ms total) 2023-01-11T22:10:16.5967339Z 2023-01-11T22:10:16.5967487Z [----------] 8 tests from DynamicShapes 2023-01-11T22:10:16.5967761Z [ RUN ] DynamicShapes.SimpleGraph 2023-01-11T22:10:16.6820325Z [ OK ] DynamicShapes.SimpleGraph (86 ms) 2023-01-11T22:10:16.6820855Z [ RUN ] DynamicShapes.GraphWith2InputsSameDims 2023-01-11T22:10:16.7575435Z [ OK ] DynamicShapes.GraphWith2InputsSameDims (75 ms) 2023-01-11T22:10:16.7576128Z [ RUN ] DynamicShapes.GraphWith2InputsAndBroadcast 2023-01-11T22:10:16.8298317Z [ OK ] DynamicShapes.GraphWith2InputsAndBroadcast (72 ms) 2023-01-11T22:10:16.8298932Z [ RUN ] DynamicShapes.GraphWithPartiallySymbolicOutput 2023-01-11T22:10:16.8699136Z [ OK ] DynamicShapes.GraphWithPartiallySymbolicOutput (40 ms) 2023-01-11T22:10:16.8699549Z [ RUN ] DynamicShapes.GraphWithSymbolicStrides 2023-01-11T22:10:17.0377991Z [ OK ] DynamicShapes.GraphWithSymbolicStrides (167 ms) 2023-01-11T22:10:17.0378396Z [ RUN ] DynamicShapes.GraphWithCatAndBroadcast 2023-01-11T22:10:17.4853737Z [ OK ] DynamicShapes.GraphWithCatAndBroadcast (447 ms) 2023-01-11T22:10:17.4854111Z [ RUN ] DynamicShapes.GraphFromModel 2023-01-11T22:10:17.8681978Z [ OK ] DynamicShapes.GraphFromModel (382 ms) 2023-01-11T22:10:17.8682412Z [ RUN ] DynamicShapes.MultiThreadedExecution 2023-01-11T22:10:17.9437795Z [ OK ] DynamicShapes.MultiThreadedExecution (75 ms) 2023-01-11T22:10:17.9438445Z [----------] 8 tests from DynamicShapes (1348 ms total) 2023-01-11T22:10:17.9438716Z 2023-01-11T22:10:17.9438953Z [----------] 30 tests from Expr 2023-01-11T22:10:17.9439423Z [ RUN ] Expr.BasicValueTest 2023-01-11T22:10:17.9439894Z [ OK ] Expr.BasicValueTest (0 ms) 2023-01-11T22:10:17.9440304Z [ RUN ] Expr.BasicValueTest02 2023-01-11T22:10:17.9440812Z [ OK ] Expr.BasicValueTest02 (0 ms) 2023-01-11T22:10:17.9441328Z [ RUN ] Expr.IsChannelsLastContiguous 2023-01-11T22:10:17.9441868Z [ OK ] Expr.IsChannelsLastContiguous (0 ms) 2023-01-11T22:10:17.9442181Z [ RUN ] Expr.LetTest01 2023-01-11T22:10:17.9442647Z [ OK ] Expr.LetTest01 (0 ms) 2023-01-11T22:10:17.9443037Z [ RUN ] Expr.LetTest02 2023-01-11T22:10:17.9443384Z [ OK ] Expr.LetTest02 (0 ms) 2023-01-11T22:10:17.9443657Z [ RUN ] Expr.LetStmtTest01 2023-01-11T22:10:17.9444110Z [ OK ] Expr.LetStmtTest01 (0 ms) 2023-01-11T22:10:17.9444347Z [ RUN ] Expr.IntTest 2023-01-11T22:10:17.9444594Z [ OK ] Expr.IntTest (0 ms) 2023-01-11T22:10:17.9444838Z [ RUN ] Expr.FloatTest 2023-01-11T22:10:17.9445080Z [ OK ] Expr.FloatTest (0 ms) 2023-01-11T22:10:17.9445323Z [ RUN ] Expr.ByteTest 2023-01-11T22:10:17.9445572Z [ OK ] Expr.ByteTest (0 ms) 2023-01-11T22:10:17.9445800Z [ RUN ] Expr.CharTest 2023-01-11T22:10:17.9446048Z [ OK ] Expr.CharTest (0 ms) 2023-01-11T22:10:17.9446288Z [ RUN ] Expr.ShortTest 2023-01-11T22:10:17.9446539Z [ OK ] Expr.ShortTest (0 ms) 2023-01-11T22:10:17.9446769Z [ RUN ] Expr.LongTest 2023-01-11T22:10:17.9447080Z [ OK ] Expr.LongTest (0 ms) 2023-01-11T22:10:17.9447321Z [ RUN ] Expr.HalfTest 2023-01-11T22:10:17.9447555Z [ OK ] Expr.HalfTest (0 ms) 2023-01-11T22:10:17.9447810Z [ RUN ] Expr.DoubleTest 2023-01-11T22:10:17.9448073Z [ OK ] Expr.DoubleTest (0 ms) 2023-01-11T22:10:17.9448313Z [ RUN ] Expr.VectorAdd01 2023-01-11T22:10:17.9456826Z [ OK ] Expr.VectorAdd01 (1 ms) 2023-01-11T22:10:17.9457334Z [ RUN ] Expr.CompareSelectEQ 2023-01-11T22:10:17.9493213Z [ OK ] Expr.CompareSelectEQ (3 ms) 2023-01-11T22:10:17.9493520Z [ RUN ] Expr.CompareSelectDtypes 2023-01-11T22:10:17.9530494Z [ OK ] Expr.CompareSelectDtypes (3 ms) 2023-01-11T22:10:17.9530790Z [ RUN ] Expr.IntrinsicsDtypes 2023-01-11T22:10:17.9536683Z [ OK ] Expr.IntrinsicsDtypes (0 ms) 2023-01-11T22:10:17.9537012Z [ RUN ] Expr.Substitute01 2023-01-11T22:10:17.9537302Z [ OK ] Expr.Substitute01 (0 ms) 2023-01-11T22:10:17.9537541Z [ RUN ] Expr.Math01 2023-01-11T22:10:17.9537783Z [ OK ] Expr.Math01 (0 ms) 2023-01-11T22:10:17.9538069Z [ RUN ] Expr.UnaryMath01 2023-01-11T22:10:17.9539086Z [ OK ] Expr.UnaryMath01 (0 ms) 2023-01-11T22:10:17.9539354Z [ RUN ] Expr.BinaryMath01 2023-01-11T22:10:17.9540615Z [ OK ] Expr.BinaryMath01 (0 ms) 2023-01-11T22:10:17.9541073Z [ RUN ] Expr.LogicalOps01 2023-01-11T22:10:17.9541592Z [ OK ] Expr.LogicalOps01 (0 ms) 2023-01-11T22:10:17.9541906Z [ RUN ] Expr.LogicalOps02 2023-01-11T22:10:17.9542193Z [ OK ] Expr.LogicalOps02 (0 ms) 2023-01-11T22:10:17.9542533Z [ RUN ] Expr.LogicalOps03 2023-01-11T22:10:17.9543027Z [ OK ] Expr.LogicalOps03 (0 ms) 2023-01-11T22:10:17.9543489Z [ RUN ] Expr.BitwiseOps 2023-01-11T22:10:17.9543857Z [ OK ] Expr.BitwiseOps (0 ms) 2023-01-11T22:10:17.9544131Z [ RUN ] Expr.DynamicShapeAdd 2023-01-11T22:10:17.9546158Z [ OK ] Expr.DynamicShapeAdd (0 ms) 2023-01-11T22:10:17.9546631Z [ RUN ] Expr.OutOfBounds 2023-01-11T22:10:17.9570348Z [ OK ] Expr.OutOfBounds (2 ms) 2023-01-11T22:10:17.9570844Z [ RUN ] Expr.OutOfBounds2d 2023-01-11T22:10:17.9578407Z [ OK ] Expr.OutOfBounds2d (0 ms) 2023-01-11T22:10:17.9578970Z [ RUN ] Expr.OutOfBounds2dFlattenedIndex 2023-01-11T22:10:17.9583628Z [ OK ] Expr.OutOfBounds2dFlattenedIndex (0 ms) 2023-01-11T22:10:17.9584233Z [----------] 30 tests from Expr (14 ms total) 2023-01-11T22:10:17.9584397Z 2023-01-11T22:10:17.9584552Z [----------] 16 tests from ExternalCall 2023-01-11T22:10:17.9584837Z [ RUN ] ExternalCall.Conv1d_float 2023-01-11T22:10:17.9869748Z [ OK ] ExternalCall.Conv1d_float (28 ms) 2023-01-11T22:10:17.9870082Z [ RUN ] ExternalCall.Conv1d_int 2023-01-11T22:10:18.0196694Z [ OK ] ExternalCall.Conv1d_int (32 ms) 2023-01-11T22:10:18.0197438Z [ RUN ] ExternalCall.Conv1d_nobias_noargs 2023-01-11T22:10:18.0448491Z [ OK ] ExternalCall.Conv1d_nobias_noargs (25 ms) 2023-01-11T22:10:18.0448966Z [ RUN ] ExternalCall.Conv2d_float 2023-01-11T22:10:18.0769577Z [ OK ] ExternalCall.Conv2d_float (31 ms) 2023-01-11T22:10:18.0770186Z [ RUN ] ExternalCall.Conv2d_int 2023-01-11T22:10:18.1153459Z [ OK ] ExternalCall.Conv2d_int (38 ms) 2023-01-11T22:10:18.1153954Z [ RUN ] ExternalCall.Conv2d_nobias_noargs 2023-01-11T22:10:18.1429512Z [ OK ] ExternalCall.Conv2d_nobias_noargs (27 ms) 2023-01-11T22:10:18.1429931Z [ RUN ] ExternalCall.Addmm_float 2023-01-11T22:10:18.1719843Z [ OK ] ExternalCall.Addmm_float (28 ms) 2023-01-11T22:10:18.1720467Z [ RUN ] ExternalCall.Embedding 2023-01-11T22:10:18.1969821Z [ OK ] ExternalCall.Embedding (25 ms) 2023-01-11T22:10:18.1970184Z [ RUN ] ExternalCall.MaxReduction 2023-01-11T22:10:18.2197304Z [ OK ] ExternalCall.MaxReduction (22 ms) 2023-01-11T22:10:18.2197659Z [ RUN ] ExternalCall.Prepacked_Linear_float 2023-01-11T22:10:18.2535718Z [ OK ] ExternalCall.Prepacked_Linear_float (33 ms) 2023-01-11T22:10:18.2536154Z [ RUN ] ExternalCall.Prepacked_Conv2d_float 2023-01-11T22:10:18.3016480Z [ OK ] ExternalCall.Prepacked_Conv2d_float (47 ms) 2023-01-11T22:10:18.3017403Z [ RUN ] ExternalCall.BinaryFloat 2023-01-11T22:10:18.3771231Z [ OK ] ExternalCall.BinaryFloat (75 ms) 2023-01-11T22:10:18.3771654Z [ RUN ] ExternalCall.UnaryFloat 2023-01-11T22:10:18.4236485Z [ OK ] ExternalCall.UnaryFloat (46 ms) 2023-01-11T22:10:18.4236836Z [ RUN ] ExternalCall.ComputeInterop 2023-01-11T22:10:19.5129948Z [ OK ] ExternalCall.ComputeInterop (1089 ms) 2023-01-11T22:10:19.5130331Z [ RUN ] ExternalCall.Inlining 2023-01-11T22:10:19.5862676Z [ OK ] ExternalCall.Inlining (73 ms) 2023-01-11T22:10:19.5863012Z [ RUN ] ExternalCall.JitCustomFusionOp 2023-01-11T22:10:19.7101000Z [ OK ] ExternalCall.JitCustomFusionOp (123 ms) 2023-01-11T22:10:19.7101386Z [----------] 16 tests from ExternalCall (1751 ms total) 2023-01-11T22:10:19.7101557Z 2023-01-11T22:10:19.7101703Z [----------] 8 tests from GraphOpt 2023-01-11T22:10:19.7101962Z [ RUN ] GraphOpt.OptimizeCat 2023-01-11T22:10:19.7427386Z [ OK ] GraphOpt.OptimizeCat (32 ms) 2023-01-11T22:10:19.7427958Z [ RUN ] GraphOpt.OptimizeCat2 2023-01-11T22:10:19.7782031Z [ OK ] GraphOpt.OptimizeCat2 (35 ms) 2023-01-11T22:10:19.7782335Z [ RUN ] GraphOpt.OptimizeCat3 2023-01-11T22:10:19.8191590Z [ OK ] GraphOpt.OptimizeCat3 (40 ms) 2023-01-11T22:10:19.8191955Z [ RUN ] GraphOpt.OptimizeCatWithTypePromotionInUser 2023-01-11T22:10:19.8512123Z [ OK ] GraphOpt.OptimizeCatWithTypePromotionInUser (32 ms) 2023-01-11T22:10:19.8512531Z [ RUN ] GraphOpt.OptimizeCatWithTypePromotionInCat 2023-01-11T22:10:19.9121521Z [ OK ] GraphOpt.OptimizeCatWithTypePromotionInCat (60 ms) 2023-01-11T22:10:19.9121952Z [ RUN ] GraphOpt.OptimizeCatNoSingleTensorElementwiseOp 2023-01-11T22:10:19.9493667Z [ OK ] GraphOpt.OptimizeCatNoSingleTensorElementwiseOp (37 ms) 2023-01-11T22:10:19.9494134Z [ RUN ] GraphOpt.OptimizeCatNoSingleTensorElementwiseOp2 2023-01-11T22:10:19.9893747Z [ OK ] GraphOpt.OptimizeCatNoSingleTensorElementwiseOp2 (39 ms) 2023-01-11T22:10:19.9894422Z [ RUN ] GraphOpt.AOTGraphPrepPasses 2023-01-11T22:10:19.9895060Z [ OK ] GraphOpt.AOTGraphPrepPasses (0 ms) 2023-01-11T22:10:19.9895493Z [----------] 8 tests from GraphOpt (279 ms total) 2023-01-11T22:10:19.9895880Z 2023-01-11T22:10:19.9896030Z [----------] 4 tests from IRPrinter 2023-01-11T22:10:19.9896425Z [ RUN ] IRPrinter.BasicValueTest 2023-01-11T22:10:19.9896736Z [ OK ] IRPrinter.BasicValueTest (0 ms) 2023-01-11T22:10:19.9897134Z [ RUN ] IRPrinter.BasicValueTest02 2023-01-11T22:10:19.9897604Z [ OK ] IRPrinter.BasicValueTest02 (0 ms) 2023-01-11T22:10:19.9898075Z [ RUN ] IRPrinter.CastTest 2023-01-11T22:10:19.9898508Z [ OK ] IRPrinter.CastTest (0 ms) 2023-01-11T22:10:19.9899020Z [ RUN ] IRPrinter.FunctionName 2023-01-11T22:10:19.9899509Z [ OK ] IRPrinter.FunctionName (0 ms) 2023-01-11T22:10:19.9900041Z [----------] 4 tests from IRPrinter (0 ms total) 2023-01-11T22:10:19.9900275Z 2023-01-11T22:10:19.9900676Z [----------] 8 tests from IRVerifier 2023-01-11T22:10:19.9901203Z [ RUN ] IRVerifier.BitwiseOps 2023-01-11T22:10:19.9901721Z [ OK ] IRVerifier.BitwiseOps (0 ms) 2023-01-11T22:10:19.9902008Z [ RUN ] IRVerifier.CompareSelect 2023-01-11T22:10:19.9902307Z [ OK ] IRVerifier.CompareSelect (0 ms) 2023-01-11T22:10:19.9902666Z [ RUN ] IRVerifier.Ramp 2023-01-11T22:10:19.9902929Z [ OK ] IRVerifier.Ramp (0 ms) 2023-01-11T22:10:19.9903185Z [ RUN ] IRVerifier.Load 2023-01-11T22:10:19.9903457Z [ OK ] IRVerifier.Load (0 ms) 2023-01-11T22:10:19.9903713Z [ RUN ] IRVerifier.IfThenElse 2023-01-11T22:10:19.9903999Z [ OK ] IRVerifier.IfThenElse (0 ms) 2023-01-11T22:10:19.9904263Z [ RUN ] IRVerifier.For 2023-01-11T22:10:19.9904517Z [ OK ] IRVerifier.For (0 ms) 2023-01-11T22:10:19.9904755Z [ RUN ] IRVerifier.Block 2023-01-11T22:10:19.9905020Z [ OK ] IRVerifier.Block (0 ms) 2023-01-11T22:10:19.9905272Z [ RUN ] IRVerifier.Store 2023-01-11T22:10:19.9905525Z [ OK ] IRVerifier.Store (0 ms) 2023-01-11T22:10:19.9905819Z [----------] 8 tests from IRVerifier (0 ms total) 2023-01-11T22:10:19.9905968Z 2023-01-11T22:10:19.9906106Z [----------] 37 tests from Kernel 2023-01-11T22:10:19.9906389Z [ RUN ] Kernel.ParallelExternalCallBuf 2023-01-11T22:10:20.0468341Z [ OK ] Kernel.ParallelExternalCallBuf (56 ms) 2023-01-11T22:10:20.0468676Z [ RUN ] Kernel.InliningIntermediates 2023-01-11T22:10:20.1126613Z [ OK ] Kernel.InliningIntermediates (65 ms) 2023-01-11T22:10:20.1127033Z [ RUN ] Kernel.PreAllocIntermediateBufs 2023-01-11T22:10:20.2231597Z [ OK ] Kernel.PreAllocIntermediateBufs (110 ms) 2023-01-11T22:10:20.2231945Z [ RUN ] Kernel._1 2023-01-11T22:10:20.2522205Z [ OK ] Kernel._1 (29 ms) 2023-01-11T22:10:20.2522466Z [ RUN ] Kernel._2 2023-01-11T22:10:20.2831862Z [ OK ] Kernel._2 (30 ms) 2023-01-11T22:10:20.2832126Z [ RUN ] Kernel._3 2023-01-11T22:10:20.3145901Z [ OK ] Kernel._3 (31 ms) 2023-01-11T22:10:20.3146182Z [ RUN ] Kernel.Huge 2023-01-11T22:10:20.3389273Z [ OK ] Kernel.Huge (24 ms) 2023-01-11T22:10:20.3389814Z [ RUN ] Kernel.ParallelStrided 2023-01-11T22:10:20.4586386Z [ OK ] Kernel.ParallelStrided (119 ms) 2023-01-11T22:10:20.4586813Z [ RUN ] Kernel.CatInputTypesPromotion 2023-01-11T22:10:20.5520315Z [ OK ] Kernel.CatInputTypesPromotion (93 ms) 2023-01-11T22:10:20.5520638Z [ RUN ] Kernel.ToDType 2023-01-11T22:10:20.5795056Z [ OK ] Kernel.ToDType (27 ms) 2023-01-11T22:10:20.5795388Z [ RUN ] Kernel.CatAndInlineWithAConstantDim 2023-01-11T22:10:20.6075666Z [ OK ] Kernel.CatAndInlineWithAConstantDim (28 ms) 2023-01-11T22:10:20.6076000Z [ RUN ] Kernel.CatWithEmptyInputs 2023-01-11T22:10:20.6764075Z [ OK ] Kernel.CatWithEmptyInputs (68 ms) 2023-01-11T22:10:20.6764382Z [ RUN ] Kernel.CatWoConditionals 2023-01-11T22:10:20.7490797Z [ OK ] Kernel.CatWoConditionals (72 ms) 2023-01-11T22:10:20.7491115Z [ RUN ] Kernel.OptimizeConditionals 2023-01-11T22:10:20.8437277Z [ OK ] Kernel.OptimizeConditionals (94 ms) 2023-01-11T22:10:20.8437569Z [ RUN ] Kernel.SumAllAxes 2023-01-11T22:10:20.8924359Z [ OK ] Kernel.SumAllAxes (48 ms) 2023-01-11T22:10:20.8924637Z [ RUN ] Kernel.SumOneAxis 2023-01-11T22:10:21.2932919Z [ OK ] Kernel.SumOneAxis (400 ms) 2023-01-11T22:10:21.2933243Z [ RUN ] Kernel.SumMultipleAxes 2023-01-11T22:10:21.7175896Z [ OK ] Kernel.SumMultipleAxes (424 ms) 2023-01-11T22:10:21.7176378Z [ RUN ] Kernel.Softmax2D 2023-01-11T22:10:22.1546981Z [ OK ] Kernel.Softmax2D (437 ms) 2023-01-11T22:10:22.1547277Z [ RUN ] Kernel.Softmax3D 2023-01-11T22:10:23.0134107Z [ OK ] Kernel.Softmax3D (858 ms) 2023-01-11T22:10:23.0134428Z [ RUN ] Kernel.Softmax4D 2023-01-11T22:10:24.1327930Z [ OK ] Kernel.Softmax4D (1119 ms) 2023-01-11T22:10:24.1328237Z [ RUN ] Kernel.SignTest 2023-01-11T22:10:24.2014095Z [ OK ] Kernel.SignTest (68 ms) 2023-01-11T22:10:24.2014446Z [ RUN ] Kernel.InlineProducerIntoReduction 2023-01-11T22:10:24.2291507Z [ OK ] Kernel.InlineProducerIntoReduction (27 ms) 2023-01-11T22:10:24.2291872Z [ RUN ] Kernel.InlineReductionIntoConsumer 2023-01-11T22:10:24.2638125Z [ OK ] Kernel.InlineReductionIntoConsumer (34 ms) 2023-01-11T22:10:24.2638444Z [ RUN ] Kernel.ConstantTensors 2023-01-11T22:10:24.3028042Z [ OK ] Kernel.ConstantTensors (39 ms) 2023-01-11T22:10:24.3028396Z [ RUN ] Kernel.ConstantTensorsNonContiguous 2023-01-11T22:10:24.3417522Z [ OK ] Kernel.ConstantTensorsNonContiguous (38 ms) 2023-01-11T22:10:24.3417829Z [ RUN ] Kernel.RunFast 2023-01-11T22:10:24.3729225Z [ OK ] Kernel.RunFast (31 ms) 2023-01-11T22:10:24.3729547Z [ RUN ] Kernel.RunWithAllocatedOutputs 2023-01-11T22:10:24.4036820Z [ OK ] Kernel.RunWithAllocatedOutputs (30 ms) 2023-01-11T22:10:24.4037136Z [ RUN ] Kernel.CodegenInspection 2023-01-11T22:10:24.4424599Z [ OK ] Kernel.CodegenInspection (38 ms) 2023-01-11T22:10:24.4424918Z [ RUN ] Kernel.CustomLowering 2023-01-11T22:10:24.4660265Z [ OK ] Kernel.CustomLowering (23 ms) 2023-01-11T22:10:24.4660764Z [ RUN ] Kernel.Vectorize 2023-01-11T22:10:24.4959638Z [ OK ] Kernel.Vectorize (29 ms) 2023-01-11T22:10:24.4959922Z [ RUN ] Kernel.Strided1dWithinBounds 2023-01-11T22:10:24.5185992Z [ OK ] Kernel.Strided1dWithinBounds (22 ms) 2023-01-11T22:10:24.5186496Z [ RUN ] Kernel.InputAsOutput 2023-01-11T22:10:24.5521544Z [ OK ] Kernel.InputAsOutput (33 ms) 2023-01-11T22:10:24.5522047Z [ RUN ] Kernel.ScalarOut 2023-01-11T22:10:24.5722318Z [ OK ] Kernel.ScalarOut (20 ms) 2023-01-11T22:10:24.5722808Z [ RUN ] Kernel.ScalarTensorOut 2023-01-11T22:10:24.5975773Z [ OK ] Kernel.ScalarTensorOut (25 ms) 2023-01-11T22:10:24.5976338Z [ RUN ] Kernel.FuseLoopsWithVariableBounds 2023-01-11T22:10:25.0354080Z [ OK ] Kernel.FuseLoopsWithVariableBounds (437 ms) 2023-01-11T22:10:25.0354558Z [ RUN ] Kernel.FuseLoopsWithVariableConcatDim 2023-01-11T22:10:25.5308255Z [ OK ] Kernel.FuseLoopsWithVariableConcatDim (495 ms) 2023-01-11T22:10:25.5308703Z [ RUN ] Kernel.DoNotFuseLoopsWithMismatchingVariableDims 2023-01-11T22:10:25.8534301Z [ OK ] Kernel.DoNotFuseLoopsWithMismatchingVariableDims (322 ms) 2023-01-11T22:10:25.8534923Z [----------] 37 tests from Kernel (5863 ms total) 2023-01-11T22:10:25.8535071Z 2023-01-11T22:10:25.8535229Z [----------] 174 tests from LoopNest 2023-01-11T22:10:25.8535504Z [ RUN ] LoopNest.ExprSimple01 2023-01-11T22:10:25.8551761Z [ OK ] LoopNest.ExprSimple01 (1 ms) 2023-01-11T22:10:25.8552040Z [ RUN ] LoopNest.ExprLower01 2023-01-11T22:10:25.8562266Z [ OK ] LoopNest.ExprLower01 (1 ms) 2023-01-11T22:10:25.8562650Z [ RUN ] LoopNest.ExprSimple02 2023-01-11T22:10:25.8584890Z [ OK ] LoopNest.ExprSimple02 (2 ms) 2023-01-11T22:10:25.8585314Z [ RUN ] LoopNest.ExprSliceHeadWithLoopOptions 2023-01-11T22:10:25.8587253Z [ OK ] LoopNest.ExprSliceHeadWithLoopOptions (0 ms) 2023-01-11T22:10:25.8587692Z [ RUN ] LoopNest.ExprSliceTailWithLoopOptions 2023-01-11T22:10:25.8590135Z [ OK ] LoopNest.ExprSliceTailWithLoopOptions (0 ms) 2023-01-11T22:10:25.8590598Z [ RUN ] LoopNest.ExprSliceHeadWhenFactorEqualsSize 2023-01-11T22:10:25.8603325Z [ OK ] LoopNest.ExprSliceHeadWhenFactorEqualsSize (1 ms) 2023-01-11T22:10:25.8603821Z [ RUN ] LoopNest.ExprSliceHeadWhenFactorLargerThanSize 2023-01-11T22:10:25.8604390Z [ OK ] LoopNest.ExprSliceHeadWhenFactorLargerThanSize (0 ms) 2023-01-11T22:10:25.8604895Z [ RUN ] LoopNest.ExprSliceHead 2023-01-11T22:10:25.8605227Z [ OK ] LoopNest.ExprSliceHead (0 ms) 2023-01-11T22:10:25.8605548Z [ RUN ] LoopNest.ExprSliceHeadWithNonZeroStart 2023-01-11T22:10:25.8607355Z [ OK ] LoopNest.ExprSliceHeadWithNonZeroStart (0 ms) 2023-01-11T22:10:25.8607915Z [ RUN ] LoopNest.ExprSliceTailWhenFactorEqualsSize 2023-01-11T22:10:25.8608423Z [ OK ] LoopNest.ExprSliceTailWhenFactorEqualsSize (0 ms) 2023-01-11T22:10:25.8608839Z [ RUN ] LoopNest.ExprSliceTailWhenFactorLargerThanSize 2023-01-11T22:10:25.8609480Z [ OK ] LoopNest.ExprSliceTailWhenFactorLargerThanSize (0 ms) 2023-01-11T22:10:25.8609845Z [ RUN ] LoopNest.ExprSliceTail 2023-01-11T22:10:25.8610693Z [ OK ] LoopNest.ExprSliceTail (0 ms) 2023-01-11T22:10:25.8610990Z [ RUN ] LoopNest.ExprSplitAndSlice 2023-01-11T22:10:25.8618285Z [ OK ] LoopNest.ExprSplitAndSlice (0 ms) 2023-01-11T22:10:25.8618589Z [ RUN ] LoopNest.ExprSliceAndNormalize 2023-01-11T22:10:25.8620870Z [ OK ] LoopNest.ExprSliceAndNormalize (0 ms) 2023-01-11T22:10:25.8621226Z [ RUN ] LoopNest.ExprSliceWithVariableDimension 2023-01-11T22:10:25.8639038Z [ OK ] LoopNest.ExprSliceWithVariableDimension (1 ms) 2023-01-11T22:10:25.8639372Z [ RUN ] LoopNest.ExprSplitWithTail 2023-01-11T22:10:25.8647148Z [ OK ] LoopNest.ExprSplitWithTail (0 ms) 2023-01-11T22:10:25.8647471Z [ RUN ] LoopNest.ExprSplitWithTailNone 2023-01-11T22:10:25.8660522Z [ OK ] LoopNest.ExprSplitWithTailNone (1 ms) 2023-01-11T22:10:25.8660847Z [ RUN ] LoopNest.ExprSplitWithMask01 2023-01-11T22:10:25.8701349Z [ OK ] LoopNest.ExprSplitWithMask01 (4 ms) 2023-01-11T22:10:25.8701705Z [ RUN ] LoopNest.ExprSplitWithMaskRepeatedNoMask 2023-01-11T22:10:25.8706810Z [ OK ] LoopNest.ExprSplitWithMaskRepeatedNoMask (0 ms) 2023-01-11T22:10:25.8707379Z [ RUN ] LoopNest.getLoopAt 2023-01-11T22:10:25.8707798Z [ OK ] LoopNest.getLoopAt (0 ms) 2023-01-11T22:10:25.8708058Z [ RUN ] LoopNest.TileSimple 2023-01-11T22:10:25.9599151Z [ OK ] LoopNest.TileSimple (89 ms) 2023-01-11T22:10:25.9599628Z [ RUN ] LoopNest.TileWithTails 2023-01-11T22:10:26.0494729Z [ OK ] LoopNest.TileWithTails (89 ms) 2023-01-11T22:10:26.0495288Z [ RUN ] LoopNest.TileInMiddle 2023-01-11T22:10:26.1923211Z [ OK ] LoopNest.TileInMiddle (142 ms) 2023-01-11T22:10:26.1923745Z [ RUN ] LoopNest.SplitWithTailWithLoopOptions 2023-01-11T22:10:26.1924165Z [ OK ] LoopNest.SplitWithTailWithLoopOptions (0 ms) 2023-01-11T22:10:26.1924521Z [ RUN ] LoopNest.SplitWithMaskWithLoopOptions 2023-01-11T22:10:26.1924890Z [ OK ] LoopNest.SplitWithMaskWithLoopOptions (0 ms) 2023-01-11T22:10:26.1925247Z [ RUN ] LoopNest.ScheduleBroadcastAddBuffer 2023-01-11T22:10:26.1944575Z [ OK ] LoopNest.ScheduleBroadcastAddBuffer (2 ms) 2023-01-11T22:10:26.1944921Z [ RUN ] LoopNest.ScheduleFunctionCall01 2023-01-11T22:10:26.2023604Z [ OK ] LoopNest.ScheduleFunctionCall01 (7 ms) 2023-01-11T22:10:26.2024158Z [ RUN ] LoopNest.ScheduleInlineSimple 2023-01-11T22:10:26.2146565Z [ OK ] LoopNest.ScheduleInlineSimple (12 ms) 2023-01-11T22:10:26.2147057Z [ RUN ] LoopNest.ScheduleInlineFunc01 2023-01-11T22:10:26.2708337Z [ OK ] LoopNest.ScheduleInlineFunc01 (56 ms) 2023-01-11T22:10:26.2708734Z [ RUN ] LoopNest.ScheduleInlineRandom 2023-01-11T22:10:26.2712691Z [ OK ] LoopNest.ScheduleInlineRandom (0 ms) 2023-01-11T22:10:26.2713112Z [ RUN ] LoopNest.ScheduleInlineRandomUnrelated 2023-01-11T22:10:26.2716801Z [ OK ] LoopNest.ScheduleInlineRandomUnrelated (0 ms) 2023-01-11T22:10:26.2717246Z [ RUN ] LoopNest.ScheduleInlineRandomLowerDimensions 2023-01-11T22:10:26.2720080Z [ OK ] LoopNest.ScheduleInlineRandomLowerDimensions (0 ms) 2023-01-11T22:10:26.2720522Z [ RUN ] LoopNest.ScheduleInlineIntrinsics 2023-01-11T22:10:26.2809550Z [ OK ] LoopNest.ScheduleInlineIntrinsics (8 ms) 2023-01-11T22:10:26.2809930Z [ RUN ] LoopNest.ScheduleInlineRandWithIntrinsics 2023-01-11T22:10:26.2812650Z [ OK ] LoopNest.ScheduleInlineRandWithIntrinsics (0 ms) 2023-01-11T22:10:26.2813018Z [ RUN ] LoopNest.ScheduleSplitAThenInline 2023-01-11T22:10:26.2814611Z [ OK ] LoopNest.ScheduleSplitAThenInline (0 ms) 2023-01-11T22:10:26.2814954Z [ RUN ] LoopNest.ScheduleSplitBThenInline 2023-01-11T22:10:26.2818829Z [ OK ] LoopNest.ScheduleSplitBThenInline (0 ms) 2023-01-11T22:10:26.2819186Z [ RUN ] LoopNest.ScheduleSplitTwiceThenInline 2023-01-11T22:10:26.2820495Z [ OK ] LoopNest.ScheduleSplitTwiceThenInline (0 ms) 2023-01-11T22:10:26.2820848Z [ RUN ] LoopNest.ScheduleInlineThenSplit 2023-01-11T22:10:26.2824513Z [ OK ] LoopNest.ScheduleInlineThenSplit (0 ms) 2023-01-11T22:10:26.2824864Z [ RUN ] LoopNest.ScheduleSplitInlineThenSplit 2023-01-11T22:10:26.2832374Z [ OK ] LoopNest.ScheduleSplitInlineThenSplit (0 ms) 2023-01-11T22:10:26.2832747Z [ RUN ] LoopNest.ScheduleSplitInlineSimplify 2023-01-11T22:10:26.2841240Z [ OK ] LoopNest.ScheduleSplitInlineSimplify (0 ms) 2023-01-11T22:10:26.2841593Z [ RUN ] LoopNest.ScheduleInlineThreeMixedOnce 2023-01-11T22:10:26.2846170Z [ OK ] LoopNest.ScheduleInlineThreeMixedOnce (0 ms) 2023-01-11T22:10:26.2846540Z [ RUN ] LoopNest.ScheduleInlineThreeMixedTwice 2023-01-11T22:10:26.2851004Z [ OK ] LoopNest.ScheduleInlineThreeMixedTwice (0 ms) 2023-01-11T22:10:26.2851431Z [ RUN ] LoopNest.ScheduleInlineThreeMixedInner 2023-01-11T22:10:26.2856171Z [ OK ] LoopNest.ScheduleInlineThreeMixedInner (0 ms) 2023-01-11T22:10:26.2856543Z [ RUN ] LoopNest.ScheduleInlineThreeMixedSplit 2023-01-11T22:10:26.2858701Z [ OK ] LoopNest.ScheduleInlineThreeMixedSplit (0 ms) 2023-01-11T22:10:26.2859069Z [ RUN ] LoopNest.ScheduleInlineOutputTensors 2023-01-11T22:10:26.2863377Z [ OK ] LoopNest.ScheduleInlineOutputTensors (0 ms) 2023-01-11T22:10:26.2863746Z [ RUN ] LoopNest.ScheduleInlineWithCompoundIndices 2023-01-11T22:10:26.2884319Z [ OK ] LoopNest.ScheduleInlineWithCompoundIndices (2 ms) 2023-01-11T22:10:26.2884889Z [ RUN ] LoopNest.ScheduleInlineConsumerIndicesWithCast 2023-01-11T22:10:26.2885879Z [ OK ] LoopNest.ScheduleInlineConsumerIndicesWithCast (0 ms) 2023-01-11T22:10:26.2886468Z [ RUN ] LoopNest.ScheduleInlineProducerIndicesWithCast 2023-01-11T22:10:26.2886900Z [ OK ] LoopNest.ScheduleInlineProducerIndicesWithCast (0 ms) 2023-01-11T22:10:26.2887255Z [ RUN ] LoopNest.ScheduleFuserStyle 2023-01-11T22:10:26.2935536Z [ OK ] LoopNest.ScheduleFuserStyle (4 ms) 2023-01-11T22:10:26.2936017Z [ RUN ] LoopNest.ScheduleFuserThreeArg 2023-01-11T22:10:26.2992775Z [ OK ] LoopNest.ScheduleFuserThreeArg (5 ms) 2023-01-11T22:10:26.2993123Z [ RUN ] LoopNest.ScheduleDynamicShape2D 2023-01-11T22:10:26.3113932Z [ OK ] LoopNest.ScheduleDynamicShape2D (12 ms) 2023-01-11T22:10:26.3114518Z [ RUN ] LoopNest.LoopNestComputeAt_1 2023-01-11T22:10:26.3123190Z [ OK ] LoopNest.LoopNestComputeAt_1 (0 ms) 2023-01-11T22:10:26.3123756Z [ RUN ] LoopNest.LoopNestComputeAt_2 2023-01-11T22:10:26.3621732Z [ OK ] LoopNest.LoopNestComputeAt_2 (49 ms) 2023-01-11T22:10:26.3622284Z [ RUN ] LoopNest.LoopNestComputeAt_3 2023-01-11T22:10:26.4113833Z [ OK ] LoopNest.LoopNestComputeAt_3 (49 ms) 2023-01-11T22:10:26.4114409Z [ RUN ] LoopNest.Reduce2dComputeAt 2023-01-11T22:10:26.4936474Z [ OK ] LoopNest.Reduce2dComputeAt (82 ms) 2023-01-11T22:10:26.4937088Z [ RUN ] LoopNest.LoopNestReorderAxis1 2023-01-11T22:10:26.4939740Z [ OK ] LoopNest.LoopNestReorderAxis1 (0 ms) 2023-01-11T22:10:26.4940375Z [ RUN ] LoopNest.LoopNestReorderPartialAxes 2023-01-11T22:10:26.4950912Z [ OK ] LoopNest.LoopNestReorderPartialAxes (1 ms) 2023-01-11T22:10:26.4951556Z [ RUN ] LoopNest.LoopNestReorderInternalAxis 2023-01-11T22:10:26.4961127Z [ OK ] LoopNest.LoopNestReorderInternalAxis (1 ms) 2023-01-11T22:10:26.4961770Z [ RUN ] LoopNest.LoopNestReorderEnclosingAxis 2023-01-11T22:10:26.4971757Z [ OK ] LoopNest.LoopNestReorderEnclosingAxis (1 ms) 2023-01-11T22:10:26.4972389Z [ RUN ] LoopNest.LoopNestReorderSameAxis 2023-01-11T22:10:26.4973126Z [ OK ] LoopNest.LoopNestReorderSameAxis (0 ms) 2023-01-11T22:10:26.4973523Z [ RUN ] LoopNest.LoopNestReorderExtraStatements 2023-01-11T22:10:26.4988075Z [ OK ] LoopNest.LoopNestReorderExtraStatements (1 ms) 2023-01-11T22:10:26.4988509Z [ RUN ] LoopNest.LoopNestReorderLongStringOfPreOrphans 2023-01-11T22:10:26.5542399Z [ OK ] LoopNest.LoopNestReorderLongStringOfPreOrphans (55 ms) 2023-01-11T22:10:26.5542888Z [ RUN ] LoopNest.LoopNestReorderLongStringOfPostOrphans 2023-01-11T22:10:26.6102408Z [ OK ] LoopNest.LoopNestReorderLongStringOfPostOrphans (55 ms) 2023-01-11T22:10:26.6102862Z [ RUN ] LoopNest.LoopNestReorderLongStringFull 2023-01-11T22:10:26.6798498Z [ OK ] LoopNest.LoopNestReorderLongStringFull (69 ms) 2023-01-11T22:10:26.6798975Z [ RUN ] LoopNest.LoopNestReorderInternalLoopNest 2023-01-11T22:10:26.6913891Z [ OK ] LoopNest.LoopNestReorderInternalLoopNest (11 ms) 2023-01-11T22:10:26.6914240Z [ RUN ] LoopNest.OuterLoopVectorization 2023-01-11T22:10:26.6916060Z [ OK ] LoopNest.OuterLoopVectorization (0 ms) 2023-01-11T22:10:26.6916408Z [ RUN ] LoopNest.VectorizeLoopNotNormalized 2023-01-11T22:10:26.6918498Z [ OK ] LoopNest.VectorizeLoopNotNormalized (0 ms) 2023-01-11T22:10:26.6919106Z [ RUN ] LoopNest.Unroll 2023-01-11T22:10:26.6919581Z [ OK ] LoopNest.Unroll (0 ms) 2023-01-11T22:10:26.6919889Z [ RUN ] LoopNest.UnrollOuter 2023-01-11T22:10:26.6921947Z [ OK ] LoopNest.UnrollOuter (0 ms) 2023-01-11T22:10:26.6922314Z [ RUN ] LoopNest.UnrollInner 2023-01-11T22:10:26.6923643Z [ OK ] LoopNest.UnrollInner (0 ms) 2023-01-11T22:10:26.6924117Z [ RUN ] LoopNest.UnrollMultipleStatements 2023-01-11T22:10:26.6924799Z [ OK ] LoopNest.UnrollMultipleStatements (0 ms) 2023-01-11T22:10:26.6925164Z [ RUN ] LoopNest.UnrollNonLiteralConstantBounds 2023-01-11T22:10:26.6926783Z [ OK ] LoopNest.UnrollNonLiteralConstantBounds (0 ms) 2023-01-11T22:10:26.6927244Z [ RUN ] LoopNest.UnrollNonConstantBounds 2023-01-11T22:10:26.6943369Z [ OK ] LoopNest.UnrollNonConstantBounds (1 ms) 2023-01-11T22:10:26.6943805Z [ RUN ] LoopNest.UnrollByFactorsLessThan2 2023-01-11T22:10:26.6944207Z [ OK ] LoopNest.UnrollByFactorsLessThan2 (0 ms) 2023-01-11T22:10:26.6944565Z [ RUN ] LoopNest.UnrollByFactorEqualToIters 2023-01-11T22:10:26.6947432Z [ OK ] LoopNest.UnrollByFactorEqualToIters (0 ms) 2023-01-11T22:10:26.6948013Z [ RUN ] LoopNest.UnrollEmpty 2023-01-11T22:10:26.6948409Z [ OK ] LoopNest.UnrollEmpty (0 ms) 2023-01-11T22:10:26.6948871Z [ RUN ] LoopNest.NoUnroll 2023-01-11T22:10:26.6949358Z [ OK ] LoopNest.NoUnroll (0 ms) 2023-01-11T22:10:26.6949629Z [ RUN ] LoopNest.UnrollWithLet 2023-01-11T22:10:26.6950595Z [ OK ] LoopNest.UnrollWithLet (0 ms) 2023-01-11T22:10:26.6951130Z [ RUN ] LoopNest.IsNormalized 2023-01-11T22:10:26.6951508Z [ OK ] LoopNest.IsNormalized (0 ms) 2023-01-11T22:10:26.6951809Z [ RUN ] LoopNest.NormalizeStartPositive 2023-01-11T22:10:26.6953384Z [ OK ] LoopNest.NormalizeStartPositive (0 ms) 2023-01-11T22:10:26.6953989Z [ RUN ] LoopNest.NormalizeStartNegative 2023-01-11T22:10:26.6956379Z [ OK ] LoopNest.NormalizeStartNegative (0 ms) 2023-01-11T22:10:26.6956944Z [ RUN ] LoopNest.NormalizeStartZero 2023-01-11T22:10:26.6957437Z [ OK ] LoopNest.NormalizeStartZero (0 ms) 2023-01-11T22:10:26.6957760Z [ RUN ] LoopNest.NormalizeStartVariable 2023-01-11T22:10:26.6960122Z [ OK ] LoopNest.NormalizeStartVariable (0 ms) 2023-01-11T22:10:26.6960465Z [ RUN ] LoopNest.NormalizeOnNestedOuterLoop 2023-01-11T22:10:26.6962446Z [ OK ] LoopNest.NormalizeOnNestedOuterLoop (0 ms) 2023-01-11T22:10:26.6962795Z [ RUN ] LoopNest.NormalizeOnNestedInnerLoop 2023-01-11T22:10:26.6964954Z [ OK ] LoopNest.NormalizeOnNestedInnerLoop (0 ms) 2023-01-11T22:10:26.6965311Z [ RUN ] LoopNest.NormalizeAndSplitWithTail 2023-01-11T22:10:26.6969445Z [ OK ] LoopNest.NormalizeAndSplitWithTail (0 ms) 2023-01-11T22:10:26.6970006Z [ RUN ] LoopNest.NotNormalizeAndSplitWithTail 2023-01-11T22:10:26.6974932Z [ OK ] LoopNest.NotNormalizeAndSplitWithTail (0 ms) 2023-01-11T22:10:26.6975516Z [ RUN ] LoopNest.FlattenSimpleLoopNest2D 2023-01-11T22:10:26.6985283Z [ OK ] LoopNest.FlattenSimpleLoopNest2D (1 ms) 2023-01-11T22:10:26.6985840Z [ RUN ] LoopNest.FlattenSimpleLoopNest3D 2023-01-11T22:10:26.7068438Z [ OK ] LoopNest.FlattenSimpleLoopNest3D (8 ms) 2023-01-11T22:10:26.7069090Z [ RUN ] LoopNest.FlattenLoopNestAfterNormalize 2023-01-11T22:10:26.7095307Z [ OK ] LoopNest.FlattenLoopNestAfterNormalize (2 ms) 2023-01-11T22:10:26.7095966Z [ RUN ] LoopNest.FlattenLoopNestWithNonLiteralConstantBounds 2023-01-11T22:10:26.7107552Z [ OK ] LoopNest.FlattenLoopNestWithNonLiteralConstantBounds (1 ms) 2023-01-11T22:10:26.7108256Z [ RUN ] LoopNest.FlattenImperfectLoopNest 2023-01-11T22:10:26.7108693Z [ OK ] LoopNest.FlattenImperfectLoopNest (0 ms) 2023-01-11T22:10:26.7109062Z [ RUN ] LoopNest.FlattenReductionLoopNest 2023-01-11T22:10:26.7109479Z [ OK ] LoopNest.FlattenReductionLoopNest (0 ms) 2023-01-11T22:10:26.7109854Z [ RUN ] LoopNest.FlattenReductionLoopNestFromTensor 2023-01-11T22:10:26.7110335Z [ OK ] LoopNest.FlattenReductionLoopNestFromTensor (0 ms) 2023-01-11T22:10:26.7110715Z [ RUN ] LoopNest.FlattenIncorrectLoopsAsInput 2023-01-11T22:10:26.7111143Z [ OK ] LoopNest.FlattenIncorrectLoopsAsInput (0 ms) 2023-01-11T22:10:26.7111586Z [ RUN ] LoopNest.DetectInlineRankMismatch 2023-01-11T22:10:26.7111979Z [ OK ] LoopNest.DetectInlineRankMismatch (0 ms) 2023-01-11T22:10:26.7112296Z [ RUN ] LoopNest.CacheReadsSimple 2023-01-11T22:10:26.7468267Z [ OK ] LoopNest.CacheReadsSimple (35 ms) 2023-01-11T22:10:26.7468647Z [ RUN ] LoopNest.CacheReadsOuter 2023-01-11T22:10:26.7856174Z [ OK ] LoopNest.CacheReadsOuter (38 ms) 2023-01-11T22:10:26.7856525Z [ RUN ] LoopNest.CacheReadsInternal 2023-01-11T22:10:26.8270510Z [ OK ] LoopNest.CacheReadsInternal (41 ms) 2023-01-11T22:10:26.8270885Z [ RUN ] LoopNest.CacheReadsInner 2023-01-11T22:10:26.8916030Z [ OK ] LoopNest.CacheReadsInner (64 ms) 2023-01-11T22:10:26.8916358Z [ RUN ] LoopNest.CacheWritesSimple 2023-01-11T22:10:26.9644036Z [ OK ] LoopNest.CacheWritesSimple (72 ms) 2023-01-11T22:10:26.9644380Z [ RUN ] LoopNest.DeadStoreElimination 2023-01-11T22:10:26.9661198Z [ OK ] LoopNest.DeadStoreElimination (1 ms) 2023-01-11T22:10:26.9661577Z [ RUN ] LoopNest.DeadStoreEliminationWithIntermediates 2023-01-11T22:10:26.9674644Z [ OK ] LoopNest.DeadStoreEliminationWithIntermediates (1 ms) 2023-01-11T22:10:26.9675043Z [ RUN ] LoopNest.CompoundTensorSimple 2023-01-11T22:10:26.9687542Z [ OK ] LoopNest.CompoundTensorSimple (1 ms) 2023-01-11T22:10:26.9688105Z [ RUN ] LoopNest.InlineConstantIndex 2023-01-11T22:10:26.9691576Z [ OK ] LoopNest.InlineConstantIndex (0 ms) 2023-01-11T22:10:26.9692137Z [ RUN ] LoopNest.CompoundTensorUsed 2023-01-11T22:10:26.9713913Z [ OK ] LoopNest.CompoundTensorUsed (2 ms) 2023-01-11T22:10:26.9714449Z [ RUN ] LoopNest.InlineFromLoad 2023-01-11T22:10:26.9714980Z [ OK ] LoopNest.InlineFromLoad (0 ms) 2023-01-11T22:10:26.9715465Z [ RUN ] LoopNest.OptimizeConditionalsSimple 2023-01-11T22:10:26.9716633Z [ OK ] LoopNest.OptimizeConditionalsSimple (0 ms) 2023-01-11T22:10:26.9717288Z [ RUN ] LoopNest.OptimizeConditionalsNestedConditions 2023-01-11T22:10:26.9719356Z [ OK ] LoopNest.OptimizeConditionalsNestedConditions (0 ms) 2023-01-11T22:10:26.9719964Z [ RUN ] LoopNest.OptimizeConditionalsMultipleStores 2023-01-11T22:10:26.9722133Z [ OK ] LoopNest.OptimizeConditionalsMultipleStores (0 ms) 2023-01-11T22:10:26.9722797Z [ RUN ] LoopNest.OptimizeConditionalsMultipleStoresInOneLoop 2023-01-11T22:10:26.9727367Z [ OK ] LoopNest.OptimizeConditionalsMultipleStoresInOneLoop (0 ms) 2023-01-11T22:10:26.9727974Z [ RUN ] LoopNest.OptimizeConditionalsOuterLoopVar 2023-01-11T22:10:26.9731168Z [ OK ] LoopNest.OptimizeConditionalsOuterLoopVar (0 ms) 2023-01-11T22:10:26.9731811Z [ RUN ] LoopNest.OptimizeConditionalsCompValuesNotOrdered 2023-01-11T22:10:26.9734635Z [ OK ] LoopNest.OptimizeConditionalsCompValuesNotOrdered (0 ms) 2023-01-11T22:10:26.9735513Z [ RUN ] LoopNest.OptimizeConditionalsCompValuesNotConstants 2023-01-11T22:10:26.9738016Z [ OK ] LoopNest.OptimizeConditionalsCompValuesNotConstants (0 ms) 2023-01-11T22:10:26.9738641Z [ RUN ] LoopNest.OptimizeConditionalsInvalidCondition 2023-01-11T22:10:26.9741318Z [ OK ] LoopNest.OptimizeConditionalsInvalidCondition (0 ms) 2023-01-11T22:10:26.9741964Z [ RUN ] LoopNest.OptimizeConditionalsInvalidCondition2 2023-01-11T22:10:26.9744989Z [ OK ] LoopNest.OptimizeConditionalsInvalidCondition2 (0 ms) 2023-01-11T22:10:26.9745626Z [ RUN ] LoopNest.OptimizeConditionalsInvalidCondition3 2023-01-11T22:10:26.9748065Z [ OK ] LoopNest.OptimizeConditionalsInvalidCondition3 (0 ms) 2023-01-11T22:10:26.9748817Z [ RUN ] LoopNest.OptimizeConditionalsInvalidCondition4 2023-01-11T22:10:26.9750827Z [ OK ] LoopNest.OptimizeConditionalsInvalidCondition4 (0 ms) 2023-01-11T22:10:26.9751453Z [ RUN ] LoopNest.OptimizeConditionalsNotNormalized 2023-01-11T22:10:26.9752468Z [ OK ] LoopNest.OptimizeConditionalsNotNormalized (0 ms) 2023-01-11T22:10:26.9753082Z [ RUN ] LoopNest.ColReduceSplitTailEvenReorder 2023-01-11T22:10:27.1211791Z [ OK ] LoopNest.ColReduceSplitTailEvenReorder (145 ms) 2023-01-11T22:10:27.1212275Z [ RUN ] LoopNest.ColReduceSplitTailUnevenReorder 2023-01-11T22:10:27.2367853Z [ OK ] LoopNest.ColReduceSplitTailUnevenReorder (115 ms) 2023-01-11T22:10:27.2368308Z [ RUN ] LoopNest.ColReduceSplitMaskEvenReorder 2023-01-11T22:10:27.3825616Z [ OK ] LoopNest.ColReduceSplitMaskEvenReorder (145 ms) 2023-01-11T22:10:27.3826028Z [ RUN ] LoopNest.ColReduceSplitMaskUnevenReorder 2023-01-11T22:10:27.5136099Z [ OK ] LoopNest.ColReduceSplitMaskUnevenReorder (131 ms) 2023-01-11T22:10:27.5136485Z [ RUN ] LoopNest.ReorderAxisWithMultipleConds 2023-01-11T22:10:27.5138615Z [ OK ] LoopNest.ReorderAxisWithMultipleConds (0 ms) 2023-01-11T22:10:27.5138960Z [ RUN ] LoopNest.VectorizeUse 2023-01-11T22:10:27.5140082Z [ OK ] LoopNest.VectorizeUse (0 ms) 2023-01-11T22:10:27.5140483Z [ RUN ] LoopNest.Int64Direct 2023-01-11T22:10:27.5140873Z [ OK ] LoopNest.Int64Direct (0 ms) 2023-01-11T22:10:27.5141252Z [ RUN ] LoopNest.Int64Compute 2023-01-11T22:10:27.5142293Z [ OK ] LoopNest.Int64Compute (0 ms) 2023-01-11T22:10:27.5142969Z [ RUN ] LoopNest.DistributeLoopWithAllStmtsAsPivots 2023-01-11T22:10:27.5143708Z [ OK ] LoopNest.DistributeLoopWithAllStmtsAsPivots (0 ms) 2023-01-11T22:10:27.5144384Z [ RUN ] LoopNest.DistributeLoopWithOneStmtAsPivot 2023-01-11T22:10:27.5144887Z [ OK ] LoopNest.DistributeLoopWithOneStmtAsPivot (0 ms) 2023-01-11T22:10:27.5145281Z [ RUN ] LoopNest.DistributeLoopWithoutAnyPivot 2023-01-11T22:10:27.5145703Z [ OK ] LoopNest.DistributeLoopWithoutAnyPivot (0 ms) 2023-01-11T22:10:27.5146062Z [ RUN ] LoopNest.DistributeLoopOverInnerLoops 2023-01-11T22:10:27.5146431Z [ OK ] LoopNest.DistributeLoopOverInnerLoops (0 ms) 2023-01-11T22:10:27.5146878Z [ RUN ] LoopNest.DistributeLoopAndParentsWithoutAnyPivot 2023-01-11T22:10:27.5147365Z [ OK ] LoopNest.DistributeLoopAndParentsWithoutAnyPivot (0 ms) 2023-01-11T22:10:27.5147729Z [ RUN ] LoopNest.fuseLoopsSimple 2023-01-11T22:10:27.5150117Z [ OK ] LoopNest.fuseLoopsSimple (0 ms) 2023-01-11T22:10:27.5150540Z [ RUN ] LoopNest.fuseLoopsMultiple 2023-01-11T22:10:27.5155312Z [ OK ] LoopNest.fuseLoopsMultiple (0 ms) 2023-01-11T22:10:27.5155874Z [ RUN ] LoopNest.fuseLoopsNested 2023-01-11T22:10:27.5163253Z [ OK ] LoopNest.fuseLoopsNested (0 ms) 2023-01-11T22:10:27.5163860Z [ RUN ] LoopNest.fuseLoopsNested2D 2023-01-11T22:10:27.5166793Z [ OK ] LoopNest.fuseLoopsNested2D (0 ms) 2023-01-11T22:10:27.5167126Z [ RUN ] LoopNest.fuseLoopsNested2DInner 2023-01-11T22:10:27.5169502Z [ OK ] LoopNest.fuseLoopsNested2DInner (0 ms) 2023-01-11T22:10:27.5169858Z [ RUN ] LoopNest.fuseLoopsDifferentStopBounds 2023-01-11T22:10:27.5170230Z [ OK ] LoopNest.fuseLoopsDifferentStopBounds (0 ms) 2023-01-11T22:10:27.5170598Z [ RUN ] LoopNest.fuseLoopsDifferentStartBounds 2023-01-11T22:10:27.5170957Z [ OK ] LoopNest.fuseLoopsDifferentStartBounds (0 ms) 2023-01-11T22:10:27.5171303Z [ RUN ] LoopNest.fuseLoopsNotContiguous 2023-01-11T22:10:27.5172603Z [ OK ] LoopNest.fuseLoopsNotContiguous (0 ms) 2023-01-11T22:10:27.5172967Z [ RUN ] LoopNest.fuseLoopsWithDifferentParents 2023-01-11T22:10:27.5173334Z [ OK ] LoopNest.fuseLoopsWithDifferentParents (0 ms) 2023-01-11T22:10:27.5173695Z [ RUN ] LoopNest.fuseLoopsWithVariableBounds 2023-01-11T22:10:27.5176836Z [ OK ] LoopNest.fuseLoopsWithVariableBounds (0 ms) 2023-01-11T22:10:27.5177222Z [ RUN ] LoopNest.fuseLoopsWithExprBounds 2023-01-11T22:10:27.5182716Z [ OK ] LoopNest.fuseLoopsWithExprBounds (0 ms) 2023-01-11T22:10:27.5183146Z [ RUN ] LoopNest.fuseLoopsWithDifferentExprBounds 2023-01-11T22:10:27.5187958Z [ OK ] LoopNest.fuseLoopsWithDifferentExprBounds (0 ms) 2023-01-11T22:10:27.5188387Z [ RUN ] LoopNest.fuseLoopsWithNonOverlappingBufferAccesses 2023-01-11T22:10:27.5193027Z [ OK ] LoopNest.fuseLoopsWithNonOverlappingBufferAccesses (0 ms) 2023-01-11T22:10:27.5193498Z [ RUN ] LoopNest.fuseLoopsWithNonOverlapping2DBufferAccesses 2023-01-11T22:10:27.5202159Z [ OK ] LoopNest.fuseLoopsWithNonOverlapping2DBufferAccesses (0 ms) 2023-01-11T22:10:27.5202551Z [ RUN ] LoopNest.fuseLoopsWithReductions 2023-01-11T22:10:27.5208451Z [ OK ] LoopNest.fuseLoopsWithReductions (0 ms) 2023-01-11T22:10:27.5208799Z [ RUN ] LoopNest.fuseLoopsWith2DReductions 2023-01-11T22:10:27.5219367Z [ OK ] LoopNest.fuseLoopsWith2DReductions (1 ms) 2023-01-11T22:10:27.5219731Z [ RUN ] LoopNest.fuseLoopsWithComplexIndices 2023-01-11T22:10:27.5228826Z [ OK ] LoopNest.fuseLoopsWithComplexIndices (0 ms) 2023-01-11T22:10:27.5229216Z [ RUN ] LoopNest.fuseLoopsWithMixedLoopVarsAsIndices 2023-01-11T22:10:27.5241281Z [ OK ] LoopNest.fuseLoopsWithMixedLoopVarsAsIndices (1 ms) 2023-01-11T22:10:27.5241651Z [ RUN ] LoopNest.fuseLoopsWithTranspose 2023-01-11T22:10:27.5247970Z [ OK ] LoopNest.fuseLoopsWithTranspose (0 ms) 2023-01-11T22:10:27.5248324Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies1 2023-01-11T22:10:27.5253635Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies1 (0 ms) 2023-01-11T22:10:27.5254037Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies2 2023-01-11T22:10:27.5258867Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies2 (0 ms) 2023-01-11T22:10:27.5259276Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies3 2023-01-11T22:10:27.5268134Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies3 (0 ms) 2023-01-11T22:10:27.5268533Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies4 2023-01-11T22:10:27.5279595Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies4 (1 ms) 2023-01-11T22:10:27.5279974Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies5 2023-01-11T22:10:27.5285670Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies5 (0 ms) 2023-01-11T22:10:27.5286093Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies6 2023-01-11T22:10:27.5291519Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies6 (0 ms) 2023-01-11T22:10:27.5291990Z [ RUN ] LoopNest.fuseLoopsThatViolateDependencies7 2023-01-11T22:10:27.5297588Z [ OK ] LoopNest.fuseLoopsThatViolateDependencies7 (0 ms) 2023-01-11T22:10:27.5298172Z [ RUN ] LoopNest.areLoopsPerfectlyNested 2023-01-11T22:10:27.5298708Z [ OK ] LoopNest.areLoopsPerfectlyNested (0 ms) 2023-01-11T22:10:27.5299254Z [ RUN ] LoopNest.reorderNestedLoops2D 2023-01-11T22:10:27.5299834Z [ OK ] LoopNest.reorderNestedLoops2D (0 ms) 2023-01-11T22:10:27.5300208Z [ RUN ] LoopNest.reorderNestedLoops3D 2023-01-11T22:10:27.5300648Z [ OK ] LoopNest.reorderNestedLoops3D (0 ms) 2023-01-11T22:10:27.5301151Z [ RUN ] LoopNest.reorderNestedLoops4D 2023-01-11T22:10:27.5301586Z [ OK ] LoopNest.reorderNestedLoops4D (0 ms) 2023-01-11T22:10:27.5302070Z [ RUN ] LoopNest.reorderTrivialPermutation 2023-01-11T22:10:27.5302650Z [ OK ] LoopNest.reorderTrivialPermutation (0 ms) 2023-01-11T22:10:27.5303093Z [ RUN ] LoopNest.reorderInvalidPermutations 2023-01-11T22:10:27.5303647Z [ OK ] LoopNest.reorderInvalidPermutations (0 ms) 2023-01-11T22:10:27.5304151Z [ RUN ] LoopNest.reorderInvalidLoopNest 2023-01-11T22:10:27.5304596Z [ OK ] LoopNest.reorderInvalidLoopNest (0 ms) 2023-01-11T22:10:27.5304957Z [ RUN ] LoopNest.compressBufferSimple 2023-01-11T22:10:27.5305444Z [ OK ] LoopNest.compressBufferSimple (0 ms) 2023-01-11T22:10:27.5305834Z [ RUN ] LoopNest.compressBufferMultipleDims 2023-01-11T22:10:27.5306189Z [ OK ] LoopNest.compressBufferMultipleDims (0 ms) 2023-01-11T22:10:27.5306531Z [ RUN ] LoopNest.compressBufferMultipleDims2 2023-01-11T22:10:27.5306887Z [ OK ] LoopNest.compressBufferMultipleDims2 (0 ms) 2023-01-11T22:10:27.5307268Z [ RUN ] LoopNest.compressBufferDifferentOrderIndices 2023-01-11T22:10:27.5307661Z [ OK ] LoopNest.compressBufferDifferentOrderIndices (0 ms) 2023-01-11T22:10:27.5308039Z [ RUN ] LoopNest.compressBufferVariableBounds 2023-01-11T22:10:27.5308400Z [ OK ] LoopNest.compressBufferVariableBounds (0 ms) 2023-01-11T22:10:27.5308779Z [ RUN ] LoopNest.compressBufferNoCommonParentLoops 2023-01-11T22:10:27.5309167Z [ OK ] LoopNest.compressBufferNoCommonParentLoops (0 ms) 2023-01-11T22:10:27.5309534Z [ RUN ] LoopNest.compressBufferIndicesMixed 2023-01-11T22:10:27.5309886Z [ OK ] LoopNest.compressBufferIndicesMixed (0 ms) 2023-01-11T22:10:27.5310210Z [ RUN ] LoopNest.compressMultipleBuffers 2023-01-11T22:10:27.5310552Z [ OK ] LoopNest.compressMultipleBuffers (0 ms) 2023-01-11T22:10:27.5310855Z [ RUN ] LoopNest.sanitizeNames 2023-01-11T22:10:27.5321039Z [ OK ] LoopNest.sanitizeNames (1 ms) 2023-01-11T22:10:27.5321440Z [----------] 174 tests from LoopNest (1678 ms total) 2023-01-11T22:10:27.5321595Z 2023-01-11T22:10:27.5321747Z [----------] 31 tests from MemDependency 2023-01-11T22:10:27.5322036Z [ RUN ] MemDependency.BoundOverlap 2023-01-11T22:10:27.5333325Z [ OK ] MemDependency.BoundOverlap (1 ms) 2023-01-11T22:10:27.5333724Z [ RUN ] MemDependency.BoundComparison 2023-01-11T22:10:27.5342654Z [ OK ] MemDependency.BoundComparison (0 ms) 2023-01-11T22:10:27.5343061Z [ RUN ] MemDependency.BoundOverlapSymbolic 2023-01-11T22:10:27.5352416Z [ OK ] MemDependency.BoundOverlapSymbolic (0 ms) 2023-01-11T22:10:27.5352923Z [ RUN ] MemDependency.BoundOverlapMultiDim 2023-01-11T22:10:27.5361760Z [ OK ] MemDependency.BoundOverlapMultiDim (0 ms) 2023-01-11T22:10:27.5362187Z [ RUN ] MemDependency.BoundSubtract 2023-01-11T22:10:27.5369995Z [ OK ] MemDependency.BoundSubtract (0 ms) 2023-01-11T22:10:27.5370523Z [ RUN ] MemDependency.BoundSubtractSymbolic 2023-01-11T22:10:27.5394254Z [ OK ] MemDependency.BoundSubtractSymbolic (2 ms) 2023-01-11T22:10:27.5394830Z [ RUN ] MemDependency.BoundSubtractMultiDim 2023-01-11T22:10:27.5421051Z [ OK ] MemDependency.BoundSubtractMultiDim (2 ms) 2023-01-11T22:10:27.5421666Z [ RUN ] MemDependency.BoundSubtractMultiDimSymbolic 2023-01-11T22:10:27.5458152Z [ OK ] MemDependency.BoundSubtractMultiDimSymbolic (3 ms) 2023-01-11T22:10:27.5458877Z [ RUN ] MemDependency.MemDependencyCheckerSimple 2023-01-11T22:10:27.5459685Z [ OK ] MemDependency.MemDependencyCheckerSimple (0 ms) 2023-01-11T22:10:27.5460394Z [ RUN ] MemDependency.MemDependencyCheckerMultiStmt 2023-01-11T22:10:27.5461039Z [ OK ] MemDependency.MemDependencyCheckerMultiStmt (0 ms) 2023-01-11T22:10:27.5461486Z [ RUN ] MemDependency.MemDependencyCheckerOverlap 2023-01-11T22:10:27.5461881Z [ OK ] MemDependency.MemDependencyCheckerOverlap (0 ms) 2023-01-11T22:10:27.5462351Z [ RUN ] MemDependency.MemDependencyCheckerLoop 2023-01-11T22:10:27.5462932Z [ OK ] MemDependency.MemDependencyCheckerLoop (0 ms) 2023-01-11T22:10:27.5463328Z [ RUN ] MemDependency.MemDependencyCheckerLoopReduce 2023-01-11T22:10:27.5465987Z [ OK ] MemDependency.MemDependencyCheckerLoopReduce (0 ms) 2023-01-11T22:10:27.5466484Z [ RUN ] MemDependency.MemDependencyCheckerLoopReduceExpanded 2023-01-11T22:10:27.5469062Z [ OK ] MemDependency.MemDependencyCheckerLoopReduceExpanded (0 ms) 2023-01-11T22:10:27.5469531Z [ RUN ] MemDependency.MemDependencyCheckerInputsOutputs 2023-01-11T22:10:27.5471396Z [ OK ] MemDependency.MemDependencyCheckerInputsOutputs (0 ms) 2023-01-11T22:10:27.5471954Z [ RUN ] MemDependency.MemDependencyCheckerOutputDoesntDepend 2023-01-11T22:10:27.5472647Z [ OK ] MemDependency.MemDependencyCheckerOutputDoesntDepend (0 ms) 2023-01-11T22:10:27.5473080Z [ RUN ] MemDependency.MemDependencyCheckerLoopBounds 2023-01-11T22:10:27.5485559Z [ OK ] MemDependency.MemDependencyCheckerLoopBounds (1 ms) 2023-01-11T22:10:27.5486002Z [ RUN ] MemDependency.MemDependencyCheckerLoopBoundsIndexShift 2023-01-11T22:10:27.5516536Z [ OK ] MemDependency.MemDependencyCheckerLoopBoundsIndexShift (3 ms) 2023-01-11T22:10:27.5517007Z [ RUN ] MemDependency.MemDependencyCheckerLoopSelfDependency 2023-01-11T22:10:27.5668773Z [ OK ] MemDependency.MemDependencyCheckerLoopSelfDependency (15 ms) 2023-01-11T22:10:27.5669249Z [ RUN ] MemDependency.MemDependencyCheckerLoopDistinctStrides 2023-01-11T22:10:27.5679003Z [ OK ] MemDependency.MemDependencyCheckerLoopDistinctStrides (1 ms) 2023-01-11T22:10:27.5679458Z [ RUN ] MemDependency.MemDependencyCheckerLoopBoundsCond 2023-01-11T22:10:27.5698542Z [ OK ] MemDependency.MemDependencyCheckerLoopBoundsCond (1 ms) 2023-01-11T22:10:27.5698973Z [ RUN ] MemDependency.MemDependencyCheckerIfThenElse 2023-01-11T22:10:27.5711603Z [ OK ] MemDependency.MemDependencyCheckerIfThenElse (1 ms) 2023-01-11T22:10:27.5712097Z [ RUN ] MemDependency.MemDependencyCheckerCutLoop 2023-01-11T22:10:27.5732595Z [ OK ] MemDependency.MemDependencyCheckerCutLoop (2 ms) 2023-01-11T22:10:27.5733018Z [ RUN ] MemDependency.MemDependencyCheckerDynamicShapes 2023-01-11T22:10:27.5762883Z [ OK ] MemDependency.MemDependencyCheckerDynamicShapes (3 ms) 2023-01-11T22:10:27.5763289Z [ RUN ] MemDependency.MemDependencyCheckerMultiDim 2023-01-11T22:10:27.5801517Z [ OK ] MemDependency.MemDependencyCheckerMultiDim (3 ms) 2023-01-11T22:10:27.5801929Z [ RUN ] MemDependency.MemDependencyCheckerComputeAPI 2023-01-11T22:10:27.5813823Z [ OK ] MemDependency.MemDependencyCheckerComputeAPI (1 ms) 2023-01-11T22:10:27.5814238Z [ RUN ] MemDependency.MemDependencyCheckerComputeInline 2023-01-11T22:10:27.5822831Z [ OK ] MemDependency.MemDependencyCheckerComputeInline (0 ms) 2023-01-11T22:10:27.5823261Z [ RUN ] MemDependency.MemDependencyCheckerComputeSplit 2023-01-11T22:10:27.5846847Z [ OK ] MemDependency.MemDependencyCheckerComputeSplit (2 ms) 2023-01-11T22:10:27.5847274Z [ RUN ] MemDependency.MemDependencyCheckerComputeReorder 2023-01-11T22:10:27.5862702Z [ OK ] MemDependency.MemDependencyCheckerComputeReorder (1 ms) 2023-01-11T22:10:27.5863149Z [ RUN ] MemDependency.MemDependencyCheckerComputeReduce 2023-01-11T22:10:27.5875187Z [ OK ] MemDependency.MemDependencyCheckerComputeReduce (1 ms) 2023-01-11T22:10:27.5875625Z [ RUN ] MemDependency.MemDependencyCheckerComputeGEMM 2023-01-11T22:10:27.6054756Z [ OK ] MemDependency.MemDependencyCheckerComputeGEMM (17 ms) 2023-01-11T22:10:27.6055201Z [----------] 31 tests from MemDependency (73 ms total) 2023-01-11T22:10:27.6055365Z 2023-01-11T22:10:27.6055480Z [----------] 2 tests from Ops 2023-01-11T22:10:27.6055713Z [ RUN ] Ops.Sum 2023-01-11T22:10:27.6096046Z [ OK ] Ops.Sum (4 ms) 2023-01-11T22:10:27.6096367Z [ RUN ] Ops.ChannelsLastSum 2023-01-11T22:10:27.7189682Z [ OK ] Ops.ChannelsLastSum (109 ms) 2023-01-11T22:10:27.7190026Z [----------] 2 tests from Ops (113 ms total) 2023-01-11T22:10:27.7190242Z 2023-01-11T22:10:27.7190448Z [----------] 10 tests from Quantization 2023-01-11T22:10:27.7190841Z [ RUN ] Quantization.QuantDequantInt8 2023-01-11T22:10:27.7476290Z [ OK ] Quantization.QuantDequantInt8 (28 ms) 2023-01-11T22:10:27.7476802Z [ RUN ] Quantization.QuantDequantUInt8 2023-01-11T22:10:27.7741241Z [ OK ] Quantization.QuantDequantUInt8 (26 ms) 2023-01-11T22:10:27.7741794Z [ RUN ] Quantization.QuantDequantUInt8_NLC 2023-01-11T22:10:27.8009601Z [ OK ] Quantization.QuantDequantUInt8_NLC (26 ms) 2023-01-11T22:10:27.8010170Z [ RUN ] Quantization.QuantAddDequantInt8 2023-01-11T22:10:27.8307908Z [ OK ] Quantization.QuantAddDequantInt8 (29 ms) 2023-01-11T22:10:27.8308373Z [ RUN ] Quantization.QuantAddDequantUInt8 2023-01-11T22:10:27.8603272Z [ OK ] Quantization.QuantAddDequantUInt8 (29 ms) 2023-01-11T22:10:27.8603752Z [ RUN ] Quantization.QuantSigmoidDequantUInt8 2023-01-11T22:10:27.8944245Z [ OK ] Quantization.QuantSigmoidDequantUInt8 (34 ms) 2023-01-11T22:10:27.8944663Z [ RUN ] Quantization.QuantMulDequantUInt8 2023-01-11T22:10:27.9349896Z [ OK ] Quantization.QuantMulDequantUInt8 (40 ms) 2023-01-11T22:10:27.9350385Z [ RUN ] Quantization.QuantUpsampleNearst2dDequantUInt8 2023-01-11T22:10:27.9816122Z [ OK ] Quantization.QuantUpsampleNearst2dDequantUInt8 (46 ms) 2023-01-11T22:10:27.9816604Z [ RUN ] Quantization.UpsampleNearst2d 2023-01-11T22:10:28.0117410Z [ OK ] Quantization.UpsampleNearst2d (30 ms) 2023-01-11T22:10:28.0118171Z [ RUN ] Quantization.QuantCatDequantUInt8 2023-01-11T22:10:28.0728095Z [ OK ] Quantization.QuantCatDequantUInt8 (61 ms) 2023-01-11T22:10:28.0728619Z [----------] 10 tests from Quantization (353 ms total) 2023-01-11T22:10:28.0728842Z 2023-01-11T22:10:28.0729233Z [----------] 2 tests from BufLiveRange 2023-01-11T22:10:28.0729620Z [ RUN ] BufLiveRange.SingleRangeLine 2023-01-11T22:10:28.0730280Z [ OK ] BufLiveRange.SingleRangeLine (0 ms) 2023-01-11T22:10:28.0730661Z [ RUN ] BufLiveRange.MulRangeLine 2023-01-11T22:10:28.0731054Z [ OK ] BufLiveRange.MulRangeLine (0 ms) 2023-01-11T22:10:28.0731469Z [----------] 2 tests from BufLiveRange (0 ms total) 2023-01-11T22:10:28.0731663Z 2023-01-11T22:10:28.0731859Z [----------] 6 tests from MemPlanning 2023-01-11T22:10:28.0732238Z [ RUN ] MemPlanning.MemReuseWithTypeCast 2023-01-11T22:10:28.1365203Z [ OK ] MemPlanning.MemReuseWithTypeCast (63 ms) 2023-01-11T22:10:28.1365566Z [ RUN ] MemPlanning.NoMemReuseForLargerType 2023-01-11T22:10:28.2108521Z [ OK ] MemPlanning.NoMemReuseForLargerType (74 ms) 2023-01-11T22:10:28.2108885Z [ RUN ] MemPlanning.SameBufSizeMemReuse 2023-01-11T22:10:28.4729534Z [ OK ] MemPlanning.SameBufSizeMemReuse (261 ms) 2023-01-11T22:10:28.4730209Z [ RUN ] MemPlanning.SameBufSizeMultiMemReuses 2023-01-11T22:10:28.7403294Z [ OK ] MemPlanning.SameBufSizeMultiMemReuses (267 ms) 2023-01-11T22:10:28.7403992Z [ RUN ] MemPlanning.SameBufSizeMultiMemReusesOfOneBuf 2023-01-11T22:10:29.0827862Z [ OK ] MemPlanning.SameBufSizeMultiMemReusesOfOneBuf (342 ms) 2023-01-11T22:10:29.0828282Z [ RUN ] MemPlanning.SmallerBufSizeNonMemReuse 2023-01-11T22:10:29.2322301Z [ OK ] MemPlanning.SmallerBufSizeNonMemReuse (149 ms) 2023-01-11T22:10:29.2322885Z [----------] 6 tests from MemPlanning (1159 ms total) 2023-01-11T22:10:29.2323054Z 2023-01-11T22:10:29.2323239Z [----------] 45 tests from Reductions 2023-01-11T22:10:29.2323673Z [ RUN ] Reductions.ReduceSum0D_1 2023-01-11T22:10:29.2324263Z [ OK ] Reductions.ReduceSum0D_1 (0 ms) 2023-01-11T22:10:29.2324774Z [ RUN ] Reductions.ReduceSum0D_2 2023-01-11T22:10:29.2325229Z [ OK ] Reductions.ReduceSum0D_2 (0 ms) 2023-01-11T22:10:29.2325525Z [ RUN ] Reductions.ReduceSum1D 2023-01-11T22:10:29.2326259Z [ OK ] Reductions.ReduceSum1D (0 ms) 2023-01-11T22:10:29.2326897Z [ RUN ] Reductions.ReduceSum2D 2023-01-11T22:10:29.2331455Z [ OK ] Reductions.ReduceSum2D (0 ms) 2023-01-11T22:10:29.2331993Z [ RUN ] Reductions.ReduceSum3D 2023-01-11T22:10:29.2363511Z [ OK ] Reductions.ReduceSum3D (3 ms) 2023-01-11T22:10:29.2364056Z [ RUN ] Reductions.ReduceSum10D 2023-01-11T22:10:29.9038890Z [ OK ] Reductions.ReduceSum10D (667 ms) 2023-01-11T22:10:29.9039437Z [ RUN ] Reductions.ReduceProduct 2023-01-11T22:10:29.9043321Z [ OK ] Reductions.ReduceProduct (0 ms) 2023-01-11T22:10:29.9043845Z [ RUN ] Reductions.ReduceMax 2023-01-11T22:10:29.9049213Z [ OK ] Reductions.ReduceMax (0 ms) 2023-01-11T22:10:29.9049842Z [ RUN ] Reductions.ReduceMinCustomInitializer 2023-01-11T22:10:29.9051795Z [ OK ] Reductions.ReduceMinCustomInitializer (0 ms) 2023-01-11T22:10:29.9052377Z [ RUN ] Reductions.ReduceAnyAll 2023-01-11T22:10:29.9074939Z [ OK ] Reductions.ReduceAnyAll (2 ms) 2023-01-11T22:10:29.9075492Z [ RUN ] Reductions.ReduceMatmul2D 2023-01-11T22:10:29.9085010Z [ OK ] Reductions.ReduceMatmul2D (1 ms) 2023-01-11T22:10:29.9085540Z [ RUN ] Reductions.ReduceRfactorLike 2023-01-11T22:10:29.9097185Z [ OK ] Reductions.ReduceRfactorLike (1 ms) 2023-01-11T22:10:29.9097753Z [ RUN ] Reductions.ReduceAsProducer 2023-01-11T22:10:29.9120588Z [ OK ] Reductions.ReduceAsProducer (2 ms) 2023-01-11T22:10:29.9121178Z [ RUN ] Reductions.ReduceAsConsumer 2023-01-11T22:10:29.9156962Z [ OK ] Reductions.ReduceAsConsumer (3 ms) 2023-01-11T22:10:29.9157526Z [ RUN ] Reductions.SplitReduceAxis 2023-01-11T22:10:29.9174331Z [ OK ] Reductions.SplitReduceAxis (1 ms) 2023-01-11T22:10:29.9174895Z [ RUN ] Reductions.SplitNonReduceAxis 2023-01-11T22:10:29.9208628Z [ OK ] Reductions.SplitNonReduceAxis (3 ms) 2023-01-11T22:10:29.9209463Z [ RUN ] Reductions.ReorderedReductionInitializer 2023-01-11T22:10:29.9248906Z [ OK ] Reductions.ReorderedReductionInitializer (4 ms) 2023-01-11T22:10:29.9249431Z [ RUN ] Reductions.ReduceRfactor 2023-01-11T22:10:29.9259934Z [ OK ] Reductions.ReduceRfactor (1 ms) 2023-01-11T22:10:29.9260295Z [ RUN ] Reductions.Reduce3DRfactorInner 2023-01-11T22:10:29.9386769Z [ OK ] Reductions.Reduce3DRfactorInner (12 ms) 2023-01-11T22:10:29.9387234Z [ RUN ] Reductions.Reduce3DRfactorOuter 2023-01-11T22:10:29.9518104Z [ OK ] Reductions.Reduce3DRfactorOuter (13 ms) 2023-01-11T22:10:29.9518483Z [ RUN ] Reductions.ReduceRepeatedInternalRfactor 2023-01-11T22:10:30.1247779Z [ OK ] Reductions.ReduceRepeatedInternalRfactor (172 ms) 2023-01-11T22:10:30.1248193Z [ RUN ] Reductions.ReduceSplitTail 2023-01-11T22:10:30.1645838Z [ OK ] Reductions.ReduceSplitTail (39 ms) 2023-01-11T22:10:30.1646253Z [ RUN ] Reductions.ReduceSplitNoTail 2023-01-11T22:10:30.2099602Z [ OK ] Reductions.ReduceSplitNoTail (45 ms) 2023-01-11T22:10:30.2100176Z [ RUN ] Reductions.ReduceOverSplitTail 2023-01-11T22:10:30.2489792Z [ OK ] Reductions.ReduceOverSplitTail (39 ms) 2023-01-11T22:10:30.2490105Z [ RUN ] Reductions.ReduceSplitMask 2023-01-11T22:10:30.2986474Z [ OK ] Reductions.ReduceSplitMask (49 ms) 2023-01-11T22:10:30.2986806Z [ RUN ] Reductions.ReduceSplitNoMask 2023-01-11T22:10:30.3449284Z [ OK ] Reductions.ReduceSplitNoMask (46 ms) 2023-01-11T22:10:30.3449620Z [ RUN ] Reductions.ReduceOverSplitMask 2023-01-11T22:10:30.3855182Z [ OK ] Reductions.ReduceOverSplitMask (40 ms) 2023-01-11T22:10:30.3855535Z [ RUN ] Reductions.ReduceSplitRfactor 2023-01-11T22:10:30.3897661Z [ OK ] Reductions.ReduceSplitRfactor (4 ms) 2023-01-11T22:10:30.3898006Z [ RUN ] Reductions.ReduceOverSplitRfactor 2023-01-11T22:10:30.3912250Z [ OK ] Reductions.ReduceOverSplitRfactor (1 ms) 2023-01-11T22:10:30.3912700Z [ RUN ] Reductions.ReduceInlineReduction 2023-01-11T22:10:30.3913472Z [ OK ] Reductions.ReduceInlineReduction (0 ms) 2023-01-11T22:10:30.3913855Z [ RUN ] Reductions.ReduceInlineConsumer 2023-01-11T22:10:30.4003164Z [ OK ] Reductions.ReduceInlineConsumer (8 ms) 2023-01-11T22:10:30.4003527Z [ RUN ] Reductions.ReduceInlineReducerInternal 2023-01-11T22:10:30.4094727Z [ OK ] Reductions.ReduceInlineReducerInternal (9 ms) 2023-01-11T22:10:30.4095139Z [ RUN ] Reductions.ReductionCacheAccessesOperatorAxis 2023-01-11T22:10:30.4143935Z [ OK ] Reductions.ReductionCacheAccessesOperatorAxis (4 ms) 2023-01-11T22:10:30.4144383Z [ RUN ] Reductions.ReductionCacheAccessesOuterReduceAxis 2023-01-11T22:10:30.4189149Z [ OK ] Reductions.ReductionCacheAccessesOuterReduceAxis (4 ms) 2023-01-11T22:10:30.4189648Z [ RUN ] Reductions.ReductionCacheAccessesInnerReduceAxis 2023-01-11T22:10:30.4234457Z [ OK ] Reductions.ReductionCacheAccessesInnerReduceAxis (4 ms) 2023-01-11T22:10:30.4234915Z [ RUN ] Reductions.ReductionCacheBodyAccess 2023-01-11T22:10:30.4251081Z [ OK ] Reductions.ReductionCacheBodyAccess (1 ms) 2023-01-11T22:10:30.4251517Z [ RUN ] Reductions.ReductionCacheConsumerAccess 2023-01-11T22:10:30.4270397Z [ OK ] Reductions.ReductionCacheConsumerAccess (1 ms) 2023-01-11T22:10:30.4271019Z [ RUN ] Reductions.ReductionSplitCacheConsumerAccess 2023-01-11T22:10:30.4292596Z [ OK ] Reductions.ReductionSplitCacheConsumerAccess (2 ms) 2023-01-11T22:10:30.4293064Z [ RUN ] Reductions.ReductionReorderCacheConsumerAccess 2023-01-11T22:10:30.4312200Z [ OK ] Reductions.ReductionReorderCacheConsumerAccess (1 ms) 2023-01-11T22:10:30.4312646Z [ RUN ] Reductions.ReductionRfactorCacheTempOuter 2023-01-11T22:10:30.4494279Z [ OK ] Reductions.ReductionRfactorCacheTempOuter (18 ms) 2023-01-11T22:10:30.4494734Z [ RUN ] Reductions.ReductionRfactorCacheTempInner 2023-01-11T22:10:30.4637767Z [ OK ] Reductions.ReductionRfactorCacheTempInner (14 ms) 2023-01-11T22:10:30.4638196Z [ RUN ] Reductions.ReductionVectorize 2023-01-11T22:10:30.4650002Z [ OK ] Reductions.ReductionVectorize (1 ms) 2023-01-11T22:10:30.4650434Z [ RUN ] Reductions.ReductionVectorizeInner 2023-01-11T22:10:30.4658952Z [ OK ] Reductions.ReductionVectorizeInner (0 ms) 2023-01-11T22:10:30.4659318Z [ RUN ] Reductions.ReductionVectorizeRfactor 2023-01-11T22:10:30.4664641Z [ OK ] Reductions.ReductionVectorizeRfactor (1 ms) 2023-01-11T22:10:30.4664981Z [ RUN ] Reductions.InitFunction 2023-01-11T22:10:30.4666522Z [ OK ] Reductions.InitFunction (0 ms) 2023-01-11T22:10:30.4666995Z [----------] 45 tests from Reductions (1234 ms total) 2023-01-11T22:10:30.4667154Z 2023-01-11T22:10:30.4667305Z [----------] 69 tests from Registerizer 2023-01-11T22:10:30.4667596Z [ RUN ] Registerizer.RegisterizerSimple 2023-01-11T22:10:30.4669464Z [ OK ] Registerizer.RegisterizerSimple (0 ms) 2023-01-11T22:10:30.4669956Z [ RUN ] Registerizer.RegisterizerLoop 2023-01-11T22:10:30.4670771Z [ OK ] Registerizer.RegisterizerLoop (0 ms) 2023-01-11T22:10:30.4671175Z [ RUN ] Registerizer.RegisterizerLoopFixedLoad 2023-01-11T22:10:30.4673022Z [ OK ] Registerizer.RegisterizerLoopFixedLoad (0 ms) 2023-01-11T22:10:30.4673396Z [ RUN ] Registerizer.RegisterizerLoopInternal 2023-01-11T22:10:30.4675224Z [ OK ] Registerizer.RegisterizerLoopInternal (0 ms) 2023-01-11T22:10:30.4675680Z [ RUN ] Registerizer.RegisterizerLoopInternalLoadOverlap 2023-01-11T22:10:30.4677346Z [ OK ] Registerizer.RegisterizerLoopInternalLoadOverlap (0 ms) 2023-01-11T22:10:30.4677812Z [ RUN ] Registerizer.RegisterizerLoopInternalRepeated 2023-01-11T22:10:30.4681817Z [ OK ] Registerizer.RegisterizerLoopInternalRepeated (0 ms) 2023-01-11T22:10:30.4682318Z [ RUN ] Registerizer.RegisterizerLoopInternalRepeatedOverlapLoopVar 2023-01-11T22:10:30.4686120Z [ OK ] Registerizer.RegisterizerLoopInternalRepeatedOverlapLoopVar (0 ms) 2023-01-11T22:10:30.4686667Z [ RUN ] Registerizer.RegisterizerLoopInternalRepeatedOverlapOther 2023-01-11T22:10:30.4690445Z [ OK ] Registerizer.RegisterizerLoopInternalRepeatedOverlapOther (0 ms) 2023-01-11T22:10:30.4690916Z [ RUN ] Registerizer.RegisterizerMultiVar 2023-01-11T22:10:30.4715464Z [ OK ] Registerizer.RegisterizerMultiVar (2 ms) 2023-01-11T22:10:30.4715859Z [ RUN ] Registerizer.RegisterizerVariableLoad 2023-01-11T22:10:30.4718194Z [ OK ] Registerizer.RegisterizerVariableLoad (0 ms) 2023-01-11T22:10:30.4718619Z [ RUN ] Registerizer.RegisterizerSymbolicIndices 2023-01-11T22:10:30.4720241Z [ OK ] Registerizer.RegisterizerSymbolicIndices (0 ms) 2023-01-11T22:10:30.4720639Z [ RUN ] Registerizer.RegisterizerMultiLoop 2023-01-11T22:10:30.4723216Z [ OK ] Registerizer.RegisterizerMultiLoop (0 ms) 2023-01-11T22:10:30.4723611Z [ RUN ] Registerizer.RegisterizerRepeated 2023-01-11T22:10:30.4727021Z [ OK ] Registerizer.RegisterizerRepeated (0 ms) 2023-01-11T22:10:30.4727409Z [ RUN ] Registerizer.RegisterizerNoLoads 2023-01-11T22:10:30.4728747Z [ OK ] Registerizer.RegisterizerNoLoads (0 ms) 2023-01-11T22:10:30.4729291Z [ RUN ] Registerizer.RegisterizerNoRepeatedStores 2023-01-11T22:10:30.4731230Z [ OK ] Registerizer.RegisterizerNoRepeatedStores (0 ms) 2023-01-11T22:10:30.4731646Z [ RUN ] Registerizer.RegisterizerMultiVarOverlap 2023-01-11T22:10:30.4735208Z [ OK ] Registerizer.RegisterizerMultiVarOverlap (0 ms) 2023-01-11T22:10:30.4735598Z [ RUN ] Registerizer.RegisterizerAllocs 2023-01-11T22:10:30.4738748Z [ OK ] Registerizer.RegisterizerAllocs (0 ms) 2023-01-11T22:10:30.4739245Z [ RUN ] Registerizer.RegisterizerNoInitializer 2023-01-11T22:10:30.4740363Z [ OK ] Registerizer.RegisterizerNoInitializer (0 ms) 2023-01-11T22:10:30.4740800Z [ RUN ] Registerizer.RegisterizerNoInitializerLoopVar 2023-01-11T22:10:30.4742464Z [ OK ] Registerizer.RegisterizerNoInitializerLoopVar (0 ms) 2023-01-11T22:10:30.4742936Z [ RUN ] Registerizer.RegisterizerLoadThenStore 2023-01-11T22:10:30.4744771Z [ OK ] Registerizer.RegisterizerLoadThenStore (0 ms) 2023-01-11T22:10:30.4745129Z [ RUN ] Registerizer.RegisterizerParallelized 2023-01-11T22:10:30.4774725Z [ OK ] Registerizer.RegisterizerParallelized (2 ms) 2023-01-11T22:10:30.4775100Z [ RUN ] Registerizer.RegisterizerConditionAfter 2023-01-11T22:10:30.4777090Z [ OK ] Registerizer.RegisterizerConditionAfter (0 ms) 2023-01-11T22:10:30.4777475Z [ RUN ] Registerizer.RegisterizerConditionBefore 2023-01-11T22:10:30.4779194Z [ OK ] Registerizer.RegisterizerConditionBefore (0 ms) 2023-01-11T22:10:30.4779578Z [ RUN ] Registerizer.RegisterizerConditionInside 2023-01-11T22:10:30.4781803Z [ OK ] Registerizer.RegisterizerConditionInside (0 ms) 2023-01-11T22:10:30.4782218Z [ RUN ] Registerizer.RegisterizerConditionInsideOverlap1 2023-01-11T22:10:30.4785209Z [ OK ] Registerizer.RegisterizerConditionInsideOverlap1 (0 ms) 2023-01-11T22:10:30.4785632Z [ RUN ] Registerizer.RegisterizerConditionInsideOverlap2 2023-01-11T22:10:30.4789379Z [ OK ] Registerizer.RegisterizerConditionInsideOverlap2 (0 ms) 2023-01-11T22:10:30.4789785Z [ RUN ] Registerizer.RegisterizerConditionHidden 2023-01-11T22:10:30.4791162Z [ OK ] Registerizer.RegisterizerConditionHidden (0 ms) 2023-01-11T22:10:30.4791537Z [ RUN ] Registerizer.RegisterizerConditionUnhidden 2023-01-11T22:10:30.4793552Z [ OK ] Registerizer.RegisterizerConditionUnhidden (0 ms) 2023-01-11T22:10:30.4793932Z [ RUN ] Registerizer.RegisterizerCondCondition 2023-01-11T22:10:30.4795888Z [ OK ] Registerizer.RegisterizerCondCondition (0 ms) 2023-01-11T22:10:30.4796271Z [ RUN ] Registerizer.RegisterizerCondConditionUnhidden 2023-01-11T22:10:30.4798312Z [ OK ] Registerizer.RegisterizerCondConditionUnhidden (0 ms) 2023-01-11T22:10:30.4798712Z [ RUN ] Registerizer.RegisterizerIfThenElseHidden 2023-01-11T22:10:30.4802713Z [ OK ] Registerizer.RegisterizerIfThenElseHidden (0 ms) 2023-01-11T22:10:30.4803107Z [ RUN ] Registerizer.RegisterizerIfThenElseUnhidden 2023-01-11T22:10:30.4807626Z [ OK ] Registerizer.RegisterizerIfThenElseUnhidden (0 ms) 2023-01-11T22:10:30.4808120Z [ RUN ] Registerizer.RegisterizerIfThenElseNested 2023-01-11T22:10:30.4810149Z [ OK ] Registerizer.RegisterizerIfThenElseNested (0 ms) 2023-01-11T22:10:30.4810547Z [ RUN ] Registerizer.RegisterizerIfThenElseInternal 2023-01-11T22:10:30.4812975Z [ OK ] Registerizer.RegisterizerIfThenElseInternal (0 ms) 2023-01-11T22:10:30.4813369Z [ RUN ] Registerizer.RegisterizerIfThenElseCondition 2023-01-11T22:10:30.4814893Z [ OK ] Registerizer.RegisterizerIfThenElseCondition (0 ms) 2023-01-11T22:10:30.4815328Z [ RUN ] Registerizer.RegisterizerIfThenElseConditionUnhidden 2023-01-11T22:10:30.4817383Z [ OK ] Registerizer.RegisterizerIfThenElseConditionUnhidden (0 ms) 2023-01-11T22:10:30.4817805Z [ RUN ] Registerizer.RegisterizerConditionBranchOnly 2023-01-11T22:10:30.4830092Z [ OK ] Registerizer.RegisterizerConditionBranchOnly (1 ms) 2023-01-11T22:10:30.4830483Z [ RUN ] Registerizer.RegisterizerCondIfThenElse 2023-01-11T22:10:30.4832562Z [ OK ] Registerizer.RegisterizerCondIfThenElse (0 ms) 2023-01-11T22:10:30.4833141Z [ RUN ] Registerizer.RegisterizerIfThenElseLoop 2023-01-11T22:10:30.4834126Z [ OK ] Registerizer.RegisterizerIfThenElseLoop (0 ms) 2023-01-11T22:10:30.4834774Z [ RUN ] Registerizer.RegisterizerIfThenElseLoopCut 2023-01-11T22:10:30.4835937Z [ OK ] Registerizer.RegisterizerIfThenElseLoopCut (0 ms) 2023-01-11T22:10:30.4836535Z [ RUN ] Registerizer.RegisterizerPartialAfter 2023-01-11T22:10:30.4839089Z [ OK ] Registerizer.RegisterizerPartialAfter (0 ms) 2023-01-11T22:10:30.4839709Z [ RUN ] Registerizer.RegisterizerPartialBefore 2023-01-11T22:10:30.4842163Z [ OK ] Registerizer.RegisterizerPartialBefore (0 ms) 2023-01-11T22:10:30.4842785Z [ RUN ] Registerizer.RegisterizerPartialInside 2023-01-11T22:10:30.4846111Z [ OK ] Registerizer.RegisterizerPartialInside (0 ms) 2023-01-11T22:10:30.4846736Z [ RUN ] Registerizer.RegisterizerPartialCondition 2023-01-11T22:10:30.4850721Z [ OK ] Registerizer.RegisterizerPartialCondition (0 ms) 2023-01-11T22:10:30.4851385Z [ RUN ] Registerizer.RegisterizerPartialConditionInternalCut 2023-01-11T22:10:30.4852356Z [ OK ] Registerizer.RegisterizerPartialConditionInternalCut (0 ms) 2023-01-11T22:10:30.4853007Z [ RUN ] Registerizer.RegisterizerPartialConditionInternalStart 2023-01-11T22:10:30.4853927Z [ OK ] Registerizer.RegisterizerPartialConditionInternalStart (0 ms) 2023-01-11T22:10:30.4854548Z [ RUN ] Registerizer.RegisterizerPartialOverlapsTwo 2023-01-11T22:10:30.4857038Z [ OK ] Registerizer.RegisterizerPartialOverlapsTwo (0 ms) 2023-01-11T22:10:30.4857625Z [ RUN ] Registerizer.RegisterizerNestedBlocks 2023-01-11T22:10:30.4859086Z [ OK ] Registerizer.RegisterizerNestedBlocks (0 ms) 2023-01-11T22:10:30.4859726Z [ RUN ] Registerizer.RegisterizerNestedConditions 2023-01-11T22:10:30.4860944Z [ OK ] Registerizer.RegisterizerNestedConditions (0 ms) 2023-01-11T22:10:30.4861578Z [ RUN ] Registerizer.RegisterizerNestedConditionsUnhidden 2023-01-11T22:10:30.4863246Z [ OK ] Registerizer.RegisterizerNestedConditionsUnhidden (0 ms) 2023-01-11T22:10:30.4863903Z [ RUN ] Registerizer.RegisterizerNestedConditionsHiddenFirst 2023-01-11T22:10:30.4866185Z [ OK ] Registerizer.RegisterizerNestedConditionsHiddenFirst (0 ms) 2023-01-11T22:10:30.4866833Z [ RUN ] Registerizer.RegisterizerNestedConditionsHiddenSecond 2023-01-11T22:10:30.4869045Z [ OK ] Registerizer.RegisterizerNestedConditionsHiddenSecond (0 ms) 2023-01-11T22:10:30.4869676Z [ RUN ] Registerizer.RegisterizerNestedConditionsCut 2023-01-11T22:10:30.4870616Z [ OK ] Registerizer.RegisterizerNestedConditionsCut (0 ms) 2023-01-11T22:10:30.4871285Z [ RUN ] Registerizer.RegisterizerNestedConditionLoopHidden 2023-01-11T22:10:30.4873357Z [ OK ] Registerizer.RegisterizerNestedConditionLoopHidden (0 ms) 2023-01-11T22:10:30.4874083Z [ RUN ] Registerizer.RegisterizerNestedConditionThreeDeep 2023-01-11T22:10:30.4879362Z [ OK ] Registerizer.RegisterizerNestedConditionThreeDeep (0 ms) 2023-01-11T22:10:30.4879999Z [ RUN ] Registerizer.RegisterizerNestedLoopSimple 2023-01-11T22:10:30.4880990Z [ OK ] Registerizer.RegisterizerNestedLoopSimple (0 ms) 2023-01-11T22:10:30.4881380Z [ RUN ] Registerizer.RegisterizerHiddenAccessYes 2023-01-11T22:10:30.4884291Z [ OK ] Registerizer.RegisterizerHiddenAccessYes (0 ms) 2023-01-11T22:10:30.4884717Z [ RUN ] Registerizer.RegisterizerHiddenAccessNo 2023-01-11T22:10:30.4887192Z [ OK ] Registerizer.RegisterizerHiddenAccessNo (0 ms) 2023-01-11T22:10:30.4887665Z [ RUN ] Registerizer.RegisterizerHiddenAccessMultiLoop 2023-01-11T22:10:30.4891367Z [ OK ] Registerizer.RegisterizerHiddenAccessMultiLoop (0 ms) 2023-01-11T22:10:30.4891787Z [ RUN ] Registerizer.RegisterizerTwoConditionalLoops 2023-01-11T22:10:30.4894288Z [ OK ] Registerizer.RegisterizerTwoConditionalLoops (0 ms) 2023-01-11T22:10:30.4894691Z [ RUN ] Registerizer.RegisterizerTwoConditionalLoopsCut 2023-01-11T22:10:30.4897712Z [ OK ] Registerizer.RegisterizerTwoConditionalLoopsCut (0 ms) 2023-01-11T22:10:30.4898102Z [ RUN ] Registerizer.RegisterizerLoopLetVar 2023-01-11T22:10:30.4899659Z [ OK ] Registerizer.RegisterizerLoopLetVar (0 ms) 2023-01-11T22:10:30.4900013Z [ RUN ] Registerizer.RegisterizerLoopLetVarOuter 2023-01-11T22:10:30.4901868Z [ OK ] Registerizer.RegisterizerLoopLetVarOuter (0 ms) 2023-01-11T22:10:30.4902508Z [ RUN ] Registerizer.RegisterizerMultiDim 2023-01-11T22:10:30.4904603Z [ OK ] Registerizer.RegisterizerMultiDim (0 ms) 2023-01-11T22:10:30.4905243Z [ RUN ] Registerizer.RegisterizerMultiDimPartial 2023-01-11T22:10:30.4908466Z [ OK ] Registerizer.RegisterizerMultiDimPartial (0 ms) 2023-01-11T22:10:30.4909142Z [ RUN ] Registerizer.RegisterizerMultiDimOverlap 2023-01-11T22:10:30.4912535Z [ OK ] Registerizer.RegisterizerMultiDimOverlap (0 ms) 2023-01-11T22:10:30.4913254Z [ RUN ] Registerizer.RegisterizerMultiDimPartialOverlap 2023-01-11T22:10:30.4916411Z [ OK ] Registerizer.RegisterizerMultiDimPartialOverlap (0 ms) 2023-01-11T22:10:30.4917146Z [ RUN ] Registerizer.RegisterizerMultiDim3DReduction1 2023-01-11T22:10:30.4920846Z [ OK ] Registerizer.RegisterizerMultiDim3DReduction1 (0 ms) 2023-01-11T22:10:30.4921541Z [ RUN ] Registerizer.RegisterizerMultiDim3DReduction2 2023-01-11T22:10:30.4925156Z [ OK ] Registerizer.RegisterizerMultiDim3DReduction2 (0 ms) 2023-01-11T22:10:30.4925574Z [----------] 69 tests from Registerizer (25 ms total) 2023-01-11T22:10:30.4925740Z 2023-01-11T22:10:30.4925883Z [----------] 92 tests from Simplify 2023-01-11T22:10:30.4926156Z [ RUN ] Simplify.ConstantFoldSimple 2023-01-11T22:10:30.4926471Z [ OK ] Simplify.ConstantFoldSimple (0 ms) 2023-01-11T22:10:30.4926782Z [ RUN ] Simplify.ConstantFoldTwoLayer 2023-01-11T22:10:30.4927090Z [ OK ] Simplify.ConstantFoldTwoLayer (0 ms) 2023-01-11T22:10:30.4927398Z [ RUN ] Simplify.ConstantFoldShifts 2023-01-11T22:10:30.4939344Z [ OK ] Simplify.ConstantFoldShifts (1 ms) 2023-01-11T22:10:30.4939768Z [ RUN ] Simplify.ConstantFoldBitwise 2023-01-11T22:10:30.4940274Z [ OK ] Simplify.ConstantFoldBitwise (0 ms) 2023-01-11T22:10:30.4940828Z [ RUN ] Simplify.ConstantFoldMultiOp 2023-01-11T22:10:30.4941294Z [ OK ] Simplify.ConstantFoldMultiOp (0 ms) 2023-01-11T22:10:30.4941694Z [ RUN ] Simplify.ConstantFoldMinMax 2023-01-11T22:10:30.4942335Z [ OK ] Simplify.ConstantFoldMinMax (0 ms) 2023-01-11T22:10:30.4943002Z [ RUN ] Simplify.ConstantFoldIntrinsics 2023-01-11T22:10:30.4943428Z [ OK ] Simplify.ConstantFoldIntrinsics (0 ms) 2023-01-11T22:10:30.4943990Z [ RUN ] Simplify.ConstantFoldCastToBool 2023-01-11T22:10:30.4944473Z [ OK ] Simplify.ConstantFoldCastToBool (0 ms) 2023-01-11T22:10:30.4944875Z [ RUN ] Simplify.ConstantFoldWithVar 2023-01-11T22:10:30.4945228Z [ OK ] Simplify.ConstantFoldWithVar (0 ms) 2023-01-11T22:10:30.4945699Z [ RUN ] Simplify.ConditionalSelectFoldSimple 2023-01-11T22:10:30.4946060Z [ OK ] Simplify.ConditionalSelectFoldSimple (0 ms) 2023-01-11T22:10:30.4946500Z [ RUN ] Simplify.ConditionalSelectFoldTwoLayer 2023-01-11T22:10:30.4948759Z [ OK ] Simplify.ConditionalSelectFoldTwoLayer (0 ms) 2023-01-11T22:10:30.4949371Z [ RUN ] Simplify.ConditionalSelectFoldWithVar 2023-01-11T22:10:30.4951676Z [ OK ] Simplify.ConditionalSelectFoldWithVar (0 ms) 2023-01-11T22:10:30.4951991Z [ RUN ] Simplify.UnFoldableExpr 2023-01-11T22:10:30.4952299Z [ OK ] Simplify.UnFoldableExpr (0 ms) 2023-01-11T22:10:30.4952577Z [ RUN ] Simplify.HashSimple 2023-01-11T22:10:30.4952851Z [ OK ] Simplify.HashSimple (0 ms) 2023-01-11T22:10:30.4953122Z [ RUN ] Simplify.HashEquivalence 2023-01-11T22:10:30.4953417Z [ OK ] Simplify.HashEquivalence (0 ms) 2023-01-11T22:10:30.4953720Z [ RUN ] Simplify.HashEquivalenceRand 2023-01-11T22:10:30.4954092Z [ OK ] Simplify.HashEquivalenceRand (0 ms) 2023-01-11T22:10:30.4954431Z [ RUN ] Simplify.HashEquivalenceAfterFolding 2023-01-11T22:10:30.4954791Z [ OK ] Simplify.HashEquivalenceAfterFolding (0 ms) 2023-01-11T22:10:30.4955106Z [ RUN ] Simplify.HashDifferenceTypes 2023-01-11T22:10:30.4955421Z [ OK ] Simplify.HashDifferenceTypes (0 ms) 2023-01-11T22:10:30.4955727Z [ RUN ] Simplify.HashLargeExpression 2023-01-11T22:10:30.4964337Z [ OK ] Simplify.HashLargeExpression (1 ms) 2023-01-11T22:10:30.4964856Z [ RUN ] Simplify.HashForLoopOptions 2023-01-11T22:10:30.4965363Z [ OK ] Simplify.HashForLoopOptions (0 ms) 2023-01-11T22:10:30.4965798Z [ RUN ] Simplify.SimplifyAdd 2023-01-11T22:10:30.4966302Z [ OK ] Simplify.SimplifyAdd (0 ms) 2023-01-11T22:10:30.4966719Z [ RUN ] Simplify.SimplifySub 2023-01-11T22:10:30.4967168Z [ OK ] Simplify.SimplifySub (0 ms) 2023-01-11T22:10:30.4967693Z [ RUN ] Simplify.SimplifyMultiLayer 2023-01-11T22:10:30.4968089Z [ OK ] Simplify.SimplifyMultiLayer (0 ms) 2023-01-11T22:10:30.4968581Z [ RUN ] Simplify.SimplifyMultiTerm 2023-01-11T22:10:30.4969270Z [ OK ] Simplify.SimplifyMultiTerm (0 ms) 2023-01-11T22:10:30.4969737Z [ RUN ] Simplify.SimplifyCasts 2023-01-11T22:10:30.4970027Z [ OK ] Simplify.SimplifyCasts (0 ms) 2023-01-11T22:10:30.4970340Z [ RUN ] Simplify.SimplifyEliminatesNoOps 2023-01-11T22:10:30.4970668Z [ OK ] Simplify.SimplifyEliminatesNoOps (0 ms) 2023-01-11T22:10:30.4970981Z [ RUN ] Simplify.SimplifyMultiVar 2023-01-11T22:10:30.4971283Z [ OK ] Simplify.SimplifyMultiVar (0 ms) 2023-01-11T22:10:30.4971579Z [ RUN ] Simplify.SimplifyEliminatesVar 2023-01-11T22:10:30.4980379Z [ OK ] Simplify.SimplifyEliminatesVar (1 ms) 2023-01-11T22:10:30.4980687Z [ RUN ] Simplify.SimplifyAdds 2023-01-11T22:10:30.4982981Z [ OK ] Simplify.SimplifyAdds (0 ms) 2023-01-11T22:10:30.4983491Z [ RUN ] Simplify.SimplifyMuls 2023-01-11T22:10:30.4987539Z [ OK ] Simplify.SimplifyMuls (0 ms) 2023-01-11T22:10:30.4988159Z [ RUN ] Simplify.SimplifySubs 2023-01-11T22:10:30.4994917Z [ OK ] Simplify.SimplifySubs (0 ms) 2023-01-11T22:10:30.4995453Z [ RUN ] Simplify.SimplifyDiv 2023-01-11T22:10:30.4995871Z [ OK ] Simplify.SimplifyDiv (0 ms) 2023-01-11T22:10:30.4996236Z [ RUN ] Simplify.SimplifyDivWithLoopContext0 2023-01-11T22:10:30.4996995Z [ OK ] Simplify.SimplifyDivWithLoopContext0 (0 ms) 2023-01-11T22:10:30.4997643Z [ RUN ] Simplify.SimplifyDivWithLoopContext1 2023-01-11T22:10:30.5000504Z [ OK ] Simplify.SimplifyDivWithLoopContext1 (0 ms) 2023-01-11T22:10:30.5001130Z [ RUN ] Simplify.SimplifyDivWithLoopContext2 2023-01-11T22:10:30.5003297Z [ OK ] Simplify.SimplifyDivWithLoopContext2 (0 ms) 2023-01-11T22:10:30.5003936Z [ RUN ] Simplify.SimplifyDivWithLoopContext3 2023-01-11T22:10:30.5004558Z [ OK ] Simplify.SimplifyDivWithLoopContext3 (0 ms) 2023-01-11T22:10:30.5005162Z [ RUN ] Simplify.SimplifyDivWithLoopContext4 2023-01-11T22:10:30.5008106Z [ OK ] Simplify.SimplifyDivWithLoopContext4 (0 ms) 2023-01-11T22:10:30.5008720Z [ RUN ] Simplify.SimplifyDivWithLoopContext5 2023-01-11T22:10:30.5011988Z [ OK ] Simplify.SimplifyDivWithLoopContext5 (0 ms) 2023-01-11T22:10:30.5012596Z [ RUN ] Simplify.SimplifyDivWithLoopContext6 2023-01-11T22:10:30.5015964Z [ OK ] Simplify.SimplifyDivWithLoopContext6 (0 ms) 2023-01-11T22:10:30.5016589Z [ RUN ] Simplify.SimplifyDivWithLoopContext7 2023-01-11T22:10:30.5017190Z [ OK ] Simplify.SimplifyDivWithLoopContext7 (0 ms) 2023-01-11T22:10:30.5017787Z [ RUN ] Simplify.SimplifyModWithLoopContext0 2023-01-11T22:10:30.5018767Z [ OK ] Simplify.SimplifyModWithLoopContext0 (0 ms) 2023-01-11T22:10:30.5019377Z [ RUN ] Simplify.SimplifyModWithLoopContext1 2023-01-11T22:10:30.5022045Z [ OK ] Simplify.SimplifyModWithLoopContext1 (0 ms) 2023-01-11T22:10:30.5022730Z [ RUN ] Simplify.SimplifyModWithLoopContext2 2023-01-11T22:10:30.5024721Z [ OK ] Simplify.SimplifyModWithLoopContext2 (0 ms) 2023-01-11T22:10:30.5025342Z [ RUN ] Simplify.SimplifyModWithLoopContext3 2023-01-11T22:10:30.5025944Z [ OK ] Simplify.SimplifyModWithLoopContext3 (0 ms) 2023-01-11T22:10:30.5026542Z [ RUN ] Simplify.SimplifyModWithLoopContext4 2023-01-11T22:10:30.5029555Z [ OK ] Simplify.SimplifyModWithLoopContext4 (0 ms) 2023-01-11T22:10:30.5030158Z [ RUN ] Simplify.SimplifyModWithLoopContext5 2023-01-11T22:10:30.5033150Z [ OK ] Simplify.SimplifyModWithLoopContext5 (0 ms) 2023-01-11T22:10:30.5033779Z [ RUN ] Simplify.SimplifyModWithLoopContext6 2023-01-11T22:10:30.5037286Z [ OK ] Simplify.SimplifyModWithLoopContext6 (0 ms) 2023-01-11T22:10:30.5037886Z [ RUN ] Simplify.SimplifyModWithLoopContext7 2023-01-11T22:10:30.5038505Z [ OK ] Simplify.SimplifyModWithLoopContext7 (0 ms) 2023-01-11T22:10:30.5039037Z [ RUN ] Simplify.SimplifyMod 2023-01-11T22:10:30.5042147Z [ OK ] Simplify.SimplifyMod (0 ms) 2023-01-11T22:10:30.5042634Z [ RUN ] Simplify.SimplifyMultiOp 2023-01-11T22:10:30.5045048Z [ OK ] Simplify.SimplifyMultiOp (0 ms) 2023-01-11T22:10:30.5045562Z [ RUN ] Simplify.SimplifyManyOps 2023-01-11T22:10:30.5049489Z [ OK ] Simplify.SimplifyManyOps (0 ms) 2023-01-11T22:10:30.5050037Z [ RUN ] Simplify.SimplifyFactorization 2023-01-11T22:10:30.5055245Z [ OK ] Simplify.SimplifyFactorization (0 ms) 2023-01-11T22:10:30.5055825Z [ RUN ] Simplify.SimplifyFactorizeUneven 2023-01-11T22:10:30.5056695Z [ OK ] Simplify.SimplifyFactorizeUneven (0 ms) 2023-01-11T22:10:30.5057398Z [ RUN ] Simplify.SimplifyDeeperTerms 2023-01-11T22:10:30.5058103Z [ OK ] Simplify.SimplifyDeeperTerms (0 ms) 2023-01-11T22:10:30.5058646Z [ RUN ] Simplify.SimplifyDeeperDifference 2023-01-11T22:10:30.5059615Z [ OK ] Simplify.SimplifyDeeperDifference (0 ms) 2023-01-11T22:10:30.5060217Z [ RUN ] Simplify.SimplifyFoldComplexDifference 2023-01-11T22:10:30.5061439Z [ OK ] Simplify.SimplifyFoldComplexDifference (0 ms) 2023-01-11T22:10:30.5062008Z [ RUN ] Simplify.SimplifyIfComponents 2023-01-11T22:10:30.5062791Z [ OK ] Simplify.SimplifyIfComponents (0 ms) 2023-01-11T22:10:30.5063331Z [ RUN ] Simplify.SimplifyOpaqueTerms 2023-01-11T22:10:30.5064138Z [ OK ] Simplify.SimplifyOpaqueTerms (0 ms) 2023-01-11T22:10:30.5064680Z [ RUN ] Simplify.SimplifySymbolicMinMax 2023-01-11T22:10:30.5066461Z [ OK ] Simplify.SimplifySymbolicMinMax (0 ms) 2023-01-11T22:10:30.5067005Z [ RUN ] Simplify.SimplifyNestedMax 2023-01-11T22:10:30.5081872Z [ OK ] Simplify.SimplifyNestedMax (1 ms) 2023-01-11T22:10:30.5082427Z [ RUN ] Simplify.SimplifyNestedMin 2023-01-11T22:10:30.5096801Z [ OK ] Simplify.SimplifyNestedMin (1 ms) 2023-01-11T22:10:30.5097372Z [ RUN ] Simplify.SimplifyWontReorderFloat 2023-01-11T22:10:30.5099483Z [ OK ] Simplify.SimplifyWontReorderFloat (0 ms) 2023-01-11T22:10:30.5100091Z [ RUN ] Simplify.SimplifyRoundModPattern 2023-01-11T22:10:30.5109229Z [ OK ] Simplify.SimplifyRoundModPattern (0 ms) 2023-01-11T22:10:30.5109902Z [ RUN ] Simplify.SimplifyRoundModPatternFactorization 2023-01-11T22:10:30.5114519Z [ OK ] Simplify.SimplifyRoundModPatternFactorization (0 ms) 2023-01-11T22:10:30.5115225Z [ RUN ] Simplify.SimplifyRoundModPatternMultivar 2023-01-11T22:10:30.5119459Z [ OK ] Simplify.SimplifyRoundModPatternMultivar (0 ms) 2023-01-11T22:10:30.5120095Z [ RUN ] Simplify.SimplifyModRoundModPattern 2023-01-11T22:10:30.5125609Z [ OK ] Simplify.SimplifyModRoundModPattern (0 ms) 2023-01-11T22:10:30.5126315Z [ RUN ] Simplify.SimplifyModRoundModPatternFactorization 2023-01-11T22:10:30.5135575Z [ OK ] Simplify.SimplifyModRoundModPatternFactorization (0 ms) 2023-01-11T22:10:30.5136291Z [ RUN ] Simplify.SimplifyModRoundModPatternMultivar 2023-01-11T22:10:30.5150725Z [ OK ] Simplify.SimplifyModRoundModPatternMultivar (1 ms) 2023-01-11T22:10:30.5151453Z [ RUN ] Simplify.SimplifyDivisionScalarFactorization 2023-01-11T22:10:30.5152437Z [ OK ] Simplify.SimplifyDivisionScalarFactorization (0 ms) 2023-01-11T22:10:30.5153063Z [ RUN ] Simplify.SimplifyConstantBranches 2023-01-11T22:10:30.5153668Z [ OK ] Simplify.SimplifyConstantBranches (0 ms) 2023-01-11T22:10:30.5154226Z [ RUN ] Simplify.SimplifyConstantCond 2023-01-11T22:10:30.5155291Z [ OK ] Simplify.SimplifyConstantCond (0 ms) 2023-01-11T22:10:30.5155873Z [ RUN ] Simplify.SimplifyEliminateEmptyCond 2023-01-11T22:10:30.5156485Z [ OK ] Simplify.SimplifyEliminateEmptyCond (0 ms) 2023-01-11T22:10:30.5157098Z [ RUN ] Simplify.SimplifyConstantComparisons 2023-01-11T22:10:30.5162251Z [ OK ] Simplify.SimplifyConstantComparisons (0 ms) 2023-01-11T22:10:30.5162872Z [ RUN ] Simplify.SimplifySymbolicComparisons 2023-01-11T22:10:30.5170828Z [ OK ] Simplify.SimplifySymbolicComparisons (0 ms) 2023-01-11T22:10:30.5171345Z [ RUN ] Simplify.SimplifyEliminateZeroLengthFor 2023-01-11T22:10:30.5171969Z [ OK ] Simplify.SimplifyEliminateZeroLengthFor (0 ms) 2023-01-11T22:10:30.5172316Z [ RUN ] Simplify.SimplifyOneLoopFor 2023-01-11T22:10:30.5173839Z [ OK ] Simplify.SimplifyOneLoopFor (0 ms) 2023-01-11T22:10:30.5174193Z [ RUN ] Simplify.SimplifyForWontLoseLoopOptions 2023-01-11T22:10:30.5174623Z [ OK ] Simplify.SimplifyForWontLoseLoopOptions (0 ms) 2023-01-11T22:10:30.5175088Z [ RUN ] Simplify.SimplifyMultilevelFor 2023-01-11T22:10:30.5175839Z [ OK ] Simplify.SimplifyMultilevelFor (0 ms) 2023-01-11T22:10:30.5176300Z [ RUN ] Simplify.SimplifyForCleansUp 2023-01-11T22:10:30.5178804Z [ OK ] Simplify.SimplifyForCleansUp (0 ms) 2023-01-11T22:10:30.5179392Z [ RUN ] Simplify.SimplifyEliminateEmptyFor 2023-01-11T22:10:30.5180493Z [ OK ] Simplify.SimplifyEliminateEmptyFor (0 ms) 2023-01-11T22:10:30.5181213Z [ RUN ] Simplify.SimplifyFlattenBlock 2023-01-11T22:10:30.5181805Z [ OK ] Simplify.SimplifyFlattenBlock (0 ms) 2023-01-11T22:10:30.5182286Z [ RUN ] Simplify.SimplifyEliminateZeroLengthAlloc 2023-01-11T22:10:30.5182929Z [ OK ] Simplify.SimplifyEliminateZeroLengthAlloc (0 ms) 2023-01-11T22:10:30.5183274Z [ RUN ] Simplify.DontSimplifyRand 2023-01-11T22:10:30.5183564Z [ OK ] Simplify.DontSimplifyRand (0 ms) 2023-01-11T22:10:30.5183880Z [ RUN ] Simplify.SimplifyReorderForCond 2023-01-11T22:10:30.5188503Z [ OK ] Simplify.SimplifyReorderForCond (0 ms) 2023-01-11T22:10:30.5188835Z [ RUN ] Simplify.SimplifyFuseConditions 2023-01-11T22:10:30.5195185Z [ OK ] Simplify.SimplifyFuseConditions (0 ms) 2023-01-11T22:10:30.5195608Z [ RUN ] Simplify.SimplifySyncThreads 2023-01-11T22:10:30.5196067Z [ OK ] Simplify.SimplifySyncThreads (0 ms) 2023-01-11T22:10:30.5196550Z [ RUN ] Simplify.SimplifyRampSubBroadcast 2023-01-11T22:10:30.5197010Z [ OK ] Simplify.SimplifyRampSubBroadcast (0 ms) 2023-01-11T22:10:30.5197373Z [ RUN ] Simplify.SimplifyBroadcastTermExpander 2023-01-11T22:10:30.5197745Z [ OK ] Simplify.SimplifyBroadcastTermExpander (0 ms) 2023-01-11T22:10:30.5198083Z [ RUN ] Simplify.CompareSelectLoopBounds 2023-01-11T22:10:30.5294716Z [ OK ] Simplify.CompareSelectLoopBounds (9 ms) 2023-01-11T22:10:30.5295257Z [ RUN ] Simplify.CompareSelectCondAlwaysInLoopBounds 2023-01-11T22:10:30.5295858Z [ OK ] Simplify.CompareSelectCondAlwaysInLoopBounds (0 ms) 2023-01-11T22:10:30.5296387Z [ RUN ] Simplify.IfThenCondAlwaysInLoopBounds 2023-01-11T22:10:30.5296858Z [ OK ] Simplify.IfThenCondAlwaysInLoopBounds (0 ms) 2023-01-11T22:10:30.5297238Z [ RUN ] Simplify.MultiClauseCondAlwaysInLoopBounds 2023-01-11T22:10:30.5299452Z [ OK ] Simplify.MultiClauseCondAlwaysInLoopBounds (0 ms) 2023-01-11T22:10:30.5300115Z [----------] 92 tests from Simplify (37 ms total) 2023-01-11T22:10:30.5300274Z 2023-01-11T22:10:30.5300423Z [----------] 12 tests from TEFuserPass 2023-01-11T22:10:30.5300701Z [ RUN ] TEFuserPass.FuserPass_1 2023-01-11T22:10:30.5306324Z [ OK ] TEFuserPass.FuserPass_1 (0 ms) 2023-01-11T22:10:30.5306868Z [ RUN ] TEFuserPass.FuserPass_2 2023-01-11T22:10:30.5310508Z [ OK ] TEFuserPass.FuserPass_2 (0 ms) 2023-01-11T22:10:30.5311032Z [ RUN ] TEFuserPass.FuserPass_3 2023-01-11T22:10:30.5313618Z [ OK ] TEFuserPass.FuserPass_3 (0 ms) 2023-01-11T22:10:30.5314186Z [ RUN ] TEFuserPass.FuserPass_0DimInput 2023-01-11T22:10:30.5316578Z [ OK ] TEFuserPass.FuserPass_0DimInput (0 ms) 2023-01-11T22:10:30.5316958Z [ RUN ] TEFuserPass.FuserPass_UnfusibleDevice 2023-01-11T22:10:30.5317712Z [ OK ] TEFuserPass.FuserPass_UnfusibleDevice (0 ms) 2023-01-11T22:10:30.5318120Z [ RUN ] TEFuserPass.FuserPass_UnknownShapes 2023-01-11T22:10:30.5318919Z [ OK ] TEFuserPass.FuserPass_UnknownShapes (0 ms) 2023-01-11T22:10:30.5319330Z [ RUN ] TEFuserPass.FuserPass_Multidevice 2023-01-11T22:10:30.5326602Z [ OK ] TEFuserPass.FuserPass_Multidevice (0 ms) 2023-01-11T22:10:30.5326990Z [ RUN ] TEFuserPass.FuserPass_MergeGroups 2023-01-11T22:10:30.5329604Z [ OK ] TEFuserPass.FuserPass_MergeGroups (0 ms) 2023-01-11T22:10:30.5330216Z [ RUN ] TEFuserPass.FuserPass_IgnoreUnknownShapeAtStart 2023-01-11T22:10:30.5330925Z [ OK ] TEFuserPass.FuserPass_IgnoreUnknownShapeAtStart (0 ms) 2023-01-11T22:10:30.5331296Z [ RUN ] TEFuserPass.FuserPass_Where 2023-01-11T22:10:30.5334200Z [ OK ] TEFuserPass.FuserPass_Where (0 ms) 2023-01-11T22:10:30.5334703Z [ RUN ] TEFuserPass.FuserPass_WhereList 2023-01-11T22:10:30.5335659Z [ OK ] TEFuserPass.FuserPass_WhereList (0 ms) 2023-01-11T22:10:30.5335974Z [ RUN ] TEFuserPass.DynamicShapeFusion 2023-01-11T22:10:30.7942132Z [ OK ] TEFuserPass.DynamicShapeFusion (260 ms) 2023-01-11T22:10:30.7942841Z [----------] 12 tests from TEFuserPass (264 ms total) 2023-01-11T22:10:30.7943019Z 2023-01-11T22:10:30.7943158Z [----------] 3 tests from Type 2023-01-11T22:10:30.7943407Z [ RUN ] Type.Test01 2023-01-11T22:10:30.7943641Z [ OK ] Type.Test01 (0 ms) 2023-01-11T22:10:30.7943890Z [ RUN ] Type.BitCasting 2023-01-11T22:10:30.7944151Z [ OK ] Type.BitCasting (0 ms) 2023-01-11T22:10:30.7944396Z [ RUN ] Type.Propagation 2023-01-11T22:10:30.7944668Z [ OK ] Type.Propagation (0 ms) 2023-01-11T22:10:30.7944951Z [----------] 3 tests from Type (0 ms total) 2023-01-11T22:10:30.7945100Z 2023-01-11T22:10:30.7945280Z [----------] 1 test from SpecializationsInCustomPasses 2023-01-11T22:10:30.7945634Z [ RUN ] SpecializationsInCustomPasses.Basic 2023-01-11T22:10:30.7961017Z [ OK ] SpecializationsInCustomPasses.Basic (1 ms) 2023-01-11T22:10:30.7961415Z [----------] 1 test from SpecializationsInCustomPasses (1 ms total) 2023-01-11T22:10:30.7961605Z 2023-01-11T22:10:30.7961728Z [----------] 150 tests from LLVM 2023-01-11T22:10:30.7961975Z [ RUN ] LLVM.ByteImmTest 2023-01-11T22:10:30.8157209Z [ OK ] LLVM.ByteImmTest (19 ms) 2023-01-11T22:10:30.8157505Z [ RUN ] LLVM.CharImmTest 2023-01-11T22:10:30.8336191Z [ OK ] LLVM.CharImmTest (17 ms) 2023-01-11T22:10:30.8336484Z [ RUN ] LLVM.ShortImmTest 2023-01-11T22:10:30.8514716Z [ OK ] LLVM.ShortImmTest (17 ms) 2023-01-11T22:10:30.8514996Z [ RUN ] LLVM.IntImmTest 2023-01-11T22:10:30.8692052Z [ OK ] LLVM.IntImmTest (17 ms) 2023-01-11T22:10:30.8692494Z [ RUN ] LLVM.LongImmTest 2023-01-11T22:10:30.8872336Z [ OK ] LLVM.LongImmTest (17 ms) 2023-01-11T22:10:30.8872634Z [ RUN ] LLVM.FloatImmTest 2023-01-11T22:10:30.9052724Z [ OK ] LLVM.FloatImmTest (18 ms) 2023-01-11T22:10:30.9052997Z [ RUN ] LLVM.DoubleImmTest 2023-01-11T22:10:30.9230584Z [ OK ] LLVM.DoubleImmTest (17 ms) 2023-01-11T22:10:30.9230853Z [ RUN ] LLVM.HalfImmTest 2023-01-11T22:10:30.9409813Z [ OK ] LLVM.HalfImmTest (17 ms) 2023-01-11T22:10:30.9410070Z [ RUN ] LLVM.ByteAddTest 2023-01-11T22:10:30.9586420Z [ OK ] LLVM.ByteAddTest (17 ms) 2023-01-11T22:10:30.9586694Z [ RUN ] LLVM.CharAddTest 2023-01-11T22:10:30.9763604Z [ OK ] LLVM.CharAddTest (17 ms) 2023-01-11T22:10:30.9763875Z [ RUN ] LLVM.ShortAddTest 2023-01-11T22:10:30.9940940Z [ OK ] LLVM.ShortAddTest (17 ms) 2023-01-11T22:10:30.9941209Z [ RUN ] LLVM.IntAddTest 2023-01-11T22:10:31.0120198Z [ OK ] LLVM.IntAddTest (17 ms) 2023-01-11T22:10:31.0120473Z [ RUN ] LLVM.LongAddTest 2023-01-11T22:10:31.0297585Z [ OK ] LLVM.LongAddTest (17 ms) 2023-01-11T22:10:31.0297918Z [ RUN ] LLVM.FloatAddTest 2023-01-11T22:10:31.0475965Z [ OK ] LLVM.FloatAddTest (17 ms) 2023-01-11T22:10:31.0476296Z [ RUN ] LLVM.DoubleAddTest 2023-01-11T22:10:31.0654609Z [ OK ] LLVM.DoubleAddTest (17 ms) 2023-01-11T22:10:31.0654918Z [ RUN ] LLVM.HalfAddTest 2023-01-11T22:10:31.0832443Z [ OK ] LLVM.HalfAddTest (17 ms) 2023-01-11T22:10:31.0832714Z [ RUN ] LLVM.ByteSubTest 2023-01-11T22:10:31.1010056Z [ OK ] LLVM.ByteSubTest (17 ms) 2023-01-11T22:10:31.1010807Z [ RUN ] LLVM.CharSubTest 2023-01-11T22:10:31.1189765Z [ OK ] LLVM.CharSubTest (17 ms) 2023-01-11T22:10:31.1190251Z [ RUN ] LLVM.ShortSubTest 2023-01-11T22:10:31.1366891Z [ OK ] LLVM.ShortSubTest (17 ms) 2023-01-11T22:10:31.1367373Z [ RUN ] LLVM.IntSubTest 2023-01-11T22:10:31.1544704Z [ OK ] LLVM.IntSubTest (17 ms) 2023-01-11T22:10:31.1545169Z [ RUN ] LLVM.LongSubTest 2023-01-11T22:10:31.1725453Z [ OK ] LLVM.LongSubTest (18 ms) 2023-01-11T22:10:31.1725945Z [ RUN ] LLVM.FloatSubTest 2023-01-11T22:10:31.1903105Z [ OK ] LLVM.FloatSubTest (17 ms) 2023-01-11T22:10:31.1903602Z [ RUN ] LLVM.DoubleSubTest 2023-01-11T22:10:31.2082179Z [ OK ] LLVM.DoubleSubTest (17 ms) 2023-01-11T22:10:31.2082662Z [ RUN ] LLVM.HalfSubTest 2023-01-11T22:10:31.2260280Z [ OK ] LLVM.HalfSubTest (17 ms) 2023-01-11T22:10:31.2260774Z [ RUN ] LLVM.ByteMulTest 2023-01-11T22:10:31.2437234Z [ OK ] LLVM.ByteMulTest (17 ms) 2023-01-11T22:10:31.2437704Z [ RUN ] LLVM.CharMulTest 2023-01-11T22:10:31.2614643Z [ OK ] LLVM.CharMulTest (17 ms) 2023-01-11T22:10:31.2615131Z [ RUN ] LLVM.ShortMulTest 2023-01-11T22:10:31.2792063Z [ OK ] LLVM.ShortMulTest (17 ms) 2023-01-11T22:10:31.2792531Z [ RUN ] LLVM.IntMulTest 2023-01-11T22:10:31.2969808Z [ OK ] LLVM.IntMulTest (17 ms) 2023-01-11T22:10:31.2970074Z [ RUN ] LLVM.LongMulTest 2023-01-11T22:10:31.3151064Z [ OK ] LLVM.LongMulTest (18 ms) 2023-01-11T22:10:31.3151345Z [ RUN ] LLVM.FloatMulTest 2023-01-11T22:10:31.3328861Z [ OK ] LLVM.FloatMulTest (17 ms) 2023-01-11T22:10:31.3329269Z [ RUN ] LLVM.DoubleMulTest 2023-01-11T22:10:31.3509933Z [ OK ] LLVM.DoubleMulTest (18 ms) 2023-01-11T22:10:31.3510246Z [ RUN ] LLVM.HalfMulTest 2023-01-11T22:10:31.3688537Z [ OK ] LLVM.HalfMulTest (17 ms) 2023-01-11T22:10:31.3688807Z [ RUN ] LLVM.ByteDivTest 2023-01-11T22:10:31.3867093Z [ OK ] LLVM.ByteDivTest (17 ms) 2023-01-11T22:10:31.3867399Z [ RUN ] LLVM.CharDivTest 2023-01-11T22:10:31.4044063Z [ OK ] LLVM.CharDivTest (17 ms) 2023-01-11T22:10:31.4044602Z [ RUN ] LLVM.ShortDivTest 2023-01-11T22:10:31.4223126Z [ OK ] LLVM.ShortDivTest (17 ms) 2023-01-11T22:10:31.4223619Z [ RUN ] LLVM.IntDivTest 2023-01-11T22:10:31.4401999Z [ OK ] LLVM.IntDivTest (17 ms) 2023-01-11T22:10:31.4402497Z [ RUN ] LLVM.LongDivTest 2023-01-11T22:10:31.4580039Z [ OK ] LLVM.LongDivTest (17 ms) 2023-01-11T22:10:31.4580522Z [ RUN ] LLVM.FloatDivTest 2023-01-11T22:10:31.4758696Z [ OK ] LLVM.FloatDivTest (17 ms) 2023-01-11T22:10:31.4759222Z [ RUN ] LLVM.DoubleDivTest 2023-01-11T22:10:31.4938180Z [ OK ] LLVM.DoubleDivTest (17 ms) 2023-01-11T22:10:31.4938665Z [ RUN ] LLVM.HalfDivTest 2023-01-11T22:10:31.5118125Z [ OK ] LLVM.HalfDivTest (17 ms) 2023-01-11T22:10:31.5118650Z [ RUN ] LLVM.IntToFloatCastTest 2023-01-11T22:10:31.5296432Z [ OK ] LLVM.IntToFloatCastTest (17 ms) 2023-01-11T22:10:31.5296982Z [ RUN ] LLVM.FloatToIntCastTest 2023-01-11T22:10:31.5475086Z [ OK ] LLVM.FloatToIntCastTest (17 ms) 2023-01-11T22:10:31.5475645Z [ RUN ] LLVM.IntToLongCastTest 2023-01-11T22:10:31.5653431Z [ OK ] LLVM.IntToLongCastTest (17 ms) 2023-01-11T22:10:31.5654002Z [ RUN ] LLVM.ByteToCharCastTest 2023-01-11T22:10:31.5831947Z [ OK ] LLVM.ByteToCharCastTest (17 ms) 2023-01-11T22:10:31.5832486Z [ RUN ] LLVM.HalfToLongCastTest 2023-01-11T22:10:31.6010543Z [ OK ] LLVM.HalfToLongCastTest (17 ms) 2023-01-11T22:10:31.6011100Z [ RUN ] LLVM.ByteToDoubleCastTest 2023-01-11T22:10:31.6189935Z [ OK ] LLVM.ByteToDoubleCastTest (17 ms) 2023-01-11T22:10:31.6190515Z [ RUN ] LLVM.FloatToByteCastTest 2023-01-11T22:10:31.6368247Z [ OK ] LLVM.FloatToByteCastTest (17 ms) 2023-01-11T22:10:31.6368806Z [ RUN ] LLVM.FloatToCharCastTest 2023-01-11T22:10:31.6546659Z [ OK ] LLVM.FloatToCharCastTest (17 ms) 2023-01-11T22:10:31.6547203Z [ RUN ] LLVM.ByteToFloatCastTest 2023-01-11T22:10:31.6727407Z [ OK ] LLVM.ByteToFloatCastTest (18 ms) 2023-01-11T22:10:31.6727968Z [ RUN ] LLVM.CharToFloatCastTest 2023-01-11T22:10:31.6906436Z [ OK ] LLVM.CharToFloatCastTest (17 ms) 2023-01-11T22:10:31.6906928Z [ RUN ] LLVM.BitCast 2023-01-11T22:10:31.7619201Z [ OK ] LLVM.BitCast (71 ms) 2023-01-11T22:10:31.7619634Z [ RUN ] LLVM.fastLogFloat 2023-01-11T22:10:31.8402991Z [ OK ] LLVM.fastLogFloat (78 ms) 2023-01-11T22:10:31.8403467Z [ RUN ] LLVM.LetTest01 2023-01-11T22:10:31.8582274Z [ OK ] LLVM.LetTest01 (17 ms) 2023-01-11T22:10:31.8582812Z [ RUN ] LLVM.LetTest02 2023-01-11T22:10:31.8760324Z [ OK ] LLVM.LetTest02 (17 ms) 2023-01-11T22:10:31.8760872Z [ RUN ] LLVM.LetTestMultitype 2023-01-11T22:10:31.8940086Z [ OK ] LLVM.LetTestMultitype (17 ms) 2023-01-11T22:10:31.8940598Z [ RUN ] LLVM.BufferTest 2023-01-11T22:10:31.9119011Z [ OK ] LLVM.BufferTest (17 ms) 2023-01-11T22:10:31.9119492Z [ RUN ] LLVM.BlockTest 2023-01-11T22:10:31.9299884Z [ OK ] LLVM.BlockTest (18 ms) 2023-01-11T22:10:31.9300371Z [ RUN ] LLVM.LoadStoreTest 2023-01-11T22:10:31.9481368Z [ OK ] LLVM.LoadStoreTest (18 ms) 2023-01-11T22:10:31.9481901Z [ RUN ] LLVM.IfThenElseTest 2023-01-11T22:10:31.9676110Z [ OK ] LLVM.IfThenElseTest (19 ms) 2023-01-11T22:10:31.9676653Z [ RUN ] LLVM.CondNoFalseBlockTest 2023-01-11T22:10:32.0244105Z [ OK ] LLVM.CondNoFalseBlockTest (56 ms) 2023-01-11T22:10:32.0244614Z [ RUN ] LLVM.CondTest 2023-01-11T22:10:32.0818213Z [ OK ] LLVM.CondTest (57 ms) 2023-01-11T22:10:32.0818746Z [ RUN ] LLVM.CondNestedTest 2023-01-11T22:10:32.1627004Z [ OK ] LLVM.CondNestedTest (80 ms) 2023-01-11T22:10:32.1627537Z [ RUN ] LLVM.DirectVectorization 2023-01-11T22:10:32.1880625Z [ OK ] LLVM.DirectVectorization (25 ms) 2023-01-11T22:10:32.1881182Z [ RUN ] LLVM.VecLoadStoreTest 2023-01-11T22:10:32.2064017Z [ OK ] LLVM.VecLoadStoreTest (18 ms) 2023-01-11T22:10:32.2064591Z [ RUN ] LLVM.VecFloat_erfLane4Test 2023-01-11T22:10:32.2250728Z [ OK ] LLVM.VecFloat_erfLane4Test (18 ms) 2023-01-11T22:10:32.2251293Z [ RUN ] LLVM.VecFloat_erfcLane4Test 2023-01-11T22:10:32.2448112Z [ OK ] LLVM.VecFloat_erfcLane4Test (19 ms) 2023-01-11T22:10:32.2448889Z [ RUN ] LLVM.VecFloat_acosLane4Test 2023-01-11T22:10:32.2635423Z [ OK ] LLVM.VecFloat_acosLane4Test (18 ms) 2023-01-11T22:10:32.2635982Z [ RUN ] LLVM.VecFloat_asinLane4Test 2023-01-11T22:10:32.2822290Z [ OK ] LLVM.VecFloat_asinLane4Test (18 ms) 2023-01-11T22:10:32.2822919Z [ RUN ] LLVM.VecFloat_atanLane4Test 2023-01-11T22:10:32.3009191Z [ OK ] LLVM.VecFloat_atanLane4Test (18 ms) 2023-01-11T22:10:32.3009753Z [ RUN ] LLVM.VecFloat_coshLane4Test 2023-01-11T22:10:32.3196229Z [ OK ] LLVM.VecFloat_coshLane4Test (18 ms) 2023-01-11T22:10:32.3196787Z [ RUN ] LLVM.VecFloat_sinhLane4Test 2023-01-11T22:10:32.3383356Z [ OK ] LLVM.VecFloat_sinhLane4Test (18 ms) 2023-01-11T22:10:32.3384102Z [ RUN ] LLVM.VecFloat_tanhLane4Test 2023-01-11T22:10:32.3571628Z [ OK ] LLVM.VecFloat_tanhLane4Test (18 ms) 2023-01-11T22:10:32.3572196Z [ RUN ] LLVM.VecFloat_expm1Lane4Test 2023-01-11T22:10:32.3758628Z [ OK ] LLVM.VecFloat_expm1Lane4Test (18 ms) 2023-01-11T22:10:32.3759171Z [ RUN ] LLVM.VecFloat_lgammaLane4Test 2023-01-11T22:10:32.3946681Z [ OK ] LLVM.VecFloat_lgammaLane4Test (18 ms) 2023-01-11T22:10:32.3947240Z [ RUN ] LLVM.VecFloat_erfLane8Test 2023-01-11T22:10:32.4133433Z [ OK ] LLVM.VecFloat_erfLane8Test (18 ms) 2023-01-11T22:10:32.4133980Z [ RUN ] LLVM.VecFloat_erfcLane8Test 2023-01-11T22:10:32.4321386Z [ OK ] LLVM.VecFloat_erfcLane8Test (18 ms) 2023-01-11T22:10:32.4321938Z [ RUN ] LLVM.VecFloat_acosLane8Test 2023-01-11T22:10:32.4507974Z [ OK ] LLVM.VecFloat_acosLane8Test (18 ms) 2023-01-11T22:10:32.4508556Z [ RUN ] LLVM.VecFloat_asinLane8Test 2023-01-11T22:10:32.4695351Z [ OK ] LLVM.VecFloat_asinLane8Test (18 ms) 2023-01-11T22:10:32.4695928Z [ RUN ] LLVM.VecFloat_atanLane8Test 2023-01-11T22:10:32.4882078Z [ OK ] LLVM.VecFloat_atanLane8Test (18 ms) 2023-01-11T22:10:32.4882642Z [ RUN ] LLVM.VecFloat_coshLane8Test 2023-01-11T22:10:32.5069823Z [ OK ] LLVM.VecFloat_coshLane8Test (18 ms) 2023-01-11T22:10:32.5070383Z [ RUN ] LLVM.VecFloat_sinhLane8Test 2023-01-11T22:10:32.5257344Z [ OK ] LLVM.VecFloat_sinhLane8Test (18 ms) 2023-01-11T22:10:32.5257903Z [ RUN ] LLVM.VecFloat_tanhLane8Test 2023-01-11T22:10:32.5444473Z [ OK ] LLVM.VecFloat_tanhLane8Test (18 ms) 2023-01-11T22:10:32.5445103Z [ RUN ] LLVM.VecFloat_expm1Lane8Test 2023-01-11T22:10:32.5632695Z [ OK ] LLVM.VecFloat_expm1Lane8Test (18 ms) 2023-01-11T22:10:32.5633288Z [ RUN ] LLVM.VecFloat_lgammaLane8Test 2023-01-11T22:10:32.5819960Z [ OK ] LLVM.VecFloat_lgammaLane8Test (18 ms) 2023-01-11T22:10:32.5820606Z [ RUN ] LLVM.VecDouble_erfLane2Test 2023-01-11T22:10:32.6007894Z [ OK ] LLVM.VecDouble_erfLane2Test (18 ms) 2023-01-11T22:10:32.6008454Z [ RUN ] LLVM.VecDouble_erfcLane2Test 2023-01-11T22:10:32.6196008Z [ OK ] LLVM.VecDouble_erfcLane2Test (18 ms) 2023-01-11T22:10:32.6196560Z [ RUN ] LLVM.VecDouble_acosLane2Test 2023-01-11T22:10:32.6383076Z [ OK ] LLVM.VecDouble_acosLane2Test (18 ms) 2023-01-11T22:10:32.6383646Z [ RUN ] LLVM.VecDouble_asinLane2Test 2023-01-11T22:10:32.6571664Z [ OK ] LLVM.VecDouble_asinLane2Test (18 ms) 2023-01-11T22:10:32.6572208Z [ RUN ] LLVM.VecDouble_atanLane2Test 2023-01-11T22:10:32.6758778Z [ OK ] LLVM.VecDouble_atanLane2Test (18 ms) 2023-01-11T22:10:32.6759352Z [ RUN ] LLVM.VecDouble_coshLane2Test 2023-01-11T22:10:32.6945839Z [ OK ] LLVM.VecDouble_coshLane2Test (18 ms) 2023-01-11T22:10:32.6946586Z [ RUN ] LLVM.VecDouble_sinhLane2Test 2023-01-11T22:10:32.7133130Z [ OK ] LLVM.VecDouble_sinhLane2Test (18 ms) 2023-01-11T22:10:32.7133695Z [ RUN ] LLVM.VecDouble_tanhLane2Test 2023-01-11T22:10:32.7320192Z [ OK ] LLVM.VecDouble_tanhLane2Test (18 ms) 2023-01-11T22:10:32.7320751Z [ RUN ] LLVM.VecDouble_expm1Lane2Test 2023-01-11T22:10:32.7507495Z [ OK ] LLVM.VecDouble_expm1Lane2Test (18 ms) 2023-01-11T22:10:32.7508076Z [ RUN ] LLVM.VecDouble_lgammaLane2Test 2023-01-11T22:10:32.7695213Z [ OK ] LLVM.VecDouble_lgammaLane2Test (18 ms) 2023-01-11T22:10:32.7695789Z [ RUN ] LLVM.VecDouble_erfLane4Test 2023-01-11T22:10:32.7883010Z [ OK ] LLVM.VecDouble_erfLane4Test (18 ms) 2023-01-11T22:10:32.7883757Z [ RUN ] LLVM.VecDouble_erfcLane4Test 2023-01-11T22:10:32.8071103Z [ OK ] LLVM.VecDouble_erfcLane4Test (18 ms) 2023-01-11T22:10:32.8071790Z [ RUN ] LLVM.VecDouble_acosLane4Test 2023-01-11T22:10:32.8259118Z [ OK ] LLVM.VecDouble_acosLane4Test (18 ms) 2023-01-11T22:10:32.8259677Z [ RUN ] LLVM.VecDouble_asinLane4Test 2023-01-11T22:10:32.8447908Z [ OK ] LLVM.VecDouble_asinLane4Test (18 ms) 2023-01-11T22:10:32.8448484Z [ RUN ] LLVM.VecDouble_atanLane4Test 2023-01-11T22:10:32.8635166Z [ OK ] LLVM.VecDouble_atanLane4Test (18 ms) 2023-01-11T22:10:32.8635736Z [ RUN ] LLVM.VecDouble_coshLane4Test 2023-01-11T22:10:32.8822920Z [ OK ] LLVM.VecDouble_coshLane4Test (18 ms) 2023-01-11T22:10:32.8823496Z [ RUN ] LLVM.VecDouble_sinhLane4Test 2023-01-11T22:10:32.9010784Z [ OK ] LLVM.VecDouble_sinhLane4Test (18 ms) 2023-01-11T22:10:32.9011433Z [ RUN ] LLVM.VecDouble_tanhLane4Test 2023-01-11T22:10:32.9198517Z [ OK ] LLVM.VecDouble_tanhLane4Test (18 ms) 2023-01-11T22:10:32.9199114Z [ RUN ] LLVM.VecDouble_expm1Lane4Test 2023-01-11T22:10:32.9385938Z [ OK ] LLVM.VecDouble_expm1Lane4Test (18 ms) 2023-01-11T22:10:32.9386499Z [ RUN ] LLVM.VecDouble_lgammaLane4Test 2023-01-11T22:10:32.9572843Z [ OK ] LLVM.VecDouble_lgammaLane4Test (18 ms) 2023-01-11T22:10:32.9573520Z [ RUN ] LLVM.VectorizerLoadStoreTest 2023-01-11T22:10:32.9757214Z [ OK ] LLVM.VectorizerLoadStoreTest (18 ms) 2023-01-11T22:10:32.9757770Z [ RUN ] LLVM.VectorizeBitCast 2023-01-11T22:10:32.9961402Z [ OK ] LLVM.VectorizeBitCast (20 ms) 2023-01-11T22:10:33.0160116Z [ RUN ] LLVM.MemcpyTest 2023-01-11T22:10:33.0160682Z [ OK ] LLVM.MemcpyTest (19 ms) 2023-01-11T22:10:33.0161218Z [ RUN ] LLVM.BzeroTest 2023-01-11T22:10:33.0354279Z [ OK ] LLVM.BzeroTest (19 ms) 2023-01-11T22:10:33.0354776Z [ RUN ] LLVM.ElemwiseAdd 2023-01-11T22:10:33.0839392Z [ OK ] LLVM.ElemwiseAdd (48 ms) 2023-01-11T22:10:33.0840001Z [ RUN ] LLVM.ElemwiseAddFloat 2023-01-11T22:10:33.1304083Z [ OK ] LLVM.ElemwiseAddFloat (46 ms) 2023-01-11T22:10:33.1304706Z [ RUN ] LLVM.ElemwiseLog10Float 2023-01-11T22:10:33.1529458Z [ OK ] LLVM.ElemwiseLog10Float (22 ms) 2023-01-11T22:10:33.1530028Z [ RUN ] LLVM.ElemwiseLog1pFloat 2023-01-11T22:10:33.1755286Z [ OK ] LLVM.ElemwiseLog1pFloat (22 ms) 2023-01-11T22:10:33.1755819Z [ RUN ] LLVM.ElemwiseMaxInt 2023-01-11T22:10:33.2075981Z [ OK ] LLVM.ElemwiseMaxInt (32 ms) 2023-01-11T22:10:33.2076573Z [ RUN ] LLVM.ElemwiseMinInt 2023-01-11T22:10:33.2396146Z [ OK ] LLVM.ElemwiseMinInt (32 ms) 2023-01-11T22:10:33.2396741Z [ RUN ] LLVM.ElemwiseMaxFloat 2023-01-11T22:10:33.2679029Z [ OK ] LLVM.ElemwiseMaxFloat (28 ms) 2023-01-11T22:10:33.2679944Z [ RUN ] LLVM.ElemwiseMaxNaNFloat 2023-01-11T22:10:33.2964195Z [ OK ] LLVM.ElemwiseMaxNaNFloat (28 ms) 2023-01-11T22:10:33.2964838Z [ RUN ] LLVM.ElemwiseMinFloat 2023-01-11T22:10:33.3248108Z [ OK ] LLVM.ElemwiseMinFloat (28 ms) 2023-01-11T22:10:33.3248747Z [ RUN ] LLVM.ElemwiseMinNaNFloat 2023-01-11T22:10:33.3531241Z [ OK ] LLVM.ElemwiseMinNaNFloat (28 ms) 2023-01-11T22:10:33.3531846Z [ RUN ] LLVM.ElemwiseMod 2023-01-11T22:10:33.3800350Z [ OK ] LLVM.ElemwiseMod (26 ms) 2023-01-11T22:10:33.3800882Z [ RUN ] LLVM.CompareSelectIntEQ 2023-01-11T22:10:33.4132137Z [ OK ] LLVM.CompareSelectIntEQ (33 ms) 2023-01-11T22:10:33.4132795Z [ RUN ] LLVM.CompareSelectFloatEQ 2023-01-11T22:10:33.4460454Z [ OK ] LLVM.CompareSelectFloatEQ (32 ms) 2023-01-11T22:10:33.4461107Z [ RUN ] LLVM.CompareSelectByteGT 2023-01-11T22:10:33.4788986Z [ OK ] LLVM.CompareSelectByteGT (32 ms) 2023-01-11T22:10:33.4789637Z [ RUN ] LLVM.CompareSelectByteGE 2023-01-11T22:10:33.5117503Z [ OK ] LLVM.CompareSelectByteGE (32 ms) 2023-01-11T22:10:33.5118161Z [ RUN ] LLVM.CompareSelectByteLT 2023-01-11T22:10:33.5445328Z [ OK ] LLVM.CompareSelectByteLT (32 ms) 2023-01-11T22:10:33.5446002Z [ RUN ] LLVM.CompareSelectByteLE 2023-01-11T22:10:33.5773980Z [ OK ] LLVM.CompareSelectByteLE (32 ms) 2023-01-11T22:10:33.5774588Z [ RUN ] LLVM.StoreFloat 2023-01-11T22:10:33.5955640Z [ OK ] LLVM.StoreFloat (18 ms) 2023-01-11T22:10:33.5956126Z [ RUN ] LLVM.SimpleMath01 2023-01-11T22:10:33.6321775Z [ OK ] LLVM.SimpleMath01 (36 ms) 2023-01-11T22:10:33.6322364Z [ RUN ] LLVM.ComputeMul 2023-01-11T22:10:33.6786548Z [ OK ] LLVM.ComputeMul (46 ms) 2023-01-11T22:10:33.6787135Z [ RUN ] LLVM.BroadcastAdd 2023-01-11T22:10:33.7891996Z [ OK ] LLVM.BroadcastAdd (110 ms) 2023-01-11T22:10:33.7892553Z [ RUN ] LLVM.BitwiseOps 2023-01-11T22:10:33.8072568Z [ OK ] LLVM.BitwiseOps (18 ms) 2023-01-11T22:10:33.8073118Z [ RUN ] LLVM.ArithmeticRightShift 2023-01-11T22:10:33.8250846Z [ OK ] LLVM.ArithmeticRightShift (17 ms) 2023-01-11T22:10:33.8429467Z [ RUN ] LLVM.LogicalRightShift 2023-01-11T22:10:33.8430025Z [ OK ] LLVM.LogicalRightShift (17 ms) 2023-01-11T22:10:33.8430547Z [ RUN ] LLVM.DynamicShapeAdd 2023-01-11T22:10:33.9720802Z [ OK ] LLVM.DynamicShapeAdd (129 ms) 2023-01-11T22:10:33.9721371Z [ RUN ] LLVM.BindDynamicShapeAdd 2023-01-11T22:10:34.1011802Z [ OK ] LLVM.BindDynamicShapeAdd (129 ms) 2023-01-11T22:10:34.1012387Z [ RUN ] LLVM.TensorDynamicShapeAdd 2023-01-11T22:10:34.2307192Z [ OK ] LLVM.TensorDynamicShapeAdd (129 ms) 2023-01-11T22:10:34.2307735Z [ RUN ] LLVM.DynamicShape2D 2023-01-11T22:10:34.4471800Z [ OK ] LLVM.DynamicShape2D (216 ms) 2023-01-11T22:10:34.4472304Z [ RUN ] LLVM.EmptyStmt 2023-01-11T22:10:34.4645057Z [ OK ] LLVM.EmptyStmt (17 ms) 2023-01-11T22:10:34.4645587Z [ RUN ] LLVM.EliminatedStmt 2023-01-11T22:10:34.4818765Z [ OK ] LLVM.EliminatedStmt (17 ms) 2023-01-11T22:10:34.4819280Z [ RUN ] LLVM.SimpleReduction 2023-01-11T22:10:34.5638853Z [ OK ] LLVM.SimpleReduction (81 ms) 2023-01-11T22:10:34.5639401Z [ RUN ] LLVM.RFactorReduction 2023-01-11T22:10:34.5955492Z [ OK ] LLVM.RFactorReduction (31 ms) 2023-01-11T22:10:34.5956040Z [ RUN ] LLVM.RFactorVectorizedReduction 2023-01-11T22:10:34.6446355Z [ OK ] LLVM.RFactorVectorizedReduction (49 ms) 2023-01-11T22:10:34.6447036Z [ RUN ] LLVM.SimpleParallelSS 2023-01-11T22:10:34.6683494Z [ OK ] LLVM.SimpleParallelSS (23 ms) 2023-01-11T22:10:34.6684119Z [ RUN ] LLVM.SimpleParallelSP 2023-01-11T22:10:34.6941255Z [ OK ] LLVM.SimpleParallelSP (25 ms) 2023-01-11T22:10:34.6941743Z [ RUN ] LLVM.SimpleParallelPS 2023-01-11T22:10:34.7208518Z [ OK ] LLVM.SimpleParallelPS (26 ms) 2023-01-11T22:10:34.7208985Z [ RUN ] LLVM.SimpleParallelPP 2023-01-11T22:10:34.7474396Z [ OK ] LLVM.SimpleParallelPP (26 ms) 2023-01-11T22:10:34.7474927Z [ RUN ] LLVM.CompositeParallel 2023-01-11T22:10:37.7785381Z [ OK ] LLVM.CompositeParallel (3030 ms) 2023-01-11T22:10:37.7785783Z [ RUN ] LLVM.VectorizedGEMM 2023-01-11T22:10:37.8603076Z [ OK ] LLVM.VectorizedGEMM (81 ms) 2023-01-11T22:10:37.8603360Z [ RUN ] LLVM.CallRaw 2023-01-11T22:10:38.5288047Z [ OK ] LLVM.CallRaw (668 ms) 2023-01-11T22:10:38.5288363Z [ RUN ] LLVM.CustomTarget 2023-01-11T22:10:38.5519600Z [ OK ] LLVM.CustomTarget (23 ms) 2023-01-11T22:10:38.5519922Z [ RUN ] LLVM.CodeGenKernelFuncName 2023-01-11T22:10:38.5883273Z [ OK ] LLVM.CodeGenKernelFuncName (36 ms) 2023-01-11T22:10:38.5883861Z [----------] 150 tests from LLVM (7792 ms total) 2023-01-11T22:10:38.5884118Z 2023-01-11T22:10:38.5884352Z [----------] Global test environment tear-down 2023-01-11T22:10:38.5960740Z [==========] 801 tests from 25 test suites ran. (24923 ms total) 2023-01-11T22:10:38.5961258Z [ PASSED ] 801 tests. 