2023-09-06T07:45:13.8432372Z Requested labels: linux.gcp.a100.large 2023-09-06T07:45:13.8432524Z Job defined at: pytorch/pytorch/.github/workflows/_linux-test.yml@refs/heads/main 2023-09-06T07:45:13.8432688Z Reusable workflow chain: 2023-09-06T07:45:13.8432823Z pytorch/pytorch/.github/workflows/inductor-perf-test-nightly.yml@refs/heads/main (3fe8417643c8d6c2b3d95552cd90321d141b5d54) 2023-09-06T07:45:13.8432968Z -> pytorch/pytorch/.github/workflows/_linux-test.yml@refs/heads/main (3fe8417643c8d6c2b3d95552cd90321d141b5d54) 2023-09-06T07:45:13.8433117Z Waiting for a runner to pick up this job... 2023-09-06T11:53:07.5826457Z Job is about to start running on the runner: gh-ci-gcp-a100-17 (organization) 2023-09-06T11:53:12.2288634Z Current runner version: '2.308.0' 2023-09-06T11:53:12.2295974Z Runner name: 'gh-ci-gcp-a100-17' 2023-09-06T11:53:12.2296630Z Runner group name: 'Default' 2023-09-06T11:53:12.2297418Z Machine name: 'gh-ci-gcp-a100-17' 2023-09-06T11:53:12.2300065Z ##[group]GITHUB_TOKEN Permissions 2023-09-06T11:53:12.2300939Z Actions: write 2023-09-06T11:53:12.2301276Z Checks: write 2023-09-06T11:53:12.2301723Z Contents: write 2023-09-06T11:53:12.2302117Z Deployments: write 2023-09-06T11:53:12.2302516Z Discussions: write 2023-09-06T11:53:12.2302939Z Issues: write 2023-09-06T11:53:12.2303336Z Metadata: read 2023-09-06T11:53:12.2303749Z Packages: write 2023-09-06T11:53:12.2304140Z Pages: write 2023-09-06T11:53:12.2304480Z PullRequests: write 2023-09-06T11:53:12.2304935Z RepositoryProjects: write 2023-09-06T11:53:12.2305478Z SecurityEvents: write 2023-09-06T11:53:12.2305881Z Statuses: write 2023-09-06T11:53:12.2306212Z ##[endgroup] 2023-09-06T11:53:12.2310408Z Secret source: Actions 2023-09-06T11:53:12.2311333Z Prepare workflow directory 2023-09-06T11:53:12.5141437Z Prepare all required actions 2023-09-06T11:53:12.5366185Z Getting action download info 2023-09-06T11:53:12.7517488Z Download action repository 'pytorch/test-infra@main' (SHA:2153cf14870e07c67ed933a1ee61a3ca2ee1ed19) 2023-09-06T11:53:13.4864394Z Download action repository 'pytorch/pytorch@main' (SHA:60bd30ee0b35e4a5d96e2e65d320e99bd07c34d3) 2023-09-06T11:53:21.8036060Z Download action repository 'seemethere/upload-artifact-s3@v5' (SHA:baba72d0712b404f646cebe0730933554ebce96a) 2023-09-06T11:53:22.4638823Z Getting action download info 2023-09-06T11:53:22.6231731Z Download action repository 'malfet/checkout@silent-checkout' (SHA:e07af140b3ccefc05679e3755b9db68f4ee4589c) 2023-09-06T11:53:23.1320408Z Getting action download info 2023-09-06T11:53:23.2720357Z Download action repository 'nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482' (SHA:3e91a01664abd3c5cd539100d10d33b9c5b68482) 2023-09-06T11:53:23.7481500Z Uses: pytorch/pytorch/.github/workflows/_linux-test.yml@refs/heads/main (3fe8417643c8d6c2b3d95552cd90321d141b5d54) 2023-09-06T11:53:23.7483709Z ##[group] Inputs 2023-09-06T11:53:23.7484106Z build-environment: linux-focal-cuda12.1-py3.10-gcc9-sm80 2023-09-06T11:53:23.7486035Z test-matrix: {"include": [{"config": "inductor_huggingface_perf", "shard": 1, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 2, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 3, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 1, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 2, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 3, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 4, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 5, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 1, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 2, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 3, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 4, "num_shards": 4, "runner": "linux.gcp.a100.large"}]} 2023-09-06T11:53:23.7488278Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:53:23.7488813Z sync-tag: 2023-09-06T11:53:23.7489686Z timeout-minutes: 720 2023-09-06T11:53:23.7490003Z use-gha: anything-non-empty-to-use-gha 2023-09-06T11:53:23.7490723Z dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true 2023-09-06T11:53:23.7491709Z ##[endgroup] 2023-09-06T11:53:23.7492556Z Complete job name: cuda12.1-py3.10-gcc9-sm80 / test (inductor_torchbench_perf, 1, 4, linux.gcp.a100.large) 2023-09-06T11:53:23.8157988Z A job started hook has been configured by the self-hosted runner administrator 2023-09-06T11:53:23.8337580Z ##[group]Run '/home/weiwangmeta/pre-job.sh' 2023-09-06T11:53:23.8360619Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:53:23.8360952Z ##[endgroup] 2023-09-06T11:53:23.8975264Z ##[group]Run pytorch/pytorch/.github/actions/checkout-pytorch@main 2023-09-06T11:53:23.8975644Z with: 2023-09-06T11:53:23.8975890Z submodules: recursive 2023-09-06T11:53:23.8976131Z fetch-depth: 0 2023-09-06T11:53:23.8976353Z env: 2023-09-06T11:53:23.8976587Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:53:23.8977087Z ##[endgroup] 2023-09-06T11:53:23.9199175Z ##[group]Run retry () { 2023-09-06T11:53:23.9199514Z retry () { 2023-09-06T11:53:23.9199889Z  $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*) 2023-09-06T11:53:23.9200208Z } 2023-09-06T11:53:23.9200444Z echo "${GITHUB_WORKSPACE}" 2023-09-06T11:53:23.9200731Z if [ -z "${NO_SUDO}" ]; then 2023-09-06T11:53:23.9201042Z  retry sudo rm -rf "${GITHUB_WORKSPACE}" 2023-09-06T11:53:23.9201319Z else 2023-09-06T11:53:23.9201591Z  retry rm -rf "${GITHUB_WORKSPACE}" 2023-09-06T11:53:23.9201836Z fi 2023-09-06T11:53:23.9202137Z mkdir "${GITHUB_WORKSPACE}" 2023-09-06T11:53:23.9220313Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:53:23.9220639Z env: 2023-09-06T11:53:23.9220863Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:53:23.9221107Z NO_SUDO: 2023-09-06T11:53:23.9221332Z ##[endgroup] 2023-09-06T11:53:23.9303608Z /home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T11:53:26.5556401Z ##[group]Run malfet/checkout@silent-checkout 2023-09-06T11:53:26.5556792Z with: 2023-09-06T11:53:26.5557068Z ref: 3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T11:53:26.5557365Z fetch-depth: 0 2023-09-06T11:53:26.5557593Z submodules: recursive 2023-09-06T11:53:26.5557844Z quiet-checkout: true 2023-09-06T11:53:26.5558112Z repository: pytorch/pytorch 2023-09-06T11:53:26.5558532Z token: *** 2023-09-06T11:53:26.5558743Z ssh-strict: true 2023-09-06T11:53:26.5558997Z persist-credentials: true 2023-09-06T11:53:26.5559251Z clean: true 2023-09-06T11:53:26.5559526Z sparse-checkout-cone-mode: true 2023-09-06T11:53:26.5559776Z lfs: false 2023-09-06T11:53:26.5560011Z set-safe-directory: true 2023-09-06T11:53:26.5560247Z env: 2023-09-06T11:53:26.5560467Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:53:26.5560695Z ##[endgroup] 2023-09-06T11:53:26.6953222Z Syncing repository: pytorch/pytorch 2023-09-06T11:53:26.6956583Z ##[group]Getting Git version info 2023-09-06T11:53:26.6957688Z Working directory is '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch' 2023-09-06T11:53:26.6958738Z [command]/usr/bin/git version 2023-09-06T11:53:26.6959159Z git version 2.25.1 2023-09-06T11:53:26.6961387Z ##[endgroup] 2023-09-06T11:53:26.6981640Z Temporarily overriding HOME='/home/weiwangmeta/actions-runner/_work/_temp/ac2727b9-510c-43a2-b3e7-c2e3c405cc83' before making global git config changes 2023-09-06T11:53:26.6982629Z Adding repository directory to the temporary git global config as a safe directory 2023-09-06T11:53:26.6983841Z [command]/usr/bin/git config --global --add safe.directory /home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T11:53:26.7032450Z Deleting the contents of '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch' 2023-09-06T11:53:26.7038949Z ##[group]Initializing the repository 2023-09-06T11:53:26.7043387Z [command]/usr/bin/git init /home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T11:53:26.7087802Z Initialized empty Git repository in /home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/ 2023-09-06T11:53:26.7098821Z [command]/usr/bin/git remote add origin https://github.com/pytorch/pytorch 2023-09-06T11:53:26.7143816Z ##[endgroup] 2023-09-06T11:53:26.7145135Z ##[group]Disabling automatic garbage collection 2023-09-06T11:53:26.7149421Z [command]/usr/bin/git config --local gc.auto 0 2023-09-06T11:53:26.7187869Z ##[endgroup] 2023-09-06T11:53:26.7188655Z ##[group]Setting up auth 2023-09-06T11:53:26.7196695Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2023-09-06T11:53:26.7233810Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2023-09-06T11:53:26.7481678Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2023-09-06T11:53:26.7517489Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2023-09-06T11:53:26.7766087Z [command]/usr/bin/git config --local http.https://github.com/.extraheader AUTHORIZATION: basic *** 2023-09-06T11:53:26.7810685Z ##[endgroup] 2023-09-06T11:53:26.7811481Z ##[group]Fetching the repository 2023-09-06T11:53:26.7820666Z [command]/usr/bin/git -c protocol.version=2 fetch --prune --progress --no-recurse-submodules --quiet origin +refs/heads/*:refs/remotes/origin/* +refs/tags/*:refs/tags/* 2023-09-06T11:53:35.1113095Z remote: Enumerating objects: 1158676 2023-09-06T11:53:35.1113785Z remote: Enumerating objects: 1161041, done. 2023-09-06T11:53:35.1115941Z remote: Counting objects: 0% (1/2365) 2023-09-06T11:53:35.1116327Z remote: Counting objects: 1% (24/2365) 2023-09-06T11:53:35.1116860Z remote: Counting objects: 2% (48/2365) 2023-09-06T11:53:35.1117245Z remote: Counting objects: 3% (71/2365) 2023-09-06T11:53:35.1117784Z remote: Counting objects: 4% (95/2365) 2023-09-06T11:53:35.1118119Z remote: Counting objects: 5% (119/2365) 2023-09-06T11:53:35.1118459Z remote: Counting objects: 6% (142/2365) 2023-09-06T11:53:35.1119059Z remote: Counting objects: 7% (166/2365) 2023-09-06T11:53:35.1119380Z remote: Counting objects: 8% (190/2365) 2023-09-06T11:53:35.1119691Z remote: Counting objects: 9% (213/2365) 2023-09-06T11:53:35.1120257Z remote: Counting objects: 10% (237/2365) 2023-09-06T11:53:35.1120596Z remote: Counting objects: 11% (261/2365) 2023-09-06T11:53:35.1120896Z remote: Counting objects: 12% (284/2365) 2023-09-06T11:53:35.1121725Z remote: Counting objects: 13% (308/2365) 2023-09-06T11:53:35.1122227Z remote: Counting objects: 14% (332/2365) 2023-09-06T11:53:35.1123157Z remote: Counting objects: 15% (355/2365) 2023-09-06T11:53:35.1123550Z remote: Counting objects: 16% (379/2365) 2023-09-06T11:53:35.1123863Z remote: Counting objects: 17% (403/2365) 2023-09-06T11:53:35.1124171Z remote: Counting objects: 18% (426/2365) 2023-09-06T11:53:35.1124586Z remote: Counting objects: 19% (450/2365) 2023-09-06T11:53:35.1124888Z remote: Counting objects: 20% (473/2365) 2023-09-06T11:53:35.1125190Z remote: Counting objects: 21% (497/2365) 2023-09-06T11:53:35.1126638Z remote: Counting objects: 22% (521/2365) 2023-09-06T11:53:35.1127253Z remote: Counting objects: 23% (544/2365) 2023-09-06T11:53:35.1127744Z remote: Counting objects: 24% (568/2365) 2023-09-06T11:53:35.1128088Z remote: Counting objects: 25% (592/2365) 2023-09-06T11:53:35.1128838Z remote: Counting objects: 26% (615/2365) 2023-09-06T11:53:35.1129401Z remote: Counting objects: 27% (639/2365) 2023-09-06T11:53:35.1129719Z remote: Counting objects: 28% (663/2365) 2023-09-06T11:53:35.1130025Z remote: Counting objects: 29% (686/2365) 2023-09-06T11:53:35.1130343Z remote: Counting objects: 30% (710/2365) 2023-09-06T11:53:35.1130747Z remote: Counting objects: 31% (734/2365) 2023-09-06T11:53:35.1131927Z remote: Counting objects: 32% (757/2365) 2023-09-06T11:53:35.1132494Z remote: Counting objects: 33% (781/2365) 2023-09-06T11:53:35.1133065Z remote: Counting objects: 34% (805/2365) 2023-09-06T11:53:35.1133462Z remote: Counting objects: 35% (828/2365) 2023-09-06T11:53:35.1134021Z remote: Counting objects: 36% (852/2365) 2023-09-06T11:53:35.1134834Z remote: Counting objects: 37% (876/2365) 2023-09-06T11:53:35.1135390Z remote: Counting objects: 38% (899/2365) 2023-09-06T11:53:35.1135886Z remote: Counting objects: 39% (923/2365) 2023-09-06T11:53:35.1136459Z remote: Counting objects: 40% (946/2365) 2023-09-06T11:53:35.1136958Z remote: Counting objects: 41% (970/2365) 2023-09-06T11:53:35.1137525Z remote: Counting objects: 42% (994/2365) 2023-09-06T11:53:35.1138116Z remote: Counting objects: 43% (1017/2365) 2023-09-06T11:53:35.1138669Z remote: Counting objects: 44% (1041/2365) 2023-09-06T11:53:35.1139314Z remote: Counting objects: 45% (1065/2365) 2023-09-06T11:53:35.1139963Z remote: Counting objects: 46% (1088/2365) 2023-09-06T11:53:35.1140545Z remote: Counting objects: 47% (1112/2365) 2023-09-06T11:53:35.1140891Z remote: Counting objects: 48% (1136/2365) 2023-09-06T11:53:35.1141409Z remote: Counting objects: 49% (1159/2365) 2023-09-06T11:53:35.1142060Z remote: Counting objects: 50% (1183/2365) 2023-09-06T11:53:35.1142662Z remote: Counting objects: 51% (1207/2365) 2023-09-06T11:53:35.1143344Z remote: Counting objects: 52% (1230/2365) 2023-09-06T11:53:35.1143960Z remote: Counting objects: 53% (1254/2365) 2023-09-06T11:53:35.1144516Z remote: Counting objects: 54% (1278/2365) 2023-09-06T11:53:35.1145134Z remote: Counting objects: 55% (1301/2365) 2023-09-06T11:53:35.1145725Z remote: Counting objects: 56% (1325/2365) 2023-09-06T11:53:35.1146310Z remote: Counting objects: 57% (1349/2365) 2023-09-06T11:53:35.1146827Z remote: Counting objects: 58% (1372/2365) 2023-09-06T11:53:35.1147146Z remote: Counting objects: 59% (1396/2365) 2023-09-06T11:53:35.1147536Z remote: Counting objects: 60% (1419/2365) 2023-09-06T11:53:35.1148117Z remote: Counting objects: 61% (1443/2365) 2023-09-06T11:53:35.1148712Z remote: Counting objects: 62% (1467/2365) 2023-09-06T11:53:35.1150144Z remote: Counting objects: 63% (1490/2365) 2023-09-06T11:53:35.1150759Z remote: Counting objects: 64% (1514/2365) 2023-09-06T11:53:35.1151294Z remote: Counting objects: 65% (1538/2365) 2023-09-06T11:53:35.1151590Z remote: Counting objects: 66% (1561/2365) 2023-09-06T11:53:35.1151939Z remote: Counting objects: 67% (1585/2365) 2023-09-06T11:53:35.1152538Z remote: Counting objects: 68% (1609/2365) 2023-09-06T11:53:35.1153196Z remote: Counting objects: 69% (1632/2365) 2023-09-06T11:53:35.1153777Z remote: Counting objects: 70% (1656/2365) 2023-09-06T11:53:35.1154386Z remote: Counting objects: 71% (1680/2365) 2023-09-06T11:53:35.1154973Z remote: Counting objects: 72% (1703/2365) 2023-09-06T11:53:35.1155615Z remote: Counting objects: 73% (1727/2365) 2023-09-06T11:53:35.1156204Z remote: Counting objects: 74% (1751/2365) 2023-09-06T11:53:35.1156810Z remote: Counting objects: 75% (1774/2365) 2023-09-06T11:53:35.1157429Z remote: Counting objects: 76% (1798/2365) 2023-09-06T11:53:35.1158042Z remote: Counting objects: 77% (1822/2365) 2023-09-06T11:53:35.1158557Z remote: Counting objects: 78% (1845/2365) 2023-09-06T11:53:35.1159028Z remote: Counting objects: 79% (1869/2365) 2023-09-06T11:53:35.1159660Z remote: Counting objects: 80% (1892/2365) 2023-09-06T11:53:35.1160242Z remote: Counting objects: 81% (1916/2365) 2023-09-06T11:53:35.1160904Z remote: Counting objects: 82% (1940/2365) 2023-09-06T11:53:35.1161519Z remote: Counting objects: 83% (1963/2365) 2023-09-06T11:53:35.1162197Z remote: Counting objects: 84% (1987/2365) 2023-09-06T11:53:35.1162507Z remote: Counting objects: 85% (2011/2365) 2023-09-06T11:53:35.1162825Z remote: Counting objects: 86% (2034/2365) 2023-09-06T11:53:35.1163170Z remote: Counting objects: 87% (2058/2365) 2023-09-06T11:53:35.1163614Z remote: Counting objects: 88% (2082/2365) 2023-09-06T11:53:35.1163932Z remote: Counting objects: 89% (2105/2365) 2023-09-06T11:53:35.1164241Z remote: Counting objects: 90% (2129/2365) 2023-09-06T11:53:35.1164533Z remote: Counting objects: 91% (2153/2365) 2023-09-06T11:53:35.1164840Z remote: Counting objects: 92% (2176/2365) 2023-09-06T11:53:35.1165149Z remote: Counting objects: 93% (2200/2365) 2023-09-06T11:53:35.1165494Z remote: Counting objects: 94% (2224/2365) 2023-09-06T11:53:35.1165802Z remote: Counting objects: 95% (2247/2365) 2023-09-06T11:53:35.1166095Z remote: Counting objects: 96% (2271/2365) 2023-09-06T11:53:35.1166412Z remote: Counting objects: 97% (2295/2365) 2023-09-06T11:53:35.1166720Z remote: Counting objects: 98% (2318/2365) 2023-09-06T11:53:35.1167032Z remote: Counting objects: 99% (2342/2365) 2023-09-06T11:53:35.1167329Z remote: Counting objects: 100% (2365/2365) 2023-09-06T11:53:35.1167705Z remote: Counting objects: 100% (2365/2365), done. 2023-09-06T11:53:35.2076802Z remote: Compressing objects: 0% (1/1248) 2023-09-06T11:53:35.2728912Z remote: Compressing objects: 1% (13/1248) 2023-09-06T11:53:35.3906221Z remote: Compressing objects: 2% (25/1248) 2023-09-06T11:53:35.5029988Z remote: Compressing objects: 3% (38/1248) 2023-09-06T11:53:35.6077392Z remote: Compressing objects: 4% (50/1248) 2023-09-06T11:53:35.7038481Z remote: Compressing objects: 5% (63/1248) 2023-09-06T11:53:35.7672062Z remote: Compressing objects: 6% (75/1248) 2023-09-06T11:53:35.8122301Z remote: Compressing objects: 7% (88/1248) 2023-09-06T11:53:35.8468729Z remote: Compressing objects: 8% (100/1248) 2023-09-06T11:53:35.8884506Z remote: Compressing objects: 9% (113/1248) 2023-09-06T11:53:35.9135596Z remote: Compressing objects: 10% (125/1248) 2023-09-06T11:53:35.9419623Z remote: Compressing objects: 11% (138/1248) 2023-09-06T11:53:35.9558379Z remote: Compressing objects: 12% (150/1248) 2023-09-06T11:53:35.9726323Z remote: Compressing objects: 13% (163/1248) 2023-09-06T11:53:35.9854954Z remote: Compressing objects: 14% (175/1248) 2023-09-06T11:53:35.9980020Z remote: Compressing objects: 15% (188/1248) 2023-09-06T11:53:36.0080539Z remote: Compressing objects: 16% (200/1248) 2023-09-06T11:53:36.0142369Z remote: Compressing objects: 17% (213/1248) 2023-09-06T11:53:36.0203113Z remote: Compressing objects: 18% (225/1248) 2023-09-06T11:53:36.0242022Z remote: Compressing objects: 19% (238/1248) 2023-09-06T11:53:36.0261215Z remote: Compressing objects: 20% (250/1248) 2023-09-06T11:53:36.0277854Z remote: Compressing objects: 21% (263/1248) 2023-09-06T11:53:36.0311134Z remote: Compressing objects: 22% (275/1248) 2023-09-06T11:53:36.0321908Z remote: Compressing objects: 23% (288/1248) 2023-09-06T11:53:36.0339936Z remote: Compressing objects: 24% (300/1248) 2023-09-06T11:53:36.0354980Z remote: Compressing objects: 25% (312/1248) 2023-09-06T11:53:36.0393703Z remote: Compressing objects: 26% (325/1248) 2023-09-06T11:53:36.0416644Z remote: Compressing objects: 27% (337/1248) 2023-09-06T11:53:36.0432389Z remote: Compressing objects: 28% (350/1248) 2023-09-06T11:53:36.0451354Z remote: Compressing objects: 29% (362/1248) 2023-09-06T11:53:36.0464834Z remote: Compressing objects: 30% (375/1248) 2023-09-06T11:53:36.0483958Z remote: Compressing objects: 31% (387/1248) 2023-09-06T11:53:36.0508039Z remote: Compressing objects: 32% (400/1248) 2023-09-06T11:53:36.0527720Z remote: Compressing objects: 33% (412/1248) 2023-09-06T11:53:36.0538746Z remote: Compressing objects: 34% (425/1248) 2023-09-06T11:53:36.0553172Z remote: Compressing objects: 35% (437/1248) 2023-09-06T11:53:36.0571024Z remote: Compressing objects: 36% (450/1248) 2023-09-06T11:53:36.0600794Z remote: Compressing objects: 37% (462/1248) 2023-09-06T11:53:36.0616192Z remote: Compressing objects: 38% (475/1248) 2023-09-06T11:53:36.0630147Z remote: Compressing objects: 39% (487/1248) 2023-09-06T11:53:36.0639530Z remote: Compressing objects: 40% (500/1248) 2023-09-06T11:53:36.0648518Z remote: Compressing objects: 41% (512/1248) 2023-09-06T11:53:36.0660458Z remote: Compressing objects: 42% (525/1248) 2023-09-06T11:53:36.0673679Z remote: Compressing objects: 43% (537/1248) 2023-09-06T11:53:36.0683353Z remote: Compressing objects: 44% (550/1248) 2023-09-06T11:53:36.0695598Z remote: Compressing objects: 45% (562/1248) 2023-09-06T11:53:36.0711105Z remote: Compressing objects: 46% (575/1248) 2023-09-06T11:53:36.0728709Z remote: Compressing objects: 47% (587/1248) 2023-09-06T11:53:36.0737531Z remote: Compressing objects: 48% (600/1248) 2023-09-06T11:53:36.0746817Z remote: Compressing objects: 49% (612/1248) 2023-09-06T11:53:36.0755336Z remote: Compressing objects: 50% (624/1248) 2023-09-06T11:53:36.0763492Z remote: Compressing objects: 51% (637/1248) 2023-09-06T11:53:36.0770656Z remote: Compressing objects: 52% (649/1248) 2023-09-06T11:53:36.0775029Z remote: Compressing objects: 53% (662/1248) 2023-09-06T11:53:36.0781967Z remote: Compressing objects: 54% (674/1248) 2023-09-06T11:53:36.0790626Z remote: Compressing objects: 55% (687/1248) 2023-09-06T11:53:36.0796305Z remote: Compressing objects: 56% (699/1248) 2023-09-06T11:53:36.0801242Z remote: Compressing objects: 57% (712/1248) 2023-09-06T11:53:36.0805869Z remote: Compressing objects: 58% (724/1248) 2023-09-06T11:53:36.0809275Z remote: Compressing objects: 59% (737/1248) 2023-09-06T11:53:36.0812911Z remote: Compressing objects: 60% (749/1248) 2023-09-06T11:53:36.0814663Z remote: Compressing objects: 61% (762/1248) 2023-09-06T11:53:36.0817444Z remote: Compressing objects: 62% (774/1248) 2023-09-06T11:53:36.0818868Z remote: Compressing objects: 63% (787/1248) 2023-09-06T11:53:36.0820912Z remote: Compressing objects: 64% (799/1248) 2023-09-06T11:53:36.0821983Z remote: Compressing objects: 65% (812/1248) 2023-09-06T11:53:36.0822888Z remote: Compressing objects: 66% (824/1248) 2023-09-06T11:53:36.0824442Z remote: Compressing objects: 67% (837/1248) 2023-09-06T11:53:36.0826081Z remote: Compressing objects: 68% (849/1248) 2023-09-06T11:53:36.0826683Z remote: Compressing objects: 69% (862/1248) 2023-09-06T11:53:36.0827349Z remote: Compressing objects: 70% (874/1248) 2023-09-06T11:53:36.0842014Z remote: Compressing objects: 71% (887/1248) 2023-09-06T11:53:36.0852981Z remote: Compressing objects: 72% (899/1248) 2023-09-06T11:53:36.0861778Z remote: Compressing objects: 73% (912/1248) 2023-09-06T11:53:36.0866562Z remote: Compressing objects: 74% (924/1248) 2023-09-06T11:53:36.0870951Z remote: Compressing objects: 75% (936/1248) 2023-09-06T11:53:36.0875078Z remote: Compressing objects: 76% (949/1248) 2023-09-06T11:53:36.0879466Z remote: Compressing objects: 77% (961/1248) 2023-09-06T11:53:36.0884596Z remote: Compressing objects: 78% (974/1248) 2023-09-06T11:53:36.0888442Z remote: Compressing objects: 79% (986/1248) 2023-09-06T11:53:36.0891961Z remote: Compressing objects: 80% (999/1248) 2023-09-06T11:53:36.0896590Z remote: Compressing objects: 81% (1011/1248) 2023-09-06T11:53:36.0899577Z remote: Compressing objects: 82% (1024/1248) 2023-09-06T11:53:36.0901730Z remote: Compressing objects: 83% (1036/1248) 2023-09-06T11:53:36.0906100Z remote: Compressing objects: 84% (1049/1248) 2023-09-06T11:53:36.0909870Z remote: Compressing objects: 85% (1061/1248) 2023-09-06T11:53:36.0914906Z remote: Compressing objects: 86% (1074/1248) 2023-09-06T11:53:36.0919145Z remote: Compressing objects: 87% (1086/1248) 2023-09-06T11:53:36.0924582Z remote: Compressing objects: 88% (1099/1248) 2023-09-06T11:53:36.0927849Z remote: Compressing objects: 89% (1111/1248) 2023-09-06T11:53:36.0930431Z remote: Compressing objects: 90% (1124/1248) 2023-09-06T11:53:36.0934378Z remote: Compressing objects: 91% (1136/1248) 2023-09-06T11:53:36.0935360Z remote: Compressing objects: 92% (1149/1248) 2023-09-06T11:53:36.0935767Z remote: Compressing objects: 93% (1161/1248) 2023-09-06T11:53:36.0942458Z remote: Compressing objects: 94% (1174/1248) 2023-09-06T11:53:36.0942876Z remote: Compressing objects: 95% (1186/1248) 2023-09-06T11:53:36.0943216Z remote: Compressing objects: 96% (1199/1248) 2023-09-06T11:53:36.0952898Z remote: Compressing objects: 97% (1211/1248) 2023-09-06T11:53:36.0953309Z remote: Compressing objects: 98% (1224/1248) 2023-09-06T11:53:36.0953661Z remote: Compressing objects: 99% (1236/1248) 2023-09-06T11:53:36.0953992Z remote: Compressing objects: 100% (1248/1248) 2023-09-06T11:53:36.0954339Z remote: Compressing objects: 100% (1248/1248), done. 2023-09-06T11:53:58.4450175Z remote: Total 1161041 (delta 1624), reused 1715 (delta 1113), pack-reused 1158676 2023-09-06T11:54:37.5139642Z [command]/usr/bin/git rev-parse --verify --quiet 3fe8417643c8d6c2b3d95552cd90321d141b5d54^{object} 2023-09-06T11:54:37.5180764Z 3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T11:54:37.5188772Z ##[endgroup] 2023-09-06T11:54:37.5190267Z ##[group]Determining the checkout info 2023-09-06T11:54:37.5191684Z ##[endgroup] 2023-09-06T11:54:37.5192583Z ##[group]Checking out the ref 2023-09-06T11:54:37.5196133Z [command]/usr/bin/git checkout --quiet --force 3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T11:54:39.3269994Z ##[endgroup] 2023-09-06T11:54:39.3270600Z ##[group]Setting up auth for fetching submodules 2023-09-06T11:54:39.3275348Z [command]/usr/bin/git config --global http.https://github.com/.extraheader AUTHORIZATION: basic *** 2023-09-06T11:54:39.3328248Z [command]/usr/bin/git config --global --unset-all url.https://github.com/.insteadOf 2023-09-06T11:54:39.3363914Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf git@github.com: 2023-09-06T11:54:39.3399404Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf org-21003710@github.com: 2023-09-06T11:54:39.3431385Z ##[endgroup] 2023-09-06T11:54:39.3431951Z ##[group]Fetching submodules 2023-09-06T11:54:39.3437361Z [command]/usr/bin/git submodule sync --recursive 2023-09-06T11:54:39.3711161Z [command]/usr/bin/git -c protocol.version=2 submodule update --init --force --recursive 2023-09-06T11:54:39.3971358Z Submodule 'android/libs/fbjni' (https://github.com/facebookincubator/fbjni.git) registered for path 'android/libs/fbjni' 2023-09-06T11:54:39.3980268Z Submodule 'third_party/NNPACK_deps/FP16' (https://github.com/Maratyszcza/FP16.git) registered for path 'third_party/FP16' 2023-09-06T11:54:39.3990074Z Submodule 'third_party/NNPACK_deps/FXdiv' (https://github.com/Maratyszcza/FXdiv.git) registered for path 'third_party/FXdiv' 2023-09-06T11:54:39.3997076Z Submodule 'third_party/NNPACK' (https://github.com/Maratyszcza/NNPACK.git) registered for path 'third_party/NNPACK' 2023-09-06T11:54:39.4003387Z Submodule 'third_party/QNNPACK' (https://github.com/pytorch/QNNPACK) registered for path 'third_party/QNNPACK' 2023-09-06T11:54:39.4010572Z Submodule 'third_party/VulkanMemoryAllocator' (https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git) registered for path 'third_party/VulkanMemoryAllocator' 2023-09-06T11:54:39.4016951Z Submodule 'third_party/XNNPACK' (https://github.com/google/XNNPACK.git) registered for path 'third_party/XNNPACK' 2023-09-06T11:54:39.4024981Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/benchmark' 2023-09-06T11:54:39.4031949Z Submodule 'third_party/cpuinfo' (https://github.com/pytorch/cpuinfo.git) registered for path 'third_party/cpuinfo' 2023-09-06T11:54:39.4037883Z Submodule 'third_party/cub' (https://github.com/NVlabs/cub.git) registered for path 'third_party/cub' 2023-09-06T11:54:39.4045666Z Submodule 'third_party/cudnn_frontend' (https://github.com/NVIDIA/cudnn-frontend.git) registered for path 'third_party/cudnn_frontend' 2023-09-06T11:54:39.4051639Z Submodule 'third_party/cutlass' (https://github.com/NVIDIA/cutlass.git) registered for path 'third_party/cutlass' 2023-09-06T11:54:39.4059046Z Submodule 'third_party/eigen' (https://gitlab.com/libeigen/eigen.git) registered for path 'third_party/eigen' 2023-09-06T11:54:39.4065103Z Submodule 'third_party/fbgemm' (https://github.com/pytorch/fbgemm) registered for path 'third_party/fbgemm' 2023-09-06T11:54:39.4071681Z Submodule 'third_party/flatbuffers' (https://github.com/google/flatbuffers.git) registered for path 'third_party/flatbuffers' 2023-09-06T11:54:39.4077795Z Submodule 'third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/fmt' 2023-09-06T11:54:39.4084359Z Submodule 'third_party/foxi' (https://github.com/houseroad/foxi.git) registered for path 'third_party/foxi' 2023-09-06T11:54:39.4090208Z Submodule 'third_party/gemmlowp/gemmlowp' (https://github.com/google/gemmlowp.git) registered for path 'third_party/gemmlowp/gemmlowp' 2023-09-06T11:54:39.4096337Z Submodule 'third_party/gloo' (https://github.com/facebookincubator/gloo) registered for path 'third_party/gloo' 2023-09-06T11:54:39.4103947Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/googletest' 2023-09-06T11:54:39.4110854Z Submodule 'third_party/ideep' (https://github.com/intel/ideep) registered for path 'third_party/ideep' 2023-09-06T11:54:39.4117460Z Submodule 'third_party/ios-cmake' (https://github.com/Yangqing/ios-cmake.git) registered for path 'third_party/ios-cmake' 2023-09-06T11:54:39.4124549Z Submodule 'third_party/ittapi' (https://github.com/intel/ittapi.git) registered for path 'third_party/ittapi' 2023-09-06T11:54:39.4131177Z Submodule 'third_party/kineto' (https://github.com/pytorch/kineto) registered for path 'third_party/kineto' 2023-09-06T11:54:39.4181767Z Submodule 'third_party/mimalloc' (https://github.com/microsoft/mimalloc.git) registered for path 'third_party/mimalloc' 2023-09-06T11:54:39.4183033Z Submodule 'third_party/nccl/nccl' (https://github.com/NVIDIA/nccl) registered for path 'third_party/nccl/nccl' 2023-09-06T11:54:39.4183783Z Submodule 'third_party/neon2sse' (https://github.com/intel/ARM_NEON_2_x86_SSE.git) registered for path 'third_party/neon2sse' 2023-09-06T11:54:39.4184514Z Submodule 'third_party/nlohmann' (https://github.com/nlohmann/json.git) registered for path 'third_party/nlohmann' 2023-09-06T11:54:39.4185183Z Submodule 'third_party/onnx' (https://github.com/onnx/onnx.git) registered for path 'third_party/onnx' 2023-09-06T11:54:39.4185916Z Submodule 'third_party/onnx-tensorrt' (https://github.com/onnx/onnx-tensorrt) registered for path 'third_party/onnx-tensorrt' 2023-09-06T11:54:39.4186644Z Submodule 'third_party/pocketfft' (https://github.com/mreineck/pocketfft) registered for path 'third_party/pocketfft' 2023-09-06T11:54:39.4187388Z Submodule 'third_party/protobuf' (https://github.com/protocolbuffers/protobuf.git) registered for path 'third_party/protobuf' 2023-09-06T11:54:39.4193615Z Submodule 'third_party/NNPACK_deps/psimd' (https://github.com/Maratyszcza/psimd.git) registered for path 'third_party/psimd' 2023-09-06T11:54:39.4200832Z Submodule 'third_party/NNPACK_deps/pthreadpool' (https://github.com/Maratyszcza/pthreadpool.git) registered for path 'third_party/pthreadpool' 2023-09-06T11:54:39.4208259Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/pybind11' 2023-09-06T11:54:39.4215662Z Submodule 'third_party/python-peachpy' (https://github.com/malfet/PeachPy.git) registered for path 'third_party/python-peachpy' 2023-09-06T11:54:39.4223635Z Submodule 'third_party/sleef' (https://github.com/shibatch/sleef) registered for path 'third_party/sleef' 2023-09-06T11:54:39.4233197Z Submodule 'third_party/tbb' (https://github.com/01org/tbb) registered for path 'third_party/tbb' 2023-09-06T11:54:39.4243602Z Submodule 'third_party/tensorpipe' (https://github.com/pytorch/tensorpipe.git) registered for path 'third_party/tensorpipe' 2023-09-06T11:54:39.4248016Z Submodule 'third_party/zstd' (https://github.com/facebook/zstd.git) registered for path 'third_party/zstd' 2023-09-06T11:54:39.4322212Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/android/libs/fbjni'... 2023-09-06T11:54:39.9497343Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/FP16'... 2023-09-06T11:54:40.3981448Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/FXdiv'... 2023-09-06T11:54:40.7762665Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/NNPACK'... 2023-09-06T11:54:41.2998312Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/QNNPACK'... 2023-09-06T11:54:41.8244591Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/VulkanMemoryAllocator'... 2023-09-06T11:54:45.1754556Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/XNNPACK'... 2023-09-06T11:54:58.5861265Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/benchmark'... 2023-09-06T11:54:59.3382271Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/cpuinfo'... 2023-09-06T11:55:00.1860040Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/cub'... 2023-09-06T11:55:02.0653491Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/cudnn_frontend'... 2023-09-06T11:55:03.5366634Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/cutlass'... 2023-09-06T11:55:05.9260900Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/eigen'... 2023-09-06T11:55:11.3481688Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fbgemm'... 2023-09-06T11:55:12.5502399Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/flatbuffers'... 2023-09-06T11:55:14.7396573Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fmt'... 2023-09-06T11:55:16.5030428Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/foxi'... 2023-09-06T11:55:16.8985849Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/gemmlowp/gemmlowp'... 2023-09-06T11:55:17.6091757Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/gloo'... 2023-09-06T11:55:18.1892619Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/googletest'... 2023-09-06T11:55:19.9768865Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/ideep'... 2023-09-06T11:55:20.6709279Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/ios-cmake'... 2023-09-06T11:55:21.0638072Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/ittapi'... 2023-09-06T11:55:21.5880999Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto'... 2023-09-06T11:55:23.3991003Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/mimalloc'... 2023-09-06T11:55:24.3382670Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/nccl/nccl'... 2023-09-06T11:55:25.0728339Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/neon2sse'... 2023-09-06T11:55:25.6519924Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/nlohmann'... 2023-09-06T11:55:33.0351950Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx'... 2023-09-06T11:55:38.0315744Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt'... 2023-09-06T11:55:38.8520930Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/pocketfft'... 2023-09-06T11:55:39.3962442Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/protobuf'... 2023-09-06T11:55:47.9259990Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/psimd'... 2023-09-06T11:55:48.3385602Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/pthreadpool'... 2023-09-06T11:55:48.8115206Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/pybind11'... 2023-09-06T11:55:50.0600812Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/python-peachpy'... 2023-09-06T11:55:50.6316662Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/sleef'... 2023-09-06T11:55:51.4671400Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tbb'... 2023-09-06T11:55:54.3223939Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe'... 2023-09-06T11:55:55.0355744Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/zstd'... 2023-09-06T11:55:58.3126570Z Submodule path 'android/libs/fbjni': checked out '7e1e1fe3858c63c251c637ae41a20de425dde96f' 2023-09-06T11:55:58.3511113Z Submodule path 'third_party/FP16': checked out '4dfe081cf6bcd15db339cf2680b9281b8451eeb3' 2023-09-06T11:55:58.3856191Z Submodule path 'third_party/FXdiv': checked out 'b408327ac2a15ec3e43352421954f5b1967701d1' 2023-09-06T11:55:58.4367134Z Submodule path 'third_party/NNPACK': checked out 'c07e3a0400713d546e0dea2d5466dd22ea389c73' 2023-09-06T11:55:58.4863586Z Submodule path 'third_party/QNNPACK': checked out '7d2a4e9931a82adc3814275b6219a03e24e36b4c' 2023-09-06T11:55:58.5528769Z Submodule path 'third_party/VulkanMemoryAllocator': checked out 'a6bfc237255a6bac1513f7c1ebde6d8aed6b5191' 2023-09-06T11:55:59.3500263Z Submodule path 'third_party/XNNPACK': checked out '51a987591a6fc9f0fc0707077f53d763ac132cbf' 2023-09-06T11:55:59.4016008Z Submodule path 'third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2023-09-06T11:55:59.5413682Z Submodule path 'third_party/cpuinfo': checked out '6481e8bef08f606ddd627e4d3be89f64d62e1b8a' 2023-09-06T11:55:59.6054114Z Submodule path 'third_party/cub': checked out 'd106ddb991a56c3df1b6d51b2409e36ba8181ce4' 2023-09-06T11:55:59.9467193Z Submodule path 'third_party/cudnn_frontend': checked out '12f35fa2be5994c1106367cac2fba21457b064f4' 2023-09-06T11:56:00.4906568Z Submodule path 'third_party/cutlass': checked out '6f47420213f757831fae65c686aa471749fa8d60' 2023-09-06T11:56:00.7961682Z Submodule path 'third_party/eigen': checked out '3147391d946bb4b6c68edd901f2add6ac1f31f8c' 2023-09-06T11:56:00.8947551Z Submodule path 'third_party/fbgemm': checked out 'd0ee798b1f198cc51b6ddae20cf6063f6380ba3f' 2023-09-06T11:56:00.8998507Z Submodule 'third_party/asmjit' (https://github.com/asmjit/asmjit.git) registered for path 'third_party/fbgemm/third_party/asmjit' 2023-09-06T11:56:00.9004655Z Submodule 'third_party/cpuinfo' (https://github.com/pytorch/cpuinfo) registered for path 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T11:56:00.9010817Z Submodule 'third_party/cutlass' (https://github.com/NVIDIA/cutlass.git) registered for path 'third_party/fbgemm/third_party/cutlass' 2023-09-06T11:56:00.9016307Z Submodule 'third_party/googletest' (https://github.com/google/googletest) registered for path 'third_party/fbgemm/third_party/googletest' 2023-09-06T11:56:00.9022770Z Submodule 'third_party/hipify_torch' (https://github.com/ROCmSoftwarePlatform/hipify_torch.git) registered for path 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T11:56:00.9069731Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/asmjit'... 2023-09-06T11:56:01.9074376Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/cpuinfo'... 2023-09-06T11:56:02.7827303Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/cutlass'... 2023-09-06T11:56:05.1765709Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/googletest'... 2023-09-06T11:56:06.9911253Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/fbgemm/third_party/hipify_torch'... 2023-09-06T11:56:07.6806125Z Submodule path 'third_party/fbgemm/third_party/asmjit': checked out 'd3fbf7c9bc7c1d1365a94a45614b91c5a3706b81' 2023-09-06T11:56:07.8181663Z Submodule path 'third_party/fbgemm/third_party/cpuinfo': checked out 'ed8b86a253800bafdb7b25c5c399f91bff9cb1f3' 2023-09-06T11:56:08.2842494Z Submodule path 'third_party/fbgemm/third_party/cutlass': checked out 'fc9ebc645b63f3a6bc80aaefde5c063fb72110d6' 2023-09-06T11:56:08.3780973Z Submodule path 'third_party/fbgemm/third_party/googletest': checked out 'cbf019de22c8dd37b2108da35b2748fd702d1796' 2023-09-06T11:56:08.4111906Z Submodule path 'third_party/fbgemm/third_party/hipify_torch': checked out '23f53b025b466d8ec3c45d52290d3442f7fbe6b1' 2023-09-06T11:56:08.5592492Z Submodule path 'third_party/flatbuffers': checked out '01834de25e4bf3975a9a00e816292b1ad0fe184b' 2023-09-06T11:56:08.6253945Z Submodule path 'third_party/fmt': checked out 'f5e54359df4c26b6230fc61d38aa294581393084' 2023-09-06T11:56:08.6612615Z Submodule path 'third_party/foxi': checked out 'c278588e34e535f0bb8f00df3880d26928038cad' 2023-09-06T11:56:08.7330662Z Submodule path 'third_party/gemmlowp/gemmlowp': checked out '3fb5c176c17c765a3492cd2f0321b0dab712f350' 2023-09-06T11:56:08.7841093Z Submodule path 'third_party/gloo': checked out 'cf1e1abc95d0b961222ee82b6935f76250fbcf16' 2023-09-06T11:56:08.8619019Z Submodule path 'third_party/googletest': checked out 'e2239ee6043f73722e7aa812a459f54a28552929' 2023-09-06T11:56:08.8988152Z Submodule path 'third_party/ideep': checked out '6f4d653802bd43bc4eda515460df9f90353dbebe' 2023-09-06T11:56:08.9037588Z Submodule 'mkl-dnn' (https://github.com/intel/mkl-dnn.git) registered for path 'third_party/ideep/mkl-dnn' 2023-09-06T11:56:08.9080113Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/ideep/mkl-dnn'... 2023-09-06T11:56:20.9382228Z Submodule path 'third_party/ideep/mkl-dnn': checked out '64f6bcbcbab628e96f33a62c3e975f8535a7bde4' 2023-09-06T11:56:20.9763140Z Submodule path 'third_party/ios-cmake': checked out '8abaed637d56f1337d6e1d2c4026e25c1eade724' 2023-09-06T11:56:21.0179983Z Submodule path 'third_party/ittapi': checked out '5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42' 2023-09-06T11:56:21.1512878Z Submodule path 'third_party/kineto': checked out '49e854d805d916b2031e337763928d2f8d2e1fbf' 2023-09-06T11:56:21.1566386Z Submodule 'libkineto/third_party/dynolog' (https://github.com/facebookincubator/dynolog.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T11:56:21.1572991Z Submodule 'libkineto/third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T11:56:21.1579184Z Submodule 'libkineto/third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T11:56:21.1626093Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog'... 2023-09-06T11:56:21.9590873Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/fmt'... 2023-09-06T11:56:23.7344016Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/googletest'... 2023-09-06T11:56:25.6701635Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog': checked out '7d04a0053a845370ae06ce317a22a48e9edcc74e' 2023-09-06T11:56:25.6756659Z Submodule 'third_party/DCGM' (https://github.com/NVIDIA/DCGM.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T11:56:25.6763039Z Submodule 'third_party/cpr' (https://github.com/libcpr/cpr.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T11:56:25.6768449Z Submodule 'third_party/fmt' (https://github.com/fmtlib/fmt.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T11:56:25.6774047Z Submodule 'third_party/gflags' (https://github.com/gflags/gflags.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T11:56:25.6780132Z Submodule 'third_party/glog' (https://github.com/google/glog.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T11:56:25.6785894Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T11:56:25.6793302Z Submodule 'third_party/json' (https://github.com/nlohmann/json.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T11:56:25.6800099Z Submodule 'third_party/pfs' (https://github.com/dtrugman/pfs.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T11:56:25.6850063Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM'... 2023-09-06T11:56:26.9459362Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/cpr'... 2023-09-06T11:56:27.5950130Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/fmt'... 2023-09-06T11:56:29.3972847Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/gflags'... 2023-09-06T11:56:30.0385818Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/glog'... 2023-09-06T11:56:30.8246121Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/googletest'... 2023-09-06T11:56:32.6273765Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/json'... 2023-09-06T11:56:40.0529200Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/pfs'... 