2023-01-11T22:10:38.5961441Z 2023-01-11T22:10:38.5961568Z  YOU HAVE 5 DISABLED TESTS 2023-01-11T22:10:38.5961679Z 2023-01-11T22:10:38.6761436Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *android* ]] 2023-01-11T22:10:38.6761923Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *cuda* ]] 2023-01-11T22:10:38.6762157Z + assert_git_not_dirty 2023-01-11T22:10:38.6762443Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:10:38.6762824Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:10:38.6763773Z ++ git status --porcelain 2023-01-11T22:10:38.7587849Z + git_status= 2023-01-11T22:10:38.7588279Z + [[ -n '' ]] 2023-01-11T22:10:38.7588616Z + test_aot_compilation 2023-01-11T22:10:38.7589106Z + echo 'Testing Ahead of Time compilation' 2023-01-11T22:10:38.7589497Z Testing Ahead of Time compilation 2023-01-11T22:10:38.7590324Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libc10.so /opt/conda/lib/python3.10/site-packages/torch/lib/libc10_cuda.so /opt/conda/lib/python3.10/site-packages/torch/lib/libc10d_cuda_test.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:10:38.7601239Z + ln -sf /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_global_deps.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so /opt/conda/lib/python3.10/site-packages/torch/lib/libtorchbind_test.so /opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:10:38.7612018Z + TEST_REPORTS_DIR=test/test-reports/cpp-unittest/test_aot_compilation 2023-01-11T22:10:38.7612487Z + mkdir -p test/test-reports/cpp-unittest/test_aot_compilation 2023-01-11T22:10:38.7622870Z + '[' -f /opt/conda/lib/python3.10/site-packages/torch/bin/test_mobile_nnc ']' 2023-01-11T22:10:38.7623412Z + /opt/conda/lib/python3.10/site-packages/torch/bin/test_mobile_nnc --gtest_output=xml:test/test-reports/cpp-unittest/test_aot_compilation/test_mobile_nnc.xml 2023-01-11T22:10:39.0960585Z Note: Google Test filter = *-*_CUDA:*_MultiCUDA 2023-01-11T22:10:39.0960944Z [==========] Running 6 tests from 2 test suites. 2023-01-11T22:10:39.0961482Z [----------] Global test environment set-up. 2023-01-11T22:10:39.0961754Z [----------] 4 tests from Function 2023-01-11T22:10:39.0962031Z [ RUN ] Function.ExecuteSlowMul 2023-01-11T22:10:39.0965095Z [ OK ] Function.ExecuteSlowMul (0 ms) 2023-01-11T22:10:39.0965596Z [ RUN ] Function.Serialization 2023-01-11T22:10:39.0965879Z [ OK ] Function.Serialization (0 ms) 2023-01-11T22:10:39.0966158Z [ RUN ] Function.ValidInput 2023-01-11T22:10:39.0966434Z [ OK ] Function.ValidInput (0 ms) 2023-01-11T22:10:39.0966698Z [ RUN ] Function.InvalidInput 2023-01-11T22:10:39.0975431Z [ OK ] Function.InvalidInput (0 ms) 2023-01-11T22:10:39.0976000Z [----------] 4 tests from Function (1 ms total) 2023-01-11T22:10:39.0976277Z 2023-01-11T22:10:39.0976671Z [----------] 2 tests from MobileNNCRegistryTest 2023-01-11T22:10:39.0976990Z [ RUN ] MobileNNCRegistryTest.FindAndRun 2023-01-11T22:10:39.0977335Z [ OK ] MobileNNCRegistryTest.FindAndRun (0 ms) 2023-01-11T22:10:39.0977767Z [ RUN ] MobileNNCRegistryTest.NoKernel 2023-01-11T22:10:39.0978233Z [ OK ] MobileNNCRegistryTest.NoKernel (0 ms) 2023-01-11T22:10:39.0978829Z [----------] 2 tests from MobileNNCRegistryTest (0 ms total) 2023-01-11T22:10:39.0979156Z 2023-01-11T22:10:39.0979451Z [----------] Global test environment tear-down 2023-01-11T22:10:39.0979782Z [==========] 6 tests from 2 test suites ran. (1 ms total) 2023-01-11T22:10:39.0980027Z [ PASSED ] 6 tests. 2023-01-11T22:10:39.0980145Z 2023-01-11T22:10:39.0980268Z  YOU HAVE 1 DISABLED TEST 2023-01-11T22:10:39.0980389Z 2023-01-11T22:10:39.1651597Z + '[' -f /opt/conda/lib/python3.10/site-packages/torch/bin/aot_model_compiler_test ']' 2023-01-11T22:10:39.1651942Z + source test/mobile/nnc/test_aot_compile.sh 2023-01-11T22:10:39.1668219Z ++ set -e -o pipefail 2023-01-11T22:10:39.1671672Z +++ python -c 'import site; print(site.getsitepackages()[0])' 2023-01-11T22:10:39.1834522Z ++ TORCH_INSTALL_DIR=/opt/conda/lib/python3.10/site-packages/torch 2023-01-11T22:10:39.1834897Z ++ TORCH_BIN_DIR=/opt/conda/lib/python3.10/site-packages/torch/bin 2023-01-11T22:10:39.1838314Z +++ dirname test/mobile/nnc/test_aot_compile.sh 2023-01-11T22:10:39.1849218Z ++ CURRENT_DIR=test/mobile/nnc 2023-01-11T22:10:39.1849523Z ++ MODEL=aot_test_model.pt 2023-01-11T22:10:39.1849773Z ++ COMPILED_MODEL=aot_test_model.compiled.pt 2023-01-11T22:10:39.1850016Z ++ COMPILED_CODE=aot_test_model.compiled.ll 2023-01-11T22:10:39.1853577Z +++ mktemp -d -t build_XXX 2023-01-11T22:10:39.1896993Z ++ TMP_DIR=/tmp/build_xuu 2023-01-11T22:10:39.1898105Z + test_custom_script_ops 2023-01-11T22:10:39.1898603Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *asan* ]] 2023-01-11T22:10:39.1899063Z + echo 'Testing custom script operators' 2023-01-11T22:10:39.1899400Z Testing custom script operators 2023-01-11T22:10:39.1899766Z + CUSTOM_OP_BUILD=/var/lib/jenkins/workspace/build/custom_test_artifacts/custom-op-build 2023-01-11T22:10:39.1900040Z + pushd test/custom_operator 2023-01-11T22:10:39.1900268Z ~/workspace/test/custom_operator ~/workspace 2023-01-11T22:10:39.1900626Z + cp -a /var/lib/jenkins/workspace/build/custom_test_artifacts/custom-op-build build 2023-01-11T22:10:39.2993535Z + python test_custom_ops.py -v 2023-01-11T22:10:40.5956130Z Test results will be stored in test-reports/python-unittest/test_custom_ops 2023-01-11T22:10:40.5966409Z 2023-01-11T22:10:40.5966547Z Running tests... 2023-01-11T22:10:40.5967276Z ---------------------------------------------------------------------- 2023-01-11T22:10:40.6005522Z test_calling_custom_op (__main__.TestCustomOperators) ... ok (0.004s) 2023-01-11T22:10:40.6443993Z test_calling_custom_op_inside_script_module (__main__.TestCustomOperators) ... ok (0.044s) 2023-01-11T22:10:40.6449556Z test_calling_custom_op_string (__main__.TestCustomOperators) ... ok (0.001s) 2023-01-11T22:10:40.6467190Z test_calling_custom_op_with_autograd (__main__.TestCustomOperators) ... /opt/conda/lib/python3.10/site-packages/torch/autograd/__init__.py:197: UserWarning: Using backward() with create_graph=True will create a reference cycle between the parameter and its gradient which can cause a memory leak. We recommend using autograd.grad when creating the graph to avoid this. If you have to use this function, make sure to reset the .grad fields of your parameters to None after use to break the cycle and avoid the leak. (Triggered internally at /var/lib/jenkins/workspace/torch/csrc/autograd/engine.cpp:1134.) 2023-01-11T22:10:40.6468618Z Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 2023-01-11T22:10:40.6480232Z ok (0.003s) 2023-01-11T22:10:40.6487381Z test_calling_custom_op_with_autograd_in_nograd_mode (__main__.TestCustomOperators) ... ok (0.001s) 2023-01-11T22:10:40.6490776Z test_custom_library_is_loaded (__main__.TestCustomOperators) ... ok (0.000s) 2023-01-11T22:10:40.6566756Z test_saving_and_loading_script_module_with_custom_op (__main__.TestCustomOperators) ... ok (0.007s) 2023-01-11T22:10:40.6567141Z 2023-01-11T22:10:40.6567583Z ---------------------------------------------------------------------- 2023-01-11T22:10:40.6568014Z Ran 7 tests in 0.060s 2023-01-11T22:10:40.6568225Z 2023-01-11T22:10:40.6568332Z OK 2023-01-11T22:10:40.6568435Z 2023-01-11T22:10:40.6568523Z Generating XML reports... 2023-01-11T22:10:40.6595602Z Generated XML report: test-reports/python-unittest/test_custom_ops/TEST-TestCustomOperators-20230111221040.xml 2023-01-11T22:10:40.9007491Z + python model.py --export-script-module=model.pt 2023-01-11T22:10:42.2144048Z + build/test_custom_ops ./model.pt 2023-01-11T22:10:42.5681230Z [W engine.cpp:1134] Warning: Using backward() with create_graph=True will create a reference cycle between the parameter and its gradient which can cause a memory leak. We recommend using autograd.grad when creating the graph to avoid this. If you have to use this function, make sure to reset the .grad fields of your parameters to None after use to break the cycle and avoid the leak. (function operator()) 2023-01-11T22:10:42.6315250Z ok 2023-01-11T22:10:42.7049931Z + popd 2023-01-11T22:10:42.7050295Z ~/workspace 2023-01-11T22:10:42.7050632Z + assert_git_not_dirty 2023-01-11T22:10:42.7051121Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:10:42.7051449Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:10:42.7054616Z ++ git status --porcelain 2023-01-11T22:10:42.7867321Z + git_status= 2023-01-11T22:10:42.7867904Z + [[ -n '' ]] 2023-01-11T22:10:42.7868235Z + test_custom_backend 2023-01-11T22:10:42.7868694Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *asan* ]] 2023-01-11T22:10:42.7868966Z + echo 'Testing custom backends' 2023-01-11T22:10:42.7869167Z Testing custom backends 2023-01-11T22:10:42.7869545Z + CUSTOM_BACKEND_BUILD=/var/lib/jenkins/workspace/build/custom_test_artifacts/custom-backend-build 2023-01-11T22:10:42.7869830Z + pushd test/custom_backend 2023-01-11T22:10:42.7870056Z ~/workspace/test/custom_backend ~/workspace 2023-01-11T22:10:42.7870426Z + cp -a /var/lib/jenkins/workspace/build/custom_test_artifacts/custom-backend-build build 2023-01-11T22:10:42.8816598Z + python test_custom_backend.py -v 2023-01-11T22:10:44.1483164Z Test results will be stored in test-reports/python-unittest/test_custom_backend 2023-01-11T22:10:44.1493245Z 2023-01-11T22:10:44.1493393Z Running tests... 2023-01-11T22:10:44.1494000Z ---------------------------------------------------------------------- 2023-01-11T22:10:44.1498961Z test_execute (__main__.TestCustomBackend) 2023-01-11T22:10:44.2007328Z Test execution using the custom backend. ... ok (0.051s) 2023-01-11T22:10:44.2012326Z test_save_load (__main__.TestCustomBackend) 2023-01-11T22:10:44.2177368Z Test that a lowered module can be executed correctly ... ok (0.017s) 2023-01-11T22:10:44.2179599Z 2023-01-11T22:10:44.2180042Z ---------------------------------------------------------------------- 2023-01-11T22:10:44.2180740Z Ran 2 tests in 0.069s 2023-01-11T22:10:44.2180945Z 2023-01-11T22:10:44.2181025Z OK 2023-01-11T22:10:44.2181121Z 2023-01-11T22:10:44.2181202Z Generating XML reports... 2023-01-11T22:10:44.2205740Z Generated XML report: test-reports/python-unittest/test_custom_backend/TEST-TestCustomBackend-20230111221044.xml 2023-01-11T22:10:44.4596268Z + python backend.py --export-module-to=model.pt 2023-01-11T22:10:45.8177446Z + build/test_custom_backend ./model.pt 2023-01-11T22:10:46.1857464Z Testing custom_backend 2023-01-11T22:10:46.2591814Z OK 2023-01-11T22:10:46.3315645Z + rm -f ./model.pt 2023-01-11T22:10:46.3346297Z + popd 2023-01-11T22:10:46.3346566Z ~/workspace 2023-01-11T22:10:46.3346838Z + assert_git_not_dirty 2023-01-11T22:10:46.3347419Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:10:46.3348022Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:10:46.3350526Z ++ git status --porcelain 2023-01-11T22:10:46.4165319Z + git_status= 2023-01-11T22:10:46.4165804Z + [[ -n '' ]] 2023-01-11T22:10:46.4166140Z + test_torch_function_benchmark 2023-01-11T22:10:46.4166525Z + echo 'Testing __torch_function__ benchmarks' 2023-01-11T22:10:46.4166753Z Testing __torch_function__ benchmarks 2023-01-11T22:10:46.4167042Z + pushd benchmarks/overrides_benchmark 2023-01-11T22:10:46.4167301Z ~/workspace/benchmarks/overrides_benchmark ~/workspace 2023-01-11T22:10:46.4167586Z + python bench.py -n 1 -m 2 2023-01-11T22:10:47.5461328Z Type tensor had a minimum time of 0.0035762786865234375 us and a standard deviation of 0.052262093959143385 us. 2023-01-11T22:10:47.5461766Z Type SubTensor had a minimum time of 0.0133514404296875 us and a standard deviation of 0.034223241527797654 us. 2023-01-11T22:10:47.5462711Z Type WithTorchFunction had a minimum time of 0.008344650268554688 us and a standard deviation of 0.015678628187743016 us. 2023-01-11T22:10:47.5463140Z Type SubWithTorchFunction had a minimum time of 0.015735626220703125 us and a standard deviation of 0.007417845154122915 us. 2023-01-11T22:10:47.7522826Z + python pyspybench.py Tensor -n 1 2023-01-11T22:10:49.0781520Z + python pyspybench.py SubTensor -n 1 2023-01-11T22:10:50.4069426Z + python pyspybench.py WithTorchFunction -n 1 2023-01-11T22:10:51.7363327Z + python pyspybench.py SubWithTorchFunction -n 1 2023-01-11T22:10:53.0636521Z + popd 2023-01-11T22:10:53.0636764Z ~/workspace 2023-01-11T22:10:53.0636937Z + assert_git_not_dirty 2023-01-11T22:10:53.0637395Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:10:53.0637722Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:10:53.0639338Z ++ git status --porcelain 2023-01-11T22:10:53.1476247Z + git_status= 2023-01-11T22:10:53.1476796Z + [[ -n '' ]] 2023-01-11T22:10:53.1477070Z + test_benchmarks 2023-01-11T22:10:53.1477642Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 == *cuda* ]] 2023-01-11T22:10:53.1477912Z + [[ nogpu_AVX512 != *nogpu* ]] 2023-01-11T22:10:53.1478086Z + test_executorch 2023-01-11T22:10:53.1478343Z + echo 'Testing Executorch op registration' 2023-01-11T22:10:53.1478583Z Testing Executorch op registration 2023-01-11T22:10:53.1478801Z + build/bin/test_edge_op_registration 2023-01-11T22:10:53.4150400Z Note: Google Test filter = *-*_CUDA:*_MultiCUDA 2023-01-11T22:10:53.4150974Z [==========] Running 1 test from 1 test suite. 2023-01-11T22:10:53.4151461Z [----------] Global test environment set-up. 2023-01-11T22:10:53.4151808Z [----------] 1 test from OperatorRegistrationTest 2023-01-11T22:10:53.4152300Z [ RUN ] OperatorRegistrationTest.Add 2023-01-11T22:10:53.4153056Z [ OK ] OperatorRegistrationTest.Add (0 ms) 2023-01-11T22:10:53.4153699Z [----------] 1 test from OperatorRegistrationTest (0 ms total) 2023-01-11T22:10:53.4153958Z 2023-01-11T22:10:53.4154127Z [----------] Global test environment tear-down 2023-01-11T22:10:53.4154438Z [==========] 1 test from 1 test suite ran. (0 ms total) 2023-01-11T22:10:53.4154691Z [ PASSED ] 1 test. 2023-01-11T22:10:53.4746891Z + assert_git_not_dirty 2023-01-11T22:10:53.4747466Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *rocm* ]] 2023-01-11T22:10:53.4747907Z + [[ linux-bionic-cuda11.7-py3.10-gcc7 != *xla* ]] 2023-01-11T22:10:53.4750010Z ++ git status --porcelain 2023-01-11T22:10:53.5565971Z + git_status= 2023-01-11T22:10:53.5566312Z + [[ -n '' ]] 2023-01-11T22:10:53.5689938Z Prepare all required actions 2023-01-11T22:10:53.5690230Z Getting action download info 2023-01-11T22:10:53.8165830Z ##[group]Run ./.github/actions/get-workflow-job-id 2023-01-11T22:10:53.8166035Z with: 2023-01-11T22:10:53.8166355Z github-token: *** 2023-01-11T22:10:53.8166526Z env: 2023-01-11T22:10:53.8166688Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:53.8166976Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:53.8167240Z ##[endgroup] 2023-01-11T22:10:53.8191553Z ##[group]Run nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482 2023-01-11T22:10:53.8191784Z with: 2023-01-11T22:10:53.8191954Z shell: bash 2023-01-11T22:10:53.8192117Z timeout_minutes: 10 2023-01-11T22:10:53.8192302Z max_attempts: 5 2023-01-11T22:10:53.8192484Z retry_wait_seconds: 30 2023-01-11T22:10:53.8192889Z command: set -eux python3 -m pip install requests==2.26.0 GHA_WORKFLOW_JOB_ID=$(python3 .github/scripts/get_workflow_job_id.py "${GITHUB_RUN_ID}" "${RUNNER_NAME}") echo "job-id=${GHA_WORKFLOW_JOB_ID}" >> "${GITHUB_OUTPUT}" 2023-01-11T22:10:53.8193266Z polling_interval_seconds: 1 2023-01-11T22:10:53.8193447Z warning_on_retry: true 2023-01-11T22:10:53.8207712Z continue_on_error: false 2023-01-11T22:10:53.8207889Z env: 2023-01-11T22:10:53.8208064Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:53.8208351Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:53.8208735Z GITHUB_TOKEN: *** 2023-01-11T22:10:53.8208912Z ##[endgroup] 2023-01-11T22:10:54.0673734Z + python3 -m pip install requests==2.26.0 2023-01-11T22:10:54.8283291Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T22:10:54.8599494Z Requirement already satisfied: requests==2.26.0 in /home/ec2-user/.local/lib/python3.7/site-packages (2.26.0) 2023-01-11T22:10:54.8732775Z Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (2022.12.7) 2023-01-11T22:10:54.8745212Z Requirement already satisfied: idna<4,>=2.5; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (3.4) 2023-01-11T22:10:54.8764264Z Requirement already satisfied: charset-normalizer~=2.0.0; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (2.0.12) 2023-01-11T22:10:54.8786978Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests==2.26.0) (1.26.14) 2023-01-11T22:10:55.0995831Z ++ python3 .github/scripts/get_workflow_job_id.py 3896346758 i-06cf3037fd0558aaa 2023-01-11T22:10:58.8604653Z + GHA_WORKFLOW_JOB_ID=10589559762 2023-01-11T22:10:58.8605182Z + echo job-id=10589559762 2023-01-11T22:10:59.0710695Z Command completed after 1 attempt(s). 2023-01-11T22:10:59.0811973Z ##[group]Run kill "$MONITOR_SCRIPT_PID" 2023-01-11T22:10:59.0812219Z kill "$MONITOR_SCRIPT_PID" 2023-01-11T22:10:59.1659485Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:10:59.1659715Z env: 2023-01-11T22:10:59.1659893Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:59.1660173Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:59.1660450Z MONITOR_SCRIPT_PID: 3314 2023-01-11T22:10:59.1660637Z ##[endgroup] 2023-01-11T22:10:59.1745244Z Prepare all required actions 2023-01-11T22:10:59.1745496Z Getting action download info 2023-01-11T22:10:59.3847187Z Download action repository 'actions/upload-artifact@v3' (SHA:0b7f8abb1508181956e8e162db84b466c27e18ce) 2023-01-11T22:10:59.5467466Z ##[group]Run ./.github/actions/upload-test-artifacts 2023-01-11T22:10:59.5467780Z with: 2023-01-11T22:10:59.5468007Z file-suffix: test-nogpu_AVX512-1-1-linux.2xlarge_10589559762 2023-01-11T22:10:59.5468232Z env: 2023-01-11T22:10:59.5468396Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:59.5468682Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:59.5468950Z ##[endgroup] 2023-01-11T22:10:59.5492269Z ##[group]Run # Remove any previous test jsons if they exist 2023-01-11T22:10:59.5492546Z # Remove any previous test jsons if they exist 2023-01-11T22:10:59.5492945Z rm -f test-jsons-*.zip 2023-01-11T22:10:59.5493223Z zip -r "test-jsons-${FILE_SUFFIX}.zip" test -i '*.json' 2023-01-11T22:10:59.5504130Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:10:59.5504384Z env: 2023-01-11T22:10:59.5504562Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:59.5504833Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:59.5505164Z FILE_SUFFIX: test-nogpu_AVX512-1-1-linux.2xlarge_10589559762 2023-01-11T22:10:59.5505388Z ##[endgroup] 2023-01-11T22:10:59.5791635Z adding: test/allowlist_for_publicAPI.json (deflated 78%) 2023-01-11T22:10:59.5828652Z adding: test/benchmark_utils/callgrind_artifacts.json (deflated 92%) 2023-01-11T22:10:59.5843598Z adding: test/profiler/profiler_utils_mock_events.json (deflated 87%) 2023-01-11T22:10:59.5845146Z adding: test/.pytorch-slow-tests.json (deflated 77%) 2023-01-11T22:10:59.5849655Z adding: test/.pytorch-disabled-tests.json (deflated 84%) 2023-01-11T22:10:59.5867318Z ##[group]Run # Remove any previous test reports if they exist 2023-01-11T22:10:59.5867597Z # Remove any previous test reports if they exist 2023-01-11T22:10:59.5867833Z rm -f test-reports-*.zip 2023-01-11T22:10:59.5868100Z zip -r "test-reports-${FILE_SUFFIX}.zip" test -i '*.xml' -i '*.csv' 2023-01-11T22:10:59.5878143Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:10:59.5878369Z env: 2023-01-11T22:10:59.5878546Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:59.5878816Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:59.5879137Z FILE_SUFFIX: test-nogpu_AVX512-1-1-linux.2xlarge_10589559762 2023-01-11T22:10:59.5879359Z ##[endgroup] 2023-01-11T22:10:59.6008046Z adding: test/custom_backend/test-reports/python-unittest/test_custom_backend/TEST-TestCustomBackend-20230111221044.xml (deflated 56%) 2023-01-11T22:10:59.6008712Z adding: test/custom_operator/test-reports/python-unittest/test_custom_ops/TEST-TestCustomOperators-20230111221040.xml (deflated 65%) 2023-01-11T22:10:59.6025497Z adding: test/test-reports/python-unittest/dynamo.test_misc/TEST-MiscTests-20230111212233.xml (deflated 90%) 2023-01-11T22:10:59.6030379Z adding: test/test-reports/python-unittest/dynamo.test_misc/TEST-TestTracer-20230111212233.xml (deflated 39%) 2023-01-11T22:10:59.6039137Z adding: test/test-reports/python-unittest/dynamo.test_export/TEST-ExportTests-20230111212233.xml (deflated 92%) 2023-01-11T22:10:59.6043086Z adding: test/test-reports/python-unittest/dynamo.test_optimizations/TEST-NormalizeIRTests-20230111212239.xml (deflated 41%) 2023-01-11T22:10:59.6050869Z adding: test/test-reports/python-unittest/dynamo.test_optimizations/TEST-TestOptimizations-20230111212239.xml (deflated 78%) 2023-01-11T22:10:59.6061406Z adding: test/test-reports/python-unittest/dynamo.test_repros/TEST-ReproTests-20230111212241.xml (deflated 87%) 2023-01-11T22:10:59.6065067Z adding: test/test-reports/python-unittest/dynamo.test_torchxla_integration/TEST-TorchXLAReuseGraphTest-20230111212244.xml (deflated 76%) 2023-01-11T22:10:59.6079211Z adding: test/test-reports/python-unittest/dynamo.test_unspec/TEST-UnspecNNModuleTests-20230111212248.xml (deflated 91%) 2023-01-11T22:10:59.6093128Z adding: test/test-reports/python-unittest/dynamo.test_unspec/TEST-UnspecReproTests-20230111212248.xml (deflated 88%) 2023-01-11T22:10:59.6101090Z adding: test/test-reports/python-unittest/dynamo.test_unspec/TEST-UnspecTests-20230111212248.xml (deflated 75%) 2023-01-11T22:10:59.6105555Z adding: test/test-reports/python-unittest/profiler.test_profiler_tree/TEST-TestProfilerTree-20230111212258.xml (deflated 82%) 2023-01-11T22:10:59.6110740Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_activation_sparsifier.TestActivationSparsifier-20230111212302.xml (deflated 54%) 2023-01-11T22:10:59.6117913Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_scheduler.TestBaseDataScheduler-20230111212302.xml (deflated 71%) 2023-01-11T22:10:59.6123647Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_sparsifier.TestBaseDataSparsifier-20230111212302.xml (deflated 65%) 2023-01-11T22:10:59.6130148Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsifier.TestBaseSparsifier-20230111212302.xml (deflated 82%) 2023-01-11T22:10:59.6134428Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_structured_sparsifier.TestBaseStructuredSparsifier-20230111212302.xml (deflated 85%) 2023-01-11T22:10:59.6146180Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_composability.TestComposability-20230111212302.xml (deflated 74%) 2023-01-11T22:10:59.6152649Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_scheduler.TestCubicScheduler-20230111212302.xml (deflated 58%) 2023-01-11T22:10:59.6155919Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_parametrization.TestFakeSparsity-20230111212302.xml (deflated 73%) 2023-01-11T22:10:59.6160788Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_composability.TestFxComposability-20230111212302.xml (deflated 80%) 2023-01-11T22:10:59.6170989Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsifier.TestNearlyDiagonalSparsifier-20230111212302.xml (deflated 76%) 2023-01-11T22:10:59.6175279Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_sparsifier.TestNormDataSparsifiers-20230111212302.xml (deflated 69%) 2023-01-11T22:10:59.6178765Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_data_sparsifier.TestQuantizationUtils-20230111212302.xml (deflated 71%) 2023-01-11T22:10:59.6188461Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_kernels.TestQuantizedSparseKernels-20230111212302.xml (deflated 50%) 2023-01-11T22:10:59.6199970Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_kernels.TestQuantizedSparseLayers-20230111212302.xml (deflated 61%) 2023-01-11T22:10:59.6206561Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_scheduler.TestScheduler-20230111212302.xml (deflated 70%) 2023-01-11T22:10:59.6209794Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsity_utils.TestSparsityUtilFunctions-20230111212302.xml (deflated 78%) 2023-01-11T22:10:59.6215849Z adding: test/test-reports/python-unittest/test_ao_sparsity/TEST-ao.sparsity.test_sparsifier.TestWeightNormSparsifier-20230111212302.xml (deflated 78%) 2023-01-11T22:10:59.6223772Z adding: test/test-reports/python-unittest/test_function_schema/TEST-TestFunctionSchema-20230111212316.xml (deflated 82%) 2023-01-11T22:10:59.6228286Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_alias_analysis.TestAliasAnalysis-20230111212322.xml (deflated 66%) 2023-01-11T22:10:59.6231687Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_async.TestAsync-20230111212322.xml (deflated 85%) 2023-01-11T22:10:59.6234805Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_aten_pow.TestAtenPow-20230111212322.xml (deflated 48%) 2023-01-11T22:10:59.6244402Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_autodiff.TestAutodiffJit-20230111212322.xml (deflated 74%) 2023-01-11T22:10:59.6250466Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_autodiff_subgraph_slicing.TestAutodiffSubgraphSlicing-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6253755Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_backends.TestBackends-20230111212322.xml (deflated 74%) 2023-01-11T22:10:59.6263339Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_backends.TestBackendsWithCompiler-20230111212322.xml (deflated 59%) 2023-01-11T22:10:59.6270380Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_batch_mm.TestBatchMM-20230111212322.xml (deflated 81%) 2023-01-11T22:10:59.6274678Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_builtins.TestBuiltins-20230111212322.xml (deflated 70%) 2023-01-11T22:10:59.6294864Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_class_type.TestClassType-20230111212322.xml (deflated 83%) 2023-01-11T22:10:59.6297975Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_complex.TestComplex-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6301408Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_custom_operators.TestCustomOperators-20230111212322.xml (deflated 83%) 2023-01-11T22:10:59.6304942Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_dce.TestDCE-20230111212322.xml (deflated 56%) 2023-01-11T22:10:59.6316638Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_dataclasses.TestDataclasses-20230111212322.xml (deflated 77%) 2023-01-11T22:10:59.6320903Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_device_analysis.TestDeviceAnalysis-20230111212322.xml (deflated 85%) 2023-01-11T22:10:59.6324589Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestDict-20230111212322.xml (deflated 82%) 2023-01-11T22:10:59.6336494Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_dtype_analysis.TestDtypeAnalysis-20230111212322.xml (deflated 70%) 2023-01-11T22:10:59.6339266Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_enum.TestEnum-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6350027Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_freezing.TestFreezing-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6355080Z adding: test/test-reports/python-unittest/test_jit/TEST-TestFrontend-20230111212322.xml (deflated 51%) 2023-01-11T22:10:59.6358827Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_freezing.TestFrozenOptimizations-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6370374Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_functional_blocks.TestFunctionalBlocks-20230111212322.xml (deflated 51%) 2023-01-11T22:10:59.6375273Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_convert_activation.TestFunctionalToInplaceActivation-20230111212322.xml (deflated 73%) 2023-01-11T22:10:59.6379873Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_attr.TestGetDefaultAttr-20230111212322.xml (deflated 46%) 2023-01-11T22:10:59.6383009Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_graph_rewrite_passes.TestGraphRewritePasses-20230111212322.xml (deflated 52%) 2023-01-11T22:10:59.6392213Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_hash.TestHash-20230111212322.xml (deflated 79%) 2023-01-11T22:10:59.6395640Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_hooks.TestHooks-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6400669Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_ignorable_args.TestIgnorableArgs-20230111212322.xml (deflated 62%) 2023-01-11T22:10:59.6410996Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_ignore_context_manager.TestIgnoreContextManager-20230111212322.xml (deflated 73%) 2023-01-11T22:10:59.6414358Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_convert_activation.TestInplaceToFunctionalActivation-20230111212322.xml (deflated 62%) 2023-01-11T22:10:59.6418968Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_isinstance.TestIsinstance-20230111212322.xml (deflated 89%) 2023-01-11T22:10:59.6427985Z adding: test/test-reports/python-unittest/test_jit/TEST-TestJit-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6448148Z adding: test/test-reports/python-unittest/test_jit/TEST-TestJitGeneratedModule-20230111212322.xml (deflated 95%) 2023-01-11T22:10:59.6451605Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_jit_utils.TestJitUtils-20230111212322.xml (deflated 80%) 2023-01-11T22:10:59.6461082Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestList-20230111212322.xml (deflated 89%) 2023-01-11T22:10:59.6464934Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_logging.TestLogging-20230111212322.xml (deflated 76%) 2023-01-11T22:10:59.6470593Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_freezing.TestMKLDNNReinplacing-20230111212322.xml (deflated 70%) 2023-01-11T22:10:59.6473741Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_misc.TestMisc-20230111212322.xml (deflated 82%) 2023-01-11T22:10:59.6483534Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_tracer.TestMixTracingScripting-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6488000Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_models.TestModels-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6491404Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_module_apis.TestModuleAPIs-20230111212322.xml (deflated 68%) 2023-01-11T22:10:59.6502750Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_module_containers.TestModuleContainers-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6506162Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_module_interface.TestModuleInterface-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6510739Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_modules.TestModules-20230111212322.xml (deflated 49%) 2023-01-11T22:10:59.6515296Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestNamedTuple-20230111212322.xml (deflated 82%) 2023-01-11T22:10:59.6525938Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_backend_nnapi.TestNnapiBackend-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6530201Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_op_decompositions.TestOpDecompositions-20230111212322.xml (deflated 64%) 2023-01-11T22:10:59.6533315Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_optimize_for_mobile_preserve_debug_info.TestOptimizeForMobilePreserveDebugInfo-20230111212322.xml (deflated 83%) 2023-01-11T22:10:59.6537074Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_pdt.TestPDT-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6548743Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_parametrization.TestParametrization-20230111212322.xml (deflated 60%) 2023-01-11T22:10:59.6554043Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_peephole.TestPeephole-20230111212322.xml (deflated 89%) 2023-01-11T22:10:59.6558382Z adding: test/test-reports/python-unittest/test_jit/TEST-TestProducerVersion-20230111212322.xml (deflated 41%) 2023-01-11T22:10:59.6566224Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_profiler.TestProfiler-20230111212322.xml (deflated 81%) 2023-01-11T22:10:59.6570217Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_python_bindings.TestPythonBindings-20230111212322.xml (deflated 81%) 2023-01-11T22:10:59.6576751Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_python_builtins.TestPythonBuiltinOP-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6579487Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_python_ir.TestPythonIr-20230111212322.xml (deflated 47%) 2023-01-11T22:10:59.6588593Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_recursive_script.TestRecursiveScript-20230111212322.xml (deflated 88%) 2023-01-11T22:10:59.6591976Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_remove_mutation.TestRemoveMutation-20230111212322.xml (deflated 80%) 2023-01-11T22:10:59.6595864Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_save_load.TestSaveLoad-20230111212322.xml (deflated 80%) 2023-01-11T22:10:59.6599046Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_save_load_for_op_version.TestSaveLoadForOpVersion-20230111212322.xml (deflated 82%) 2023-01-11T22:10:59.6623693Z adding: test/test-reports/python-unittest/test_jit/TEST-TestScript-20230111212322.xml (deflated 88%) 2023-01-11T22:10:59.6631374Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestScriptDict-20230111212322.xml (deflated 79%) 2023-01-11T22:10:59.6636921Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_list_dict.TestScriptList-20230111212322.xml (deflated 83%) 2023-01-11T22:10:59.6644127Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_scriptmod_ann.TestScriptModuleInstanceAttributeTypeAnnotation-20230111212322.xml (deflated 87%) 2023-01-11T22:10:59.6647481Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_script_profile.TestScriptProfile-20230111212322.xml (deflated 76%) 2023-01-11T22:10:59.6652224Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_slice.TestSlice-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6655538Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_sparse.TestSparse-20230111212322.xml (deflated 72%) 2023-01-11T22:10:59.6666897Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_string_formatting.TestStringFormatting-20230111212322.xml (deflated 90%) 2023-01-11T22:10:59.6672544Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_symbolic_shape_analysis.TestSymbolicShapeAnalysis-20230111212322.xml (deflated 87%) 2023-01-11T22:10:59.6676166Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_builtins.TestTensorBuiltins-20230111212322.xml (deflated 74%) 2023-01-11T22:10:59.6682651Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_tensor_creation_ops.TestTensorCreationOps-20230111212322.xml (deflated 80%) 2023-01-11T22:10:59.6687069Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_tensor_methods.TestTensorMethods-20230111212322.xml (deflated 62%) 2023-01-11T22:10:59.6695850Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_torchbind.TestTorchbind-20230111212322.xml (deflated 88%) 2023-01-11T22:10:59.6708110Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_tracer.TestTracer-20230111212322.xml (deflated 87%) 2023-01-11T22:10:59.6713131Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_type_sharing.TestTypeSharing-20230111212322.xml (deflated 82%) 2023-01-11T22:10:59.6719786Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_types.TestTypesAndAnnotation-20230111212322.xml (deflated 83%) 2023-01-11T22:10:59.6731970Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_typing.TestTyping-20230111212322.xml (deflated 88%) 2023-01-11T22:10:59.6737107Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_union.TestUnion-20230111212322.xml (deflated 86%) 2023-01-11T22:10:59.6747874Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_unsupported_ops.TestUnsupportedOps-20230111212322.xml (deflated 61%) 2023-01-11T22:10:59.6752621Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_upgraders.TestUpgraders-20230111212322.xml (deflated 85%) 2023-01-11T22:10:59.6755635Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_warn.TestWarn-20230111212322.xml (deflated 78%) 2023-01-11T22:10:59.6759516Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_with.TestWith-20230111212322.xml (deflated 73%) 2023-01-11T22:10:59.6767841Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_data_parallel.TestDataParallel-20230111212322.xml (deflated 78%) 2023-01-11T22:10:59.6772489Z adding: test/test-reports/python-unittest/test_jit/TEST-jit.test_save_load.TestSaveLoadFlatbuffer-20230111212322.xml (deflated 84%) 2023-01-11T22:10:59.6786057Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-CPUReproTests-20230111212334.xml (deflated 90%) 2023-01-11T22:10:59.6989288Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-CpuTests-20230111212334.xml (deflated 94%) 2023-01-11T22:10:59.6995748Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-ExprPrinterTests-20230111212334.xml (deflated 40%) 2023-01-11T22:10:59.7026374Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-SweepInputsCpuTest-20230111212334.xml (deflated 97%) 2023-01-11T22:10:59.7037903Z adding: test/test-reports/python-unittest/inductor.test_torchinductor/TEST-TestIndexingSimplification-20230111212334.xml (deflated 57%) 2023-01-11T22:10:59.7046842Z adding: test/test-reports/python-unittest/test_meta/TEST-TestMetaConverter-20230111212538.xml (deflated 77%) 2023-01-11T22:10:59.7051067Z adding: test/test-reports/python-unittest/test_proxy_tensor/TEST-TestFakeProxyTensor-20230111212543.xml (deflated 68%) 2023-01-11T22:10:59.7063052Z adding: test/test-reports/python-unittest/test_proxy_tensor/TEST-TestGenericProxyTensorFake-20230111212543.xml (deflated 85%) 2023-01-11T22:10:59.7066181Z adding: test/test-reports/python-unittest/test_proxy_tensor/TEST-TestGenericProxyTensorReal-20230111212543.xml (deflated 84%) 2023-01-11T22:10:59.7078234Z adding: test/test-reports/python-unittest/test_proxy_tensor/TEST-TestGenericProxyTensorSymbolic-20230111212543.xml (deflated 81%) 2023-01-11T22:10:59.7081123Z adding: test/test-reports/python-unittest/test_proxy_tensor/TEST-TestSymbolicTracing-20230111212543.xml (deflated 84%) 2023-01-11T22:10:59.7085380Z adding: test/test-reports/python-unittest/test_public_bindings/TEST-TestPublicBindings-20230111212622.xml (deflated 56%) 2023-01-11T22:10:59.7096358Z adding: test/test-reports/python-unittest/test_python_dispatch/TEST-TestPythonDispatch-20230111212628.xml (deflated 86%) 2023-01-11T22:10:59.7103727Z adding: test/test-reports/python-unittest/test_python_dispatch/TEST-TestPythonDispatcher-20230111212628.xml (deflated 55%) 2023-01-11T22:10:59.7110709Z adding: test/test-reports/python-unittest/test_python_dispatch/TEST-TestPythonRegistration-20230111212628.xml (deflated 68%) 2023-01-11T22:10:59.7115099Z adding: test/test-reports/python-unittest/test_sparse/TEST-TestSparseMeta-20230111212640.xml (deflated 40%) 2023-01-11T22:10:59.7130805Z adding: test/test-reports/python-unittest/test_sparse/TEST-TestSparseOneOff-20230111212640.xml (deflated 58%) 2023-01-11T22:10:59.7135441Z adding: test/test-reports/python-unittest/test_stateless/TEST-TestPythonOptimizeMode-20230111212644.xml (deflated 40%) 2023-01-11T22:10:59.7138389Z adding: test/test-reports/python-unittest/test_stateless/TEST-TestStatelessDeprecation-20230111212644.xml (deflated 42%) 2023-01-11T22:10:59.7141884Z adding: test/test-reports/python-unittest/test_stateless/TEST-TestStatelessFunctionalAPI-20230111212644.xml (deflated 78%) 2023-01-11T22:10:59.7149618Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertClose-20230111212654.xml (deflated 84%) 2023-01-11T22:10:59.7159591Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseContainer-20230111212654.xml (deflated 70%) 2023-01-11T22:10:59.7163473Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseErrorMessage-20230111212654.xml (deflated 84%) 2023-01-11T22:10:59.7166691Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseQuantized-20230111212654.xml (deflated 69%) 2023-01-11T22:10:59.7174226Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseBSC-20230111212654.xml (deflated 70%) 2023-01-11T22:10:59.7176729Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseBSR-20230111212654.xml (deflated 70%) 2023-01-11T22:10:59.7179333Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseCOO-20230111212654.xml (deflated 76%) 2023-01-11T22:10:59.7183434Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseCSC-20230111212654.xml (deflated 70%) 2023-01-11T22:10:59.7192675Z adding: test/test-reports/python-unittest/test_testing/TEST-TestAssertCloseSparseCSR-20230111212654.xml (deflated 63%) 2023-01-11T22:10:59.7195771Z adding: test/test-reports/python-unittest/test_testing/TEST-TestFrameworkUtils-20230111212654.xml (deflated 40%) 2023-01-11T22:10:59.7198833Z adding: test/test-reports/python-unittest/test_testing/TEST-TestImports-20230111212654.xml (deflated 58%) 2023-01-11T22:10:59.7202394Z adding: test/test-reports/python-unittest/test_testing/TEST-TestOpInfos-20230111212654.xml (deflated 53%) 2023-01-11T22:10:59.7211625Z adding: test/test-reports/python-unittest/test_testing/TEST-TestTestParametrization-20230111212654.xml (deflated 88%) 2023-01-11T22:10:59.7224402Z adding: test/test-reports/python-unittest/test_transformers/TEST-TestTransformers-20230111212719.xml (deflated 91%) 2023-01-11T22:10:59.7228765Z adding: test/test-reports/python-unittest/test_utils/TEST-TestAssert-20230111212728.xml (deflated 52%) 2023-01-11T22:10:59.7232416Z adding: test/test-reports/python-unittest/test_utils/TEST-TestCheckpoint-20230111212728.xml (deflated 78%) 2023-01-11T22:10:59.7235078Z adding: test/test-reports/python-unittest/test_utils/TEST-TestCppExtensionUtils-20230111212728.xml (deflated 55%) 2023-01-11T22:10:59.7242417Z adding: test/test-reports/python-unittest/test_utils/TEST-TestDataLoaderUtils-20230111212728.xml (deflated 62%) 2023-01-11T22:10:59.7246539Z adding: test/test-reports/python-unittest/test_utils/TEST-TestExtensionUtils-20230111212728.xml (deflated 41%) 2023-01-11T22:10:59.7250943Z adding: test/test-reports/python-unittest/test_utils/TEST-TestHipify-20230111212728.xml (deflated 39%) 2023-01-11T22:10:59.7253923Z adding: test/test-reports/python-unittest/test_utils/TEST-TestONNXUtils-20230111212728.xml (deflated 52%) 2023-01-11T22:10:59.7264961Z adding: test/test-reports/python-unittest/test_utils/TEST-TestStandaloneCPPJIT-20230111212728.xml (deflated 40%) 2023-01-11T22:10:59.7277718Z adding: test/test-reports/python-unittest/test_utils/TEST-TestBottleneck-20230111212728.xml (deflated 51%) 2023-01-11T22:10:59.7281313Z adding: test/test-reports/python-unittest/test_utils/TEST-TestCollectEnv-20230111212728.xml (deflated 41%) 2023-01-11T22:10:59.7284888Z adding: test/test-reports/python-unittest/backends.xeon.test_launch/TEST-TestTorchrun-20230111212734.xml (deflated 47%) 2023-01-11T22:10:59.7293782Z adding: test/test-reports/python-unittest/benchmark_utils.test_benchmark_utils/TEST-TestBenchmarkUtils-20230111212740.xml (deflated 78%) 2023-01-11T22:10:59.7301041Z adding: test/test-reports/python-unittest/dynamo.test_aot_autograd/TEST-AotAutogradFallbackTests-20230111212744.xml (deflated 81%) 2023-01-11T22:10:59.7304704Z adding: test/test-reports/python-unittest/dynamo.test_aot_cudagraphs/TEST-TestAotCudagraphs-20230111212751.xml (deflated 83%) 2023-01-11T22:10:59.7315026Z adding: test/test-reports/python-unittest/dynamo.test_comptime/TEST-ComptimeTests-20230111212755.xml (deflated 77%) 2023-01-11T22:10:59.7325010Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesExportTests-20230111212759.xml (deflated 93%) 2023-01-11T22:10:59.7336211Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesFunctionTests-20230111212759.xml (deflated 95%) 2023-01-11T22:10:59.7351061Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesMiscTests-20230111212759.xml (deflated 92%) 2023-01-11T22:10:59.7359755Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesNNModuleTests-20230111212759.xml (deflated 92%) 2023-01-11T22:10:59.7378415Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesReproTests-20230111212759.xml (deflated 89%) 2023-01-11T22:10:59.7390700Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesSubGraphTests-20230111212759.xml (deflated 92%) 2023-01-11T22:10:59.7394687Z adding: test/test-reports/python-unittest/dynamo.test_dynamic_shapes/TEST-torch._dynamo.testing.DynamicShapesUnspecTests-20230111212759.xml (deflated 82%) 2023-01-11T22:10:59.7400049Z adding: test/test-reports/python-unittest/dynamo.test_export_mutations/TEST-MutationExportTests-20230111212841.xml (deflated 81%) 2023-01-11T22:10:59.7412341Z adding: test/test-reports/python-unittest/dynamo.test_functions/TEST-FunctionTests-20230111212845.xml (deflated 95%) 2023-01-11T22:10:59.7416708Z adding: test/test-reports/python-unittest/dynamo.test_global/TEST-TestGlobals-20230111212850.xml (deflated 85%) 2023-01-11T22:10:59.7422375Z adding: test/test-reports/python-unittest/dynamo.test_minifier/TEST-MinifierTests-20230111212857.xml (deflated 85%) 2023-01-11T22:10:59.7427465Z adding: test/test-reports/python-unittest/dynamo.test_model_output/TEST-TestHFPretrained-20230111212940.xml (deflated 42%) 2023-01-11T22:10:59.7437904Z adding: test/test-reports/python-unittest/dynamo.test_model_output/TEST-TestModelOutput-20230111212940.xml (deflated 82%) 2023-01-11T22:10:59.7450092Z adding: test/test-reports/python-unittest/dynamo.test_modules/TEST-NNModuleTests-20230111212943.xml (deflated 90%) 2023-01-11T22:10:59.7455332Z adding: test/test-reports/python-unittest/dynamo.test_modules/TEST-OptimizedModuleTest-20230111212943.xml (deflated 76%) 2023-01-11T22:10:59.7459580Z adding: test/test-reports/python-unittest/dynamo.test_nops/TEST-NopTests-20230111212949.xml (deflated 67%) 2023-01-11T22:10:59.7463837Z adding: test/test-reports/python-unittest/dynamo.test_optimizers/TEST-End2EndTests-20230111212953.xml (deflated 48%) 2023-01-11T22:10:59.7470707Z adding: test/test-reports/python-unittest/dynamo.test_optimizers/TEST-OptimizerTests-20230111212953.xml (deflated 87%) 2023-01-11T22:10:59.7475123Z adding: test/test-reports/python-unittest/dynamo.test_python_autograd/TEST-TestPythonAutograd-20230111212958.xml (deflated 77%) 2023-01-11T22:10:59.7487196Z adding: test/test-reports/python-unittest/dynamo.test_replay_record/TEST-ReplayRecordTests-20230111213006.xml (deflated 82%) 2023-01-11T22:10:59.7493131Z adding: test/test-reports/python-unittest/dynamo.test_skip_non_tensor/TEST-SkipNonTensorTests-20230111213010.xml (deflated 79%) 2023-01-11T22:10:59.7503799Z adding: test/test-reports/python-unittest/dynamo.test_subgraphs/TEST-SubGraphTests-20230111213014.xml (deflated 92%) 2023-01-11T22:10:59.7510702Z adding: test/test-reports/python-unittest/dynamo.test_verify_correctness/TEST-TestVerifyCorrectness-20230111213025.xml (deflated 69%) 2023-01-11T22:10:59.7514984Z adding: test/test-reports/python-unittest/inductor.test_minifier/TEST-MinifierTests-20230111213029.xml (deflated 87%) 2023-01-11T22:10:59.7521864Z adding: test/test-reports/python-unittest/lazy.test_debug_util/TEST-DebugUtilTest-20230111213221.xml (deflated 39%) 2023-01-11T22:10:59.7525667Z adding: test/test-reports/python-unittest/lazy.test_reuse_ir/TEST-TestLazyReuseIr-20230111213232.xml (deflated 66%) 2023-01-11T22:10:59.7530393Z adding: test/test-reports/python-unittest/lazy.test_step_closures/TEST-ClosuresTest-20230111213236.xml (deflated 67%) 2023-01-11T22:10:59.7534122Z adding: test/test-reports/python-unittest/lazy.test_ts_opinfo/TEST-TestLazyDynamicOps-20230111213243.xml (deflated 40%) 2023-01-11T22:10:59.7541510Z adding: test/test-reports/python-unittest/lazy.test_ts_opinfo/TEST-TestLazyTensor-20230111213243.xml (deflated 58%) 2023-01-11T22:10:59.7547012Z adding: test/test-reports/python-unittest/nn.test_dropout/TEST-TestDropoutNN-20230111213247.xml (deflated 65%) 2023-01-11T22:10:59.7551621Z adding: test/test-reports/python-unittest/nn.test_embedding/TEST-TestEmbeddingNN-20230111213251.xml (deflated 87%) 2023-01-11T22:10:59.7564154Z adding: test/test-reports/python-unittest/nn.test_lazy_modules/TEST-TestLazyModules-20230111213259.xml (deflated 89%) 2023-01-11T22:10:59.7571090Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleGlobalHooks-20230111213303.xml (deflated 71%) 2023-01-11T22:10:59.7573946Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHookNN-20230111213303.xml (deflated 79%) 2023-01-11T22:10:59.7576677Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestModuleHooks-20230111213303.xml (deflated 78%) 2023-01-11T22:10:59.7585764Z adding: test/test-reports/python-unittest/nn.test_module_hooks/TEST-TestStateDictHooks-20230111213303.xml (deflated 75%) 2023-01-11T22:10:59.7589656Z adding: test/test-reports/python-unittest/nn.test_multihead_attention/TEST-TestMultiheadAttentionNN-20230111213307.xml (deflated 71%) 2023-01-11T22:10:59.7594923Z adding: test/test-reports/python-unittest/nn.test_packed_sequence/TEST-PackedSequenceTest-20230111213315.xml (deflated 81%) 2023-01-11T22:10:59.7605193Z adding: test/test-reports/python-unittest/nn.test_parametrization/TEST-TestNNParametrization-20230111213319.xml (deflated 83%) 2023-01-11T22:10:59.7611522Z adding: test/test-reports/python-unittest/nn.test_pruning/TEST-TestPruningNN-20230111213323.xml (deflated 79%) 2023-01-11T22:10:59.7623772Z adding: test/test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestDataFlow-20230111213327.xml (deflated 73%) 2023-01-11T22:10:59.7629568Z adding: test/test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestIdentifyGradients-20230111213327.xml (deflated 72%) 2023-01-11T22:10:59.7633774Z adding: test/test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestMemoryProfiler-20230111213327.xml (deflated 42%) 2023-01-11T22:10:59.7643507Z adding: test/test-reports/python-unittest/profiler.test_memory_profiler/TEST-TestMemoryProfilerE2E-20230111213327.xml (deflated 84%) 2023-01-11T22:10:59.7647153Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestExecutionGraph-20230111213334.xml (deflated 73%) 2023-01-11T22:10:59.7650900Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestExperimentalUtils-20230111213334.xml (deflated 83%) 2023-01-11T22:10:59.7658388Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestProfiler-20230111213334.xml (deflated 75%) 2023-01-11T22:10:59.7664935Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestProfilerITT-20230111213334.xml (deflated 41%) 2023-01-11T22:10:59.7668742Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestRecordFunction-20230111213334.xml (deflated 70%) 2023-01-11T22:10:59.7678443Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestTorchTidyProfiler-20230111213334.xml (deflated 90%) 2023-01-11T22:10:59.7682845Z adding: test/test-reports/python-unittest/profiler.test_profiler/TEST-TestProfilerCUDA-20230111213334.xml (deflated 57%) 2023-01-11T22:10:59.7686496Z adding: test/test-reports/python-unittest/test_autocast/TEST-TestAutocastCPU-20230111213344.xml (deflated 77%) 2023-01-11T22:10:59.7689863Z adding: test/test-reports/python-unittest/test_autocast/TEST-TestTorchAutocast-20230111213344.xml (deflated 42%) 2023-01-11T22:10:59.7701556Z adding: test/test-reports/python-unittest/test_autocast/TEST-TestAutocastGPU-20230111213344.xml (deflated 45%) 2023-01-11T22:10:59.7705965Z adding: test/test-reports/python-unittest/test_bundled_inputs/TEST-TestBundledInputs-20230111213352.xml (deflated 78%) 2023-01-11T22:10:59.7709454Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestConcatDataset-20230111213408.xml (deflated 74%) 2023-01-11T22:10:59.7717545Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestDataLoader-20230111213408.xml (deflated 82%) 2023-01-11T22:10:59.7728643Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestDataLoaderPersistentWorkers-20230111213408.xml (deflated 85%) 2023-01-11T22:10:59.7732434Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestDatasetRandomSplit-20230111213408.xml (deflated 76%) 2023-01-11T22:10:59.7735952Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestDictDataLoader-20230111213408.xml (deflated 70%) 2023-01-11T22:10:59.7738491Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestNamedTupleDataLoader-20230111213408.xml (deflated 43%) 2023-01-11T22:10:59.7756976Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestSetAffinity-20230111213408.xml (deflated 40%) 2023-01-11T22:10:59.7764081Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestTensorDataset-20230111213408.xml (deflated 72%) 2023-01-11T22:10:59.7769729Z adding: test/test-reports/python-unittest/test_dataloader/TEST-IntegrationTestDataLoaderDataPipe-20230111213408.xml (deflated 43%) 2023-01-11T22:10:59.7778477Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestConvAfterFork-20230111213408.xml (deflated 41%) 2023-01-11T22:10:59.7790692Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestCustomPinFn-20230111213408.xml (deflated 58%) 2023-01-11T22:10:59.7795193Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestIndividualWorkerQueue-20230111213408.xml (deflated 42%) 2023-01-11T22:10:59.7798961Z adding: test/test-reports/python-unittest/test_dataloader/TEST-TestStringDataLoader-20230111213408.xml (deflated 41%) 2023-01-11T22:10:59.7802715Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestCircularSerialization-20230111213536.xml (deflated 54%) 2023-01-11T22:10:59.7809899Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestDataChunk-20230111213536.xml (deflated 76%) 2023-01-11T22:10:59.7814038Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestFunctionalIterDataPipe-20230111213536.xml (deflated 85%) 2023-01-11T22:10:59.7818281Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestFunctionalMapDataPipe-20230111213536.xml (deflated 71%) 2023-01-11T22:10:59.7825367Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestGraph-20230111213536.xml (deflated 67%) 2023-01-11T22:10:59.7828458Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeCountSampleYielded-20230111213536.xml (deflated 75%) 2023-01-11T22:10:59.7831850Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeGraphFastForward-20230111213536.xml (deflated 66%) 2023-01-11T22:10:59.7842870Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterDataPipeSingletonConstraint-20230111213536.xml (deflated 74%) 2023-01-11T22:10:59.7851019Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestIterableDataPipeBasic-20230111213536.xml (deflated 70%) 2023-01-11T22:10:59.7854951Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestSharding-20230111213536.xml (deflated 70%) 2023-01-11T22:10:59.7858241Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestStreamWrapper-20230111213536.xml (deflated 68%) 2023-01-11T22:10:59.7864006Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestTyping-20230111213536.xml (deflated 80%) 2023-01-11T22:10:59.7876494Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestCaptureDataFrame-20230111213536.xml (deflated 42%) 2023-01-11T22:10:59.7880056Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestDataFramesPipes-20230111213536.xml (deflated 79%) 2023-01-11T22:10:59.7882920Z adding: test/test-reports/python-unittest/test_datapipe/TEST-TestSerialization-20230111213536.xml (deflated 59%) 2023-01-11T22:10:59.7887305Z adding: test/test-reports/python-unittest/test_dynamic_shapes/TEST-TestPySymInt-20230111213553.xml (deflated 84%) 2023-01-11T22:10:59.7900384Z adding: test/test-reports/python-unittest/test_dynamic_shapes/TEST-TestSymNumberMagicMethods-20230111213553.xml (deflated 96%) 2023-01-11T22:10:59.7909980Z adding: test/test-reports/python-unittest/test_expanded_weights/TEST-TestExpandedWeightModule-20230111213559.xml (deflated 95%) 2023-01-11T22:10:59.7913757Z adding: test/test-reports/python-unittest/test_functional_autograd_benchmark/TEST-TestFunctionalAutogradBenchmark-20230111213603.xml (deflated 54%) 2023-01-11T22:10:59.7917074Z adding: test/test-reports/python-unittest/test_functional_optim/TEST-TestFunctionalOptimParity-20230111213630.xml (deflated 71%) 2023-01-11T22:10:59.7931649Z adding: test/test-reports/python-unittest/test_functionalization/TEST-TestCrossRefFunctionalization-20230111213634.xml (deflated 85%) 2023-01-11T22:10:59.7938519Z adding: test/test-reports/python-unittest/test_functionalization/TEST-TestFunctionalization-20230111213634.xml (deflated 83%) 2023-01-11T22:10:59.7951281Z adding: test/test-reports/python-unittest/test_futures/TEST-TestFuture-20230111213653.xml (deflated 84%) 2023-01-11T22:10:59.7958825Z adding: test/test-reports/python-unittest/test_fx_experimental/TEST-TestFXExperimental-20230111213658.xml (deflated 79%) 2023-01-11T22:10:59.7972156Z adding: test/test-reports/python-unittest/test_fx_passes/TEST-TestFXGraphPasses-20230111213716.xml (deflated 91%) 2023-01-11T22:10:59.7975993Z adding: test/test-reports/python-unittest/test_fx_passes/TEST-TestFXMatcherUtils-20230111213716.xml (deflated 87%) 2023-01-11T22:10:59.7981374Z adding: test/test-reports/python-unittest/test_fx_reinplace_pass/TEST-TestReinplacePass-20230111213721.xml (deflated 81%) 2023-01-11T22:10:59.7984760Z adding: test/test-reports/python-unittest/test_import_stats/TEST-TestImportTime-20230111213729.xml (deflated 53%) 2023-01-11T22:10:59.7996007Z adding: test/test-reports/python-unittest/test_itt/TEST-TestItt-20230111213736.xml (deflated 40%) 2023-01-11T22:10:59.8001434Z adding: test/test-reports/python-unittest/test_jit_autocast/TEST-TestAutocast-20230111213741.xml (deflated 90%) 2023-01-11T22:10:59.8013105Z adding: test/test-reports/python-unittest/test_jit_autocast/TEST-TestJitTraceAutocast-20230111213741.xml (deflated 75%) 2023-01-11T22:10:59.8018857Z adding: test/test-reports/python-unittest/test_jit_fuser_te/TEST-jit.test_fuser_common.TestFuserCommon-20230111213759.xml (deflated 48%) 2023-01-11T22:10:59.8033452Z adding: test/test-reports/python-unittest/test_jit_fuser_te/TEST-TestTEFuserDynamic-20230111213759.xml (deflated 86%) 2023-01-11T22:10:59.8046876Z adding: test/test-reports/python-unittest/test_jit_fuser_te/TEST-TestTEFuserStatic-20230111213759.xml (deflated 86%) 2023-01-11T22:10:59.8051695Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestEnableDisableLlgaFuser-20230111213937.xml (deflated 41%) 2023-01-11T22:10:59.8061533Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestModel-20230111213937.xml (deflated 93%) 2023-01-11T22:10:59.8064998Z adding: test/test-reports/python-unittest/test_jit_llga_fuser/TEST-TestDynamoAOT-20230111213937.xml (deflated 41%) 2023-01-11T22:10:59.8074726Z adding: test/test-reports/python-unittest/test_legacy_vmap/TEST-TestVmapAPI-20230111213946.xml (deflated 91%) 2023-01-11T22:10:59.8079361Z adding: test/test-reports/python-unittest/test_legacy_vmap/TEST-TestVmapOperators-20230111213946.xml (deflated 87%) 2023-01-11T22:10:59.8083023Z adding: test/test-reports/python-unittest/test_license/TEST-TestLicense-20230111213952.xml (deflated 50%) 2023-01-11T22:10:59.8092677Z adding: test/test-reports/python-unittest/test_logging/TEST-LoggingTest-20230111213955.xml (deflated 43%) 2023-01-11T22:10:59.8103262Z adding: test/test-reports/python-unittest/test_maskedtensor/TEST-TestBinary-20230111214002.xml (deflated 93%) 2023-01-11T22:10:59.8133265Z adding: test/test-reports/python-unittest/test_maskedtensor/TEST-TestReductions-20230111214002.xml (deflated 85%) 2023-01-11T22:10:59.8149410Z adding: test/test-reports/python-unittest/test_maskedtensor/TEST-TestUnary-20230111214002.xml (deflated 96%) 2023-01-11T22:10:59.8153201Z adding: test/test-reports/python-unittest/test_mkl_verbose/TEST-TestMKLVerbose-20230111214010.xml (deflated 53%) 2023-01-11T22:10:59.8164157Z adding: test/test-reports/python-unittest/test_mkldnn/TEST-TestMkldnn-20230111214017.xml (deflated 83%) 2023-01-11T22:10:59.8169451Z adding: test/test-reports/python-unittest/test_mkldnn_fusion/TEST-TestMkldnnFusion-20230111214103.xml (deflated 71%) 2023-01-11T22:10:59.8172778Z adding: test/test-reports/python-unittest/test_mkldnn_verbose/TEST-TestMKLDNNVerbose-20230111214131.xml (deflated 53%) 2023-01-11T22:10:59.8176547Z adding: test/test-reports/python-unittest/test_model_dump/TEST-TestModelDump-20230111214139.xml (deflated 75%) 2023-01-11T22:10:59.8184881Z adding: test/test-reports/python-unittest/test_monitor/TEST-TestMonitor-20230111214151.xml (deflated 66%) 2023-01-11T22:10:59.8190293Z adding: test/test-reports/python-unittest/test_monitor/TEST-TestMonitorTensorboard-20230111214151.xml (deflated 41%) 2023-01-11T22:10:59.8203625Z adding: test/test-reports/python-unittest/test_namedtensor/TEST-TestNamedTensor-20230111214156.xml (deflated 88%) 2023-01-11T22:10:59.8210717Z adding: test/test-reports/python-unittest/test_native_functions/TEST-TestNativeFunctions-20230111214201.xml (deflated 91%) 2023-01-11T22:10:59.8222867Z adding: test/test-reports/python-unittest/test_nestedtensor/TEST-TestNestedTensor-20230111214211.xml (deflated 90%) 2023-01-11T22:10:59.8228812Z adding: test/test-reports/python-unittest/test_numba_integration/TEST-TestNumbaIntegration-20230111214215.xml (deflated 75%) 2023-01-11T22:10:59.8232613Z adding: test/test-reports/python-unittest/test_nvfuser_frontend/TEST-TestNvFuserFrontend-20230111214218.xml (deflated 84%) 2023-01-11T22:10:59.8237639Z adding: test/test-reports/python-unittest/test_nvfuser_dynamo/TEST-TestNvFuserDynamo-20230111214218.xml (deflated 71%) 2023-01-11T22:10:59.8244360Z adding: test/test-reports/python-unittest/test_openmp/TEST-TestOpenMP_ParallelFor-20230111214222.xml (deflated 56%) 2023-01-11T22:10:59.8249630Z adding: test/test-reports/python-unittest/test_optim/TEST-TestDifferentiableOptimizer-20230111214222.xml (deflated 82%) 2023-01-11T22:10:59.8264014Z adding: test/test-reports/python-unittest/test_optim/TEST-TestLRScheduler-20230111214222.xml (deflated 91%) 2023-01-11T22:10:59.8270191Z adding: test/test-reports/python-unittest/test_optim/TEST-TestOptim-20230111214222.xml (deflated 81%) 2023-01-11T22:10:59.8274291Z adding: test/test-reports/python-unittest/test_optim/TEST-TestSWAUtils-20230111214222.xml (deflated 76%) 2023-01-11T22:10:59.8286577Z adding: test/test-reports/python-unittest/test_package/TEST-test_dependency_api.TestDependencyAPI-20230111214229.xml (deflated 81%) 2023-01-11T22:10:59.8299825Z adding: test/test-reports/python-unittest/test_package/TEST-test_dependency_hooks.TestDependencyHooks-20230111214229.xml (deflated 77%) 2023-01-11T22:10:59.8304152Z adding: test/test-reports/python-unittest/test_package/TEST-test_digraph.TestDiGraph-20230111214229.xml (deflated 84%) 2023-01-11T22:10:59.8311623Z adding: test/test-reports/python-unittest/test_package/TEST-test_directory_reader.DirectoryReaderTest-20230111214229.xml (deflated 76%) 2023-01-11T22:10:59.8323205Z adding: test/test-reports/python-unittest/test_package/TEST-test_glob_group.TestGlobGroup-20230111214229.xml (deflated 86%) 2023-01-11T22:10:59.8329554Z adding: test/test-reports/python-unittest/test_package/TEST-test_importer.TestImporter-20230111214229.xml (deflated 72%) 2023-01-11T22:10:59.8336733Z adding: test/test-reports/python-unittest/test_package/TEST-test_load_bc_packages.TestLoadBCPackages-20230111214229.xml (deflated 71%) 2023-01-11T22:10:59.8341953Z adding: test/test-reports/python-unittest/test_package/TEST-test_mangling.TestMangling-20230111214229.xml (deflated 79%) 2023-01-11T22:10:59.8355893Z adding: test/test-reports/python-unittest/test_package/TEST-test_misc.TestMisc-20230111214229.xml (deflated 73%) 2023-01-11T22:10:59.8363274Z adding: test/test-reports/python-unittest/test_package/TEST-test_package_fx.TestPackageFX-20230111214229.xml (deflated 75%) 2023-01-11T22:10:59.8381273Z adding: test/test-reports/python-unittest/test_package/TEST-test_package_script.TestPackageScript-20230111214229.xml (deflated 86%) 2023-01-11T22:10:59.8385486Z adding: test/test-reports/python-unittest/test_package/TEST-test_repackage.TestRepackage-20230111214229.xml (deflated 48%) 2023-01-11T22:10:59.8390673Z adding: test/test-reports/python-unittest/test_package/TEST-test_resources.TestResources-20230111214229.xml (deflated 69%) 2023-01-11T22:10:59.8399635Z adding: test/test-reports/python-unittest/test_package/TEST-test_save_load.TestSaveLoad-20230111214229.xml (deflated 76%) 2023-01-11T22:10:59.8409994Z adding: test/test-reports/python-unittest/test_package/TEST-test_analyze.TestAnalyze-20230111214229.xml (deflated 44%) 2023-01-11T22:10:59.8414710Z adding: test/test-reports/python-unittest/test_package/TEST-test_model.ModelTest-20230111214229.xml (deflated 71%) 2023-01-11T22:10:59.8418456Z adding: test/test-reports/python-unittest/test_per_overload_api/TEST-TestPerOverloadAPI-20230111214235.xml (deflated 63%) 2023-01-11T22:10:59.8421799Z adding: test/test-reports/python-unittest/test_pytree/TEST-TestPytree-20230111214243.xml (deflated 84%) 2023-01-11T22:10:59.8433950Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_ao_migration.TestAOMigrationNNIntrinsic-20230111214248.xml (deflated 89%) 2023-01-11T22:10:59.8438048Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_ao_migration.TestAOMigrationNNQuantized-20230111214248.xml (deflated 92%) 2023-01-11T22:10:59.8448559Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_quantization.TestAOMigrationQuantization-20230111214248.xml (deflated 92%) 2023-01-11T22:10:59.8452310Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.ao_migration.test_quantization_fx.TestAOMigrationQuantizationFx-20230111214248.xml (deflated 92%) 2023-01-11T22:10:59.8461395Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_backend_config.TestBackendConfig-20230111214248.xml (deflated 90%) 2023-01-11T22:10:59.8464488Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_bias_correction_eager.TestBiasCorrectionEager-20230111214248.xml (deflated 65%) 2023-01-11T22:10:59.8468246Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestComparatorOps-20230111214248.xml (deflated 63%) 2023-01-11T22:10:59.8471320Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_deprecated_jit_quant.TestDeprecatedJitQuantized-20230111214248.xml (deflated 82%) 2023-01-11T22:10:59.8482960Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestDistributed-20230111214248.xml (deflated 72%) 2023-01-11T22:10:59.8487814Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_module.TestDynamicQuantizedModule-20230111214248.xml (deflated 81%) 2023-01-11T22:10:59.8490612Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestDynamicQuantizedOps-20230111214248.xml (deflated 86%) 2023-01-11T22:10:59.8502270Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_equalize_eager.TestEqualizeEager-20230111214248.xml (deflated 75%) 2023-01-11T22:10:59.8508298Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_equalize_fx.TestEqualizeFx-20230111214248.xml (deflated 81%) 2023-01-11T22:10:59.8519497Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXGraphMatcher-20230111214248.xml (deflated 79%) 2023-01-11T22:10:59.8523293Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXGraphMatcherModels-20230111214248.xml (deflated 58%) 2023-01-11T22:10:59.8533534Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIs-20230111214248.xml (deflated 88%) 2023-01-11T22:10:59.8541180Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteCoreAPIsModels-20230111214248.xml (deflated 92%) 2023-01-11T22:10:59.8546341Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_numeric_suite_fx.TestFXNumericSuiteNShadows-20230111214248.xml (deflated 81%) 2023-01-11T22:10:59.8557054Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestFakeQuantize-20230111214248.xml (deflated 70%) 2023-01-11T22:10:59.8561686Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_ops.TestFakeQuantizeOps-20230111214248.xml (deflated 88%) 2023-01-11T22:10:59.8569383Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_fuse_eager.TestFuseEager-20230111214248.xml (deflated 77%) 2023-01-11T22:10:59.8573645Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestFuseFx-20230111214248.xml (deflated 77%) 2023-01-11T22:10:59.8577028Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_ops.TestFusedObsFakeQuant-20230111214248.xml (deflated 74%) 2023-01-11T22:10:59.8584680Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestFusedObsFakeQuantModule-20230111214248.xml (deflated 82%) 2023-01-11T22:10:59.8587689Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_fusion_passes.TestFusionPasses-20230111214248.xml (deflated 53%) 2023-01-11T22:10:59.8593034Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxDetectInputWeightEqualization-20230111214248.xml (deflated 71%) 2023-01-11T22:10:59.8595832Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxDetectOutliers-20230111214248.xml (deflated 74%) 2023-01-11T22:10:59.8602903Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportClass-20230111214248.xml (deflated 72%) 2023-01-11T22:10:59.8609108Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportDetectDynamicStatic-20230111214248.xml (deflated 53%) 2023-01-11T22:10:59.8612147Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportDetector-20230111214248.xml (deflated 79%) 2023-01-11T22:10:59.8616587Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportObserver-20230111214248.xml (deflated 73%) 2023-01-11T22:10:59.8628821Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_model_report_fx.TestFxModelReportVisualizer-20230111214248.xml (deflated 77%) 2023-01-11T22:10:59.8632728Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestHistogramObserver-20230111214248.xml (deflated 78%) 2023-01-11T22:10:59.8636131Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_model_numerics.TestModelNumericsEager-20230111214248.xml (deflated 74%) 2023-01-11T22:10:59.8647958Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_numeric_suite_eager.TestNumericSuiteEager-20230111214248.xml (deflated 85%) 2023-01-11T22:10:59.8653389Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestObserver-20230111214248.xml (deflated 79%) 2023-01-11T22:10:59.8658072Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestPadding-20230111214248.xml (deflated 62%) 2023-01-11T22:10:59.8664321Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQNNPackOps-20230111214248.xml (deflated 85%) 2023-01-11T22:10:59.8675779Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_docs.TestQuantizationDocs-20230111214248.xml (deflated 69%) 2023-01-11T22:10:59.8681255Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeDynamicJitOps-20230111214248.xml (deflated 59%) 2023-01-11T22:10:59.8686068Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeDynamicJitPasses-20230111214248.xml (deflated 84%) 2023-01-11T22:10:59.8692047Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_ptq.TestQuantizeEagerOps-20230111214248.xml (deflated 86%) 2023-01-11T22:10:59.8703359Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_ptq.TestQuantizeEagerPTQDynamic-20230111214248.xml (deflated 80%) 2023-01-11T22:10:59.8707601Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_ptq.TestQuantizeEagerPTQStatic-20230111214248.xml (deflated 79%) 2023-01-11T22:10:59.8715277Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_qat.TestQuantizeEagerQAT-20230111214248.xml (deflated 80%) 2023-01-11T22:10:59.8720846Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.eager.test_quantize_eager_qat.TestQuantizeEagerQATNumerics-20230111214248.xml (deflated 83%) 2023-01-11T22:10:59.8736176Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestQuantizeFx-20230111214248.xml (deflated 87%) 2023-01-11T22:10:59.8743025Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestQuantizeFxModels-20230111214248.xml (deflated 81%) 2023-01-11T22:10:59.8755991Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_fx.TestQuantizeFxOps-20230111214248.xml (deflated 87%) 2023-01-11T22:10:59.8760503Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeJit-20230111214248.xml (deflated 71%) 2023-01-11T22:10:59.8764066Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeJitOps-20230111214248.xml (deflated 85%) 2023-01-11T22:10:59.8772331Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.jit.test_quantize_jit.TestQuantizeJitPasses-20230111214248.xml (deflated 86%) 2023-01-11T22:10:59.8776344Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_quantize_pt2e.TestQuantizePT2EModels-20230111214248.xml (deflated 50%) 2023-01-11T22:10:59.8780087Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedConv-20230111214248.xml (deflated 81%) 2023-01-11T22:10:59.8784042Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedEmbeddingOps-20230111214248.xml (deflated 82%) 2023-01-11T22:10:59.8794990Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_functional.TestQuantizedFunctionalOps-20230111214248.xml (deflated 71%) 2023-01-11T22:10:59.8798362Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedLinear-20230111214248.xml (deflated 79%) 2023-01-11T22:10:59.8810352Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_op.TestQuantizedOps-20230111214248.xml (deflated 87%) 2023-01-11T22:10:59.8830241Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_tensor.TestQuantizedTensor-20230111214248.xml (deflated 89%) 2023-01-11T22:10:59.8835207Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_workflow_module.TestRecordHistogramObserver-20230111214248.xml (deflated 64%) 2023-01-11T22:10:59.8838745Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_module.TestReferenceQuantizedModule-20230111214248.xml (deflated 71%) 2023-01-11T22:10:59.8846082Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.bc.test_backward_compatibility.TestSerialization-20230111214248.xml (deflated 84%) 2023-01-11T22:10:59.8853189Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_quantized_module.TestStaticQuantizedModule-20230111214248.xml (deflated 86%) 2023-01-11T22:10:59.8863595Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.fx.test_subgraph_rewriter.TestSubgraphRewriter-20230111214248.xml (deflated 85%) 2023-01-11T22:10:59.8867259Z adding: test/test-reports/python-unittest/test_quantization/TEST-quantization.core.test_utils.TestUtils-20230111214248.xml (deflated 74%) 2023-01-11T22:10:59.8872930Z adding: test/test-reports/python-unittest/test_schema_check/TEST-TestSchemaCheck-20230111214354.xml (deflated 85%) 2023-01-11T22:10:59.8885482Z adding: test/test-reports/python-unittest/test_serialization/TEST-TestOldSerialization-20230111214358.xml (deflated 92%) 2023-01-11T22:10:59.8896014Z adding: test/test-reports/python-unittest/test_serialization/TEST-TestSerialization-20230111214358.xml (deflated 92%) 2023-01-11T22:10:59.8900328Z adding: test/test-reports/python-unittest/test_serialization/TEST-TestSubclassSerialization-20230111214358.xml (deflated 76%) 2023-01-11T22:10:59.8905001Z adding: test/test-reports/python-unittest/test_set_default_mobile_cpu_allocator/TEST-TestSetDefaultMobileCPUAllocator-20230111214432.xml (deflated 57%) 2023-01-11T22:10:59.8913899Z adding: test/test-reports/python-unittest/test_subclass/TEST-TestSubclass-20230111214440.xml (deflated 91%) 2023-01-11T22:10:59.8918529Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardEmbedding-20230111214444.xml (deflated 60%) 2023-01-11T22:10:59.8921490Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardNumpy-20230111214444.xml (deflated 77%) 2023-01-11T22:10:59.8926246Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPyTorchNumpy-20230111214444.xml (deflated 73%) 2023-01-11T22:10:59.8936224Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardPytorchGraph-20230111214444.xml (deflated 64%) 2023-01-11T22:10:59.8939473Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummary-20230111214444.xml (deflated 84%) 2023-01-11T22:10:59.8943878Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardSummaryWriter-20230111214444.xml (deflated 64%) 2023-01-11T22:10:59.8951598Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardUtils-20230111214444.xml (deflated 66%) 2023-01-11T22:10:59.8954974Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardWriter-20230111214444.xml (deflated 40%) 2023-01-11T22:10:59.8958242Z adding: test/test-reports/python-unittest/test_tensorboard/TEST-TestTensorBoardFigure-20230111214444.xml (deflated 60%) 2023-01-11T22:10:59.8962958Z adding: test/test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestExprHandlePyBind-20230111214511.xml (deflated 39%) 2023-01-11T22:10:59.8970285Z adding: test/test-reports/python-unittest/test_tensorexpr_pybind/TEST-TestTensorExprPyBind-20230111214511.xml (deflated 84%) 2023-01-11T22:10:59.8973932Z adding: test/test-reports/python-unittest/test_type_hints/TEST-TestTypeHints-20230111214515.xml (deflated 40%) 2023-01-11T22:10:59.8979337Z adding: test/test-reports/python-unittest/test_type_info/TEST-TestDTypeInfo-20230111214519.xml (deflated 61%) 2023-01-11T22:10:59.8987369Z adding: test/test-reports/python-unittest/test_vulkan/TEST-TestVulkanRewritePass-20230111214535.xml (deflated 42%) 2023-01-11T22:10:59.8998908Z adding: test/test-reports/python-unittest/test_weak/TEST-WeakKeyDictionaryTestCase-20230111214538.xml (deflated 84%) 2023-01-11T22:10:59.9003702Z adding: test/test-reports/python-unittest/test_weak/TEST-WeakTest-20230111214538.xml (deflated 80%) 2023-01-11T22:10:59.9009339Z adding: test/test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKOps-20230111214547.xml (deflated 62%) 2023-01-11T22:10:59.9023455Z adding: test/test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKRewritePass-20230111214547.xml (deflated 52%) 2023-01-11T22:10:59.9032664Z adding: test/test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKSerDes-20230111214547.xml (deflated 66%) 2023-01-11T22:10:59.9037684Z adding: test/test-reports/python-unittest/test_xnnpack_integration/TEST-TestXNNPACKConv1dTransformPass-20230111214547.xml (deflated 59%) 2023-01-11T22:10:59.9041838Z adding: test/test-reports/python-unittest/test_autograd/TEST-TestAllowMutationOnSaved-20230111215719.xml (deflated 81%) 2023-01-11T22:10:59.9059242Z adding: test/test-reports/python-unittest/test_autograd/TEST-TestAutograd-20230111215719.xml (deflated 87%) 2023-01-11T22:10:59.9061873Z adding: test/test-reports/python-unittest/test_autograd/TEST-autograd.test_complex.TestAutogradComplex-20230111215719.xml (deflated 60%) 2023-01-11T22:10:59.9070651Z adding: test/test-reports/python-unittest/test_autograd/TEST-TestAutogradForwardMode-20230111215719.xml (deflated 86%) 2023-01-11T22:10:59.9074602Z adding: test/test-reports/python-unittest/test_autograd/TEST-TestAutogradForwardModeBatchedGrad-20230111215719.xml (deflated 64%) 2023-01-11T22:10:59.9086048Z adding: test/test-reports/python-unittest/test_autograd/TEST-autograd.test_functional.TestAutogradFunctional-20230111215719.xml (deflated 94%) 2023-01-11T22:10:59.9088912Z adding: test/test-reports/python-unittest/test_autograd/TEST-TestAutogradInferenceMode-20230111215719.xml (deflated 87%) 2023-01-11T22:10:59.9092236Z adding: test/test-reports/python-unittest/test_autograd/TEST-TestMultithreadAutograd-20230111215719.xml (deflated 76%) 2023-01-11T22:10:59.9120332Z adding: test/test-reports/python-unittest/test_cpp_extensions_jit/TEST-TestCppExtensionJIT-20230111215738.xml (deflated 87%) 2023-01-11T22:10:59.9121457Z adding: test/test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorConstHandling-20230111215813.xml (deflated 76%) 2023-01-11T22:10:59.9122019Z adding: test/test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorConverterTest-20230111215813.xml (deflated 73%) 2023-01-11T22:10:59.9122778Z adding: test/test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorOperatorInvariants-20230111215813.xml (deflated 60%) 2023-01-11T22:10:59.9123587Z adding: test/test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorPropTest-20230111215813.xml (deflated 41%) 2023-01-11T22:10:59.9131699Z adding: test/test-reports/python-unittest/test_fake_tensor/TEST-FakeTensorTest-20230111215813.xml (deflated 85%) 2023-01-11T22:10:59.9146529Z adding: test/test-reports/python-unittest/test_nn/TEST-TestAddRelu-20230111215816.xml (deflated 53%) 2023-01-11T22:10:59.9155163Z adding: test/test-reports/python-unittest/test_nn/TEST-TestConstantPadNd-20230111215816.xml (deflated 53%) 2023-01-11T22:10:59.9158454Z adding: test/test-reports/python-unittest/test_nn/TEST-TestFunctionalPickle-20230111215816.xml (deflated 41%) 2023-01-11T22:10:59.9161280Z adding: test/test-reports/python-unittest/test_nn/TEST-TestFusionEval-20230111215816.xml (deflated 40%) 2023-01-11T22:10:59.9164631Z adding: test/test-reports/python-unittest/test_nn/TEST-TestFusionUtils-20230111215816.xml (deflated 54%) 2023-01-11T22:10:59.9226679Z adding: test/test-reports/python-unittest/test_nn/TEST-TestNN-20230111215816.xml (deflated 96%) 2023-01-11T22:10:59.9231546Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestBroadcastAllOverride-20230111215849.xml (deflated 42%) 2023-01-11T22:10:59.9235611Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestDisabledTorchFunction-20230111215849.xml (deflated 41%) 2023-01-11T22:10:59.9238244Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestEinsumOverride-20230111215849.xml (deflated 41%) 2023-01-11T22:10:59.9244959Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestGradCheckOverride-20230111215849.xml (deflated 41%) 2023-01-11T22:10:59.9248986Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestGradNewOnesOverride-20230111215849.xml (deflated 41%) 2023-01-11T22:10:59.9252002Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestIndexing-20230111215849.xml (deflated 73%) 2023-01-11T22:10:59.9254510Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestIterator-20230111215849.xml (deflated 40%) 2023-01-11T22:10:59.9263752Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestNamedTuple-20230111215849.xml (deflated 39%) 2023-01-11T22:10:59.9267294Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestPickle-20230111215849.xml (deflated 39%) 2023-01-11T22:10:59.9270985Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestRNN-20230111215849.xml (deflated 38%) 2023-01-11T22:10:59.9273555Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestResolveName-20230111215849.xml (deflated 40%) 2023-01-11T22:10:59.9284095Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestTorchFunctionMode-20230111215849.xml (deflated 85%) 2023-01-11T22:10:59.9318664Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestTorchFunctionOverride-20230111215849.xml (deflated 96%) 2023-01-11T22:10:59.9322892Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestTorchFunctionWarning-20230111215849.xml (deflated 42%) 2023-01-11T22:10:59.9325605Z adding: test/test-reports/python-unittest/test_overrides/TEST-TestWrapTorchFunction-20230111215849.xml (deflated 41%) 2023-01-11T22:10:59.9329247Z adding: test/test-reports/python-unittest/test_sparse_csr/TEST-TestSparseCSRSampler-20230111215853.xml (deflated 40%) 2023-01-11T22:10:59.9336110Z adding: test/test-reports/python-unittest/test_torch/TEST-TestBasicVitalSigns-20230111215856.xml (deflated 63%) 2023-01-11T22:10:59.9356484Z adding: test/test-reports/python-unittest/test_torch/TEST-TestTorch-20230111215856.xml (deflated 93%) 2023-01-11T22:10:59.9360937Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestAgainstScipy-20230111215900.xml (deflated 62%) 2023-01-11T22:10:59.9365348Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestConstraints-20230111215900.xml (deflated 56%) 2023-01-11T22:10:59.9376505Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributionShapes-20230111215900.xml (deflated 91%) 2023-01-11T22:10:59.9387045Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestDistributions-20230111215900.xml (deflated 91%) 2023-01-11T22:10:59.9390834Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestFunctors-20230111215900.xml (deflated 70%) 2023-01-11T22:10:59.9395223Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestJit-20230111215900.xml (deflated 73%) 2023-01-11T22:10:59.9398067Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestKL-20230111215900.xml (deflated 82%) 2023-01-11T22:10:59.9406133Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestLazyLogitsInitialization-20230111215900.xml (deflated 58%) 2023-01-11T22:10:59.9409538Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestNumericalStability-20230111215900.xml (deflated 83%) 2023-01-11T22:10:59.9414813Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestRsample-20230111215900.xml (deflated 76%) 2023-01-11T22:10:59.9418355Z adding: test/test-reports/python-unittest/distributions.test_distributions/TEST-TestValidation-20230111215900.xml (deflated 67%) 2023-01-11T22:10:59.9429213Z adding: test/test-reports/python-unittest/nn.test_convolution/TEST-TestConvolutionNN-20230111215941.xml (deflated 84%) 2023-01-11T22:10:59.9434430Z adding: test/test-reports/python-unittest/nn.test_pooling/TEST-TestAvgPool-20230111215949.xml (deflated 77%) 2023-01-11T22:10:59.9438548Z adding: test/test-reports/python-unittest/nn.test_pooling/TEST-TestPoolingNN-20230111215949.xml (deflated 80%) 2023-01-11T22:10:59.9475998Z adding: test/test-reports/python-unittest/test_cpp_api_parity/TEST-TestCppApiParity-20230111215955.xml (deflated 96%) 2023-01-11T22:10:59.9479477Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestCppExtensionAOT-20230111220011.xml (deflated 80%) 2023-01-11T22:10:59.9482318Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestORTTensor-20230111220011.xml (deflated 68%) 2023-01-11T22:10:59.9491529Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestPybindTypeCasters-20230111220011.xml (deflated 41%) 2023-01-11T22:10:59.9494446Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestRNGExtension-20230111220011.xml (deflated 41%) 2023-01-11T22:10:59.9502347Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_ninja/TEST-TestTorchLibrary-20230111220011.xml (deflated 42%) 2023-01-11T22:10:59.9506706Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestCppExtensionAOT-20230111220021.xml (deflated 81%) 2023-01-11T22:10:59.9517239Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestORTTensor-20230111220021.xml (deflated 68%) 2023-01-11T22:10:59.9522817Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestPybindTypeCasters-20230111220021.xml (deflated 41%) 2023-01-11T22:10:59.9525449Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestRNGExtension-20230111220021.xml (deflated 41%) 2023-01-11T22:10:59.9529658Z adding: test/test-reports/python-unittest/test_cpp_extensions_aot_no_ninja/TEST-TestTorchLibrary-20230111220021.xml (deflated 41%) 2023-01-11T22:10:59.9537851Z adding: test/test-reports/python-unittest/test_cpp_extensions_open_device_registration/TEST-TestCppExtensionOpenRgistration-20230111220023.xml (deflated 55%) 2023-01-11T22:10:59.9543924Z adding: test/test-reports/python-unittest/test_dispatch/TEST-TestDispatch-20230111220051.xml (deflated 81%) 2023-01-11T22:10:59.9548105Z adding: test/test-reports/python-unittest/test_dispatch/TEST-TestPythonDispatcher-20230111220051.xml (deflated 75%) 2023-01-11T22:10:59.9548777Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_gradual_type.AnnotationsTest-20230111220117.xml (deflated 78%) 2023-01-11T22:10:59.9549382Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_cse_pass.TestCSEPass-20230111220117.xml (deflated 85%) 2023-01-11T22:10:59.9549911Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_common_passes.TestCommonPass-20230111220117.xml (deflated 82%) 2023-01-11T22:10:59.9551689Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_fx_const_fold.TestConstFold-20230111220117.xml (deflated 83%) 2023-01-11T22:10:59.9552382Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_fx_param_shape_control_flow.TestConstParamShapeInControlFlow-20230111220117.xml (deflated 82%) 2023-01-11T22:10:59.9553068Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_dce_pass.TestDCE-20230111220117.xml (deflated 82%) 2023-01-11T22:10:59.9556142Z adding: test/test-reports/python-unittest/test_fx/TEST-TestFX-20230111220117.xml (deflated 87%) 2023-01-11T22:10:59.9556744Z adding: test/test-reports/python-unittest/test_fx/TEST-TestFXAPIBackwardCompatibility-20230111220117.xml (deflated 63%) 2023-01-11T22:10:59.9558351Z adding: test/test-reports/python-unittest/test_fx/TEST-TestFunctionalTracing-20230111220117.xml (deflated 94%) 2023-01-11T22:10:59.9558961Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_pass_infra.TestPassManager-20230111220117.xml (deflated 75%) 2023-01-11T22:10:59.9560070Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_subgraph_rewriter.TestSubgraphRewriter-20230111220117.xml (deflated 86%) 2023-01-11T22:10:59.9562294Z adding: test/test-reports/python-unittest/test_fx/TEST-TestVisionTracing-20230111220117.xml (deflated 88%) 2023-01-11T22:10:59.9563035Z adding: test/test-reports/python-unittest/test_fx/TEST-fx.test_gradual_type.TypeCheckerTest-20230111220117.xml (deflated 90%) 2023-01-11T22:10:59.9563718Z adding: test/test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestEnableDisableCudaFuser-20230111220508.xml (deflated 69%) 2023-01-11T22:10:59.9564309Z adding: test/test-reports/python-unittest/test_jit_cuda_fuser/TEST-jit.test_fuser_common.TestFuserCommon-20230111220508.xml (deflated 48%) 2023-01-11T22:10:59.9567016Z adding: test/test-reports/python-unittest/test_jit_cuda_fuser/TEST-TestCudaFuser-20230111220508.xml (deflated 93%) 2023-01-11T22:10:59.9567609Z adding: test/test-reports/python-unittest/test_jit_disabled/TEST-TestJitDisabled-20230111220509.xml (deflated 61%) 2023-01-11T22:10:59.9568113Z adding: test/test-reports/python-unittest/test_mobile_optimizer/TEST-TestOptimizer-20230111220513.xml (deflated 64%) 2023-01-11T22:10:59.9569560Z adding: test/test-reports/python-unittest/test_multiprocessing/TEST-TestMultiprocessing-20230111220520.xml (deflated 86%) 2023-01-11T22:10:59.9570173Z adding: test/test-reports/python-unittest/test_multiprocessing_spawn/TEST-ErrorTest-20230111220531.xml (deflated 39%) 2023-01-11T22:10:59.9570726Z adding: test/test-reports/python-unittest/test_multiprocessing_spawn/TEST-ForkTest-20230111220531.xml (deflated 77%) 2023-01-11T22:10:59.9571278Z adding: test/test-reports/python-unittest/test_multiprocessing_spawn/TEST-SpawnTest-20230111220531.xml (deflated 77%) 2023-01-11T22:10:59.9571947Z adding: test/test-reports/python-unittest/test_namedtuple_return_api/TEST-TestNamedTupleAPI-20230111220550.xml (deflated 77%) 2023-01-11T22:10:59.9572493Z adding: test/test-reports/python-unittest/test_prims/TEST-TestPrimsBasic-20230111220624.xml (deflated 53%) 2023-01-11T22:10:59.9572996Z adding: test/test-reports/python-unittest/test_show_pickle/TEST-TestShowPickle-20230111220628.xml (deflated 40%) 2023-01-11T22:10:59.9573792Z adding: test/test-reports/python-unittest/test_tensorexpr/TEST-TestTensorExprFuser-20230111220635.xml (deflated 88%) 2023-01-11T22:10:59.9581183Z adding: test/test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-43da9767f75f5d75.xml (deflated 28%) 2023-01-11T22:10:59.9585301Z adding: test/test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-c75b30b3898389b7.xml (deflated 28%) 2023-01-11T22:10:59.9588600Z adding: test/test-reports/python-pytest/inductor.test_torchinductor_opinfo/inductor.test_torchinductor_opinfo-775c9b995ca41897.xml (deflated 27%) 2023-01-11T22:10:59.9589306Z adding: test/test-reports/python-pytest/test_ops/test_ops-02e8df424f6ccae0.xml (deflated 28%) 2023-01-11T22:10:59.9589806Z adding: test/test-reports/python-pytest/test_ops/test_ops-eab6b2fd1107632b.xml (deflated 28%) 2023-01-11T22:10:59.9590343Z adding: test/test-reports/python-pytest/test_ops/test_ops-775e32094a08d97f.xml (deflated 28%) 2023-01-11T22:10:59.9591021Z adding: test/test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-c852b6361f23a757.xml (deflated 28%) 2023-01-11T22:10:59.9591592Z adding: test/test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-d9fcda48e67f6e06.xml (deflated 28%) 2023-01-11T22:10:59.9592088Z adding: test/test-reports/python-pytest/test_ops_fwd_gradients/test_ops_fwd_gradients-60a240aeadf13b46.xml (deflated 28%) 2023-01-11T22:10:59.9592589Z adding: test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-b637e26586d3453a.xml (deflated 28%) 2023-01-11T22:10:59.9593083Z adding: test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-ed1e446199e7e291.xml (deflated 28%) 2023-01-11T22:10:59.9593581Z adding: test/test-reports/python-pytest/test_ops_gradients/test_ops_gradients-3567e610b2a391c3.xml (deflated 28%) 2023-01-11T22:10:59.9594027Z adding: test/test-reports/python-pytest/test_ops_jit/test_ops_jit-5431f0498166287b.xml (deflated 28%) 2023-01-11T22:10:59.9594477Z adding: test/test-reports/python-pytest/test_ops_jit/test_ops_jit-096e00faef340b2a.xml (deflated 28%) 2023-01-11T22:10:59.9594919Z adding: test/test-reports/python-pytest/test_ops_jit/test_ops_jit-256d5705adf79135.xml (deflated 28%) 2023-01-11T22:10:59.9603987Z adding: test/test-reports/cpp-unittest/test_libtorch/test_jit.xml (deflated 92%) 2023-01-11T22:10:59.9611964Z adding: test/test-reports/cpp-unittest/test_libtorch/test_lazy.xml (deflated 93%) 2023-01-11T22:10:59.9628652Z adding: test/test-reports/cpp-unittest/test_libtorch/test_api.xml (deflated 92%) 2023-01-11T22:10:59.9642061Z adding: test/test-reports/cpp-unittest/test_libtorch/test_tensorexpr.xml (deflated 92%) 2023-01-11T22:10:59.9642572Z adding: test/test-reports/cpp-unittest/test_aot_compilation/test_mobile_nnc.xml (deflated 75%) 2023-01-11T22:10:59.9664598Z ##[group]Run # Remove any previous test reports if they exist 2023-01-11T22:10:59.9664887Z # Remove any previous test reports if they exist 2023-01-11T22:10:59.9665112Z rm -f usage-log-*.zip 2023-01-11T22:10:59.9665391Z # this workflow is also run in bazel build test, but we dont generate usage reports for it 2023-01-11T22:10:59.9665877Z # so check to see if the file exists first 2023-01-11T22:10:59.9666091Z if [ -f 'usage_log.txt' ]; then 2023-01-11T22:10:59.9666336Z  zip "usage-log-${FILE_SUFFIX}.zip" 'usage_log.txt' 2023-01-11T22:10:59.9666550Z fi 2023-01-11T22:10:59.9677209Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:10:59.9677431Z env: 2023-01-11T22:10:59.9677609Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:10:59.9677887Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:10:59.9678210Z FILE_SUFFIX: test-nogpu_AVX512-1-1-linux.2xlarge_10589559762 2023-01-11T22:10:59.9678431Z ##[endgroup] 2023-01-11T22:11:00.0043234Z adding: usage_log.txt (deflated 97%) 2023-01-11T22:11:00.0083948Z ##[group]Run seemethere/upload-artifact-s3@v5 2023-01-11T22:11:00.0084162Z with: 2023-01-11T22:11:00.0084354Z s3-prefix: pytorch/pytorch/3896346758/1/artifact 2023-01-11T22:11:00.0084571Z retention-days: 14 2023-01-11T22:11:00.0084763Z if-no-files-found: warn 2023-01-11T22:11:00.0084947Z path: test-jsons-*.zip 2023-01-11T22:11:00.0085128Z name: artifact 2023-01-11T22:11:00.0085308Z s3-bucket: gha-artifacts 2023-01-11T22:11:00.0085482Z region: us-east-1 2023-01-11T22:11:00.0085646Z env: 2023-01-11T22:11:00.0085816Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:11:00.0086083Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:11:00.0086345Z ##[endgroup] 2023-01-11T22:11:00.3775934Z NOTE: s3-prefix specified, ignoring name parameter 2023-01-11T22:11:00.3776447Z With the provided path, there will be 1 file uploaded 2023-01-11T22:11:00.3776882Z Uploading to s3 prefix: pytorch/pytorch/3896346758/1/artifact 2023-01-11T22:11:00.3835066Z Starting upload of test-jsons-test-nogpu_AVX512-1-1-linux.2xlarge_10589559762.zip 2023-01-11T22:11:00.5305161Z Finished upload of test-jsons-test-nogpu_AVX512-1-1-linux.2xlarge_10589559762.zip 2023-01-11T22:11:00.5457173Z ##[group]Run seemethere/upload-artifact-s3@v5 2023-01-11T22:11:00.5457390Z with: 2023-01-11T22:11:00.5457593Z s3-prefix: pytorch/pytorch/3896346758/1/artifact 2023-01-11T22:11:00.5457809Z retention-days: 14 2023-01-11T22:11:00.5458006Z if-no-files-found: error 2023-01-11T22:11:00.5458212Z path: test-reports-*.zip 2023-01-11T22:11:00.5458383Z name: artifact 2023-01-11T22:11:00.5458567Z s3-bucket: gha-artifacts 2023-01-11T22:11:00.5458756Z region: us-east-1 2023-01-11T22:11:00.5458909Z env: 2023-01-11T22:11:00.5459087Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:11:00.5459370Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:11:00.5459618Z ##[endgroup] 2023-01-11T22:11:00.8813063Z NOTE: s3-prefix specified, ignoring name parameter 2023-01-11T22:11:00.8813639Z With the provided path, there will be 1 file uploaded 2023-01-11T22:11:00.8814162Z Uploading to s3 prefix: pytorch/pytorch/3896346758/1/artifact 2023-01-11T22:11:00.8821550Z Starting upload of test-reports-test-nogpu_AVX512-1-1-linux.2xlarge_10589559762.zip 2023-01-11T22:11:01.0380404Z Finished upload of test-reports-test-nogpu_AVX512-1-1-linux.2xlarge_10589559762.zip 2023-01-11T22:11:01.0499203Z ##[group]Run seemethere/upload-artifact-s3@v5 2023-01-11T22:11:01.0499424Z with: 2023-01-11T22:11:01.0499616Z s3-prefix: pytorch/pytorch/3896346758/1/artifact 2023-01-11T22:11:01.0499839Z retention-days: 14 2023-01-11T22:11:01.0500036Z if-no-files-found: ignore 2023-01-11T22:11:01.0500225Z path: usage-log-*.zip 2023-01-11T22:11:01.0500416Z name: artifact 2023-01-11T22:11:01.0500599Z s3-bucket: gha-artifacts 2023-01-11T22:11:01.0500777Z region: us-east-1 2023-01-11T22:11:01.0500946Z env: 2023-01-11T22:11:01.0501118Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:11:01.0501385Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:11:01.0501652Z ##[endgroup] 2023-01-11T22:11:01.3792581Z NOTE: s3-prefix specified, ignoring name parameter 2023-01-11T22:11:01.3793058Z With the provided path, there will be 1 file uploaded 2023-01-11T22:11:01.3793528Z Uploading to s3 prefix: pytorch/pytorch/3896346758/1/artifact 2023-01-11T22:11:01.3800336Z Starting upload of usage-log-test-nogpu_AVX512-1-1-linux.2xlarge_10589559762.zip 2023-01-11T22:11:01.6215049Z Finished upload of usage-log-test-nogpu_AVX512-1-1-linux.2xlarge_10589559762.zip 2023-01-11T22:11:01.6331882Z ##[group]Run # shellcheck disable=SC2156 2023-01-11T22:11:01.6332115Z # shellcheck disable=SC2156 2023-01-11T22:11:01.6332494Z find . -iname "core.