2023-09-06T11:56:40.8059422Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM': checked out 'ffde4e54bc7249a6039a5e6b45b395141e1217f9' 2023-09-06T11:56:40.8484360Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr': checked out '871ed52d350214a034f6ef8a3b8f51c5ce1bd400' 2023-09-06T11:56:40.9122469Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt': checked out 'cd4af11efc9c622896a3e4cb599fa28668ca3d05' 2023-09-06T11:56:40.9483251Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags': checked out 'e171aa2d15ed9eb17054558e0b3a6a413bb01067' 2023-09-06T11:56:40.9533916Z Submodule 'doc' (https://github.com/gflags/gflags.git) registered for path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T11:56:40.9579444Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc'... 2023-09-06T11:56:41.6117468Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc': checked out '8411df715cf522606e3b1aca386ddfc0b63d34b4' 2023-09-06T11:56:41.6528619Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog': checked out 'b33e3bad4c46c8a6345525fd822af355e5ef9446' 2023-09-06T11:56:41.7213078Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest': checked out '58d77fa8070e8cec2dc1ed015d66b454c8d78850' 2023-09-06T11:56:41.8602561Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/json': checked out '4f8fba14066156b73f1189a2b8bd568bde5284c5' 2023-09-06T11:56:41.8991249Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs': checked out 'f68a2fa8ea36c783bdd760371411fcb495aa3150' 2023-09-06T11:56:41.9568217Z Submodule path 'third_party/kineto/libkineto/third_party/fmt': checked out 'a33701196adfad74917046096bf5a2aa0ab0bb50' 2023-09-06T11:56:42.0437451Z Submodule path 'third_party/kineto/libkineto/third_party/googletest': checked out '7aca84427f224eeed3144123d5230d5871e93347' 2023-09-06T11:56:42.1088948Z Submodule path 'third_party/mimalloc': checked out 'b66e3214d8a104669c2ec05ae91ebc26a8f5ab78' 2023-09-06T11:56:42.1585016Z Submodule path 'third_party/nccl/nccl': checked out '559b70f86c190a0d8f67f0d7a0f2c9810dd1e8c7' 2023-09-06T11:56:42.1982707Z Submodule path 'third_party/neon2sse': checked out '97a126f08ce318023be604d03f88bf0820a9464a' 2023-09-06T11:56:42.3404977Z Submodule path 'third_party/nlohmann': checked out '87cda1d6646592ac5866dc703c8e1839046a6806' 2023-09-06T11:56:42.7030694Z Submodule path 'third_party/onnx': checked out 'c11b6a715daeb48b056e4c9bed3dfc0dcb243d12' 2023-09-06T11:56:42.7102827Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/onnx/third_party/benchmark' 2023-09-06T11:56:42.7108814Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/onnx/third_party/pybind11' 2023-09-06T11:56:42.7175727Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx/third_party/benchmark'... 2023-09-06T11:56:43.4745812Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx/third_party/pybind11'... 2023-09-06T11:56:44.7684808Z Submodule path 'third_party/onnx/third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2023-09-06T11:56:44.8291230Z Submodule path 'third_party/onnx/third_party/pybind11': checked out '0bd8896a4010f2d91b2340570c24fa08606ec406' 2023-09-06T11:56:44.8744650Z Submodule path 'third_party/onnx-tensorrt': checked out 'c153211418a7c57ce071d9ce2a41f8d1c85a878f' 2023-09-06T11:56:44.8793205Z Submodule 'third_party/onnx' (https://github.com/onnx/onnx.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T11:56:44.8838592Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx'... 2023-09-06T11:56:49.9383814Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx': checked out '765f5ee823a67a866f4bd28a9860e81f3c811ce8' 2023-09-06T11:56:49.9441552Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T11:56:49.9447859Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T11:56:49.9501283Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark'... 2023-09-06T11:56:50.7235329Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11'... 2023-09-06T11:56:52.0634048Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark': checked out 'e776aa0275e293707b6a0901e0e8d8a8a3679508' 2023-09-06T11:56:52.1631324Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11': checked out 'a1041190c8b8ff0cd9e2f0752248ad5e3789ea0c' 2023-09-06T11:56:52.1682514Z Submodule 'tools/clang' (https://github.com/wjakob/clang-cindex-python3) registered for path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T11:56:52.1728050Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang'... 2023-09-06T11:56:52.6406701Z Submodule path 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2023-09-06T11:56:52.6754192Z Submodule path 'third_party/pocketfft': checked out 'ea778e37710c07723435b1be58235996d1d43a5a' 2023-09-06T11:56:52.9962559Z Submodule path 'third_party/protobuf': checked out 'd1eca4e4b421cd2997495c4b4e65cea6be4e9b8a' 2023-09-06T11:56:53.0022965Z Submodule 'third_party/benchmark' (https://github.com/google/benchmark.git) registered for path 'third_party/protobuf/third_party/benchmark' 2023-09-06T11:56:53.0030486Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/protobuf/third_party/googletest' 2023-09-06T11:56:53.0082047Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/protobuf/third_party/benchmark'... 2023-09-06T11:56:53.7404798Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/protobuf/third_party/googletest'... 2023-09-06T11:56:55.4325728Z Submodule path 'third_party/protobuf/third_party/benchmark': checked out '5b7683f49e1e9223cf9927b24f6fd3d6bd82e3f8' 2023-09-06T11:56:55.5345726Z Submodule path 'third_party/protobuf/third_party/googletest': checked out '5ec7f0c4a113e2f18ac2c6cc7df51ad6afc24081' 2023-09-06T11:56:55.5690594Z Submodule path 'third_party/psimd': checked out '072586a71b55b7f8c584153d223e95687148a900' 2023-09-06T11:56:55.6083721Z Submodule path 'third_party/pthreadpool': checked out 'a134dd5d4cee80cce15db81a72e7f929d71dd413' 2023-09-06T11:56:55.6693490Z Submodule path 'third_party/pybind11': checked out '8a099e44b3d5f85b20f05828d919d2332a8de841' 2023-09-06T11:56:55.7257803Z Submodule path 'third_party/python-peachpy': checked out 'f45429b087dd7d5bc78bb40dc7cf06425c252d67' 2023-09-06T11:56:55.8003586Z Submodule path 'third_party/sleef': checked out 'e0a003ee838b75d11763aa9c3ef17bf71a725bff' 2023-09-06T11:56:55.9468390Z Submodule path 'third_party/tbb': checked out 'a51a90bc609bb73db8ea13841b5cf7aa4344d4a9' 2023-09-06T11:56:55.9999533Z Submodule path 'third_party/tensorpipe': checked out '52791a2fd214b2a9dc5759d36725909c1daa7f2e' 2023-09-06T11:56:56.0050304Z Submodule 'third_party/googletest' (https://github.com/google/googletest.git) registered for path 'third_party/tensorpipe/third_party/googletest' 2023-09-06T11:56:56.0057168Z Submodule 'third_party/libnop' (https://github.com/google/libnop.git) registered for path 'third_party/tensorpipe/third_party/libnop' 2023-09-06T11:56:56.0064842Z Submodule 'third_party/libuv' (https://github.com/libuv/libuv.git) registered for path 'third_party/tensorpipe/third_party/libuv' 2023-09-06T11:56:56.0072827Z Submodule 'third_party/pybind11' (https://github.com/pybind/pybind11.git) registered for path 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T11:56:56.0119272Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/googletest'... 2023-09-06T11:56:57.8648682Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/libnop'... 2023-09-06T11:56:58.4082592Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/libuv'... 2023-09-06T11:57:00.1758948Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/pybind11'... 2023-09-06T11:57:01.5626680Z Submodule path 'third_party/tensorpipe/third_party/googletest': checked out 'aee0f9d9b5b87796ee8a0ab26b7587ec30e8858e' 2023-09-06T11:57:01.5987430Z Submodule path 'third_party/tensorpipe/third_party/libnop': checked out '910b55815be16109f04f4180e9adee14fb4ce281' 2023-09-06T11:57:01.6914730Z Submodule path 'third_party/tensorpipe/third_party/libuv': checked out '1dff88e5161cba5c59276d2070d2e304e4dcb242' 2023-09-06T11:57:01.7431659Z Submodule path 'third_party/tensorpipe/third_party/pybind11': checked out 'a23996fce38ff6ccfbcdc09f1e63f2c4be5ea2ef' 2023-09-06T11:57:01.7484734Z Submodule 'tools/clang' (https://github.com/wjakob/clang-cindex-python3) registered for path 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T11:57:01.7529891Z Cloning into '/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/third_party/tensorpipe/third_party/pybind11/tools/clang'... 2023-09-06T11:57:02.2355742Z Submodule path 'third_party/tensorpipe/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2023-09-06T11:57:02.4193422Z Submodule path 'third_party/zstd': checked out 'aec56a52fbab207fc639a1937d1e708a282edca8' 2023-09-06T11:57:02.4292895Z [command]/usr/bin/git submodule foreach --recursive git config --local gc.auto 0 2023-09-06T11:57:02.4570539Z Entering 'android/libs/fbjni' 2023-09-06T11:57:02.4610399Z Entering 'third_party/FP16' 2023-09-06T11:57:02.4650621Z Entering 'third_party/FXdiv' 2023-09-06T11:57:02.4691044Z Entering 'third_party/NNPACK' 2023-09-06T11:57:02.4731143Z Entering 'third_party/QNNPACK' 2023-09-06T11:57:02.4772047Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T11:57:02.4812010Z Entering 'third_party/XNNPACK' 2023-09-06T11:57:02.4867126Z Entering 'third_party/benchmark' 2023-09-06T11:57:02.4906723Z Entering 'third_party/cpuinfo' 2023-09-06T11:57:02.4946695Z Entering 'third_party/cub' 2023-09-06T11:57:02.4985470Z Entering 'third_party/cudnn_frontend' 2023-09-06T11:57:02.5031649Z Entering 'third_party/cutlass' 2023-09-06T11:57:02.5080876Z Entering 'third_party/eigen' 2023-09-06T11:57:02.5123755Z Entering 'third_party/fbgemm' 2023-09-06T11:57:02.5163856Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T11:57:02.5203194Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T11:57:02.5242203Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T11:57:02.5289657Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T11:57:02.5329876Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T11:57:02.5368991Z Entering 'third_party/flatbuffers' 2023-09-06T11:57:02.5411848Z Entering 'third_party/fmt' 2023-09-06T11:57:02.5451256Z Entering 'third_party/foxi' 2023-09-06T11:57:02.5491254Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T11:57:02.5531578Z Entering 'third_party/gloo' 2023-09-06T11:57:02.5572006Z Entering 'third_party/googletest' 2023-09-06T11:57:02.5611618Z Entering 'third_party/ideep' 2023-09-06T11:57:02.5649733Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T11:57:02.5697663Z Entering 'third_party/ios-cmake' 2023-09-06T11:57:02.5736833Z Entering 'third_party/ittapi' 2023-09-06T11:57:02.5775806Z Entering 'third_party/kineto' 2023-09-06T11:57:02.5815503Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T11:57:02.5855689Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T11:57:02.5897506Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T11:57:02.5937155Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T11:57:02.5977070Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T11:57:02.6015026Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T11:57:02.6056540Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T11:57:02.6097335Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T11:57:02.6137406Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T11:57:02.6178522Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T11:57:02.6220118Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T11:57:02.6259742Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T11:57:02.6301368Z Entering 'third_party/mimalloc' 2023-09-06T11:57:02.6341284Z Entering 'third_party/nccl/nccl' 2023-09-06T11:57:02.6380855Z Entering 'third_party/neon2sse' 2023-09-06T11:57:02.6420363Z Entering 'third_party/nlohmann' 2023-09-06T11:57:02.6461997Z Entering 'third_party/onnx' 2023-09-06T11:57:02.6519061Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T11:57:02.6559337Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T11:57:02.6601019Z Entering 'third_party/onnx-tensorrt' 2023-09-06T11:57:02.6640419Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T11:57:02.6685028Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T11:57:02.6725195Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T11:57:02.6764122Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T11:57:02.6808491Z Entering 'third_party/pocketfft' 2023-09-06T11:57:02.6848562Z Entering 'third_party/protobuf' 2023-09-06T11:57:02.6891395Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T11:57:02.6932160Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T11:57:02.6974147Z Entering 'third_party/psimd' 2023-09-06T11:57:02.7012861Z Entering 'third_party/pthreadpool' 2023-09-06T11:57:02.7053560Z Entering 'third_party/pybind11' 2023-09-06T11:57:02.7093763Z Entering 'third_party/python-peachpy' 2023-09-06T11:57:02.7133984Z Entering 'third_party/sleef' 2023-09-06T11:57:02.7174230Z Entering 'third_party/tbb' 2023-09-06T11:57:02.7216547Z Entering 'third_party/tensorpipe' 2023-09-06T11:57:02.7256462Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T11:57:02.7296461Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T11:57:02.7334460Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T11:57:02.7374296Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T11:57:02.7412859Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T11:57:02.7456057Z Entering 'third_party/zstd' 2023-09-06T11:57:02.7516850Z ##[endgroup] 2023-09-06T11:57:02.7517414Z ##[group]Persisting credentials for submodules 2023-09-06T11:57:02.7534928Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'url\.https\:\/\/github\.com\/\.insteadOf' && git config --local --unset-all 'url.https://github.com/.insteadOf' || :" 2023-09-06T11:57:02.7807505Z Entering 'android/libs/fbjni' 2023-09-06T11:57:02.7852611Z Entering 'third_party/FP16' 2023-09-06T11:57:02.7898088Z Entering 'third_party/FXdiv' 2023-09-06T11:57:02.7942307Z Entering 'third_party/NNPACK' 2023-09-06T11:57:02.7987369Z Entering 'third_party/QNNPACK' 2023-09-06T11:57:02.8033904Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T11:57:02.8081048Z Entering 'third_party/XNNPACK' 2023-09-06T11:57:02.8141586Z Entering 'third_party/benchmark' 2023-09-06T11:57:02.8186256Z Entering 'third_party/cpuinfo' 2023-09-06T11:57:02.8232655Z Entering 'third_party/cub' 2023-09-06T11:57:02.8278347Z Entering 'third_party/cudnn_frontend' 2023-09-06T11:57:02.8330323Z Entering 'third_party/cutlass' 2023-09-06T11:57:02.8383736Z Entering 'third_party/eigen' 2023-09-06T11:57:02.8431511Z Entering 'third_party/fbgemm' 2023-09-06T11:57:02.8476610Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T11:57:02.8520163Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T11:57:02.8563296Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T11:57:02.8613572Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T11:57:02.8658146Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T11:57:02.8702887Z Entering 'third_party/flatbuffers' 2023-09-06T11:57:02.8751476Z Entering 'third_party/fmt' 2023-09-06T11:57:02.8796852Z Entering 'third_party/foxi' 2023-09-06T11:57:02.8841806Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T11:57:02.8886118Z Entering 'third_party/gloo' 2023-09-06T11:57:02.8931522Z Entering 'third_party/googletest' 2023-09-06T11:57:02.8976226Z Entering 'third_party/ideep' 2023-09-06T11:57:02.9020235Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T11:57:02.9070614Z Entering 'third_party/ios-cmake' 2023-09-06T11:57:02.9115235Z Entering 'third_party/ittapi' 2023-09-06T11:57:02.9159741Z Entering 'third_party/kineto' 2023-09-06T11:57:02.9205616Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T11:57:02.9250333Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T11:57:02.9298148Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T11:57:02.9342983Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T11:57:02.9388268Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T11:57:02.9432414Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T11:57:02.9479037Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T11:57:02.9523990Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T11:57:02.9568315Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T11:57:02.9614269Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T11:57:02.9660360Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T11:57:02.9704775Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T11:57:02.9750249Z Entering 'third_party/mimalloc' 2023-09-06T11:57:02.9795539Z Entering 'third_party/nccl/nccl' 2023-09-06T11:57:02.9841465Z Entering 'third_party/neon2sse' 2023-09-06T11:57:02.9886167Z Entering 'third_party/nlohmann' 2023-09-06T11:57:02.9932910Z Entering 'third_party/onnx' 2023-09-06T11:57:02.9996266Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T11:57:03.0041004Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T11:57:03.0088042Z Entering 'third_party/onnx-tensorrt' 2023-09-06T11:57:03.0132315Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T11:57:03.0181840Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T11:57:03.0227230Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T11:57:03.0270495Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T11:57:03.0320240Z Entering 'third_party/pocketfft' 2023-09-06T11:57:03.0364721Z Entering 'third_party/protobuf' 2023-09-06T11:57:03.0412667Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T11:57:03.0457329Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T11:57:03.0503638Z Entering 'third_party/psimd' 2023-09-06T11:57:03.0547558Z Entering 'third_party/pthreadpool' 2023-09-06T11:57:03.0593123Z Entering 'third_party/pybind11' 2023-09-06T11:57:03.0638603Z Entering 'third_party/python-peachpy' 2023-09-06T11:57:03.0683621Z Entering 'third_party/sleef' 2023-09-06T11:57:03.0729460Z Entering 'third_party/tbb' 2023-09-06T11:57:03.0777098Z Entering 'third_party/tensorpipe' 2023-09-06T11:57:03.0821663Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T11:57:03.0865787Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T11:57:03.0909435Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T11:57:03.0953994Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T11:57:03.0997146Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T11:57:03.1044913Z Entering 'third_party/zstd' 2023-09-06T11:57:03.1102752Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local 'http.https://github.com/.extraheader' 'AUTHORIZATION: basic ***' && git config --local --show-origin --name-only --get-regexp remote.origin.url" 2023-09-06T11:57:03.1373552Z Entering 'android/libs/fbjni' 2023-09-06T11:57:03.1414769Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/android/libs/fbjni/config remote.origin.url 2023-09-06T11:57:03.1434222Z Entering 'third_party/FP16' 2023-09-06T11:57:03.1475993Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FP16/config remote.origin.url 2023-09-06T11:57:03.1494888Z Entering 'third_party/FXdiv' 2023-09-06T11:57:03.1535661Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FXdiv/config remote.origin.url 2023-09-06T11:57:03.1555669Z Entering 'third_party/NNPACK' 2023-09-06T11:57:03.1598146Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK/config remote.origin.url 2023-09-06T11:57:03.1617093Z Entering 'third_party/QNNPACK' 2023-09-06T11:57:03.1658380Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/QNNPACK/config remote.origin.url 2023-09-06T11:57:03.1678178Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T11:57:03.1719276Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/VulkanMemoryAllocator/config remote.origin.url 2023-09-06T11:57:03.1739128Z Entering 'third_party/XNNPACK' 2023-09-06T11:57:03.1779487Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/XNNPACK/config remote.origin.url 2023-09-06T11:57:03.1815357Z Entering 'third_party/benchmark' 2023-09-06T11:57:03.1856628Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/benchmark/config remote.origin.url 2023-09-06T11:57:03.1875529Z Entering 'third_party/cpuinfo' 2023-09-06T11:57:03.1917526Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpuinfo/config remote.origin.url 2023-09-06T11:57:03.1937400Z Entering 'third_party/cub' 2023-09-06T11:57:03.1977769Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cub/config remote.origin.url 2023-09-06T11:57:03.1997760Z Entering 'third_party/cudnn_frontend' 2023-09-06T11:57:03.2039385Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cudnn_frontend/config remote.origin.url 2023-09-06T11:57:03.2065201Z Entering 'third_party/cutlass' 2023-09-06T11:57:03.2106588Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cutlass/config remote.origin.url 2023-09-06T11:57:03.2135579Z Entering 'third_party/eigen' 2023-09-06T11:57:03.2176585Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/eigen/config remote.origin.url 2023-09-06T11:57:03.2198878Z Entering 'third_party/fbgemm' 2023-09-06T11:57:03.2240311Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/config remote.origin.url 2023-09-06T11:57:03.2259156Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T11:57:03.2299897Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/asmjit/config remote.origin.url 2023-09-06T11:57:03.2318977Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T11:57:03.2358941Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cpuinfo/config remote.origin.url 2023-09-06T11:57:03.2378565Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T11:57:03.2419307Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cutlass/config remote.origin.url 2023-09-06T11:57:03.2446092Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T11:57:03.2488579Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/googletest/config remote.origin.url 2023-09-06T11:57:03.2507316Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T11:57:03.2548499Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/hipify_torch/config remote.origin.url 2023-09-06T11:57:03.2568734Z Entering 'third_party/flatbuffers' 2023-09-06T11:57:03.2611018Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flatbuffers/config remote.origin.url 2023-09-06T11:57:03.2634760Z Entering 'third_party/fmt' 2023-09-06T11:57:03.2676388Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fmt/config remote.origin.url 2023-09-06T11:57:03.2695877Z Entering 'third_party/foxi' 2023-09-06T11:57:03.2736653Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/foxi/config remote.origin.url 2023-09-06T11:57:03.2755886Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T11:57:03.2796750Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gemmlowp/gemmlowp/config remote.origin.url 2023-09-06T11:57:03.2816470Z Entering 'third_party/gloo' 2023-09-06T11:57:03.2858122Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gloo/config remote.origin.url 2023-09-06T11:57:03.2879592Z Entering 'third_party/googletest' 2023-09-06T11:57:03.2920260Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/googletest/config remote.origin.url 2023-09-06T11:57:03.2940219Z Entering 'third_party/ideep' 2023-09-06T11:57:03.2982075Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/config remote.origin.url 2023-09-06T11:57:03.3001505Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T11:57:03.3042247Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/config remote.origin.url 2023-09-06T11:57:03.3068721Z Entering 'third_party/ios-cmake' 2023-09-06T11:57:03.3109069Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ios-cmake/config remote.origin.url 2023-09-06T11:57:03.3127449Z Entering 'third_party/ittapi' 2023-09-06T11:57:03.3169370Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ittapi/config remote.origin.url 2023-09-06T11:57:03.3187442Z Entering 'third_party/kineto' 2023-09-06T11:57:03.3230013Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/config remote.origin.url 2023-09-06T11:57:03.3248638Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T11:57:03.3290443Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/config remote.origin.url 2023-09-06T11:57:03.3309412Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T11:57:03.3350209Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/DCGM/config remote.origin.url 2023-09-06T11:57:03.3370289Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T11:57:03.3411706Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/cpr/config remote.origin.url 2023-09-06T11:57:03.3430469Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T11:57:03.3471719Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/fmt/config remote.origin.url 2023-09-06T11:57:03.3490553Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T11:57:03.3531558Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/gflags/config remote.origin.url 2023-09-06T11:57:03.3548826Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T11:57:03.3590403Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/gflags/modules/doc/config remote.origin.url 2023-09-06T11:57:03.3611819Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T11:57:03.3652050Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/glog/config remote.origin.url 2023-09-06T11:57:03.3670912Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T11:57:03.3711619Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/googletest/config remote.origin.url 2023-09-06T11:57:03.3730182Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T11:57:03.3771626Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/json/config remote.origin.url 2023-09-06T11:57:03.3791981Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T11:57:03.3833502Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/pfs/config remote.origin.url 2023-09-06T11:57:03.3853346Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T11:57:03.3894402Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/fmt/config remote.origin.url 2023-09-06T11:57:03.3914153Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T11:57:03.3955772Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/googletest/config remote.origin.url 2023-09-06T11:57:03.3976363Z Entering 'third_party/mimalloc' 2023-09-06T11:57:03.4017646Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/mimalloc/config remote.origin.url 2023-09-06T11:57:03.4037789Z Entering 'third_party/nccl/nccl' 2023-09-06T11:57:03.4080164Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nccl/nccl/config remote.origin.url 2023-09-06T11:57:03.4098973Z Entering 'third_party/neon2sse' 2023-09-06T11:57:03.4139671Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/neon2sse/config remote.origin.url 2023-09-06T11:57:03.4159661Z Entering 'third_party/nlohmann' 2023-09-06T11:57:03.4200958Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nlohmann/config remote.origin.url 2023-09-06T11:57:03.4222067Z Entering 'third_party/onnx' 2023-09-06T11:57:03.4262970Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/config remote.origin.url 2023-09-06T11:57:03.4299658Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T11:57:03.4341507Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/benchmark/config remote.origin.url 2023-09-06T11:57:03.4360540Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T11:57:03.4402661Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2023-09-06T11:57:03.4424080Z Entering 'third_party/onnx-tensorrt' 2023-09-06T11:57:03.4465309Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/config remote.origin.url 2023-09-06T11:57:03.4483630Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T11:57:03.4525143Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/config remote.origin.url 2023-09-06T11:57:03.4548411Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T11:57:03.4589554Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/benchmark/config remote.origin.url 2023-09-06T11:57:03.4608548Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T11:57:03.4649893Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2023-09-06T11:57:03.4667933Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T11:57:03.4709013Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx-tensorrt/modules/third_party/onnx/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2023-09-06T11:57:03.4732638Z Entering 'third_party/pocketfft' 2023-09-06T11:57:03.4774014Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pocketfft/config remote.origin.url 2023-09-06T11:57:03.4793635Z Entering 'third_party/protobuf' 2023-09-06T11:57:03.4834830Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/config remote.origin.url 2023-09-06T11:57:03.4857846Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T11:57:03.4899281Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/benchmark/config remote.origin.url 2023-09-06T11:57:03.4918998Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T11:57:03.4959753Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/googletest/config remote.origin.url 2023-09-06T11:57:03.4980301Z Entering 'third_party/psimd' 2023-09-06T11:57:03.5021228Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/psimd/config remote.origin.url 2023-09-06T11:57:03.5040647Z Entering 'third_party/pthreadpool' 2023-09-06T11:57:03.5081667Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/pthreadpool/config remote.origin.url 2023-09-06T11:57:03.5100905Z Entering 'third_party/pybind11' 2023-09-06T11:57:03.5141942Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pybind11/config remote.origin.url 2023-09-06T11:57:03.5161780Z Entering 'third_party/python-peachpy' 2023-09-06T11:57:03.5202525Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-peachpy/config remote.origin.url 2023-09-06T11:57:03.5222351Z Entering 'third_party/sleef' 2023-09-06T11:57:03.5263435Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/sleef/config remote.origin.url 2023-09-06T11:57:03.5282873Z Entering 'third_party/tbb' 2023-09-06T11:57:03.5323839Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tbb/config remote.origin.url 2023-09-06T11:57:03.5345040Z Entering 'third_party/tensorpipe' 2023-09-06T11:57:03.5386843Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/config remote.origin.url 2023-09-06T11:57:03.5405800Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T11:57:03.5446219Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/googletest/config remote.origin.url 2023-09-06T11:57:03.5465072Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T11:57:03.5506937Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libnop/config remote.origin.url 2023-09-06T11:57:03.5524945Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T11:57:03.5565745Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libuv/config remote.origin.url 2023-09-06T11:57:03.5585014Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T11:57:03.5626188Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/config remote.origin.url 2023-09-06T11:57:03.5644072Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T11:57:03.5685092Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2023-09-06T11:57:03.5706505Z Entering 'third_party/zstd' 2023-09-06T11:57:03.5747379Z file:/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/zstd/config remote.origin.url 2023-09-06T11:57:03.6094107Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'git@github.com:' 2023-09-06T11:57:03.6375397Z Entering 'android/libs/fbjni' 2023-09-06T11:57:03.6415125Z Entering 'third_party/FP16' 2023-09-06T11:57:03.6454194Z Entering 'third_party/FXdiv' 2023-09-06T11:57:03.6494202Z Entering 'third_party/NNPACK' 2023-09-06T11:57:03.6533763Z Entering 'third_party/QNNPACK' 2023-09-06T11:57:03.6573379Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T11:57:03.6613126Z Entering 'third_party/XNNPACK' 2023-09-06T11:57:03.6668371Z Entering 'third_party/benchmark' 2023-09-06T11:57:03.6707848Z Entering 'third_party/cpuinfo' 2023-09-06T11:57:03.6747467Z Entering 'third_party/cub' 2023-09-06T11:57:03.6786697Z Entering 'third_party/cudnn_frontend' 2023-09-06T11:57:03.6833485Z Entering 'third_party/cutlass' 2023-09-06T11:57:03.6883544Z Entering 'third_party/eigen' 2023-09-06T11:57:03.6926201Z Entering 'third_party/fbgemm' 2023-09-06T11:57:03.6965948Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T11:57:03.7005288Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T11:57:03.7043308Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T11:57:03.7091092Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T11:57:03.7130178Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T11:57:03.7171706Z Entering 'third_party/flatbuffers' 2023-09-06T11:57:03.7214569Z Entering 'third_party/fmt' 2023-09-06T11:57:03.7254899Z Entering 'third_party/foxi' 2023-09-06T11:57:03.7294041Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T11:57:03.7333505Z Entering 'third_party/gloo' 2023-09-06T11:57:03.7374048Z Entering 'third_party/googletest' 2023-09-06T11:57:03.7415195Z Entering 'third_party/ideep' 2023-09-06T11:57:03.7453440Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T11:57:03.7499603Z Entering 'third_party/ios-cmake' 2023-09-06T11:57:03.7538880Z Entering 'third_party/ittapi' 2023-09-06T11:57:03.7578508Z Entering 'third_party/kineto' 2023-09-06T11:57:03.7617918Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T11:57:03.7656086Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T11:57:03.7698519Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T11:57:03.7737123Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T11:57:03.7776269Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T11:57:03.7813176Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T11:57:03.7854408Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T11:57:03.7894289Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T11:57:03.7933167Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T11:57:03.7976616Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T11:57:03.8016464Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T11:57:03.8055565Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T11:57:03.8098739Z Entering 'third_party/mimalloc' 2023-09-06T11:57:03.8139017Z Entering 'third_party/nccl/nccl' 2023-09-06T11:57:03.8178680Z Entering 'third_party/neon2sse' 2023-09-06T11:57:03.8218465Z Entering 'third_party/nlohmann' 2023-09-06T11:57:03.8258711Z Entering 'third_party/onnx' 2023-09-06T11:57:03.8316724Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T11:57:03.8356794Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T11:57:03.8400121Z Entering 'third_party/onnx-tensorrt' 2023-09-06T11:57:03.8438795Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T11:57:03.8483618Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T11:57:03.8522835Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T11:57:03.8563079Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T11:57:03.8608363Z Entering 'third_party/pocketfft' 2023-09-06T11:57:03.8648001Z Entering 'third_party/protobuf' 2023-09-06T11:57:03.8693049Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T11:57:03.8731548Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T11:57:03.8772666Z Entering 'third_party/psimd' 2023-09-06T11:57:03.8812274Z Entering 'third_party/pthreadpool' 2023-09-06T11:57:03.8851480Z Entering 'third_party/pybind11' 2023-09-06T11:57:03.8892638Z Entering 'third_party/python-peachpy' 2023-09-06T11:57:03.8931675Z Entering 'third_party/sleef' 2023-09-06T11:57:03.8970971Z Entering 'third_party/tbb' 2023-09-06T11:57:03.9014356Z Entering 'third_party/tensorpipe' 2023-09-06T11:57:03.9054167Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T11:57:03.9093837Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T11:57:03.9132385Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T11:57:03.9171730Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T11:57:03.9210314Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T11:57:03.9251730Z Entering 'third_party/zstd' 2023-09-06T11:57:03.9304571Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'org-21003710@github.com:' 2023-09-06T11:57:03.9576239Z Entering 'android/libs/fbjni' 2023-09-06T11:57:03.9615652Z Entering 'third_party/FP16' 2023-09-06T11:57:03.9655408Z Entering 'third_party/FXdiv' 2023-09-06T11:57:03.9694672Z Entering 'third_party/NNPACK' 2023-09-06T11:57:03.9734332Z Entering 'third_party/QNNPACK' 2023-09-06T11:57:03.9774631Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T11:57:03.9814571Z Entering 'third_party/XNNPACK' 2023-09-06T11:57:03.9869922Z Entering 'third_party/benchmark' 2023-09-06T11:57:03.9910767Z Entering 'third_party/cpuinfo' 2023-09-06T11:57:03.9951437Z Entering 'third_party/cub' 2023-09-06T11:57:03.9991594Z Entering 'third_party/cudnn_frontend' 2023-09-06T11:57:04.0037861Z Entering 'third_party/cutlass' 2023-09-06T11:57:04.0085217Z Entering 'third_party/eigen' 2023-09-06T11:57:04.0127156Z Entering 'third_party/fbgemm' 2023-09-06T11:57:04.0167873Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T11:57:04.0207071Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T11:57:04.0246932Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T11:57:04.0294980Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T11:57:04.0333475Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T11:57:04.0373680Z Entering 'third_party/flatbuffers' 2023-09-06T11:57:04.0417197Z Entering 'third_party/fmt' 2023-09-06T11:57:04.0456284Z Entering 'third_party/foxi' 2023-09-06T11:57:04.0495743Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T11:57:04.0535263Z Entering 'third_party/gloo' 2023-09-06T11:57:04.0574116Z Entering 'third_party/googletest' 2023-09-06T11:57:04.0613596Z Entering 'third_party/ideep' 2023-09-06T11:57:04.0652120Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T11:57:04.0698802Z Entering 'third_party/ios-cmake' 2023-09-06T11:57:04.0737742Z Entering 'third_party/ittapi' 2023-09-06T11:57:04.0777150Z Entering 'third_party/kineto' 2023-09-06T11:57:04.0816870Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T11:57:04.0856178Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T11:57:04.0896380Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T11:57:04.0935189Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T11:57:04.0975510Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T11:57:04.1012908Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T11:57:04.1054156Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T11:57:04.1093932Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T11:57:04.1133149Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T11:57:04.1172771Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T11:57:04.1213838Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T11:57:04.1253225Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T11:57:04.1293870Z Entering 'third_party/mimalloc' 2023-09-06T11:57:04.1333485Z Entering 'third_party/nccl/nccl' 2023-09-06T11:57:04.1373080Z Entering 'third_party/neon2sse' 2023-09-06T11:57:04.1412097Z Entering 'third_party/nlohmann' 2023-09-06T11:57:04.1452350Z Entering 'third_party/onnx' 2023-09-06T11:57:04.1508980Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T11:57:04.1548449Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T11:57:04.1590224Z Entering 'third_party/onnx-tensorrt' 2023-09-06T11:57:04.1628213Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T11:57:04.1673551Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T11:57:04.1713503Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T11:57:04.1751370Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T11:57:04.1795613Z Entering 'third_party/pocketfft' 2023-09-06T11:57:04.1834817Z Entering 'third_party/protobuf' 2023-09-06T11:57:04.1878675Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T11:57:04.1917181Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T11:57:04.1957711Z Entering 'third_party/psimd' 2023-09-06T11:57:04.1998223Z Entering 'third_party/pthreadpool' 2023-09-06T11:57:04.2038191Z Entering 'third_party/pybind11' 2023-09-06T11:57:04.2078461Z Entering 'third_party/python-peachpy' 2023-09-06T11:57:04.2118311Z Entering 'third_party/sleef' 2023-09-06T11:57:04.2158858Z Entering 'third_party/tbb' 2023-09-06T11:57:04.2201222Z Entering 'third_party/tensorpipe' 2023-09-06T11:57:04.2240872Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T11:57:04.2280089Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T11:57:04.2318312Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T11:57:04.2356616Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T11:57:04.2394517Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T11:57:04.2436336Z Entering 'third_party/zstd' 2023-09-06T11:57:04.2489460Z ##[endgroup] 2023-09-06T11:57:04.2538791Z [command]/usr/bin/git log -1 --format='%H' 2023-09-06T11:57:04.2573275Z '3fe8417643c8d6c2b3d95552cd90321d141b5d54' 2023-09-06T11:57:04.2802581Z Prepare all required actions 2023-09-06T11:57:04.2803298Z Getting action download info 2023-09-06T11:57:04.4815280Z ##[group]Run ./.github/actions/setup-linux 2023-09-06T11:57:04.4815768Z env: 2023-09-06T11:57:04.4816004Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:04.4816250Z ##[endgroup] 2023-09-06T11:57:04.4885736Z ##[group]Run set -euo pipefail 2023-09-06T11:57:04.4886363Z set -euo pipefail 2023-09-06T11:57:04.4886813Z function get_ec2_metadata() { 2023-09-06T11:57:04.4887164Z  # Pulled from instance metadata endpoint for EC2 2023-09-06T11:57:04.4887660Z  # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html 2023-09-06T11:57:04.4888135Z  category=$1 2023-09-06T11:57:04.4888461Z  # If it is GCP runner (runner name contains gcp), do not run this 2023-09-06T11:57:04.4888844Z  runner_name_str=gh-ci-gcp-a100-17 2023-09-06T11:57:04.4889235Z  if [[ $runner_name_str != *"gcp"* ]]; then 2023-09-06T11:57:04.4889603Z  curl -fsSL "http://169.254.169.254/latest/meta-data/${category}" 2023-09-06T11:57:04.4889901Z  else 2023-09-06T11:57:04.4890244Z  echo "Runner is from Google Cloud Platform, No info on ec2 metadata" 2023-09-06T11:57:04.4890570Z  fi 2023-09-06T11:57:04.4890778Z } 2023-09-06T11:57:04.4891030Z echo "ami-id: $(get_ec2_metadata ami-id)" 2023-09-06T11:57:04.4891381Z echo "instance-id: $(get_ec2_metadata instance-id)" 2023-09-06T11:57:04.4891756Z echo "instance-type: $(get_ec2_metadata instance-type)" 2023-09-06T11:57:04.4892092Z echo "system info $(uname -a)" 2023-09-06T11:57:04.4911425Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:04.4911711Z env: 2023-09-06T11:57:04.4911946Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:04.4912193Z ##[endgroup] 2023-09-06T11:57:04.4958928Z ami-id: Runner is from Google Cloud Platform, No info on ec2 metadata 2023-09-06T11:57:04.4964988Z instance-id: Runner is from Google Cloud Platform, No info on ec2 metadata 2023-09-06T11:57:04.4970442Z instance-type: Runner is from Google Cloud Platform, No info on ec2 metadata 2023-09-06T11:57:04.4981864Z system info Linux gh-ci-gcp-a100-17 5.15.0-1037-gcp #45~20.04.1-Ubuntu SMP Thu Jun 22 08:31:09 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux 2023-09-06T11:57:04.5000784Z ##[group]Run if systemctl is-active --quiet docker; then 2023-09-06T11:57:04.5001165Z if systemctl is-active --quiet docker; then 2023-09-06T11:57:04.5001508Z  echo "Docker daemon is running..."; 2023-09-06T11:57:04.5001787Z else 2023-09-06T11:57:04.5002104Z  echo "Starting docker deamon..." && sudo systemctl start docker; 2023-09-06T11:57:04.5002423Z fi 2023-09-06T11:57:04.5021137Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:04.5021434Z env: 2023-09-06T11:57:04.5021670Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:04.5021919Z ##[endgroup] 2023-09-06T11:57:04.5091693Z Docker daemon is running... 2023-09-06T11:57:04.5134062Z ##[group]Run nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482 2023-09-06T11:57:04.5134611Z with: 2023-09-06T11:57:04.5135064Z shell: bash 2023-09-06T11:57:04.5135608Z timeout_minutes: 5 2023-09-06T11:57:04.5136253Z max_attempts: 3 2023-09-06T11:57:04.5136629Z retry_wait_seconds: 30 2023-09-06T11:57:04.5137348Z command: AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") aws ecr get-login-password --region "$AWS_DEFAULT_REGION" | docker login --username AWS \ --password-stdin "$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" 2023-09-06T11:57:04.5138171Z polling_interval_seconds: 1 2023-09-06T11:57:04.5138524Z warning_on_retry: true 2023-09-06T11:57:04.5138805Z continue_on_error: false 2023-09-06T11:57:04.5139113Z env: 2023-09-06T11:57:04.5139409Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:04.5140013Z AWS_RETRY_MODE: standard 2023-09-06T11:57:04.5140296Z AWS_MAX_ATTEMPTS: 5 2023-09-06T11:57:04.5140629Z AWS_DEFAULT_REGION: us-east-1 2023-09-06T11:57:04.5140956Z ##[endgroup] 2023-09-06T11:57:06.7344964Z WARNING! Your password will be stored unencrypted in /home/ubuntu/.docker/config.json. 2023-09-06T11:57:06.7346318Z Configure a credential helper to remove this warning. See 2023-09-06T11:57:06.7347563Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2023-09-06T11:57:06.7347991Z 2023-09-06T11:57:06.7348242Z Login Succeeded 2023-09-06T11:57:07.5855096Z Command completed after 1 attempt(s). 2023-09-06T11:57:07.5916720Z ##[group]Run env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-09-06T11:57:07.5917149Z env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-09-06T11:57:07.5917529Z env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2023-09-06T11:57:07.5935657Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:07.5935979Z env: 2023-09-06T11:57:07.5936201Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:07.5936452Z ##[endgroup] 2023-09-06T11:57:07.6025161Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2023-09-06T11:57:07.6025632Z # ignore expansion of "docker ps -q" since it could be empty 2023-09-06T11:57:07.6025971Z # shellcheck disable=SC2046 2023-09-06T11:57:07.6026283Z docker stop $(docker ps -q) || true 2023-09-06T11:57:07.6026603Z # Prune all of the docker images 2023-09-06T11:57:07.6026901Z docker system prune -af 2023-09-06T11:57:07.6044326Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:07.6044612Z env: 2023-09-06T11:57:07.6044845Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:07.6045099Z ##[endgroup] 2023-09-06T11:57:07.6471523Z "docker stop" requires at least 1 argument. 2023-09-06T11:57:07.6472165Z See 'docker stop --help'. 2023-09-06T11:57:07.6472339Z 2023-09-06T11:57:07.6472536Z Usage: docker stop [OPTIONS] CONTAINER [CONTAINER...] 2023-09-06T11:57:07.6472748Z 2023-09-06T11:57:07.6472878Z Stop one or more running containers 2023-09-06T11:57:07.6698235Z Total reclaimed space: 0B 2023-09-06T11:57:07.6737332Z ##[group]Run set +e 2023-09-06T11:57:07.6737707Z set +e 2023-09-06T11:57:07.6737943Z set -x 2023-09-06T11:57:07.6738150Z  2023-09-06T11:57:07.6738420Z PT_DOMAIN=download.pytorch.org 2023-09-06T11:57:07.6738877Z # TODO: Flaky access to download.pytorch.org https://github.com/pytorch/pytorch/issues/100400, 2023-09-06T11:57:07.6739413Z # cleaning this up once the issue is fixed. There are more than one resolved IP here, the last 2023-09-06T11:57:07.6739822Z # one is returned at random 2023-09-06T11:57:07.6740146Z RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" | tail -n1) 2023-09-06T11:57:07.6740434Z  2023-09-06T11:57:07.6740686Z if [ -z "${RESOLVED_IP}" ]; then 2023-09-06T11:57:07.6741069Z  echo "Couldn't resolve ${PT_DOMAIN}, retrying with Google DNS..." 2023-09-06T11:57:07.6741465Z  RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" @8.8.8.8 | tail -n1) 2023-09-06T11:57:07.6741766Z  2023-09-06T11:57:07.6742031Z  if [ -z "${RESOLVED_IP}" ]; then 2023-09-06T11:57:07.6742369Z  echo "Couldn't resolve ${PT_DOMAIN}, exiting..." 2023-09-06T11:57:07.6742655Z  exit 1 2023-09-06T11:57:07.6742887Z  fi 2023-09-06T11:57:07.6743101Z fi 2023-09-06T11:57:07.6743311Z  2023-09-06T11:57:07.6743570Z if grep -r "${PT_DOMAIN}" /etc/hosts; then 2023-09-06T11:57:07.6743900Z  # Clean up any old records first 2023-09-06T11:57:07.6744227Z  sudo sed -i "/${PT_DOMAIN}/d" /etc/hosts 2023-09-06T11:57:07.6744497Z fi 2023-09-06T11:57:07.6744693Z  2023-09-06T11:57:07.6744993Z echo "${RESOLVED_IP} ${PT_DOMAIN}" | sudo tee -a /etc/hosts 2023-09-06T11:57:07.6745480Z cat /etc/hosts 2023-09-06T11:57:07.6764044Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:07.6764345Z env: 2023-09-06T11:57:07.6764570Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:07.6765026Z ##[endgroup] 2023-09-06T11:57:07.6801614Z + PT_DOMAIN=download.pytorch.org 2023-09-06T11:57:07.6808236Z ++ dig -4 +short download.pytorch.org 2023-09-06T11:57:07.6808929Z ++ tail -n1 2023-09-06T11:57:07.6894995Z + RESOLVED_IP=54.230.18.128 2023-09-06T11:57:07.6895622Z + '[' -z 54.230.18.128 ']' 2023-09-06T11:57:07.6896002Z + grep -r download.pytorch.org /etc/hosts 2023-09-06T11:57:07.6910004Z 54.230.18.128 download.pytorch.org 2023-09-06T11:57:07.6911756Z + sudo sed -i /download.pytorch.org/d /etc/hosts 2023-09-06T11:57:07.7009559Z + echo '54.230.18.128 download.pytorch.org' 2023-09-06T11:57:07.7010044Z + sudo tee -a /etc/hosts 2023-09-06T11:57:07.7102508Z 54.230.18.128 download.pytorch.org 2023-09-06T11:57:07.7110080Z + cat /etc/hosts 2023-09-06T11:57:07.7118314Z 127.0.0.1 localhost 2023-09-06T11:57:07.7118687Z 2023-09-06T11:57:07.7119151Z # The following lines are desirable for IPv6 capable hosts 2023-09-06T11:57:07.7133666Z ::1 ip6-localhost ip6-loopback 2023-09-06T11:57:07.7134049Z fe00::0 ip6-localnet 2023-09-06T11:57:07.7134359Z ff00::0 ip6-mcastprefix 2023-09-06T11:57:07.7134674Z ff02::1 ip6-allnodes 2023-09-06T11:57:07.7134964Z ff02::2 ip6-allrouters 2023-09-06T11:57:07.7135258Z ff02::3 ip6-allhosts 2023-09-06T11:57:07.7135543Z 169.254.169.254 metadata.google.internal metadata 2023-09-06T11:57:07.7135864Z 54.230.18.128 download.pytorch.org 2023-09-06T11:57:07.7215013Z ##[group]Run pytorch/test-infra/.github/actions/calculate-docker-image@main 2023-09-06T11:57:07.7215360Z with: 2023-09-06T11:57:07.7215922Z docker-image-name: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7216496Z docker-build-dir: .ci/docker 2023-09-06T11:57:07.7216772Z working-directory: . 2023-09-06T11:57:07.7217104Z docker-registry: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2023-09-06T11:57:07.7217401Z env: 2023-09-06T11:57:07.7217612Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:07.7217873Z ##[endgroup] 2023-09-06T11:57:07.7235405Z ##[group]Run set -ex 2023-09-06T11:57:07.7235692Z set -ex 2023-09-06T11:57:07.7235914Z  2023-09-06T11:57:07.7236265Z # If the docker build directory or the build script doesn't exist, the action will 2023-09-06T11:57:07.7236806Z # gracefully return the docker image name as it is. Pulling docker image in Linux 2023-09-06T11:57:07.7237231Z # job could then download the pre-built image as usual 2023-09-06T11:57:07.7237645Z if [[ ! -d "${DOCKER_BUILD_DIR}" ]] || [[ ! -f "${DOCKER_BUILD_DIR}/build.sh" ]]; then 2023-09-06T11:57:07.7238023Z  echo "skip=true" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7238395Z  echo "docker-image=${DOCKER_IMAGE_NAME}" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7238689Z  2023-09-06T11:57:07.7239023Z  echo "There is no Docker build script in ${REPO_NAME} repo, skipping..." 2023-09-06T11:57:07.7239363Z  exit 0 2023-09-06T11:57:07.7239596Z else 2023-09-06T11:57:07.7239856Z  echo "skip=false" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7240128Z fi 2023-09-06T11:57:07.7240337Z  2023-09-06T11:57:07.7240645Z if [[ "${DOCKER_IMAGE_NAME}" == *"${DOCKER_REGISTRY}/${REPO_NAME}"* ]]; then 2023-09-06T11:57:07.7241096Z  # The docker image name already includes the ECR prefix and tag, so we can just 2023-09-06T11:57:07.7241508Z  # use it as it is, but first let's extract the tag 2023-09-06T11:57:07.7241902Z  DOCKER_TAG=$(echo "${DOCKER_IMAGE_NAME}" | awk -F '[:,]' '{print $2}') 2023-09-06T11:57:07.7242297Z  echo "docker-tag=${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7242681Z  echo "docker-image=${DOCKER_IMAGE_NAME}" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7242976Z else 2023-09-06T11:57:07.7243276Z  DOCKER_TAG=$(git rev-parse HEAD:"${DOCKER_BUILD_DIR}") 2023-09-06T11:57:07.7243698Z  echo "docker-tag=${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7244312Z  echo "docker-image=${DOCKER_REGISTRY}/${REPO_NAME}/${DOCKER_IMAGE_NAME}:${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7244673Z fi 2023-09-06T11:57:07.7274258Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:07.7274568Z env: 2023-09-06T11:57:07.7274807Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:07.7275064Z REPO_NAME: pytorch 2023-09-06T11:57:07.7275631Z DOCKER_IMAGE_NAME: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7276205Z DOCKER_BUILD_DIR: .ci/docker 2023-09-06T11:57:07.7276548Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2023-09-06T11:57:07.7276857Z ##[endgroup] 2023-09-06T11:57:07.7315094Z + [[ ! -d .ci/docker ]] 2023-09-06T11:57:07.7315460Z + [[ ! -f .ci/docker/build.sh ]] 2023-09-06T11:57:07.7315745Z + echo skip=false 2023-09-06T11:57:07.7316774Z + [[ 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 == *\3\0\8\5\3\5\3\8\5\1\1\4\.\d\k\r\.\e\c\r\.\u\s\-\e\a\s\t\-\1\.\a\m\a\z\o\n\a\w\s\.\c\o\m\/\p\y\t\o\r\c\h* ]] 2023-09-06T11:57:07.7323837Z ++ echo 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7324806Z ++ awk -F '[:,]' '{print $2}' 2023-09-06T11:57:07.7345233Z + DOCKER_TAG=9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7346143Z + echo docker-tag=9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7347382Z + echo docker-image=308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7396656Z ##[group]Run set +e 2023-09-06T11:57:07.7396955Z set +e 2023-09-06T11:57:07.7397183Z set -x 2023-09-06T11:57:07.7397400Z  2023-09-06T11:57:07.7397722Z # Check if image already exists, if it does then skip building it 2023-09-06T11:57:07.7398112Z if docker manifest inspect "${DOCKER_IMAGE}"; then 2023-09-06T11:57:07.7398420Z  exit 0 2023-09-06T11:57:07.7398640Z fi 2023-09-06T11:57:07.7398848Z  2023-09-06T11:57:07.7399168Z # NB: This part requires a full checkout. Otherwise, the merge base will 2023-09-06T11:57:07.7399614Z # be empty. The default action would be to continue rebuild the image 2023-09-06T11:57:07.7400024Z if [[ "$BASE_REVISION" = "$(git rev-parse HEAD)" ]]; then 2023-09-06T11:57:07.7400412Z  # if we're on the base branch then use the parent commit 2023-09-06T11:57:07.7400768Z  MERGE_BASE=$(git rev-parse HEAD~) 2023-09-06T11:57:07.7401020Z else 2023-09-06T11:57:07.7401346Z  # otherwise we're on a PR, so use the most recent base commit 2023-09-06T11:57:07.7401737Z  MERGE_BASE=$(git merge-base HEAD "$BASE_REVISION") 2023-09-06T11:57:07.7402023Z fi 2023-09-06T11:57:07.7402217Z  2023-09-06T11:57:07.7402464Z if [[ -z "${MERGE_BASE}" ]]; then 2023-09-06T11:57:07.7402787Z  echo "rebuild=true" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7403057Z  2023-09-06T11:57:07.7403418Z  echo "Finding merge base only works with full checkout, please set fetch-depth to 0, continuing ..." 2023-09-06T11:57:07.7403846Z  exit 0 2023-09-06T11:57:07.7404067Z fi 2023-09-06T11:57:07.7404277Z  2023-09-06T11:57:07.7404561Z if ! git rev-parse "${MERGE_BASE}:${DOCKER_BUILD_DIR}"; then 2023-09-06T11:57:07.7405044Z  echo "Directory '${DOCKER_BUILD_DIR}' not found in commit $MERGE_BASE, you should rebase onto a more recent commit" 2023-09-06T11:57:07.7405433Z  exit 1 2023-09-06T11:57:07.7405844Z fi 2023-09-06T11:57:07.7406054Z  2023-09-06T11:57:07.7406360Z PREVIOUS_DOCKER_TAG=$(git rev-parse "${MERGE_BASE}:${DOCKER_BUILD_DIR}") 2023-09-06T11:57:07.7406843Z # If no image exists but the hash is the same as the previous hash then we should error out here 2023-09-06T11:57:07.7407294Z if [[ "${PREVIOUS_DOCKER_TAG}" == "${DOCKER_TAG}" ]]; then 2023-09-06T11:57:07.7407780Z  echo "WARNING: Something has gone wrong and the previous image isn't available for the merge-base of your branch" 2023-09-06T11:57:07.7408310Z  echo " Will re-build docker image to store in local cache, TTS may be longer" 2023-09-06T11:57:07.7408634Z fi 2023-09-06T11:57:07.7408842Z  2023-09-06T11:57:07.7409114Z echo "rebuild=true" >> "${GITHUB_OUTPUT}" 2023-09-06T11:57:07.7426001Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:07.7426284Z env: 2023-09-06T11:57:07.7426523Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:07.7426792Z DOCKER_BUILD_DIR: .ci/docker 2023-09-06T11:57:07.7427107Z BASE_REVISION: 3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T11:57:07.7427892Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7428497Z DOCKER_TAG: 9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:07.7428780Z ##[endgroup] 2023-09-06T11:57:07.7464288Z + docker manifest inspect 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:08.4671812Z { 2023-09-06T11:57:08.4672241Z "schemaVersion": 2, 2023-09-06T11:57:08.4672953Z "mediaType": "application/vnd.docker.distribution.manifest.v2+json", 2023-09-06T11:57:08.4673592Z "config": { 2023-09-06T11:57:08.4674128Z "mediaType": "application/vnd.docker.container.image.v1+json", 2023-09-06T11:57:08.4674604Z "size": 45655, 2023-09-06T11:57:08.4674960Z "digest": "sha256:d5a715adf5384149f42b562408a0548773cf7fc344221f5b65a1c1a685e1c2a8" 2023-09-06T11:57:08.4675273Z }, 2023-09-06T11:57:08.4675496Z "layers": [ 2023-09-06T11:57:08.4675709Z { 2023-09-06T11:57:08.4676067Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4676403Z "size": 28578563, 2023-09-06T11:57:08.4676772Z "digest": "sha256:99803d4b97f3db529ae9ca4174b0951afac6b309e7deaa8ec3214c584e02b3a8" 2023-09-06T11:57:08.4677211Z }, 2023-09-06T11:57:08.4677529Z { 2023-09-06T11:57:08.4678014Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4678563Z "size": 7920735, 2023-09-06T11:57:08.4679354Z "digest": "sha256:0b5414b58ed1bab309ed977b88a36dc8f22512a60ef70761c3da177ad5a32023" 2023-09-06T11:57:08.4680031Z }, 2023-09-06T11:57:08.4680320Z { 2023-09-06T11:57:08.4680658Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4681025Z "size": 55728009, 2023-09-06T11:57:08.4681393Z "digest": "sha256:434ea07ac2904f60aa3aeee28f971d188ba20631f84b4bf8064719c09f5b84b5" 2023-09-06T11:57:08.4681718Z }, 2023-09-06T11:57:08.4681916Z { 2023-09-06T11:57:08.4682431Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4682898Z "size": 185, 2023-09-06T11:57:08.4683474Z "digest": "sha256:7bbb6f0efdde0ffab9bbc66e5052261b9b38ccc121db5173b125a2077acad92a" 2023-09-06T11:57:08.4684047Z }, 2023-09-06T11:57:08.4684270Z { 2023-09-06T11:57:08.4684607Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4684933Z "size": 6884, 2023-09-06T11:57:08.4685328Z "digest": "sha256:93036f51a832fc3daa8da5a3fcc95fc30367dd3daef6d73192d6c0e21a40a468" 2023-09-06T11:57:08.4685902Z }, 2023-09-06T11:57:08.4686316Z { 2023-09-06T11:57:08.4686939Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4688221Z "size": 1329001351, 2023-09-06T11:57:08.4688668Z "digest": "sha256:d7fb9be2f79b53474246c4372e5401579c288d26dd447d950ddd0234c19956a9" 2023-09-06T11:57:08.4688984Z }, 2023-09-06T11:57:08.4689193Z { 2023-09-06T11:57:08.4689526Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4689885Z "size": 62478, 2023-09-06T11:57:08.4690251Z "digest": "sha256:b7deb82cec78a179b20de0cd3344c1e9ad951051eb25f9c90ef966633b56959b" 2023-09-06T11:57:08.4690603Z }, 2023-09-06T11:57:08.4690798Z { 2023-09-06T11:57:08.4691148Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4691493Z "size": 1685, 2023-09-06T11:57:08.4691842Z "digest": "sha256:ffe25f6234c7144513b6397bc22671ddb4a56feab444a854bbbae954cc36f23a" 2023-09-06T11:57:08.4692171Z }, 2023-09-06T11:57:08.4692366Z { 2023-09-06T11:57:08.4692807Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4693548Z "size": 1523, 2023-09-06T11:57:08.4694556Z "digest": "sha256:9e5d1aba80d9e5af83aa303810fb0f403caaa7a588c688ce175d8b8c62afd991" 2023-09-06T11:57:08.4695263Z }, 2023-09-06T11:57:08.4695614Z { 2023-09-06T11:57:08.4696050Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4696400Z "size": 2530498212, 2023-09-06T11:57:08.4697001Z "digest": "sha256:04430174d25302e5ca6708e5eacd748e2ab0953297d3fdbc833e4f1e6bd646b4" 2023-09-06T11:57:08.4697330Z }, 2023-09-06T11:57:08.4697511Z { 2023-09-06T11:57:08.4697844Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4698188Z "size": 86037, 2023-09-06T11:57:08.4698554Z "digest": "sha256:845c662a61cb45227f2458cc4009153619547484896345f02966f43c2364f22d" 2023-09-06T11:57:08.4698855Z }, 2023-09-06T11:57:08.4699203Z + exit 0 2023-09-06T11:57:08.4699507Z { 2023-09-06T11:57:08.4700026Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4700524Z "size": 1801, 2023-09-06T11:57:08.4700903Z "digest": "sha256:8d60f017b61c0c815862cbb0c9ea30b2339b93ce73ac82a1adfc4fe36ade415b" 2023-09-06T11:57:08.4701222Z }, 2023-09-06T11:57:08.4701417Z { 2023-09-06T11:57:08.4701752Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4702083Z "size": 285556557, 2023-09-06T11:57:08.4702467Z "digest": "sha256:2c2cb8fdcb6b4bda01e1646b940149c0a12946ce0c11f7ba11dc2c094606259c" 2023-09-06T11:57:08.4702818Z }, 2023-09-06T11:57:08.4703013Z { 2023-09-06T11:57:08.4703330Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4703675Z "size": 544, 2023-09-06T11:57:08.4704168Z "digest": "sha256:b4849290c5549d46acc73e89947994fd65789c9510f1603b3e7bada192d06d04" 2023-09-06T11:57:08.4704693Z }, 2023-09-06T11:57:08.4704992Z { 2023-09-06T11:57:08.4705518Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4706025Z "size": 1278, 2023-09-06T11:57:08.4706615Z "digest": "sha256:9c1eadd32ad20cdbe96b735f3b8c46c90b234ed1d4951f7dac6221cd2434526e" 2023-09-06T11:57:08.4707218Z }, 2023-09-06T11:57:08.4707527Z { 2023-09-06T11:57:08.4708310Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4708709Z "size": 483, 2023-09-06T11:57:08.4709276Z "digest": "sha256:daf57644add8caf8aab13964eb4a80d50b51046bb5e3522339c652e2eb8472eb" 2023-09-06T11:57:08.4709821Z }, 2023-09-06T11:57:08.4710021Z { 2023-09-06T11:57:08.4710361Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4710697Z "size": 91702064, 2023-09-06T11:57:08.4711055Z "digest": "sha256:7c8d8836abad7488de22c76d160d79a4319c93b477c6f4283999148ba6741221" 2023-09-06T11:57:08.4711386Z }, 2023-09-06T11:57:08.4711583Z { 2023-09-06T11:57:08.4711902Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4712243Z "size": 2754, 2023-09-06T11:57:08.4712600Z "digest": "sha256:580e0fea9066d77e63dc4183414f89cb4326165a6fcea764c145fa6e7c223b62" 2023-09-06T11:57:08.4713171Z }, 2023-09-06T11:57:08.4713355Z { 2023-09-06T11:57:08.4713691Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4714035Z "size": 2020, 2023-09-06T11:57:08.4714415Z "digest": "sha256:95a486a5bceb5bfc11eb732f2866cd45a8df742edbbb51b48e5672e790013df1" 2023-09-06T11:57:08.4714746Z }, 2023-09-06T11:57:08.4714944Z { 2023-09-06T11:57:08.4715283Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4715630Z "size": 699, 2023-09-06T11:57:08.4715963Z "digest": "sha256:03870a46e125521f9df3ee2930c8b4984dd497a7e5f074d4e33f1e65e4b1b3ec" 2023-09-06T11:57:08.4716283Z }, 2023-09-06T11:57:08.4716480Z { 2023-09-06T11:57:08.4716796Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4717141Z "size": 2364499408, 2023-09-06T11:57:08.4717511Z "digest": "sha256:2f4342e3f8f3caf07a77df64df3bfa63f00c6e9061395423b057cbf8cafcf2ad" 2023-09-06T11:57:08.4717853Z }, 2023-09-06T11:57:08.4718033Z { 2023-09-06T11:57:08.4718426Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4718766Z "size": 380, 2023-09-06T11:57:08.4719122Z "digest": "sha256:aea5db51af841c7a632ff79f3023c943669404f76c54986d8b01b381715ff044" 2023-09-06T11:57:08.4719562Z }, 2023-09-06T11:57:08.4719767Z { 2023-09-06T11:57:08.4720103Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4720444Z "size": 6330, 2023-09-06T11:57:08.4720798Z "digest": "sha256:fe13553c51588e18d622df69cb3cfcf2bab88e9767ddbcb17b963c9e1ade99d4" 2023-09-06T11:57:08.4721164Z }, 2023-09-06T11:57:08.4721363Z { 2023-09-06T11:57:08.4721692Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4722013Z "size": 803, 2023-09-06T11:57:08.4722376Z "digest": "sha256:c16cf9a5795aee759413d04ebb567fd42656d58c153b28ce1d3b2768efaddb11" 2023-09-06T11:57:08.4722706Z }, 2023-09-06T11:57:08.4723011Z { 2023-09-06T11:57:08.4723341Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4723680Z "size": 106, 2023-09-06T11:57:08.4724038Z "digest": "sha256:efb74f88ccdd1a3811e30bf53f84f148beb499f71443c64129bac9e26d3c1425" 2023-09-06T11:57:08.4724379Z }, 2023-09-06T11:57:08.4724581Z { 2023-09-06T11:57:08.4724912Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4725234Z "size": 888, 2023-09-06T11:57:08.4725591Z "digest": "sha256:e5fa01783c35e4092951b1375b41c6f1acc3d0666f0af3f10aebbe9f3ffa1050" 2023-09-06T11:57:08.4725921Z }, 2023-09-06T11:57:08.4726113Z { 2023-09-06T11:57:08.4726431Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4726772Z "size": 121477409, 2023-09-06T11:57:08.4727129Z "digest": "sha256:d073ad6760c426d74881a0138cd10f5b7c0f78f203ad05888c9053ec981728a1" 2023-09-06T11:57:08.4727448Z }, 2023-09-06T11:57:08.4727627Z { 2023-09-06T11:57:08.4727969Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4728344Z "size": 109, 2023-09-06T11:57:08.4728700Z "digest": "sha256:3bc7d371ee77ce3b96061c9d93ff835987dfff30877594e91340b22a514fa63e" 2023-09-06T11:57:08.4729014Z }, 2023-09-06T11:57:08.4729207Z { 2023-09-06T11:57:08.4729545Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4729885Z "size": 558, 2023-09-06T11:57:08.4730230Z "digest": "sha256:ba2991171fbc7cfdb6d53cf43b59b59782602cf64933a506f1e899c47c959243" 2023-09-06T11:57:08.4730564Z }, 2023-09-06T11:57:08.4730759Z { 2023-09-06T11:57:08.4731091Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4731417Z "size": 1176221, 2023-09-06T11:57:08.4731792Z "digest": "sha256:9df7805d993b3b4f9f62144fcdf04f2bede10fbc5d23adf9fde77c3770385423" 2023-09-06T11:57:08.4732135Z }, 2023-09-06T11:57:08.4732315Z { 2023-09-06T11:57:08.4732651Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4733124Z "size": 103, 2023-09-06T11:57:08.4733477Z "digest": "sha256:d980247356b07ade79cd4e6abc3b7197a1b20f1b52e5728f4d89d85b28e9bb27" 2023-09-06T11:57:08.4733790Z }, 2023-09-06T11:57:08.4733986Z { 2023-09-06T11:57:08.4734326Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4734662Z "size": 1489, 2023-09-06T11:57:08.4735008Z "digest": "sha256:7034cfc3cf6fe6cb245155448cea0d010dad420c95f55ba46b51e83216730032" 2023-09-06T11:57:08.4735347Z }, 2023-09-06T11:57:08.4735541Z { 2023-09-06T11:57:08.4735870Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4736200Z "size": 436228183, 2023-09-06T11:57:08.4736561Z "digest": "sha256:7ba56cc73c7b18414472f17201a04eb059e1ac5c999f2dd6cfd9a580003ef4ed" 2023-09-06T11:57:08.4736886Z }, 2023-09-06T11:57:08.4737081Z { 2023-09-06T11:57:08.4737399Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4737744Z "size": 160, 2023-09-06T11:57:08.4738094Z "digest": "sha256:632e958b9436df6658af3e9a7dca2695b23069846dfe7432d8ec8bbec9b13e2f" 2023-09-06T11:57:08.4738456Z }, 2023-09-06T11:57:08.4738639Z { 2023-09-06T11:57:08.4738971Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4739409Z "size": 452, 2023-09-06T11:57:08.4739782Z "digest": "sha256:4bb4afaa2a5fdf900a6f37e8b08ef173d3440650cfb001812186e535a23a0ad9" 2023-09-06T11:57:08.4740107Z }, 2023-09-06T11:57:08.4740302Z { 2023-09-06T11:57:08.4740682Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4741026Z "size": 61499946, 2023-09-06T11:57:08.4741375Z "digest": "sha256:f9dcab60d1047e9f7253cb62584a5f34ce797217057a8e5d158bd8e8e223ad07" 2023-09-06T11:57:08.4741706Z }, 2023-09-06T11:57:08.4741899Z { 2023-09-06T11:57:08.4742234Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4742558Z "size": 102, 2023-09-06T11:57:08.4742914Z "digest": "sha256:ef954792f06f8448d814505b8a13fab49e996ec966bdc05b726f03c2937744f7" 2023-09-06T11:57:08.4743230Z }, 2023-09-06T11:57:08.4743425Z { 2023-09-06T11:57:08.4743741Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4744075Z "size": 402, 2023-09-06T11:57:08.4744441Z "digest": "sha256:d2bb74a53419c00c8dcc4a8c164d5ad2047a4a1690d2c1c7b396e0e1ee6c4bc6" 2023-09-06T11:57:08.4744782Z }, 2023-09-06T11:57:08.4744964Z { 2023-09-06T11:57:08.4745294Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4745635Z "size": 20262060, 2023-09-06T11:57:08.4745979Z "digest": "sha256:777f0c7185cc93ed4ca49bb8c0988065afb31f8fa23173b9a9983976e11d5315" 2023-09-06T11:57:08.4746308Z }, 2023-09-06T11:57:08.4746501Z { 2023-09-06T11:57:08.4746832Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4747160Z "size": 564, 2023-09-06T11:57:08.4747529Z "digest": "sha256:e3a06d78c00b73e55e687aff088f7bd83aa54c46da1c11dbb1caf2c19384c6a4" 2023-09-06T11:57:08.4747871Z }, 2023-09-06T11:57:08.4748064Z { 2023-09-06T11:57:08.4748422Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4748762Z "size": 43166425, 2023-09-06T11:57:08.4749349Z "digest": "sha256:a5f28815538d0a4ccff434c455ea1bbdd44e1bd3d3fb4301dbde646fe610e900" 2023-09-06T11:57:08.4749768Z }, 2023-09-06T11:57:08.4749950Z { 2023-09-06T11:57:08.4750282Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4750622Z "size": 106, 2023-09-06T11:57:08.4750995Z "digest": "sha256:3c227ecee3dac7c937f3634bf3fe544040a219fabeb46aa17165c84c48f6361b" 2023-09-06T11:57:08.4751323Z }, 2023-09-06T11:57:08.4751518Z { 2023-09-06T11:57:08.4751849Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4752186Z "size": 409, 2023-09-06T11:57:08.4752514Z "digest": "sha256:4c1167c82e960855b376efeeb70779905c2178b26f9bd299ed25535c85a049a9" 2023-09-06T11:57:08.4752991Z }, 2023-09-06T11:57:08.4753185Z { 2023-09-06T11:57:08.4753523Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4753848Z "size": 699, 2023-09-06T11:57:08.4754198Z "digest": "sha256:03870a46e125521f9df3ee2930c8b4984dd497a7e5f074d4e33f1e65e4b1b3ec" 2023-09-06T11:57:08.4754516Z }, 2023-09-06T11:57:08.4754718Z { 2023-09-06T11:57:08.4755034Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4755380Z "size": 116, 2023-09-06T11:57:08.4755728Z "digest": "sha256:12dc7c97f6f36f1c05095df848775ee780386b42387f8aba393b92b2d3bc400e" 2023-09-06T11:57:08.4756052Z }, 2023-09-06T11:57:08.4756235Z { 2023-09-06T11:57:08.4756571Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4756910Z "size": 137, 2023-09-06T11:57:08.4757242Z "digest": "sha256:5679b6795f95c41f08b76efcd70063a973f2361e4f7690168b078dffa21dd819" 2023-09-06T11:57:08.4757568Z }, 2023-09-06T11:57:08.4757761Z { 2023-09-06T11:57:08.4758092Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4758468Z "size": 157396453, 2023-09-06T11:57:08.4758810Z "digest": "sha256:466e22347d9c8540039d3b67c566ba496b10dc0292cf23140bc906208aa7d23e" 2023-09-06T11:57:08.4759294Z }, 2023-09-06T11:57:08.4759494Z { 2023-09-06T11:57:08.4759866Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4760249Z "size": 190, 2023-09-06T11:57:08.4760595Z "digest": "sha256:161ecab39a9315f990a21367e13e37ca4fde085e826c501730b5539840d4859d" 2023-09-06T11:57:08.4760945Z }, 2023-09-06T11:57:08.4761126Z { 2023-09-06T11:57:08.4761463Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4761806Z "size": 1143, 2023-09-06T11:57:08.4762149Z "digest": "sha256:bf6703e5706053f56cb1910240b60435c9a7266985a56bdf1c16ae0878e1dfd7" 2023-09-06T11:57:08.4762446Z }, 2023-09-06T11:57:08.4762652Z { 2023-09-06T11:57:08.4762985Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4763367Z "size": 699, 2023-09-06T11:57:08.4763698Z "digest": "sha256:03870a46e125521f9df3ee2930c8b4984dd497a7e5f074d4e33f1e65e4b1b3ec" 2023-09-06T11:57:08.4764017Z }, 2023-09-06T11:57:08.4764210Z { 2023-09-06T11:57:08.4764549Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4764875Z "size": 136, 2023-09-06T11:57:08.4765220Z "digest": "sha256:d57103f8c6d07657d2a7fb7f13510388fd7963d0a03d204d506e2b7e0d4dd0a6" 2023-09-06T11:57:08.4765539Z }, 2023-09-06T11:57:08.4765729Z { 2023-09-06T11:57:08.4766046Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4766381Z "size": 120, 2023-09-06T11:57:08.4766752Z "digest": "sha256:035aebedde1fe176b4f3348588e1f3acfbd167a813bc3ed08f72b06265255f1e" 2023-09-06T11:57:08.4767097Z }, 2023-09-06T11:57:08.4767276Z { 2023-09-06T11:57:08.4767612Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4767953Z "size": 986074578, 2023-09-06T11:57:08.4768353Z "digest": "sha256:5ea8491b6bde0bd24b92c932a6016638552ccd1d384cc2592d295742180d8b2f" 2023-09-06T11:57:08.4768662Z }, 2023-09-06T11:57:08.4768857Z { 2023-09-06T11:57:08.4769196Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4769537Z "size": 172, 2023-09-06T11:57:08.4769888Z "digest": "sha256:212b75bc4a9b47ebc7ed44324bf2ebf9967cd32271420ab73bb4f23d5773d3ed" 2023-09-06T11:57:08.4770220Z }, 2023-09-06T11:57:08.4770415Z { 2023-09-06T11:57:08.4770731Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4771066Z "size": 1840, 2023-09-06T11:57:08.4771414Z "digest": "sha256:446a4d79ad326619fdfd58a0108351118602c607ac01a8f39663f22bcd03ab4f" 2023-09-06T11:57:08.4771731Z }, 2023-09-06T11:57:08.4771909Z { 2023-09-06T11:57:08.4772240Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4772697Z "size": 7529786, 2023-09-06T11:57:08.4773056Z "digest": "sha256:52e739794ad976e23ca762e0fb3a814113ae74ef98edd248bf8e12c06d36eb25" 2023-09-06T11:57:08.4773366Z }, 2023-09-06T11:57:08.4773565Z { 2023-09-06T11:57:08.4773904Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4774242Z "size": 164, 2023-09-06T11:57:08.4774578Z "digest": "sha256:e4877af63f8ec2721037f25eb3770ecd2bc342610482d75acec41faa40f522e7" 2023-09-06T11:57:08.4774901Z }, 2023-09-06T11:57:08.4775094Z { 2023-09-06T11:57:08.4775424Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4775749Z "size": 7940, 2023-09-06T11:57:08.4776107Z "digest": "sha256:fe81fd286662acc75f945ed606480bcf48311be40bd6719bb86de4720eec4cbd" 2023-09-06T11:57:08.4776434Z }, 2023-09-06T11:57:08.4776626Z { 2023-09-06T11:57:08.4776940Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4777279Z "size": 8075, 2023-09-06T11:57:08.4777647Z "digest": "sha256:ad35ee94afea921758db2b8ce9f9b09d1cd668819637151e9a8815ea9db78cb2" 2023-09-06T11:57:08.4777987Z }, 2023-09-06T11:57:08.4778168Z { 2023-09-06T11:57:08.4778533Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4778991Z "size": 302, 2023-09-06T11:57:08.4779338Z "digest": "sha256:101e36e634cc62403f74ada770092d44c94772c1405d3d441b80cabc7a837861" 2023-09-06T11:57:08.4779643Z }, 2023-09-06T11:57:08.4779837Z { 2023-09-06T11:57:08.4780173Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4780517Z "size": 7614587, 2023-09-06T11:57:08.4780863Z "digest": "sha256:48961d3f385f8f7c9cc560f9750d7fee6a5a476b19376b206dafff0cbbe401da" 2023-09-06T11:57:08.4781189Z }, 2023-09-06T11:57:08.4781384Z { 2023-09-06T11:57:08.4781714Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4782038Z "size": 108, 2023-09-06T11:57:08.4782400Z "digest": "sha256:fe27d0a540bebc0e3687274c3c7646d3b5bf3325e6bb94647e9c544663ce0e1b" 2023-09-06T11:57:08.4782748Z }, 2023-09-06T11:57:08.4782928Z { 2023-09-06T11:57:08.4783258Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4783599Z "size": 54145482, 2023-09-06T11:57:08.4783967Z "digest": "sha256:3f780253fec81b68c275ec1d59ee703f127c6c2912b03b5da26afb8ade63a2c1" 2023-09-06T11:57:08.4784285Z }, 2023-09-06T11:57:08.4784478Z { 2023-09-06T11:57:08.4784810Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4785147Z "size": 513, 2023-09-06T11:57:08.4785484Z "digest": "sha256:f01e00261e76bc8555612715fe1db67ffcacf94e599710e4d941f75fbbadb61c" 2023-09-06T11:57:08.4785804Z }, 2023-09-06T11:57:08.4785993Z { 2023-09-06T11:57:08.4786322Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4786649Z "size": 2993737168, 2023-09-06T11:57:08.4787000Z "digest": "sha256:422b9d97840f940a557d7917b4196dd85e0f4bad206d0a3458c5b445ced05adb" 2023-09-06T11:57:08.4787320Z }, 2023-09-06T11:57:08.4787517Z { 2023-09-06T11:57:08.4787833Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2023-09-06T11:57:08.4788170Z "size": 106, 2023-09-06T11:57:08.4788555Z "digest": "sha256:9f7c9a5582ef648839d1029c5522d2be2a31122684541181eb904bb77055f376" 2023-09-06T11:57:08.4788870Z } 2023-09-06T11:57:08.4789047Z ] 2023-09-06T11:57:08.4789525Z } 2023-09-06T11:57:08.4910902Z ##[group]Run pytorch/test-infra/.github/actions/pull-docker-image@main 2023-09-06T11:57:08.4911244Z with: 2023-09-06T11:57:08.4911800Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:08.4912336Z env: 2023-09-06T11:57:08.4912564Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:08.4912797Z ##[endgroup] 2023-09-06T11:57:08.4927439Z ##[group]Run retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-09-06T11:57:08.4928028Z retry () { "$@" || (sleep 1 && "$@") || (sleep 2 && "$@") } 2023-09-06T11:57:08.4928504Z # ignore output since only exit code is used for conditional 2023-09-06T11:57:08.4928895Z # only pull docker image if it's not available locally 2023-09-06T11:57:08.4929315Z if ! docker inspect --type=image "${DOCKER_IMAGE}" >/dev/null 2>/dev/null; then 2023-09-06T11:57:08.4929759Z  retry docker pull "${DOCKER_IMAGE}" 2023-09-06T11:57:08.4930017Z fi 2023-09-06T11:57:08.4948166Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T11:57:08.4948521Z env: 2023-09-06T11:57:08.4948755Z GIT_DEFAULT_BRANCH: main 2023-09-06T11:57:08.4949798Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T11:57:08.4950336Z ##[endgroup] 2023-09-06T11:57:09.0957015Z 9dd361d1c04129f8eaa9d6b43335917800dd6d24: Pulling from pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks 2023-09-06T11:57:09.0958124Z 99803d4b97f3: Pulling fs layer 2023-09-06T11:57:09.0958617Z 0b5414b58ed1: Pulling fs layer 2023-09-06T11:57:09.0959170Z 434ea07ac290: Pulling fs layer 2023-09-06T11:57:09.0959646Z 7bbb6f0efdde: Pulling fs layer 2023-09-06T11:57:09.0959955Z 93036f51a832: Pulling fs layer 2023-09-06T11:57:09.0960238Z d7fb9be2f79b: Pulling fs layer 2023-09-06T11:57:09.0960515Z b7deb82cec78: Pulling fs layer 2023-09-06T11:57:09.0960793Z ffe25f6234c7: Pulling fs layer 2023-09-06T11:57:09.0961046Z 9e5d1aba80d9: Pulling fs layer 2023-09-06T11:57:09.0961456Z 04430174d253: Pulling fs layer 2023-09-06T11:57:09.0961874Z 93036f51a832: Waiting 2023-09-06T11:57:09.0962284Z 845c662a61cb: Pulling fs layer 2023-09-06T11:57:09.0962707Z 8d60f017b61c: Pulling fs layer 2023-09-06T11:57:09.0963157Z 2c2cb8fdcb6b: Pulling fs layer 2023-09-06T11:57:09.0963574Z b4849290c554: Pulling fs layer 2023-09-06T11:57:09.0964039Z 9c1eadd32ad2: Pulling fs layer 2023-09-06T11:57:09.0964431Z d7fb9be2f79b: Waiting 2023-09-06T11:57:09.0964854Z daf57644add8: Pulling fs layer 2023-09-06T11:57:09.0965235Z b7deb82cec78: Waiting 2023-09-06T11:57:09.0965623Z 7c8d8836abad: Pulling fs layer 2023-09-06T11:57:09.0965989Z 9e5d1aba80d9: Waiting 2023-09-06T11:57:09.0966362Z ffe25f6234c7: Waiting 2023-09-06T11:57:09.0966737Z 580e0fea9066: Pulling fs layer 2023-09-06T11:57:09.0967116Z 845c662a61cb: Waiting 2023-09-06T11:57:09.0967472Z 95a486a5bceb: Pulling fs layer 2023-09-06T11:57:09.0967943Z 2c2cb8fdcb6b: Waiting 2023-09-06T11:57:09.0968343Z daf57644add8: Waiting 2023-09-06T11:57:09.0968700Z 7bbb6f0efdde: Waiting 2023-09-06T11:57:09.0969063Z b4849290c554: Waiting 2023-09-06T11:57:09.0969436Z 7c8d8836abad: Waiting 2023-09-06T11:57:09.0969793Z 580e0fea9066: Waiting 2023-09-06T11:57:09.0970183Z 03870a46e125: Pulling fs layer 2023-09-06T11:57:09.0970688Z 2f4342e3f8f3: Pulling fs layer 2023-09-06T11:57:09.0971158Z 95a486a5bceb: Waiting 2023-09-06T11:57:09.0971619Z aea5db51af84: Pulling fs layer 2023-09-06T11:57:09.0972094Z fe13553c5158: Pulling fs layer 2023-09-06T11:57:09.0972551Z 2f4342e3f8f3: Waiting 2023-09-06T11:57:09.0972978Z c16cf9a5795a: Pulling fs layer 2023-09-06T11:57:09.0973425Z 04430174d253: Waiting 2023-09-06T11:57:09.0973829Z 9c1eadd32ad2: Waiting 2023-09-06T11:57:09.0974298Z efb74f88ccdd: Pulling fs layer 2023-09-06T11:57:09.0974758Z aea5db51af84: Waiting 2023-09-06T11:57:09.0975683Z fe13553c5158: Waiting 2023-09-06T11:57:09.0976100Z e5fa01783c35: Pulling fs layer 2023-09-06T11:57:09.0976568Z d073ad6760c4: Pulling fs layer 2023-09-06T11:57:09.0976916Z 03870a46e125: Waiting 2023-09-06T11:57:09.0977300Z 3bc7d371ee77: Pulling fs layer 2023-09-06T11:57:09.0977689Z ba2991171fbc: Pulling fs layer 2023-09-06T11:57:09.0978235Z 9df7805d993b: Pulling fs layer 2023-09-06T11:57:09.0978635Z d980247356b0: Pulling fs layer 2023-09-06T11:57:09.0979028Z d073ad6760c4: Waiting 2023-09-06T11:57:09.0979398Z 7034cfc3cf6f: Pulling fs layer 2023-09-06T11:57:09.0980080Z 7ba56cc73c7b: Pulling fs layer 2023-09-06T11:57:09.0980461Z d980247356b0: Waiting 2023-09-06T11:57:09.0980798Z 9df7805d993b: Waiting 2023-09-06T11:57:09.0981179Z 632e958b9436: Pulling fs layer 2023-09-06T11:57:09.0982255Z ba2991171fbc: Waiting 2023-09-06T11:57:09.0985228Z 4bb4afaa2a5f: Pulling fs layer 2023-09-06T11:57:09.0985781Z f9dcab60d104: Pulling fs layer 2023-09-06T11:57:09.0986247Z 7ba56cc73c7b: Waiting 2023-09-06T11:57:09.0986699Z f9dcab60d104: Waiting 2023-09-06T11:57:09.0987120Z 632e958b9436: Waiting 2023-09-06T11:57:09.0987507Z 4bb4afaa2a5f: Waiting 2023-09-06T11:57:09.0987935Z ef954792f06f: Pulling fs layer 2023-09-06T11:57:09.0988519Z d2bb74a53419: Pulling fs layer 2023-09-06T11:57:09.0988809Z 777f0c7185cc: Pulling fs layer 2023-09-06T11:57:09.0989306Z d2bb74a53419: Waiting 2023-09-06T11:57:09.0989680Z e3a06d78c00b: Pulling fs layer 2023-09-06T11:57:09.0990080Z 777f0c7185cc: Waiting 2023-09-06T11:57:09.0990512Z a5f28815538d: Pulling fs layer 2023-09-06T11:57:09.0991037Z 3c227ecee3da: Pulling fs layer 2023-09-06T11:57:09.0991512Z 4c1167c82e96: Pulling fs layer 2023-09-06T11:57:09.0991945Z a5f28815538d: Waiting 2023-09-06T11:57:09.0992373Z e3a06d78c00b: Waiting 2023-09-06T11:57:09.0992845Z 12dc7c97f6f3: Pulling fs layer 2023-09-06T11:57:09.0993311Z 3c227ecee3da: Waiting 2023-09-06T11:57:09.0993579Z 5679b6795f95: Pulling fs layer 2023-09-06T11:57:09.0993814Z 12dc7c97f6f3: Waiting 2023-09-06T11:57:09.0994060Z 466e22347d9c: Pulling fs layer 2023-09-06T11:57:09.0994339Z 161ecab39a93: Pulling fs layer 2023-09-06T11:57:09.0994602Z bf6703e57060: Pulling fs layer 2023-09-06T11:57:09.0994851Z d57103f8c6d0: Pulling fs layer 2023-09-06T11:57:09.0995094Z 5679b6795f95: Waiting 2023-09-06T11:57:09.0995343Z 035aebedde1f: Pulling fs layer 2023-09-06T11:57:09.0995623Z 161ecab39a93: Waiting 2023-09-06T11:57:09.0995858Z 5ea8491b6bde: Pulling fs layer 2023-09-06T11:57:09.0996104Z bf6703e57060: Waiting 2023-09-06T11:57:09.0996330Z 466e22347d9c: Waiting 2023-09-06T11:57:09.0996580Z 212b75bc4a9b: Pulling fs layer 2023-09-06T11:57:09.0996813Z 5ea8491b6bde: Waiting 2023-09-06T11:57:09.0997062Z 446a4d79ad32: Pulling fs layer 2023-09-06T11:57:09.0997308Z 212b75bc4a9b: Waiting 2023-09-06T11:57:09.0997743Z 52e739794ad9: Pulling fs layer 2023-09-06T11:57:09.0998134Z 446a4d79ad32: Waiting 2023-09-06T11:57:09.0998562Z e4877af63f8e: Pulling fs layer 2023-09-06T11:57:09.0998810Z 52e739794ad9: Waiting 2023-09-06T11:57:09.0999027Z e4877af63f8e: Waiting 2023-09-06T11:57:09.0999287Z fe81fd286662: Pulling fs layer 2023-09-06T11:57:09.0999556Z ad35ee94afea: Pulling fs layer 2023-09-06T11:57:09.0999828Z 101e36e634cc: Pulling fs layer 2023-09-06T11:57:09.1000074Z 48961d3f385f: Pulling fs layer 2023-09-06T11:57:09.1000323Z ad35ee94afea: Waiting 2023-09-06T11:57:09.1000579Z fe27d0a540be: Pulling fs layer 2023-09-06T11:57:09.1000844Z 3f780253fec8: Pulling fs layer 2023-09-06T11:57:09.1001089Z f01e00261e76: Pulling fs layer 2023-09-06T11:57:09.1001331Z 3f780253fec8: Waiting 2023-09-06T11:57:09.1001562Z 48961d3f385f: Waiting 2023-09-06T11:57:09.1001798Z fe27d0a540be: Waiting 2023-09-06T11:57:09.1002031Z 422b9d97840f: Pulling fs layer 2023-09-06T11:57:09.1002302Z 9f7c9a5582ef: Pulling fs layer 2023-09-06T11:57:09.1002547Z 422b9d97840f: Waiting 2023-09-06T11:57:09.1002779Z f01e00261e76: Waiting 2023-09-06T11:57:09.7074232Z 0b5414b58ed1: Verifying Checksum 2023-09-06T11:57:09.7074844Z 0b5414b58ed1: Download complete 2023-09-06T11:57:09.9961518Z 99803d4b97f3: Verifying Checksum 2023-09-06T11:57:09.9962470Z 99803d4b97f3: Download complete 2023-09-06T11:57:10.0166552Z 7bbb6f0efdde: Verifying Checksum 2023-09-06T11:57:10.0167298Z 7bbb6f0efdde: Download complete 2023-09-06T11:57:10.2865299Z 93036f51a832: Download complete 2023-09-06T11:57:10.5201738Z 434ea07ac290: Verifying Checksum 2023-09-06T11:57:10.5202793Z 434ea07ac290: Download complete 2023-09-06T11:57:10.6531767Z b7deb82cec78: Verifying Checksum 2023-09-06T11:57:10.6532412Z b7deb82cec78: Download complete 2023-09-06T11:57:10.6981767Z 99803d4b97f3: Pull complete 2023-09-06T11:57:10.8120196Z ffe25f6234c7: Download complete 2023-09-06T11:57:10.9120399Z 0b5414b58ed1: Pull complete 2023-09-06T11:57:10.9592067Z 9e5d1aba80d9: Download complete 2023-09-06T11:57:11.3281781Z 845c662a61cb: Verifying Checksum 2023-09-06T11:57:11.3282132Z 845c662a61cb: Download complete 2023-09-06T11:57:11.6498603Z 8d60f017b61c: Verifying Checksum 2023-09-06T11:57:11.6498979Z 8d60f017b61c: Download complete 2023-09-06T11:57:11.9433380Z 434ea07ac290: Pull complete 2023-09-06T11:57:12.0012351Z 7bbb6f0efdde: Pull complete 2023-09-06T11:57:12.0594475Z 93036f51a832: Pull complete 2023-09-06T11:57:16.6257500Z 2c2cb8fdcb6b: Verifying Checksum 2023-09-06T11:57:16.6257958Z 2c2cb8fdcb6b: Download complete 2023-09-06T11:57:16.9817748Z b4849290c554: Verifying Checksum 2023-09-06T11:57:16.9818157Z b4849290c554: Download complete 2023-09-06T11:57:17.3545851Z 9c1eadd32ad2: Verifying Checksum 2023-09-06T11:57:17.3546195Z 9c1eadd32ad2: Download complete 2023-09-06T11:57:17.6760992Z daf57644add8: Download complete 2023-09-06T11:57:19.5475216Z 7c8d8836abad: Download complete 2023-09-06T11:57:19.8543759Z 580e0fea9066: Verifying Checksum 2023-09-06T11:57:19.8544214Z 580e0fea9066: Download complete 2023-09-06T11:57:20.1414252Z 95a486a5bceb: Verifying Checksum 2023-09-06T11:57:20.1414598Z 95a486a5bceb: Download