[1-9]*" -exec docker exec "${DOCKER_CONTAINER_ID}" sh -c "gdb python {} -ex 'bt' -ex 'q'" \; 2023-01-11T22:11:01.6343496Z shell: /usr/bin/bash -e {0} 2023-01-11T22:11:01.6343684Z env: 2023-01-11T22:11:01.6343850Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:11:01.6344142Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:11:01.6344409Z ##[endgroup] 2023-01-11T22:11:03.6506076Z GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1 2023-01-11T22:11:03.6506563Z Copyright (C) 2018 Free Software Foundation, Inc. 2023-01-11T22:11:03.6507089Z License GPLv3+: GNU GPL version 3 or later 2023-01-11T22:11:03.6507415Z This is free software: you are free to change and redistribute it. 2023-01-11T22:11:03.6507773Z There is NO WARRANTY, to the extent permitted by law. Type "show copying" 2023-01-11T22:11:03.6508035Z and "show warranty" for details. 2023-01-11T22:11:03.6508309Z This GDB was configured as "x86_64-linux-gnu". 2023-01-11T22:11:03.6508566Z Type "show configuration" for configuration details. 2023-01-11T22:11:03.6508822Z For bug reporting instructions, please see: 2023-01-11T22:11:03.6509051Z . 2023-01-11T22:11:03.6509316Z Find the GDB manual and other documentation resources online at: 2023-01-11T22:11:03.6509780Z . 2023-01-11T22:11:03.6509990Z For help, type "help". 2023-01-11T22:11:03.6510229Z Type "apropos word" to search for commands related to "word"... 2023-01-11T22:11:03.8372099Z Reading symbols from python...done. 2023-01-11T22:11:04.3806246Z 2023-01-11T22:11:04.3806701Z warning: core file may not match specified executable file. 2023-01-11T22:11:04.4791180Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:04.4791713Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:04.4792079Z [New LWP 8051] 2023-01-11T22:11:04.4792270Z [New LWP 8055] 2023-01-11T22:11:04.4792439Z [New LWP 8057] 2023-01-11T22:11:04.4792592Z [New LWP 8054] 2023-01-11T22:11:04.4792755Z [New LWP 8056] 2023-01-11T22:11:04.4792919Z [New LWP 8060] 2023-01-11T22:11:04.4793078Z [New LWP 8058] 2023-01-11T22:11:04.4793246Z [New LWP 8059] 2023-01-11T22:11:04.4794053Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:04.4794403Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:04.4794755Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:04.4795102Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:04.4896900Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:04.4897520Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:04.4933692Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:04.4934378Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:04.5321547Z [Thread debugging using libthread_db enabled] 2023-01-11T22:11:04.5322167Z Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". 2023-01-11T22:11:11.8977777Z 51 ../sysdeps/unix/sysv/linux/raise.c: No such file or directory. 2023-01-11T22:11:11.8978783Z warning: File "/var/lib/jenkins/workspace/.gdbinit" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load". 2023-01-11T22:11:11.8979303Z Core was generated by `/opt/conda/bin/python -bb -c from multiprocessing.spawn import spawn_main; spaw'. 2023-01-11T22:11:11.8979647Z Program terminated with signal SIGSEGV, Segmentation fault. 2023-01-11T22:11:11.8979941Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:11.8980215Z [Current thread is 1 (Thread 0x7f0970aaf200 (LWP 8051))] 2023-01-11T22:11:11.9080757Z To enable execution of this file add 2023-01-11T22:11:11.9081384Z add-auto-load-safe-path /var/lib/jenkins/workspace/.gdbinit 2023-01-11T22:11:11.9081682Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:11.9081956Z To completely disable this security protection add 2023-01-11T22:11:11.9082224Z set auto-load safe-path / 2023-01-11T22:11:11.9082468Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:11.9082740Z For more information about this security protection see the 2023-01-11T22:11:11.9083101Z "Auto-loading safe path" section in the GDB manual. E.g., run from the shell: 2023-01-11T22:11:11.9083401Z info "(gdb)Auto-loading safe path" 2023-01-11T22:11:11.9153276Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:11.9155892Z #1 0x00007f093914065b in handler_SIGSEGV(int, siginfo_t*, void*) () 2023-01-11T22:11:11.9156301Z from /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so 2023-01-11T22:11:11.9165252Z #2 2023-01-11T22:11:11.9165624Z #3 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.S:65 2023-01-11T22:11:11.9318921Z #4 0x00007f096f56d03b in string_at (ptr=0x0, size=-1) at :5564 2023-01-11T22:11:11.9321177Z #5 0x00007f0970964052 in ffi_call_unix64 () 2023-01-11T22:11:11.9330375Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:11.9330686Z #6 0x00007f09709628cd in ffi_call_int () 2023-01-11T22:11:11.9331001Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:11.9338282Z #7 0x00007f096f575879 in _call_function_pointer (argtypecount=2, argcount=2, 2023-01-11T22:11:11.9338865Z resmem=0x7ffd26424980, restype=, atypes=, 2023-01-11T22:11:11.9339234Z avalues=, pProc=0x7f096f56d002 , flags=4357) 2023-01-11T22:11:11.9339645Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:916 2023-01-11T22:11:11.9339882Z #8 _ctypes_callproc () 2023-01-11T22:11:11.9340190Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:1259 2023-01-11T22:11:11.9340560Z #9 0x00007f096f5753fe in PyCFuncPtr_call () at :4201 2023-01-11T22:11:11.9341472Z #10 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:11.9341881Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:11.9375179Z #11 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:11.9375584Z kwnames=, 2023-01-11T22:11:11.9376012Z nargsf=, args=0x7f08c996c358, 2023-01-11T22:11:11.9376397Z callable=, 2023-01-11T22:11:11.9376762Z tstate=) 2023-01-11T22:11:11.9377155Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:11.9379950Z #12 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9380243Z args=0x7f08c996c358, callable=0x7f096f824880, tstate=) 2023-01-11T22:11:11.9380605Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:11.9385134Z #13 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9385442Z args=0x7f08c996c358, callable=0x7f096f824880) 2023-01-11T22:11:11.9385790Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9389358Z #14 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9389741Z pp_stack=, trace_info=0x7ffd26424c90, 2023-01-11T22:11:11.9389981Z tstate=) 2023-01-11T22:11:11.9390292Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9390528Z #15 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9390833Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:11.9402852Z #16 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9403287Z throwflag=, 2023-01-11T22:11:11.9403651Z f=, 2023-01-11T22:11:11.9404005Z tstate=) 2023-01-11T22:11:11.9404385Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9409711Z #17 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9410335Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9411043Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9411438Z locals@entry=, con=0x7f096f7ef890, 2023-01-11T22:11:11.9411823Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9412213Z tstate@entry=) 2023-01-11T22:11:11.9412610Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9412851Z #18 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9413142Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9419033Z #19 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:11.9419362Z nargsf=, args=0x7f08c996c1c0, callable=0x7f096f7ef880, 2023-01-11T22:11:11.9419599Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9419898Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9424062Z #20 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9424377Z args=0x7f08c996c1c0, callable=0x7f096f7ef880) 2023-01-11T22:11:11.9424751Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9427296Z #21 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9427695Z pp_stack=, trace_info=0x7ffd26424e50, 2023-01-11T22:11:11.9427951Z tstate=) 2023-01-11T22:11:11.9428270Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9428502Z #22 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9428805Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:11.9441915Z #23 0x0000000000543a33 in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9442314Z throwflag=, 2023-01-11T22:11:11.9442683Z f=, 2023-01-11T22:11:11.9443037Z tstate=) 2023-01-11T22:11:11.9443425Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9448479Z #24 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:11.9449504Z argcount=, 2023-01-11T22:11:11.9449977Z args=, locals=0x0, con=0x7f08c9a90680, tstate=0x1f2cbf0) 2023-01-11T22:11:11.9450402Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9452322Z #25 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9452809Z stack=, func=0x7f08c9a90670) 2023-01-11T22:11:11.9453288Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9458306Z #26 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9458837Z args=, callable=0x7f08c9a90670, tstate=0x1f2cbf0) 2023-01-11T22:11:11.9459384Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:11.9459756Z #27 vectorcall_unbound ( 2023-01-11T22:11:11.9460162Z nargs=, args=, 2023-01-11T22:11:11.9460785Z func=, 2023-01-11T22:11:11.9461350Z unbound=, 2023-01-11T22:11:11.9461711Z tstate=) 2023-01-11T22:11:11.9462211Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1629 2023-01-11T22:11:11.9462447Z #28 vectorcall_method () 2023-01-11T22:11:11.9462823Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1661 2023-01-11T22:11:11.9463459Z #29 0x0000000000543898 in slot_mp_subscript (self=, 2023-01-11T22:11:11.9463856Z arg1=) 2023-01-11T22:11:11.9464345Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7258 2023-01-11T22:11:11.9464789Z #30 0x00000000004ef56e in _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9465320Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:2109 2023-01-11T22:11:11.9467518Z #31 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9468066Z throwflag=, 2023-01-11T22:11:11.9468527Z f=, 2023-01-11T22:11:11.9468887Z tstate=) 2023-01-11T22:11:11.9469270Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9474524Z #32 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9475152Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9475714Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9476115Z locals@entry=, con=0x7f08ca1e8170, 2023-01-11T22:11:11.9476514Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9476887Z tstate@entry=) 2023-01-11T22:11:11.9477281Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9477517Z #33 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9477801Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9482888Z #34 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:11.9483222Z nargsf=, args=0x7f08c9cf2a48, callable=0x7f08ca1e8160, 2023-01-11T22:11:11.9483460Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9483840Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9487937Z #35 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9488227Z args=0x7f08c9cf2a48, callable=0x7f08ca1e8160) 2023-01-11T22:11:11.9488570Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9491581Z #36 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9491906Z pp_stack=, trace_info=0x7ffd26425250, 2023-01-11T22:11:11.9492140Z tstate=) 2023-01-11T22:11:11.9492434Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9492678Z #37 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9493022Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:11.9493408Z #38 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9493761Z throwflag=, 2023-01-11T22:11:11.9494124Z f=, 2023-01-11T22:11:11.9494481Z tstate=) 2023-01-11T22:11:11.9494845Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9500190Z #39 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9500951Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9501715Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9502101Z locals@entry=, con=0x7f08cbef9400, 2023-01-11T22:11:11.9502502Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9502957Z tstate@entry=) 2023-01-11T22:11:11.9503345Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9503570Z #40 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9503866Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9508749Z #41 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:11.9509205Z nargsf=, args=0x6ee0f48, callable=0x7f08cbef93f0, 2023-01-11T22:11:11.9509614Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9509934Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9513550Z #42 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x6ee0f48, 2023-01-11T22:11:11.9514000Z callable=0x7f08cbef93f0) 2023-01-11T22:11:11.9514445Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9517394Z #43 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9517845Z pp_stack=, trace_info=0x7ffd26425410, 2023-01-11T22:11:11.9518265Z tstate=) 2023-01-11T22:11:11.9518632Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9518909Z #44 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9519205Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:11.9519516Z #45 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9520045Z throwflag=, 2023-01-11T22:11:11.9520549Z f=, 2023-01-11T22:11:11.9520902Z tstate=) 2023-01-11T22:11:11.9521375Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9526190Z #46 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9526764Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9527481Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9527886Z locals@entry=, con=0x7f08cbef8710, 2023-01-11T22:11:11.9528286Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9528655Z tstate@entry=) 2023-01-11T22:11:11.9529157Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9529403Z #47 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9529692Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9535018Z #48 0x00000000004f141c in do_call_core (kwdict=0x7f096f936780, 2023-01-11T22:11:11.9535500Z callargs=0x7f08c9bea520, func=0x7f08cbef8700, trace_info=0x7ffd264255d0, 2023-01-11T22:11:11.9535896Z tstate=) 2023-01-11T22:11:11.9536190Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:11.9536520Z #49 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9536820Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:11.9537092Z #50 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9537616Z throwflag=, 2023-01-11T22:11:11.9538136Z f=, 2023-01-11T22:11:11.9538494Z tstate=) 2023-01-11T22:11:11.9538857Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9543833Z #51 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9544396Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9545091Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9545474Z locals@entry=, con=0x7f096f9615b0, 2023-01-11T22:11:11.9545972Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9546487Z tstate@entry=) 2023-01-11T22:11:11.9547217Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9547479Z #52 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9547782Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9552944Z #53 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:11.9553418Z nargsf=, args=0x6e539b8, callable=0x7f096f9615a0, 2023-01-11T22:11:11.9553824Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9554138Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9557808Z #54 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x6e539b8, 2023-01-11T22:11:11.9558244Z callable=0x7f096f9615a0) 2023-01-11T22:11:11.9558712Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9561352Z #55 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9561925Z pp_stack=, trace_info=0x7ffd26425790, 2023-01-11T22:11:11.9562321Z tstate=) 2023-01-11T22:11:11.9562640Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9562926Z #56 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9563220Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:11.9563742Z #57 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9564332Z throwflag=, 2023-01-11T22:11:11.9564786Z f=, 2023-01-11T22:11:11.9565135Z tstate=) 2023-01-11T22:11:11.9565563Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9571047Z #58 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9571665Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9572296Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9572694Z locals@entry=, con=0x7f096f961f40, 2023-01-11T22:11:11.9573096Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9573591Z tstate@entry=) 2023-01-11T22:11:11.9573988Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9574227Z #59 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9574526Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9579524Z #60 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:11.9580010Z nargsf=, args=0x1faa240, callable=0x7f096f961f30, 2023-01-11T22:11:11.9580381Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9580698Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9584419Z #61 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x1faa240, 2023-01-11T22:11:11.9584880Z callable=0x7f096f961f30) 2023-01-11T22:11:11.9585344Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9587956Z #62 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9588409Z pp_stack=, trace_info=0x7ffd26425950, 2023-01-11T22:11:11.9588833Z tstate=) 2023-01-11T22:11:11.9589183Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9589459Z #63 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9589764Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:11.9590201Z #64 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9590551Z throwflag=, 2023-01-11T22:11:11.9590913Z f=, 2023-01-11T22:11:11.9591271Z tstate=) 2023-01-11T22:11:11.9591648Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9597182Z #65 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9597788Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9598423Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9598924Z locals@entry=, con=0x7f096f7e6de0, 2023-01-11T22:11:11.9599312Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9599694Z tstate@entry=) 2023-01-11T22:11:11.9600080Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9600319Z #66 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9600604Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9605980Z #67 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:11.9606496Z nargsf=, args=0x7f096faa8200, callable=0x7f096f7e6dd0, 2023-01-11T22:11:11.9606851Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9607161Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9611158Z #68 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:11.9611441Z args=0x7f096faa8200, callable=0x7f096f7e6dd0) 2023-01-11T22:11:11.9611765Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9614657Z #69 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:11.9615918Z pp_stack=, trace_info=0x7ffd26425b10, 2023-01-11T22:11:11.9616163Z tstate=) 2023-01-11T22:11:11.9616629Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9617032Z #70 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9617596Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:11.9617849Z #71 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9618154Z throwflag=, 2023-01-11T22:11:11.9618516Z f=, 2023-01-11T22:11:11.9618858Z tstate=) 2023-01-11T22:11:11.9619235Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:11.9623557Z #72 _PyEval_Vector (kwnames=, 2023-01-11T22:11:11.9624130Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:11.9624880Z args@entry=, locals=0x0, 2023-01-11T22:11:11.9625279Z locals@entry=, con=0x7f096f7e6d50, 2023-01-11T22:11:11.9625679Z con@entry=, tstate=0x1f2cbf0, 2023-01-11T22:11:11.9626062Z tstate@entry=) 2023-01-11T22:11:11.9626442Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9626677Z #73 _PyFunction_Vectorcall () 2023-01-11T22:11:11.9626973Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:11.9631144Z #74 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7f096fa81e40, 2023-01-11T22:11:11.9631680Z nargsf=, args=, callable=0x7f096f7e6d40, 2023-01-11T22:11:11.9632041Z tstate=0x1f2cbf0) 2023-01-11T22:11:11.9632354Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9634790Z #75 PyObject_Vectorcall (kwnames=0x7f096fa81e40, nargsf=, 2023-01-11T22:11:11.9635272Z args=, callable=0x7f096f7e6d40) 2023-01-11T22:11:11.9635775Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:11.9638690Z #76 call_function (kwnames=0x7f096fa81e40, oparg=, 2023-01-11T22:11:11.9639181Z pp_stack=, trace_info=0x7ffd26425cd0, 2023-01-11T22:11:11.9639583Z tstate=) 2023-01-11T22:11:11.9639896Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:11.9640126Z #77 _PyEval_EvalFrameDefault () 2023-01-11T22:11:11.9640430Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:11.9641691Z #78 0x0000000000594b72 in _PyEval_EvalFrame ( 2023-01-11T22:11:11.9642166Z throwflag=, 2023-01-11T22:11:11.9642802Z f=, 2023-01-11T22:11:11.9643156Z tstate=) 2023-01-11T22:11:11.9643611Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/bits/call.c:46 2023-01-11T22:11:11.9643871Z #79 _PyEval_Vector () 2023-01-11T22:11:11.9644161Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:11.9650356Z #80 0x0000000000594ab7 in PyEval_EvalCode (co=co@entry=0x7f096fa44920, 2023-01-11T22:11:11.9650950Z globals=globals@entry=0x7f096fa36600, locals=locals@entry=0x7f096fa36600) 2023-01-11T22:11:11.9651572Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:1134 2023-01-11T22:11:11.9652377Z #81 0x00000000005c6e57 in run_eval_code_obj () 2023-01-11T22:11:11.9652974Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1291 2023-01-11T22:11:11.9654897Z #82 0x00000000005c1d40 in run_mod () 2023-01-11T22:11:11.9655464Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1312 2023-01-11T22:11:11.9657435Z #83 0x00000000005b9ebb in PyRun_StringFlags.localalias () 2023-01-11T22:11:11.9658084Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1183 2023-01-11T22:11:11.9660010Z #84 0x00000000005b9cfb in PyRun_SimpleStringFlags.localalias () 2023-01-11T22:11:11.9660675Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:503 2023-01-11T22:11:11.9670337Z #85 0x00000000005b8d5c in pymain_run_command ( 2023-01-11T22:11:11.9670897Z command=) 2023-01-11T22:11:11.9671407Z at /croot/python-split_1669298683653/work/build-static/python.c:252 2023-01-11T22:11:11.9672976Z #86 pymain_run_python (exitcode=0x7ffd26425f30) 2023-01-11T22:11:11.9673579Z at /croot/python-split_1669298683653/work/build-static/python.c:582 2023-01-11T22:11:11.9673938Z #87 Py_RunMain.localalias () 2023-01-11T22:11:11.9674252Z at /croot/python-split_1669298683653/work/build-static/python.c:670 2023-01-11T22:11:11.9689613Z #88 0x0000000000587c29 in Py_BytesMain (argc=, 2023-01-11T22:11:11.9690022Z argv=) 2023-01-11T22:11:11.9690470Z at /croot/python-split_1669298683653/work/build-static/python.c:1090 2023-01-11T22:11:11.9695337Z #89 0x00007f096fb13c87 in __libc_start_main (main=0x587be0
, argc=5, 2023-01-11T22:11:11.9695856Z argv=0x7ffd26426138, init=, fini=, 2023-01-11T22:11:11.9696214Z rtld_fini=, stack_end=0x7ffd26426128) 2023-01-11T22:11:11.9696616Z at ../csu/libc-start.c:310 2023-01-11T22:11:11.9696950Z #90 0x0000000000587ade in _start () 2023-01-11T22:11:11.9697541Z at /usr/local/src/conda/python-3.10.8/Modules/_io/clinic/peg_api.c:880 2023-01-11T22:11:12.1271130Z GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1 2023-01-11T22:11:12.1271653Z Copyright (C) 2018 Free Software Foundation, Inc. 2023-01-11T22:11:12.1272196Z License GPLv3+: GNU GPL version 3 or later 2023-01-11T22:11:12.1272729Z This is free software: you are free to change and redistribute it. 2023-01-11T22:11:12.1273195Z There is NO WARRANTY, to the extent permitted by law. Type "show copying" 2023-01-11T22:11:12.1273817Z and "show warranty" for details. 2023-01-11T22:11:12.1274291Z This GDB was configured as "x86_64-linux-gnu". 2023-01-11T22:11:12.1274682Z Type "show configuration" for configuration details. 2023-01-11T22:11:12.1275084Z For bug reporting instructions, please see: 2023-01-11T22:11:12.1275480Z . 2023-01-11T22:11:12.1275877Z Find the GDB manual and other documentation resources online at: 2023-01-11T22:11:12.1276305Z . 2023-01-11T22:11:12.1276674Z For help, type "help". 2023-01-11T22:11:12.1277041Z Type "apropos word" to search for commands related to "word"... 2023-01-11T22:11:12.2407814Z Reading symbols from python...done. 2023-01-11T22:11:12.7714498Z 2023-01-11T22:11:12.7714827Z warning: core file may not match specified executable file. 2023-01-11T22:11:12.8663741Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:12.8664247Z [New LWP 8050] 2023-01-11T22:11:12.8664586Z [New LWP 8064] 2023-01-11T22:11:12.8664835Z [New LWP 8061] 2023-01-11T22:11:12.8665137Z [New LWP 8062] 2023-01-11T22:11:12.8665414Z [New LWP 8067] 2023-01-11T22:11:12.8665707Z [New LWP 8065] 2023-01-11T22:11:12.8665996Z [New LWP 8066] 2023-01-11T22:11:12.8666277Z [New LWP 8063] 2023-01-11T22:11:12.8667220Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:12.8668126Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:12.8669272Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:12.8670135Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:12.8671297Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:12.8682591Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:12.8683620Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:12.8684668Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:12.8685680Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:12.8987190Z [Thread debugging using libthread_db enabled] 2023-01-11T22:11:12.8987888Z Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". 2023-01-11T22:11:19.7339877Z 51 ../sysdeps/unix/sysv/linux/raise.c: No such file or directory. 2023-01-11T22:11:19.7340728Z warning: File "/var/lib/jenkins/workspace/.gdbinit" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load". 2023-01-11T22:11:19.7341236Z Core was generated by `/opt/conda/bin/python -bb -c from multiprocessing.spawn import spawn_main; spaw'. 2023-01-11T22:11:19.7341582Z Program terminated with signal SIGSEGV, Segmentation fault. 2023-01-11T22:11:19.7341873Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:19.7342148Z [Current thread is 1 (Thread 0x7fb0efc43200 (LWP 8050))] 2023-01-11T22:11:19.7369430Z To enable execution of this file add 2023-01-11T22:11:19.7369934Z add-auto-load-safe-path /var/lib/jenkins/workspace/.gdbinit 2023-01-11T22:11:19.7370228Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:19.7370478Z To completely disable this security protection add 2023-01-11T22:11:19.7370745Z set auto-load safe-path / 2023-01-11T22:11:19.7370995Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:19.7371447Z For more information about this security protection see the 2023-01-11T22:11:19.7371796Z "Auto-loading safe path" section in the GDB manual. E.g., run from the shell: 2023-01-11T22:11:19.7372102Z info "(gdb)Auto-loading safe path" 2023-01-11T22:11:19.7413909Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:19.7416405Z #1 0x00007fb0b82d465b in handler_SIGSEGV(int, siginfo_t*, void*) () 2023-01-11T22:11:19.7416895Z from /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so 2023-01-11T22:11:19.7425573Z #2 2023-01-11T22:11:19.7425914Z #3 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.S:65 2023-01-11T22:11:19.7581496Z #4 0x00007fb0ee70103b in string_at (ptr=0x0, size=-1) at :5564 2023-01-11T22:11:19.7583946Z #5 0x00007fb0efaf8052 in ffi_call_unix64 () 2023-01-11T22:11:19.7584289Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:19.7592617Z #6 0x00007fb0efaf68cd in ffi_call_int () 2023-01-11T22:11:19.7593014Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:19.7600186Z #7 0x00007fb0ee709879 in _call_function_pointer (argtypecount=2, argcount=2, 2023-01-11T22:11:19.7600607Z resmem=0x7ffde41f1550, restype=, atypes=, 2023-01-11T22:11:19.7600906Z avalues=, pProc=0x7fb0ee701002 , flags=4357) 2023-01-11T22:11:19.7601280Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:916 2023-01-11T22:11:19.7601702Z #8 _ctypes_callproc () 2023-01-11T22:11:19.7602015Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:1259 2023-01-11T22:11:19.7602290Z #9 0x00007fb0ee7093fe in PyCFuncPtr_call () at :4201 2023-01-11T22:11:19.7603594Z #10 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:19.7604001Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:19.7608720Z #11 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:19.7609360Z kwnames=, 2023-01-11T22:11:19.7609763Z nargsf=, args=0x7fb048b00358, 2023-01-11T22:11:19.7610153Z callable=, 2023-01-11T22:11:19.7610515Z tstate=) 2023-01-11T22:11:19.7610939Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:19.7613234Z #12 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7613620Z args=0x7fb048b00358, callable=0x7fb0ee9b8880, tstate=) 2023-01-11T22:11:19.7613976Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:19.7617828Z #13 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7618364Z args=0x7fb048b00358, callable=0x7fb0ee9b8880) 2023-01-11T22:11:19.7618767Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7621429Z #14 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7621901Z pp_stack=, trace_info=0x7ffde41f1860, 2023-01-11T22:11:19.7622361Z tstate=) 2023-01-11T22:11:19.7622839Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7623243Z #15 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7623735Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:19.7624166Z #16 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7624730Z throwflag=, 2023-01-11T22:11:19.7625112Z f=, 2023-01-11T22:11:19.7625615Z tstate=) 2023-01-11T22:11:19.7625996Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7630142Z #17 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7630788Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7631595Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7632192Z locals@entry=, con=0x7fb0ee983890, 2023-01-11T22:11:19.7632592Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7632978Z tstate@entry=) 2023-01-11T22:11:19.7633442Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7633744Z #18 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7634181Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7638018Z #19 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:19.7638582Z nargsf=, args=0x7fb048b001c0, callable=0x7fb0ee983880, 2023-01-11T22:11:19.7638993Z tstate=0x1020bf0) 2023-01-11T22:11:19.7639514Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7642222Z #20 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7642810Z args=0x7fb048b001c0, callable=0x7fb0ee983880) 2023-01-11T22:11:19.7643339Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7645298Z #21 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7645821Z pp_stack=, trace_info=0x7ffde41f1a20, 2023-01-11T22:11:19.7646375Z tstate=) 2023-01-11T22:11:19.7646923Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7647226Z #22 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7647665Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:19.7648238Z #23 0x0000000000543a33 in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7648791Z throwflag=, 2023-01-11T22:11:19.7649332Z f=, 2023-01-11T22:11:19.7649742Z tstate=) 2023-01-11T22:11:19.7650196Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7655113Z #24 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:19.7655740Z argcount=, 2023-01-11T22:11:19.7656398Z args=, locals=0x0, con=0x7fb048c28680, tstate=0x1020bf0) 2023-01-11T22:11:19.7656897Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7657935Z #25 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7658498Z stack=, func=0x7fb048c28670) 2023-01-11T22:11:19.7659024Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7663523Z #26 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7664213Z args=, callable=0x7fb048c28670, tstate=0x1020bf0) 2023-01-11T22:11:19.7664883Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:19.7665393Z #27 vectorcall_unbound ( 2023-01-11T22:11:19.7666041Z nargs=, args=, 2023-01-11T22:11:19.7666492Z func=, 2023-01-11T22:11:19.7666941Z unbound=, 2023-01-11T22:11:19.7667372Z tstate=) 2023-01-11T22:11:19.7667783Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1629 2023-01-11T22:11:19.7668144Z #28 vectorcall_method () 2023-01-11T22:11:19.7668606Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1661 2023-01-11T22:11:19.7669021Z #29 0x0000000000543898 in slot_mp_subscript (self=, 2023-01-11T22:11:19.7669371Z arg1=) 2023-01-11T22:11:19.7669741Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7258 2023-01-11T22:11:19.7670066Z #30 0x00000000004ef56e in _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7670406Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:2109 2023-01-11T22:11:19.7672255Z #31 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7672990Z throwflag=, 2023-01-11T22:11:19.7673564Z f=, 2023-01-11T22:11:19.7673940Z tstate=) 2023-01-11T22:11:19.7674614Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7678659Z #32 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7679147Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7679660Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7680156Z locals@entry=, con=0x7fb049380170, 2023-01-11T22:11:19.7680618Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7681016Z tstate@entry=) 2023-01-11T22:11:19.7681489Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7681789Z #33 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7682246Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7686993Z #34 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:19.7687613Z nargsf=, args=0x7fb048e86a48, callable=0x7fb049380160, 2023-01-11T22:11:19.7687983Z tstate=0x1020bf0) 2023-01-11T22:11:19.7688352Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7691619Z #35 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7692147Z args=0x7fb048e86a48, callable=0x7fb049380160) 2023-01-11T22:11:19.7692855Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7694948Z #36 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7695629Z pp_stack=, trace_info=0x7ffde41f1e20, 2023-01-11T22:11:19.7710818Z tstate=) 2023-01-11T22:11:19.7711393Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7711835Z #37 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7712318Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:19.7712594Z #38 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7712895Z throwflag=, 2023-01-11T22:11:19.7713381Z f=, 2023-01-11T22:11:19.7713744Z tstate=) 2023-01-11T22:11:19.7714127Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7714429Z #39 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7714891Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7715440Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7715842Z locals@entry=, con=0x7fb04b08d400, 2023-01-11T22:11:19.7716236Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7716622Z tstate@entry=) 2023-01-11T22:11:19.7717010Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7717234Z #40 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7717544Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7717943Z #41 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:19.7718662Z nargsf=, args=0x5fd4638, callable=0x7fb04b08d3f0, 2023-01-11T22:11:19.7718983Z tstate=0x1020bf0) 2023-01-11T22:11:19.7719293Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7719612Z #42 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x5fd4638, 2023-01-11T22:11:19.7719919Z callable=0x7fb04b08d3f0) 2023-01-11T22:11:19.7720420Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7720936Z #43 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7721322Z pp_stack=, trace_info=0x7ffde41f1fe0, 2023-01-11T22:11:19.7721540Z tstate=) 2023-01-11T22:11:19.7721840Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7722084Z #44 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7722374Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:19.7722633Z #45 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7722937Z throwflag=, 2023-01-11T22:11:19.7723282Z f=, 2023-01-11T22:11:19.7723638Z tstate=) 2023-01-11T22:11:19.7724016Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7726737Z #46 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7727382Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7727979Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7728379Z locals@entry=, con=0x7fb04b08c710, 2023-01-11T22:11:19.7728782Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7729299Z tstate@entry=) 2023-01-11T22:11:19.7729707Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7729947Z #47 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7730325Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7734567Z #48 0x00000000004f141c in do_call_core (kwdict=0x7fb0eeaca780, 2023-01-11T22:11:19.7735059Z callargs=0x7fb048d7e520, func=0x7fb04b08c700, trace_info=0x7ffde41f21a0, 2023-01-11T22:11:19.7735494Z tstate=) 2023-01-11T22:11:19.7735847Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:19.7736088Z #49 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7736578Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:19.7736971Z #50 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7737530Z throwflag=, 2023-01-11T22:11:19.7737926Z f=, 2023-01-11T22:11:19.7738281Z tstate=) 2023-01-11T22:11:19.7738647Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7743104Z #51 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7743744Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7744341Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7744823Z locals@entry=, con=0x7fb0eeaf55b0, 2023-01-11T22:11:19.7745225Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7745610Z tstate@entry=) 2023-01-11T22:11:19.7746008Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7746231Z #52 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7746532Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7750940Z #53 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:19.7751418Z nargsf=, args=0x5f47028, callable=0x7fb0eeaf55a0, 2023-01-11T22:11:19.7751828Z tstate=0x1020bf0) 2023-01-11T22:11:19.7752161Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7755568Z #54 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x5f47028, 2023-01-11T22:11:19.7755868Z callable=0x7fb0eeaf55a0) 2023-01-11T22:11:19.7756195Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7758441Z #55 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7758882Z pp_stack=, trace_info=0x7ffde41f2360, 2023-01-11T22:11:19.7759306Z tstate=) 2023-01-11T22:11:19.7759739Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7760061Z #56 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7760393Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:19.7760844Z #57 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7761316Z throwflag=, 2023-01-11T22:11:19.7761666Z f=, 2023-01-11T22:11:19.7762015Z tstate=) 2023-01-11T22:11:19.7762392Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7766325Z #58 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7767205Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7767721Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7768126Z locals@entry=, con=0x7fb0eeaf5f40, 2023-01-11T22:11:19.7768529Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7768902Z tstate@entry=) 2023-01-11T22:11:19.7769417Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7769656Z #59 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7769940Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7774283Z #60 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:19.7774889Z nargsf=, args=0x109d5a0, callable=0x7fb0eeaf5f30, 2023-01-11T22:11:19.7775264Z tstate=0x1020bf0) 2023-01-11T22:11:19.7775562Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7778750Z #61 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x109d5a0, 2023-01-11T22:11:19.7779194Z callable=0x7fb0eeaf5f30) 2023-01-11T22:11:19.7779682Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7781731Z #62 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7782331Z pp_stack=, trace_info=0x7ffde41f2520, 2023-01-11T22:11:19.7782778Z tstate=) 2023-01-11T22:11:19.7783205Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7783452Z #63 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7783887Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:19.7784138Z #64 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7784439Z throwflag=, 2023-01-11T22:11:19.7784793Z f=, 2023-01-11T22:11:19.7785150Z tstate=) 2023-01-11T22:11:19.7785512Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7789662Z #65 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7790224Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7790874Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7791262Z locals@entry=, con=0x7fb0ee97ade0, 2023-01-11T22:11:19.7791661Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7792047Z tstate@entry=) 2023-01-11T22:11:19.7792424Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7792665Z #66 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7792963Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7797400Z #67 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:19.7797688Z nargsf=, args=0x7fb0eec3c200, callable=0x7fb0ee97add0, 2023-01-11T22:11:19.7797926Z tstate=0x1020bf0) 2023-01-11T22:11:19.7798239Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7801692Z #68 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:19.7802146Z args=0x7fb0eec3c200, callable=0x7fb0ee97add0) 2023-01-11T22:11:19.7802494Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7804739Z #69 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:19.7805138Z pp_stack=, trace_info=0x7ffde41f26e0, 2023-01-11T22:11:19.7805376Z tstate=) 2023-01-11T22:11:19.7805686Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7805979Z #70 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7806319Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:19.7806818Z #71 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7807189Z throwflag=, 2023-01-11T22:11:19.7807559Z f=, 2023-01-11T22:11:19.7807929Z tstate=) 2023-01-11T22:11:19.7808336Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:19.7813163Z #72 _PyEval_Vector (kwnames=, 2023-01-11T22:11:19.7813976Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:19.7814559Z args@entry=, locals=0x0, 2023-01-11T22:11:19.7814950Z locals@entry=, con=0x7fb0ee97ad50, 2023-01-11T22:11:19.7815353Z con@entry=, tstate=0x1020bf0, 2023-01-11T22:11:19.7815736Z tstate@entry=) 2023-01-11T22:11:19.7816133Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7816375Z #73 _PyFunction_Vectorcall () 2023-01-11T22:11:19.7816679Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:19.7819587Z #74 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7fb0eec15e40, 2023-01-11T22:11:19.7820008Z nargsf=, args=, callable=0x7fb0ee97ad40, 2023-01-11T22:11:19.7820259Z tstate=0x1020bf0) 2023-01-11T22:11:19.7820576Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7822766Z #75 PyObject_Vectorcall (kwnames=0x7fb0eec15e40, nargsf=, 2023-01-11T22:11:19.7823125Z args=, callable=0x7fb0ee97ad40) 2023-01-11T22:11:19.7823473Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:19.7826060Z #76 call_function (kwnames=0x7fb0eec15e40, oparg=, 2023-01-11T22:11:19.7826456Z pp_stack=, trace_info=0x7ffde41f28a0, 2023-01-11T22:11:19.7826699Z tstate=) 2023-01-11T22:11:19.7827005Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:19.7827235Z #77 _PyEval_EvalFrameDefault () 2023-01-11T22:11:19.7827539Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:19.7828798Z #78 0x0000000000594b72 in _PyEval_EvalFrame ( 2023-01-11T22:11:19.7829223Z throwflag=, 2023-01-11T22:11:19.7829570Z f=, 2023-01-11T22:11:19.7829927Z tstate=) 2023-01-11T22:11:19.7830382Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/bits/call.c:46 2023-01-11T22:11:19.7830653Z #79 _PyEval_Vector () 2023-01-11T22:11:19.7831060Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:19.7836685Z #80 0x0000000000594ab7 in PyEval_EvalCode (co=co@entry=0x7fb0eebd8920, 2023-01-11T22:11:19.7837081Z globals=globals@entry=0x7fb0eebca600, locals=locals@entry=0x7fb0eebca600) 2023-01-11T22:11:19.7837428Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:1134 2023-01-11T22:11:19.7838829Z #81 0x00000000005c6e57 in run_eval_code_obj () 2023-01-11T22:11:19.7839232Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1291 2023-01-11T22:11:19.7841514Z #82 0x00000000005c1d40 in run_mod () 2023-01-11T22:11:19.7841871Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1312 2023-01-11T22:11:19.7843925Z #83 0x00000000005b9ebb in PyRun_StringFlags.localalias () 2023-01-11T22:11:19.7844286Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1183 2023-01-11T22:11:19.7846408Z #84 0x00000000005b9cfb in PyRun_SimpleStringFlags.localalias () 2023-01-11T22:11:19.7846789Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:503 2023-01-11T22:11:19.7849187Z #85 0x00000000005b8d5c in pymain_run_command ( 2023-01-11T22:11:19.7849588Z command=) 2023-01-11T22:11:19.7849983Z at /croot/python-split_1669298683653/work/build-static/python.c:252 2023-01-11T22:11:19.7851817Z #86 pymain_run_python (exitcode=0x7ffde41f2b00) 2023-01-11T22:11:19.7852301Z at /croot/python-split_1669298683653/work/build-static/python.c:582 2023-01-11T22:11:19.7852555Z #87 Py_RunMain.localalias () 2023-01-11T22:11:19.7852855Z at /croot/python-split_1669298683653/work/build-static/python.c:670 2023-01-11T22:11:19.7868228Z #88 0x0000000000587c29 in Py_BytesMain (argc=, 2023-01-11T22:11:19.7868560Z argv=) 2023-01-11T22:11:19.7869100Z at /croot/python-split_1669298683653/work/build-static/python.c:1090 2023-01-11T22:11:19.7873717Z #89 0x00007fb0eeca7c87 in __libc_start_main (main=0x587be0