complete 2023-09-06T11:57:20.4719034Z 03870a46e125: Verifying Checksum 2023-09-06T11:57:20.4719384Z 03870a46e125: Download complete 2023-09-06T11:57:48.2625578Z 04430174d253: Verifying Checksum 2023-09-06T11:57:48.2626143Z 04430174d253: Download complete 2023-09-06T11:57:48.6033451Z aea5db51af84: Verifying Checksum 2023-09-06T11:57:48.6033825Z aea5db51af84: Download complete 2023-09-06T11:57:48.8918002Z fe13553c5158: Verifying Checksum 2023-09-06T11:57:49.2061976Z c16cf9a5795a: Download complete 2023-09-06T11:57:49.5119518Z efb74f88ccdd: Verifying Checksum 2023-09-06T11:57:49.5120264Z efb74f88ccdd: Download complete 2023-09-06T11:57:51.9653722Z d073ad6760c4: Verifying Checksum 2023-09-06T11:57:51.9654076Z d073ad6760c4: Download complete 2023-09-06T11:57:52.2746839Z 3bc7d371ee77: Download complete 2023-09-06T11:57:52.5903261Z ba2991171fbc: Verifying Checksum 2023-09-06T11:57:52.5903849Z ba2991171fbc: Download complete 2023-09-06T11:57:53.0894878Z 9df7805d993b: Verifying Checksum 2023-09-06T11:57:53.0895480Z 9df7805d993b: Download complete 2023-09-06T11:57:53.3826610Z d980247356b0: Verifying Checksum 2023-09-06T11:57:53.3827084Z d980247356b0: Download complete 2023-09-06T11:57:53.7149353Z 7034cfc3cf6f: Verifying Checksum 2023-09-06T11:57:53.7149786Z 7034cfc3cf6f: Download complete 2023-09-06T11:57:59.1304909Z 2f4342e3f8f3: Verifying Checksum 2023-09-06T11:57:59.1305268Z 2f4342e3f8f3: Download complete 2023-09-06T11:57:59.4411545Z 632e958b9436: Verifying Checksum 2023-09-06T11:57:59.4411904Z 632e958b9436: Download complete 2023-09-06T11:57:59.7443778Z 4bb4afaa2a5f: Verifying Checksum 2023-09-06T11:57:59.7444316Z 4bb4afaa2a5f: Download complete 2023-09-06T11:58:00.6791952Z 7ba56cc73c7b: Verifying Checksum 2023-09-06T11:58:00.6792362Z 7ba56cc73c7b: Download complete 2023-09-06T11:58:01.0214488Z ef954792f06f: Download complete 2023-09-06T11:58:01.0258095Z f9dcab60d104: Verifying Checksum 2023-09-06T11:58:01.0258462Z f9dcab60d104: Download complete 2023-09-06T11:58:01.3403864Z d2bb74a53419: Verifying Checksum 2023-09-06T11:58:01.3404435Z d2bb74a53419: Download complete 2023-09-06T11:58:01.6522670Z e3a06d78c00b: Verifying Checksum 2023-09-06T11:58:01.6523021Z e3a06d78c00b: Download complete 2023-09-06T11:58:01.7130945Z d7fb9be2f79b: Verifying Checksum 2023-09-06T11:58:01.7131349Z d7fb9be2f79b: Download complete 2023-09-06T11:58:01.8030723Z 777f0c7185cc: Verifying Checksum 2023-09-06T11:58:01.8031260Z 777f0c7185cc: Download complete 2023-09-06T11:58:02.0431826Z 3c227ecee3da: Verifying Checksum 2023-09-06T11:58:02.0432436Z 3c227ecee3da: Download complete 2023-09-06T11:58:02.1031463Z 4c1167c82e96: Verifying Checksum 2023-09-06T11:58:02.1032005Z 4c1167c82e96: Download complete 2023-09-06T11:58:02.3595238Z 12dc7c97f6f3: Download complete 2023-09-06T11:58:02.4180064Z 5679b6795f95: Verifying Checksum 2023-09-06T11:58:02.4180645Z 5679b6795f95: Download complete 2023-09-06T11:58:02.7328094Z 161ecab39a93: Verifying Checksum 2023-09-06T11:58:02.7328726Z 161ecab39a93: Download complete 2023-09-06T11:58:02.9022497Z a5f28815538d: Verifying Checksum 2023-09-06T11:58:02.9023071Z a5f28815538d: Download complete 2023-09-06T11:58:03.0656893Z bf6703e57060: Download complete 2023-09-06T11:58:03.2025317Z d57103f8c6d0: Verifying Checksum 2023-09-06T11:58:03.3857248Z 035aebedde1f: Verifying Checksum 2023-09-06T11:58:03.3857618Z 035aebedde1f: Download complete 2023-09-06T11:58:03.7067511Z 212b75bc4a9b: Download complete 2023-09-06T11:58:04.6304521Z 52e739794ad9: Verifying Checksum 2023-09-06T11:58:04.6305089Z 52e739794ad9: Download complete 2023-09-06T11:58:04.9461026Z e4877af63f8e: Verifying Checksum 2023-09-06T11:58:04.9461559Z e4877af63f8e: Download complete 2023-09-06T11:58:05.2683496Z fe81fd286662: Verifying Checksum 2023-09-06T11:58:05.2684009Z fe81fd286662: Download complete 2023-09-06T11:58:05.6078952Z ad35ee94afea: Download complete 2023-09-06T11:58:05.9136184Z 101e36e634cc: Verifying Checksum 2023-09-06T11:58:05.9136552Z 101e36e634cc: Download complete 2023-09-06T11:58:05.9490703Z 466e22347d9c: Verifying Checksum 2023-09-06T11:58:05.9491120Z 466e22347d9c: Download complete 2023-09-06T11:58:06.2979928Z fe27d0a540be: Download complete 2023-09-06T11:58:06.5214284Z 48961d3f385f: Verifying Checksum 2023-09-06T11:58:06.5214674Z 48961d3f385f: Download complete 2023-09-06T11:58:06.9144277Z f01e00261e76: Verifying Checksum 2023-09-06T11:58:06.9144847Z f01e00261e76: Download complete 2023-09-06T11:58:07.6627796Z 3f780253fec8: Verifying Checksum 2023-09-06T11:58:07.6628241Z 3f780253fec8: Download complete 2023-09-06T11:58:07.9920251Z 9f7c9a5582ef: Download complete 2023-09-06T11:58:16.7387818Z d7fb9be2f79b: Pull complete 2023-09-06T11:58:16.7955664Z b7deb82cec78: Pull complete 2023-09-06T11:58:16.8512989Z ffe25f6234c7: Pull complete 2023-09-06T11:58:16.9094324Z 9e5d1aba80d9: Pull complete 2023-09-06T11:58:19.7392820Z 5ea8491b6bde: Verifying Checksum 2023-09-06T11:58:19.7393351Z 5ea8491b6bde: Download complete 2023-09-06T11:58:49.1567510Z 04430174d253: Pull complete 2023-09-06T11:58:49.2131389Z 845c662a61cb: Pull complete 2023-09-06T11:58:49.2654664Z 8d60f017b61c: Pull complete 2023-09-06T11:58:54.1842372Z 422b9d97840f: Verifying Checksum 2023-09-06T11:58:54.1842899Z 422b9d97840f: Download complete 2023-09-06T11:58:56.1542639Z 2c2cb8fdcb6b: Pull complete 2023-09-06T11:58:56.3124603Z b4849290c554: Pull complete 2023-09-06T11:58:56.3625813Z 9c1eadd32ad2: Pull complete 2023-09-06T11:58:56.4122240Z daf57644add8: Pull complete 2023-09-06T11:58:58.3306344Z 7c8d8836abad: Pull complete 2023-09-06T11:58:58.3812794Z 580e0fea9066: Pull complete 2023-09-06T11:58:58.4299890Z 95a486a5bceb: Pull complete 2023-09-06T11:58:58.4814979Z 03870a46e125: Pull complete 2023-09-06T11:59:34.7513624Z 2f4342e3f8f3: Pull complete 2023-09-06T11:59:34.8048538Z aea5db51af84: Pull complete 2023-09-06T11:59:34.8584137Z fe13553c5158: Pull complete 2023-09-06T11:59:34.9084115Z c16cf9a5795a: Pull complete 2023-09-06T11:59:34.9595990Z efb74f88ccdd: Pull complete 2023-09-06T11:59:35.0098202Z e5fa01783c35: Pull complete 2023-09-06T11:59:38.5383546Z d073ad6760c4: Pull complete 2023-09-06T11:59:38.5886113Z 3bc7d371ee77: Pull complete 2023-09-06T11:59:38.6373349Z ba2991171fbc: Pull complete 2023-09-06T11:59:38.7249415Z 9df7805d993b: Pull complete 2023-09-06T11:59:38.7775719Z d980247356b0: Pull complete 2023-09-06T11:59:38.8290479Z 7034cfc3cf6f: Pull complete 2023-09-06T11:59:45.3706905Z 7ba56cc73c7b: Pull complete 2023-09-06T11:59:45.4243415Z 632e958b9436: Pull complete 2023-09-06T11:59:45.4755345Z 4bb4afaa2a5f: Pull complete 2023-09-06T11:59:46.9979890Z f9dcab60d104: Pull complete 2023-09-06T11:59:47.0477628Z ef954792f06f: Pull complete 2023-09-06T11:59:47.0987797Z d2bb74a53419: Pull complete 2023-09-06T11:59:47.4175760Z 777f0c7185cc: Pull complete 2023-09-06T11:59:47.4675120Z e3a06d78c00b: Pull complete 2023-09-06T11:59:48.7615405Z a5f28815538d: Pull complete 2023-09-06T11:59:49.0318205Z 3c227ecee3da: Pull complete 2023-09-06T11:59:49.1987450Z 4c1167c82e96: Pull complete 2023-09-06T11:59:49.6046942Z 12dc7c97f6f3: Pull complete 2023-09-06T11:59:49.7543421Z 5679b6795f95: Pull complete 2023-09-06T11:59:52.8233892Z 466e22347d9c: Pull complete 2023-09-06T11:59:52.8745852Z 161ecab39a93: Pull complete 2023-09-06T11:59:52.9230281Z bf6703e57060: Pull complete 2023-09-06T11:59:53.0257634Z d57103f8c6d0: Pull complete 2023-09-06T11:59:53.0762718Z 035aebedde1f: Pull complete 2023-09-06T12:00:12.7832140Z 5ea8491b6bde: Pull complete 2023-09-06T12:00:12.8334089Z 212b75bc4a9b: Pull complete 2023-09-06T12:00:12.8835135Z 446a4d79ad32: Pull complete 2023-09-06T12:00:13.0936096Z 52e739794ad9: Pull complete 2023-09-06T12:00:13.1426822Z e4877af63f8e: Pull complete 2023-09-06T12:00:13.1909999Z fe81fd286662: Pull complete 2023-09-06T12:00:13.2402347Z ad35ee94afea: Pull complete 2023-09-06T12:00:13.2889845Z 101e36e634cc: Pull complete 2023-09-06T12:00:13.7318968Z 48961d3f385f: Pull complete 2023-09-06T12:00:13.7825727Z fe27d0a540be: Pull complete 2023-09-06T12:00:15.5647935Z 3f780253fec8: Pull complete 2023-09-06T12:00:15.6167306Z f01e00261e76: Pull complete 2023-09-06T12:00:50.0948381Z 422b9d97840f: Pull complete 2023-09-06T12:00:50.1454570Z 9f7c9a5582ef: Pull complete 2023-09-06T12:00:50.1554517Z Digest: sha256:ea376d3cb14a9400b57a5e0e5bc49830f955ac984dd12fde7eab8e45479d06ee 2023-09-06T12:00:50.1588172Z Status: Downloaded newer image for 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T12:00:50.1612234Z 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T12:00:50.1779428Z ##[group]Run pytorch/test-infra/.github/actions/setup-nvidia@main 2023-09-06T12:00:50.1779764Z with: 2023-09-06T12:00:50.1779985Z driver-version: 535.54.03 2023-09-06T12:00:50.1780245Z env: 2023-09-06T12:00:50.1780472Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:00:50.1780722Z ##[endgroup] 2023-09-06T12:00:50.1815716Z ##[group]Run nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482 2023-09-06T12:00:50.1816017Z with: 2023-09-06T12:00:50.1816248Z timeout_minutes: 10 2023-09-06T12:00:50.1816498Z max_attempts: 3 2023-09-06T12:00:50.1827280Z command: # Is it disgusting to have a full shell script here in this github action? Sure # But is it the best way to make it so that this action relies on nothing else? Absolutely set -eou pipefail DISTRIBUTION=$(. /etc/os-release;echo $ID$VERSION_ID) DRIVER_FN="NVIDIA-Linux-x86_64-${DRIVER_VERSION}.run" YUM_REPO_URL="https://nvidia.github.io/nvidia-docker/${DISTRIBUTION}/nvidia-docker.repo" install_nvidia_docker2_amzn2() { ( set -x # Needed for yum-config-manager sudo yum install -y yum-utils sudo yum-config-manager --add-repo "${YUM_REPO_URL}" sudo yum install -y nvidia-docker2 sudo systemctl restart docker ) } install_nvidia_docker2_ubuntu20() { ( set -x sudo apt-get install -y nvidia-docker2 sudo systemctl restart docker ) } pre_install_nvidia_driver_amzn2() { ( # Purge any nvidia driver installed from RHEL repo sudo yum remove -y nvidia-driver-latest-dkms ) } install_nvidia_driver_common() { ( # Try to gather more information about the runner and its existing NVIDIA driver if any echo "Before installing NVIDIA driver" lspci lsmod modinfo nvidia || true HAS_NVIDIA_DRIVER=0 # Check if NVIDIA driver has already been installed if [ -x "$(command -v nvidia-smi)" ]; then set +e # The driver exists, check its version next. Also check only the first GPU if there are more than one of them # so that the same driver version is not print over multiple lines INSTALLED_DRIVER_VERSION=$(nvidia-smi --query-gpu=driver_version --format=csv,noheader --id=0) NVIDIA_SMI_STATUS=$? if [ "$NVIDIA_SMI_STATUS" -ne 0 ] && [ "$NVIDIA_SMI_STATUS" -ne 14 ]; then echo "Failed to get NVIDIA driver version ($INSTALLED_DRIVER_VERSION). Continuing" elif [ "$INSTALLED_DRIVER_VERSION" != "$DRIVER_VERSION" ]; then echo "NVIDIA driver ($INSTALLED_DRIVER_VERSION) has been installed, but we expect to have $DRIVER_VERSION instead. Continuing" else HAS_NVIDIA_DRIVER=1 echo "NVIDIA driver ($INSTALLED_DRIVER_VERSION) has already been installed. Skipping NVIDIA driver installation" fi set -e fi if [ "$HAS_NVIDIA_DRIVER" -eq 0 ]; then # CAUTION: this may need to be updated in future if [ "${DISTRIBUTION}" != ubuntu20.04 ]; then sudo yum groupinstall -y "Development Tools" # ensure our kernel install is the same as our underlying kernel, # groupinstall "Development Tools" has a habit of mismatching kernel headers sudo yum install -y "kernel-devel-uname-r == $(uname -r)" sudo modprobe backlight fi sudo curl -fsL -o /tmp/nvidia_driver "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN" set +e sudo /bin/bash /tmp/nvidia_driver -s --no-drm NVIDIA_INSTALLATION_STATUS=$? RESET_GPU=0 if [ "$NVIDIA_INSTALLATION_STATUS" -ne 0 ]; then sudo cat /var/log/nvidia-installer.log # Fail to install NVIDIA driver, try to reset the GPU RESET_GPU=1 elif [ -x "$(command -v nvidia-smi)" ]; then # Check again if nvidia-smi works even if the driver installation completes successfully INSTALLED_DRIVER_VERSION=$(nvidia-smi --query-gpu=driver_version --format=csv,noheader --id=0) NVIDIA_SMI_STATUS=$? if [ "$NVIDIA_SMI_STATUS" -ne 0 ] && [ "$NVIDIA_SMI_STATUS" -ne 14 ]; then RESET_GPU=1 fi fi if [ "$RESET_GPU" -eq 1 ]; then NVIDIA_DEVICES=$(lspci -D | grep -i NVIDIA | cut -d' ' -f1) # The GPU can get stuck in a failure state if somehow the test crashs the GPU microcode. When this # happens, we'll try to reset all NVIDIA devices https://github.com/pytorch/pytorch/issues/88388 for PCI_ID in $NVIDIA_DEVICES; do DEVICE_ENABLED=$(cat /sys/bus/pci/devices/$PCI_ID/enable) echo "Reseting $PCI_ID (enabled state: $DEVICE_ENABLED)" # This requires sudo permission of course echo "1" | sudo tee /sys/bus/pci/devices/$PCI_ID/reset sleep 1 done fi sudo rm -fv /tmp/nvidia_driver set -e fi ) } post_install_nvidia_driver_common() { ( sudo modprobe nvidia || true echo "After installing NVIDIA driver" lspci lsmod modinfo nvidia || true ( set +e nvidia-smi # NB: Annoyingly, nvidia-smi command returns successfully with return code 0 even in # the case where the driver has already crashed as it still can get the driver version # and some basic information like the bus ID. However, the rest of the information # would be missing (ERR!), for example: # # +-----------------------------------------------------------------------------+ # | NVIDIA-SMI 525.89.02 Driver Version: 525.89.02 CUDA Version: 12.0 | # |-------------------------------+----------------------+----------------------+ # | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | # | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | # | | | MIG M. | # |===============================+======================+======================| # | 0 ERR! Off | 00000000:00:1E.0 Off | ERR! | # |ERR! ERR! ERR! ERR! / ERR! | 4184MiB / 23028MiB | ERR! Default | # | | | ERR! | # +-------------------------------+----------------------+----------------------+ # # +-----------------------------------------------------------------------------+ # | Processes: | # | GPU GI CI PID Type Process name GPU Memory | # | ID ID Usage | # |=============================================================================| # +-----------------------------------------------------------------------------+ # # This should be reported as a failure instead as it will guarantee to fail when # Docker tries to run with --gpus all # # So, the correct check here is to query one of the missing piece of info like # GPU name, so that the command can fail accordingly nvidia-smi --query-gpu=gpu_name --format=csv,noheader --id=0 NVIDIA_SMI_STATUS=$? # Allowable exit statuses for nvidia-smi, see: https://github.com/NVIDIA/gpu-operator/issues/285 if [ "$NVIDIA_SMI_STATUS" -eq 0 ] || [ "$NVIDIA_SMI_STATUS" -eq 14 ]; then echo "INFO: Ignoring allowed status ${NVIDIA_SMI_STATUS}" else echo "ERROR: nvidia-smi exited with unresolved status ${NVIDIA_SMI_STATUS}" exit ${NVIDIA_SMI_STATUS} fi set -e ) ) } install_nvidia_driver_amzn2() { ( set -x pre_install_nvidia_driver_amzn2 install_nvidia_driver_common post_install_nvidia_driver_common ) } install_nvidia_driver_ubuntu20() { ( set -x install_nvidia_driver_common post_install_nvidia_driver_common ) } echo "== Installing nvidia driver ${DRIVER_FN} ==" case "${DISTRIBUTION}" in amzn*) install_nvidia_driver_amzn2 ;; ubuntu20.04) install_nvidia_driver_ubuntu20 ;; *) echo "ERROR: Unknown distribution ${DISTRIBUTION}" exit 1 ;; esac # Install container toolkit based on distribution echo "== Installing nvidia container toolkit for ${DISTRIBUTION} ==" case "${DISTRIBUTION}" in amzn*) install_nvidia_docker2_amzn2 ;; ubuntu20.04) install_nvidia_docker2_ubuntu20 ;; *) echo "ERROR: Unknown distribution ${DISTRIBUTION}" exit 1 ;; esac echo "GPU_FLAG=--gpus all -e NVIDIA_DRIVER_CAPABILITIES=all" >> "${GITHUB_ENV}" 2023-09-06T12:00:50.1838527Z retry_wait_seconds: 10 2023-09-06T12:00:50.1838805Z polling_interval_seconds: 1 2023-09-06T12:00:50.1839077Z warning_on_retry: true 2023-09-06T12:00:50.1839336Z continue_on_error: false 2023-09-06T12:00:50.1839558Z env: 2023-09-06T12:00:50.1839786Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:00:50.1840047Z DRIVER_VERSION: 535.54.03 2023-09-06T12:00:50.1840290Z ##[endgroup] 2023-09-06T12:00:50.2623364Z == Installing nvidia driver NVIDIA-Linux-x86_64-535.54.03.run == 2023-09-06T12:00:50.2624195Z + install_nvidia_driver_common 2023-09-06T12:00:50.2626596Z + echo 'Before installing NVIDIA driver' 2023-09-06T12:00:50.2630204Z Before installing NVIDIA driver 2023-09-06T12:00:50.2631286Z + lspci 2023-09-06T12:00:50.2741357Z 00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02) 2023-09-06T12:00:50.2742014Z 00:01.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 03) 2023-09-06T12:00:50.2743302Z 00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03) 2023-09-06T12:00:50.2744316Z 00:03.0 Non-VGA unclassified device: Red Hat, Inc. Virtio SCSI 2023-09-06T12:00:50.2746603Z 00:04.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1) 2023-09-06T12:00:50.2747055Z 00:05.0 Ethernet controller: Red Hat, Inc. Virtio network device 2023-09-06T12:00:50.2747448Z 00:06.0 Unclassified device [00ff]: Red Hat, Inc. Virtio RNG 2023-09-06T12:00:50.2747742Z + lsmod 2023-09-06T12:00:50.2767749Z Module Size Used by 2023-09-06T12:00:50.2768280Z ib_core 393216 0 2023-09-06T12:00:50.2768759Z btrfs 1536000 0 2023-09-06T12:00:50.2769020Z blake2b_generic 20480 0 2023-09-06T12:00:50.2769282Z xor 24576 1 btrfs 2023-09-06T12:00:50.2771908Z zstd_compress 225280 1 btrfs 2023-09-06T12:00:50.2772358Z raid6_pq 122880 1 btrfs 2023-09-06T12:00:50.2772824Z ufs 106496 0 2023-09-06T12:00:50.2773227Z msdos 20480 0 2023-09-06T12:00:50.2773628Z xfs 1753088 0 2023-09-06T12:00:50.2774057Z nvidia_modeset 1302528 0 2023-09-06T12:00:50.2774483Z veth 32768 0 2023-09-06T12:00:50.2774996Z nvidia_uvm 1540096 0 2023-09-06T12:00:50.2775536Z nvidia 56455168 2 nvidia_uvm,nvidia_modeset 2023-09-06T12:00:50.2776010Z drm 618496 1 nvidia 2023-09-06T12:00:50.2776426Z xt_conntrack 16384 1 2023-09-06T12:00:50.2776859Z xt_MASQUERADE 20480 1 2023-09-06T12:00:50.2777434Z xfrm_user 40960 1 2023-09-06T12:00:50.2777971Z xfrm_algo 16384 1 xfrm_user 2023-09-06T12:00:50.2778322Z xt_addrtype 16384 2 2023-09-06T12:00:50.2778582Z iptable_filter 16384 1 2023-09-06T12:00:50.2779129Z iptable_nat 16384 1 2023-09-06T12:00:50.2779514Z nf_nat 49152 2 iptable_nat,xt_MASQUERADE 2023-09-06T12:00:50.2780031Z bpfilter 16384 0 2023-09-06T12:00:50.2780570Z br_netfilter 28672 0 2023-09-06T12:00:50.2781094Z bridge 307200 1 br_netfilter 2023-09-06T12:00:50.2781552Z stp 16384 1 bridge 2023-09-06T12:00:50.2781828Z llc 16384 2 bridge,stp 2023-09-06T12:00:50.2782083Z aufs 270336 0 2023-09-06T12:00:50.2782332Z overlay 151552 0 2023-09-06T12:00:50.2782562Z nls_iso8859_1 16384 1 2023-09-06T12:00:50.2782810Z dm_multipath 40960 0 2023-09-06T12:00:50.2783080Z scsi_dh_rdac 16384 0 2023-09-06T12:00:50.2783332Z scsi_dh_emc 16384 0 2023-09-06T12:00:50.2783566Z scsi_dh_alua 20480 0 2023-09-06T12:00:50.2783812Z binfmt_misc 24576 1 2023-09-06T12:00:50.2784088Z crct10dif_pclmul 16384 1 2023-09-06T12:00:50.2784349Z crc32_pclmul 16384 0 2023-09-06T12:00:50.2784591Z ghash_clmulni_intel 16384 0 2023-09-06T12:00:50.2784854Z aesni_intel 376832 0 2023-09-06T12:00:50.2785110Z virtio_net 61440 0 2023-09-06T12:00:50.2785354Z psmouse 176128 0 2023-09-06T12:00:50.2785649Z crypto_simd 16384 1 aesni_intel 2023-09-06T12:00:50.2786148Z net_failover 20480 1 virtio_net 2023-09-06T12:00:50.2786669Z input_leds 16384 0 2023-09-06T12:00:50.2787262Z cryptd 24576 2 crypto_simd,ghash_clmulni_intel 2023-09-06T12:00:50.2787862Z failover 16384 1 net_failover 2023-09-06T12:00:50.2788438Z serio_raw 20480 0 2023-09-06T12:00:50.2788879Z sch_fq_codel 24576 13 2023-09-06T12:00:50.2789596Z efi_pstore 16384 0 2023-09-06T12:00:50.2790108Z virtio_rng 16384 0 2023-09-06T12:00:50.2790588Z ip_tables 32768 2 iptable_filter,iptable_nat 2023-09-06T12:00:50.2791041Z x_tables 53248 6 xt_conntrack,iptable_filter,xt_addrtype,ip_tables,iptable_nat,xt_MASQUERADE 2023-09-06T12:00:50.2791419Z autofs4 49152 2 2023-09-06T12:00:50.2791885Z + modinfo nvidia 2023-09-06T12:00:50.2792451Z filename: /lib/modules/5.15.0-1037-gcp/kernel/drivers/video/nvidia.ko 2023-09-06T12:00:50.2792802Z firmware: nvidia/535.54.03/gsp_tu10x.bin 2023-09-06T12:00:50.2793108Z firmware: nvidia/535.54.03/gsp_ga10x.bin 2023-09-06T12:00:50.2793471Z alias: char-major-195-* 2023-09-06T12:00:50.2793721Z version: 535.54.03 2023-09-06T12:00:50.2793970Z supported: external 2023-09-06T12:00:50.2794219Z license: NVIDIA 2023-09-06T12:00:50.2794476Z srcversion: 415DC1001E7D8AD79B6207C 2023-09-06T12:00:50.2794790Z alias: pci:v000010DEd*sv*sd*bc06sc80i00* 2023-09-06T12:00:50.2795098Z alias: pci:v000010DEd*sv*sd*bc03sc02i00* 2023-09-06T12:00:50.2795398Z alias: pci:v000010DEd*sv*sd*bc03sc00i00* 2023-09-06T12:00:50.2795658Z depends: drm 2023-09-06T12:00:50.2795898Z retpoline: Y 2023-09-06T12:00:50.2796130Z name: nvidia 2023-09-06T12:00:50.2796515Z vermagic: 5.15.0-1037-gcp SMP mod_unload modversions 2023-09-06T12:00:50.2796878Z parm: NvSwitchRegDwords:NvSwitch regkey (charp) 2023-09-06T12:00:50.2797287Z parm: NvSwitchBlacklist:NvSwitchBlacklist=uuid[,uuid...] (charp) 2023-09-06T12:00:50.2797718Z parm: NVreg_ResmanDebugLevel:int 2023-09-06T12:00:50.2798013Z parm: NVreg_RmLogonRC:int 2023-09-06T12:00:50.2798301Z parm: NVreg_ModifyDeviceFiles:int 2023-09-06T12:00:50.2798606Z parm: NVreg_DeviceFileUID:int 2023-09-06T12:00:50.2798900Z parm: NVreg_DeviceFileGID:int 2023-09-06T12:00:50.2799196Z parm: NVreg_DeviceFileMode:int 2023-09-06T12:00:50.2799550Z parm: NVreg_InitializeSystemMemoryAllocations:int 2023-09-06T12:00:50.2799930Z parm: NVreg_UsePageAttributeTable:int 2023-09-06T12:00:50.2800383Z parm: NVreg_EnablePCIeGen3:int 2023-09-06T12:00:50.2800681Z parm: NVreg_EnableMSI:int 2023-09-06T12:00:50.2800952Z parm: NVreg_TCEBypassMode:int 2023-09-06T12:00:50.2801271Z parm: NVreg_EnableStreamMemOPs:int 2023-09-06T12:00:50.2801637Z parm: NVreg_RestrictProfilingToAdminUsers:int 2023-09-06T12:00:50.2802037Z parm: NVreg_PreserveVideoMemoryAllocations:int 2023-09-06T12:00:50.2802407Z parm: NVreg_EnableS0ixPowerManagement:int 2023-09-06T12:00:50.2802825Z parm: NVreg_S0ixPowerManagementVideoMemoryThreshold:int 2023-09-06T12:00:50.2803226Z parm: NVreg_DynamicPowerManagement:int 2023-09-06T12:00:50.2803650Z parm: NVreg_DynamicPowerManagementVideoMemoryThreshold:int 2023-09-06T12:00:50.2804035Z parm: NVreg_EnableGpuFirmware:int 2023-09-06T12:00:50.2804363Z parm: NVreg_EnableGpuFirmwareLogs:int 2023-09-06T12:00:50.2804727Z parm: NVreg_OpenRmEnableUnsupportedGpus:int 2023-09-06T12:00:50.2805102Z parm: NVreg_EnableUserNUMAManagement:int 2023-09-06T12:00:50.2805434Z parm: NVreg_MemoryPoolSize:int 2023-09-06T12:00:50.2805736Z parm: NVreg_KMallocHeapMaxSize:int 2023-09-06T12:00:50.2806065Z parm: NVreg_VMallocHeapMaxSize:int 2023-09-06T12:00:50.2806380Z parm: NVreg_IgnoreMMIOCheck:int 2023-09-06T12:00:50.2806664Z parm: NVreg_NvLinkDisable:int 2023-09-06T12:00:50.2807011Z parm: NVreg_EnablePCIERelaxedOrderingMode:int 2023-09-06T12:00:50.2807368Z parm: NVreg_RegisterPCIDriver:int 2023-09-06T12:00:50.2807733Z parm: NVreg_EnableResizableBar:int 2023-09-06T12:00:50.2808060Z parm: NVreg_EnableDbgBreakpoint:int 2023-09-06T12:00:50.2808382Z parm: NVreg_RegistryDwords:charp 2023-09-06T12:00:50.2808717Z parm: NVreg_RegistryDwordsPerDevice:charp 2023-09-06T12:00:50.2809028Z parm: NVreg_RmMsg:charp 2023-09-06T12:00:50.2809300Z parm: NVreg_GpuBlacklist:charp 2023-09-06T12:00:50.2809617Z parm: NVreg_TemporaryFilePath:charp 2023-09-06T12:00:50.2809928Z parm: NVreg_ExcludedGpus:charp 2023-09-06T12:00:50.2810232Z parm: NVreg_DmaRemapPeerMmio:int 2023-09-06T12:00:50.2810654Z parm: NVreg_RmNvlinkBandwidth:charp 2023-09-06T12:00:50.2810958Z parm: rm_firmware_active:charp 2023-09-06T12:00:50.2811228Z + HAS_NVIDIA_DRIVER=0 2023-09-06T12:00:50.2811563Z ++ command -v nvidia-smi 2023-09-06T12:00:50.2811872Z + '[' -x /usr/bin/nvidia-smi ']' 2023-09-06T12:00:50.2812122Z + set +e 2023-09-06T12:00:50.2812522Z ++ nvidia-smi --query-gpu=driver_version --format=csv,noheader --id=0 2023-09-06T12:00:50.3018531Z + INSTALLED_DRIVER_VERSION=535.54.03 2023-09-06T12:00:50.3018946Z + NVIDIA_SMI_STATUS=0 2023-09-06T12:00:50.3019538Z + '[' 0 -ne 0 ']' 2023-09-06T12:00:50.3019986Z + '[' 535.54.03 '!=' 535.54.03 ']' 2023-09-06T12:00:50.3020241Z + HAS_NVIDIA_DRIVER=1 2023-09-06T12:00:50.3020780Z + echo 'NVIDIA driver (535.54.03) has already been installed. Skipping NVIDIA driver installation' 2023-09-06T12:00:50.3021149Z + set -e 2023-09-06T12:00:50.3021408Z + '[' 1 -eq 0 ']' 2023-09-06T12:00:50.3021770Z NVIDIA driver (535.54.03) has already been installed. Skipping NVIDIA driver installation 2023-09-06T12:00:50.3022167Z + post_install_nvidia_driver_common 2023-09-06T12:00:50.3025290Z + sudo modprobe nvidia 2023-09-06T12:00:50.3163322Z + echo 'After installing NVIDIA driver' 2023-09-06T12:00:50.3164368Z + lspci 2023-09-06T12:00:50.3164776Z After installing NVIDIA driver 2023-09-06T12:00:50.3274030Z 00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02) 2023-09-06T12:00:50.3274528Z 00:01.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 03) 2023-09-06T12:00:50.3275047Z 00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03) 2023-09-06T12:00:50.3275540Z 00:03.0 Non-VGA unclassified device: Red Hat, Inc. Virtio SCSI 2023-09-06T12:00:50.3275927Z 00:04.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1) 2023-09-06T12:00:50.3276591Z 00:05.0 Ethernet controller: Red Hat, Inc. Virtio network device 2023-09-06T12:00:50.3276981Z 00:06.0 Unclassified device [00ff]: Red Hat, Inc. Virtio RNG 2023-09-06T12:00:50.3277280Z + lsmod 2023-09-06T12:00:50.3299168Z Module Size Used by 2023-09-06T12:00:50.3299527Z ib_core 393216 0 2023-09-06T12:00:50.3299912Z btrfs 1536000 0 2023-09-06T12:00:50.3300315Z blake2b_generic 20480 0 2023-09-06T12:00:50.3300743Z xor 24576 1 btrfs 2023-09-06T12:00:50.3301190Z zstd_compress 225280 1 btrfs 2023-09-06T12:00:50.3301480Z raid6_pq 122880 1 btrfs 2023-09-06T12:00:50.3301854Z ufs 106496 0 2023-09-06T12:00:50.3302396Z msdos 20480 0 2023-09-06T12:00:50.3302862Z xfs 1753088 0 2023-09-06T12:00:50.3303343Z nvidia_modeset 1302528 0 2023-09-06T12:00:50.3303636Z veth 32768 0 2023-09-06T12:00:50.3303873Z nvidia_uvm 1540096 0 2023-09-06T12:00:50.3304329Z nvidia 56455168 2 nvidia_uvm,nvidia_modeset 2023-09-06T12:00:50.3304816Z drm 618496 1 nvidia 2023-09-06T12:00:50.3305329Z xt_conntrack 16384 1 2023-09-06T12:00:50.3305809Z xt_MASQUERADE 20480 1 2023-09-06T12:00:50.3306302Z xfrm_user 40960 1 2023-09-06T12:00:50.3306686Z xfrm_algo 16384 1 xfrm_user 2023-09-06T12:00:50.3306963Z xt_addrtype 16384 2 2023-09-06T12:00:50.3307209Z iptable_filter 16384 1 2023-09-06T12:00:50.3307468Z iptable_nat 16384 1 2023-09-06T12:00:50.3307837Z nf_nat 49152 2 iptable_nat,xt_MASQUERADE 2023-09-06T12:00:50.3308132Z bpfilter 16384 0 2023-09-06T12:00:50.3308388Z br_netfilter 28672 0 2023-09-06T12:00:50.3308693Z bridge 307200 1 br_netfilter 2023-09-06T12:00:50.3308966Z stp 16384 1 bridge 2023-09-06T12:00:50.3309471Z llc 16384 2 bridge,stp 2023-09-06T12:00:50.3309726Z aufs 270336 0 2023-09-06T12:00:50.3309975Z overlay 151552 0 2023-09-06T12:00:50.3310223Z nls_iso8859_1 16384 1 2023-09-06T12:00:50.3310725Z dm_multipath 40960 0 2023-09-06T12:00:50.3310968Z scsi_dh_rdac 16384 0 2023-09-06T12:00:50.3311219Z scsi_dh_emc 16384 0 2023-09-06T12:00:50.3311468Z scsi_dh_alua 20480 0 2023-09-06T12:00:50.3311719Z binfmt_misc 24576 1 2023-09-06T12:00:50.3311962Z crct10dif_pclmul 16384 1 2023-09-06T12:00:50.3312219Z crc32_pclmul 16384 0 2023-09-06T12:00:50.3312482Z ghash_clmulni_intel 16384 0 2023-09-06T12:00:50.3312735Z aesni_intel 376832 0 2023-09-06T12:00:50.3312988Z virtio_net 61440 0 2023-09-06T12:00:50.3313238Z psmouse 176128 0 2023-09-06T12:00:50.3313509Z crypto_simd 16384 1 aesni_intel 2023-09-06T12:00:50.3313784Z net_failover 20480 1 virtio_net 2023-09-06T12:00:50.3314066Z input_leds 16384 0 2023-09-06T12:00:50.3314375Z cryptd 24576 2 crypto_simd,ghash_clmulni_intel 2023-09-06T12:00:50.3314696Z failover 16384 1 net_failover 2023-09-06T12:00:50.3314960Z serio_raw 20480 0 2023-09-06T12:00:50.3315214Z sch_fq_codel 24576 13 2023-09-06T12:00:50.3315474Z efi_pstore 16384 0 2023-09-06T12:00:50.3315726Z virtio_rng 16384 0 2023-09-06T12:00:50.3316021Z ip_tables 32768 2 iptable_filter,iptable_nat 2023-09-06T12:00:50.3316477Z x_tables 53248 6 xt_conntrack,iptable_filter,xt_addrtype,ip_tables,iptable_nat,xt_MASQUERADE 2023-09-06T12:00:50.3317071Z autofs4 49152 2 2023-09-06T12:00:50.3317476Z + modinfo nvidia 2023-09-06T12:00:50.3318480Z filename: /lib/modules/5.15.0-1037-gcp/kernel/drivers/video/nvidia.ko 2023-09-06T12:00:50.3319116Z firmware: nvidia/535.54.03/gsp_tu10x.bin 2023-09-06T12:00:50.3319693Z firmware: nvidia/535.54.03/gsp_ga10x.bin 2023-09-06T12:00:50.3320535Z alias: char-major-195-* 2023-09-06T12:00:50.3320813Z version: 535.54.03 2023-09-06T12:00:50.3321053Z supported: external 2023-09-06T12:00:50.3321309Z license: NVIDIA 2023-09-06T12:00:50.3321582Z srcversion: 415DC1001E7D8AD79B6207C 2023-09-06T12:00:50.3321891Z alias: pci:v000010DEd*sv*sd*bc06sc80i00* 2023-09-06T12:00:50.3322359Z alias: pci:v000010DEd*sv*sd*bc03sc02i00* 2023-09-06T12:00:50.3322935Z alias: pci:v000010DEd*sv*sd*bc03sc00i00* 2023-09-06T12:00:50.3323457Z depends: drm 2023-09-06T12:00:50.3323760Z retpoline: Y 2023-09-06T12:00:50.3324005Z name: nvidia 2023-09-06T12:00:50.3324422Z vermagic: 5.15.0-1037-gcp SMP mod_unload modversions 2023-09-06T12:00:50.3324794Z parm: NvSwitchRegDwords:NvSwitch regkey (charp) 2023-09-06T12:00:50.3325202Z parm: NvSwitchBlacklist:NvSwitchBlacklist=uuid[,uuid...] (charp) 2023-09-06T12:00:50.3325560Z parm: NVreg_ResmanDebugLevel:int 2023-09-06T12:00:50.3325861Z parm: NVreg_RmLogonRC:int 2023-09-06T12:00:50.3326161Z parm: NVreg_ModifyDeviceFiles:int 2023-09-06T12:00:50.3326463Z parm: NVreg_DeviceFileUID:int 2023-09-06T12:00:50.3326748Z parm: NVreg_DeviceFileGID:int 2023-09-06T12:00:50.3327043Z parm: NVreg_DeviceFileMode:int 2023-09-06T12:00:50.3327407Z parm: NVreg_InitializeSystemMemoryAllocations:int 2023-09-06T12:00:50.3327843Z parm: NVreg_UsePageAttributeTable:int 2023-09-06T12:00:50.3328151Z parm: NVreg_EnablePCIeGen3:int 2023-09-06T12:00:50.3328441Z parm: NVreg_EnableMSI:int 2023-09-06T12:00:50.3328732Z parm: NVreg_TCEBypassMode:int 2023-09-06T12:00:50.3329048Z parm: NVreg_EnableStreamMemOPs:int 2023-09-06T12:00:50.3329398Z parm: NVreg_RestrictProfilingToAdminUsers:int 2023-09-06T12:00:50.3329798Z parm: NVreg_PreserveVideoMemoryAllocations:int 2023-09-06T12:00:50.3330183Z parm: NVreg_EnableS0ixPowerManagement:int 2023-09-06T12:00:50.3330599Z parm: NVreg_S0ixPowerManagementVideoMemoryThreshold:int 2023-09-06T12:00:50.3330990Z parm: NVreg_DynamicPowerManagement:int 2023-09-06T12:00:50.3331586Z parm: NVreg_DynamicPowerManagementVideoMemoryThreshold:int 2023-09-06T12:00:50.3331992Z parm: NVreg_EnableGpuFirmware:int 2023-09-06T12:00:50.3332326Z parm: NVreg_EnableGpuFirmwareLogs:int 2023-09-06T12:00:50.3332675Z parm: NVreg_OpenRmEnableUnsupportedGpus:int 2023-09-06T12:00:50.3333047Z parm: NVreg_EnableUserNUMAManagement:int 2023-09-06T12:00:50.3333375Z parm: NVreg_MemoryPoolSize:int 2023-09-06T12:00:50.3333688Z parm: NVreg_KMallocHeapMaxSize:int 2023-09-06T12:00:50.3334000Z parm: NVreg_VMallocHeapMaxSize:int 2023-09-06T12:00:50.3334309Z parm: NVreg_IgnoreMMIOCheck:int 2023-09-06T12:00:50.3334605Z parm: NVreg_NvLinkDisable:int 2023-09-06T12:00:50.3334960Z parm: NVreg_EnablePCIERelaxedOrderingMode:int 2023-09-06T12:00:50.3335298Z parm: NVreg_RegisterPCIDriver:int 2023-09-06T12:00:50.3335617Z parm: NVreg_EnableResizableBar:int 2023-09-06T12:00:50.3335950Z parm: NVreg_EnableDbgBreakpoint:int 2023-09-06T12:00:50.3336272Z parm: NVreg_RegistryDwords:charp 2023-09-06T12:00:50.3336597Z parm: NVreg_RegistryDwordsPerDevice:charp 2023-09-06T12:00:50.3336908Z parm: NVreg_RmMsg:charp 2023-09-06T12:00:50.3337194Z parm: NVreg_GpuBlacklist:charp 2023-09-06T12:00:50.3337507Z parm: NVreg_TemporaryFilePath:charp 2023-09-06T12:00:50.3337850Z parm: NVreg_ExcludedGpus:charp 2023-09-06T12:00:50.3338155Z parm: NVreg_DmaRemapPeerMmio:int 2023-09-06T12:00:50.3338479Z parm: NVreg_RmNvlinkBandwidth:charp 2023-09-06T12:00:50.3338787Z parm: rm_firmware_active:charp 2023-09-06T12:00:50.3339043Z + set +e 2023-09-06T12:00:50.3339311Z + nvidia-smi 2023-09-06T12:00:50.3501678Z Wed Sep 6 12:00:50 2023 2023-09-06T12:00:50.3502443Z +---------------------------------------------------------------------------------------+ 2023-09-06T12:00:50.3502929Z | NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 | 2023-09-06T12:00:50.3503412Z |-----------------------------------------+----------------------+----------------------+ 2023-09-06T12:00:50.3503896Z | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | 2023-09-06T12:00:50.3504452Z | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | 2023-09-06T12:00:50.3504840Z | | | MIG M. | 2023-09-06T12:00:50.3505138Z |=========================================+======================+======================| 2023-09-06T12:00:50.3615683Z | 0 NVIDIA A100-SXM4-40GB On | 00000000:00:04.0 Off | 0 | 2023-09-06T12:00:50.3616107Z | N/A 31C P0 46W / 400W | 4MiB / 40960MiB | 0% Default | 2023-09-06T12:00:50.3616461Z | | | Disabled | 2023-09-06T12:00:50.3616892Z +-----------------------------------------+----------------------+----------------------+ 2023-09-06T12:00:50.3617306Z 2023-09-06T12:00:50.3617879Z +---------------------------------------------------------------------------------------+ 2023-09-06T12:00:50.3618205Z | Processes: | 2023-09-06T12:00:50.3618618Z | GPU GI CI PID Type Process name GPU Memory | 2023-09-06T12:00:50.3618986Z | ID ID Usage | 2023-09-06T12:00:50.3619287Z |=======================================================================================| 2023-09-06T12:00:50.3620977Z | No running processes found | 2023-09-06T12:00:50.3621443Z +---------------------------------------------------------------------------------------+ 2023-09-06T12:00:50.7348459Z + nvidia-smi --query-gpu=gpu_name --format=csv,noheader --id=0 2023-09-06T12:00:50.7515191Z NVIDIA A100-SXM4-40GB 2023-09-06T12:00:50.7547504Z + NVIDIA_SMI_STATUS=0 2023-09-06T12:00:50.7547932Z + '[' 0 -eq 0 ']' 2023-09-06T12:00:50.7548283Z + echo 'INFO: Ignoring allowed status 0' 2023-09-06T12:00:50.7548558Z + set -e 2023-09-06T12:00:50.7548835Z INFO: Ignoring allowed status 0 2023-09-06T12:00:50.7557710Z == Installing nvidia container toolkit for ubuntu20.04 == 2023-09-06T12:00:50.7563404Z + sudo apt-get install -y nvidia-docker2 2023-09-06T12:00:50.8264920Z Reading package lists... 2023-09-06T12:00:51.0396067Z Building dependency tree... 2023-09-06T12:00:51.0401052Z Reading state information... 2023-09-06T12:00:51.2192181Z nvidia-docker2 is already the newest version (2.13.0-1). 2023-09-06T12:00:51.2192690Z The following packages were automatically installed and are no longer required: 2023-09-06T12:00:51.2193293Z libatasmart4 libblockdev-fs2 libblockdev-loop2 libblockdev-part-err2 2023-09-06T12:00:51.2193869Z libblockdev-part2 libblockdev-swap2 libblockdev-utils2 libblockdev2 2023-09-06T12:00:51.2194400Z libexpat1-dev libmm-glib0 libnspr4 libnss3 libnuma1 libparted-fs-resize0 2023-09-06T12:00:51.2197685Z libpython3-dev libpython3.8-dev libudisks2-0 usb-modeswitch 2023-09-06T12:00:51.2198109Z usb-modeswitch-data 2023-09-06T12:00:51.2198467Z Use 'sudo apt autoremove' to remove them. 2023-09-06T12:00:51.2536279Z 0 upgraded, 0 newly installed, 0 to remove and 71 not upgraded. 2023-09-06T12:00:51.2549720Z + sudo systemctl restart docker 2023-09-06T12:01:02.2737601Z Command completed after 1 attempt(s). 2023-09-06T12:01:02.2814885Z ##[group]Run sudo nvidia-smi -pm 1 2023-09-06T12:01:02.2815231Z sudo nvidia-smi -pm 1 2023-09-06T12:01:02.2815530Z sudo nvidia-smi -ac 1215,1410 2023-09-06T12:01:02.2815783Z nvidia-smi 2023-09-06T12:01:02.2835095Z shell: /usr/bin/bash -e {0} 2023-09-06T12:01:02.2835371Z env: 2023-09-06T12:01:02.2835658Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:02.2835985Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:02.2836290Z ##[endgroup] 2023-09-06T12:01:02.3151199Z Persistence mode is already Enabled for GPU 00000000:00:04.0. 2023-09-06T12:01:02.3151842Z All done. 2023-09-06T12:01:02.3586948Z Applications clocks set to "(MEM 1215, SM 1410)" for GPU 00000000:00:04.0 2023-09-06T12:01:02.3587590Z All done. 2023-09-06T12:01:02.3771484Z Wed Sep 6 12:01:02 2023 2023-09-06T12:01:02.3772589Z +---------------------------------------------------------------------------------------+ 2023-09-06T12:01:02.3773364Z | NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 | 2023-09-06T12:01:02.3773821Z |-----------------------------------------+----------------------+----------------------+ 2023-09-06T12:01:02.3774319Z | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | 2023-09-06T12:01:02.3774909Z | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | 2023-09-06T12:01:02.3775298Z | | | MIG M. | 2023-09-06T12:01:02.3775607Z |=========================================+======================+======================| 2023-09-06T12:01:02.3876796Z | 0 NVIDIA A100-SXM4-40GB On | 00000000:00:04.0 Off | 0 | 2023-09-06T12:01:02.3877406Z | N/A 31C P0 46W / 400W | 4MiB / 40960MiB | 0% Default | 2023-09-06T12:01:02.3877771Z | | | Disabled | 2023-09-06T12:01:02.3878443Z +-----------------------------------------+----------------------+----------------------+ 2023-09-06T12:01:02.3878775Z 2023-09-06T12:01:02.3879165Z +---------------------------------------------------------------------------------------+ 2023-09-06T12:01:02.3880019Z | Processes: | 2023-09-06T12:01:02.3880398Z | GPU GI CI PID Type Process name GPU Memory | 2023-09-06T12:01:02.3880767Z | ID ID Usage | 2023-09-06T12:01:02.3881102Z |=======================================================================================| 2023-09-06T12:01:02.3881429Z | No running processes found | 2023-09-06T12:01:02.3881881Z +---------------------------------------------------------------------------------------+ 2023-09-06T12:01:02.7328722Z ##[group]Run python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84 2023-09-06T12:01:02.7329193Z python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84 2023-09-06T12:01:02.7329695Z python3 -m tools.stats.monitor > usage_log.txt 2>&1 & 2023-09-06T12:01:02.7330295Z echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}" 2023-09-06T12:01:02.7348801Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:02.7349509Z env: 2023-09-06T12:01:02.7349989Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:02.7350407Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:02.7350787Z ##[endgroup] 2023-09-06T12:01:03.8787691Z Requirement already satisfied: psutil==5.9.1 in /home/ubuntu/.local/lib/python3.8/site-packages (5.9.1) 2023-09-06T12:01:03.8875742Z Requirement already satisfied: nvidia-ml-py==11.525.84 in /home/ubuntu/.local/lib/python3.8/site-packages (11.525.84) 2023-09-06T12:01:04.1016348Z Prepare all required actions 2023-09-06T12:01:04.1017168Z Getting action download info 2023-09-06T12:01:04.2800175Z Download action repository 'seemethere/download-artifact-s3@v4' (SHA:1da556a7aa0a088e3153970611f6c432d58e80e6) 2023-09-06T12:01:04.8802066Z Download action repository 'actions/download-artifact@v3' (SHA:9bc31d5ccc31df68ecc42ccf4149144866c47d8a) 2023-09-06T12:01:05.2488933Z ##[group]Run ./.github/actions/download-build-artifacts 2023-09-06T12:01:05.2489248Z with: 2023-09-06T12:01:05.2489518Z name: linux-focal-cuda12.1-py3.10-gcc9-sm80 2023-09-06T12:01:05.2489795Z env: 2023-09-06T12:01:05.2490024Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:05.2490342Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:05.2490625Z ##[endgroup] 2023-09-06T12:01:05.2518744Z ##[group]Run seemethere/download-artifact-s3@v4 2023-09-06T12:01:05.2519034Z with: 2023-09-06T12:01:05.2519313Z name: linux-focal-cuda12.1-py3.10-gcc9-sm80 2023-09-06T12:01:05.2519666Z s3-bucket: gha-artifacts 2023-09-06T12:01:05.2519909Z region: us-east-1 2023-09-06T12:01:05.2520128Z env: 2023-09-06T12:01:05.2520354Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:05.2520672Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:05.2520952Z ##[endgroup] 2023-09-06T12:01:05.8339918Z (node:1951848) NOTE: We are formalizing our plans to enter AWS SDK for JavaScript (v2) into maintenance mode in 2023. 2023-09-06T12:01:05.8340380Z 2023-09-06T12:01:05.8340572Z Please migrate your code to use AWS SDK for JavaScript (v3). 2023-09-06T12:01:05.8341023Z For more information, check the migration guide at https://a.co/7PzMCcy 2023-09-06T12:01:05.8341664Z (Use `node --trace-warnings ...` to show where the warning was created) 2023-09-06T12:01:06.0014905Z Found 1 objects with prefix pytorch/pytorch/6093795712/linux-focal-cuda12.1-py3.10-gcc9-sm80/ 2023-09-06T12:01:06.0016261Z Starting download (1/1): /home/weiwangmeta/actions-runner/_work/pytorch/pytorch/artifacts.zip 2023-09-06T12:01:25.1443943Z Finished download (1/1): /home/weiwangmeta/actions-runner/_work/pytorch/pytorch/artifacts.zip 2023-09-06T12:01:25.1452174Z Artifact download has finished successfully 2023-09-06T12:01:25.1730284Z ##[group]Run unzip -o artifacts.zip 2023-09-06T12:01:25.1730602Z unzip -o artifacts.zip 2023-09-06T12:01:25.1750265Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:25.1750563Z env: 2023-09-06T12:01:25.1750800Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:25.1751125Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:25.1751496Z ##[endgroup] 2023-09-06T12:01:25.1807267Z Archive: artifacts.zip 2023-09-06T12:01:25.1810313Z creating: dist/ 2023-09-06T12:01:27.3853456Z inflating: dist/torch-2.2.0a0+git3fe8417-cp310-cp310-linux_x86_64.whl 2023-09-06T12:01:27.3854231Z creating: build/custom_test_artifacts/ 2023-09-06T12:01:27.3854695Z creating: build/custom_test_artifacts/custom-op-build/ 2023-09-06T12:01:27.3855446Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/ 2023-09-06T12:01:27.3857540Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/pkgRedirects/ 2023-09-06T12:01:27.3860085Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeConfigureLog.yaml 2023-09-06T12:01:27.3860929Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/ 2023-09-06T12:01:27.3861539Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeSystem.cmake 2023-09-06T12:01:27.3862130Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdC/ 2023-09-06T12:01:27.3862992Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdC/tmp/ 2023-09-06T12:01:27.3863813Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdC/CMakeCCompilerId.c 2023-09-06T12:01:27.3865389Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdC/a.out 2023-09-06T12:01:27.3866409Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCXX/ 2023-09-06T12:01:27.3867029Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCXX/tmp/ 2023-09-06T12:01:27.3868258Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCXX/CMakeCXXCompilerId.cpp 2023-09-06T12:01:27.3869913Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCXX/a.out 2023-09-06T12:01:27.3872265Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_C.bin 2023-09-06T12:01:27.3872943Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeCCompiler.cmake 2023-09-06T12:01:27.3874273Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_CXX.bin 2023-09-06T12:01:27.3875557Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeCXXCompiler.cmake 2023-09-06T12:01:27.3876192Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/ 2023-09-06T12:01:27.3876790Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/ 2023-09-06T12:01:27.3922657Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp4.ii 2023-09-06T12:01:27.3968380Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.cpp 2023-09-06T12:01:27.3969176Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.module_id 2023-09-06T12:01:27.4022414Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp1.ii 2023-09-06T12:01:27.4023874Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.c 2023-09-06T12:01:27.4025311Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.gpu 2023-09-06T12:01:27.4026590Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.stub.c 2023-09-06T12:01:27.4028479Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.ptx 2023-09-06T12:01:27.4030879Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.sm_52.cubin 2023-09-06T12:01:27.4032101Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin 2023-09-06T12:01:27.4032885Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin.c 2023-09-06T12:01:27.4033623Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.o 2023-09-06T12:01:27.4034326Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.sm_52.cubin 2023-09-06T12:01:27.4034999Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.reg.c 2023-09-06T12:01:27.4035677Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.fatbin 2023-09-06T12:01:27.4036348Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.fatbin.c 2023-09-06T12:01:27.4036988Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.o 2023-09-06T12:01:27.4037680Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/CMakeCUDACompilerId.cu 2023-09-06T12:01:27.4102938Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CompilerIdCUDA/a.out 2023-09-06T12:01:27.4174601Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_CUDA.bin 2023-09-06T12:01:27.4175355Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.26.4/CMakeCUDACompiler.cmake 2023-09-06T12:01:27.4175972Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeScratch/ 2023-09-06T12:01:27.4176597Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeTmp/ 2023-09-06T12:01:27.4177166Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/cmake.check_cache 2023-09-06T12:01:27.4177757Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/ 2023-09-06T12:01:27.4178355Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.ts 2023-09-06T12:01:27.4179006Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.make 2023-09-06T12:01:27.4179641Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/depend.make 2023-09-06T12:01:27.4180252Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/link.txt 2023-09-06T12:01:27.4180878Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/cmake_clean.cmake 2023-09-06T12:01:27.4181490Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/build.make 2023-09-06T12:01:27.4182115Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/DependInfo.cmake 2023-09-06T12:01:27.4182737Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/flags.make 2023-09-06T12:01:27.4183444Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/progress.make 2023-09-06T12:01:27.4203852Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o.d 2023-09-06T12:01:27.4318248Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o 2023-09-06T12:01:27.4318872Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/ 2023-09-06T12:01:27.4319519Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.ts 2023-09-06T12:01:27.4320459Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.make 2023-09-06T12:01:27.4321117Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/depend.make 2023-09-06T12:01:27.4321730Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/link.txt 2023-09-06T12:01:27.4322371Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/cmake_clean.cmake 2023-09-06T12:01:27.4323060Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/build.make 2023-09-06T12:01:27.4323719Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/DependInfo.cmake 2023-09-06T12:01:27.4324357Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/flags.make 2023-09-06T12:01:27.4324976Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/progress.make 2023-09-06T12:01:27.4347314Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o.d 2023-09-06T12:01:27.4433810Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o 2023-09-06T12:01:27.4434512Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeDirectoryInformation.cmake 2023-09-06T12:01:27.4435163Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/TargetDirectories.txt 2023-09-06T12:01:27.4435773Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/progress.marks 2023-09-06T12:01:27.4436557Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile2 2023-09-06T12:01:27.4437134Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile.cmake 2023-09-06T12:01:27.4437696Z inflating: build/custom_test_artifacts/custom-op-build/detect_cuda_version.cc 2023-09-06T12:01:27.4439735Z inflating: build/custom_test_artifacts/custom-op-build/CMakeCache.txt 2023-09-06T12:01:27.4440624Z inflating: build/custom_test_artifacts/custom-op-build/Makefile 2023-09-06T12:01:27.4441202Z inflating: build/custom_test_artifacts/custom-op-build/cmake_install.cmake 2023-09-06T12:01:27.4535499Z inflating: build/custom_test_artifacts/custom-op-build/libcustom_ops.so 2023-09-06T12:01:27.4600242Z inflating: build/custom_test_artifacts/custom-op-build/test_custom_ops 2023-09-06T12:01:27.4600739Z creating: build/custom_test_artifacts/jit-hook-build/ 2023-09-06T12:01:27.4601217Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/ 2023-09-06T12:01:27.4601756Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/pkgRedirects/ 2023-09-06T12:01:27.4609423Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeConfigureLog.yaml 2023-09-06T12:01:27.4610001Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/ 2023-09-06T12:01:27.4610587Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeSystem.cmake 2023-09-06T12:01:27.4611151Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdC/ 2023-09-06T12:01:27.4611729Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdC/tmp/ 2023-09-06T12:01:27.4612715Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdC/CMakeCCompilerId.c 2023-09-06T12:01:27.4614597Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdC/a.out 2023-09-06T12:01:27.4615187Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCXX/ 2023-09-06T12:01:27.4615754Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCXX/tmp/ 2023-09-06T12:01:27.4617510Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCXX/CMakeCXXCompilerId.cpp 2023-09-06T12:01:27.4618839Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCXX/a.out 2023-09-06T12:01:27.4620728Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_C.bin 2023-09-06T12:01:27.4621384Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeCCompiler.cmake 2023-09-06T12:01:27.4622636Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_CXX.bin 2023-09-06T12:01:27.4623542Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeCXXCompiler.cmake 2023-09-06T12:01:27.4624163Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/ 2023-09-06T12:01:27.4624754Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/ 2023-09-06T12:01:27.4671399Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp4.ii 2023-09-06T12:01:27.4716983Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.cpp 2023-09-06T12:01:27.4717753Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.module_id 2023-09-06T12:01:27.4770560Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp1.ii 2023-09-06T12:01:27.4771325Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.c 2023-09-06T12:01:27.4772326Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.gpu 2023-09-06T12:01:27.4773184Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.stub.c 2023-09-06T12:01:27.4773935Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.ptx 2023-09-06T12:01:27.4774694Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.sm_52.cubin 2023-09-06T12:01:27.4775616Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin 2023-09-06T12:01:27.4776462Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin.c 2023-09-06T12:01:27.4777202Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.o 2023-09-06T12:01:27.4777893Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.sm_52.cubin 2023-09-06T12:01:27.4778550Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.reg.c 2023-09-06T12:01:27.4779190Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.fatbin 2023-09-06T12:01:27.4779855Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.fatbin.c 2023-09-06T12:01:27.4780499Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.o 2023-09-06T12:01:27.4781165Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/CMakeCUDACompilerId.cu 2023-09-06T12:01:27.4850612Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CompilerIdCUDA/a.out 2023-09-06T12:01:27.4921632Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_CUDA.bin 2023-09-06T12:01:27.4922311Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.26.4/CMakeCUDACompiler.cmake 2023-09-06T12:01:27.4922899Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeScratch/ 2023-09-06T12:01:27.4923509Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeTmp/ 2023-09-06T12:01:27.4924314Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/cmake.check_cache 2023-09-06T12:01:27.4924870Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/ 2023-09-06T12:01:27.4925502Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.ts 2023-09-06T12:01:27.4926155Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.make 2023-09-06T12:01:27.4926788Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/depend.make 2023-09-06T12:01:27.4927395Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/link.txt 2023-09-06T12:01:27.4927999Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/cmake_clean.cmake 2023-09-06T12:01:27.4928625Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/build.make 2023-09-06T12:01:27.4929261Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/DependInfo.cmake 2023-09-06T12:01:27.4929881Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/flags.make 2023-09-06T12:01:27.4930499Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/progress.make 2023-09-06T12:01:27.4951499Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o.d 2023-09-06T12:01:27.5022573Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o 2023-09-06T12:01:27.5023387Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeDirectoryInformation.cmake 2023-09-06T12:01:27.5024024Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/TargetDirectories.txt 2023-09-06T12:01:27.5024823Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/progress.marks 2023-09-06T12:01:27.5025405Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile2 2023-09-06T12:01:27.5025940Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile.cmake 2023-09-06T12:01:27.5026494Z inflating: build/custom_test_artifacts/jit-hook-build/detect_cuda_version.cc 2023-09-06T12:01:27.5027498Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeCache.txt 2023-09-06T12:01:27.5028155Z inflating: build/custom_test_artifacts/jit-hook-build/Makefile 2023-09-06T12:01:27.5029291Z inflating: build/custom_test_artifacts/jit-hook-build/cmake_install.cmake 2023-09-06T12:01:27.5085054Z inflating: build/custom_test_artifacts/jit-hook-build/test_jit_hooks 2023-09-06T12:01:27.5085588Z creating: build/custom_test_artifacts/custom-backend-build/ 2023-09-06T12:01:27.5086110Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/ 2023-09-06T12:01:27.5086708Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/pkgRedirects/ 2023-09-06T12:01:27.5093920Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeConfigureLog.yaml 2023-09-06T12:01:27.5094521Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/ 2023-09-06T12:01:27.5095124Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeSystem.cmake 2023-09-06T12:01:27.5095742Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdC/ 2023-09-06T12:01:27.5096368Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdC/tmp/ 2023-09-06T12:01:27.5097131Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdC/CMakeCCompilerId.c 2023-09-06T12:01:27.5098941Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdC/a.out 2023-09-06T12:01:27.5099869Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCXX/ 2023-09-06T12:01:27.5100487Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCXX/tmp/ 2023-09-06T12:01:27.5101954Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCXX/CMakeCXXCompilerId.cpp 2023-09-06T12:01:27.5103437Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCXX/a.out 2023-09-06T12:01:27.5105261Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_C.bin 2023-09-06T12:01:27.5105960Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeCCompiler.cmake 2023-09-06T12:01:27.5107228Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_CXX.bin 2023-09-06T12:01:27.5108031Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeCXXCompiler.cmake 2023-09-06T12:01:27.5108682Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/ 2023-09-06T12:01:27.5109437Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/ 2023-09-06T12:01:27.5156090Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp4.ii 2023-09-06T12:01:27.5202180Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.cpp 2023-09-06T12:01:27.5203200Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.module_id 2023-09-06T12:01:27.5255979Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cpp1.ii 2023-09-06T12:01:27.5256808Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.c 2023-09-06T12:01:27.5257616Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.gpu 2023-09-06T12:01:27.5258451Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.cudafe1.stub.c 2023-09-06T12:01:27.5259213Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.ptx 2023-09-06T12:01:27.5259976Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.sm_52.cubin 2023-09-06T12:01:27.5260742Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin 2023-09-06T12:01:27.5261515Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.fatbin.c 2023-09-06T12:01:27.5262274Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/CMakeCUDACompilerId.o 2023-09-06T12:01:27.5263073Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.sm_52.cubin 2023-09-06T12:01:27.5263813Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.reg.c 2023-09-06T12:01:27.5264503Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.fatbin 2023-09-06T12:01:27.5265200Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.fatbin.c 2023-09-06T12:01:27.5265877Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/tmp/a_dlink.o 2023-09-06T12:01:27.5266583Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/CMakeCUDACompilerId.cu 2023-09-06T12:01:27.5337116Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CompilerIdCUDA/a.out 2023-09-06T12:01:27.5408243Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeDetermineCompilerABI_CUDA.bin 2023-09-06T12:01:27.5408947Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.26.4/CMakeCUDACompiler.cmake 2023-09-06T12:01:27.5409569Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeScratch/ 2023-09-06T12:01:27.5410153Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeTmp/ 2023-09-06T12:01:27.5410741Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/cmake.check_cache 2023-09-06T12:01:27.5411347Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/ 2023-09-06T12:01:27.5412008Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.ts 2023-09-06T12:01:27.5412706Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.make 2023-09-06T12:01:27.5413384Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/depend.make 2023-09-06T12:01:27.5414087Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/link.txt 2023-09-06T12:01:27.5414811Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/cmake_clean.cmake 2023-09-06T12:01:27.5415475Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/build.make 2023-09-06T12:01:27.5416388Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/DependInfo.cmake 2023-09-06T12:01:27.5417061Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/flags.make 2023-09-06T12:01:27.5417701Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/progress.make 2023-09-06T12:01:27.5418969Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o.d 2023-09-06T12:01:27.5562032Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o 2023-09-06T12:01:27.5562691Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/ 2023-09-06T12:01:27.5563364Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.ts 2023-09-06T12:01:27.5564128Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.make 2023-09-06T12:01:27.5564809Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/depend.make 2023-09-06T12:01:27.5565472Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/link.txt 2023-09-06T12:01:27.5566157Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/cmake_clean.cmake 2023-09-06T12:01:27.5566839Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/build.make 2023-09-06T12:01:27.5567521Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/DependInfo.cmake 2023-09-06T12:01:27.5568181Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/flags.make 2023-09-06T12:01:27.5568861Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/progress.make 2023-09-06T12:01:27.5590081Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o.d 2023-09-06T12:01:27.5652720Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o 2023-09-06T12:01:27.5653785Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeDirectoryInformation.cmake 2023-09-06T12:01:27.5654461Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/TargetDirectories.txt 2023-09-06T12:01:27.5655076Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/progress.marks 2023-09-06T12:01:27.5655678Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile2 2023-09-06T12:01:27.5656304Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile.cmake 2023-09-06T12:01:27.5656907Z inflating: build/custom_test_artifacts/custom-backend-build/detect_cuda_version.cc 2023-09-06T12:01:27.5658910Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeCache.txt 2023-09-06T12:01:27.5659438Z inflating: build/custom_test_artifacts/custom-backend-build/Makefile 2023-09-06T12:01:27.5660089Z inflating: build/custom_test_artifacts/custom-backend-build/cmake_install.cmake 2023-09-06T12:01:27.5779113Z inflating: build/custom_test_artifacts/custom-backend-build/libcustom_backend.so 2023-09-06T12:01:27.5827193Z inflating: build/custom_test_artifacts/custom-backend-build/test_custom_backend 2023-09-06T12:01:27.5827564Z creating: build/lib/ 2023-09-06T12:01:27.5933003Z inflating: build/lib/libprotobuf-lite.a 2023-09-06T12:01:27.6474820Z inflating: build/lib/libprotobuf.a 2023-09-06T12:01:27.6483945Z inflating: build/lib/libpthreadpool.a 2023-09-06T12:01:27.6484679Z inflating: build/lib/libclog.a 2023-09-06T12:01:27.6487604Z inflating: build/lib/libnnpack_reference_layers.a 2023-09-06T12:01:27.6564033Z inflating: build/lib/libgtest.a 2023-09-06T12:01:27.6652577Z inflating: build/lib/libbenchmark.a 2023-09-06T12:01:27.6728193Z inflating: build/lib/libasmjit.a 2023-09-06T12:01:27.6736955Z inflating: build/lib/libittnotify.a 2023-09-06T12:01:27.6769994Z inflating: build/lib/libtensorpipe_uv.a 2023-09-06T12:01:27.6921013Z inflating: build/lib/libgloo.a 2023-09-06T12:01:27.6945844Z inflating: build/lib/libfmt.a 2023-09-06T12:01:27.7036689Z inflating: build/lib/libc10.so 2023-09-06T12:01:27.7038345Z inflating: build/lib/libcaffe2_nvrtc.so 2023-09-06T12:01:27.7039106Z inflating: build/lib/libfoxi_loader.a 2023-09-06T12:01:27.7040610Z inflating: build/lib/libtorch_global_deps.so 2023-09-06T12:01:27.7638962Z inflating: build/lib/libprotoc.a 2023-09-06T12:01:27.7647912Z inflating: build/lib/libcpuinfo.a 2023-09-06T12:01:27.7656702Z inflating: build/lib/libcpuinfo_internals.a 2023-09-06T12:01:27.7672717Z inflating: build/lib/libqnnpack.a 2023-09-06T12:01:27.7695419Z inflating: build/lib/libpytorch_qnnpack.a 2023-09-06T12:01:27.7716702Z inflating: build/lib/libnnpack.a 2023-09-06T12:01:27.7738125Z inflating: build/lib/libgmock.a 2023-09-06T12:01:27.7738476Z inflating: build/lib/libgtest_main.a 2023-09-06T12:01:27.7739139Z inflating: build/lib/libbenchmark_main.a 2023-09-06T12:01:27.8420073Z inflating: build/lib/libtensorpipe.a 2023-09-06T12:01:28.9036170Z inflating: build/lib/libdnnl.a 2023-09-06T12:01:28.9094981Z inflating: build/lib/libc10_cuda.so 2023-09-06T12:01:28.9095337Z inflating: build/lib/libgmock_main.a 2023-09-06T12:01:29.0584483Z inflating: build/lib/libfbgemm.a 2023-09-06T12:01:29.0887145Z inflating: build/lib/libtensorpipe_cuda.a 2023-09-06T12:01:29.1481182Z inflating: build/lib/libkineto.a 2023-09-06T12:01:29.1618421Z inflating: build/lib/libXNNPACK.a 2023-09-06T12:01:29.1664403Z inflating: build/lib/libcaffe2_protos.a 2023-09-06T12:01:29.1713800Z inflating: build/lib/libonnx_proto.a 2023-09-06T12:01:29.2174706Z inflating: build/lib/libgloo_cuda.a 2023-09-06T12:01:29.2937415Z inflating: build/lib/libonnx.a 2023-09-06T12:01:31.9659813Z inflating: build/lib/libtorch_cpu.so 2023-09-06T12:01:31.9663350Z inflating: build/lib/libunbox_lib.a 2023-09-06T12:01:34.1165434Z inflating: build/lib/libtorch_cuda.so 2023-09-06T12:01:34.1165831Z inflating: build/lib/libtorch.so 2023-09-06T12:01:35.1076091Z inflating: build/lib/libtorch_cuda_linalg.so 2023-09-06T12:01:35.1076680Z inflating: build/lib/libc10d_cuda_test.so 2023-09-06T12:01:35.1081295Z inflating: build/lib/libshm.so 2023-09-06T12:01:35.1798862Z inflating: build/lib/libnvfuser_codegen.so 2023-09-06T12:01:35.1859377Z inflating: build/lib/libtorchbind_test.so 2023-09-06T12:01:35.1883649Z inflating: build/lib/libjitbackend_test.so 2023-09-06T12:01:35.1913333Z inflating: build/lib/libbackend_with_compiler.so 2023-09-06T12:01:35.4000850Z inflating: build/lib/libtorch_python.so 2023-09-06T12:01:35.4040603Z inflating: build/lib/libnnapi_backend.so 2023-09-06T12:01:35.4040921Z creating: build/bin/ 2023-09-06T12:01:35.4100801Z inflating: build/bin/c10_CompileTimeFunctionPointer_test 2023-09-06T12:01:35.4162379Z inflating: build/bin/c10_DeviceGuard_test 2023-09-06T12:01:35.4222278Z inflating: build/bin/c10_Device_test 2023-09-06T12:01:35.4292507Z inflating: build/bin/c10_DispatchKeySet_test 2023-09-06T12:01:35.4352511Z inflating: build/bin/c10_StreamGuard_test 2023-09-06T12:01:35.4417408Z inflating: build/bin/c10_SymInt_test 2023-09-06T12:01:35.4482564Z inflating: build/bin/c10_InlineDeviceGuard_test 2023-09-06T12:01:35.4548879Z inflating: build/bin/c10_InlineStreamGuard_test 2023-09-06T12:01:35.4616214Z inflating: build/bin/c10_SizesAndStrides_test 2023-09-06T12:01:35.4679169Z inflating: build/bin/c10_context_test 2023-09-06T12:01:35.4742236Z inflating: build/bin/c10_Bitset_test 2023-09-06T12:01:35.4800959Z inflating: build/bin/c10_ConstexprCrc_test 2023-09-06T12:01:35.4859871Z inflating: build/bin/c10_DeadlockDetection_test 2023-09-06T12:01:35.4919759Z inflating: build/bin/c10_Half_test 2023-09-06T12:01:35.4986319Z inflating: build/bin/c10_LeftRight_test 2023-09-06T12:01:35.5053655Z inflating: build/bin/c10_Metaprogramming_test 2023-09-06T12:01:35.5114251Z inflating: build/bin/c10_Synchronized_test 2023-09-06T12:01:35.5180083Z inflating: build/bin/c10_ThreadLocal_test 2023-09-06T12:01:35.5241453Z inflating: build/bin/c10_TypeIndex_test 2023-09-06T12:01:35.5302508Z inflating: build/bin/c10_TypeList_test 2023-09-06T12:01:35.5361440Z inflating: build/bin/c10_TypeTraits_test 2023-09-06T12:01:35.5423042Z inflating: build/bin/c10_accumulate_test 2023-09-06T12:01:35.5489239Z inflating: build/bin/c10_bfloat16_test 2023-09-06T12:01:35.5549266Z inflating: build/bin/c10_bit_cast_test 2023-09-06T12:01:35.5616797Z inflating: build/bin/c10_complex_math_test 2023-09-06T12:01:35.5683475Z inflating: build/bin/c10_complex_test 2023-09-06T12:01:35.5813842Z inflating: build/bin/c10_either_test 2023-09-06T12:01:35.5876845Z inflating: build/bin/c10_exception_test 2023-09-06T12:01:35.5936803Z inflating: build/bin/c10_flags_test 2023-09-06T12:01:35.6132922Z inflating: build/bin/c10_intrusive_ptr_test 2023-09-06T12:01:35.6194252Z inflating: build/bin/c10_irange_test 2023-09-06T12:01:35.6260356Z inflating: build/bin/c10_logging_test 2023-09-06T12:01:35.6351349Z inflating: build/bin/c10_optional_test 2023-09-06T12:01:35.6425921Z inflating: build/bin/c10_ordered_preserving_dict_test 2023-09-06T12:01:35.6490498Z inflating: build/bin/c10_registry_test 2023-09-06T12:01:35.6671359Z inflating: build/bin/c10_small_vector_test 2023-09-06T12:01:35.6732224Z inflating: build/bin/c10_ssize_test 2023-09-06T12:01:35.6802100Z inflating: build/bin/c10_string_view_test 2023-09-06T12:01:35.6863059Z inflating: build/bin/c10_tempfile_test 2023-09-06T12:01:35.6929884Z inflating: build/bin/c10_typeid_test 2023-09-06T12:01:35.6987565Z inflating: build/bin/c10_intrusive_ptr_benchmark 2023-09-06T12:01:35.7521577Z inflating: build/bin/protoc-3.13.0.0 2023-09-06T12:01:35.8054546Z inflating: build/bin/protoc 2023-09-06T12:01:35.8117561Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_1_var_test 2023-09-06T12:01:35.8180707Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_catches_stream 2023-09-06T12:01:35.8243275Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_catches_thread_and_block_and_device 2023-09-06T12:01:35.8305741Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_from_2_processes 2023-09-06T12:01:35.8368488Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_multiple_writes_from_blocks_and_threads 2023-09-06T12:01:35.8431504Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_multiple_writes_from_multiple_blocks 2023-09-06T12:01:35.8494300Z inflating: build/bin/c10_cuda_CUDAAssertionsTest_multiple_writes_from_same_block 2023-09-06T12:01:35.8553045Z inflating: build/bin/c10_cuda_CUDATest 2023-09-06T12:01:35.8914080Z inflating: build/bin/vec_test_all_types_DEFAULT 2023-09-06T12:01:35.9292712Z inflating: build/bin/vec_test_all_types_AVX512 2023-09-06T12:01:35.9689802Z inflating: build/bin/vec_test_all_types_AVX2 2023-09-06T12:01:35.9752607Z inflating: build/bin/FileStoreTest 2023-09-06T12:01:35.9819335Z inflating: build/bin/TCPStoreTest 2023-09-06T12:01:35.9883045Z inflating: build/bin/HashStoreTest 2023-09-06T12:01:35.9899427Z inflating: build/bin/ProcessGroupMPITest 2023-09-06T12:01:35.9963462Z inflating: build/bin/test_edge_op_registration 2023-09-06T12:01:35.9966470Z inflating: build/bin/example_allreduce 2023-09-06T12:01:36.0032409Z inflating: build/bin/test_dist_autograd 2023-09-06T12:01:36.0114956Z inflating: build/bin/test_cpp_rpc 2023-09-06T12:01:36.0117548Z inflating: build/bin/parallel_benchmark 2023-09-06T12:01:36.0199698Z inflating: build/bin/test_mobile_nnc 2023-09-06T12:01:36.0208552Z inflating: build/bin/aot_model_compiler_test 2023-09-06T12:01:36.0619631Z inflating: build/bin/test_lazy 2023-09-06T12:01:36.1993872Z inflating: build/bin/test_api 2023-09-06T12:01:36.2080873Z inflating: build/bin/Dict_test 2023-09-06T12:01:36.2142673Z inflating: build/bin/Dimname_test 2023-09-06T12:01:36.2219948Z inflating: build/bin/MaybeOwned_test 2023-09-06T12:01:36.2288292Z inflating: build/bin/NamedTensor_test 2023-09-06T12:01:36.2360220Z inflating: build/bin/apply_utils_test 2023-09-06T12:01:36.2429685Z inflating: build/bin/atest 2023-09-06T12:01:36.2504816Z inflating: build/bin/basic 2023-09-06T12:01:36.2570343Z inflating: build/bin/broadcast_test 2023-09-06T12:01:36.2639623Z inflating: build/bin/cpu_generator_test 2023-09-06T12:01:36.2702974Z inflating: build/bin/cpu_profiling_allocator_test 2023-09-06T12:01:36.2811120Z inflating: build/bin/cpu_rng_test 2023-09-06T12:01:36.2870902Z inflating: build/bin/dispatch_key_set_test 2023-09-06T12:01:36.2930792Z inflating: build/bin/dlconvertor_test 2023-09-06T12:01:36.2999798Z inflating: build/bin/extension_backend_test 2023-09-06T12:01:36.3065992Z inflating: build/bin/half_test 2023-09-06T12:01:36.3178782Z inflating: build/bin/ivalue_test 2023-09-06T12:01:36.3238216Z inflating: build/bin/lazy_tensor_test 2023-09-06T12:01:36.3303130Z inflating: build/bin/math_kernel_test 2023-09-06T12:01:36.3367406Z inflating: build/bin/memory_format_test 2023-09-06T12:01:36.3430632Z inflating: build/bin/memory_overlapping_test 2023-09-06T12:01:36.3493886Z inflating: build/bin/mobile_memory_cleanup 2023-09-06T12:01:36.3560756Z inflating: build/bin/native_test 2023-09-06T12:01:36.3620692Z inflating: build/bin/operator_name_test 2023-09-06T12:01:36.3682560Z inflating: build/bin/operators_test 2023-09-06T12:01:36.3744502Z inflating: build/bin/packedtensoraccessor_test 2023-09-06T12:01:36.3823068Z inflating: build/bin/pow_test 2023-09-06T12:01:36.3891375Z inflating: build/bin/quantized_test 2023-09-06T12:01:36.3950700Z inflating: build/bin/reduce_ops_test 2023-09-06T12:01:36.4012809Z inflating: build/bin/reportMemoryUsage_test 2023-09-06T12:01:36.4080837Z inflating: build/bin/scalar_tensor_test 2023-09-06T12:01:36.4149476Z inflating: build/bin/scalar_test 2023-09-06T12:01:36.4211366Z inflating: build/bin/StorageUtils_test 2023-09-06T12:01:36.4274238Z inflating: build/bin/stride_properties_test 2023-09-06T12:01:36.4366796Z inflating: build/bin/tensor_iterator_test 2023-09-06T12:01:36.4431543Z inflating: build/bin/test_parallel 2023-09-06T12:01:36.4434351Z inflating: build/bin/thread_init_test 2023-09-06T12:01:36.4500723Z inflating: build/bin/type_ptr_test 2023-09-06T12:01:36.4562957Z inflating: build/bin/undefined_tensor_test 2023-09-06T12:01:36.4635336Z inflating: build/bin/type_test 2023-09-06T12:01:36.4694614Z inflating: build/bin/variant_test 2023-09-06T12:01:36.4696191Z inflating: build/bin/verify_api_visibility 2023-09-06T12:01:36.4778891Z inflating: build/bin/legacy_vmap_test 2023-09-06T12:01:36.4840953Z inflating: build/bin/weakref_test 2023-09-06T12:01:36.4902166Z inflating: build/bin/wrapdim_test 2023-09-06T12:01:36.4961004Z inflating: build/bin/xla_tensor_test 2023-09-06T12:01:36.5032401Z inflating: build/bin/IListRef_test 2023-09-06T12:01:36.5159525Z inflating: build/bin/List_test 2023-09-06T12:01:36.5303727Z inflating: build/bin/kernel_function_legacy_test 2023-09-06T12:01:36.5381871Z inflating: build/bin/KernelFunction_test 2023-09-06T12:01:36.5496001Z inflating: build/bin/kernel_function_test 2023-09-06T12:01:36.5647530Z inflating: build/bin/kernel_lambda_legacy_test 2023-09-06T12:01:36.5769424Z inflating: build/bin/kernel_lambda_test 2023-09-06T12:01:36.5841106Z inflating: build/bin/kernel_stackbased_test 2023-09-06T12:01:36.5902347Z inflating: build/bin/CppSignature_test 2023-09-06T12:01:36.6017912Z inflating: build/bin/make_boxed_from_unboxed_functor_test 2023-09-06T12:01:36.6075911Z inflating: build/bin/op_allowlist_test 2023-09-06T12:01:36.6143136Z inflating: build/bin/backend_fallback_test 2023-09-06T12:01:36.6497534Z inflating: build/bin/op_registration_test 2023-09-06T12:01:36.6566916Z inflating: build/bin/inline_container_test 2023-09-06T12:01:36.6630506Z inflating: build/bin/cuda_apply_test 2023-09-06T12:01:36.6713663Z inflating: build/bin/cuda_atomic_ops_test 2023-09-06T12:01:36.6778114Z inflating: build/bin/cuda_caching_host_allocator_test 2023-09-06T12:01:36.6861800Z inflating: build/bin/cuda_complex_math_test 2023-09-06T12:01:36.6932508Z inflating: build/bin/cuda_complex_test 2023-09-06T12:01:36.6991798Z inflating: build/bin/cuda_device_test 2023-09-06T12:01:36.7060727Z inflating: build/bin/cuda_cub_test 2023-09-06T12:01:36.7121444Z inflating: build/bin/cuda_dlconvertor_test 2023-09-06T12:01:36.7200785Z inflating: build/bin/cuda_distributions_test 2023-09-06T12:01:36.7269849Z inflating: build/bin/cuda_generator_test 2023-09-06T12:01:36.7328536Z inflating: build/bin/cuda_half_test 2023-09-06T12:01:36.7389544Z inflating: build/bin/cuda_integer_divider_test 2023-09-06T12:01:36.7448182Z inflating: build/bin/cuda_optional_test 2023-09-06T12:01:36.7510541Z inflating: build/bin/cuda_packedtensoraccessor_test 2023-09-06T12:01:36.7573219Z inflating: build/bin/cuda_reportMemoryUsage_test 2023-09-06T12:01:36.7646192Z inflating: build/bin/cuda_stream_test 2023-09-06T12:01:36.7704387Z inflating: build/bin/cuda_cudnn_test 2023-09-06T12:01:36.7766867Z inflating: build/bin/cuda_vectorized_test 2023-09-06T12:01:36.7784796Z inflating: build/bin/tutorial_tensorexpr 2023-09-06T12:01:36.7862817Z inflating: build/bin/ProcessGroupGlooTest 2023-09-06T12:01:36.7931078Z inflating: build/bin/ProcessGroupGlooAsyncTest 2023-09-06T12:01:36.8006085Z inflating: build/bin/ProcessGroupNCCLTest 2023-09-06T12:01:36.8073921Z inflating: build/bin/ProcessGroupNCCLErrorsTest 2023-09-06T12:01:36.9063030Z inflating: build/bin/test_tensorexpr 2023-09-06T12:01:36.9067817Z inflating: build/bin/torch_shm_manager 2023-09-06T12:01:36.9745074Z inflating: build/bin/nvfuser_tests 2023-09-06T12:01:37.0411853Z inflating: build/bin/test_jit 2023-09-06T12:01:37.0434159Z inflating: .pytorch-test-times.json 2023-09-06T12:01:37.0970879Z inflating: .pytorch-test-file-ratings.json 2023-09-06T12:01:37.1005866Z ##[group]Run df -H 2023-09-06T12:01:37.1006203Z df -H 2023-09-06T12:01:37.1025141Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:37.1025442Z env: 2023-09-06T12:01:37.1025686Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:37.1026015Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:37.1026303Z ##[endgroup] 2023-09-06T12:01:37.1082687Z Filesystem Size Used Avail Use% Mounted on 2023-09-06T12:01:37.1083234Z /dev/root 1.1T 239G 827G 23% / 2023-09-06T12:01:37.1083692Z devtmpfs 45G 0 45G 0% /dev 2023-09-06T12:01:37.1084116Z tmpfs 45G 0 45G 0% /dev/shm 2023-09-06T12:01:37.1084460Z tmpfs 9.0G 1.1M 9.0G 1% /run 2023-09-06T12:01:37.1084751Z tmpfs 5.3M 0 5.3M 0% /run/lock 2023-09-06T12:01:37.1085077Z tmpfs 45G 0 45G 0% /sys/fs/cgroup 2023-09-06T12:01:37.1085828Z /dev/loop0 16M 16M 0 100% /snap/aws-cli/130 2023-09-06T12:01:37.1086286Z /dev/loop2 124M 124M 0 100% /snap/core/15511 2023-09-06T12:01:37.1086856Z /dev/loop3 59M 59M 0 100% /snap/core18/2785 2023-09-06T12:01:37.1087379Z /dev/loop5 67M 67M 0 100% /snap/core20/1974 2023-09-06T12:01:37.1087892Z /dev/loop10 97M 97M 0 100% /snap/lxd/24061 2023-09-06T12:01:37.1088330Z /dev/loop9 97M 97M 0 100% /snap/lxd/23991 2023-09-06T12:01:37.1088933Z /dev/sda15 110M 5.5M 104M 5% /boot/efi 2023-09-06T12:01:37.1090083Z /dev/loop8 366M 366M 0 100% /snap/google-cloud-sdk/374 2023-09-06T12:01:37.1090449Z /dev/loop13 67M 67M 0 100% /snap/core20/2015 2023-09-06T12:01:37.1090756Z /dev/loop6 59M 59M 0 100% /snap/core18/2790 2023-09-06T12:01:37.1091074Z /dev/loop4 43M 43M 0 100% /snap/snapd/19993 2023-09-06T12:01:37.1091533Z /dev/loop12 366M 366M 0 100% /snap/google-cloud-sdk/376 2023-09-06T12:01:37.1091876Z /dev/loop7 112M 112M 0 100% /snap/core/15925 2023-09-06T12:01:37.1092180Z /dev/loop1 43M 43M 0 100% /snap/snapd/20092 2023-09-06T12:01:37.1122719Z ##[group]Run .github/scripts/parse_ref.py 2023-09-06T12:01:37.1123034Z .github/scripts/parse_ref.py 2023-09-06T12:01:37.1140038Z shell: /usr/bin/bash -e {0} 2023-09-06T12:01:37.1140283Z env: 2023-09-06T12:01:37.1140519Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:37.1140835Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:37.1141134Z ##[endgroup] 2023-09-06T12:01:37.1479071Z Prepare all required actions 2023-09-06T12:01:37.1479817Z Getting action download info 2023-09-06T12:01:37.3433023Z ##[group]Run ./.github/actions/filter-test-configs 2023-09-06T12:01:37.3433300Z with: 2023-09-06T12:01:37.3433898Z github-token: *** 2023-09-06T12:01:37.3435690Z test-matrix: {"include": [{"config": "inductor_huggingface_perf", "shard": 1, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 2, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 3, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 1, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 2, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 3, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 4, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 5, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 1, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 2, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 3, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 4, "num_shards": 4, "runner": "linux.gcp.a100.large"}]} 2023-09-06T12:01:37.3437867Z env: 2023-09-06T12:01:37.3438102Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:37.3438422Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:37.3438721Z ##[endgroup] 2023-09-06T12:01:37.3490719Z ##[group]Run nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482 2023-09-06T12:01:37.3491038Z with: 2023-09-06T12:01:37.3491250Z shell: bash 2023-09-06T12:01:37.3491471Z timeout_minutes: 10 2023-09-06T12:01:37.3491716Z max_attempts: 5 2023-09-06T12:01:37.3491975Z retry_wait_seconds: 30 2023-09-06T12:01:37.3492317Z command: set -eux python3 -m pip install requests==2.26.0 pyyaml==6.0 2023-09-06T12:01:37.3492652Z polling_interval_seconds: 1 2023-09-06T12:01:37.3492911Z warning_on_retry: true 2023-09-06T12:01:37.3493163Z continue_on_error: false 2023-09-06T12:01:37.3493403Z env: 2023-09-06T12:01:37.3493614Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:37.3493927Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:37.3494394Z GITHUB_TOKEN: *** 2023-09-06T12:01:37.3494629Z ##[endgroup] 2023-09-06T12:01:37.4184505Z + python3 -m pip install requests==2.26.0 pyyaml==6.0 2023-09-06T12:01:38.5615701Z Requirement already satisfied: requests==2.26.0 in /home/ubuntu/.local/lib/python3.8/site-packages (2.26.0) 2023-09-06T12:01:38.5738415Z Requirement already satisfied: pyyaml==6.0 in /home/ubuntu/.local/lib/python3.8/site-packages (6.0) 2023-09-06T12:01:38.5759704Z Requirement already satisfied: charset-normalizer~=2.0.0; python_version >= "3" in /home/ubuntu/.local/lib/python3.8/site-packages (from requests==2.26.0) (2.0.12) 2023-09-06T12:01:38.5791054Z Requirement already satisfied: idna<4,>=2.5; python_version >= "3" in /usr/lib/python3/dist-packages (from requests==2.26.0) (2.8) 2023-09-06T12:01:38.5809671Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3/dist-packages (from requests==2.26.0) (1.25.8) 2023-09-06T12:01:38.5864899Z Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests==2.26.0) (2019.11.28) 2023-09-06T12:01:39.4189693Z Command completed after 1 attempt(s). 2023-09-06T12:01:39.4244017Z ##[group]Run set -x 2023-09-06T12:01:39.4244290Z set -x 2023-09-06T12:01:39.4244515Z  2023-09-06T12:01:39.4244863Z # Use relative path here as this could be checked out anywhere, not necessarily 2023-09-06T12:01:39.4245231Z # in runner workspace 2023-09-06T12:01:39.4245755Z python3 "${GITHUB_ACTION_PATH}/../../scripts/parse_ref.py" 2023-09-06T12:01:39.4264134Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:39.4264419Z env: 2023-09-06T12:01:39.4264664Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:39.4264992Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:39.4265295Z ##[endgroup] 2023-09-06T12:01:39.4304085Z + python3 /home/weiwangmeta/actions-runner/_work/pytorch/pytorch/./.github/actions/filter-test-configs/../../scripts/parse_ref.py 2023-09-06T12:01:39.4557784Z ##[group]Run set -x 2023-09-06T12:01:39.4558057Z set -x 2023-09-06T12:01:39.4558278Z  2023-09-06T12:01:39.4558707Z # TODO: This is a very hacky way to get the job name. GitHub runner has the info 2023-09-06T12:01:39.4559163Z # but doesn't expose it in anyway. The job name is part of the job message the 2023-09-06T12:01:39.4559627Z # runner receives, so it's there and printed out to the diag log. Below is the 2023-09-06T12:01:39.4560105Z # code responsible for printing it. Need to check with GitHub to see if they can 2023-09-06T12:01:39.4560529Z # expose this variable as part of GitHub context. 