, argc=5, 2023-01-11T22:11:19.7874222Z argv=0x7ffde41f2d08, init=, fini=, 2023-01-11T22:11:19.7874670Z rtld_fini=, stack_end=0x7ffde41f2cf8) 2023-01-11T22:11:19.7874928Z at ../csu/libc-start.c:310 2023-01-11T22:11:19.7875337Z #90 0x0000000000587ade in _start () 2023-01-11T22:11:19.7875907Z at /usr/local/src/conda/python-3.10.8/Modules/_io/clinic/peg_api.c:880 2023-01-11T22:11:19.9519880Z GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1 2023-01-11T22:11:19.9520409Z Copyright (C) 2018 Free Software Foundation, Inc. 2023-01-11T22:11:19.9520781Z License GPLv3+: GNU GPL version 3 or later 2023-01-11T22:11:19.9521222Z This is free software: you are free to change and redistribute it. 2023-01-11T22:11:19.9521516Z There is NO WARRANTY, to the extent permitted by law. Type "show copying" 2023-01-11T22:11:19.9521774Z and "show warranty" for details. 2023-01-11T22:11:19.9522085Z This GDB was configured as "x86_64-linux-gnu". 2023-01-11T22:11:19.9522328Z Type "show configuration" for configuration details. 2023-01-11T22:11:19.9522586Z For bug reporting instructions, please see: 2023-01-11T22:11:19.9522832Z . 2023-01-11T22:11:19.9523090Z Find the GDB manual and other documentation resources online at: 2023-01-11T22:11:19.9523372Z . 2023-01-11T22:11:19.9523603Z For help, type "help". 2023-01-11T22:11:19.9523833Z Type "apropos word" to search for commands related to "word"... 2023-01-11T22:11:20.0654521Z Reading symbols from python...done. 2023-01-11T22:11:20.6009480Z 2023-01-11T22:11:20.6009812Z warning: core file may not match specified executable file. 2023-01-11T22:11:20.6969230Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:20.6970083Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:20.6970538Z [New LWP 10536] 2023-01-11T22:11:20.6970809Z [New LWP 10540] 2023-01-11T22:11:20.6971313Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:20.6971954Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:20.6972297Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:20.6972563Z [New LWP 10543] 2023-01-11T22:11:20.6972737Z [New LWP 10541] 2023-01-11T22:11:20.6972895Z [New LWP 10542] 2023-01-11T22:11:20.6973064Z [New LWP 10546] 2023-01-11T22:11:20.6973235Z [New LWP 10544] 2023-01-11T22:11:20.6973389Z [New LWP 10545] 2023-01-11T22:11:20.6973654Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:20.6985922Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:20.6986863Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:20.6987409Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:20.6987932Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:20.7275511Z [Thread debugging using libthread_db enabled] 2023-01-11T22:11:20.7275953Z Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". 2023-01-11T22:11:27.5740427Z 51 ../sysdeps/unix/sysv/linux/raise.c: No such file or directory. 2023-01-11T22:11:27.5741065Z warning: File "/var/lib/jenkins/workspace/.gdbinit" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load". 2023-01-11T22:11:27.5741585Z Core was generated by `/opt/conda/bin/python -bb -c from multiprocessing.spawn import spawn_main; spaw'. 2023-01-11T22:11:27.5741936Z Program terminated with signal SIGSEGV, Segmentation fault. 2023-01-11T22:11:27.5742240Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:27.5742503Z [Current thread is 1 (Thread 0x7fe0534ba200 (LWP 10536))] 2023-01-11T22:11:27.5770408Z To enable execution of this file add 2023-01-11T22:11:27.5770880Z add-auto-load-safe-path /var/lib/jenkins/workspace/.gdbinit 2023-01-11T22:11:27.5771181Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:27.5771453Z To completely disable this security protection add 2023-01-11T22:11:27.5771731Z set auto-load safe-path / 2023-01-11T22:11:27.5771967Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:27.5772244Z For more information about this security protection see the 2023-01-11T22:11:27.5772611Z "Auto-loading safe path" section in the GDB manual. E.g., run from the shell: 2023-01-11T22:11:27.5772915Z info "(gdb)Auto-loading safe path" 2023-01-11T22:11:27.5815562Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:27.5819080Z #1 0x00007fe01bb4b65b in handler_SIGSEGV(int, siginfo_t*, void*) () 2023-01-11T22:11:27.5819848Z from /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so 2023-01-11T22:11:27.5829200Z #2 2023-01-11T22:11:27.5829595Z #3 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.S:65 2023-01-11T22:11:27.5977347Z #4 0x00007fe051f7803b in string_at (ptr=0x0, size=-1) at :5564 2023-01-11T22:11:27.5979847Z #5 0x00007fe05336f052 in ffi_call_unix64 () 2023-01-11T22:11:27.5980499Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:27.5989470Z #6 0x00007fe05336d8cd in ffi_call_int () 2023-01-11T22:11:27.5990386Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:27.5997961Z #7 0x00007fe051f80879 in _call_function_pointer (argtypecount=2, argcount=2, 2023-01-11T22:11:27.5998472Z resmem=0x7ffda6694940, restype=, atypes=, 2023-01-11T22:11:27.5998914Z avalues=, pProc=0x7fe051f78002 , flags=4357) 2023-01-11T22:11:27.5999498Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:916 2023-01-11T22:11:27.5999844Z #8 _ctypes_callproc () 2023-01-11T22:11:27.6000360Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:1259 2023-01-11T22:11:27.6000817Z #9 0x00007fe051f803fe in PyCFuncPtr_call () at :4201 2023-01-11T22:11:27.6001589Z #10 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:27.6002156Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:27.6007164Z #11 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:27.6007743Z kwnames=, 2023-01-11T22:11:27.6008270Z nargsf=, args=0x7fdfac378358, 2023-01-11T22:11:27.6008659Z callable=, 2023-01-11T22:11:27.6009171Z tstate=) 2023-01-11T22:11:27.6009763Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:27.6012411Z #12 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6012948Z args=0x7fdfac378358, callable=0x7fe052234880, tstate=) 2023-01-11T22:11:27.6013431Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:27.6017266Z #13 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6017721Z args=0x7fdfac378358, callable=0x7fe052234880) 2023-01-11T22:11:27.6018248Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6021736Z #14 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6022128Z pp_stack=, trace_info=0x7ffda6694c50, 2023-01-11T22:11:27.6022384Z tstate=) 2023-01-11T22:11:27.6022759Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6022992Z #15 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6023308Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:27.6024275Z #16 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6024618Z throwflag=, 2023-01-11T22:11:27.6024988Z f=, 2023-01-11T22:11:27.6025349Z tstate=) 2023-01-11T22:11:27.6025871Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6030947Z #17 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6031551Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6032285Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6032694Z locals@entry=, con=0x7fe0521f3890, 2023-01-11T22:11:27.6033079Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6033469Z tstate@entry=) 2023-01-11T22:11:27.6033976Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6034222Z #18 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6034512Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6040053Z #19 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:27.6040579Z nargsf=, args=0x7fdfac3781c0, callable=0x7fe0521f3880, 2023-01-11T22:11:27.6040942Z tstate=0x2393bf0) 2023-01-11T22:11:27.6041252Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6044873Z #20 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6045340Z args=0x7fdfac3781c0, callable=0x7fe0521f3880) 2023-01-11T22:11:27.6045832Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6048222Z #21 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6048679Z pp_stack=, trace_info=0x7ffda6694e10, 2023-01-11T22:11:27.6049199Z tstate=) 2023-01-11T22:11:27.6049743Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6049989Z #22 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6050445Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:27.6050885Z #23 0x0000000000543a33 in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6051399Z throwflag=, 2023-01-11T22:11:27.6052033Z f=, 2023-01-11T22:11:27.6052391Z tstate=) 2023-01-11T22:11:27.6052762Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6057682Z #24 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:27.6058201Z argcount=, 2023-01-11T22:11:27.6058760Z args=, locals=0x0, con=0x7fdfac49c680, tstate=0x2393bf0) 2023-01-11T22:11:27.6059186Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6060947Z #25 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6061425Z stack=, func=0x7fdfac49c670) 2023-01-11T22:11:27.6061902Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6067019Z #26 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6067630Z args=, callable=0x7fdfac49c670, tstate=0x2393bf0) 2023-01-11T22:11:27.6068085Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:27.6068500Z #27 vectorcall_unbound ( 2023-01-11T22:11:27.6068976Z nargs=, args=, 2023-01-11T22:11:27.6069359Z func=, 2023-01-11T22:11:27.6069706Z unbound=, 2023-01-11T22:11:27.6070066Z tstate=) 2023-01-11T22:11:27.6070448Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1629 2023-01-11T22:11:27.6070682Z #28 vectorcall_method () 2023-01-11T22:11:27.6070967Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1661 2023-01-11T22:11:27.6071534Z #29 0x0000000000543898 in slot_mp_subscript (self=, 2023-01-11T22:11:27.6071938Z arg1=) 2023-01-11T22:11:27.6072436Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7258 2023-01-11T22:11:27.6072846Z #30 0x00000000004ef56e in _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6073607Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:2109 2023-01-11T22:11:27.6075870Z #31 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6076196Z throwflag=, 2023-01-11T22:11:27.6076573Z f=, 2023-01-11T22:11:27.6076928Z tstate=) 2023-01-11T22:11:27.6077357Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6082881Z #32 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6083393Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6083840Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6084259Z locals@entry=, con=0x7fdfacbf8170, 2023-01-11T22:11:27.6084652Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6085035Z tstate@entry=) 2023-01-11T22:11:27.6085465Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6085806Z #33 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6086111Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6091940Z #34 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:27.6092407Z nargsf=, args=0x7fdfac6fea48, callable=0x7fdfacbf8160, 2023-01-11T22:11:27.6092834Z tstate=0x2393bf0) 2023-01-11T22:11:27.6093463Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6097285Z #35 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6097750Z args=0x7fdfac6fea48, callable=0x7fdfacbf8160) 2023-01-11T22:11:27.6098353Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6101118Z #36 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6101641Z pp_stack=, trace_info=0x7ffda6695210, 2023-01-11T22:11:27.6102065Z tstate=) 2023-01-11T22:11:27.6102653Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6103044Z #37 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6103567Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:27.6104025Z #38 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6104554Z throwflag=, 2023-01-11T22:11:27.6105202Z f=, 2023-01-11T22:11:27.6105889Z tstate=) 2023-01-11T22:11:27.6106555Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6111422Z #39 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6111986Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6112843Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6113530Z locals@entry=, con=0x7fdfae901400, 2023-01-11T22:11:27.6114246Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6115175Z tstate@entry=) 2023-01-11T22:11:27.6115880Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6116323Z #40 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6116898Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6121184Z #41 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:27.6121699Z nargsf=, args=0x7346e38, callable=0x7fdfae9013f0, 2023-01-11T22:11:27.6122038Z tstate=0x2393bf0) 2023-01-11T22:11:27.6122664Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6126657Z #42 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x7346e38, 2023-01-11T22:11:27.6127094Z callable=0x7fdfae9013f0) 2023-01-11T22:11:27.6127650Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6130764Z #43 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6131290Z pp_stack=, trace_info=0x7ffda66953d0, 2023-01-11T22:11:27.6131691Z tstate=) 2023-01-11T22:11:27.6132215Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6132594Z #44 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6133128Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:27.6133580Z #45 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6134246Z throwflag=, 2023-01-11T22:11:27.6134949Z f=, 2023-01-11T22:11:27.6135605Z tstate=) 2023-01-11T22:11:27.6136251Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6141043Z #46 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6141615Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6142458Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6143230Z locals@entry=, con=0x7fdfae900710, 2023-01-11T22:11:27.6143999Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6144711Z tstate@entry=) 2023-01-11T22:11:27.6145399Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6145784Z #47 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6146292Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6151006Z #48 0x00000000004f141c in do_call_core (kwdict=0x7fe05233e800, 2023-01-11T22:11:27.6151533Z callargs=0x7fdfac5f6520, func=0x7fdfae900700, trace_info=0x7ffda6695590, 2023-01-11T22:11:27.6151971Z tstate=) 2023-01-11T22:11:27.6152480Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:27.6152865Z #49 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6153429Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:27.6153880Z #50 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6154397Z throwflag=, 2023-01-11T22:11:27.6155077Z f=, 2023-01-11T22:11:27.6155771Z tstate=) 2023-01-11T22:11:27.6156531Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6161361Z #51 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6161998Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6162842Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6163440Z locals@entry=, con=0x7fe0523695b0, 2023-01-11T22:11:27.6164213Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6164913Z tstate@entry=) 2023-01-11T22:11:27.6165603Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6166057Z #52 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6166626Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6171083Z #53 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:27.6171561Z nargsf=, args=0x72b98a8, callable=0x7fe0523695a0, 2023-01-11T22:11:27.6171926Z tstate=0x2393bf0) 2023-01-11T22:11:27.6172552Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6176636Z #54 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x72b98a8, 2023-01-11T22:11:27.6177077Z callable=0x7fe0523695a0) 2023-01-11T22:11:27.6177624Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6180551Z #55 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6181044Z pp_stack=, trace_info=0x7ffda6695750, 2023-01-11T22:11:27.6181456Z tstate=) 2023-01-11T22:11:27.6181981Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6182390Z #56 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6182958Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:27.6183419Z #57 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6183967Z throwflag=, 2023-01-11T22:11:27.6184581Z f=, 2023-01-11T22:11:27.6185288Z tstate=) 2023-01-11T22:11:27.6185996Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6191052Z #58 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6191652Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6192498Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6193142Z locals@entry=, con=0x7fe052369f40, 2023-01-11T22:11:27.6193897Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6194612Z tstate@entry=) 2023-01-11T22:11:27.6195304Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6195772Z #59 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6196319Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6200672Z #60 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:27.6201290Z nargsf=, args=0x24105a0, callable=0x7fe052369f30, 2023-01-11T22:11:27.6201691Z tstate=0x2393bf0) 2023-01-11T22:11:27.6202300Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6206180Z #61 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x24105a0, 2023-01-11T22:11:27.6206630Z callable=0x7fe052369f30) 2023-01-11T22:11:27.6207166Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6210131Z #62 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6210632Z pp_stack=, trace_info=0x7ffda6695910, 2023-01-11T22:11:27.6211067Z tstate=) 2023-01-11T22:11:27.6211566Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6211963Z #63 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6212474Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:27.6212936Z #64 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6213466Z throwflag=, 2023-01-11T22:11:27.6214103Z f=, 2023-01-11T22:11:27.6214792Z tstate=) 2023-01-11T22:11:27.6215484Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6220586Z #65 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6221191Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6222028Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6222739Z locals@entry=, con=0x7fe0521eade0, 2023-01-11T22:11:27.6223496Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6224229Z tstate@entry=) 2023-01-11T22:11:27.6224915Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6225369Z #66 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6225972Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6230466Z #67 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:27.6230913Z nargsf=, args=0x7fe0524b0200, callable=0x7fe0521eadd0, 2023-01-11T22:11:27.6231290Z tstate=0x2393bf0) 2023-01-11T22:11:27.6231917Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6235869Z #68 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:27.6236310Z args=0x7fe0524b0200, callable=0x7fe0521eadd0) 2023-01-11T22:11:27.6236879Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6239625Z #69 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:27.6240120Z pp_stack=, trace_info=0x7ffda6695ad0, 2023-01-11T22:11:27.6240511Z tstate=) 2023-01-11T22:11:27.6240853Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6241215Z #70 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6241571Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:27.6241887Z #71 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6242196Z throwflag=, 2023-01-11T22:11:27.6242546Z f=, 2023-01-11T22:11:27.6243024Z tstate=) 2023-01-11T22:11:27.6243415Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:27.6248283Z #72 _PyEval_Vector (kwnames=, 2023-01-11T22:11:27.6248808Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:27.6249469Z args@entry=, locals=0x0, 2023-01-11T22:11:27.6249872Z locals@entry=, con=0x7fe0521ead50, 2023-01-11T22:11:27.6250276Z con@entry=, tstate=0x2393bf0, 2023-01-11T22:11:27.6250649Z tstate@entry=) 2023-01-11T22:11:27.6251052Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6251293Z #73 _PyFunction_Vectorcall () 2023-01-11T22:11:27.6251583Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:27.6255496Z #74 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7fe052489e40, 2023-01-11T22:11:27.6256033Z nargsf=, args=, callable=0x7fe0521ead40, 2023-01-11T22:11:27.6256452Z tstate=0x2393bf0) 2023-01-11T22:11:27.6256865Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6258999Z #75 PyObject_Vectorcall (kwnames=0x7fe052489e40, nargsf=, 2023-01-11T22:11:27.6259473Z args=, callable=0x7fe0521ead40) 2023-01-11T22:11:27.6260002Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:27.6262903Z #76 call_function (kwnames=0x7fe052489e40, oparg=, 2023-01-11T22:11:27.6263411Z pp_stack=, trace_info=0x7ffda6695c90, 2023-01-11T22:11:27.6263811Z tstate=) 2023-01-11T22:11:27.6264118Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:27.6264362Z #77 _PyEval_EvalFrameDefault () 2023-01-11T22:11:27.6264665Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:27.6265625Z #78 0x0000000000594b72 in _PyEval_EvalFrame ( 2023-01-11T22:11:27.6266170Z throwflag=, 2023-01-11T22:11:27.6266720Z f=, 2023-01-11T22:11:27.6267076Z tstate=) 2023-01-11T22:11:27.6267524Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/bits/call.c:46 2023-01-11T22:11:27.6267791Z #79 _PyEval_Vector () 2023-01-11T22:11:27.6268087Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:27.6274339Z #80 0x0000000000594ab7 in PyEval_EvalCode (co=co@entry=0x7fe05244c920, 2023-01-11T22:11:27.6274841Z globals=globals@entry=0x7fe05243e600, locals=locals@entry=0x7fe05243e600) 2023-01-11T22:11:27.6275320Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:1134 2023-01-11T22:11:27.6276634Z #81 0x00000000005c6e57 in run_eval_code_obj () 2023-01-11T22:11:27.6277224Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1291 2023-01-11T22:11:27.6279233Z #82 0x00000000005c1d40 in run_mod () 2023-01-11T22:11:27.6279832Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1312 2023-01-11T22:11:27.6281881Z #83 0x00000000005b9ebb in PyRun_StringFlags.localalias () 2023-01-11T22:11:27.6282521Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1183 2023-01-11T22:11:27.6284494Z #84 0x00000000005b9cfb in PyRun_SimpleStringFlags.localalias () 2023-01-11T22:11:27.6285274Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:503 2023-01-11T22:11:27.6287180Z #85 0x00000000005b8d5c in pymain_run_command ( 2023-01-11T22:11:27.6287739Z command=) 2023-01-11T22:11:27.6288267Z at /croot/python-split_1669298683653/work/build-static/python.c:252 2023-01-11T22:11:27.6290079Z #86 pymain_run_python (exitcode=0x7ffda6695ef0) 2023-01-11T22:11:27.6290689Z at /croot/python-split_1669298683653/work/build-static/python.c:582 2023-01-11T22:11:27.6291086Z #87 Py_RunMain.localalias () 2023-01-11T22:11:27.6291406Z at /croot/python-split_1669298683653/work/build-static/python.c:670 2023-01-11T22:11:27.6306802Z #88 0x0000000000587c29 in Py_BytesMain (argc=, 2023-01-11T22:11:27.6307178Z argv=) 2023-01-11T22:11:27.6307726Z at /croot/python-split_1669298683653/work/build-static/python.c:1090 2023-01-11T22:11:27.6312768Z #89 0x00007fe05251ec87 in __libc_start_main (main=0x587be0
, argc=5, 2023-01-11T22:11:27.6313272Z argv=0x7ffda66960f8, init=, fini=, 2023-01-11T22:11:27.6313706Z rtld_fini=, stack_end=0x7ffda66960e8) 2023-01-11T22:11:27.6314134Z at ../csu/libc-start.c:310 2023-01-11T22:11:27.6314511Z #90 0x0000000000587ade in _start () 2023-01-11T22:11:27.6315076Z at /usr/local/src/conda/python-3.10.8/Modules/_io/clinic/peg_api.c:880 2023-01-11T22:11:27.7870534Z GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1 2023-01-11T22:11:27.7871898Z Copyright (C) 2018 Free Software Foundation, Inc. 2023-01-11T22:11:27.7872216Z License GPLv3+: GNU GPL version 3 or later 2023-01-11T22:11:27.7872547Z This is free software: you are free to change and redistribute it. 2023-01-11T22:11:27.7872836Z There is NO WARRANTY, to the extent permitted by law. Type "show copying" 2023-01-11T22:11:27.7873097Z and "show warranty" for details. 2023-01-11T22:11:27.7873410Z This GDB was configured as "x86_64-linux-gnu". 2023-01-11T22:11:27.7873657Z Type "show configuration" for configuration details. 2023-01-11T22:11:27.7873916Z For bug reporting instructions, please see: 2023-01-11T22:11:27.7874164Z . 2023-01-11T22:11:27.7874435Z Find the GDB manual and other documentation resources online at: 2023-01-11T22:11:27.7874699Z . 2023-01-11T22:11:27.7874928Z For help, type "help". 2023-01-11T22:11:27.7875179Z Type "apropos word" to search for commands related to "word"... 2023-01-11T22:11:27.8996820Z Reading symbols from python...done. 2023-01-11T22:11:28.4347087Z 2023-01-11T22:11:28.4347452Z warning: core file may not match specified executable file. 2023-01-11T22:11:28.5239955Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:28.5240611Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:28.5241258Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:28.5241777Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:28.5242041Z [New LWP 10537] 2023-01-11T22:11:28.5242219Z [New LWP 10549] 2023-01-11T22:11:28.5242378Z [New LWP 10550] 2023-01-11T22:11:28.5242546Z [New LWP 10547] 2023-01-11T22:11:28.5242717Z [New LWP 10548] 2023-01-11T22:11:28.5242879Z [New LWP 10552] 2023-01-11T22:11:28.5243153Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:28.5243505Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:28.5243740Z [New LWP 10553] 2023-01-11T22:11:28.5243911Z [New LWP 10551] 2023-01-11T22:11:28.5255901Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:28.5256551Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:28.5257083Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:28.5257627Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:28.5562262Z [Thread debugging using libthread_db enabled] 2023-01-11T22:11:28.5562653Z Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". 2023-01-11T22:11:35.4514680Z 51 ../sysdeps/unix/sysv/linux/raise.c: No such file or directory. 2023-01-11T22:11:35.4515307Z warning: File "/var/lib/jenkins/workspace/.gdbinit" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load". 2023-01-11T22:11:35.4515837Z Core was generated by `/opt/conda/bin/python -bb -c from multiprocessing.spawn import spawn_main; spaw'. 2023-01-11T22:11:35.4516175Z Program terminated with signal SIGSEGV, Segmentation fault. 2023-01-11T22:11:35.4516471Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:35.4516745Z [Current thread is 1 (Thread 0x7f2f7fce1200 (LWP 10537))] 2023-01-11T22:11:35.4545458Z To enable execution of this file add 2023-01-11T22:11:35.4546428Z add-auto-load-safe-path /var/lib/jenkins/workspace/.gdbinit 2023-01-11T22:11:35.4546733Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:35.4547002Z To completely disable this security protection add 2023-01-11T22:11:35.4547258Z set auto-load safe-path / 2023-01-11T22:11:35.4547504Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:35.4547780Z For more information about this security protection see the 2023-01-11T22:11:35.4548128Z "Auto-loading safe path" section in the GDB manual. E.g., run from the shell: 2023-01-11T22:11:35.4548427Z info "(gdb)Auto-loading safe path" 2023-01-11T22:11:35.4591209Z #0 raise (sig=) at ../sysdeps/unix/sysv/linux/raise.c:51 2023-01-11T22:11:35.4593633Z #1 0x00007f2f4837265b in handler_SIGSEGV(int, siginfo_t*, void*) () 2023-01-11T22:11:35.4594057Z from /opt/conda/lib/python3.10/site-packages/torch/lib/libtorch_python.so 2023-01-11T22:11:35.4603919Z #2 2023-01-11T22:11:35.4604344Z #3 __strlen_avx2 () at ../sysdeps/x86_64/multiarch/strlen-avx2.S:65 2023-01-11T22:11:35.4748629Z #4 0x00007f2f7e79f03b in string_at (ptr=0x0, size=-1) at :5564 2023-01-11T22:11:35.4750941Z #5 0x00007f2f7fb96052 in ffi_call_unix64 () 2023-01-11T22:11:35.4751273Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:35.4759614Z #6 0x00007f2f7fb948cd in ffi_call_int () 2023-01-11T22:11:35.4759927Z from /opt/conda/lib/python3.10/lib-dynload/../../libffi.so.8 2023-01-11T22:11:35.4767543Z #7 0x00007f2f7e7a7879 in _call_function_pointer (argtypecount=2, argcount=2, 2023-01-11T22:11:35.4768115Z resmem=0x7fff0d99f6f0, restype=, atypes=, 2023-01-11T22:11:35.4768501Z avalues=, pProc=0x7f2f7e79f002 , flags=4357) 2023-01-11T22:11:35.4768872Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:916 2023-01-11T22:11:35.4769329Z #8 _ctypes_callproc () 2023-01-11T22:11:35.4769644Z at /usr/local/src/conda/python-3.10.8/build-static/stgdict.c:1259 2023-01-11T22:11:35.4769926Z #9 0x00007f2f7e7a73fe in PyCFuncPtr_call () at :4201 2023-01-11T22:11:35.4771249Z #10 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:35.4771592Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:35.4777103Z #11 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:35.4777500Z kwnames=, 2023-01-11T22:11:35.4778045Z nargsf=, args=0x7f2ed8d38358, 2023-01-11T22:11:35.4778435Z callable=, 2023-01-11T22:11:35.4778787Z tstate=) 2023-01-11T22:11:35.4779194Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:35.4782553Z #12 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4783146Z args=0x7f2ed8d38358, callable=0x7f2f7ea58880, tstate=) 2023-01-11T22:11:35.4783690Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:35.4787345Z #13 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4787824Z args=0x7f2ed8d38358, callable=0x7f2f7ea58880) 2023-01-11T22:11:35.4788291Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4791840Z #14 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4792325Z pp_stack=, trace_info=0x7fff0d99fa00, 2023-01-11T22:11:35.4792740Z tstate=) 2023-01-11T22:11:35.4793044Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4793315Z #15 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4793881Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:35.4794232Z #16 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4794759Z throwflag=, 2023-01-11T22:11:35.4795342Z f=, 2023-01-11T22:11:35.4795700Z tstate=) 2023-01-11T22:11:35.4796074Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4801280Z #17 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4801787Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4802224Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4802613Z locals@entry=, con=0x7f2f7ea17890, 2023-01-11T22:11:35.4803012Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4803399Z tstate@entry=) 2023-01-11T22:11:35.4803787Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4804020Z #18 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4804320Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4810351Z #19 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:35.4810807Z nargsf=, args=0x7f2ed8d381c0, callable=0x7f2f7ea17880, 2023-01-11T22:11:35.4811238Z tstate=0x11f8bf0) 2023-01-11T22:11:35.4811592Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4816474Z #20 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4816934Z args=0x7f2ed8d381c0, callable=0x7f2f7ea17880) 2023-01-11T22:11:35.4817334Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4819826Z #21 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4820381Z pp_stack=, trace_info=0x7fff0d99fbc0, 2023-01-11T22:11:35.4820781Z tstate=) 2023-01-11T22:11:35.4821194Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4821430Z #22 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4821878Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:35.4822427Z #23 0x0000000000543a33 in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4822882Z throwflag=, 2023-01-11T22:11:35.4823234Z f=, 2023-01-11T22:11:35.4823595Z tstate=) 2023-01-11T22:11:35.4823978Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4829334Z #24 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:35.4829635Z argcount=, 2023-01-11T22:11:35.4830047Z args=, locals=0x0, con=0x7f2ed8cd8680, tstate=0x11f8bf0) 2023-01-11T22:11:35.4830467Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4832555Z #25 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4832841Z stack=, func=0x7f2ed8cd8670) 2023-01-11T22:11:35.4833167Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4838607Z #26 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4838931Z args=, callable=0x7f2ed8cd8670, tstate=0x11f8bf0) 2023-01-11T22:11:35.4839465Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:35.4839740Z #27 vectorcall_unbound ( 2023-01-11T22:11:35.4840285Z nargs=, args=, 2023-01-11T22:11:35.4840800Z func=, 2023-01-11T22:11:35.4841168Z unbound=, 2023-01-11T22:11:35.4841531Z tstate=) 2023-01-11T22:11:35.4841917Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1629 2023-01-11T22:11:35.4842143Z #28 vectorcall_method () 2023-01-11T22:11:35.4842444Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:1661 2023-01-11T22:11:35.4843157Z #29 0x0000000000543898 in slot_mp_subscript (self=, 2023-01-11T22:11:35.4843539Z arg1=) 2023-01-11T22:11:35.4844067Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7258 2023-01-11T22:11:35.4844552Z #30 0x00000000004ef56e in _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4844924Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:2109 2023-01-11T22:11:35.4847234Z #31 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4847754Z throwflag=, 2023-01-11T22:11:35.4848378Z f=, 2023-01-11T22:11:35.4848739Z tstate=) 2023-01-11T22:11:35.4849304Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4854035Z #32 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4854707Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4855191Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4855678Z locals@entry=, con=0x7f2ed93d4170, 2023-01-11T22:11:35.4856077Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4856463Z tstate@entry=) 2023-01-11T22:11:35.4856859Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4857091Z #33 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4857395Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4862433Z #34 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:35.4862978Z nargsf=, args=0x7f2ed8ecaa48, callable=0x7f2ed93d4160, 2023-01-11T22:11:35.4863406Z tstate=0x11f8bf0) 2023-01-11T22:11:35.4863729Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4867509Z #35 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4867964Z args=0x7f2ed8ecaa48, callable=0x7f2ed93d4160) 2023-01-11T22:11:35.4868413Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4871141Z #36 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4871587Z pp_stack=, trace_info=0x7fff0d99ffc0, 2023-01-11T22:11:35.4872011Z tstate=) 2023-01-11T22:11:35.4872435Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4872724Z #37 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4873160Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:35.4873620Z #38 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4874052Z throwflag=, 2023-01-11T22:11:35.4874405Z f=, 2023-01-11T22:11:35.4874755Z tstate=) 2023-01-11T22:11:35.4875129Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4880362Z #39 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4880970Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4881653Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4882050Z locals@entry=, con=0x7f2edb121400, 2023-01-11T22:11:35.4882446Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4882816Z tstate@entry=) 2023-01-11T22:11:35.4883209Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4883446Z #40 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4883729Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4888410Z #41 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:35.4888768Z nargsf=, args=0x61ac8d8, callable=0x7f2edb1213f0, 2023-01-11T22:11:35.4889001Z tstate=0x11f8bf0) 2023-01-11T22:11:35.4889508Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4893440Z #42 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x61ac8d8, 2023-01-11T22:11:35.4893886Z callable=0x7f2edb1213f0) 2023-01-11T22:11:35.4894394Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4897248Z #43 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4897715Z pp_stack=, trace_info=0x7fff0d9a0180, 2023-01-11T22:11:35.4897953Z tstate=) 2023-01-11T22:11:35.4898248Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4898491Z #44 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4898792Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:35.4899410Z #45 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4899769Z throwflag=, 2023-01-11T22:11:35.4900135Z f=, 2023-01-11T22:11:35.4900488Z tstate=) 2023-01-11T22:11:35.4900851Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4906676Z #46 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4907310Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4907933Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4908320Z locals@entry=, con=0x7f2edb120710, 2023-01-11T22:11:35.4908804Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4909182Z tstate@entry=) 2023-01-11T22:11:35.4909576Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4909798Z #47 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4910097Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4915450Z #48 0x00000000004f141c in do_call_core (kwdict=0x7f2f7eb62800, 2023-01-11T22:11:35.4915903Z callargs=0x7f2ed8dbe520, func=0x7f2edb120700, trace_info=0x7fff0d9a0340, 2023-01-11T22:11:35.4916341Z tstate=) 2023-01-11T22:11:35.4916737Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:35.4917059Z #49 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4917390Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:35.4917835Z #50 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4918354Z throwflag=, 2023-01-11T22:11:35.4918703Z f=, 2023-01-11T22:11:35.4919053Z tstate=) 2023-01-11T22:11:35.4919428Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4924021Z #51 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4924643Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4925197Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4925592Z locals@entry=, con=0x7f2f7eb8d5b0, 2023-01-11T22:11:35.4925990Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4926355Z tstate@entry=) 2023-01-11T22:11:35.4926743Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4927047Z #52 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4927335Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4932548Z #53 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:35.4932848Z nargsf=, args=0x611f348, callable=0x7f2f7eb8d5a0, 2023-01-11T22:11:35.4933078Z tstate=0x11f8bf0) 2023-01-11T22:11:35.4933380Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4937253Z #54 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x611f348, 2023-01-11T22:11:35.4937552Z callable=0x7f2f7eb8d5a0) 2023-01-11T22:11:35.4937864Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4940661Z #55 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4941118Z pp_stack=, trace_info=0x7fff0d9a0500, 2023-01-11T22:11:35.4941542Z tstate=) 2023-01-11T22:11:35.4941868Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4942110Z #56 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4942521Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:35.4942927Z #57 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4943472Z throwflag=, 2023-01-11T22:11:35.4943979Z f=, 2023-01-11T22:11:35.4944433Z tstate=) 2023-01-11T22:11:35.4944804Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4949354Z #58 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4949999Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4950647Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4951031Z locals@entry=, con=0x7f2f7eb8df40, 2023-01-11T22:11:35.4951426Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4951810Z tstate@entry=) 2023-01-11T22:11:35.4952189Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4952423Z #59 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4952719Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4957684Z #60 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:35.4958162Z nargsf=, args=0x12755a0, callable=0x7f2f7eb8df30, 2023-01-11T22:11:35.4958590Z tstate=0x11f8bf0) 2023-01-11T22:11:35.4958931Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4962707Z #61 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x12755a0, 2023-01-11T22:11:35.4962974Z callable=0x7f2f7eb8df30) 2023-01-11T22:11:35.4963296Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4966160Z #62 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4966481Z pp_stack=, trace_info=0x7fff0d9a06c0, 2023-01-11T22:11:35.4966716Z tstate=) 2023-01-11T22:11:35.4967049Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4967328Z #63 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4967673Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:35.4968079Z #64 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4968527Z throwflag=, 2023-01-11T22:11:35.4968892Z f=, 2023-01-11T22:11:35.4969418Z tstate=) 2023-01-11T22:11:35.4969791Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.4974751Z #65 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.4975206Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.4975646Z args@entry=, locals=0x0, 2023-01-11T22:11:35.4976038Z locals@entry=, con=0x7f2f7ea0ede0, 2023-01-11T22:11:35.4976442Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.4976830Z tstate@entry=) 2023-01-11T22:11:35.4977219Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.4977448Z #66 _PyFunction_Vectorcall () 2023-01-11T22:11:35.4977750Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.4983352Z #67 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:35.4983649Z nargsf=, args=0x7f2f7ecd8200, callable=0x7f2f7ea0edd0, 2023-01-11T22:11:35.4983879Z tstate=0x11f8bf0) 2023-01-11T22:11:35.4984196Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4988430Z #68 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:35.4988727Z args=0x7f2f7ecd8200, callable=0x7f2f7ea0edd0) 2023-01-11T22:11:35.4989120Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.4991640Z #69 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:35.4992016Z pp_stack=, trace_info=0x7fff0d9a0880, 2023-01-11T22:11:35.4992427Z tstate=) 2023-01-11T22:11:35.4992974Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.4993277Z #70 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.4993770Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:35.4994237Z #71 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:35.4994659Z throwflag=, 2023-01-11T22:11:35.4995022Z f=, 2023-01-11T22:11:35.4995377Z tstate=) 2023-01-11T22:11:35.4995762Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:35.5000130Z #72 _PyEval_Vector (kwnames=, 2023-01-11T22:11:35.5000750Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:35.5001398Z args@entry=, locals=0x0, 2023-01-11T22:11:35.5001801Z locals@entry=, con=0x7f2f7ea0ed50, 2023-01-11T22:11:35.5002188Z con@entry=, tstate=0x11f8bf0, 2023-01-11T22:11:35.5002574Z tstate@entry=) 2023-01-11T22:11:35.5003071Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.5003314Z #73 _PyFunction_Vectorcall () 2023-01-11T22:11:35.5003601Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:35.5007093Z #74 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7f2f7ecb1e40, 2023-01-11T22:11:35.5007620Z nargsf=, args=, callable=0x7f2f7ea0ed40, 2023-01-11T22:11:35.5008017Z tstate=0x11f8bf0) 2023-01-11T22:11:35.5008331Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.5010730Z #75 PyObject_Vectorcall (kwnames=0x7f2f7ecb1e40, nargsf=, 2023-01-11T22:11:35.5011165Z args=, callable=0x7f2f7ea0ed40) 2023-01-11T22:11:35.5011781Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:35.5014275Z #76 call_function (kwnames=0x7f2f7ecb1e40, oparg=, 2023-01-11T22:11:35.5014766Z pp_stack=, trace_info=0x7fff0d9a0a40, 2023-01-11T22:11:35.5015142Z tstate=) 2023-01-11T22:11:35.5015455Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:35.5015695Z #77 _PyEval_EvalFrameDefault () 2023-01-11T22:11:35.5015999Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:35.5016954Z #78 0x0000000000594b72 in _PyEval_EvalFrame ( 2023-01-11T22:11:35.5017469Z throwflag=, 2023-01-11T22:11:35.5018178Z f=, 2023-01-11T22:11:35.5018522Z tstate=) 2023-01-11T22:11:35.5018979Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/bits/call.c:46 2023-01-11T22:11:35.5019247Z #79 _PyEval_Vector () 2023-01-11T22:11:35.5019540Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:35.5025565Z #80 0x0000000000594ab7 in PyEval_EvalCode (co=co@entry=0x7f2f7ec74920, 2023-01-11T22:11:35.5025887Z globals=globals@entry=0x7f2f7ec66600, locals=locals@entry=0x7f2f7ec66600) 2023-01-11T22:11:35.5026244Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:1134 2023-01-11T22:11:35.5027674Z #81 0x00000000005c6e57 in run_eval_code_obj () 2023-01-11T22:11:35.5028230Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1291 2023-01-11T22:11:35.5030470Z #82 0x00000000005c1d40 in run_mod () 2023-01-11T22:11:35.5031076Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1312 2023-01-11T22:11:35.5033031Z #83 0x00000000005b9ebb in PyRun_StringFlags.localalias () 2023-01-11T22:11:35.5033688Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1183 2023-01-11T22:11:35.5035623Z #84 0x00000000005b9cfb in PyRun_SimpleStringFlags.localalias () 2023-01-11T22:11:35.5036294Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:503 2023-01-11T22:11:35.5038368Z #85 0x00000000005b8d5c in pymain_run_command ( 2023-01-11T22:11:35.5038917Z command=) 2023-01-11T22:11:35.5039473Z at /croot/python-split_1669298683653/work/build-static/python.c:252 2023-01-11T22:11:35.5041275Z #86 pymain_run_python (exitcode=0x7fff0d9a0ca0) 2023-01-11T22:11:35.5041735Z at /croot/python-split_1669298683653/work/build-static/python.c:582 2023-01-11T22:11:35.5042080Z #87 Py_RunMain.localalias () 2023-01-11T22:11:35.5042399Z at /croot/python-split_1669298683653/work/build-static/python.c:670 2023-01-11T22:11:35.5057655Z #88 0x0000000000587c29 in Py_BytesMain (argc=, 2023-01-11T22:11:35.5058023Z argv=) 2023-01-11T22:11:35.5058611Z at /croot/python-split_1669298683653/work/build-static/python.c:1090 2023-01-11T22:11:35.5063207Z #89 0x00007f2f7ed45c87 in __libc_start_main (main=0x587be0