2023-09-06T12:01:39.4560975Z # https://github.com/actions/runner/blob/main/src/Runner.Worker/JobExtension.cs#L345 2023-09-06T12:01:39.4561418Z pushd "/home/weiwangmeta/actions-runner/_work/pytorch/../../_diag" 2023-09-06T12:01:39.4561957Z pwd 2023-09-06T12:01:39.4562170Z  2023-09-06T12:01:39.4562491Z LOG_FILE=$(grep -l -r "3fe8417643c8d6c2b3d95552cd90321d141b5d54" *.log | tail -n 1) 2023-09-06T12:01:39.4562844Z if [ -n "${LOG_FILE}" ]; then 2023-09-06T12:01:39.4563222Z  # For some reasons, awk {print $2} on Linux and Windows (bash) work correctly while it 2023-09-06T12:01:39.4563624Z  # needs to be awk {print $3} on MacOS 2023-09-06T12:01:39.4563920Z  case ${RUNNER_OS} in 2023-09-06T12:01:39.4564169Z  macOS) 2023-09-06T12:01:39.4564545Z  JOB_NAME=$(grep -r "\"jobDisplayName\"" "${LOG_FILE}" | awk -F '[:]' '{print $3}' | sed 's/"//g' | xargs) 2023-09-06T12:01:39.4564911Z  ;; 2023-09-06T12:01:39.4565132Z  *) 2023-09-06T12:01:39.4565494Z  JOB_NAME=$(grep -r "\"jobDisplayName\"" "${LOG_FILE}" | awk -F '[:]' '{print $2}' | sed 's/"//g' | xargs) 2023-09-06T12:01:39.4565842Z  ;; 2023-09-06T12:01:39.4566060Z  esac 2023-09-06T12:01:39.4566348Z  echo "job-name=${JOB_NAME}" >> "${GITHUB_OUTPUT}" 2023-09-06T12:01:39.4566629Z fi 2023-09-06T12:01:39.4566821Z  2023-09-06T12:01:39.4567032Z popd 2023-09-06T12:01:39.4584340Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:39.4584636Z env: 2023-09-06T12:01:39.4584873Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:39.4585197Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:39.4585482Z ##[endgroup] 2023-09-06T12:01:39.4621453Z + pushd /home/weiwangmeta/actions-runner/_work/pytorch/../../_diag 2023-09-06T12:01:39.4622048Z /home/weiwangmeta/actions-runner/_diag /home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T12:01:39.4622511Z /home/weiwangmeta/actions-runner/_diag 2023-09-06T12:01:39.4622766Z + pwd 2023-09-06T12:01:39.4628834Z ++ tail -n 1 2023-09-06T12:01:39.4637421Z ++ grep -l -r 3fe8417643c8d6c2b3d95552cd90321d141b5d54 Runner_20230712-233544-utc.log Runner_20230728-044108-utc.log Runner_20230817-002357-utc.log Worker_20230807-074928-utc.log Worker_20230808-001245-utc.log Worker_20230808-082236-utc.log Worker_20230808-180931-utc.log Worker_20230808-205905-utc.log Worker_20230809-045247-utc.log Worker_20230809-055449-utc.log Worker_20230809-072732-utc.log Worker_20230809-094816-utc.log Worker_20230809-221034-utc.log Worker_20230809-230656-utc.log Worker_20230810-001744-utc.log Worker_20230810-025957-utc.log Worker_20230810-072649-utc.log Worker_20230810-130632-utc.log Worker_20230810-200840-utc.log Worker_20230811-040523-utc.log Worker_20230811-070837-utc.log Worker_20230811-103131-utc.log Worker_20230811-122424-utc.log Worker_20230812-072651-utc.log Worker_20230812-104219-utc.log Worker_20230812-172749-utc.log Worker_20230813-072704-utc.log Worker_20230813-105726-utc.log Worker_20230814-072733-utc.log Worker_20230814-200923-utc.log Worker_20230815-072808-utc.log Worker_20230815-193205-utc.log Worker_20230815-220049-utc.log Worker_20230816-072742-utc.log Worker_20230816-192814-utc.log Worker_20230816-215444-utc.log Worker_20230817-072803-utc.log Worker_20230817-195408-utc.log Worker_20230817-203320-utc.log Worker_20230818-015030-utc.log Worker_20230818-072837-utc.log Worker_20230818-155807-utc.log Worker_20230819-020519-utc.log Worker_20230819-033141-utc.log Worker_20230819-044305-utc.log Worker_20230819-072715-utc.log Worker_20230820-072708-utc.log Worker_20230821-032925-utc.log Worker_20230821-072800-utc.log Worker_20230822-072734-utc.log Worker_20230823-072717-utc.log Worker_20230824-072930-utc.log Worker_20230825-052236-utc.log Worker_20230825-084154-utc.log Worker_20230825-183119-utc.log Worker_20230825-203243-utc.log Worker_20230825-225333-utc.log Worker_20230826-072800-utc.log Worker_20230827-072801-utc.log Worker_20230828-072749-utc.log Worker_20230828-162216-utc.log Worker_20230829-023124-utc.log Worker_20230829-052444-utc.log Worker_20230829-074444-utc.log Worker_20230829-100918-utc.log Worker_20230829-121149-utc.log Worker_20230829-155512-utc.log Worker_20230829-204020-utc.log Worker_20230829-230024-utc.log Worker_20230830-011801-utc.log Worker_20230830-055427-utc.log Worker_20230830-111248-utc.log Worker_20230830-170127-utc.log Worker_20230830-225553-utc.log Worker_20230831-073216-utc.log Worker_20230831-130524-utc.log Worker_20230831-151058-utc.log Worker_20230831-184514-utc.log Worker_20230901-053519-utc.log Worker_20230901-075822-utc.log Worker_20230901-172225-utc.log Worker_20230902-010030-utc.log Worker_20230902-032054-utc.log Worker_20230902-050332-utc.log Worker_20230902-080246-utc.log Worker_20230902-113445-utc.log Worker_20230902-204932-utc.log Worker_20230903-074741-utc.log Worker_20230904-074447-utc.log Worker_20230904-112449-utc.log Worker_20230904-192229-utc.log Worker_20230905-075720-utc.log Worker_20230905-151557-utc.log Worker_20230905-182645-utc.log Worker_20230905-210803-utc.log Worker_20230906-061651-utc.log Worker_20230906-075055-utc.log Worker_20230906-105137-utc.log Worker_20230906-115310-utc.log 2023-09-06T12:01:39.5229625Z + LOG_FILE=Worker_20230906-115310-utc.log 2023-09-06T12:01:39.5230039Z + '[' -n Worker_20230906-115310-utc.log ']' 2023-09-06T12:01:39.5230315Z + case ${RUNNER_OS} in 2023-09-06T12:01:39.5235573Z ++ grep -r '"jobDisplayName"' Worker_20230906-115310-utc.log 2023-09-06T12:01:39.5236364Z ++ awk -F '[:]' '{print $2}' 2023-09-06T12:01:39.5238826Z ++ sed 's/"//g' 2023-09-06T12:01:39.5239281Z ++ xargs 2023-09-06T12:01:39.5269932Z + JOB_NAME='cuda12.1-py3.10-gcc9-sm80 / test (inductor_torchbench_perf, 1, 4, linux.gcp.a100.large),' 2023-09-06T12:01:39.5270816Z + echo 'job-name=cuda12.1-py3.10-gcc9-sm80 / test (inductor_torchbench_perf, 1, 4, linux.gcp.a100.large),' 2023-09-06T12:01:39.5271165Z + popd 2023-09-06T12:01:39.5271534Z /home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T12:01:39.5294641Z ##[group]Run echo "Workflow: ${GITHUB_WORKFLOW}" 2023-09-06T12:01:39.5295022Z echo "Workflow: ${GITHUB_WORKFLOW}" 2023-09-06T12:01:39.5295334Z echo "Job name: ${JOB_NAME}" 2023-09-06T12:01:39.5295568Z  2023-09-06T12:01:39.5295918Z # Use relative path here as this could be checked out anywhere, not necessarily 2023-09-06T12:01:39.5296296Z # in runner workspace 2023-09-06T12:01:39.5296647Z python3 "${GITHUB_ACTION_PATH}/../../scripts/filter_test_configs.py" \ 2023-09-06T12:01:39.5297000Z  --workflow "${GITHUB_WORKFLOW}" \ 2023-09-06T12:01:39.5297291Z  --job-name "${JOB_NAME}" \ 2023-09-06T12:01:39.5299199Z  --test-matrix "{"include": [{"config": "inductor_huggingface_perf", "shard": 1, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 2, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 3, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 1, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 2, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 3, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 4, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 5, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 1, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 2, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 3, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 4, "num_shards": 4, "runner": "linux.gcp.a100.large"}]}" \ 2023-09-06T12:01:39.5301123Z  --pr-number "${PR_NUMBER}" \ 2023-09-06T12:01:39.5301401Z  --tag "${TAG}" \ 2023-09-06T12:01:39.5301676Z  --event-name "${EVENT_NAME}" \ 2023-09-06T12:01:39.5302094Z  --schedule "${SCHEDULE}" \ 2023-09-06T12:01:39.5302362Z  --branch "${HEAD_BRANCH}" 2023-09-06T12:01:39.5319833Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:39.5320141Z env: 2023-09-06T12:01:39.5320380Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:39.5320706Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:39.5321201Z GITHUB_TOKEN: *** 2023-09-06T12:01:39.5321570Z JOB_NAME: cuda12.1-py3.10-gcc9-sm80 / test (inductor_torchbench_perf, 1, 4, linux.gcp.a100.large), 2023-09-06T12:01:39.5321939Z PR_NUMBER: 2023-09-06T12:01:39.5322157Z TAG: 2023-09-06T12:01:39.5322387Z EVENT_NAME: schedule 2023-09-06T12:01:39.5322627Z SCHEDULE: 0 7 * * 1-6 2023-09-06T12:01:39.5322870Z HEAD_BRANCH: 2023-09-06T12:01:39.5323095Z ##[endgroup] 2023-09-06T12:01:39.5358067Z Workflow: inductor-A100-perf-nightly 2023-09-06T12:01:39.5358678Z Job name: cuda12.1-py3.10-gcc9-sm80 / test (inductor_torchbench_perf, 1, 4, linux.gcp.a100.large), 2023-09-06T12:01:39.9867546Z fatal: unknown commit main 2023-09-06T12:01:39.9892245Z /home/weiwangmeta/actions-runner/_work/pytorch/pytorch/./.github/actions/filter-test-configs/../../scripts/filter_test_configs.py:471: UserWarning: failed to get commit messages: Command '['git', 'cherry', '-v', 'main']' returned non-zero exit status 128. 2023-09-06T12:01:39.9893017Z warnings.warn(f"failed to get commit messages: {e}") 2023-09-06T12:01:40.0027971Z ##[group]Run echo "Filtered matrix:" 2023-09-06T12:01:40.0028317Z echo "Filtered matrix:" 2023-09-06T12:01:40.0030485Z echo "{"include": [{"config": "inductor_huggingface_perf", "shard": 1, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 2, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_huggingface_perf", "shard": 3, "num_shards": 3, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 1, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 2, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 3, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 4, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_timm_perf", "shard": 5, "num_shards": 5, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 1, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 2, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 3, "num_shards": 4, "runner": "linux.gcp.a100.large"}, {"config": "inductor_torchbench_perf", "shard": 4, "num_shards": 4, "runner": "linux.gcp.a100.large"}]}" 2023-09-06T12:01:40.0032408Z  2023-09-06T12:01:40.0032680Z echo 2023-09-06T12:01:40.0032970Z echo "Is the current job unstable? False" 2023-09-06T12:01:40.0033260Z  2023-09-06T12:01:40.0033471Z echo 2023-09-06T12:01:40.0033734Z echo "Is keep-going label set? False" 2023-09-06T12:01:40.0034004Z  2023-09-06T12:01:40.0034214Z echo 2023-09-06T12:01:40.0034465Z echo "Renabled issues? " 2023-09-06T12:01:40.0052886Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:40.0053190Z env: 2023-09-06T12:01:40.0053429Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:40.0053755Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:40.0054050Z ##[endgroup] 2023-09-06T12:01:40.0091757Z Filtered matrix: 2023-09-06T12:01:40.0095031Z {include: [{config: inductor_huggingface_perf, shard: 1, num_shards: 3, runner: linux.gcp.a100.large}, {config: inductor_huggingface_perf, shard: 2, num_shards: 3, runner: linux.gcp.a100.large}, {config: inductor_huggingface_perf, shard: 3, num_shards: 3, runner: linux.gcp.a100.large}, {config: inductor_timm_perf, shard: 1, num_shards: 5, runner: linux.gcp.a100.large}, {config: inductor_timm_perf, shard: 2, num_shards: 5, runner: linux.gcp.a100.large}, {config: inductor_timm_perf, shard: 3, num_shards: 5, runner: linux.gcp.a100.large}, {config: inductor_timm_perf, shard: 4, num_shards: 5, runner: linux.gcp.a100.large}, {config: inductor_timm_perf, shard: 5, num_shards: 5, runner: linux.gcp.a100.large}, {config: inductor_torchbench_perf, shard: 1, num_shards: 4, runner: linux.gcp.a100.large}, {config: inductor_torchbench_perf, shard: 2, num_shards: 4, runner: linux.gcp.a100.large}, {config: inductor_torchbench_perf, shard: 3, num_shards: 4, runner: linux.gcp.a100.large}, {config: inductor_torchbench_perf, shard: 4, num_shards: 4, runner: linux.gcp.a100.large}]} 2023-09-06T12:01:40.0097141Z 2023-09-06T12:01:40.0097278Z Is the current job unstable? False 2023-09-06T12:01:40.0097463Z 2023-09-06T12:01:40.0097787Z Is keep-going label set? False 2023-09-06T12:01:40.0097949Z 2023-09-06T12:01:40.0098050Z Renabled issues? 2023-09-06T12:01:40.0129575Z Prepare all required actions 2023-09-06T12:01:40.0129931Z Getting action download info 2023-09-06T12:01:40.2425985Z ##[group]Run ./.github/actions/pytest-cache-download 2023-09-06T12:01:40.2426290Z with: 2023-09-06T12:01:40.2426511Z cache_dir: .pytest_cache 2023-09-06T12:01:40.2426948Z job_identifier: inductor-A100-perf-nightly_linux-focal-cuda12.1-py3.10-gcc9-sm80_test_inductor_torchbench_perf 2023-09-06T12:01:40.2427343Z env: 2023-09-06T12:01:40.2427567Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:40.2427873Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:40.2428165Z ##[endgroup] 2023-09-06T12:01:40.2460006Z ##[group]Run nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482 2023-09-06T12:01:40.2460327Z with: 2023-09-06T12:01:40.2460538Z shell: bash 2023-09-06T12:01:40.2460770Z timeout_minutes: 5 2023-09-06T12:01:40.2460996Z max_attempts: 5 2023-09-06T12:01:40.2461239Z retry_wait_seconds: 30 2023-09-06T12:01:40.2461612Z command: set -eu python3 -m pip install boto3==1.19.12 2023-09-06T12:01:40.2461939Z polling_interval_seconds: 1 2023-09-06T12:01:40.2462199Z warning_on_retry: true 2023-09-06T12:01:40.2462453Z continue_on_error: false 2023-09-06T12:01:40.2462808Z env: 2023-09-06T12:01:40.2463022Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:40.2463334Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:40.2463629Z ##[endgroup] 2023-09-06T12:01:41.4375717Z Requirement already satisfied: boto3==1.19.12 in /home/ubuntu/.local/lib/python3.8/site-packages (1.19.12) 2023-09-06T12:01:41.4435697Z Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /home/ubuntu/.local/lib/python3.8/site-packages (from boto3==1.19.12) (0.10.0) 2023-09-06T12:01:41.4456033Z Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /home/ubuntu/.local/lib/python3.8/site-packages (from boto3==1.19.12) (0.5.2) 2023-09-06T12:01:41.4489050Z Requirement already satisfied: botocore<1.23.0,>=1.22.12 in /home/ubuntu/.local/lib/python3.8/site-packages (from boto3==1.19.12) (1.22.12) 2023-09-06T12:01:41.4538379Z Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ubuntu/.local/lib/python3.8/site-packages (from botocore<1.23.0,>=1.22.12->boto3==1.19.12) (2.8.2) 2023-09-06T12:01:41.4563402Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/lib/python3/dist-packages (from botocore<1.23.0,>=1.22.12->boto3==1.19.12) (1.25.8) 2023-09-06T12:01:41.4621400Z Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.23.0,>=1.22.12->boto3==1.19.12) (1.14.0) 2023-09-06T12:01:42.3118035Z Command completed after 1 attempt(s). 2023-09-06T12:01:42.3171373Z ##[group]Run python3 .github/scripts/pytest_cache.py \ 2023-09-06T12:01:42.3171778Z python3 .github/scripts/pytest_cache.py \ 2023-09-06T12:01:42.3172078Z  --download \ 2023-09-06T12:01:42.3172380Z  --cache_dir $GITHUB_WORKSPACE/$CACHE_DIR \ 2023-09-06T12:01:42.3172781Z  --pr_identifier $GITHUB_REF \ 2023-09-06T12:01:42.3173311Z  --job_identifier $JOB_IDENTIFIER \ 2023-09-06T12:01:42.3173611Z  --temp_dir $RUNNER_TEMP \ 2023-09-06T12:01:42.3173880Z  --repo $REPO \ 2023-09-06T12:01:42.3192323Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:42.3192684Z env: 2023-09-06T12:01:42.3192911Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:42.3193234Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:42.3193547Z CACHE_DIR: .pytest_cache 2023-09-06T12:01:42.3193989Z JOB_IDENTIFIER: inductor-A100-perf-nightly_linux-focal-cuda12.1-py3.10-gcc9-sm80_test_inductor_torchbench_perf 2023-09-06T12:01:42.3194404Z REPO: pytorch/pytorch 2023-09-06T12:01:42.3194644Z ##[endgroup] 2023-09-06T12:01:42.7307322Z PR identifier for `refs/heads/main` is `96e092540d6b3c4076e3d2bc6f1f9013` 2023-09-06T12:01:42.7309709Z Downloading cache with args Namespace(bucket=None, cache_dir='/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/.pytest_cache', download=True, job_identifier='inductor-A100-perf-nightly_linux-focal-cuda12.1-py3.10-gcc9-sm80_test_inductor_torchbench_perf', pr_identifier='refs/heads/main', repo='pytorch/pytorch', shard=None, temp_dir='/home/weiwangmeta/actions-runner/_work/_temp', upload=False) 2023-09-06T12:01:42.7311211Z There were no files matching the prefix `pytest_cache/pytorch/pytorch/96e092540d6b3c4076e3d2bc6f1f9013/inductor-A100-perf-nightly_linux-focal-cuda12_1-py3_10-gcc9-sm80_test_inductor_torchbench_perf` in bucket `gha-artifacts` 2023-09-06T12:01:42.7815950Z ##[group]Run echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}" 2023-09-06T12:01:42.7816371Z echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}" 2023-09-06T12:01:42.7834677Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T12:01:42.7834983Z env: 2023-09-06T12:01:42.7835206Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:42.7835526Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:42.7835826Z JOB_TIMEOUT: 720 2023-09-06T12:01:42.7836075Z ##[endgroup] 2023-09-06T12:01:42.7930270Z ##[group]Run set -x 2023-09-06T12:01:42.7930611Z set -x 2023-09-06T12:01:42.7930834Z  2023-09-06T12:01:42.7931105Z if [[ $TEST_CONFIG == 'multigpu' ]]; then 2023-09-06T12:01:42.7931451Z  TEST_COMMAND=.ci/pytorch/multigpu-test.sh 2023-09-06T12:01:42.7931785Z elif [[ $BUILD_ENVIRONMENT == *onnx* ]]; then 2023-09-06T12:01:42.7932110Z  TEST_COMMAND=.ci/onnx/test.sh 2023-09-06T12:01:42.7932371Z else 2023-09-06T12:01:42.7932631Z  TEST_COMMAND=.ci/pytorch/test.sh 2023-09-06T12:01:42.7932876Z fi 2023-09-06T12:01:42.7933169Z  2023-09-06T12:01:42.7933492Z # detached container should get cleaned up by teardown_ec2_linux 2023-09-06T12:01:42.7933917Z # TODO: Stop building test binaries as part of the build phase 2023-09-06T12:01:42.7934293Z # Used for GPU_FLAG since that doesn't play nice 2023-09-06T12:01:42.7934694Z # shellcheck disable=SC2086,SC2090 2023-09-06T12:01:42.7934999Z container_name=$(docker run \ 2023-09-06T12:01:42.7935258Z  ${GPU_FLAG:-} \ 2023-09-06T12:01:42.7935524Z  -e BUILD_ENVIRONMENT \ 2023-09-06T12:01:42.7935795Z  -e PR_NUMBER \ 2023-09-06T12:01:42.7936054Z  -e GITHUB_ACTIONS \ 2023-09-06T12:01:42.7936312Z  -e GITHUB_REPOSITORY \ 2023-09-06T12:01:42.7936587Z  -e GITHUB_WORKFLOW \ 2023-09-06T12:01:42.7936845Z  -e GITHUB_JOB \ 2023-09-06T12:01:42.7937094Z  -e GITHUB_RUN_ID \ 2023-09-06T12:01:42.7937344Z  -e GITHUB_RUN_NUMBER \ 2023-09-06T12:01:42.7937617Z  -e GITHUB_RUN_ATTEMPT \ 2023-09-06T12:01:42.7937878Z  -e BASE_SHA \ 2023-09-06T12:01:42.7938119Z  -e BRANCH \ 2023-09-06T12:01:42.7938344Z  -e SHA1 \ 2023-09-06T12:01:42.7938596Z  -e AWS_DEFAULT_REGION \ 2023-09-06T12:01:42.7938862Z  -e IN_WHEEL_TEST \ 2023-09-06T12:01:42.7939324Z  -e SHARD_NUMBER \ 2023-09-06T12:01:42.7939579Z  -e TEST_CONFIG \ 2023-09-06T12:01:42.7939840Z  -e NUM_TEST_SHARDS \ 2023-09-06T12:01:42.7940106Z  -e REENABLED_ISSUES \ 2023-09-06T12:01:42.7940377Z  -e CONTINUE_THROUGH_ERROR \ 2023-09-06T12:01:42.7940674Z  -e PYTORCH_RETRY_TEST_CASES \ 2023-09-06T12:01:42.7940983Z  -e PYTORCH_OVERRIDE_FLAKY_SIGNAL \ 2023-09-06T12:01:42.7941266Z  -e PR_LABELS \ 2023-09-06T12:01:42.7941547Z  -e MAX_JOBS="$(nproc --ignore=2)" \ 2023-09-06T12:01:42.7941819Z  -e SCCACHE_BUCKET \ 2023-09-06T12:01:42.7942091Z  -e SCCACHE_S3_KEY_PREFIX \ 2023-09-06T12:01:42.7942354Z  -e XLA_CUDA \ 2023-09-06T12:01:42.7942630Z  -e XLA_CLANG_CACHE_S3_BUCKET_NAME \ 2023-09-06T12:01:42.7942932Z  -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK \ 2023-09-06T12:01:42.7943317Z  -e PYTORCH_TEST_RERUN_DISABLED_TESTS \ 2023-09-06T12:01:42.7943655Z  -e SKIP_SCCACHE_INITIALIZATION=1 \ 2023-09-06T12:01:42.7943960Z  -e HUGGING_FACE_HUB_TOKEN \ 2023-09-06T12:01:42.7944219Z  -e DASHBOARD_TAG \ 2023-09-06T12:01:42.7944528Z  --env-file="/tmp/github_env_${GITHUB_RUN_ID}" \ 2023-09-06T12:01:42.7944839Z  --ulimit stack=10485760:83886080 \ 2023-09-06T12:01:42.7945144Z  --security-opt seccomp=unconfined \ 2023-09-06T12:01:42.7945426Z  --cap-add=SYS_PTRACE \ 2023-09-06T12:01:42.7945679Z  --ipc=host \ 2023-09-06T12:01:42.7945936Z  --shm-size="${SHM_SIZE}" \ 2023-09-06T12:01:42.7946183Z  --tty \ 2023-09-06T12:01:42.7946402Z  --detach \ 2023-09-06T12:01:42.7946692Z  --name="${container_name}" \ 2023-09-06T12:01:42.7946961Z  --user jenkins \ 2023-09-06T12:01:42.7947281Z  -v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \ 2023-09-06T12:01:42.7947605Z  -w /var/lib/jenkins/workspace \ 2023-09-06T12:01:42.7948025Z  "${DOCKER_IMAGE}" 2023-09-06T12:01:42.7948263Z ) 2023-09-06T12:01:42.7948564Z # Propagate download.pytorch.org IP to container 2023-09-06T12:01:42.7949044Z grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts" 2023-09-06T12:01:42.7949728Z echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}" 2023-09-06T12:01:42.7950189Z docker exec -t "${container_name}" sh -c "pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}" 2023-09-06T12:01:42.7967084Z shell: /usr/bin/bash -e {0} 2023-09-06T12:01:42.7967329Z env: 2023-09-06T12:01:42.7967547Z GIT_DEFAULT_BRANCH: main 2023-09-06T12:01:42.7967873Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:42.7968266Z BUILD_ENVIRONMENT: linux-focal-cuda12.1-py3.10-gcc9-sm80 2023-09-06T12:01:42.7968579Z PR_NUMBER: 2023-09-06T12:01:42.7968829Z GITHUB_REPOSITORY: pytorch/pytorch 2023-09-06T12:01:42.7969185Z GITHUB_WORKFLOW: inductor-A100-perf-nightly 2023-09-06T12:01:42.7969477Z GITHUB_JOB: test 2023-09-06T12:01:42.7969721Z GITHUB_RUN_ID: 6093795712 2023-09-06T12:01:42.7969973Z GITHUB_RUN_NUMBER: 1033 2023-09-06T12:01:42.7970228Z GITHUB_RUN_ATTEMPT: 1 2023-09-06T12:01:42.7970470Z BRANCH: main 2023-09-06T12:01:42.7970739Z SHA1: 3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:42.7971045Z BASE_SHA: 3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:42.7971341Z PYTORCH_RETRY_TEST_CASES: 1 2023-09-06T12:01:42.7971626Z PYTORCH_OVERRIDE_FLAKY_SIGNAL: 1 2023-09-06T12:01:42.7971964Z TEST_CONFIG: inductor_torchbench_perf 2023-09-06T12:01:42.7972223Z SHARD_NUMBER: 1 2023-09-06T12:01:42.7972456Z NUM_TEST_SHARDS: 4 2023-09-06T12:01:42.7972699Z REENABLED_ISSUES: 2023-09-06T12:01:42.7972959Z CONTINUE_THROUGH_ERROR: False 2023-09-06T12:01:42.7973319Z SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2 2023-09-06T12:01:42.7973905Z SCCACHE_S3_KEY_PREFIX: inductor-A100-perf-nightly 2023-09-06T12:01:42.7974197Z SHM_SIZE: 2g 2023-09-06T12:01:42.7974750Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T12:01:42.7975285Z XLA_CUDA: 2023-09-06T12:01:42.7975621Z XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla 2023-09-06T12:01:42.7976002Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: 0 2023-09-06T12:01:42.7976298Z PYTORCH_TEST_RERUN_DISABLED_TESTS: 0 2023-09-06T12:01:42.7977032Z DASHBOARD_TAG: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true 2023-09-06T12:01:42.7977855Z HUGGING_FACE_HUB_TOKEN: *** 2023-09-06T12:01:42.7978093Z ##[endgroup] 2023-09-06T12:01:42.8014374Z + [[ inductor_torchbench_perf == \m\u\l\t\i\g\p\u ]] 2023-09-06T12:01:42.8015090Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *onnx* ]] 2023-09-06T12:01:42.8015454Z + TEST_COMMAND=.ci/pytorch/test.sh 2023-09-06T12:01:42.8026799Z +++ nproc --ignore=2 2023-09-06T12:01:42.8040750Z ++ docker run --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all -e BUILD_ENVIRONMENT -e PR_NUMBER -e GITHUB_ACTIONS -e GITHUB_REPOSITORY -e GITHUB_WORKFLOW -e GITHUB_JOB -e GITHUB_RUN_ID -e GITHUB_RUN_NUMBER -e GITHUB_RUN_ATTEMPT -e BASE_SHA -e BRANCH -e SHA1 -e AWS_DEFAULT_REGION -e IN_WHEEL_TEST -e SHARD_NUMBER -e TEST_CONFIG -e NUM_TEST_SHARDS -e REENABLED_ISSUES -e CONTINUE_THROUGH_ERROR -e PYTORCH_RETRY_TEST_CASES -e PYTORCH_OVERRIDE_FLAKY_SIGNAL -e PR_LABELS -e MAX_JOBS=10 -e SCCACHE_BUCKET -e SCCACHE_S3_KEY_PREFIX -e XLA_CUDA -e XLA_CLANG_CACHE_S3_BUCKET_NAME -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK -e PYTORCH_TEST_RERUN_DISABLED_TESTS -e SKIP_SCCACHE_INITIALIZATION=1 -e HUGGING_FACE_HUB_TOKEN -e DASHBOARD_TAG --env-file=/tmp/github_env_6093795712 --ulimit stack=10485760:83886080 --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --ipc=host --shm-size=2g --tty --detach --name= --user jenkins -v /home/weiwangmeta/actions-runner/_work/pytorch/pytorch:/var/lib/jenkins/workspace -w /var/lib/jenkins/workspace 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T12:01:46.3651874Z + container_name=36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T12:01:46.3653619Z + grep download.pytorch.org /etc/hosts 2023-09-06T12:01:46.3656686Z + docker exec -i 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 sudo bash -c '/bin/cat >> /etc/hosts' 2023-09-06T12:01:46.4542134Z sudo: setrlimit(RLIMIT_STACK): Operation not permitted 2023-09-06T12:01:46.4603493Z + echo DOCKER_CONTAINER_ID=36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T12:01:46.4609558Z ++ echo dist/torch-2.2.0a0+git3fe8417-cp310-cp310-linux_x86_64.whl 2023-09-06T12:01:46.4612291Z + docker exec -t 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 sh -c 'pip install dist/torch-2.2.0a0+git3fe8417-cp310-cp310-linux_x86_64.whl[opt-einsum] && .ci/pytorch/test.sh' 2023-09-06T12:01:46.9672118Z Processing ./dist/torch-2.2.0a0+git3fe8417-cp310-cp310-linux_x86_64.whl 2023-09-06T12:01:47.9578627Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (3.9.0) 2023-09-06T12:01:47.9579516Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (4.7.1) 2023-09-06T12:01:47.9585070Z Requirement already satisfied: sympy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (1.12) 2023-09-06T12:01:47.9590499Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (2.8.8) 2023-09-06T12:01:47.9594039Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (3.1.2) 2023-09-06T12:01:47.9598524Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (2023.4.0) 2023-09-06T12:01:47.9610940Z Requirement already satisfied: opt-einsum>=3.3 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch==2.2.0a0+git3fe8417) (3.3.0) 2023-09-06T12:01:47.9682255Z Requirement already satisfied: numpy>=1.7 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from opt-einsum>=3.3->torch==2.2.0a0+git3fe8417) (1.21.2) 2023-09-06T12:01:48.0159084Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch==2.2.0a0+git3fe8417) (2.1.3) 2023-09-06T12:01:48.0346943Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy->torch==2.2.0a0+git3fe8417) (1.3.0) 2023-09-06T12:01:49.4466025Z Installing collected packages: torch 2023-09-06T12:01:59.6615211Z Successfully installed torch-2.2.0a0+git3fe8417 2023-09-06T12:01:59.7491696Z + echo 'Environment variables:' 2023-09-06T12:01:59.7492093Z Environment variables: 2023-09-06T12:01:59.7492562Z + env 2023-09-06T12:01:59.7501432Z INSTALLED_DB=yes 2023-09-06T12:01:59.7502105Z NV_LIBCUBLAS_VERSION=12.1.3.1-1 2023-09-06T12:01:59.7502546Z NVIDIA_VISIBLE_DEVICES=all 2023-09-06T12:01:59.7503032Z NV_NVML_DEV_VERSION=12.1.105-1 2023-09-06T12:01:59.7503925Z GITHUB_WORKSPACE=/home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T12:01:59.7504438Z CONTINUE_THROUGH_ERROR=False 2023-09-06T12:01:59.7505388Z NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 2023-09-06T12:01:59.7506034Z NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 2023-09-06T12:01:59.7506771Z BUILD_ENVIRONMENT=linux-focal-cuda12.1-py3.10-gcc9-sm80 2023-09-06T12:01:59.7507310Z PYTORCH_OVERRIDE_FLAKY_SIGNAL=1 2023-09-06T12:01:59.7507789Z HOSTNAME=36c47af667b5 2023-09-06T12:01:59.7508793Z GITHUB_PATH=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/add_path_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7510175Z GITHUB_ACTION=__self 2023-09-06T12:01:59.7510649Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2023-09-06T12:01:59.7514779Z NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 2023-09-06T12:01:59.7519325Z NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 2023-09-06T12:01:59.7519951Z NV_NVTX_VERSION=12.1.105-1 2023-09-06T12:01:59.7520374Z GITHUB_RUN_NUMBER=1033 2023-09-06T12:01:59.7520897Z TEST_CONFIG=inductor_torchbench_perf 2023-09-06T12:01:59.7521506Z GITHUB_REPOSITORY_OWNER_ID=21003710 2023-09-06T12:01:59.7522479Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2023-09-06T12:01:59.7523110Z NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 2023-09-06T12:01:59.7523694Z NV_LIBCUSPARSE_VERSION=12.1.0.106-1 2023-09-06T12:01:59.7524201Z NV_LIBNPP_VERSION=12.1.0.40-1 2023-09-06T12:01:59.7524751Z GITHUB_TRIGGERING_ACTOR=pytorchmergebot 2023-09-06T12:01:59.7525318Z CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache 2023-09-06T12:01:59.7525816Z GITHUB_REF_TYPE=branch 2023-09-06T12:01:59.7526292Z TORCH_CUDA_ARCH_LIST=Maxwell 2023-09-06T12:01:59.7526767Z NCCL_VERSION=2.17.1-1 2023-09-06T12:01:59.7527297Z BASE_SHA=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7527735Z XLA_CUDA= 2023-09-06T12:01:59.7528968Z HUGGING_FACE_HUB_TOKEN=*** 2023-09-06T12:01:59.7534261Z *** 2023-09-06T12:01:59.7534748Z CARGO_NET_GIT_FETCH_WITH_CLI=true 2023-09-06T12:01:59.7535217Z GITHUB_REPOSITORY_ID=65600975 2023-09-06T12:01:59.7535702Z GITHUB_ACTIONS=true 2023-09-06T12:01:59.7536141Z NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:59.7536969Z NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 2023-09-06T12:01:59.7537680Z NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 2023-09-06T12:01:59.7538199Z SHA1=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7538874Z NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev 2023-09-06T12:01:59.7539457Z GITHUB_SHA=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7540503Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/inductor-perf-test-nightly.yml@refs/heads/main 2023-09-06T12:01:59.7541160Z UCC_HOME=/usr 2023-09-06T12:01:59.7541659Z NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 2023-09-06T12:01:59.7542164Z NVIDIA_PRODUCT_NAME=CUDA 2023-09-06T12:01:59.7542803Z NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 2023-09-06T12:01:59.7543435Z GITHUB_REF=refs/heads/main 2023-09-06T12:01:59.7543937Z NV_NSIGHT_COMPUTE_VERSION=12.1.1-1 2023-09-06T12:01:59.7544492Z NV_CUDA_CUDART_VERSION=12.1.105-1 2023-09-06T12:01:59.7544930Z SHARD_NUMBER=1 2023-09-06T12:01:59.7545381Z GITHUB_REF_PROTECTED=true 2023-09-06T12:01:59.7546112Z HOME=/var/lib/jenkins 2023-09-06T12:01:59.7546608Z GITHUB_API_URL=https://api.github.com 2023-09-06T12:01:59.7547181Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2023-09-06T12:01:59.7547563Z UCX_COMMIT=00bcc6bb18fc282eb160623b4c0d300147f579af 2023-09-06T12:01:59.7548372Z SCCACHE_S3_KEY_PREFIX=inductor-A100-perf-nightly 2023-09-06T12:01:59.7548674Z CUDA_VERSION=12.1.1 2023-09-06T12:01:59.7549032Z NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 2023-09-06T12:01:59.7549739Z NUM_TEST_SHARDS=4 2023-09-06T12:01:59.7550088Z UCX_HOME=/usr 2023-09-06T12:01:59.7550671Z GITHUB_STATE=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/save_state_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7551071Z PYTORCH_RETRY_TEST_CASES=1 2023-09-06T12:01:59.7551814Z GITHUB_ENV=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/set_env_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7552454Z GITHUB_EVENT_PATH=/home/weiwangmeta/actions-runner/_work/_temp/_github_workflow/event.json 2023-09-06T12:01:59.7552832Z GITHUB_EVENT_NAME=schedule 2023-09-06T12:01:59.7553674Z DASHBOARD_TAG=training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true 2023-09-06T12:01:59.7554318Z GITHUB_RUN_ID=6093795712 2023-09-06T12:01:59.7554690Z NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 2023-09-06T12:01:59.7555080Z NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 2023-09-06T12:01:59.7555942Z GITHUB_STEP_SUMMARY=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/step_summary_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7556388Z GITHUB_ACTOR=pytorchmergebot 2023-09-06T12:01:59.7556708Z NV_LIBNPP_DEV_VERSION=12.1.0.40-1 2023-09-06T12:01:59.7556957Z PR_NUMBER= 2023-09-06T12:01:59.7557175Z GITHUB_RUN_ATTEMPT=1 2023-09-06T12:01:59.7557588Z NV_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 2023-09-06T12:01:59.7557919Z ANACONDA_PYTHON_VERSION=3.10 2023-09-06T12:01:59.7558247Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2023-09-06T12:01:59.7558751Z TERM=xterm 2023-09-06T12:01:59.7559044Z NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 2023-09-06T12:01:59.7559316Z INSTALLED_VISION=yes 2023-09-06T12:01:59.7559551Z BRANCH=main 2023-09-06T12:01:59.7559778Z OPENSSL_ROOT_DIR=/opt/openssl 2023-09-06T12:01:59.7560064Z LIBRARY_PATH=/usr/local/cuda/lib64/stubs 2023-09-06T12:01:59.7560343Z CUDA_PATH=/usr/local/cuda 2023-09-06T12:01:59.7560859Z GITHUB_ACTION_PATH=/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2023-09-06T12:01:59.7561259Z GITHUB_SERVER_URL=https://github.com 2023-09-06T12:01:59.7561600Z UCC_COMMIT=7cb07a76ccedad7e56ceb136b865eb9319c258ea 2023-09-06T12:01:59.7561898Z REENABLED_ISSUES= 2023-09-06T12:01:59.7562121Z SHLVL=1 2023-09-06T12:01:59.7562313Z MAX_JOBS=10 2023-09-06T12:01:59.7562611Z NV_CUDA_LIB_VERSION=12.1.1-1 2023-09-06T12:01:59.7563027Z NVARCH=x86_64 2023-09-06T12:01:59.7563318Z GITHUB_ACTOR_ID=97764156 2023-09-06T12:01:59.7563616Z GITHUB_WORKFLOW_SHA=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7563928Z GITHUB_REF_NAME=main 2023-09-06T12:01:59.7564284Z NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 2023-09-06T12:01:59.7564768Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2023-09-06T12:01:59.7565107Z GITHUB_JOB=test 2023-09-06T12:01:59.7565449Z NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 2023-09-06T12:01:59.7565798Z LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 2023-09-06T12:01:59.7566128Z GITHUB_REPOSITORY=pytorch/pytorch 2023-09-06T12:01:59.7566419Z NV_NVPROF_VERSION=12.1.105-1 2023-09-06T12:01:59.7566680Z GITHUB_RETENTION_DAYS=90 2023-09-06T12:01:59.7566939Z OPENSSL_DIR=/opt/openssl 2023-09-06T12:01:59.7567200Z GITHUB_ACTION_REPOSITORY= 2023-09-06T12:01:59.7567654Z PATH=/opt/cache/bin:/opt/conda/envs/py_3.10/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-09-06T12:01:59.7568077Z GITHUB_BASE_REF= 2023-09-06T12:01:59.7568334Z NV_LIBNCCL_PACKAGE_NAME=libnccl2 2023-09-06T12:01:59.7568754Z CI=true 2023-09-06T12:01:59.7569026Z NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 2023-09-06T12:01:59.7569312Z GITHUB_REPOSITORY_OWNER=pytorch 2023-09-06T12:01:59.7569581Z INSTALLED_PROTOBUF=yes 2023-09-06T12:01:59.7569812Z GITHUB_HEAD_REF= 2023-09-06T12:01:59.7570050Z GITHUB_ACTION_REF= 2023-09-06T12:01:59.7570431Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2023-09-06T12:01:59.7570855Z GITHUB_WORKFLOW=inductor-A100-perf-nightly 2023-09-06T12:01:59.7571149Z DEBIAN_FRONTEND=noninteractive 2023-09-06T12:01:59.7571741Z GITHUB_OUTPUT=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/set_output_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7572167Z SKIP_SCCACHE_INITIALIZATION=1 2023-09-06T12:01:59.7572422Z _=/usr/bin/env 2023-09-06T12:01:59.7572803Z ++ python -c 'import site; print(site.getsitepackages()[0])' 2023-09-06T12:01:59.7712974Z + TORCH_INSTALL_DIR=/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch 2023-09-06T12:01:59.7713947Z + TORCH_BIN_DIR=/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/bin 2023-09-06T12:01:59.7714975Z + TORCH_LIB_DIR=/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/lib 2023-09-06T12:01:59.7715954Z + TORCH_TEST_DIR=/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/test 2023-09-06T12:01:59.7716478Z + BUILD_DIR=build 2023-09-06T12:01:59.7716738Z + BUILD_RENAMED_DIR=build_renamed 2023-09-06T12:01:59.7717033Z + BUILD_BIN_DIR=build/bin 2023-09-06T12:01:59.7717480Z + export VALGRIND=ON 2023-09-06T12:01:59.7717857Z + VALGRIND=ON 2023-09-06T12:01:59.7718695Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *clang9* ]] 2023-09-06T12:01:59.7719222Z + [[ 0 == \1 ]] 2023-09-06T12:01:59.7719650Z + [[ False == \1 ]] 2023-09-06T12:01:59.7720331Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 != *bazel* ]] 2023-09-06T12:01:59.7723345Z ++ realpath build/custom_test_artifacts 2023-09-06T12:01:59.7734611Z + CUSTOM_TEST_ARTIFACT_BUILD_DIR=/var/lib/jenkins/workspace/build/custom_test_artifacts 2023-09-06T12:01:59.7738414Z ++ dirname .ci/pytorch/test.sh 2023-09-06T12:01:59.7747547Z + source .ci/pytorch/common.sh 2023-09-06T12:01:59.7752758Z +++ dirname .ci/pytorch/common.sh 2023-09-06T12:01:59.7761847Z ++ source .ci/pytorch/common_utils.sh 2023-09-06T12:01:59.7764542Z +++ declare -f -t trap_add 2023-09-06T12:01:59.7772642Z ++ set -ex 2023-09-06T12:01:59.7773062Z ++ [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *rocm* ]] 2023-09-06T12:01:59.7773453Z ++ BUILD_TEST_LIBTORCH=0 2023-09-06T12:01:59.7773784Z + echo 'Environment variables' 2023-09-06T12:01:59.7774054Z Environment variables 2023-09-06T12:01:59.7774270Z + env 2023-09-06T12:01:59.7781916Z INSTALLED_DB=yes 2023-09-06T12:01:59.7782589Z NV_LIBCUBLAS_VERSION=12.1.3.1-1 2023-09-06T12:01:59.7783114Z NVIDIA_VISIBLE_DEVICES=all 2023-09-06T12:01:59.7783729Z NV_NVML_DEV_VERSION=12.1.105-1 2023-09-06T12:01:59.7784551Z GITHUB_WORKSPACE=/home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T12:01:59.7785223Z CONTINUE_THROUGH_ERROR=False 2023-09-06T12:01:59.7785980Z NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 2023-09-06T12:01:59.7786625Z NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 2023-09-06T12:01:59.7787396Z BUILD_ENVIRONMENT=linux-focal-cuda12.1-py3.10-gcc9-sm80 2023-09-06T12:01:59.7787854Z PYTORCH_OVERRIDE_FLAKY_SIGNAL=1 2023-09-06T12:01:59.7788120Z HOSTNAME=36c47af667b5 2023-09-06T12:01:59.7788693Z GITHUB_PATH=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/add_path_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7789255Z GITHUB_ACTION=__self 2023-09-06T12:01:59.7789607Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2023-09-06T12:01:59.7793799Z NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=tesla,driver>=515,driver<516 brand=unknown,driver>=515,driver<516 brand=nvidia,driver>=515,driver<516 brand=nvidiartx,driver>=515,driver<516 brand=geforce,driver>=515,driver<516 brand=geforcertx,driver>=515,driver<516 brand=quadro,driver>=515,driver<516 brand=quadrortx,driver>=515,driver<516 brand=titan,driver>=515,driver<516 brand=titanrtx,driver>=515,driver<516 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 2023-09-06T12:01:59.7796239Z NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 2023-09-06T12:01:59.7796576Z NV_NVTX_VERSION=12.1.105-1 2023-09-06T12:01:59.7796834Z GITHUB_RUN_NUMBER=1033 2023-09-06T12:01:59.7797097Z TEST_CONFIG=inductor_torchbench_perf 2023-09-06T12:01:59.7797395Z GITHUB_REPOSITORY_OWNER_ID=21003710 2023-09-06T12:01:59.7797754Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2023-09-06T12:01:59.7798087Z NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 2023-09-06T12:01:59.7798391Z NV_LIBCUSPARSE_VERSION=12.1.0.106-1 2023-09-06T12:01:59.7798691Z NV_LIBNPP_VERSION=12.1.0.40-1 2023-09-06T12:01:59.7798981Z GITHUB_TRIGGERING_ACTOR=pytorchmergebot 2023-09-06T12:01:59.7799315Z CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache 2023-09-06T12:01:59.7799595Z GITHUB_REF_TYPE=branch 2023-09-06T12:01:59.7799850Z TORCH_CUDA_ARCH_LIST=Maxwell 2023-09-06T12:01:59.7800128Z NCCL_VERSION=2.17.1-1 2023-09-06T12:01:59.7800573Z BASE_SHA=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7800827Z XLA_CUDA= 2023-09-06T12:01:59.7801245Z HUGGING_FACE_HUB_TOKEN=*** 2023-09-06T12:01:59.7801551Z *** 2023-09-06T12:01:59.7801786Z CARGO_NET_GIT_FETCH_WITH_CLI=true 2023-09-06T12:01:59.7802049Z GITHUB_REPOSITORY_ID=65600975 2023-09-06T12:01:59.7802306Z GITHUB_ACTIONS=true 2023-09-06T12:01:59.7802566Z NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T12:01:59.7803057Z NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 2023-09-06T12:01:59.7803517Z NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 2023-09-06T12:01:59.7803829Z SHA1=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7804197Z NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev 2023-09-06T12:01:59.7804519Z GITHUB_SHA=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7805089Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/inductor-perf-test-nightly.yml@refs/heads/main 2023-09-06T12:01:59.7805471Z UCC_HOME=/usr 2023-09-06T12:01:59.7805753Z NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 2023-09-06T12:01:59.7806038Z NVIDIA_PRODUCT_NAME=CUDA 2023-09-06T12:01:59.7806399Z NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 2023-09-06T12:01:59.7806700Z GITHUB_REF=refs/heads/main 2023-09-06T12:01:59.7806998Z NV_NSIGHT_COMPUTE_VERSION=12.1.1-1 2023-09-06T12:01:59.7807304Z NV_CUDA_CUDART_VERSION=12.1.105-1 2023-09-06T12:01:59.7807543Z SHARD_NUMBER=1 2023-09-06T12:01:59.7807790Z GITHUB_REF_PROTECTED=true 2023-09-06T12:01:59.7808041Z HOME=/var/lib/jenkins 2023-09-06T12:01:59.7808326Z GITHUB_API_URL=https://api.github.com 2023-09-06T12:01:59.7808622Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2023-09-06T12:01:59.7808945Z UCX_COMMIT=00bcc6bb18fc282eb160623b4c0d300147f579af 2023-09-06T12:01:59.7809372Z SCCACHE_S3_KEY_PREFIX=inductor-A100-perf-nightly 2023-09-06T12:01:59.7809670Z CUDA_VERSION=12.1.1 2023-09-06T12:01:59.7810010Z NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 2023-09-06T12:01:59.7810286Z NUM_TEST_SHARDS=4 2023-09-06T12:01:59.7810519Z UCX_HOME=/usr 2023-09-06T12:01:59.7811213Z GITHUB_STATE=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/save_state_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7811627Z PYTORCH_RETRY_TEST_CASES=1 2023-09-06T12:01:59.7812195Z GITHUB_ENV=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/set_env_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7812814Z GITHUB_EVENT_PATH=/home/weiwangmeta/actions-runner/_work/_temp/_github_workflow/event.json 2023-09-06T12:01:59.7813229Z GITHUB_EVENT_NAME=schedule 2023-09-06T12:01:59.7814026Z DASHBOARD_TAG=training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true 2023-09-06T12:01:59.7814673Z GITHUB_RUN_ID=6093795712 2023-09-06T12:01:59.7815087Z NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 2023-09-06T12:01:59.7815479Z NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 2023-09-06T12:01:59.7816111Z GITHUB_STEP_SUMMARY=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/step_summary_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7816561Z GITHUB_ACTOR=pytorchmergebot 2023-09-06T12:01:59.7816860Z NV_LIBNPP_DEV_VERSION=12.1.0.40-1 2023-09-06T12:01:59.7817110Z PR_NUMBER= 2023-09-06T12:01:59.7817339Z GITHUB_RUN_ATTEMPT=1 2023-09-06T12:01:59.7817558Z VALGRIND=ON 2023-09-06T12:01:59.7817953Z NV_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 2023-09-06T12:01:59.7818284Z ANACONDA_PYTHON_VERSION=3.10 2023-09-06T12:01:59.7818609Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2023-09-06T12:01:59.7818882Z TERM=xterm 2023-09-06T12:01:59.7819167Z NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 2023-09-06T12:01:59.7819437Z INSTALLED_VISION=yes 2023-09-06T12:01:59.7819669Z BRANCH=main 2023-09-06T12:01:59.7819896Z OPENSSL_ROOT_DIR=/opt/openssl 2023-09-06T12:01:59.7820183Z LIBRARY_PATH=/usr/local/cuda/lib64/stubs 2023-09-06T12:01:59.7820460Z CUDA_PATH=/usr/local/cuda 2023-09-06T12:01:59.7820973Z GITHUB_ACTION_PATH=/home/weiwangmeta/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2023-09-06T12:01:59.7821545Z GITHUB_SERVER_URL=https://github.com 2023-09-06T12:01:59.7821885Z UCC_COMMIT=7cb07a76ccedad7e56ceb136b865eb9319c258ea 2023-09-06T12:01:59.7822181Z REENABLED_ISSUES= 2023-09-06T12:01:59.7822403Z SHLVL=1 2023-09-06T12:01:59.7822596Z MAX_JOBS=10 2023-09-06T12:01:59.7822863Z NV_CUDA_LIB_VERSION=12.1.1-1 2023-09-06T12:01:59.7823107Z NVARCH=x86_64 2023-09-06T12:01:59.7823396Z GITHUB_ACTOR_ID=97764156 2023-09-06T12:01:59.7823695Z GITHUB_WORKFLOW_SHA=3fe8417643c8d6c2b3d95552cd90321d141b5d54 2023-09-06T12:01:59.7823996Z GITHUB_REF_NAME=main 2023-09-06T12:01:59.7824339Z NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 2023-09-06T12:01:59.7824826Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2023-09-06T12:01:59.7825160Z GITHUB_JOB=test 2023-09-06T12:01:59.7825500Z NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 2023-09-06T12:01:59.7825846Z LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 2023-09-06T12:01:59.7826177Z GITHUB_REPOSITORY=pytorch/pytorch 2023-09-06T12:01:59.7826477Z NV_NVPROF_VERSION=12.1.105-1 2023-09-06T12:01:59.7826743Z GITHUB_RETENTION_DAYS=90 2023-09-06T12:01:59.7826998Z OPENSSL_DIR=/opt/openssl 2023-09-06T12:01:59.7827243Z GITHUB_ACTION_REPOSITORY= 2023-09-06T12:01:59.7827706Z PATH=/opt/cache/bin:/opt/conda/envs/py_3.10/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-09-06T12:01:59.7828126Z GITHUB_BASE_REF= 2023-09-06T12:01:59.7828382Z NV_LIBNCCL_PACKAGE_NAME=libnccl2 2023-09-06T12:01:59.7828624Z CI=true 2023-09-06T12:01:59.7828883Z NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 2023-09-06T12:01:59.7829451Z GITHUB_REPOSITORY_OWNER=pytorch 2023-09-06T12:01:59.7829851Z INSTALLED_PROTOBUF=yes 2023-09-06T12:01:59.7830085Z GITHUB_HEAD_REF= 2023-09-06T12:01:59.7830318Z GITHUB_ACTION_REF= 2023-09-06T12:01:59.7830716Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2023-09-06T12:01:59.7831139Z GITHUB_WORKFLOW=inductor-A100-perf-nightly 2023-09-06T12:01:59.7831437Z DEBIAN_FRONTEND=noninteractive 2023-09-06T12:01:59.7832255Z GITHUB_OUTPUT=/home/weiwangmeta/actions-runner/_work/_temp/_runner_file_commands/set_output_8d26c93d-f8fc-4def-a019-0a44d1061b4c 2023-09-06T12:01:59.7832688Z SKIP_SCCACHE_INITIALIZATION=1 2023-09-06T12:01:59.7832945Z _=/usr/bin/env 2023-09-06T12:01:59.7833276Z + echo 'Testing pytorch' 2023-09-06T12:01:59.7833527Z Testing pytorch 2023-09-06T12:01:59.7833794Z + export LANG=C.UTF-8 2023-09-06T12:01:59.7834054Z + LANG=C.UTF-8 2023-09-06T12:01:59.7834261Z + PR_NUMBER= 2023-09-06T12:01:59.7834542Z + [[ inductor_torchbench_perf == \d\e\f\a\u\l\t ]] 2023-09-06T12:01:59.7834890Z + [[ inductor_torchbench_perf == \d\i\s\t\r\i\b\u\t\e\d ]] 2023-09-06T12:01:59.7835224Z + [[ inductor_torchbench_perf == \s\l\o\w ]] 2023-09-06T12:01:59.7835679Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *slow-gradcheck* ]] 2023-09-06T12:01:59.7836161Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *cuda* ]] 2023-09-06T12:01:59.7836519Z + export PYTORCH_TESTING_DEVICE_ONLY_FOR=cuda 2023-09-06T12:01:59.7836832Z + PYTORCH_TESTING_DEVICE_ONLY_FOR=cuda 2023-09-06T12:01:59.7837148Z + [[ inductor_torchbench_perf == *crossref* ]] 2023-09-06T12:01:59.7837582Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *rocm* ]] 2023-09-06T12:01:59.7838040Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 != *-bazel-* ]] 2023-09-06T12:01:59.7838442Z + pip_install --user ninja==1.10.2 2023-09-06T12:01:59.7838827Z + pip install --progress-bar off --user ninja==1.10.2 2023-09-06T12:02:00.3506669Z Collecting ninja==1.10.2 2023-09-06T12:02:00.4372051Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108 kB) 2023-09-06T12:02:01.8705166Z Installing collected packages: ninja 2023-09-06T12:02:01.8801862Z  WARNING: The script ninja is installed in '/var/lib/jenkins/.local/bin' which is not on PATH. 2023-09-06T12:02:01.8802627Z Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. 2023-09-06T12:02:01.8861616Z Successfully installed ninja-1.10.2 2023-09-06T12:02:01.9760431Z + export PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/opt/conda/envs/py_3.10/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-09-06T12:02:01.9761380Z + PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/opt/conda/envs/py_3.10/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2023-09-06T12:02:01.9762190Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *asan* ]] 2023-09-06T12:02:01.9762808Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *-debug* ]] 2023-09-06T12:02:01.9763411Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 != *-bazel-* ]] 2023-09-06T12:02:01.9764197Z + echo 'We are not in debug mode: linux-focal-cuda12.1-py3.10-gcc9-sm80. Expect the assertion to pass' 2023-09-06T12:02:01.9765069Z We are not in debug mode: linux-focal-cuda12.1-py3.10-gcc9-sm80. Expect the assertion to pass 2023-09-06T12:02:01.9765722Z + cd test 2023-09-06T12:02:01.9766439Z + python -c 'import torch; torch._C._crash_if_debug_asserts_fail(424242)' 2023-09-06T12:02:03.8394953Z + [[ inductor_torchbench_perf == \n\o\g\p\u\_\N\O\_\A\V\X\2 ]] 2023-09-06T12:02:03.8395451Z + [[ inductor_torchbench_perf == \n\o\g\p\u\_\A\V\X\5\1\2 ]] 2023-09-06T12:02:03.8396290Z + DYNAMO_BENCHMARK_FLAGS=() 2023-09-06T12:02:03.8396830Z + [[ inductor_torchbench_perf == *dynamo_eager* ]] 2023-09-06T12:02:03.8397283Z + [[ inductor_torchbench_perf == *aot_eager* ]] 2023-09-06T12:02:03.8397606Z + [[ inductor_torchbench_perf == *inductor* ]] 2023-09-06T12:02:03.8397933Z + [[ inductor_torchbench_perf != *perf* ]] 2023-09-06T12:02:03.8398263Z + [[ inductor_torchbench_perf == *dynamic* ]] 2023-09-06T12:02:03.8398598Z + [[ inductor_torchbench_perf == *cpu_accuracy* ]] 2023-09-06T12:02:03.8399177Z + DYNAMO_BENCHMARK_FLAGS+=(--device cuda) 2023-09-06T12:02:03.8410284Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *tbb* ]] 2023-09-06T12:02:03.8425606Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *libtorch* ]] 2023-09-06T12:02:03.8426460Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *-bazel-* ]] 2023-09-06T12:02:03.8430276Z + cd test 2023-09-06T12:02:03.8430746Z + python -c 'import torch; print(torch.__config__.show())' 2023-09-06T12:02:05.4348604Z PyTorch built with: 2023-09-06T12:02:05.4349411Z - GCC 9.4 2023-09-06T12:02:05.4349883Z - C++ Version: 201703 2023-09-06T12:02:05.4350477Z - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications 2023-09-06T12:02:05.4351104Z - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4) 2023-09-06T12:02:05.4351539Z - OpenMP 201511 (a.k.a. OpenMP 4.5) 2023-09-06T12:02:05.4351945Z - LAPACK is enabled (usually provided by MKL) 2023-09-06T12:02:05.4352286Z - NNPACK is enabled 2023-09-06T12:02:05.4352617Z - CPU capability usage: AVX512 2023-09-06T12:02:05.4353016Z - CUDA Runtime 12.1 2023-09-06T12:02:05.4353415Z - NVCC architecture flags: -gencode;arch=compute_80,code=sm_80 2023-09-06T12:02:05.4353810Z - CuDNN 8.9.2 2023-09-06T12:02:05.4354080Z - Magma 2.6.1 2023-09-06T12:02:05.4357717Z - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/cache/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Werror -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, FORCE_FALLBACK_CUDA_MPI=1, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.2.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=ON, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 2023-09-06T12:02:05.4360462Z 2023-09-06T12:02:05.7509796Z + cd test 2023-09-06T12:02:05.7510514Z + python -c 'import torch; print(torch.__config__.parallel_info())' 2023-09-06T12:02:07.2616672Z ATen/Parallel: 2023-09-06T12:02:07.2618026Z at::get_num_threads() : 6 2023-09-06T12:02:07.2618319Z at::get_num_interop_threads() : 6 2023-09-06T12:02:07.2618639Z OpenMP 201511 (a.k.a. OpenMP 4.5) 2023-09-06T12:02:07.2618916Z omp_get_max_threads() : 6 2023-09-06T12:02:07.2619692Z Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications 2023-09-06T12:02:07.2620142Z mkl_get_max_threads() : 6 2023-09-06T12:02:07.2620615Z Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4) 2023-09-06T12:02:07.2620994Z std::thread::hardware_concurrency() : 12 2023-09-06T12:02:07.2621272Z Environment variables: 2023-09-06T12:02:07.2621542Z OMP_NUM_THREADS : [not set] 2023-09-06T12:02:07.2621815Z MKL_NUM_THREADS : [not set] 2023-09-06T12:02:07.2622093Z ATen parallel backend: OpenMP 2023-09-06T12:02:07.2622271Z 2023-09-06T12:02:07.5385295Z + [[ inductor_torchbench_perf == *backward* ]] 2023-09-06T12:02:07.5386111Z + [[ inductor_torchbench_perf == *xla* ]] 2023-09-06T12:02:07.5386693Z + [[ inductor_torchbench_perf == \j\i\t\_\l\e\g\a\c\y ]] 2023-09-06T12:02:07.5387426Z + [[ linux-focal-cuda12.1-py3.10-gcc9-sm80 == *libtorch* ]] 2023-09-06T12:02:07.5387871Z + [[ inductor_torchbench_perf == distributed ]] 2023-09-06T12:02:07.5388513Z + [[ inductor_torchbench_perf == deploy ]] 2023-09-06T12:02:07.5390028Z + [[ inductor_torchbench_perf == *inductor_distributed* ]] 2023-09-06T12:02:07.5390756Z + [[ inductor_torchbench_perf == *huggingface* ]] 2023-09-06T12:02:07.5391882Z + [[ inductor_torchbench_perf == *timm* ]] 2023-09-06T12:02:07.5392238Z + [[ inductor_torchbench_perf == *torchbench* ]] 2023-09-06T12:02:07.5392592Z + [[ inductor_torchbench_perf == *cpu_accuracy* ]] 2023-09-06T12:02:07.5392902Z + install_torchaudio cuda 2023-09-06T12:02:07.5393221Z + local commit 2023-09-06T12:02:07.5393455Z ++ get_pinned_commit audio 2023-09-06T12:02:07.5393743Z ++ cat .github/ci_commit_pins/audio.txt 2023-09-06T12:02:07.5409423Z + commit=a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:07.5409968Z + [[ cuda == \c\u\d\a ]] 2023-09-06T12:02:07.5410579Z + TORCH_CUDA_ARCH_LIST='8.0;8.6' 2023-09-06T12:02:07.5411207Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/audio.git@a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:07.5412016Z + pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/audio.git@a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:07.9839471Z Collecting git+https://github.com/pytorch/audio.git@a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:07.9844265Z Cloning https://github.com/pytorch/audio.git (to revision a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602) to /tmp/pip-req-build-1ubp68m_ 2023-09-06T12:02:07.9877994Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/audio.git /tmp/pip-req-build-1ubp68m_ 2023-09-06T12:02:10.1585066Z Running command git rev-parse -q --verify 'sha^a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602' 2023-09-06T12:02:10.1611734Z Running command git fetch -q https://github.com/pytorch/audio.git a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:10.8235026Z Running command git checkout -q a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:11.4902764Z Resolved https://github.com/pytorch/audio.git to commit a8f4e97bd5356a7a77510cdf6a3a62e25a5dc602 2023-09-06T12:02:32.9750726Z Running command git submodule update --init --recursive -q 2023-09-06T12:02:32.9751439Z Preparing metadata (setup.py) ... [?25l- done 2023-09-06T12:02:32.9788366Z [?25hRequirement already satisfied: torch in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchaudio==2.0.0a0+a8f4e97) (2.2.0a0+git3fe8417) 2023-09-06T12:02:32.9865527Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchaudio==2.0.0a0+a8f4e97) (3.9.0) 2023-09-06T12:02:32.9868871Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchaudio==2.0.0a0+a8f4e97) (4.7.1) 2023-09-06T12:02:32.9873416Z Requirement already satisfied: sympy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchaudio==2.0.0a0+a8f4e97) (1.12) 2023-09-06T12:02:32.9877277Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchaudio==2.0.0a0+a8f4e97) (2.8.8) 2023-09-06T12:02:32.9881512Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchaudio==2.0.0a0+a8f4e97) (3.1.2) 2023-09-06T12:02:32.9885670Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchaudio==2.0.0a0+a8f4e97) (2023.4.0) 2023-09-06T12:02:33.0374657Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch->torchaudio==2.0.0a0+a8f4e97) (2.1.3) 2023-09-06T12:02:33.0559814Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy->torch->torchaudio==2.0.0a0+a8f4e97) (1.3.0) 2023-09-06T12:02:33.0649526Z Building wheels for collected packages: torchaudio 2023-09-06T12:06:14.0013496Z Building wheel for torchaudio (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ done 2023-09-06T12:06:14.0153197Z [?25h Created wheel for torchaudio: filename=torchaudio-2.0.0a0+a8f4e97-cp310-cp310-linux_x86_64.whl size=3889551 sha256=fa69c0d8280a81802796d1a567162d160850a0dad700fe5d7325f49d1808afcd 2023-09-06T12:06:14.0153981Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/34/3a/3f/9b303b7cc5d4e7d824fe266e4f875e08f15eb13882f11f305c 2023-09-06T12:06:14.0190412Z Successfully built torchaudio 2023-09-06T12:06:15.3414695Z Installing collected packages: torchaudio 2023-09-06T12:06:15.6023714Z Successfully installed torchaudio-2.0.0a0+a8f4e97 2023-09-06T12:06:16.1713349Z + install_torchtext 2023-09-06T12:06:16.1713661Z + local data_commit 2023-09-06T12:06:16.1713952Z + local text_commit 2023-09-06T12:06:16.1719602Z ++ get_pinned_commit data 2023-09-06T12:06:16.1720109Z ++ cat .github/ci_commit_pins/data.txt 2023-09-06T12:06:16.1737805Z + data_commit=11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:16.1743097Z ++ get_pinned_commit text 2023-09-06T12:06:16.1743594Z ++ cat .github/ci_commit_pins/text.txt 2023-09-06T12:06:16.1759131Z + text_commit=b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:06:16.1760217Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/data.git@11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:16.1761029Z + pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/data.git@11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:16.6127026Z Collecting git+https://github.com/pytorch/data.git@11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:16.6133535Z Cloning https://github.com/pytorch/data.git (to revision 11bb5b847ea8b9e0d9bb82db3304daf383008d3f) to /tmp/pip-req-build-oajp7_1r 2023-09-06T12:06:16.6168874Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/data.git /tmp/pip-req-build-oajp7_1r 2023-09-06T12:06:17.6770364Z Running command git rev-parse -q --verify 'sha^11bb5b847ea8b9e0d9bb82db3304daf383008d3f' 2023-09-06T12:06:17.6936901Z Running command git fetch -q https://github.com/pytorch/data.git 11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:18.1149713Z Running command git checkout -q 11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:18.4747093Z Resolved https://github.com/pytorch/data.git to commit 11bb5b847ea8b9e0d9bb82db3304daf383008d3f 2023-09-06T12:06:18.4748303Z Running command git submodule update --init --recursive -q 2023-09-06T12:07:37.5607038Z Preparing metadata (setup.py) ... [?25l- done 2023-09-06T12:07:37.5664702Z [?25hRequirement already satisfied: urllib3>=1.25 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchdata==0.7.0a0+11bb5b8) (1.26.16) 2023-09-06T12:07:37.5667441Z Requirement already satisfied: requests in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchdata==0.7.0a0+11bb5b8) (2.31.0) 2023-09-06T12:07:37.5674771Z Requirement already satisfied: torch>2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchdata==0.7.0a0+11bb5b8) (2.2.0a0+git3fe8417) 2023-09-06T12:07:37.5753230Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>2.0->torchdata==0.7.0a0+11bb5b8) (3.9.0) 2023-09-06T12:07:37.5757249Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>2.0->torchdata==0.7.0a0+11bb5b8) (4.7.1) 2023-09-06T12:07:37.5761678Z Requirement already satisfied: sympy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>2.0->torchdata==0.7.0a0+11bb5b8) (1.12) 2023-09-06T12:07:37.5765492Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>2.0->torchdata==0.7.0a0+11bb5b8) (2.8.8) 2023-09-06T12:07:37.5768370Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>2.0->torchdata==0.7.0a0+11bb5b8) (3.1.2) 2023-09-06T12:07:37.5772058Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>2.0->torchdata==0.7.0a0+11bb5b8) (2023.4.0) 2023-09-06T12:07:37.5984447Z Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchdata==0.7.0a0+11bb5b8) (3.2.0) 2023-09-06T12:07:37.5989794Z Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchdata==0.7.0a0+11bb5b8) (3.4) 2023-09-06T12:07:37.5998201Z Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchdata==0.7.0a0+11bb5b8) (2023.7.22) 2023-09-06T12:07:37.6524585Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch>2.0->torchdata==0.7.0a0+11bb5b8) (2.1.3) 2023-09-06T12:07:37.6720111Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy->torch>2.0->torchdata==0.7.0a0+11bb5b8) (1.3.0) 2023-09-06T12:07:37.6826509Z Building wheels for collected packages: torchdata 2023-09-06T12:07:39.9331001Z Building wheel for torchdata (setup.py) ... [?25l- \ | / done 2023-09-06T12:07:39.9342021Z [?25h Created wheel for torchdata: filename=torchdata-0.7.0a0+11bb5b8-py3-none-any.whl size=182989 sha256=80fc5c3a895eabd81046a356a75005a8823bb34ce72acf57a2983a401b3f6f1a 2023-09-06T12:07:39.9343645Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/ca/59/a3/c8250bfc8d3d4d639498d4beb2e0f0e70b9a508ac61fde85ce 2023-09-06T12:07:39.9381087Z Successfully built torchdata 2023-09-06T12:07:41.2402173Z Installing collected packages: torchdata 2023-09-06T12:07:41.3499551Z Successfully installed torchdata-0.7.0a0+11bb5b8 2023-09-06T12:07:44.2538166Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/text.git@b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:07:44.2539026Z + pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/text.git@b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:07:44.6928366Z Collecting git+https://github.com/pytorch/text.git@b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:07:44.6935134Z Cloning https://github.com/pytorch/text.git (to revision b0ebddc648d279826089db91775375221777a2db) to /tmp/pip-req-build-f4amfz1z 2023-09-06T12:07:44.6961250Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/text.git /tmp/pip-req-build-f4amfz1z 2023-09-06T12:07:46.2990517Z Running command git rev-parse -q --verify 'sha^b0ebddc648d279826089db91775375221777a2db' 2023-09-06T12:07:46.3016521Z Running command git fetch -q https://github.com/pytorch/text.git b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:07:47.0376637Z Running command git checkout -q b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:07:47.4680606Z Resolved https://github.com/pytorch/text.git to commit b0ebddc648d279826089db91775375221777a2db 2023-09-06T12:07:47.4681983Z Running command git submodule update --init --recursive -q 2023-09-06T12:07:55.8090902Z Preparing metadata (setup.py) ... [?25l- done 2023-09-06T12:07:55.8151605Z [?25hRequirement already satisfied: tqdm in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchtext==0.16.0a0+b0ebddc) (4.66.1) 2023-09-06T12:07:55.8156656Z Requirement already satisfied: requests in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchtext==0.16.0a0+b0ebddc) (2.31.0) 2023-09-06T12:07:55.8161145Z Requirement already satisfied: torch in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchtext==0.16.0a0+b0ebddc) (2.2.0a0+git3fe8417) 2023-09-06T12:07:55.8166471Z Requirement already satisfied: numpy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchtext==0.16.0a0+b0ebddc) (1.21.2) 2023-09-06T12:07:55.8170376Z Requirement already satisfied: torchdata in /var/lib/jenkins/.local/lib/python3.10/site-packages (from torchtext==0.16.0a0+b0ebddc) (0.7.0a0+11bb5b8) 2023-09-06T12:07:55.8254750Z Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchtext==0.16.0a0+b0ebddc) (3.2.0) 2023-09-06T12:07:55.8263256Z Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchtext==0.16.0a0+b0ebddc) (3.4) 2023-09-06T12:07:55.8271415Z Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchtext==0.16.0a0+b0ebddc) (1.26.16) 2023-09-06T12:07:55.8278651Z Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchtext==0.16.0a0+b0ebddc) (2023.7.22) 2023-09-06T12:07:55.8346701Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchtext==0.16.0a0+b0ebddc) (3.9.0) 2023-09-06T12:07:55.8351705Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchtext==0.16.0a0+b0ebddc) (4.7.1) 2023-09-06T12:07:55.8355886Z Requirement already satisfied: sympy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchtext==0.16.0a0+b0ebddc) (1.12) 2023-09-06T12:07:55.8360863Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchtext==0.16.0a0+b0ebddc) (2.8.8) 2023-09-06T12:07:55.8364943Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchtext==0.16.0a0+b0ebddc) (3.1.2) 2023-09-06T12:07:55.8369799Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchtext==0.16.0a0+b0ebddc) (2023.4.0) 2023-09-06T12:07:55.9152044Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch->torchtext==0.16.0a0+b0ebddc) (2.1.3) 2023-09-06T12:07:55.9355065Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy->torch->torchtext==0.16.0a0+b0ebddc) (1.3.0) 2023-09-06T12:07:55.9464447Z Building wheels for collected packages: torchtext 2023-09-06T12:08:48.9308899Z Building wheel for torchtext (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ done 2023-09-06T12:08:48.9377947Z [?25h Created wheel for torchtext: filename=torchtext-0.16.0a0+b0ebddc-cp310-cp310-linux_x86_64.whl size=2041323 sha256=fcc990e83513a1ebfec13e458b54acfb3eeb938e530a15d58d96ecc59e91eb45 2023-09-06T12:08:48.9378766Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/e5/3d/d7/faafad098ec9437ecdf4495c0f5e72b817fffbb06063e32cbf 2023-09-06T12:08:48.9412811Z Successfully built torchtext 2023-09-06T12:08:50.2279645Z Installing collected packages: torchtext 2023-09-06T12:08:50.3660013Z Successfully installed torchtext-0.16.0a0+b0ebddc 2023-09-06T12:08:50.5213939Z + install_torchvision 2023-09-06T12:08:50.5214303Z + local orig_preload 2023-09-06T12:08:50.5217342Z + local commit 2023-09-06T12:08:50.5220175Z ++ get_pinned_commit vision 2023-09-06T12:08:50.5222859Z ++ cat .github/ci_commit_pins/vision.txt 2023-09-06T12:08:50.5243416Z + commit=1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:50.5243878Z + orig_preload= 2023-09-06T12:08:50.5244560Z + '[' -n '' ']' 2023-09-06T12:08:50.5245176Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/vision.git@1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:50.5246357Z + pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/vision.git@1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:50.9622956Z Collecting git+https://github.com/pytorch/vision.git@1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:50.9630882Z Cloning https://github.com/pytorch/vision.git (to revision 1f94320d8db8d102214a7dc02c22fa65ee9ac58a) to /tmp/pip-req-build-6hxdc7mj 2023-09-06T12:08:50.9662803Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/vision.git /tmp/pip-req-build-6hxdc7mj 2023-09-06T12:08:53.0890648Z Running command git rev-parse -q --verify 'sha^1f94320d8db8d102214a7dc02c22fa65ee9ac58a' 2023-09-06T12:08:53.0917229Z Running command git fetch -q https://github.com/pytorch/vision.git 1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:54.6442293Z Running command git checkout -q 1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:55.1057139Z Resolved https://github.com/pytorch/vision.git to commit 1f94320d8db8d102214a7dc02c22fa65ee9ac58a 2023-09-06T12:08:57.6743630Z Preparing metadata (setup.py) ... [?25l- \ done 2023-09-06T12:08:57.6806725Z [?25hRequirement already satisfied: numpy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchvision==0.16.0a0+1f94320) (1.21.2) 2023-09-06T12:08:57.6811146Z Requirement already satisfied: requests in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchvision==0.16.0a0+1f94320) (2.31.0) 2023-09-06T12:08:57.6815390Z Requirement already satisfied: torch in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchvision==0.16.0a0+1f94320) (2.2.0a0+git3fe8417) 2023-09-06T12:08:57.6823491Z Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchvision==0.16.0a0+1f94320) (9.5.0) 2023-09-06T12:08:57.7031961Z Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchvision==0.16.0a0+1f94320) (3.2.0) 2023-09-06T12:08:57.7039086Z Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchvision==0.16.0a0+1f94320) (3.4) 2023-09-06T12:08:57.7048296Z Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchvision==0.16.0a0+1f94320) (1.26.16) 2023-09-06T12:08:57.7054690Z Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from requests->torchvision==0.16.0a0+1f94320) (2023.7.22) 2023-09-06T12:08:57.7124138Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchvision==0.16.0a0+1f94320) (3.9.0) 2023-09-06T12:08:57.7127782Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchvision==0.16.0a0+1f94320) (4.7.1) 2023-09-06T12:08:57.7130833Z Requirement already satisfied: sympy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchvision==0.16.0a0+1f94320) (1.12) 2023-09-06T12:08:57.7134856Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchvision==0.16.0a0+1f94320) (2.8.8) 2023-09-06T12:08:57.7140322Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchvision==0.16.0a0+1f94320) (3.1.2) 2023-09-06T12:08:57.7144250Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch->torchvision==0.16.0a0+1f94320) (2023.4.0) 2023-09-06T12:08:57.7814362Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch->torchvision==0.16.0a0+1f94320) (2.1.3) 2023-09-06T12:08:57.8011178Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy->torch->torchvision==0.16.0a0+1f94320) (1.3.0) 2023-09-06T12:08:57.8118977Z Building wheels for collected packages: torchvision 2023-09-06T12:10:35.2675384Z Building wheel for torchvision (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ done 2023-09-06T12:10:35.2743112Z [?25h Created wheel for torchvision: filename=torchvision-0.16.0a0+1f94320-cp310-cp310-linux_x86_64.whl size=1919393 sha256=b1ddd622f306fec9094fe11f9f412f2e8364ea7ca35d1a025ea056b33162ad1f 2023-09-06T12:10:35.2743996Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/e8/0d/df/fbb13cc562d2f580963bdc47f8e6f952797d4fe1506fe5db13 2023-09-06T12:10:35.2793380Z Successfully built torchvision 2023-09-06T12:10:36.5980434Z Installing collected packages: torchvision 2023-09-06T12:10:37.1059231Z Successfully installed torchvision-0.16.0a0+1f94320 2023-09-06T12:10:37.2396130Z + '[' -n '' ']' 2023-09-06T12:10:37.2396517Z + id=0 2023-09-06T12:10:37.2397062Z + pip_install opencv-python==4.8.0.74 2023-09-06T12:10:37.2397833Z + pip install --progress-bar off opencv-python==4.8.0.74 2023-09-06T12:10:37.9527109Z Collecting opencv-python==4.8.0.74 2023-09-06T12:10:37.9528209Z Obtaining dependency information for opencv-python==4.8.0.74 from https://files.pythonhosted.org/packages/34/7c/8a5043f362b0a55f07812a0db3f86092cdbd0fe41b933d7bc6fce3ab6c15/opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata 2023-09-06T12:10:38.0324292Z Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) 2023-09-06T12:10:38.0547402Z Requirement already satisfied: numpy>=1.21.2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from opencv-python==4.8.0.74) (1.21.2) 2023-09-06T12:10:38.0732189Z Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB) 2023-09-06T12:10:40.2899238Z Installing collected packages: opencv-python 2023-09-06T12:10:41.3672951Z Successfully installed opencv-python-4.8.0.74 2023-09-06T12:10:41.4777043Z + [[ inductor_torchbench_perf == *inductor_torchbench_smoketest_perf* ]] 2023-09-06T12:10:41.4777468Z + checkout_install_torchbench 2023-09-06T12:10:41.4777733Z + local commit 2023-09-06T12:10:41.4784306Z ++ get_pinned_commit torchbench 2023-09-06T12:10:41.4784635Z ++ cat .github/ci_commit_pins/torchbench.txt 2023-09-06T12:10:41.4805004Z + commit=9371b9e13c826f3930e54346b4d619cb59182f68 2023-09-06T12:10:41.4805474Z + git clone https://github.com/pytorch/benchmark torchbench 2023-09-06T12:10:41.4828653Z Cloning into 'torchbench'... 2023-09-06T12:10:41.8952927Z remote: Enumerating objects: 24307, done. 2023-09-06T12:10:41.8955335Z remote: Counting objects: 0% (1/4131) 2023-09-06T12:10:41.8956042Z remote: Counting objects: 1% (42/4131) 2023-09-06T12:10:41.8956736Z remote: Counting objects: 2% (83/4131) 2023-09-06T12:10:41.8957396Z remote: Counting objects: 3% (124/4131) 2023-09-06T12:10:41.8958194Z remote: Counting objects: 4% (166/4131) 2023-09-06T12:10:41.8958839Z remote: Counting objects: 5% (207/4131) 2023-09-06T12:10:41.8959452Z remote: Counting objects: 6% (248/4131) 2023-09-06T12:10:41.8960057Z remote: Counting objects: 7% (290/4131) 2023-09-06T12:10:41.8960746Z remote: Counting objects: 8% (331/4131) 2023-09-06T12:10:41.8961420Z remote: Counting objects: 9% (372/4131) 2023-09-06T12:10:41.8962061Z remote: Counting objects: 10% (414/4131) 2023-09-06T12:10:41.8962738Z remote: Counting objects: 11% (455/4131) 2023-09-06T12:10:41.8963430Z remote: Counting objects: 12% (496/4131) 2023-09-06T12:10:41.8964021Z remote: Counting objects: 13% (538/4131) 2023-09-06T12:10:41.8964390Z remote: Counting objects: 14% (579/4131) 2023-09-06T12:10:41.8964758Z remote: Counting objects: 15% (620/4131) 2023-09-06T12:10:41.8965122Z remote: Counting objects: 16% (661/4131) 2023-09-06T12:10:41.8965472Z remote: Counting objects: 17% (703/4131) 2023-09-06T12:10:41.8966001Z remote: Counting objects: 18% (744/4131) 2023-09-06T12:10:41.8966932Z remote: Counting objects: 19% (785/4131) 2023-09-06T12:10:41.8967634Z remote: Counting objects: 20% (827/4131) 2023-09-06T12:10:41.8968371Z remote: Counting objects: 21% (868/4131) 2023-09-06T12:10:41.8969019Z remote: Counting objects: 22% (909/4131) 2023-09-06T12:10:41.8969695Z remote: Counting objects: 23% (951/4131) 2023-09-06T12:10:41.8970370Z remote: Counting objects: 24% (992/4131) 2023-09-06T12:10:41.8970994Z remote: Counting objects: 25% (1033/4131) 2023-09-06T12:10:41.8971679Z remote: Counting objects: 26% (1075/4131) 2023-09-06T12:10:41.8972345Z remote: Counting objects: 27% (1116/4131) 2023-09-06T12:10:41.8973030Z remote: Counting objects: 28% (1157/4131) 2023-09-06T12:10:41.8973703Z remote: Counting objects: 29% (1198/4131) 2023-09-06T12:10:41.8974394Z remote: Counting objects: 30% (1240/4131) 2023-09-06T12:10:41.8975072Z remote: Counting objects: 31% (1281/4131) 2023-09-06T12:10:41.8975755Z remote: Counting objects: 32% (1322/4131) 2023-09-06T12:10:41.8976474Z remote: Counting objects: 33% (1364/4131) 2023-09-06T12:10:41.8977168Z remote: Counting objects: 34% (1405/4131) 2023-09-06T12:10:41.8977836Z remote: Counting objects: 35% (1446/4131) 2023-09-06T12:10:41.8978596Z remote: Counting objects: 36% (1488/4131) 2023-09-06T12:10:41.8979282Z remote: Counting objects: 37% (1529/4131) 2023-09-06T12:10:41.8979848Z remote: Counting objects: 38% (1570/4131) 2023-09-06T12:10:41.8980542Z remote: Counting objects: 39% (1612/4131) 2023-09-06T12:10:41.8981233Z remote: Counting objects: 40% (1653/4131) 2023-09-06T12:10:41.8981909Z remote: Counting objects: 41% (1694/4131) 2023-09-06T12:10:41.8982560Z remote: Counting objects: 42% (1736/4131) 2023-09-06T12:10:41.8983274Z remote: Counting objects: 43% (1777/4131) 2023-09-06T12:10:41.8983966Z remote: Counting objects: 44% (1818/4131) 2023-09-06T12:10:41.8984351Z remote: Counting objects: 45% (1859/4131) 2023-09-06T12:10:41.8985068Z remote: Counting objects: 46% (1901/4131) 2023-09-06T12:10:41.8985750Z remote: Counting objects: 47% (1942/4131) 2023-09-06T12:10:41.8986469Z remote: Counting objects: 48% (1983/4131) 2023-09-06T12:10:41.8987120Z remote: Counting objects: 49% (2025/4131) 2023-09-06T12:10:41.8987790Z remote: Counting objects: 50% (2066/4131) 2023-09-06T12:10:41.8988552Z remote: Counting objects: 51% (2107/4131) 2023-09-06T12:10:41.8989370Z remote: Counting objects: 52% (2149/4131) 2023-09-06T12:10:41.8990073Z remote: Counting objects: 53% (2190/4131) 2023-09-06T12:10:41.8990743Z remote: Counting objects: 54% (2231/4131) 2023-09-06T12:10:41.8991441Z remote: Counting objects: 55% (2273/4131) 2023-09-06T12:10:41.8992138Z remote: Counting objects: 56% (2314/4131) 2023-09-06T12:10:41.8992826Z remote: Counting objects: 57% (2355/4131) 2023-09-06T12:10:41.9032215Z remote: Counting objects: 58% (2396/4131) 2023-09-06T12:10:41.9032643Z remote: Counting objects: 59% (2438/4131) 2023-09-06T12:10:41.9033041Z remote: Counting objects: 60% (2479/4131) 2023-09-06T12:10:41.9033415Z remote: Counting objects: 61% (2520/4131) 2023-09-06T12:10:41.9033792Z remote: Counting objects: 62% (2562/4131) 2023-09-06T12:10:41.9034161Z remote: Counting objects: 63% (2603/4131) 2023-09-06T12:10:41.9034511Z remote: Counting objects: 64% (2644/4131) 2023-09-06T12:10:41.9034876Z remote: Counting objects: 65% (2686/4131) 2023-09-06T12:10:41.9035250Z remote: Counting objects: 66% (2727/4131) 2023-09-06T12:10:41.9035611Z remote: Counting objects: 67% (2768/4131) 2023-09-06T12:10:41.9035968Z remote: Counting objects: 68% (2810/4131) 2023-09-06T12:10:41.9036325Z remote: Counting objects: 69% (2851/4131) 2023-09-06T12:10:41.9036695Z remote: Counting objects: 70% (2892/4131) 2023-09-06T12:10:41.9037094Z remote: Counting objects: 71% (2934/4131) 2023-09-06T12:10:41.9037449Z remote: Counting objects: 72% (2975/4131) 2023-09-06T12:10:41.9038125Z remote: Counting objects: 73% (3016/4131) 2023-09-06T12:10:41.9038530Z remote: Counting objects: 74% (3057/4131) 2023-09-06T12:10:41.9038903Z remote: Counting objects: 75% (3099/4131) 2023-09-06T12:10:41.9039262Z remote: Counting objects: 76% (3140/4131) 2023-09-06T12:10:41.9039626Z remote: Counting objects: 77% (3181/4131) 2023-09-06T12:10:41.9039996Z remote: Counting objects: 78% (3223/4131) 2023-09-06T12:10:41.9040362Z remote: Counting objects: 79% (3264/4131) 2023-09-06T12:10:41.9040716Z remote: Counting objects: 80% (3305/4131) 2023-09-06T12:10:41.9041087Z remote: Counting objects: 81% (3347/4131) 2023-09-06T12:10:41.9041460Z remote: Counting objects: 82% (3388/4131) 2023-09-06T12:10:41.9041829Z remote: Counting objects: 83% (3429/4131) 2023-09-06T12:10:41.9042187Z remote: Counting objects: 84% (3471/4131) 2023-09-06T12:10:41.9042559Z remote: Counting objects: 85% (3512/4131) 2023-09-06T12:10:41.9042930Z remote: Counting objects: 86% (3553/4131) 2023-09-06T12:10:41.9043312Z remote: Counting objects: 87% (3594/4131) 2023-09-06T12:10:41.9043666Z remote: Counting objects: 88% (3636/4131) 2023-09-06T12:10:41.9044030Z remote: Counting objects: 89% (3677/4131) 2023-09-06T12:10:41.9044400Z remote: Counting objects: 90% (3718/4131) 2023-09-06T12:10:41.9044766Z remote: Counting objects: 91% (3760/4131) 2023-09-06T12:10:41.9045134Z remote: Counting objects: 92% (3801/4131) 2023-09-06T12:10:41.9045487Z remote: Counting objects: 93% (3842/4131) 2023-09-06T12:10:41.9045854Z remote: Counting objects: 94% (3884/4131) 2023-09-06T12:10:41.9046225Z remote: Counting objects: 95% (3925/4131) 2023-09-06T12:10:41.9046594Z remote: Counting objects: 96% (3966/4131) 2023-09-06T12:10:41.9046946Z remote: Counting objects: 97% (4008/4131) 2023-09-06T12:10:41.9047315Z remote: Counting objects: 98% (4049/4131) 2023-09-06T12:10:41.9047676Z remote: Counting objects: 99% (4090/4131) 2023-09-06T12:10:41.9048080Z remote: Counting objects: 100% (4131/4131) 2023-09-06T12:10:41.9048611Z remote: Counting objects: 100% (4131/4131), done. 2023-09-06T12:10:41.9049013Z remote: Compressing objects: 0% (1/1087) 2023-09-06T12:10:41.9049398Z remote: Compressing objects: 1% (11/1087) 2023-09-06T12:10:41.9084438Z remote: Compressing objects: 2% (22/1087) 2023-09-06T12:10:41.9097484Z remote: Compressing objects: 3% (33/1087) 2023-09-06T12:10:41.9136790Z remote: Compressing objects: 4% (44/1087) 2023-09-06T12:10:41.9162899Z remote: Compressing objects: 5% (55/1087) 2023-09-06T12:10:41.9192829Z remote: Compressing objects: 6% (66/1087) 2023-09-06T12:10:41.9214290Z remote: Compressing objects: 7% (77/1087) 2023-09-06T12:10:41.9315977Z remote: Compressing objects: 8% (87/1087) 2023-09-06T12:10:41.9415897Z remote: Compressing objects: 9% (98/1087) 2023-09-06T12:10:41.9526027Z remote: Compressing objects: 10% (109/1087) 2023-09-06T12:10:41.9594825Z remote: Compressing objects: 11% (120/1087) 2023-09-06T12:10:41.9676666Z remote: Compressing objects: 12% (131/1087) 2023-09-06T12:10:41.9738310Z remote: Compressing objects: 13% (142/1087) 2023-09-06T12:10:41.9789840Z remote: Compressing objects: 14% (153/1087) 2023-09-06T12:10:41.9834148Z remote: Compressing objects: 15% (164/1087) 2023-09-06T12:10:41.9876622Z remote: Compressing objects: 16% (174/1087) 2023-09-06T12:10:41.9929811Z remote: Compressing objects: 17% (185/1087) 2023-09-06T12:10:41.9958448Z remote: Compressing objects: 18% (196/1087) 2023-09-06T12:10:42.0002338Z remote: Compressing objects: 19% (207/1087) 2023-09-06T12:10:42.0026677Z remote: Compressing objects: 20% (218/1087) 2023-09-06T12:10:42.0064287Z remote: Compressing objects: 21% (229/1087) 2023-09-06T12:10:42.0091981Z remote: Compressing objects: 22% (240/1087) 2023-09-06T12:10:42.0114366Z remote: Compressing objects: 23% (251/1087) 2023-09-06T12:10:42.0139202Z remote: Compressing objects: 24% (261/1087) 2023-09-06T12:10:42.0155775Z remote: Compressing objects: 25% (272/1087) 2023-09-06T12:10:42.0172092Z remote: Compressing objects: 26% (283/1087) 2023-09-06T12:10:42.0183437Z remote: Compressing objects: 27% (294/1087) 2023-09-06T12:10:42.0200347Z remote: Compressing objects: 28% (305/1087) 2023-09-06T12:10:42.0207770Z remote: Compressing objects: 29% (316/1087) 2023-09-06T12:10:42.0211972Z remote: Compressing objects: 30% (327/1087) 2023-09-06T12:10:42.0212371Z remote: Compressing objects: 31% (337/1087) 2023-09-06T12:10:42.0212765Z remote: Compressing objects: 32% (348/1087) 2023-09-06T12:10:42.0213152Z remote: Compressing objects: 33% (359/1087) 2023-09-06T12:10:42.0218244Z remote: Compressing objects: 34% (370/1087) 2023-09-06T12:10:42.0223903Z remote: Compressing objects: 35% (381/1087) 2023-09-06T12:10:42.0224296Z remote: Compressing objects: 36% (392/1087) 2023-09-06T12:10:42.0226632Z remote: Compressing objects: 37% (403/1087) 2023-09-06T12:10:42.0228327Z remote: Compressing objects: 38% (414/1087) 2023-09-06T12:10:42.0242877Z remote: Compressing objects: 39% (424/1087) 2023-09-06T12:10:42.0249050Z remote: Compressing objects: 40% (435/1087) 2023-09-06T12:10:42.0255622Z remote: Compressing objects: 41% (446/1087) 2023-09-06T12:10:42.0259026Z remote: Compressing objects: 42% (457/1087) 2023-09-06T12:10:42.0266519Z remote: Compressing objects: 43% (468/1087) 2023-09-06T12:10:42.0278439Z remote: Compressing objects: 44% (479/1087) 2023-09-06T12:10:42.0279091Z remote: Compressing objects: 45% (490/1087) 2023-09-06T12:10:42.0280446Z remote: Compressing objects: 46% (501/1087) 2023-09-06T12:10:42.0285268Z remote: Compressing objects: 47% (511/1087) 2023-09-06T12:10:42.0295518Z remote: Compressing objects: 48% (522/1087) 2023-09-06T12:10:42.0296077Z remote: Compressing objects: 49% (533/1087) 2023-09-06T12:10:42.0299008Z remote: Compressing objects: 50% (544/1087) 2023-09-06T12:10:42.0302010Z remote: Compressing objects: 51% (555/1087) 2023-09-06T12:10:42.0305600Z remote: Compressing objects: 52% (566/1087) 2023-09-06T12:10:42.0306803Z remote: Compressing objects: 53% (577/1087) 2023-09-06T12:10:42.0308860Z remote: Compressing objects: 54% (587/1087) 2023-09-06T12:10:42.0309837Z remote: Compressing objects: 55% (598/1087) 2023-09-06T12:10:42.0312412Z remote: Compressing objects: 56% (609/1087) 2023-09-06T12:10:42.0313087Z remote: Compressing objects: 57% (620/1087) 2023-09-06T12:10:42.0316657Z remote: Compressing objects: 58% (631/1087) 2023-09-06T12:10:42.0317149Z remote: Compressing objects: 59% (642/1087) 2023-09-06T12:10:42.0317891Z remote: Compressing objects: 60% (653/1087) 2023-09-06T12:10:42.0318817Z remote: Compressing objects: 61% (664/1087) 2023-09-06T12:10:42.0319541Z remote: Compressing objects: 62% (674/1087) 2023-09-06T12:10:42.0320206Z remote: Compressing objects: 63% (685/1087) 2023-09-06T12:10:42.0320670Z remote: Compressing objects: 64% (696/1087) 2023-09-06T12:10:42.0321388Z remote: Compressing objects: 65% (707/1087) 2023-09-06T12:10:42.0322116Z remote: Compressing objects: 66% (718/1087) 2023-09-06T12:10:42.0323004Z remote: Compressing objects: 67% (729/1087) 2023-09-06T12:10:42.0323672Z remote: Compressing objects: 68% (740/1087) 2023-09-06T12:10:42.0324403Z remote: Compressing objects: 69% (751/1087) 2023-09-06T12:10:42.0325067Z remote: Compressing objects: 70% (761/1087) 2023-09-06T12:10:42.0325664Z remote: Compressing objects: 71% (772/1087) 2023-09-06T12:10:42.0326034Z remote: Compressing objects: 72% (783/1087) 2023-09-06T12:10:42.0326421Z remote: Compressing objects: 73% (794/1087) 2023-09-06T12:10:42.0326810Z remote: Compressing objects: 74% (805/1087) 2023-09-06T12:10:42.0327190Z remote: Compressing objects: 75% (816/1087) 2023-09-06T12:10:42.0327560Z remote: Compressing objects: 76% (827/1087) 2023-09-06T12:10:42.0327999Z remote: Compressing objects: 77% (837/1087) 2023-09-06T12:10:42.0333861Z remote: Compressing objects: 78% (848/1087) 2023-09-06T12:10:42.0341907Z remote: Compressing objects: 79% (859/1087) 2023-09-06T12:10:42.0347570Z remote: Compressing objects: 80% (870/1087) 2023-09-06T12:10:42.0351476Z remote: Compressing objects: 81% (881/1087) 2023-09-06T12:10:42.0354082Z remote: Compressing objects: 82% (892/1087) 2023-09-06T12:10:42.0355469Z remote: Compressing objects: 83% (903/1087) 2023-09-06T12:10:42.0357762Z remote: Compressing objects: 84% (914/1087) 2023-09-06T12:10:42.0363286Z remote: Compressing objects: 85% (924/1087) 2023-09-06T12:10:42.0368682Z remote: Compressing objects: 86% (935/1087) 2023-09-06T12:10:42.0372947Z remote: Compressing objects: 87% (946/1087) 2023-09-06T12:10:42.0377252Z remote: Compressing objects: 88% (957/1087) 2023-09-06T12:10:42.0380050Z remote: Compressing objects: 89% (968/1087) 2023-09-06T12:10:42.0383130Z remote: Compressing objects: 90% (979/1087) 2023-09-06T12:10:42.0386814Z remote: Compressing objects: 91% (990/1087) 2023-09-06T12:10:42.0390081Z remote: Compressing objects: 92% (1001/1087) 2023-09-06T12:10:42.0390880Z remote: Compressing objects: 93% (1011/1087) 2023-09-06T12:10:42.0393725Z remote: Compressing objects: 94% (1022/1087) 2023-09-06T12:10:42.0394117Z remote: Compressing objects: 95% (1033/1087) 2023-09-06T12:10:42.0397887Z remote: Compressing objects: 96% (1044/1087) 2023-09-06T12:10:42.0398573Z remote: Compressing objects: 97% (1055/1087) 2023-09-06T12:10:42.0402199Z remote: Compressing objects: 98% (1066/1087) 2023-09-06T12:10:42.0404397Z remote: Compressing objects: 99% (1077/1087) 2023-09-06T12:10:42.0404794Z remote: Compressing objects: 100% (1087/1087) 2023-09-06T12:10:42.0405288Z remote: Compressing objects: 100% (1087/1087), done. 2023-09-06T12:10:42.0470100Z Receiving objects: 0% (1/24307) 2023-09-06T12:10:42.0679500Z Receiving objects: 1% (244/24307) 2023-09-06T12:10:42.0727784Z Receiving objects: 2% (487/24307) 2023-09-06T12:10:42.0922132Z Receiving objects: 3% (730/24307) 2023-09-06T12:10:42.0959015Z Receiving objects: 4% (973/24307) 2023-09-06T12:10:42.1175700Z Receiving objects: 5% (1216/24307) 2023-09-06T12:10:42.1200844Z Receiving objects: 6% (1459/24307) 2023-09-06T12:10:42.1419302Z Receiving objects: 7% (1702/24307) 2023-09-06T12:10:42.1518588Z Receiving objects: 8% (1945/24307) 2023-09-06T12:10:42.1709314Z Receiving objects: 9% (2188/24307) 2023-09-06T12:10:42.1933415Z Receiving objects: 10% (2431/24307) 2023-09-06T12:10:42.2071742Z Receiving objects: 11% (2674/24307) 2023-09-06T12:10:42.2468485Z Receiving objects: 12% (2917/24307) 2023-09-06T12:10:42.3179033Z Receiving objects: 13% (3160/24307) 2023-09-06T12:10:42.3261974Z Receiving objects: 14% (3403/24307) 2023-09-06T12:10:42.3346256Z Receiving objects: 15% (3647/24307) 2023-09-06T12:10:42.3428090Z Receiving objects: 16% (3890/24307) 2023-09-06T12:10:42.3447730Z Receiving objects: 17% (4133/24307) 2023-09-06T12:10:42.3459972Z Receiving objects: 18% (4376/24307) 2023-09-06T12:10:42.4219704Z Receiving objects: 19% (4619/24307) 2023-09-06T12:10:42.4334736Z Receiving objects: 20% (4862/24307) 2023-09-06T12:10:42.4452171Z Receiving objects: 21% (5105/24307) 2023-09-06T12:10:43.0438645Z Receiving objects: 22% (5348/24307) 2023-09-06T12:10:43.2886822Z Receiving objects: 22% (5504/24307), 19.07 MiB | 19.06 MiB/s 2023-09-06T12:10:44.0440310Z Receiving