, argc=5, 2023-01-11T22:11:35.5063595Z argv=0x7fff0d9a0ea8, init=, fini=, 2023-01-11T22:11:35.5063874Z rtld_fini=, stack_end=0x7fff0d9a0e98) 2023-01-11T22:11:35.5064261Z at ../csu/libc-start.c:310 2023-01-11T22:11:35.5065047Z #90 0x0000000000587ade in _start () 2023-01-11T22:11:35.5065394Z at /usr/local/src/conda/python-3.10.8/Modules/_io/clinic/peg_api.c:880 2023-01-11T22:11:35.6675616Z GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1 2023-01-11T22:11:35.6676078Z Copyright (C) 2018 Free Software Foundation, Inc. 2023-01-11T22:11:35.6676591Z License GPLv3+: GNU GPL version 3 or later 2023-01-11T22:11:35.6676990Z This is free software: you are free to change and redistribute it. 2023-01-11T22:11:35.6677305Z There is NO WARRANTY, to the extent permitted by law. Type "show copying" 2023-01-11T22:11:35.6677649Z and "show warranty" for details. 2023-01-11T22:11:35.6677939Z This GDB was configured as "x86_64-linux-gnu". 2023-01-11T22:11:35.6678246Z Type "show configuration" for configuration details. 2023-01-11T22:11:35.6678490Z For bug reporting instructions, please see: 2023-01-11T22:11:35.6678729Z . 2023-01-11T22:11:35.6678992Z Find the GDB manual and other documentation resources online at: 2023-01-11T22:11:35.6679255Z . 2023-01-11T22:11:35.6679478Z For help, type "help". 2023-01-11T22:11:35.6679716Z Type "apropos word" to search for commands related to "word"... 2023-01-11T22:11:35.7799251Z Reading symbols from python...done. 2023-01-11T22:11:36.3050562Z 2023-01-11T22:11:36.3051075Z warning: core file may not match specified executable file. 2023-01-11T22:11:36.3081221Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:36.3081859Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:36.3082185Z [New LWP 23756] 2023-01-11T22:11:36.3082575Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:36.3082985Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:36.3083339Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:36.3083670Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:36.3098979Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:36.3100052Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:36.3101087Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:36.3102115Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:36.3420638Z [Thread debugging using libthread_db enabled] 2023-01-11T22:11:36.3421087Z Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". 2023-01-11T22:11:43.7693101Z 78 ../sysdeps/unix/syscall-template.S: No such file or directory. 2023-01-11T22:11:43.7693593Z Core was generated by `/opt/conda/bin/python -bb test_multiprocessing_spawn.py -v --import-slow-tests'. 2023-01-11T22:11:43.7693927Z Program terminated with signal SIGABRT, Aborted. 2023-01-11T22:11:43.7694275Z #0 0x00007f6867403177 in kill () at ../sysdeps/unix/syscall-template.S:78 2023-01-11T22:11:43.7694766Z warning: File "/var/lib/jenkins/workspace/.gdbinit" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load". 2023-01-11T22:11:43.7721855Z To enable execution of this file add 2023-01-11T22:11:43.7722755Z add-auto-load-safe-path /var/lib/jenkins/workspace/.gdbinit 2023-01-11T22:11:43.7723123Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:43.7723376Z To completely disable this security protection add 2023-01-11T22:11:43.7723649Z set auto-load safe-path / 2023-01-11T22:11:43.7723899Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:43.7724161Z For more information about this security protection see the 2023-01-11T22:11:43.7724522Z "Auto-loading safe path" section in the GDB manual. E.g., run from the shell: 2023-01-11T22:11:43.7724816Z info "(gdb)Auto-loading safe path" 2023-01-11T22:11:43.7769992Z #0 0x00007f6867403177 in kill () at ../sysdeps/unix/syscall-template.S:78 2023-01-11T22:11:43.7785788Z #1 0x00000000004cb0d3 in os_kill_impl ( 2023-01-11T22:11:43.7786175Z module=, 2023-01-11T22:11:43.7786561Z signal=, 2023-01-11T22:11:43.7786918Z pid=) 2023-01-11T22:11:43.7787417Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/sys/_iomodule.c:7929 2023-01-11T22:11:43.7791364Z #2 os_kill (module=, args=args@entry=0x7f67bb060358, 2023-01-11T22:11:43.7791730Z nargs=) 2023-01-11T22:11:43.7792211Z at /usr/local/src/conda/python-3.10.8/Modules/codecs.c:3581 2023-01-11T22:11:43.7799892Z #3 0x00000000004fe7d4 in cfunction_vectorcall_FASTCALL (func=0x7f6868345a30, 2023-01-11T22:11:43.7800210Z args=0x7f67bb060358, nargsf=, kwnames=) 2023-01-11T22:11:43.7800586Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_bitutils.h:430 2023-01-11T22:11:43.7807997Z #4 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.7808349Z nargsf=, args=0x7f67bb060358, callable=0x7f6868345a30, 2023-01-11T22:11:43.7808586Z tstate=0x21fcb80) 2023-01-11T22:11:43.7808893Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7812768Z #5 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.7813070Z args=0x7f67bb060358, callable=0x7f6868345a30) 2023-01-11T22:11:43.7813419Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7815933Z #6 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.7816397Z pp_stack=, trace_info=0x7ffee0a73bd0, 2023-01-11T22:11:43.7816801Z tstate=) 2023-01-11T22:11:43.7817344Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.7817606Z #7 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.7817932Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:43.7818335Z #8 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.7818878Z throwflag=, 2023-01-11T22:11:43.7819326Z f=, 2023-01-11T22:11:43.7819690Z tstate=) 2023-01-11T22:11:43.7820055Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.7824555Z #9 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.7825212Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.7825775Z args@entry=, locals=0x0, 2023-01-11T22:11:43.7826357Z locals@entry=, con=0x7f67c14736e0, 2023-01-11T22:11:43.7826764Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.7827150Z tstate@entry=) 2023-01-11T22:11:43.7827548Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.7827776Z #10 _PyFunction_Vectorcall () 2023-01-11T22:11:43.7828083Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.7832431Z #11 0x00000000004f141c in do_call_core (kwdict=0x0, callargs=0x7f67bb17bca0, 2023-01-11T22:11:43.7832936Z func=0x7f67c14736d0, trace_info=0x7ffee0a73d90, tstate=) 2023-01-11T22:11:43.7833441Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:43.7833687Z #12 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.7833992Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:43.7834234Z #13 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.7834737Z throwflag=, 2023-01-11T22:11:43.7835300Z f=, 2023-01-11T22:11:43.7835656Z tstate=) 2023-01-11T22:11:43.7836105Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.7840556Z #14 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.7841048Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.7841489Z args@entry=, locals=0x0, 2023-01-11T22:11:43.7841877Z locals@entry=, con=0x7f67c42231d0, 2023-01-11T22:11:43.7842274Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.7842657Z tstate@entry=) 2023-01-11T22:11:43.7843047Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.7843276Z #15 _PyFunction_Vectorcall () 2023-01-11T22:11:43.7843574Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.7848620Z #16 0x00000000004f141c in do_call_core (kwdict=0x7f67c41e7380, 2023-01-11T22:11:43.7848981Z callargs=0x7f67bb04d350, func=0x7f67c42231c0, trace_info=0x7ffee0a73f50, 2023-01-11T22:11:43.7849408Z tstate=) 2023-01-11T22:11:43.7849721Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:43.7849955Z #17 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.7850290Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:43.7850980Z #18 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.7851355Z throwflag=, 2023-01-11T22:11:43.7851791Z f=, 2023-01-11T22:11:43.7852150Z tstate=) 2023-01-11T22:11:43.7852532Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.7857746Z #19 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.7858267Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.7858801Z args@entry=, locals=0x0, 2023-01-11T22:11:43.7859206Z locals@entry=, con=0x7f67c41cf650, 2023-01-11T22:11:43.7859612Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.7859985Z tstate@entry=) 2023-01-11T22:11:43.7860386Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.7860626Z #20 _PyFunction_Vectorcall () 2023-01-11T22:11:43.7860913Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.7865881Z #21 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.7866238Z nargsf=, args=0x76ea028, callable=0x7f67c41cf640, 2023-01-11T22:11:43.7866471Z tstate=0x21fcb80) 2023-01-11T22:11:43.7866773Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7870404Z #22 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x76ea028, 2023-01-11T22:11:43.7870748Z callable=0x7f67c41cf640) 2023-01-11T22:11:43.7871057Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7873661Z #23 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.7874059Z pp_stack=, trace_info=0x7ffee0a74110, 2023-01-11T22:11:43.7874390Z tstate=) 2023-01-11T22:11:43.7874685Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.7874932Z #24 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.7875238Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:43.7886936Z #25 0x0000000000509dbe in _PyEval_EvalFrame ( 2023-01-11T22:11:43.7887358Z throwflag=, 2023-01-11T22:11:43.7887726Z f=, 2023-01-11T22:11:43.7888086Z tstate=) 2023-01-11T22:11:43.7888455Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.7894442Z #26 _PyEval_Vector (kwnames=, argcount=, 2023-01-11T22:11:43.7894810Z args=0x7f67c17531d8, locals=0x0, con=0x7f67c41f8050, tstate=0x21fcb80) 2023-01-11T22:11:43.7895143Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.7897970Z #27 _PyFunction_Vectorcall (kwnames=, nargsf=, 2023-01-11T22:11:43.7898315Z stack=0x7f67c17531d8, func=0x7f67c41f8040) 2023-01-11T22:11:43.7898640Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.7902992Z #28 _PyObject_VectorcallTstate (kwnames=, 2023-01-11T22:11:43.7903395Z nargsf=, args=0x7f67c17531d8, callable=0x7f67c41f8040, 2023-01-11T22:11:43.7903823Z tstate=0x21fcb80) 2023-01-11T22:11:43.7904257Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.7904501Z #29 method_vectorcall () 2023-01-11T22:11:43.7904812Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:53 2023-01-11T22:11:43.7909549Z #30 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7f67bb1a0340, 2023-01-11T22:11:43.7910070Z nargsf=, args=, callable=0x7f67c10d7a00, 2023-01-11T22:11:43.7910465Z tstate=0x21fcb80) 2023-01-11T22:11:43.7910780Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7912938Z #31 PyObject_Vectorcall (kwnames=0x7f67bb1a0340, nargsf=, 2023-01-11T22:11:43.7913233Z args=, callable=0x7f67c10d7a00) 2023-01-11T22:11:43.7913680Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7916204Z #32 call_function (kwnames=0x7f67bb1a0340, oparg=, 2023-01-11T22:11:43.7916572Z pp_stack=, trace_info=0x7ffee0a74320, 2023-01-11T22:11:43.7916829Z tstate=) 2023-01-11T22:11:43.7917139Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.7917371Z #33 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.7917719Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:43.7918057Z #34 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.7918560Z throwflag=, 2023-01-11T22:11:43.7919156Z f=, 2023-01-11T22:11:43.7919516Z tstate=) 2023-01-11T22:11:43.7919898Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.7924580Z #35 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.7925200Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.7925864Z args@entry=, locals=0x0, 2023-01-11T22:11:43.7926365Z locals@entry=, con=0x7f67bb04b9b0, 2023-01-11T22:11:43.7926768Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.7927137Z tstate@entry=) 2023-01-11T22:11:43.7927531Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.7927775Z #36 _PyFunction_Vectorcall () 2023-01-11T22:11:43.7928062Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.7932518Z #37 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.7932875Z nargsf=, args=0x7f67bb156578, callable=0x7f67bb04b9a0, 2023-01-11T22:11:43.7933113Z tstate=0x21fcb80) 2023-01-11T22:11:43.7933411Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7937101Z #38 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.7937451Z args=0x7f67bb156578, callable=0x7f67bb04b9a0) 2023-01-11T22:11:43.7937777Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7940325Z #39 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.7940698Z pp_stack=, trace_info=0x7ffee0a744e0, 2023-01-11T22:11:43.7940939Z tstate=) 2023-01-11T22:11:43.7941240Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.7941485Z #40 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.7941789Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:43.7955877Z #41 0x00000000004f706d in _PyEval_EvalFrame ( 2023-01-11T22:11:43.7956309Z throwflag=, 2023-01-11T22:11:43.7956673Z f=, 2023-01-11T22:11:43.7957033Z tstate=) 2023-01-11T22:11:43.7957406Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.7963255Z #42 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:43.7963714Z argcount=, args=, locals=0x0, con=0x7f67bb04b5c0, 2023-01-11T22:11:43.7964121Z tstate=0x21fcb80) 2023-01-11T22:11:43.7964416Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.7967433Z #43 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.7967767Z stack=, func=0x7f67bb04b5b0) 2023-01-11T22:11:43.7968139Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.7968423Z #44 _PyObject_FastCallDictTstate.localalias () 2023-01-11T22:11:43.7968776Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:142 2023-01-11T22:11:43.7976690Z #45 0x0000000000507af8 in _PyObject_Call_Prepend (kwargs=0x0, 2023-01-11T22:11:43.7977124Z kwargs@entry=, args=0x7f67c1b53850, 2023-01-11T22:11:43.7977557Z args@entry=, obj=, 2023-01-11T22:11:43.7977981Z obj@entry=, callable=0x7f67bb04b5b0, 2023-01-11T22:11:43.7978398Z callable@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.7978779Z tstate@entry=) 2023-01-11T22:11:43.7979176Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:431 2023-01-11T22:11:43.7979546Z #46 slot_tp_init () 2023-01-11T22:11:43.7979833Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7734 2023-01-11T22:11:43.7982682Z #47 0x00000000004f7bdb in type_call (kwds=0x0, args=0x7f67c1b53850, 2023-01-11T22:11:43.7982924Z type=) 2023-01-11T22:11:43.7983240Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:43.7983487Z #48 _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:43.7983809Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:215 2023-01-11T22:11:43.7986194Z #49 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.7986591Z kwnames=, 2023-01-11T22:11:43.7986994Z nargsf=, args=0x7f67bb1563d8, 2023-01-11T22:11:43.7987380Z callable=, 2023-01-11T22:11:43.7987752Z tstate=) 2023-01-11T22:11:43.7988147Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:43.7991066Z #50 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.7991448Z args=0x7f67bb1563d8, callable=0x77a2460, tstate=) 2023-01-11T22:11:43.7991902Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:43.7995872Z #51 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.7996150Z args=0x7f67bb1563d8, callable=0x77a2460) 2023-01-11T22:11:43.7996503Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.7999892Z #52 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8000384Z pp_stack=, trace_info=0x7ffee0a747c0, 2023-01-11T22:11:43.8000827Z tstate=) 2023-01-11T22:11:43.8001176Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8001471Z #53 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8001791Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:43.8002230Z #54 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8002756Z throwflag=, 2023-01-11T22:11:43.8003281Z f=, 2023-01-11T22:11:43.8003644Z tstate=) 2023-01-11T22:11:43.8004031Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8007942Z #55 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8008618Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8009405Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8009820Z locals@entry=, con=0x7f67c4220200, 2023-01-11T22:11:43.8010208Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8010599Z tstate@entry=) 2023-01-11T22:11:43.8010997Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8011225Z #56 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8011526Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8016119Z #57 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8016763Z nargsf=, args=0x7f67bb156098, callable=0x7f67c42201f0, 2023-01-11T22:11:43.8017190Z tstate=0x21fcb80) 2023-01-11T22:11:43.8017564Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8020753Z #58 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8021025Z args=0x7f67bb156098, callable=0x7f67c42201f0) 2023-01-11T22:11:43.8021408Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8023863Z #59 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8024276Z pp_stack=, trace_info=0x7ffee0a74980, 2023-01-11T22:11:43.8024507Z tstate=) 2023-01-11T22:11:43.8024827Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8025202Z #60 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8025579Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:43.8025888Z #61 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8026279Z throwflag=, 2023-01-11T22:11:43.8026649Z f=, 2023-01-11T22:11:43.8026995Z tstate=) 2023-01-11T22:11:43.8027380Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8032438Z #62 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8033038Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8033669Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8034076Z locals@entry=, con=0x7f67c41cf6e0, 2023-01-11T22:11:43.8034487Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8034856Z tstate@entry=) 2023-01-11T22:11:43.8035276Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8035521Z #63 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8035935Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8039994Z #64 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8040437Z nargsf=, args=0x7552ac8, callable=0x7f67c41cf6d0, 2023-01-11T22:11:43.8040856Z tstate=0x21fcb80) 2023-01-11T22:11:43.8041280Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8044919Z #65 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x7552ac8, 2023-01-11T22:11:43.8045365Z callable=0x7f67c41cf6d0) 2023-01-11T22:11:43.8045892Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8048468Z #66 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8048960Z pp_stack=, trace_info=0x7ffee0a74b40, 2023-01-11T22:11:43.8049502Z tstate=) 2023-01-11T22:11:43.8049809Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8050061Z #67 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8050505Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:43.8050767Z #68 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8051284Z throwflag=, 2023-01-11T22:11:43.8051819Z f=, 2023-01-11T22:11:43.8052277Z tstate=) 2023-01-11T22:11:43.8052662Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8056995Z #69 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8057476Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8057916Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8058320Z locals@entry=, con=0x7f67c423db50, 2023-01-11T22:11:43.8058706Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8059090Z tstate@entry=) 2023-01-11T22:11:43.8059483Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8059710Z #70 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8060012Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8063459Z #71 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7f68671f5b80, 2023-01-11T22:11:43.8063887Z nargsf=, args=, callable=0x7f67c423db40, 2023-01-11T22:11:43.8064120Z tstate=0x21fcb80) 2023-01-11T22:11:43.8064438Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8067048Z #72 PyObject_Vectorcall (kwnames=0x7f68671f5b80, nargsf=, 2023-01-11T22:11:43.8067396Z args=, callable=0x7f67c423db40) 2023-01-11T22:11:43.8067744Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8070618Z #73 call_function (kwnames=0x7f68671f5b80, oparg=, 2023-01-11T22:11:43.8070958Z pp_stack=, trace_info=0x7ffee0a74d00, 2023-01-11T22:11:43.8071184Z tstate=) 2023-01-11T22:11:43.8071498Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8071742Z #74 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8072149Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:43.8072541Z #75 0x0000000000509dbe in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8073032Z throwflag=, 2023-01-11T22:11:43.8073408Z f=, 2023-01-11T22:11:43.8073754Z tstate=) 2023-01-11T22:11:43.8074141Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8079703Z #76 _PyEval_Vector (kwnames=, argcount=, 2023-01-11T22:11:43.8080050Z args=0x7f67bb289150, locals=0x0, con=0x7f67c1473e30, tstate=0x21fcb80) 2023-01-11T22:11:43.8080398Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8083482Z #77 _PyFunction_Vectorcall (kwnames=, nargsf=, 2023-01-11T22:11:43.8083803Z stack=0x7f67bb289150, func=0x7f67c1473e20) 2023-01-11T22:11:43.8097525Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8097875Z #78 _PyObject_VectorcallTstate (kwnames=, 2023-01-11T22:11:43.8098145Z nargsf=, args=0x7f67bb289150, callable=0x7f67c1473e20, 2023-01-11T22:11:43.8098365Z tstate=0x21fcb80) 2023-01-11T22:11:43.8098669Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.8098890Z #79 method_vectorcall () 2023-01-11T22:11:43.8099185Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:53 2023-01-11T22:11:43.8099583Z #80 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8099854Z nargsf=, args=0x7f67bb289158, callable=0x7f67c160d440, 2023-01-11T22:11:43.8100086Z tstate=0x21fcb80) 2023-01-11T22:11:43.8100396Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8101016Z #81 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8101336Z args=0x7f67bb289158, callable=0x7f67c160d440) 2023-01-11T22:11:43.8101677Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8104422Z #82 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8104747Z pp_stack=, trace_info=0x7ffee0a74f10, 2023-01-11T22:11:43.8105167Z tstate=) 2023-01-11T22:11:43.8105670Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8105967Z #83 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8106439Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:43.8106877Z #84 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8107408Z throwflag=, 2023-01-11T22:11:43.8107759Z f=, 2023-01-11T22:11:43.8108115Z tstate=) 2023-01-11T22:11:43.8108497Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8113076Z #85 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8113674Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8114390Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8114795Z locals@entry=, con=0x7f686714cd40, 2023-01-11T22:11:43.8115192Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8115567Z tstate@entry=) 2023-01-11T22:11:43.8116049Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8116292Z #86 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8116580Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8121568Z #87 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8122126Z nargsf=, args=0x729ab60, callable=0x7f686714cd30, 2023-01-11T22:11:43.8122493Z tstate=0x21fcb80) 2023-01-11T22:11:43.8122839Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8125937Z #88 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x729ab60, 2023-01-11T22:11:43.8126415Z callable=0x7f686714cd30) 2023-01-11T22:11:43.8126872Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8129339Z #89 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8129855Z pp_stack=, trace_info=0x7ffee0a750d0, 2023-01-11T22:11:43.8130224Z tstate=) 2023-01-11T22:11:43.8130535Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8130781Z #90 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8131089Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:43.8132322Z #91 0x0000000000509dbe in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8132880Z throwflag=, 2023-01-11T22:11:43.8133531Z f=, 2023-01-11T22:11:43.8133889Z tstate=) 2023-01-11T22:11:43.8134266Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8139396Z #92 _PyEval_Vector (kwnames=, argcount=, 2023-01-11T22:11:43.8139769Z args=0x728ccb8, locals=0x0, con=0x7f686714cef0, tstate=0x21fcb80) 2023-01-11T22:11:43.8140121Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8142976Z #93 _PyFunction_Vectorcall (kwnames=, nargsf=, 2023-01-11T22:11:43.8143328Z stack=0x728ccb8, func=0x7f686714cee0) 2023-01-11T22:11:43.8143660Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8147940Z #94 _PyObject_VectorcallTstate (kwnames=, 2023-01-11T22:11:43.8148307Z nargsf=, args=0x728ccb8, callable=0x7f686714cee0, 2023-01-11T22:11:43.8148555Z tstate=0x21fcb80) 2023-01-11T22:11:43.8148872Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.8149103Z #95 method_vectorcall () 2023-01-11T22:11:43.8149415Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:53 2023-01-11T22:11:43.8154541Z #96 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7f67c1c0a290, 2023-01-11T22:11:43.8154979Z nargsf=, args=, callable=0x7f67c0f894c0, 2023-01-11T22:11:43.8155228Z tstate=0x21fcb80) 2023-01-11T22:11:43.8155540Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8157844Z #97 PyObject_Vectorcall (kwnames=0x7f67c1c0a290, nargsf=, 2023-01-11T22:11:43.8158131Z args=, callable=0x7f67c0f894c0) 2023-01-11T22:11:43.8158478Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8161128Z #98 call_function (kwnames=0x7f67c1c0a290, oparg=, 2023-01-11T22:11:43.8161458Z pp_stack=, trace_info=0x7ffee0a752e0, 2023-01-11T22:11:43.8161728Z tstate=) 2023-01-11T22:11:43.8162044Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8162290Z #99 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8162607Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:43.8162984Z #100 0x0000000000509dbe in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8163427Z throwflag=, 2023-01-11T22:11:43.8163806Z f=, 2023-01-11T22:11:43.8164162Z tstate=) 2023-01-11T22:11:43.8164545Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8170390Z #101 _PyEval_Vector (kwnames=, argcount=, 2023-01-11T22:11:43.8170792Z args=0x7f67c17aab08, locals=0x0, con=0x7f67c1470320, tstate=0x21fcb80) 2023-01-11T22:11:43.8171150Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8173915Z #102 _PyFunction_Vectorcall (kwnames=, nargsf=, 2023-01-11T22:11:43.8174203Z stack=0x7f67c17aab08, func=0x7f67c1470310) 2023-01-11T22:11:43.8174522Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8178675Z #103 _PyObject_VectorcallTstate (kwnames=, 2023-01-11T22:11:43.8178984Z nargsf=, args=0x7f67c17aab08, callable=0x7f67c1470310, 2023-01-11T22:11:43.8179207Z tstate=0x21fcb80) 2023-01-11T22:11:43.8179523Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.8179769Z #104 method_vectorcall () 2023-01-11T22:11:43.8180083Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:53 2023-01-11T22:11:43.8185628Z #105 0x00000000004efd83 in _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8185975Z kwnames=0x7f67c1c22840, nargsf=, args=, 2023-01-11T22:11:43.8186242Z callable=0x7f67c14fb6c0, tstate=0x21fcb80) 2023-01-11T22:11:43.8186573Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8188990Z #106 PyObject_Vectorcall (kwnames=0x7f67c1c22840, nargsf=, 2023-01-11T22:11:43.8189488Z args=, callable=0x7f67c14fb6c0) 2023-01-11T22:11:43.8190044Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8192390Z #107 call_function (kwnames=0x7f67c1c22840, oparg=, 2023-01-11T22:11:43.8192692Z pp_stack=, trace_info=0x7ffee0a754f0, 2023-01-11T22:11:43.8192930Z tstate=) 2023-01-11T22:11:43.8193231Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8193531Z #108 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8193978Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:43.8194583Z #109 0x0000000000509f16 in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8195269Z throwflag=, 2023-01-11T22:11:43.8195637Z f=, 2023-01-11T22:11:43.8196006Z tstate=) 2023-01-11T22:11:43.8196421Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8200732Z #110 _PyEval_Vector ( 2023-01-11T22:11:43.8201232Z kwnames=, 2023-01-11T22:11:43.8201828Z argcount=, args=0x7ffee0a755e0, locals=0x0, con=0x7f67c14703b0, 2023-01-11T22:11:43.8202147Z tstate=0x21fcb80, 2023-01-11T22:11:43.8202433Z tstate@entry=) 2023-01-11T22:11:43.8202828Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8206654Z #111 _PyFunction_Vectorcall ( 2023-01-11T22:11:43.8207089Z kwnames=, 2023-01-11T22:11:43.8207510Z nargsf=, stack=0x7ffee0a755e0, func=0x7f67c14703a0) 2023-01-11T22:11:43.8207957Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8209558Z #112 _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8210176Z kwnames=, nargsf=, args=, 2023-01-11T22:11:43.8210654Z callable=0x7f67c14703a0, tstate=0x21fcb80) 2023-01-11T22:11:43.8210980Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.8211225Z #113 method_vectorcall () 2023-01-11T22:11:43.8211539Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:83 2023-01-11T22:11:43.8217571Z #114 0x00000000004f141c in do_call_core (kwdict=0x7f67c1299780, 2023-01-11T22:11:43.8218032Z callargs=0x7f67c1433ca0, func=0x7f67bbae5d00, trace_info=0x7ffee0a75700, 2023-01-11T22:11:43.8218472Z tstate=) 2023-01-11T22:11:43.8218845Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:43.8219183Z #115 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8219575Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:43.8220045Z #116 0x00000000004f706d in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8220411Z throwflag=, 2023-01-11T22:11:43.8220885Z f=, 2023-01-11T22:11:43.8221242Z tstate=) 2023-01-11T22:11:43.8221649Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8227166Z #117 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:43.8227538Z argcount=, args=, locals=0x0, con=0x7f686714d0a0, 2023-01-11T22:11:43.8227855Z tstate=0x21fcb80) 2023-01-11T22:11:43.8228150Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8230385Z #118 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8230755Z stack=, func=0x7f686714d090) 2023-01-11T22:11:43.8231143Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8231553Z #119 _PyObject_FastCallDictTstate.localalias () 2023-01-11T22:11:43.8231914Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:142 2023-01-11T22:11:43.8232237Z #120 0x00000000005084a6 in _PyObject_Call_Prepend () 2023-01-11T22:11:43.8232542Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:431 2023-01-11T22:11:43.8235037Z #121 0x00000000005d04d3 in slot_tp_call () 2023-01-11T22:11:43.8235413Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7494 2023-01-11T22:11:43.8237026Z #122 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:43.8237414Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:43.8241166Z #123 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8241600Z kwnames=, 2023-01-11T22:11:43.8241984Z nargsf=, args=0x7f67c14b5970, 2023-01-11T22:11:43.8242374Z callable=, 2023-01-11T22:11:43.8242742Z tstate=) 2023-01-11T22:11:43.8243140Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:43.8246120Z #124 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8246430Z args=0x7f67c14b5970, callable=0x7f67c14553c0, tstate=) 2023-01-11T22:11:43.8246794Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:43.8250727Z #125 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8251063Z args=0x7f67c14b5970, callable=0x7f67c14553c0) 2023-01-11T22:11:43.8251405Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8254989Z #126 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8255325Z pp_stack=, trace_info=0x7ffee0a75a00, 2023-01-11T22:11:43.8255563Z tstate=) 2023-01-11T22:11:43.8255876Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8256123Z #127 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8256442Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:43.8257116Z #128 0x0000000000509f16 in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8257480Z throwflag=, 2023-01-11T22:11:43.8257915Z f=, 2023-01-11T22:11:43.8258272Z tstate=) 2023-01-11T22:11:43.8258659Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8263687Z #129 _PyEval_Vector ( 2023-01-11T22:11:43.8264127Z kwnames=, 2023-01-11T22:11:43.8264890Z argcount=, args=0x7ffee0a75af0, locals=0x0, con=0x7f6867158200, 2023-01-11T22:11:43.8265208Z tstate=0x21fcb80, 2023-01-11T22:11:43.8265485Z tstate@entry=) 2023-01-11T22:11:43.8265880Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8268312Z #130 _PyFunction_Vectorcall ( 2023-01-11T22:11:43.8268851Z kwnames=, 2023-01-11T22:11:43.8269412Z nargsf=, stack=0x7ffee0a75af0, func=0x7f68671581f0) 2023-01-11T22:11:43.8269831Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8272083Z #131 _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8272723Z kwnames=, nargsf=, args=, 2023-01-11T22:11:43.8273190Z callable=0x7f68671581f0, tstate=0x21fcb80) 2023-01-11T22:11:43.8273527Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.8273773Z #132 method_vectorcall () 2023-01-11T22:11:43.8274079Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:83 2023-01-11T22:11:43.8279948Z #133 0x00000000004f141c in do_call_core (kwdict=0x7f67c1299fc0, 2023-01-11T22:11:43.8280419Z callargs=0x7f67c142a500, func=0x7f67c13793c0, trace_info=0x7ffee0a75c10, 2023-01-11T22:11:43.8280876Z tstate=) 2023-01-11T22:11:43.8281233Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:43.8281600Z #134 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8282120Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:43.8282570Z #135 0x00000000004f706d in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8282893Z throwflag=, 2023-01-11T22:11:43.8283256Z f=, 2023-01-11T22:11:43.8283705Z tstate=) 2023-01-11T22:11:43.8284078Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8288727Z #136 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:43.8289530Z argcount=, args=, locals=0x0, con=0x7f68671580e0, 2023-01-11T22:11:43.8289993Z tstate=0x21fcb80) 2023-01-11T22:11:43.8290296Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8292379Z #137 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8292872Z stack=, func=0x7f68671580d0) 2023-01-11T22:11:43.8293396Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8293678Z #138 _PyObject_FastCallDictTstate.localalias () 2023-01-11T22:11:43.8294045Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:142 2023-01-11T22:11:43.8294338Z #139 0x00000000005084a6 in _PyObject_Call_Prepend () 2023-01-11T22:11:43.8294642Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:431 2023-01-11T22:11:43.8296844Z #140 0x00000000005d04d3 in slot_tp_call () 2023-01-11T22:11:43.8297158Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7494 2023-01-11T22:11:43.8299086Z #141 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:43.8299482Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:43.8302895Z #142 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8303433Z kwnames=, 2023-01-11T22:11:43.8304353Z nargsf=, args=0x7f67c14b5060, 2023-01-11T22:11:43.8304766Z callable=, 2023-01-11T22:11:43.8305133Z tstate=) 2023-01-11T22:11:43.8305563Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:43.8307746Z #143 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8308265Z args=0x7f67c14b5060, callable=0x7f67c1457c70, tstate=) 2023-01-11T22:11:43.8308764Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:43.8312254Z #144 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8312628Z args=0x7f67c14b5060, callable=0x7f67c1457c70) 2023-01-11T22:11:43.8312958Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8316106Z #145 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8316572Z pp_stack=, trace_info=0x7ffee0a75f10, 2023-01-11T22:11:43.8316983Z tstate=) 2023-01-11T22:11:43.8317426Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8317715Z #146 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8318037Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:43.8318337Z #147 0x0000000000509f16 in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8318637Z throwflag=, 2023-01-11T22:11:43.8318998Z f=, 2023-01-11T22:11:43.8319354Z tstate=) 2023-01-11T22:11:43.8319716Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8324335Z #148 _PyEval_Vector ( 2023-01-11T22:11:43.8324773Z kwnames=, 2023-01-11T22:11:43.8325279Z argcount=, args=0x7ffee0a76000, locals=0x0, con=0x7f6867158200, 2023-01-11T22:11:43.8325588Z tstate=0x21fcb80, 2023-01-11T22:11:43.8325874Z tstate@entry=) 2023-01-11T22:11:43.8326265Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8328761Z #149 _PyFunction_Vectorcall ( 2023-01-11T22:11:43.8329457Z kwnames=, 2023-01-11T22:11:43.8330042Z nargsf=, stack=0x7ffee0a76000, func=0x7f68671581f0) 2023-01-11T22:11:43.8330453Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8332703Z #150 _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8333313Z kwnames=, nargsf=, args=, 2023-01-11T22:11:43.8333800Z callable=0x7f68671581f0, tstate=0x21fcb80) 2023-01-11T22:11:43.8334121Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:114 2023-01-11T22:11:43.8334364Z #151 method_vectorcall () 2023-01-11T22:11:43.8334673Z at /usr/local/src/conda/python-3.10.8/Programs/_functoolsmodule.c:83 2023-01-11T22:11:43.8340625Z #152 0x00000000004f141c in do_call_core (kwdict=0x7f67c1299f80, 2023-01-11T22:11:43.8340998Z callargs=0x7f67c143e4a0, func=0x7f67c9760580, trace_info=0x7ffee0a76120, 2023-01-11T22:11:43.8341237Z tstate=) 2023-01-11T22:11:43.8341657Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:43.8341954Z #153 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8342391Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:43.8342805Z #154 0x00000000004f706d in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8343108Z throwflag=, 2023-01-11T22:11:43.8343453Z f=, 2023-01-11T22:11:43.8343802Z tstate=) 2023-01-11T22:11:43.8344179Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8349292Z #155 _PyEval_Vector (kwnames=0x0, 2023-01-11T22:11:43.8349725Z argcount=, args=, locals=0x0, con=0x7f68671580e0, 2023-01-11T22:11:43.8350036Z tstate=0x21fcb80) 2023-01-11T22:11:43.8350337Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8352814Z #156 _PyFunction_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8353164Z stack=, func=0x7f68671580d0) 2023-01-11T22:11:43.8353485Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8353811Z #157 _PyObject_FastCallDictTstate.localalias () 2023-01-11T22:11:43.8354184Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:142 2023-01-11T22:11:43.8354659Z #158 0x00000000005084a6 in _PyObject_Call_Prepend () 2023-01-11T22:11:43.8354973Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:431 2023-01-11T22:11:43.8357104Z #159 0x00000000005d04d3 in slot_tp_call () 2023-01-11T22:11:43.8357425Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7494 2023-01-11T22:11:43.8359048Z #160 0x00000000004f7b8b in _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:43.8359457Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:43.8363064Z #161 0x00000000004f37ae in _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8363729Z kwnames=, 2023-01-11T22:11:43.8364241Z nargsf=, args=0x728f310, 2023-01-11T22:11:43.8364607Z callable=, 2023-01-11T22:11:43.8364970Z tstate=) 2023-01-11T22:11:43.8365368Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:43.8367682Z #162 _PyObject_VectorcallTstate (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8367996Z args=0x728f310, callable=0x7f67c1433040, tstate=) 2023-01-11T22:11:43.8368351Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:43.8372430Z #163 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8372711Z args=0x728f310, callable=0x7f67c1433040) 2023-01-11T22:11:43.8373045Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8376154Z #164 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8376517Z pp_stack=, trace_info=0x7ffee0a76420, 2023-01-11T22:11:43.8376804Z tstate=) 2023-01-11T22:11:43.8377116Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8377362Z #165 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8377936Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:43.8378311Z #166 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8378670Z throwflag=, 2023-01-11T22:11:43.8379104Z f=, 2023-01-11T22:11:43.8379451Z tstate=) 2023-01-11T22:11:43.8379835Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8384883Z #167 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8385381Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8385805Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8386202Z locals@entry=, con=0x7f67c14947a0, 2023-01-11T22:11:43.8386600Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8386983Z tstate@entry=) 2023-01-11T22:11:43.8387362Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8387604Z #168 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8387904Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8392810Z #169 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8393165Z nargsf=, args=0x715f048, callable=0x7f67c1494790, 2023-01-11T22:11:43.8393393Z tstate=0x21fcb80) 2023-01-11T22:11:43.8393708Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8397193Z #170 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8397446Z args=0x715f048, callable=0x7f67c1494790) 2023-01-11T22:11:43.8397780Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8400238Z #171 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8400580Z pp_stack=, trace_info=0x7ffee0a765e0, 2023-01-11T22:11:43.8400816Z tstate=) 2023-01-11T22:11:43.8401205Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8401438Z #172 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8401797Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:43.8402385Z #173 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8402803Z throwflag=, 2023-01-11T22:11:43.8403173Z f=, 2023-01-11T22:11:43.8403533Z tstate=) 2023-01-11T22:11:43.8403914Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8408765Z #174 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8409397Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8409903Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8410302Z locals@entry=, con=0x7f6866fa63c0, 2023-01-11T22:11:43.8410687Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8411163Z tstate@entry=) 2023-01-11T22:11:43.8411557Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8411796Z #175 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8412081Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8416778Z #176 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8417128Z nargsf=, args=0x70fdc08, callable=0x7f6866fa63b0, 2023-01-11T22:11:43.8417344Z tstate=0x21fcb80) 2023-01-11T22:11:43.8417653Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8421230Z #177 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8421595Z args=0x70fdc08, callable=0x7f6866fa63b0) 2023-01-11T22:11:43.8421918Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8424518Z #178 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8424978Z pp_stack=, trace_info=0x7ffee0a767a0, 2023-01-11T22:11:43.8425389Z tstate=) 2023-01-11T22:11:43.8425863Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8426160Z #179 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8426471Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:43.8426902Z #180 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8427418Z throwflag=, 2023-01-11T22:11:43.8427777Z f=, 2023-01-11T22:11:43.8428117Z tstate=) 2023-01-11T22:11:43.8428491Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8432419Z #181 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8433043Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8433748Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8434400Z locals@entry=, con=0x7f6866fa5e20, 2023-01-11T22:11:43.8435121Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8435509Z tstate@entry=) 2023-01-11T22:11:43.8435900Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8436142Z #182 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8436445Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8436730Z #183 0x00000000004f711d in _PyObject_FastCallDictTstate.localalias () 2023-01-11T22:11:43.8437077Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:153 2023-01-11T22:11:43.8443367Z #184 0x0000000000507af8 in _PyObject_Call_Prepend (kwargs=0x7f67c168b100, 2023-01-11T22:11:43.8443814Z kwargs@entry=, args=0x7f6868254070, 2023-01-11T22:11:43.8444228Z args@entry=, obj=, 2023-01-11T22:11:43.8444639Z obj@entry=, callable=0x7f6866fa5e10, 2023-01-11T22:11:43.8445048Z callable@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8445517Z tstate@entry=) 2023-01-11T22:11:43.8446024Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:431 2023-01-11T22:11:43.8446253Z #185 slot_tp_init () 2023-01-11T22:11:43.8446550Z at /usr/local/src/conda/python-3.10.8/Programs/gcmodule.c:7734 2023-01-11T22:11:43.8448913Z #186 0x00000000004f7bdb in type_call (kwds=0x7f67c168b100, 2023-01-11T22:11:43.8449485Z args=0x7f6868254070, type=) 2023-01-11T22:11:43.8449986Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:224 2023-01-11T22:11:43.8450251Z #187 _PyObject_MakeTpCall.localalias () 2023-01-11T22:11:43.8450557Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:215 2023-01-11T22:11:43.8452920Z #188 0x00000000004f428d in _PyObject_VectorcallTstate ( 2023-01-11T22:11:43.8453283Z kwnames=0x7f67c1c19180, 2023-01-11T22:11:43.8453840Z nargsf=, args=, 2023-01-11T22:11:43.8454262Z callable=, 2023-01-11T22:11:43.8454629Z tstate=) 2023-01-11T22:11:43.8455027Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:112 2023-01-11T22:11:43.8457700Z #189 _PyObject_VectorcallTstate (kwnames=0x7f67c1c19180, 2023-01-11T22:11:43.8458205Z nargsf=, args=, callable=0x2399b40, 2023-01-11T22:11:43.8458586Z tstate=0x21fcb80) 2023-01-11T22:11:43.8458891Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:99 2023-01-11T22:11:43.8461040Z #190 PyObject_Vectorcall (kwnames=0x7f67c1c19180, nargsf=, 2023-01-11T22:11:43.8461521Z args=, callable=0x2399b40) 2023-01-11T22:11:43.8462009Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8464371Z #191 call_function (kwnames=0x7f67c1c19180, oparg=, 2023-01-11T22:11:43.8464860Z pp_stack=, trace_info=0x7ffee0a76ac0, 2023-01-11T22:11:43.8465283Z tstate=) 2023-01-11T22:11:43.8465710Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8465990Z #192 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8466418Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:43.8466862Z #193 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8467459Z throwflag=, 2023-01-11T22:11:43.8467826Z f=, 2023-01-11T22:11:43.8468178Z tstate=) 2023-01-11T22:11:43.8468559Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:43.8472678Z #194 _PyEval_Vector (kwnames=, 2023-01-11T22:11:43.8473301Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:43.8473948Z args@entry=, locals=0x0, 2023-01-11T22:11:43.8474337Z locals@entry=, con=0x7f67c19ea8d0, 2023-01-11T22:11:43.8474736Z con@entry=, tstate=0x21fcb80, 2023-01-11T22:11:43.8475123Z tstate@entry=) 2023-01-11T22:11:43.8475511Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8475735Z #195 _PyFunction_Vectorcall () 2023-01-11T22:11:43.8476117Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:43.8480573Z #196 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:43.8481181Z nargsf=, args=0x7f6868279ba8, callable=0x7f67c19ea8c0, 2023-01-11T22:11:43.8481515Z tstate=0x21fcb80) 2023-01-11T22:11:43.8481831Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8485264Z #197 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:43.8485718Z args=0x7f6868279ba8, callable=0x7f67c19ea8c0) 2023-01-11T22:11:43.8486145Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:43.8488232Z #198 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:43.8488702Z pp_stack=, trace_info=0x7ffee0a76c80, 2023-01-11T22:11:43.8489233Z tstate=) 2023-01-11T22:11:43.8489567Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:43.8489818Z #199 _PyEval_EvalFrameDefault () 2023-01-11T22:11:43.8490266Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:43.8490638Z #200 0x0000000000594b72 in _PyEval_EvalFrame ( 2023-01-11T22:11:43.8491144Z throwflag=, 2023-01-11T22:11:43.8491717Z f=, 2023-01-11T22:11:43.8492064Z tstate=) 2023-01-11T22:11:43.8492517Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/bits/call.c:46 2023-01-11T22:11:43.8492781Z #201 _PyEval_Vector () 2023-01-11T22:11:43.8493059Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:43.8498327Z #202 0x0000000000594ab7 in PyEval_EvalCode (co=co@entry=0x7f68671c7730, 2023-01-11T22:11:43.8498835Z globals=globals@entry=0x7f6867306480, locals=locals@entry=0x7f6867306480) 2023-01-11T22:11:43.8499410Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:1134 2023-01-11T22:11:43.8500054Z #203 0x00000000005c6e57 in run_eval_code_obj () 2023-01-11T22:11:43.8500643Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1291 2023-01-11T22:11:43.8502443Z #204 0x00000000005c1d40 in run_mod () 2023-01-11T22:11:43.8503088Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1312 2023-01-11T22:11:43.8515822Z #205 0x000000000045adf2 in pyrun_file ( 2023-01-11T22:11:43.8516361Z fp=, 2023-01-11T22:11:43.8516913Z filename=, 2023-01-11T22:11:43.8517265Z start=, 2023-01-11T22:11:43.8517710Z globals=, 2023-01-11T22:11:43.8518151Z locals=, 2023-01-11T22:11:43.8518539Z closeit=, flags=0x7ffee0a76f78) 2023-01-11T22:11:43.8518947Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1208 2023-01-11T22:11:43.8519247Z #206 0x00000000005bc25f in _PyRun_SimpleFileObject.localalias () 2023-01-11T22:11:43.8519652Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:456 2023-01-11T22:11:43.8520096Z #207 0x00000000005bc063 in _PyRun_AnyFileObject.localalias () 2023-01-11T22:11:43.8520501Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:90 2023-01-11T22:11:43.8526573Z #208 0x00000000005b8e7d in pymain_run_file_obj (skip_source_first_line=0, 2023-01-11T22:11:43.8527036Z filename=0x7f6867381840, program_name=0x7f68672f3a00) 2023-01-11T22:11:43.8527600Z at /croot/python-split_1669298683653/work/build-static/python.c:357 2023-01-11T22:11:43.8528130Z #209 pymain_run_file (config=0x21e0e50) 2023-01-11T22:11:43.8528506Z at /croot/python-split_1669298683653/work/build-static/python.c:376 2023-01-11T22:11:43.8530361Z #210 pymain_run_python (exitcode=0x7ffee0a76f70) 2023-01-11T22:11:43.8530938Z at /croot/python-split_1669298683653/work/build-static/python.c:591 2023-01-11T22:11:43.8531320Z #211 Py_RunMain.localalias () 2023-01-11T22:11:43.8531633Z at /croot/python-split_1669298683653/work/build-static/python.c:670 2023-01-11T22:11:43.8545646Z #212 0x0000000000587c29 in Py_BytesMain (argc=, 2023-01-11T22:11:43.8546024Z argv=) 2023-01-11T22:11:43.8546568Z at /croot/python-split_1669298683653/work/build-static/python.c:1090 2023-01-11T22:11:43.8551219Z #213 0x00007f68673e5c87 in __libc_start_main (main=0x587be0
, argc=6, 2023-01-11T22:11:43.8551717Z argv=0x7ffee0a77178, init=, fini=, 2023-01-11T22:11:43.8552131Z rtld_fini=, stack_end=0x7ffee0a77168) 2023-01-11T22:11:43.8552403Z at ../csu/libc-start.c:310 2023-01-11T22:11:43.8552921Z #214 0x0000000000587ade in _start () 2023-01-11T22:11:43.8553470Z at /usr/local/src/conda/python-3.10.8/Modules/_io/clinic/peg_api.c:880 2023-01-11T22:11:44.0234592Z GNU gdb (Ubuntu 8.1.1-0ubuntu1) 8.1.1 2023-01-11T22:11:44.0235094Z Copyright (C) 2018 Free Software Foundation, Inc. 2023-01-11T22:11:44.0235632Z License GPLv3+: GNU GPL version 3 or later 2023-01-11T22:11:44.0236211Z This is free software: you are free to change and redistribute it. 2023-01-11T22:11:44.0236688Z There is NO WARRANTY, to the extent permitted by law. Type "show copying" 2023-01-11T22:11:44.0236946Z and "show warranty" for details. 2023-01-11T22:11:44.0237215Z This GDB was configured as "x86_64-linux-gnu". 2023-01-11T22:11:44.0237477Z Type "show configuration" for configuration details. 2023-01-11T22:11:44.0237729Z For bug reporting instructions, please see: 2023-01-11T22:11:44.0237957Z . 2023-01-11T22:11:44.0238222Z Find the GDB manual and other documentation resources online at: 2023-01-11T22:11:44.0238496Z . 2023-01-11T22:11:44.0238706Z For help, type "help". 2023-01-11T22:11:44.0238944Z Type "apropos word" to search for commands related to "word"... 2023-01-11T22:11:44.1370511Z Reading symbols from python...done. 2023-01-11T22:11:44.6663188Z 2023-01-11T22:11:44.6663716Z warning: core file may not match specified executable file. 2023-01-11T22:11:44.6696445Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:44.6696928Z BFD: warning: /opt/conda/lib/libgomp.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:44.6697288Z [New LWP 23896] 2023-01-11T22:11:44.6697560Z [New LWP 23901] 2023-01-11T22:11:44.6697931Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:44.6698286Z [New LWP 23899] 2023-01-11T22:11:44.6698543Z [New LWP 23898] 2023-01-11T22:11:44.6698824Z [New LWP 23903] 2023-01-11T22:11:44.6699128Z [New LWP 23902] 2023-01-11T22:11:44.6699502Z BFD: warning: /opt/conda/bin/../lib/libstdc++.so.6: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:44.6699849Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:44.6700200Z BFD: warning: /opt/conda/bin/../lib/libgcc_s.so.1: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:44.6700448Z [New LWP 23900] 2023-01-11T22:11:44.6700605Z [New LWP 23904] 2023-01-11T22:11:44.6713180Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:44.6713817Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libgfortran.so.5: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:44.6714577Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010001 2023-01-11T22:11:44.6715116Z BFD: warning: /opt/conda/lib/python3.10/site-packages/numpy/core/../../../.././libquadmath.so.0: unsupported GNU_PROPERTY_TYPE (5) type: 0xc0010002 2023-01-11T22:11:44.6938885Z [Thread debugging using libthread_db enabled] 2023-01-11T22:11:44.6939271Z Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1". 2023-01-11T22:11:51.5233039Z 78 ../sysdeps/unix/syscall-template.S: No such file or directory. 2023-01-11T22:11:51.5233608Z warning: File "/var/lib/jenkins/workspace/.gdbinit" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load". 2023-01-11T22:11:51.5234132Z Core was generated by `/opt/conda/bin/python -bb -c from multiprocessing.spawn import spawn_main; spaw'. 2023-01-11T22:11:51.5234473Z Program terminated with signal SIGABRT, Aborted. 2023-01-11T22:11:51.5234809Z #0 0x00007f91fca56177 in kill () at ../sysdeps/unix/syscall-template.S:78 2023-01-11T22:11:51.5235097Z [Current thread is 1 (Thread 0x7f91fd9d4200 (LWP 23896))] 2023-01-11T22:11:51.5273911Z To enable execution of this file add 2023-01-11T22:11:51.5274631Z add-auto-load-safe-path /var/lib/jenkins/workspace/.gdbinit 2023-01-11T22:11:51.5275011Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:51.5275296Z To completely disable this security protection add 2023-01-11T22:11:51.5275568Z set auto-load safe-path / 2023-01-11T22:11:51.5275799Z line to your configuration file "/var/lib/jenkins/.gdbinit". 2023-01-11T22:11:51.5276075Z For more information about this security protection see the 2023-01-11T22:11:51.5276437Z "Auto-loading safe path" section in the GDB manual. E.g., run from the shell: 2023-01-11T22:11:51.5276735Z info "(gdb)Auto-loading safe path" 2023-01-11T22:11:51.5316157Z #0 0x00007f91fca56177 in kill () at ../sysdeps/unix/syscall-template.S:78 2023-01-11T22:11:51.5318481Z #1 0x00000000004cb0d3 in os_kill_impl ( 2023-01-11T22:11:51.5318992Z module=, 2023-01-11T22:11:51.5319535Z signal=, 2023-01-11T22:11:51.5320085Z pid=) 2023-01-11T22:11:51.5320571Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/sys/_iomodule.c:7929 2023-01-11T22:11:51.5324898Z #2 os_kill (module=, args=args@entry=0x7f9156cdabf8, 2023-01-11T22:11:51.5325379Z nargs=) 2023-01-11T22:11:51.5325765Z at /usr/local/src/conda/python-3.10.8/Modules/codecs.c:3581 2023-01-11T22:11:51.5333257Z #3 0x00000000004fe7d4 in cfunction_vectorcall_FASTCALL (func=0x7f91fd9998f0, 2023-01-11T22:11:51.5333705Z args=0x7f9156cdabf8, nargsf=, kwnames=) 2023-01-11T22:11:51.5334341Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_bitutils.h:430 2023-01-11T22:11:51.5341673Z #4 0x00000000004f351e in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:51.5342185Z nargsf=, args=0x7f9156cdabf8, callable=0x7f91fd9998f0, 2023-01-11T22:11:51.5342633Z tstate=0x1602d10) 2023-01-11T22:11:51.5342984Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5346615Z #5 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:51.5347069Z args=0x7f9156cdabf8, callable=0x7f91fd9998f0) 2023-01-11T22:11:51.5347590Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5350006Z #6 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:51.5350474Z pp_stack=, trace_info=0x7ffc9c98dd00, 2023-01-11T22:11:51.5351101Z tstate=) 2023-01-11T22:11:51.5351679Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:51.5351980Z #7 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5352460Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4181 2023-01-11T22:11:51.5352938Z #8 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5353344Z throwflag=, 2023-01-11T22:11:51.5353709Z f=, 2023-01-11T22:11:51.5354054Z tstate=) 2023-01-11T22:11:51.5354438Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:51.5358886Z #9 _PyEval_Vector (kwnames=, 2023-01-11T22:11:51.5359510Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:51.5360123Z args@entry=, locals=0x0, 2023-01-11T22:11:51.5360523Z locals@entry=, con=0x7f9156923890, 2023-01-11T22:11:51.5360928Z con@entry=, tstate=0x1602d10, 2023-01-11T22:11:51.5361298Z tstate@entry=) 2023-01-11T22:11:51.5361696Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5361938Z #10 _PyFunction_Vectorcall () 2023-01-11T22:11:51.5362238Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:51.5367165Z #11 0x00000000004f141c in do_call_core (kwdict=0x0, callargs=0x7f91fc74bbe0, 2023-01-11T22:11:51.5367660Z func=0x7f9156923880, trace_info=0x7ffc9c98dec0, tstate=) 2023-01-11T22:11:51.5368231Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:51.5368463Z #12 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5368769Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:51.5369503Z #13 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5370209Z throwflag=, 2023-01-11T22:11:51.5370566Z f=, 2023-01-11T22:11:51.5370921Z tstate=) 2023-01-11T22:11:51.5371308Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:51.5376092Z #14 _PyEval_Vector (kwnames=, 2023-01-11T22:11:51.5376687Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:51.5377329Z args@entry=, locals=0x0, 2023-01-11T22:11:51.5377731Z locals@entry=, con=0x7f915985a9f0, 2023-01-11T22:11:51.5378131Z con@entry=, tstate=0x1602d10, 2023-01-11T22:11:51.5378503Z tstate@entry=) 2023-01-11T22:11:51.5378894Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5379132Z #15 _PyFunction_Vectorcall () 2023-01-11T22:11:51.5379421Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:51.5385041Z #16 0x00000000004f141c in do_call_core (kwdict=0x7f91fc85a7c0, 2023-01-11T22:11:51.5385356Z callargs=0x7f915691eac0, func=0x7f915985a9e0, trace_info=0x7ffc9c98e080, 2023-01-11T22:11:51.5385596Z tstate=) 2023-01-11T22:11:51.5385905Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5943 2023-01-11T22:11:51.5386154Z #17 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5386461Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4277 2023-01-11T22:11:51.5386910Z #18 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5387295Z throwflag=, 2023-01-11T22:11:51.5387663Z f=, 2023-01-11T22:11:51.5388020Z tstate=) 2023-01-11T22:11:51.5388387Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:51.5393504Z #19 _PyEval_Vector (kwnames=, 2023-01-11T22:11:51.5394001Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:51.5394786Z args@entry=, locals=0x0, 2023-01-11T22:11:51.5395185Z locals@entry=, con=0x7f91fc8855b0, 2023-01-11T22:11:51.5395584Z con@entry=, tstate=0x1602d10, 2023-01-11T22:11:51.5395968Z tstate@entry=) 2023-01-11T22:11:51.5396360Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5396591Z #20 _PyFunction_Vectorcall () 2023-01-11T22:11:51.5396891Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:51.5402242Z #21 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:51.5402563Z nargsf=, args=0x6510e28, callable=0x7f91fc8855a0, 2023-01-11T22:11:51.5402819Z tstate=0x1602d10) 2023-01-11T22:11:51.5403131Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5407461Z #22 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x6510e28, 2023-01-11T22:11:51.5407779Z callable=0x7f91fc8855a0) 2023-01-11T22:11:51.5408102Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5411328Z #23 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:51.5411763Z pp_stack=, trace_info=0x7ffc9c98e240, 2023-01-11T22:11:51.5412187Z tstate=) 2023-01-11T22:11:51.5412740Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:51.5413189Z #24 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5413686Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:51.5414122Z #25 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5414665Z throwflag=, 2023-01-11T22:11:51.5415310Z f=, 2023-01-11T22:11:51.5415955Z tstate=) 2023-01-11T22:11:51.5416356Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:51.5420673Z #26 _PyEval_Vector (kwnames=, 2023-01-11T22:11:51.5421267Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:51.5422004Z args@entry=, locals=0x0, 2023-01-11T22:11:51.5422406Z locals@entry=, con=0x7f91fc885f40, 2023-01-11T22:11:51.5422872Z con@entry=, tstate=0x1602d10, 2023-01-11T22:11:51.5423249Z tstate@entry=) 2023-01-11T22:11:51.5423640Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5423879Z #27 _PyFunction_Vectorcall () 2023-01-11T22:11:51.5424164Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:51.5429223Z #28 0x00000000004ef101 in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:51.5429721Z nargsf=, args=0x167f6c0, callable=0x7f91fc885f30, 2023-01-11T22:11:51.5430103Z tstate=0x1602d10) 2023-01-11T22:11:51.5430400Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5434059Z #29 PyObject_Vectorcall (kwnames=0x0, nargsf=, args=0x167f6c0, 2023-01-11T22:11:51.5434354Z callable=0x7f91fc885f30) 2023-01-11T22:11:51.5434658Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5437578Z #30 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:51.5437989Z pp_stack=, trace_info=0x7ffc9c98e400, 2023-01-11T22:11:51.5438225Z tstate=) 2023-01-11T22:11:51.5438514Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:51.5438760Z #31 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5439063Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4198 2023-01-11T22:11:51.5439858Z #32 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5440332Z throwflag=, 2023-01-11T22:11:51.5440999Z f=, 2023-01-11T22:11:51.5441386Z tstate=) 2023-01-11T22:11:51.5441755Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:51.5446983Z #33 _PyEval_Vector (kwnames=, 2023-01-11T22:11:51.5447703Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:51.5448497Z args@entry=, locals=0x0, 2023-01-11T22:11:51.5449148Z locals@entry=, con=0x7f91fc70ade0, 2023-01-11T22:11:51.5449650Z con@entry=, tstate=0x1602d10, 2023-01-11T22:11:51.5450031Z tstate@entry=) 2023-01-11T22:11:51.5450421Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5450650Z #34 _PyFunction_Vectorcall () 2023-01-11T22:11:51.5450950Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:51.5456036Z #35 0x00000000004eecef in _PyObject_VectorcallTstate (kwnames=0x0, 2023-01-11T22:11:51.5456527Z nargsf=, args=0x7f91fc9cc200, callable=0x7f91fc70add0, 2023-01-11T22:11:51.5456950Z tstate=0x1602d10) 2023-01-11T22:11:51.5457279Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5460848Z #36 PyObject_Vectorcall (kwnames=0x0, nargsf=, 2023-01-11T22:11:51.5461295Z args=0x7f91fc9cc200, callable=0x7f91fc70add0) 2023-01-11T22:11:51.5461869Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5464480Z #37 call_function (kwnames=0x0, oparg=, 2023-01-11T22:11:51.5464915Z pp_stack=, trace_info=0x7ffc9c98e5c0, 2023-01-11T22:11:51.5465346Z tstate=) 2023-01-11T22:11:51.5465733Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:51.5465963Z #38 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5466308Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4213 2023-01-11T22:11:51.5466721Z #39 0x00000000004fe5ef in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5467279Z throwflag=, 2023-01-11T22:11:51.5467687Z f=, 2023-01-11T22:11:51.5468044Z tstate=) 2023-01-11T22:11:51.5468421Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5052 2023-01-11T22:11:51.5473041Z #40 _PyEval_Vector (kwnames=, 2023-01-11T22:11:51.5473610Z kwnames@entry=, argcount=, args=, 2023-01-11T22:11:51.5474341Z args@entry=, locals=0x0, 2023-01-11T22:11:51.5474744Z locals@entry=, con=0x7f91fc70ad50, 2023-01-11T22:11:51.5475144Z con@entry=, tstate=0x1602d10, 2023-01-11T22:11:51.5475513Z tstate@entry=) 2023-01-11T22:11:51.5475901Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5476142Z #41 _PyFunction_Vectorcall () 2023-01-11T22:11:51.5476431Z at /usr/local/src/conda/python-3.10.8/Include/abstract.h:342 2023-01-11T22:11:51.5480236Z #42 0x00000000004efd83 in _PyObject_VectorcallTstate (kwnames=0x7f91fc9a5d80, 2023-01-11T22:11:51.5480612Z nargsf=, args=, callable=0x7f91fc70ad40, 2023-01-11T22:11:51.5480888Z tstate=0x1602d10) 2023-01-11T22:11:51.5481273Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5483503Z #43 PyObject_Vectorcall (kwnames=0x7f91fc9a5d80, nargsf=, 2023-01-11T22:11:51.5483974Z args=, callable=0x7f91fc70ad40) 2023-01-11T22:11:51.5484555Z at /usr/local/src/conda/python-3.10.8/Objects/pycore_pyerrors.h:123 2023-01-11T22:11:51.5487067Z #44 call_function (kwnames=0x7f91fc9a5d80, oparg=, 2023-01-11T22:11:51.5487535Z pp_stack=, trace_info=0x7ffc9c98e780, 2023-01-11T22:11:51.5487980Z tstate=) 2023-01-11T22:11:51.5488523Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5891 2023-01-11T22:11:51.5488912Z #45 _PyEval_EvalFrameDefault () 2023-01-11T22:11:51.5489335Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:4231 2023-01-11T22:11:51.5490002Z #46 0x0000000000594b72 in _PyEval_EvalFrame ( 2023-01-11T22:11:51.5490451Z throwflag=, 2023-01-11T22:11:51.5490824Z f=, 2023-01-11T22:11:51.5491182Z tstate=) 2023-01-11T22:11:51.5491639Z at /croot/python-split_1669298683653/_build_env/x86_64-conda-linux-gnu/sysroot/usr/include/bits/call.c:46 2023-01-11T22:11:51.5491895Z #47 _PyEval_Vector () 2023-01-11T22:11:51.5492190Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:5065 2023-01-11T22:11:51.5498738Z #48 0x0000000000594ab7 in PyEval_EvalCode (co=co@entry=0x7f91fc968920, 2023-01-11T22:11:51.5499155Z globals=globals@entry=0x7f91fc95a5c0, locals=locals@entry=0x7f91fc95a5c0) 2023-01-11T22:11:51.5499501Z at /usr/local/src/conda/python-3.10.8/Modules/ceval_gil.h:1134 2023-01-11T22:11:51.5501134Z #49 0x00000000005c6e57 in run_eval_code_obj () 2023-01-11T22:11:51.5501500Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1291 2023-01-11T22:11:51.5503881Z #50 0x00000000005c1d40 in run_mod () 2023-01-11T22:11:51.5504219Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1312 2023-01-11T22:11:51.5506308Z #51 0x00000000005b9ebb in PyRun_StringFlags.localalias () 2023-01-11T22:11:51.5506710Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:1183 2023-01-11T22:11:51.5509032Z #52 0x00000000005b9cfb in PyRun_SimpleStringFlags.localalias () 2023-01-11T22:11:51.5509407Z at /usr/local/src/conda/python-3.10.8/Objects/clinic/marshal.c.h:503 2023-01-11T22:11:51.5511773Z #53 0x00000000005b8d5c in pymain_run_command ( 2023-01-11T22:11:51.5512193Z command=) 2023-01-11T22:11:51.5512603Z at /croot/python-split_1669298683653/work/build-static/python.c:252 2023-01-11T22:11:51.5514473Z #54 pymain_run_python (exitcode=0x7ffc9c98e9e0) 2023-01-11T22:11:51.5515063Z at /croot/python-split_1669298683653/work/build-static/python.c:582 2023-01-11T22:11:51.5515477Z #55 Py_RunMain.localalias () 2023-01-11T22:11:51.5515789Z at /croot/python-split_1669298683653/work/build-static/python.c:670 2023-01-11T22:11:51.5531691Z #56 0x0000000000587c29 in Py_BytesMain (argc=, 2023-01-11T22:11:51.5532005Z argv=) 2023-01-11T22:11:51.5532322Z at /croot/python-split_1669298683653/work/build-static/python.c:1090 2023-01-11T22:11:51.5537299Z #57 0x00007f91fca38c87 in __libc_start_main (main=0x587be0
, argc=5, 2023-01-11T22:11:51.5537662Z argv=0x7ffc9c98ebe8, init=, fini=, 2023-01-11T22:11:51.5537973Z rtld_fini=, stack_end=0x7ffc9c98ebd8) 2023-01-11T22:11:51.5538247Z at ../csu/libc-start.c:310 2023-01-11T22:11:51.5539321Z #58 0x0000000000587ade in _start () 2023-01-11T22:11:51.5539625Z at /usr/local/src/conda/python-3.10.8/Modules/_io/clinic/peg_api.c:880 2023-01-11T22:11:52.3962532Z ##[group]Run set -x 2023-01-11T22:11:52.3962735Z set -x 2023-01-11T22:11:52.3962955Z python3 -m pip install -r requirements.txt 2023-01-11T22:11:52.3963190Z python3 -m pip install boto3==1.19.12 2023-01-11T22:11:52.3963482Z python3 -m tools.stats.print_test_stats --upload-to-s3 --compare-with-s3 test 2023-01-11T22:11:52.3974842Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:11:52.3975049Z env: 2023-01-11T22:11:52.3975224Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:11:52.3975504Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:11:52.3975777Z AWS_DEFAULT_REGION: us-east-1 2023-01-11T22:11:52.3975959Z BRANCH: 2023-01-11T22:11:52.3976131Z TEST_CONFIG: nogpu_AVX512 2023-01-11T22:11:52.3976312Z SHARD_NUMBER: 1 2023-01-11T22:11:52.3976534Z BUILD_ENVIRONMENT: linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T22:11:52.3976759Z PR_NUMBER: 2023-01-11T22:11:52.3976959Z PYTORCH_RETRY_TEST_CASES: 1 2023-01-11T22:11:52.3977168Z PYTORCH_OVERRIDE_FLAKY_SIGNAL: 1 2023-01-11T22:11:52.3977397Z SHA1: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T22:11:52.3977612Z TAG: ciflow/trunk/91627 2023-01-11T22:11:52.3977783Z WORKFLOW_ID: 3896346758 2023-01-11T22:11:52.3978112Z GITHUB_TOKEN: *** 2023-01-11T22:11:52.3978300Z GHA_WORKFLOW_JOB_ID: 10589559762 2023-01-11T22:11:52.3978472Z ##[endgroup] 2023-01-11T22:11:52.4002124Z + python3 -m pip install -r requirements.txt 2023-01-11T22:11:52.6045440Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T22:11:52.6320472Z Requirement already satisfied: astunparse in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (1.6.3) 2023-01-11T22:11:52.6350205Z Requirement already satisfied: expecttest in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 3)) (0.1.4) 2023-01-11T22:11:52.6358046Z Requirement already satisfied: future in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 4)) (0.18.2) 2023-01-11T22:11:52.6366283Z Requirement already satisfied: hypothesis in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 5)) (6.62.0) 2023-01-11T22:11:52.6724962Z Requirement already satisfied: numpy in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 6)) (1.21.6) 2023-01-11T22:11:52.6733907Z Requirement already satisfied: psutil in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 7)) (5.9.1) 2023-01-11T22:11:52.6808378Z Requirement already satisfied: pyyaml in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 8)) (6.0) 2023-01-11T22:11:52.6816347Z Requirement already satisfied: requests in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 9)) (2.26.0) 2023-01-11T22:11:52.7026015Z Requirement already satisfied: setuptools in /usr/lib/python3.7/site-packages (from -r requirements.txt (line 10)) (49.1.3) 2023-01-11T22:11:52.7189335Z Requirement already satisfied: six in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 11)) (1.16.0) 2023-01-11T22:11:52.7197507Z Requirement already satisfied: types-dataclasses in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 12)) (0.6.6) 2023-01-11T22:11:52.7203235Z Requirement already satisfied: typing_extensions in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 13)) (4.4.0) 2023-01-11T22:11:52.7213056Z Requirement already satisfied: sympy in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 14)) (1.10.1) 2023-01-11T22:11:52.7231299Z Requirement already satisfied: filelock in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 15)) (3.9.0) 2023-01-11T22:11:52.7300595Z Requirement already satisfied: networkx in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 16)) (2.6.3) 2023-01-11T22:11:52.7455794Z Requirement already satisfied: jinja2 in /home/ec2-user/.local/lib/python3.7/site-packages (from -r requirements.txt (line 17)) (3.1.2) 2023-01-11T22:11:52.7479876Z Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from astunparse->-r requirements.txt (line 2)) (0.38.4) 2023-01-11T22:11:52.7495695Z Requirement already satisfied: exceptiongroup>=1.0.0; python_version < "3.11" in /home/ec2-user/.local/lib/python3.7/site-packages (from hypothesis->-r requirements.txt (line 5)) (1.1.0) 2023-01-11T22:11:52.7515414Z Requirement already satisfied: attrs>=19.2.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from hypothesis->-r requirements.txt (line 5)) (22.2.0) 2023-01-11T22:11:52.7760133Z Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from hypothesis->-r requirements.txt (line 5)) (2.4.0) 2023-01-11T22:11:52.7770572Z Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (2022.12.7) 2023-01-11T22:11:52.7779385Z Requirement already satisfied: charset-normalizer~=2.0.0; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (2.0.12) 2023-01-11T22:11:52.7799535Z Requirement already satisfied: idna<4,>=2.5; python_version >= "3" in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (3.4) 2023-01-11T22:11:52.7810882Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from requests->-r requirements.txt (line 9)) (1.26.14) 2023-01-11T22:11:52.7959352Z Requirement already satisfied: mpmath>=0.19 in /home/ec2-user/.local/lib/python3.7/site-packages (from sympy->-r requirements.txt (line 14)) (1.2.1) 2023-01-11T22:11:52.8012832Z Requirement already satisfied: MarkupSafe>=2.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from jinja2->-r requirements.txt (line 17)) (2.1.1) 2023-01-11T22:11:52.8553422Z + python3 -m pip install boto3==1.19.12 2023-01-11T22:11:53.0616320Z Defaulting to user installation because normal site-packages is not writeable 2023-01-11T22:11:53.0793895Z Requirement already satisfied: boto3==1.19.12 in /home/ec2-user/.local/lib/python3.7/site-packages (1.19.12) 2023-01-11T22:11:53.0842802Z Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /home/ec2-user/.local/lib/python3.7/site-packages (from boto3==1.19.12) (0.5.2) 2023-01-11T22:11:53.0869526Z Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from boto3==1.19.12) (0.10.0) 2023-01-11T22:11:53.0881827Z Requirement already satisfied: botocore<1.23.0,>=1.22.12 in /home/ec2-user/.local/lib/python3.7/site-packages (from boto3==1.19.12) (1.22.12) 2023-01-11T22:11:53.0929950Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/.local/lib/python3.7/site-packages (from botocore<1.23.0,>=1.22.12->boto3==1.19.12) (1.26.14) 2023-01-11T22:11:53.1081002Z Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/.local/lib/python3.7/site-packages (from botocore<1.23.0,>=1.22.12->boto3==1.19.12) (2.8.2) 2023-01-11T22:11:53.1100811Z Requirement already satisfied: six>=1.5 in /home/ec2-user/.local/lib/python3.7/site-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.23.0,>=1.22.12->boto3==1.19.12) (1.16.0) 2023-01-11T22:11:53.2889960Z + python3 -m tools.stats.print_test_stats --upload-to-s3 --compare-with-s3 test 2023-01-11T22:15:10.5449450Z [scribe] Scribe access token not provided, sending report via boto3... 2023-01-11T22:15:10.5450429Z ERROR ENCOUNTERED WHEN UPLOADING TO SCRIBE: {"errorMessage":"2023-01-11T22:14:57.883Z 60f45355-9709-4d86-8456-d9f171b3045f Task timed out after 60.03 seconds"} 2023-01-11T22:15:10.5450800Z 2023-01-11T22:15:10.5450973Z ----- Historic stats comparison result ------ 2023-01-11T22:15:10.5451364Z 2023-01-11T22:15:10.5451537Z job: linux-bionic-cuda11.7-py3.10-gcc7 2023-01-11T22:15:10.5451808Z commit: 8419ddda87c8a47eacc63b54bc7ec98c1f27c26e 2023-01-11T22:15:10.5455018Z 2023-01-11T22:15:10.5455375Z Commit graph (base is most recent master ancestor with at least one S3 report): 2023-01-11T22:15:10.5455711Z 2023-01-11T22:15:10.5455815Z : (master) 2023-01-11T22:15:10.5456102Z | 2023-01-11T22:15:10.5456418Z | * 8419ddda87 (HEAD) total time 3441.34s 2023-01-11T22:15:10.5456689Z | | 2023-01-11T22:15:10.5456916Z | : (2 commits) 2023-01-11T22:15:10.5457192Z |/ 2023-01-11T22:15:10.5458665Z * db2a237763 (base) 11 reports, total time 4966.48s ± 3495.23s 2023-01-11T22:15:10.5459027Z * 2b0abd4ce3 11 reports, total time 4990.75s ± 3463.36s 2023-01-11T22:15:10.5459353Z * f7939b21e1 33 reports, total time 3500.97s ± 3537.57s 2023-01-11T22:15:10.5459661Z * cb3204823e 11 reports, total time 4951.99s ± 3458.09s 2023-01-11T22:15:10.5459975Z * 6e236553f5 11 reports, total time 4964.39s ± 3513.19s 2023-01-11T22:15:10.5461222Z * cce577b391 11 reports, total time 4938.35s ± 3358.29s 2023-01-11T22:15:10.5461540Z * fae821c2f1 11 reports, total time 4751.06s ± 3169.39s 2023-01-11T22:15:10.5461837Z * 0c3659586d 11 reports, total time 4713.33s ± 3185.77s 2023-01-11T22:15:10.5462144Z * 122245985a 11 reports, total time 4767.91s ± 3184.40s 2023-01-11T22:15:10.5462521Z * b797a24259 11 reports, total time 4784.26s ± 3253.10s 2023-01-11T22:15:10.5462879Z | 2023-01-11T22:15:10.5463017Z : 2023-01-11T22:15:10.5463112Z 2023-01-11T22:15:10.5463231Z Removed (across 859 suites) 0 tests, totaling 0.00s 2023-01-11T22:15:10.5463494Z Modified (across 0 suites) 0 tests, totaling 0.00s 2023-01-11T22:15:10.5463740Z Added (across 682 suites) 17743 tests, totaling +3441.34s 2023-01-11T22:15:10.6232739Z ##[group]Run pytorch/test-infra/.github/actions/teardown-linux@main 2023-01-11T22:15:10.6232979Z with: 2023-01-11T22:15:10.6233120Z env: 2023-01-11T22:15:10.6233291Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:15:10.6233571Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:15:10.6233820Z ##[endgroup] 2023-01-11T22:15:10.6246893Z ##[group]Run set -eou pipefail 2023-01-11T22:15:10.6247107Z set -eou pipefail 2023-01-11T22:15:10.6247289Z  2023-01-11T22:15:10.6247523Z echo "Holding runner for 2 hours until all ssh sessions have logged out" 2023-01-11T22:15:10.6247779Z for _ in $(seq 1440); do 2023-01-11T22:15:10.6248002Z  # Break if no ssh session exists anymore 2023-01-11T22:15:10.6248220Z  if [ "$(who)" = "" ]; then 2023-01-11T22:15:10.6248402Z  break 2023-01-11T22:15:10.6248553Z  fi 2023-01-11T22:15:10.6248752Z  echo "." 2023-01-11T22:15:10.6248911Z  sleep 5 2023-01-11T22:15:10.6249305Z done 2023-01-11T22:15:10.6260326Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:15:10.6260544Z env: 2023-01-11T22:15:10.6260725Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:15:10.6260993Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:15:10.6261255Z ##[endgroup] 2023-01-11T22:15:10.6284615Z Holding runner for 2 hours until all ssh sessions have logged out 2023-01-11T22:15:10.6378631Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2023-01-11T22:15:10.6378935Z # ignore expansion of "docker ps -q" since it could be empty 2023-01-11T22:15:10.6379183Z # shellcheck disable=SC2046 2023-01-11T22:15:10.6379406Z docker stop $(docker ps -q) || true 2023-01-11T22:15:10.6379635Z # Prune all of the docker images 2023-01-11T22:15:10.6379835Z docker system prune -af 2023-01-11T22:15:10.6393949Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-01-11T22:15:10.6394317Z env: 2023-01-11T22:15:10.6394601Z GIT_DEFAULT_BRANCH: master 2023-01-11T22:15:10.6395068Z DOCKER_CONTAINER_ID: ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:15:10.6395489Z ##[endgroup] 2023-01-11T22:15:11.0243476Z ecb438e252c9 2023-01-11T22:15:13.6547321Z Deleted Containers: 2023-01-11T22:15:13.6547864Z ecb438e252c9ff87c91c59eac3830e1515fed1d74edeb61f248247e1289e6ed4 2023-01-11T22:15:13.6548046Z 2023-01-11T22:15:20.3592039Z Deleted Images: 2023-01-11T22:15:20.3593017Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7:fd224c2e6c79d7fdec6408da598bf52bc5b201dd 2023-01-11T22:15:20.3594179Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7@sha256:0da23f4faf0ce20770149c4a783e08eaa91c07112511dc5511c77937c66edb24 2023-01-11T22:15:20.3594764Z deleted: sha256:dd055998e88c3bb7db98caef99cc4aaaa492114a459a38a5f0ab49c735f40318 2023-01-11T22:15:20.3595309Z deleted: sha256:e4008aa27d9451086197883cfac22b827879bbe380f63c8c39e3db8313773f3c 2023-01-11T22:15:20.3595700Z deleted: sha256:acc638ed73c788f1c8fdbf04e65d27fa42e6c32d67dbdb50616e173ef284a563 2023-01-11T22:15:20.3596050Z deleted: sha256:f5db2d6ac11f27c63a5f2d0250a45efbd078c37a32d2e2973e544ea526501ba9 2023-01-11T22:15:20.3596363Z deleted: sha256:ce58ef265c69d549d5071cb5418ec43a703978b2c7a88b1141673272cd29de77 2023-01-11T22:15:20.3596760Z deleted: sha256:2e1d5c5ea4a63305e9617c6ab380960f330e1755c39c714f3a3eefb2b603e92a 2023-01-11T22:15:20.3597524Z deleted: sha256:f6e5b9727392978f694412774dde4231ab32666b8604ff0d64727308d45a9163 2023-01-11T22:15:20.3597992Z deleted: sha256:0cfd1beb2f29eb03cb53178c729bf68f37f74bbd713aa6e3a6b1dd0b8121eb61 2023-01-11T22:15:20.3598318Z deleted: sha256:8ec9997c9a1e58cb7d553f0862f1f975bdc1bbd0d0297b6c483bf8731508824b 2023-01-11T22:15:20.3598691Z deleted: sha256:367991b9b8c74307719e7037512b4d1d67917a888c40c4ed86af9843f0c38c77 2023-01-11T22:15:20.3598992Z deleted: sha256:83b736f4ed1139df1136ab38e29568f048e4ce111951d4fdc1a508713303ca00 2023-01-11T22:15:20.3599307Z deleted: sha256:d2ca56a8d719ce8cfe4b65b165cdee296b1b456c56eb3e06990ca62ba42bc18a 2023-01-11T22:15:20.3599643Z deleted: sha256:cdfc9a191a57609f700ced389b19973ef4436b66b1d47313c799be166d6fce4b 2023-01-11T22:15:20.3599963Z deleted: sha256:293a82b424c32cb77ae038879dff6856d5fd08e5b9db2c5b015f424ebf88d24b 2023-01-11T22:15:20.3600282Z deleted: sha256:21a63ac2015ba16ccb51b9090e0f4b78a8437ca4dd189f376d1e9f45e6c74d3e 2023-01-11T22:15:20.3600612Z deleted: sha256:afc58208e3d75e15f79b0f474b361bbc1e21b8eb232fe613a1c79b8415827c86 2023-01-11T22:15:20.3600936Z deleted: sha256:86179776c9e36c00cf4c4a64f717303555b00dc594ab664fb29cfdb707eece2b 2023-01-11T22:15:20.3601332Z deleted: sha256:45f06a2900391711a143b22a31156d3013a0f37430ff8367ab4dbb27ac33381e 2023-01-11T22:15:20.3601861Z deleted: sha256:d7d350150f2a9a9ac81a59d44fd01f74d44f5f354f07a2f055aea97c8be52d92 2023-01-11T22:15:20.3602376Z deleted: sha256:eae59ad1f09ea2b1f99a568bfd5f85dae44a3af9b46b5ac5af19931de9e8fb8d 2023-01-11T22:15:20.3602836Z deleted: sha256:d734a02f47eda33d1022c9642ccfc469b44f5b104ab8ae7aa855ea76be550288 2023-01-11T22:15:20.3603442Z deleted: sha256:643cbebfdfe0cee71fed16a3233b2ee4b6392d91833a41269cdc80c8d0841ae9 2023-01-11T22:15:20.3603891Z deleted: sha256:3a4db9e7d414af3a157be5297f5b7bcddc4c63c0e83221d36728ddc32f84bc2d 2023-01-11T22:15:20.3604231Z deleted: sha256:d93fc8ff6f3d356d012ef7cca3d02018fa3c0a4be9ca2ae4ce78d174274ce530 2023-01-11T22:15:20.3604654Z deleted: sha256:cdd9af1450d9ea8f070e7c03dfe076d49ab615a4d3558be68bd7a4f16d804038 2023-01-11T22:15:20.3604986Z deleted: sha256:de611f0f78a22b1c6c68620370fb99a959c668d8c38a2cc832912e784f94869f 2023-01-11T22:15:20.3605289Z deleted: sha256:0c7878e2d089271e8e5c181eef49d0a43c99b827d1a60dafd15a54627d9146b4 2023-01-11T22:15:20.3605610Z deleted: sha256:55fe9bdaa629b37baee75e1f6878ab1941e000e0937ef45452a9482f29de4577 2023-01-11T22:15:20.3605964Z deleted: sha256:1e641da8b29087f06ad852506d00c1eaaedaeed0bf2a451c1d462c0b476c169f 2023-01-11T22:15:20.3606272Z deleted: sha256:77079a0a22a485736fdd6052b5270d4fb8ee1771976ed0d55e0f315cbc6d1da5 2023-01-11T22:15:20.3606593Z deleted: sha256:b3dda998ed6389c88d249f3aa8d96b2f94876931c45284ef00425cdea77b7c07 2023-01-11T22:15:20.3606913Z deleted: sha256:7dcf69834443047244edadb0a7016bc391279d485de12e8d2d8aad25af532912 2023-01-11T22:15:20.3607236Z deleted: sha256:932db4f0d0b27a0b32d81f5e108fdec1c5433e7b4614cfdc39d64189a59bc228 2023-01-11T22:15:20.3607559Z deleted: sha256:99ea7bfa823ad0725ffcc42e5dd47b90270c3a3e49a0b2a31adae4497d029331 2023-01-11T22:15:20.3607898Z deleted: sha256:58c3ab544a412f163fd3613ab991ea85fa1ae7c97f5a6cbc7b86a1b97fdd5484 2023-01-11T22:15:20.3608226Z deleted: sha256:fd75951227e5b4de5b96f5ee360cb3f1caf2f32a33ca89976013a385d23a34be 2023-01-11T22:15:20.3608535Z deleted: sha256:980d2a371b758adf16fc78370ed6b8bcf77846721ef4f20da94a6d1299457ad6 2023-01-11T22:15:20.3608847Z deleted: sha256:311c72e743e14e8490d04f4331dcc0a35309e9b94266986b0b5badd5fe499765 2023-01-11T22:15:20.3609279Z deleted: sha256:857d2698f0a0af2341318f6ed93060f21d498e989b339e2867c5236bab9c63d5 2023-01-11T22:15:20.3609585Z deleted: sha256:df69730c501d9b3ce0f2316b2b638e20515ce1e9aad01098b13234f4a2154927 2023-01-11T22:15:20.3609890Z deleted: sha256:288a6d7efd5c9e470341b16b3ea2cd41124c769de8d10643ac688d651e9767c9 2023-01-11T22:15:20.3610203Z deleted: sha256:6a565f7b04668396c32d11cad845e1cd1b84d09e6f970457c5494adfde59690f 2023-01-11T22:15:20.3610530Z deleted: sha256:b4e45ce76a79fe9f3dbbf723401c4bf189f0e70bc81fc2dbe4e70c80044c2fac 2023-01-11T22:15:20.3610852Z deleted: sha256:e4a3cd7f0f84ce7171b04c994248707950295feb437bc5feaadcb66a3f7bf5a3 2023-01-11T22:15:20.3611259Z deleted: sha256:24ac908f9f592af03d6a51011147428f9e682c79b8ca2ad5afd2b1a44aeed617 2023-01-11T22:15:20.3611574Z deleted: sha256:50cc7186fda7f64aa964824a32c139a1085ce030491c0da5fab99fdecae66fdf 2023-01-11T22:15:20.3611941Z deleted: sha256:6e9c802974cfa887b7300715840ef7aaf5765df415d8d4680f72c6034a10292b 2023-01-11T22:15:20.3612226Z deleted: sha256:30109e8b967541225d66d116256e57334c2b63c25b456f9f7cd72d14d46d8da3 2023-01-11T22:15:20.3612526Z deleted: sha256:18ce8ec73f72efbc789a00688f5d57c798690e22048389f236dbc593cec31d6e 2023-01-11T22:15:20.3612893Z deleted: sha256:195741932e0b070b4fed22eee8d97719dc71f1f569594b418d777b87dbe76a6d 2023-01-11T22:15:20.3613192Z deleted: sha256:6f099faae794c47a468400004f89aed66ec84fa1bd6c606a9877ab09c84a5289 2023-01-11T22:15:20.3613578Z deleted: sha256:5bddaa98761511a0e16047132a49704d0cf176bec84f42b91644b8e7adb3cb88 2023-01-11T22:15:20.3613873Z deleted: sha256:5089072a88c6788d2594696a16346c495f97fd117430602f033541a0f333de5f 2023-01-11T22:15:20.3614200Z deleted: sha256:9bc67bb187c368480f186819831faa7998ba6d4f2e4ab8bd5b5fbc8a5aada045 2023-01-11T22:15:20.3614677Z deleted: sha256:45bbe3d22998589317c7f6c4dd591475423bb37ca9b922529c5878653483b18d 2023-01-11T22:15:20.3614864Z 2023-01-11T22:15:20.3615174Z Total reclaimed space: 20.62GB 2023-01-11T22:15:20.3681847Z Post job cleanup. 2023-01-11T22:15:20.3742367Z Post job cleanup. 2023-01-11T22:15:20.4807349Z [command]/usr/bin/git version 2023-01-11T22:15:20.4851693Z git version 2.38.1 2023-01-11T22:15:20.4891821Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/304e38e2-eb4e-49c8-bcd6-dacfd81ddfa5' before making global git config changes 2023-01-11T22:15:20.4892508Z Adding repository directory to the temporary git global config as a safe directory 2023-01-11T22:15:20.4896302Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2023-01-11T22:15:20.4941921Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2023-01-11T22:15:20.4971010Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || : 2023-01-11T22:15:20.5362649Z Entering 'android/libs/fbjni' 2023-01-11T22:15:20.5406673Z Entering 'third_party/FP16' 2023-01-11T22:15:20.5450959Z Entering 'third_party/FXdiv' 2023-01-11T22:15:20.5500413Z Entering 'third_party/NNPACK' 2023-01-11T22:15:20.5553251Z Entering 'third_party/QNNPACK' 2023-01-11T22:15:20.5602062Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T22:15:20.5634852Z Entering 'third_party/XNNPACK' 2023-01-11T22:15:20.5745470Z Entering 'third_party/benchmark' 2023-01-11T22:15:20.5793466Z Entering 'third_party/cpuinfo' 2023-01-11T22:15:20.5844522Z Entering 'third_party/cub' 2023-01-11T22:15:20.5899924Z Entering 'third_party/cudnn_frontend' 2023-01-11T22:15:20.5937119Z Entering 'third_party/cutlass' 2023-01-11T22:15:20.5977014Z Entering 'third_party/eigen' 2023-01-11T22:15:20.6038831Z Entering 'third_party/fbgemm' 2023-01-11T22:15:20.6101412Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T22:15:20.6160561Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T22:15:20.6225640Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T22:15:20.6278555Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T22:15:20.6328438Z Entering 'third_party/flatbuffers' 2023-01-11T22:15:20.6363514Z Entering 'third_party/fmt' 2023-01-11T22:15:20.6413455Z Entering 'third_party/foxi' 2023-01-11T22:15:20.6454552Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T22:15:20.6501195Z Entering 'third_party/gloo' 2023-01-11T22:15:20.6548295Z Entering 'third_party/googletest' 2023-01-11T22:15:20.6595577Z Entering 'third_party/ideep' 2023-01-11T22:15:20.6652598Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T22:15:20.6735673Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T22:15:20.6817403Z Entering 'third_party/ios-cmake' 2023-01-11T22:15:20.6859066Z Entering 'third_party/ittapi' 2023-01-11T22:15:20.6892441Z Entering 'third_party/kineto' 2023-01-11T22:15:20.6925568Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T22:15:20.6958646Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T22:15:20.6992058Z Entering 'third_party/nccl/nccl' 2023-01-11T22:15:20.7040431Z Entering 'third_party/neon2sse' 2023-01-11T22:15:20.7082504Z Entering 'third_party/nlohmann' 2023-01-11T22:15:20.7116818Z Entering 'third_party/onnx' 2023-01-11T22:15:20.7241902Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T22:15:20.7300573Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T22:15:20.7350621Z Entering 'third_party/onnx-tensorrt' 2023-01-11T22:15:20.7419115Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T22:15:20.7511211Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T22:15:20.7573699Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T22:15:20.7639061Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T22:15:20.7692880Z Entering 'third_party/pocketfft' 2023-01-11T22:15:20.7724950Z Entering 'third_party/protobuf' 2023-01-11T22:15:20.7812967Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T22:15:20.7872644Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T22:15:20.7925545Z Entering 'third_party/psimd' 2023-01-11T22:15:20.7968709Z Entering 'third_party/pthreadpool' 2023-01-11T22:15:20.8015000Z Entering 'third_party/pybind11' 2023-01-11T22:15:20.8064553Z Entering 'third_party/python-enum' 2023-01-11T22:15:20.8104468Z Entering 'third_party/python-peachpy' 2023-01-11T22:15:20.8152886Z Entering 'third_party/python-six' 2023-01-11T22:15:20.8198402Z Entering 'third_party/sleef' 2023-01-11T22:15:20.8247367Z Entering 'third_party/tbb' 2023-01-11T22:15:20.8282638Z Entering 'third_party/tensorpipe' 2023-01-11T22:15:20.8343249Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T22:15:20.8400082Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T22:15:20.8459127Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T22:15:20.8514316Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T22:15:20.8584297Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T22:15:20.8631265Z Entering 'third_party/zstd' 2023-01-11T22:15:20.8693011Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2023-01-11T22:15:20.8718969Z http.https://github.com/.extraheader 2023-01-11T22:15:20.8726241Z [command]/usr/bin/git config --local --unset-all http.https://github.com/.extraheader 2023-01-11T22:15:20.8755771Z [command]/usr/bin/git submodule foreach --recursive git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || : 2023-01-11T22:15:20.8999444Z Entering 'android/libs/fbjni' 2023-01-11T22:15:20.9018654Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9044044Z Entering 'third_party/FP16' 2023-01-11T22:15:20.9063980Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9088920Z Entering 'third_party/FXdiv' 2023-01-11T22:15:20.9108988Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9134191Z Entering 'third_party/NNPACK' 2023-01-11T22:15:20.9153583Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9178862Z Entering 'third_party/QNNPACK' 2023-01-11T22:15:20.9198645Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9225227Z Entering 'third_party/VulkanMemoryAllocator' 2023-01-11T22:15:20.9244526Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9270051Z Entering 'third_party/XNNPACK' 2023-01-11T22:15:20.9289415Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9325019Z Entering 'third_party/benchmark' 2023-01-11T22:15:20.9344859Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9370496Z Entering 'third_party/cpuinfo' 2023-01-11T22:15:20.9390239Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9417273Z Entering 'third_party/cub' 2023-01-11T22:15:20.9436440Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9461761Z Entering 'third_party/cudnn_frontend' 2023-01-11T22:15:20.9481062Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9510858Z Entering 'third_party/cutlass' 2023-01-11T22:15:20.9530881Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9561276Z Entering 'third_party/eigen' 2023-01-11T22:15:20.9580811Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9607552Z Entering 'third_party/fbgemm' 2023-01-11T22:15:20.9627057Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9652206Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-01-11T22:15:20.9671383Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9697131Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-01-11T22:15:20.9716447Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9744044Z Entering 'third_party/fbgemm/third_party/googletest' 2023-01-11T22:15:20.9763297Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9788397Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-01-11T22:15:20.9810675Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9837768Z Entering 'third_party/flatbuffers' 2023-01-11T22:15:20.9857205Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9883691Z Entering 'third_party/fmt' 2023-01-11T22:15:20.9903054Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9929571Z Entering 'third_party/foxi' 2023-01-11T22:15:20.9948674Z http.https://github.com/.extraheader 2023-01-11T22:15:20.9976499Z Entering 'third_party/gemmlowp/gemmlowp' 2023-01-11T22:15:20.9996461Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0021995Z Entering 'third_party/gloo' 2023-01-11T22:15:21.0040847Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0066874Z Entering 'third_party/googletest' 2023-01-11T22:15:21.0086147Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0114133Z Entering 'third_party/ideep' 2023-01-11T22:15:21.0133469Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0160906Z Entering 'third_party/ideep/mkl-dnn' 2023-01-11T22:15:21.0180294Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0207877Z Entering 'third_party/ideep/mkl-dnn/third_party/oneDNN' 2023-01-11T22:15:21.0227468Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0258998Z Entering 'third_party/ios-cmake' 2023-01-11T22:15:21.0279517Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0304418Z Entering 'third_party/ittapi' 2023-01-11T22:15:21.0324016Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0349312Z Entering 'third_party/kineto' 2023-01-11T22:15:21.0369239Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0394357Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-01-11T22:15:21.0416010Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0444754Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-01-11T22:15:21.0464220Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0491542Z Entering 'third_party/nccl/nccl' 2023-01-11T22:15:21.0511599Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0537844Z Entering 'third_party/neon2sse' 2023-01-11T22:15:21.0558096Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0583832Z Entering 'third_party/nlohmann' 2023-01-11T22:15:21.0603029Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0629950Z Entering 'third_party/onnx' 2023-01-11T22:15:21.0649240Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0685382Z Entering 'third_party/onnx/third_party/benchmark' 2023-01-11T22:15:21.0704492Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0729778Z Entering 'third_party/onnx/third_party/pybind11' 2023-01-11T22:15:21.0749080Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0777511Z Entering 'third_party/onnx-tensorrt' 2023-01-11T22:15:21.0796400Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0820808Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-01-11T22:15:21.0839829Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0868980Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-01-11T22:15:21.0887884Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0913503Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-01-11T22:15:21.0933432Z http.https://github.com/.extraheader 2023-01-11T22:15:21.0958909Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-01-11T22:15:21.0978447Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1008165Z Entering 'third_party/pocketfft' 2023-01-11T22:15:21.1028094Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1053041Z Entering 'third_party/protobuf' 2023-01-11T22:15:21.1072463Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1100793Z Entering 'third_party/protobuf/third_party/benchmark' 2023-01-11T22:15:21.1119471Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1144925Z Entering 'third_party/protobuf/third_party/googletest' 2023-01-11T22:15:21.1163517Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1190330Z Entering 'third_party/psimd' 2023-01-11T22:15:21.1210692Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1235401Z Entering 'third_party/pthreadpool' 2023-01-11T22:15:21.1255543Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1281224Z Entering 'third_party/pybind11' 2023-01-11T22:15:21.1300650Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1325391Z Entering 'third_party/python-enum' 2023-01-11T22:15:21.1345389Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1370914Z Entering 'third_party/python-peachpy' 2023-01-11T22:15:21.1390035Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1414900Z Entering 'third_party/python-six' 2023-01-11T22:15:21.1433901Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1459256Z Entering 'third_party/sleef' 2023-01-11T22:15:21.1478085Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1504341Z Entering 'third_party/tbb' 2023-01-11T22:15:21.1523223Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1549810Z Entering 'third_party/tensorpipe' 2023-01-11T22:15:21.1569259Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1595164Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-01-11T22:15:21.1614438Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1639543Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-01-11T22:15:21.1658658Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1683211Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-01-11T22:15:21.1702186Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1727635Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-01-11T22:15:21.1746699Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1771503Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-01-11T22:15:21.1790555Z http.https://github.com/.extraheader 2023-01-11T22:15:21.1818650Z Entering 'third_party/zstd' 2023-01-11T22:15:21.1838600Z http.https://github.com/.extraheader 2023-01-11T22:15:21.2067712Z Cleaning up orphan processes