objects: 23% (5591/24307), 19.07 MiB | 19.06 MiB/s 2023-09-06T12:10:44.5893696Z Receiving objects: 23% (5720/24307), 86.22 MiB | 43.13 MiB/s 2023-09-06T12:10:44.6538318Z Receiving objects: 24% (5834/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:44.7149480Z Receiving objects: 25% (6077/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:44.7754057Z Receiving objects: 26% (6320/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:44.8370999Z Receiving objects: 27% (6563/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:44.8975812Z Receiving objects: 28% (6806/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:44.9638176Z Receiving objects: 29% (7050/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:45.0246006Z Receiving objects: 30% (7293/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:45.0437566Z Receiving objects: 31% (7536/24307), 118.20 MiB | 47.30 MiB/s 2023-09-06T12:10:45.0855085Z Receiving objects: 31% (7613/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.1463831Z Receiving objects: 32% (7779/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.2068769Z Receiving objects: 33% (8022/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.4467886Z Receiving objects: 34% (8265/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.5305915Z Receiving objects: 35% (8508/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.5422597Z Receiving objects: 36% (8751/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.7509969Z Receiving objects: 37% (8994/24307), 154.30 MiB | 51.45 MiB/s 2023-09-06T12:10:45.9355674Z Receiving objects: 38% (9237/24307), 184.45 MiB | 52.71 MiB/s 2023-09-06T12:10:46.0439942Z Receiving objects: 39% (9480/24307), 184.45 MiB | 52.71 MiB/s 2023-09-06T12:10:46.1080063Z Receiving objects: 39% (9536/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1376352Z Receiving objects: 40% (9723/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1441321Z Receiving objects: 41% (9966/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1593089Z Receiving objects: 42% (10209/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1601038Z Receiving objects: 43% (10453/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1607103Z Receiving objects: 44% (10696/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1616276Z Receiving objects: 45% (10939/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1624461Z Receiving objects: 46% (11182/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1631983Z Receiving objects: 47% (11425/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.1643583Z Receiving objects: 48% (11668/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2114451Z Receiving objects: 49% (11911/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2122657Z Receiving objects: 50% (12154/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2134007Z Receiving objects: 51% (12397/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2142332Z Receiving objects: 52% (12640/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2156164Z Receiving objects: 53% (12883/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2164318Z Receiving objects: 54% (13126/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2171830Z Receiving objects: 55% (13369/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2201681Z Receiving objects: 56% (13612/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2207124Z Receiving objects: 57% (13855/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2214399Z Receiving objects: 58% (14099/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.2221479Z Receiving objects: 59% (14342/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4484261Z Receiving objects: 60% (14585/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4733622Z Receiving objects: 61% (14828/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4741903Z Receiving objects: 62% (15071/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4748336Z Receiving objects: 63% (15314/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4757649Z Receiving objects: 64% (15557/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4769749Z Receiving objects: 65% (15800/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4777237Z Receiving objects: 66% (16043/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4926424Z Receiving objects: 67% (16286/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4931194Z Receiving objects: 68% (16529/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4936381Z Receiving objects: 69% (16772/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4941660Z Receiving objects: 70% (17015/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4946469Z Receiving objects: 71% (17258/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4953206Z Receiving objects: 72% (17502/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4957574Z Receiving objects: 73% (17745/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.4964751Z Receiving objects: 74% (17988/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5100477Z Receiving objects: 75% (18231/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5112389Z Receiving objects: 76% (18474/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5121479Z Receiving objects: 77% (18717/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5138654Z Receiving objects: 78% (18960/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5160959Z Receiving objects: 79% (19203/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5170220Z Receiving objects: 80% (19446/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5196245Z Receiving objects: 81% (19689/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5215648Z Receiving objects: 82% (19932/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5244769Z Receiving objects: 83% (20175/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5249102Z Receiving objects: 84% (20418/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5251388Z Receiving objects: 85% (20661/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5253625Z Receiving objects: 86% (20905/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5256432Z Receiving objects: 87% (21148/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5259440Z Receiving objects: 88% (21391/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5263580Z Receiving objects: 89% (21634/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5268972Z Receiving objects: 90% (21877/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5276272Z Receiving objects: 91% (22120/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5280621Z Receiving objects: 92% (22363/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5306332Z Receiving objects: 93% (22606/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5338500Z Receiving objects: 94% (22849/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5353088Z Receiving objects: 95% (23092/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5374133Z Receiving objects: 96% (23335/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5429356Z Receiving objects: 97% (23578/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5469561Z Receiving objects: 98% (23821/24307), 215.91 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5509432Z Receiving objects: 99% (24064/24307), 242.89 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5510181Z remote: Total 24307 (delta 3339), reused 3581 (delta 3037), pack-reused 20176 2023-09-06T12:10:46.5532571Z Receiving objects: 100% (24307/24307), 242.89 MiB | 53.99 MiB/s 2023-09-06T12:10:46.5532956Z Receiving objects: 100% (24307/24307), 243.15 MiB | 53.92 MiB/s, done. 2023-09-06T12:10:46.5560067Z Resolving deltas: 0% (0/12383) 2023-09-06T12:10:46.5568384Z Resolving deltas: 1% (124/12383) 2023-09-06T12:10:46.5577753Z Resolving deltas: 2% (254/12383) 2023-09-06T12:10:46.5587758Z Resolving deltas: 3% (374/12383) 2023-09-06T12:10:46.5605835Z Resolving deltas: 4% (505/12383) 2023-09-06T12:10:46.5616671Z Resolving deltas: 5% (620/12383) 2023-09-06T12:10:46.5624935Z Resolving deltas: 6% (746/12383) 2023-09-06T12:10:46.5634736Z Resolving deltas: 7% (867/12383) 2023-09-06T12:10:46.5644128Z Resolving deltas: 8% (1002/12383) 2023-09-06T12:10:46.5651152Z Resolving deltas: 9% (1147/12383) 2023-09-06T12:10:46.5658117Z Resolving deltas: 10% (1241/12383) 2023-09-06T12:10:46.5668010Z Resolving deltas: 11% (1365/12383) 2023-09-06T12:10:46.5678299Z Resolving deltas: 12% (1487/12383) 2023-09-06T12:10:46.5684658Z Resolving deltas: 13% (1638/12383) 2023-09-06T12:10:46.5691705Z Resolving deltas: 14% (1768/12383) 2023-09-06T12:10:46.5700545Z Resolving deltas: 15% (1859/12383) 2023-09-06T12:10:46.5712546Z Resolving deltas: 16% (1982/12383) 2023-09-06T12:10:46.5721383Z Resolving deltas: 17% (2107/12383) 2023-09-06T12:10:46.5727542Z Resolving deltas: 18% (2259/12383) 2023-09-06T12:10:46.5747963Z Resolving deltas: 19% (2354/12383) 2023-09-06T12:10:46.5761625Z Resolving deltas: 20% (2478/12383) 2023-09-06T12:10:46.5769259Z Resolving deltas: 21% (2630/12383) 2023-09-06T12:10:46.5779910Z Resolving deltas: 22% (2729/12383) 2023-09-06T12:10:46.5794561Z Resolving deltas: 23% (2850/12383) 2023-09-06T12:10:46.5806343Z Resolving deltas: 25% (3100/12383) 2023-09-06T12:10:46.5817121Z Resolving deltas: 26% (3234/12383) 2023-09-06T12:10:46.5830052Z Resolving deltas: 27% (3344/12383) 2023-09-06T12:10:46.5836137Z Resolving deltas: 28% (3468/12383) 2023-09-06T12:10:46.5841150Z Resolving deltas: 29% (3594/12383) 2023-09-06T12:10:46.5851557Z Resolving deltas: 30% (3715/12383) 2023-09-06T12:10:46.5858017Z Resolving deltas: 31% (3857/12383) 2023-09-06T12:10:46.5861862Z Resolving deltas: 32% (3978/12383) 2023-09-06T12:10:46.5877372Z Resolving deltas: 33% (4089/12383) 2023-09-06T12:10:46.5888432Z Resolving deltas: 34% (4212/12383) 2023-09-06T12:10:46.5896615Z Resolving deltas: 35% (4338/12383) 2023-09-06T12:10:46.5902148Z Resolving deltas: 36% (4487/12383) 2023-09-06T12:10:46.5920849Z Resolving deltas: 37% (4584/12383) 2023-09-06T12:10:46.5932528Z Resolving deltas: 38% (4706/12383) 2023-09-06T12:10:46.5939998Z Resolving deltas: 39% (4855/12383) 2023-09-06T12:10:46.5947542Z Resolving deltas: 40% (4954/12383) 2023-09-06T12:10:46.5953897Z Resolving deltas: 41% (5085/12383) 2023-09-06T12:10:46.5958812Z Resolving deltas: 42% (5233/12383) 2023-09-06T12:10:46.5963699Z Resolving deltas: 43% (5327/12383) 2023-09-06T12:10:46.5970439Z Resolving deltas: 44% (5454/12383) 2023-09-06T12:10:46.5975428Z Resolving deltas: 45% (5573/12383) 2023-09-06T12:10:46.5980465Z Resolving deltas: 46% (5698/12383) 2023-09-06T12:10:46.5985791Z Resolving deltas: 47% (5824/12383) 2023-09-06T12:10:46.5992323Z Resolving deltas: 48% (5944/12383) 2023-09-06T12:10:46.5998194Z Resolving deltas: 49% (6073/12383) 2023-09-06T12:10:46.6004408Z Resolving deltas: 50% (6194/12383) 2023-09-06T12:10:46.6010029Z Resolving deltas: 51% (6316/12383) 2023-09-06T12:10:46.6015155Z Resolving deltas: 52% (6444/12383) 2023-09-06T12:10:46.6020771Z Resolving deltas: 53% (6563/12383) 2023-09-06T12:10:46.6028264Z Resolving deltas: 54% (6688/12383) 2023-09-06T12:10:46.6036224Z Resolving deltas: 55% (6842/12383) 2023-09-06T12:10:46.6041309Z Resolving deltas: 56% (6984/12383) 2023-09-06T12:10:46.6046941Z Resolving deltas: 57% (7064/12383) 2023-09-06T12:10:46.6052476Z Resolving deltas: 58% (7184/12383) 2023-09-06T12:10:46.6062091Z Resolving deltas: 59% (7315/12383) 2023-09-06T12:10:46.6074107Z Resolving deltas: 60% (7435/12383) 2023-09-06T12:10:46.6079355Z Resolving deltas: 61% (7554/12383) 2023-09-06T12:10:46.6084889Z Resolving deltas: 62% (7687/12383) 2023-09-06T12:10:46.6090258Z Resolving deltas: 63% (7802/12383) 2023-09-06T12:10:46.6097383Z Resolving deltas: 64% (7926/12383) 2023-09-06T12:10:46.6100540Z Resolving deltas: 65% (8104/12383) 2023-09-06T12:10:46.6106587Z Resolving deltas: 66% (8183/12383) 2023-09-06T12:10:46.6112281Z Resolving deltas: 67% (8297/12383) 2023-09-06T12:10:46.6117716Z Resolving deltas: 68% (8424/12383) 2023-09-06T12:10:46.6122367Z Resolving deltas: 69% (8551/12383) 2023-09-06T12:10:46.6127652Z Resolving deltas: 70% (8670/12383) 2023-09-06T12:10:46.6133601Z Resolving deltas: 71% (8794/12383) 2023-09-06T12:10:46.6140344Z Resolving deltas: 72% (8919/12383) 2023-09-06T12:10:46.6153145Z Resolving deltas: 73% (9042/12383) 2023-09-06T12:10:46.6167777Z Resolving deltas: 74% (9252/12383) 2023-09-06T12:10:46.6169147Z Resolving deltas: 76% (9499/12383) 2023-09-06T12:10:46.6201263Z Resolving deltas: 77% (9537/12383) 2023-09-06T12:10:46.6207111Z Resolving deltas: 81% (10088/12383) 2023-09-06T12:10:46.6217707Z Resolving deltas: 82% (10208/12383) 2023-09-06T12:10:46.6222958Z Resolving deltas: 83% (10400/12383) 2023-09-06T12:10:46.6226438Z Resolving deltas: 84% (10498/12383) 2023-09-06T12:10:46.6232682Z Resolving deltas: 85% (10552/12383) 2023-09-06T12:10:46.6237050Z Resolving deltas: 86% (10678/12383) 2023-09-06T12:10:46.6241795Z Resolving deltas: 87% (10793/12383) 2023-09-06T12:10:46.6247535Z Resolving deltas: 88% (10898/12383) 2023-09-06T12:10:46.6252479Z Resolving deltas: 89% (11025/12383) 2023-09-06T12:10:46.6261542Z Resolving deltas: 90% (11159/12383) 2023-09-06T12:10:46.6302033Z Resolving deltas: 91% (11293/12383) 2023-09-06T12:10:46.6313219Z Resolving deltas: 92% (11509/12383) 2023-09-06T12:10:46.6322308Z Resolving deltas: 93% (11570/12383) 2023-09-06T12:10:46.6332062Z Resolving deltas: 94% (11657/12383) 2023-09-06T12:10:46.6345414Z Resolving deltas: 95% (11776/12383) 2023-09-06T12:10:46.6356036Z Resolving deltas: 96% (11901/12383) 2023-09-06T12:10:46.6374259Z Resolving deltas: 97% (12012/12383) 2023-09-06T12:10:46.6383856Z Resolving deltas: 98% (12147/12383) 2023-09-06T12:10:46.6403920Z Resolving deltas: 99% (12261/12383) 2023-09-06T12:10:46.6404228Z Resolving deltas: 100% (12383/12383) 2023-09-06T12:10:46.6404543Z Resolving deltas: 100% (12383/12383), done. 2023-09-06T12:10:47.2668907Z + pushd torchbench 2023-09-06T12:10:47.2669751Z ~/workspace/torchbench ~/workspace 2023-09-06T12:10:47.2670110Z + git checkout 9371b9e13c826f3930e54346b4d619cb59182f68 2023-09-06T12:10:47.3164598Z Note: switching to '9371b9e13c826f3930e54346b4d619cb59182f68'. 2023-09-06T12:10:47.3165001Z 2023-09-06T12:10:47.3165540Z You are in 'detached HEAD' state. You can look around, make experimental 2023-09-06T12:10:47.3166249Z changes and commit them, and you can discard any commits you make in this 2023-09-06T12:10:47.3167012Z state without impacting any branches by switching back to a branch. 2023-09-06T12:10:47.3167469Z 2023-09-06T12:10:47.3167706Z If you want to create a new branch to retain commits you create, you may 2023-09-06T12:10:47.3168260Z do so (now or later) by using -c with the switch command. Example: 2023-09-06T12:10:47.3168494Z 2023-09-06T12:10:47.3168677Z git switch -c 2023-09-06T12:10:47.3168864Z 2023-09-06T12:10:47.3169374Z Or undo this operation with: 2023-09-06T12:10:47.3169551Z 2023-09-06T12:10:47.3169647Z git switch - 2023-09-06T12:10:47.3169795Z 2023-09-06T12:10:47.3170032Z Turn off this advice by setting config variable advice.detachedHead to false 2023-09-06T12:10:47.3170293Z 2023-09-06T12:10:47.3170578Z HEAD is now at 9371b9e1 Don't shard torchrec_dlrm by default (#1822) 2023-09-06T12:10:47.3170907Z + '[' '' ']' 2023-09-06T12:10:47.3171342Z + python install.py --continue_on_fail 2023-09-06T12:10:49.6180491Z checking packages torch, torchvision, torchtext, torchaudio are installed...OK 2023-09-06T12:11:17.7084513Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch...OK 2023-09-06T12:11:21.2038566Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/Background_Matting...OK 2023-09-06T12:11:54.8095171Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/DALLE2_pytorch...OK 2023-09-06T12:12:02.0123591Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/LearningToPaint...OK 2023-09-06T12:12:04.8570009Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/Super_SloMo...OK 2023-09-06T12:12:04.8783364Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/alexnet...OK 2023-09-06T12:12:41.3025794Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/attention_is_all_you_need_pytorch...OK 2023-09-06T12:12:53.6253293Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_edgecnn...OK 2023-09-06T12:12:58.2236268Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_gcn...OK 2023-09-06T12:13:02.7865081Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_gin...OK 2023-09-06T12:13:07.3914342Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_sage...OK 2023-09-06T12:13:17.8222132Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/clip...OK 2023-09-06T12:13:17.8224140Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/cm3leon_generate...SKIP - No install.py is found 2023-09-06T12:13:20.4584649Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/dcgan...OK 2023-09-06T12:13:25.7436953Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs...OK 2023-09-06T12:13:25.7656199Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/densenet121...OK 2023-09-06T12:14:34.0611963Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_c4...OK 2023-09-06T12:14:47.9090662Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_dc5...OK 2023-09-06T12:14:59.3614373Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_fpn...OK 2023-09-06T12:15:10.2314368Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_c4...OK 2023-09-06T12:15:22.2750758Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_dc5...OK 2023-09-06T12:15:32.7619705Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_fpn...OK 2023-09-06T12:15:42.3562017Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fcos_r_50_fpn...OK 2023-09-06T12:16:02.9986090Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn...OK 2023-09-06T12:16:25.8356550Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_101_c4...OK 2023-09-06T12:16:37.8930845Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_101_fpn...OK 2023-09-06T12:16:48.7924499Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_50_c4...OK 2023-09-06T12:17:00.0213159Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_50_fpn...OK 2023-09-06T12:17:05.1748991Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/dlrm...OK 2023-09-06T12:18:35.2740879Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/doctr_det_predictor...OK 2023-09-06T12:19:11.6533354Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/doctr_reco_predictor...OK 2023-09-06T12:19:14.9334948Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/drq...OK 2023-09-06T12:22:30.3001790Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/fambench_xlmr...OK 2023-09-06T12:22:37.0863276Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/fastNLP_Bert...OK 2023-09-06T12:22:39.9729557Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/functorch_dp_cifar10...OK 2023-09-06T12:22:42.8455482Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/functorch_maml_omniglot...OK 2023-09-06T12:22:50.8912082Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Albert...OK 2023-09-06T12:23:01.5857023Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bart...OK 2023-09-06T12:23:10.1683703Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bert...OK 2023-09-06T12:23:21.4677136Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bert_large...OK 2023-09-06T12:23:30.4778875Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_BigBird...OK 2023-09-06T12:23:38.4906793Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_DistilBert...OK 2023-09-06T12:23:47.9734103Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_GPT2...OK 2023-09-06T12:24:10.3702338Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_GPT2_large...OK 2023-09-06T12:24:19.9817804Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Longformer...OK 2023-09-06T12:24:26.5123496Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Reformer...OK 2023-09-06T12:24:34.1978647Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5...OK 2023-09-06T12:24:44.4611187Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_base...OK 2023-09-06T12:24:44.4613029Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_generate...SKIP - No install.py is found 2023-09-06T12:25:02.8964938Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_large...OK 2023-09-06T12:25:12.6704943Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Whisper...OK 2023-09-06T12:25:15.6322540Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/lennard_jones...OK 2023-09-06T12:25:18.6076720Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llama...OK 2023-09-06T12:26:15.4423745Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llama_v2_7b_16h...OK 2023-09-06T12:26:15.4671635Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/maml...OK 2023-09-06T12:26:19.4693902Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/maml_omniglot...OK 2023-09-06T12:26:19.4924657Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mnasnet1_0...OK 2023-09-06T12:26:19.5154987Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v2...OK 2023-09-06T12:26:19.5381260Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v2_quantized_qat...OK 2023-09-06T12:26:19.5608924Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v3_large...OK 2023-09-06T12:26:19.5835648Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/moco...OK 2023-09-06T12:26:19.5840664Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/nanogpt_generate...SKIP - No install.py is found 2023-09-06T12:26:22.5540740Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/nvidia_deeprecommender...OK 2023-09-06T12:26:27.5101295Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/opacus_cifar10...OK 2023-09-06T12:26:27.5336675Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/phlippe_densenet...OK 2023-09-06T12:26:27.5569694Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/phlippe_resnet...OK 2023-09-06T12:26:27.5797700Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_equation_of_state...OK 2023-09-06T12:26:27.6026963Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_isoneutral_mixing...OK 2023-09-06T12:26:27.6257187Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_turbulent_kinetic_energy...OK 2023-09-06T12:26:37.7842370Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_CycleGAN_and_pix2pix...OK 2023-09-06T12:26:41.2756577Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_stargan...OK 2023-09-06T12:26:52.9889659Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_struct...OK 2023-09-06T12:26:56.1681390Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_unet...OK 2023-09-06T12:26:56.1916398Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet152...OK 2023-09-06T12:26:56.2149627Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet18...OK 2023-09-06T12:26:56.2381121Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet50...OK 2023-09-06T12:26:56.2615187Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet50_quantized_qat...OK 2023-09-06T12:26:56.2842154Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnext50_32x4d...OK 2023-09-06T12:29:28.6034012Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/sam...OK 2023-09-06T12:29:28.6284559Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/shufflenet_v2_x1_0...OK 2023-09-06T12:29:39.2569791Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/soft_actor_critic...OK 2023-09-06T12:29:43.1899611Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/speech_transformer...OK 2023-09-06T12:29:43.2136029Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/squeezenet1_1...OK 2023-09-06T12:30:20.1247188Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/stable_diffusion...OK 2023-09-06T12:30:25.7414830Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/tacotron2...OK 2023-09-06T12:30:48.4891102Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_efficientdet...OK 2023-09-06T12:30:48.5129637Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_efficientnet...OK 2023-09-06T12:30:48.5359571Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_nfnet...OK 2023-09-06T12:30:48.5587514Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_regnet...OK 2023-09-06T12:30:48.5809837Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_resnest...OK 2023-09-06T12:30:48.6043309Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vision_transformer...OK 2023-09-06T12:30:48.6269261Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vision_transformer_large...OK 2023-09-06T12:30:48.6491203Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vovnet...OK 2023-09-06T12:30:59.8677473Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/tts_angular...OK 2023-09-06T12:30:59.8910949Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/vgg16...OK 2023-09-06T12:31:03.4663968Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/vision_maskrcnn...OK 2023-09-06T12:31:07.2131299Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/yolov3...OK 2023-09-06T12:31:07.6212110Z + popd 2023-09-06T12:31:07.6212606Z ~/workspace 2023-09-06T12:31:07.6213307Z + [[ inductor_torchbench_perf != *cpu_accuracy* ]] 2023-09-06T12:31:07.6214169Z + install_torchrec_and_fbgemm 2023-09-06T12:31:07.6214431Z + local torchrec_commit 2023-09-06T12:31:07.6223371Z ++ get_pinned_commit torchrec 2023-09-06T12:31:07.6223748Z ++ cat .github/ci_commit_pins/torchrec.txt 2023-09-06T12:31:07.6243844Z + torchrec_commit=6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T12:31:07.6244429Z + local fbgemm_commit 2023-09-06T12:31:07.6248506Z ++ get_pinned_commit fbgemm 2023-09-06T12:31:07.6248958Z ++ cat .github/ci_commit_pins/fbgemm.txt 2023-09-06T12:31:07.6265621Z + fbgemm_commit=1b2746f642cc2c99fe9d1a0c34359c0de45341c2 2023-09-06T12:31:07.6267757Z + pip_uninstall torchrec-nightly 2023-09-06T12:31:07.6268149Z + pip uninstall -y torchrec-nightly 2023-09-06T12:31:08.1314032Z WARNING: Skipping torchrec-nightly as it is not installed. 2023-09-06T12:31:08.1874759Z + pip_uninstall fbgemm-gpu-nightly 2023-09-06T12:31:08.1875210Z + pip uninstall -y fbgemm-gpu-nightly 2023-09-06T12:31:08.6741663Z WARNING: Skipping fbgemm-gpu-nightly as it is not installed. 2023-09-06T12:31:08.7378869Z + pip_install setuptools-git-versioning scikit-build pyre-extensions 2023-09-06T12:31:08.7379561Z + pip install --progress-bar off setuptools-git-versioning scikit-build pyre-extensions 2023-09-06T12:31:09.3374894Z Collecting setuptools-git-versioning 2023-09-06T12:31:09.3375996Z Obtaining dependency information for setuptools-git-versioning from https://files.pythonhosted.org/packages/1c/6b/9ab18da9ef59b242221449e6bec9901d554628454e6e6983be8cc231dbd6/setuptools_git_versioning-1.13.5-py3-none-any.whl.metadata 2023-09-06T12:31:09.4153973Z Downloading setuptools_git_versioning-1.13.5-py3-none-any.whl.metadata (5.7 kB) 2023-09-06T12:31:09.4610755Z Collecting scikit-build 2023-09-06T12:31:09.4613926Z Obtaining dependency information for scikit-build from https://files.pythonhosted.org/packages/fa/af/b3ef8fe0bb96bf7308e1f9d196fc069f0c75d9c74cfaad851e418cc704f4/scikit_build-0.17.6-py3-none-any.whl.metadata 2023-09-06T12:31:09.4761972Z Downloading scikit_build-0.17.6-py3-none-any.whl.metadata (14 kB) 2023-09-06T12:31:09.5145110Z Collecting pyre-extensions 2023-09-06T12:31:09.5290919Z Downloading pyre_extensions-0.0.30-py3-none-any.whl (12 kB) 2023-09-06T12:31:09.5389702Z Requirement already satisfied: packaging in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from setuptools-git-versioning) (23.1) 2023-09-06T12:31:09.5393509Z Requirement already satisfied: setuptools in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from setuptools-git-versioning) (68.0.0) 2023-09-06T12:31:09.5660630Z Collecting toml>=0.10.2 (from setuptools-git-versioning) 2023-09-06T12:31:09.5794126Z Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB) 2023-09-06T12:31:09.6063732Z Requirement already satisfied: distro in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from scikit-build) (1.8.0) 2023-09-06T12:31:09.6073408Z Requirement already satisfied: tomli in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from scikit-build) (2.0.1) 2023-09-06T12:31:09.6080576Z Requirement already satisfied: wheel>=0.32.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from scikit-build) (0.38.4) 2023-09-06T12:31:09.6105563Z Requirement already satisfied: typing-inspect in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from pyre-extensions) (0.9.0) 2023-09-06T12:31:09.6110661Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from pyre-extensions) (4.7.1) 2023-09-06T12:31:09.6355638Z Requirement already satisfied: mypy-extensions>=0.3.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from typing-inspect->pyre-extensions) (1.0.0) 2023-09-06T12:31:09.6515853Z Downloading setuptools_git_versioning-1.13.5-py3-none-any.whl (10 kB) 2023-09-06T12:31:09.6695899Z Downloading scikit_build-0.17.6-py3-none-any.whl (84 kB) 2023-09-06T12:31:12.3616556Z Installing collected packages: toml, scikit-build, setuptools-git-versioning, pyre-extensions 2023-09-06T12:31:12.4981140Z Successfully installed pyre-extensions-0.0.30 scikit-build-0.17.6 setuptools-git-versioning-1.13.5 toml-0.10.2 2023-09-06T12:31:12.6227149Z + CUDA_PATH=/usr/local/cuda-12.1 2023-09-06T12:31:12.6228488Z + pip_install --no-use-pep517 --user 'git+https://github.com/pytorch/FBGEMM.git@1b2746f642cc2c99fe9d1a0c34359c0de45341c2#egg=fbgemm-gpu&subdirectory=fbgemm_gpu' 2023-09-06T12:31:12.6230399Z + pip install --progress-bar off --no-use-pep517 --user 'git+https://github.com/pytorch/FBGEMM.git@1b2746f642cc2c99fe9d1a0c34359c0de45341c2#egg=fbgemm-gpu&subdirectory=fbgemm_gpu' 2023-09-06T12:31:13.1099728Z Collecting fbgemm-gpu 2023-09-06T12:31:13.1103075Z Cloning https://github.com/pytorch/FBGEMM.git (to revision 1b2746f642cc2c99fe9d1a0c34359c0de45341c2) to /tmp/pip-install-aeiael76/fbgemm-gpu_afe94badecf746229e3ef63a23902078 2023-09-06T12:31:13.1135159Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/FBGEMM.git /tmp/pip-install-aeiael76/fbgemm-gpu_afe94badecf746229e3ef63a23902078 2023-09-06T12:31:15.4623908Z Running command git rev-parse -q --verify 'sha^1b2746f642cc2c99fe9d1a0c34359c0de45341c2' 2023-09-06T12:31:15.4650698Z Running command git fetch -q https://github.com/pytorch/FBGEMM.git 1b2746f642cc2c99fe9d1a0c34359c0de45341c2 2023-09-06T12:31:15.9781610Z Running command git checkout -q 1b2746f642cc2c99fe9d1a0c34359c0de45341c2 2023-09-06T12:31:16.4930433Z Resolved https://github.com/pytorch/FBGEMM.git to commit 1b2746f642cc2c99fe9d1a0c34359c0de45341c2 2023-09-06T12:31:16.4932364Z Running command git submodule update --init --recursive -q 2023-09-06T12:31:26.0067145Z Preparing metadata (setup.py) ... [?25l- done 2023-09-06T12:31:26.0087851Z [?25hBuilding wheels for collected packages: fbgemm-gpu 2023-09-06T13:33:56.9524235Z Building wheel for fbgemm-gpu (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / done 2023-09-06T13:33:57.6616448Z [?25h Created wheel for fbgemm-gpu: filename=fbgemm_gpu-0.4.1rc0.post222-cp310-cp310-linux_x86_64.whl size=240406363 sha256=30fef09557f9ffa5ad87340425fda115890fb715b353090485f9e2884368f6cc 2023-09-06T13:33:57.6617175Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/ff/05/73/e79cb64731953a7b9a891826597aab1899e1265baa4c70a191 2023-09-06T13:33:57.6648588Z Successfully built fbgemm-gpu 2023-09-06T13:34:00.4937669Z Installing collected packages: fbgemm-gpu 2023-09-06T13:34:04.5583332Z Successfully installed fbgemm-gpu-0.4.1rc0.post222 2023-09-06T13:34:05.4601664Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/torchrec.git@6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T13:34:05.4602763Z + pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/torchrec.git@6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T13:34:05.9965826Z Collecting git+https://github.com/pytorch/torchrec.git@6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T13:34:05.9976209Z Cloning https://github.com/pytorch/torchrec.git (to revision 6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2) to /tmp/pip-req-build-tdtjqbh4 2023-09-06T13:34:06.0012364Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/torchrec.git /tmp/pip-req-build-tdtjqbh4 2023-09-06T13:34:07.1821874Z Running command git rev-parse -q --verify 'sha^6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2' 2023-09-06T13:34:07.1855514Z Running command git fetch -q https://github.com/pytorch/torchrec.git 6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T13:34:07.6369487Z Running command git checkout -q 6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T13:34:08.1233727Z Resolved https://github.com/pytorch/torchrec.git to commit 6cd9fd362514d14ebb9ed51314c62ac1e1e2bbf2 2023-09-06T13:34:08.4520897Z Preparing metadata (setup.py) ... [?25l- done 2023-09-06T13:34:08.4602430Z [?25hRequirement already satisfied: iopath in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchrec==0.3.2) (0.1.9) 2023-09-06T13:34:08.4606575Z Requirement already satisfied: pandas in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchrec==0.3.2) (2.1.0) 2023-09-06T13:34:08.4612885Z Requirement already satisfied: tabulate in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchrec==0.3.2) (0.9.0) 2023-09-06T13:34:08.4617547Z Requirement already satisfied: torchmetrics in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchrec==0.3.2) (1.1.1) 2023-09-06T13:34:08.4621576Z Requirement already satisfied: tqdm in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchrec==0.3.2) (4.66.1) 2023-09-06T13:34:08.4626944Z Requirement already satisfied: fbgemm-gpu in /var/lib/jenkins/.local/lib/python3.10/site-packages (from torchrec==0.3.2) (0.4.1rc0.post222) 2023-09-06T13:34:08.4661901Z Requirement already satisfied: portalocker in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from iopath->torchrec==0.3.2) (2.7.0) 2023-09-06T13:34:08.5469763Z Requirement already satisfied: numpy>=1.22.4 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from pandas->torchrec==0.3.2) (1.22.4) 2023-09-06T13:34:08.5478651Z Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from pandas->torchrec==0.3.2) (2.8.2) 2023-09-06T13:34:08.5486193Z Requirement already satisfied: pytz>=2020.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from pandas->torchrec==0.3.2) (2023.3) 2023-09-06T13:34:08.5494429Z Requirement already satisfied: tzdata>=2022.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from pandas->torchrec==0.3.2) (2023.3) 2023-09-06T13:34:08.6719654Z Requirement already satisfied: torch>=1.8.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchmetrics->torchrec==0.3.2) (2.2.0a0+git3fe8417) 2023-09-06T13:34:08.6726931Z Requirement already satisfied: lightning-utilities>=0.8.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torchmetrics->torchrec==0.3.2) (0.9.0) 2023-09-06T13:34:08.6882546Z Requirement already satisfied: packaging>=17.1 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from lightning-utilities>=0.8.0->torchmetrics->torchrec==0.3.2) (23.1) 2023-09-06T13:34:08.6884496Z Requirement already satisfied: typing-extensions in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from lightning-utilities>=0.8.0->torchmetrics->torchrec==0.3.2) (4.7.1) 2023-09-06T13:34:08.6917827Z Requirement already satisfied: six>=1.5 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas->torchrec==0.3.2) (1.16.0) 2023-09-06T13:34:08.7002205Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=1.8.1->torchmetrics->torchrec==0.3.2) (3.9.0) 2023-09-06T13:34:08.7005772Z Requirement already satisfied: sympy in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=1.8.1->torchmetrics->torchrec==0.3.2) (1.12) 2023-09-06T13:34:08.7011269Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=1.8.1->torchmetrics->torchrec==0.3.2) (2.8.8) 2023-09-06T13:34:08.7015998Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=1.8.1->torchmetrics->torchrec==0.3.2) (3.1.2) 2023-09-06T13:34:08.7020377Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=1.8.1->torchmetrics->torchrec==0.3.2) (2023.4.0) 2023-09-06T13:34:08.7653175Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch>=1.8.1->torchmetrics->torchrec==0.3.2) (2.1.3) 2023-09-06T13:34:08.7872929Z Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy->torch>=1.8.1->torchmetrics->torchrec==0.3.2) (1.3.0) 2023-09-06T13:34:08.8262706Z Building wheels for collected packages: torchrec 2023-09-06T13:34:09.5282425Z Building wheel for torchrec (setup.py) ... [?25l- \ | / done 2023-09-06T13:34:09.5302442Z [?25h Created wheel for torchrec: filename=torchrec-0.3.2-py3-none-any.whl size=374487 sha256=058b5348db66d0c85bc7f2f8cfa4cc87083eb5d23160a2259f34eb99bfa869af 2023-09-06T13:34:09.5303131Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/8e/a1/47/39ede01672ba82c08fb521bfc057cc4347e4b0e951738c8ca8 2023-09-06T13:34:09.5345344Z Successfully built torchrec 2023-09-06T13:34:12.0510548Z Installing collected packages: torchrec 2023-09-06T13:34:12.3513030Z Successfully installed torchrec-0.3.2 2023-09-06T13:34:12.5823174Z ++ pwd 2023-09-06T13:34:12.5823605Z + PYTHONPATH=/var/lib/jenkins/workspace/torchbench 2023-09-06T13:34:12.5823954Z + test_dynamo_benchmark torchbench 0 2023-09-06T13:34:12.5831474Z ++ pwd 2023-09-06T13:34:12.5834528Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2023-09-06T13:34:12.5835118Z + local suite=torchbench 2023-09-06T13:34:12.5835510Z + shift 2023-09-06T13:34:12.5835871Z + local shard_id=0 2023-09-06T13:34:12.5836257Z + shift 2023-09-06T13:34:12.5837419Z + [[ inductor_torchbench_perf == *perf_compare* ]] 2023-09-06T13:34:12.5838054Z + [[ inductor_torchbench_perf == *perf* ]] 2023-09-06T13:34:12.5838540Z + test_single_dynamo_benchmark dashboard torchbench 0 2023-09-06T13:34:12.5845194Z ++ pwd 2023-09-06T13:34:12.5847627Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2023-09-06T13:34:12.5848115Z + mkdir -p /var/lib/jenkins/workspace/test/test-reports 2023-09-06T13:34:12.5870282Z + local name=dashboard 2023-09-06T13:34:12.5870719Z + shift 2023-09-06T13:34:12.5871103Z + local suite=torchbench 2023-09-06T13:34:12.5871520Z + shift 2023-09-06T13:34:12.5871856Z + local shard_id=0 2023-09-06T13:34:12.5872492Z + shift 2023-09-06T13:34:12.5872721Z + partition_flags=() 2023-09-06T13:34:12.5873104Z + local partition_flags 2023-09-06T13:34:12.5873816Z + [[ -n 4 ]] 2023-09-06T13:34:12.5874250Z + [[ -n 0 ]] 2023-09-06T13:34:12.5875764Z + partition_flags=(--total-partitions "$NUM_TEST_SHARDS" --partition-id "$shard_id") 2023-09-06T13:34:12.5876345Z + [[ inductor_torchbench_perf == *perf_compare* ]] 2023-09-06T13:34:12.5876786Z + [[ inductor_torchbench_perf == *perf* ]] 2023-09-06T13:34:12.5877614Z + test_perf_for_dashboard torchbench --device cuda --total-partitions 4 --partition-id 0 2023-09-06T13:34:12.5878220Z ++ pwd 2023-09-06T13:34:12.5881489Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2023-09-06T13:34:12.5882072Z + mkdir -p /var/lib/jenkins/workspace/test/test-reports 2023-09-06T13:34:12.5898943Z + local suite=torchbench 2023-09-06T13:34:12.5899359Z + shift 2023-09-06T13:34:12.5899726Z + local backend=inductor 2023-09-06T13:34:12.5900095Z + modes=() 2023-09-06T13:34:12.5900459Z + local modes 2023-09-06T13:34:12.5901991Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *training-true* ]] 2023-09-06T13:34:12.5903398Z + modes+=(training) 2023-09-06T13:34:12.5904665Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *inference-true* ]] 2023-09-06T13:34:12.5905348Z + modes+=(inference) 2023-09-06T13:34:12.5905626Z + targets=(accuracy performance) 2023-09-06T13:34:12.5905879Z + local targets 2023-09-06T13:34:12.5906126Z + for mode in "${modes[@]}" 2023-09-06T13:34:12.5906408Z + [[ training == \i\n\f\e\r\e\n\c\e ]] 2023-09-06T13:34:12.5906701Z + [[ training == \t\r\a\i\n\i\n\g ]] 2023-09-06T13:34:12.5906940Z + dtype=amp 2023-09-06T13:34:12.5907193Z + for target in "${targets[@]}" 2023-09-06T13:34:12.5907539Z + target_flag=("--${target}") 2023-09-06T13:34:12.5907783Z + local target_flag 2023-09-06T13:34:12.5908065Z + [[ accuracy == \p\e\r\f\o\r\m\a\n\c\e ]] 2023-09-06T13:34:12.5908726Z + [[ accuracy == \a\c\c\u\r\a\c\y ]] 2023-09-06T13:34:12.5909372Z + target_flag+=(--no-translation-validation) 2023-09-06T13:34:12.5910307Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *default-true* ]] 2023-09-06T13:34:12.5911771Z + python benchmarks/dynamo/torchbench.py --accuracy --no-translation-validation --training --amp --backend inductor --disable-cudagraphs --device cuda --total-partitions 4 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inductor_no_cudagraphs_torchbench_amp_training_cuda_accuracy.csv 2023-09-06T13:34:19.8249173Z 2023-09-06T13:34:21.1584912Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:34:21.1585274Z loading model: 0it [00:01, ?it/s] 2023-09-06T13:34:21.1585581Z cuda train torchrec_dlrm 2023-09-06T13:34:21.1814120Z WARNING:common:fp64 golden ref were not generated for torchrec_dlrm. Setting accuracy check to cosine 2023-09-06T13:34:38.7716576Z pass 2023-09-06T13:34:43.8220740Z 2023-09-06T13:34:47.0438435Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:34:47.0438813Z loading model: 0it [00:03, ?it/s] 2023-09-06T13:34:47.0439118Z cuda train BERT_pytorch 2023-09-06T13:35:41.4048408Z pass 2023-09-06T13:35:47.1185749Z 2023-09-06T13:35:53.0627136Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:35:53.0628706Z loading model: 0it [00:05, ?it/s] 2023-09-06T13:35:53.0629022Z cuda train Background_Matting 2023-09-06T13:35:53.0629634Z pass_due_to_skip 2023-09-06T13:35:57.7423753Z 2023-09-06T13:35:59.2558795Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:35:59.2559434Z 2023-09-06T13:35:59.3566907Z 0%| | 0.00/354M [00:00 2023-09-06T13:54:22.7749456Z torchbench_main() 2023-09-06T13:54:22.7749835Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 491, in torchbench_main 2023-09-06T13:54:22.7750261Z main(TorchBenchmarkRunner(), original_dir) 2023-09-06T13:54:22.7750667Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3031, in main 2023-09-06T13:54:22.7754934Z process_entry(0, runner, original_dir, args) 2023-09-06T13:54:22.7755767Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2988, in process_entry 2023-09-06T13:54:22.7761380Z return maybe_fresh_cache( 2023-09-06T13:54:22.7762136Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1659, in inner 2023-09-06T13:54:22.7765953Z return fn(*args, **kwargs) 2023-09-06T13:54:22.7766735Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3477, in run 2023-09-06T13:54:22.7774522Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2023-09-06T13:54:22.7775266Z AssertionError: nothing in example_inputs had a dim with 4 2023-09-06T13:54:23.7088536Z ERROR 2023-09-06T13:54:27.2537214Z 2023-09-06T13:54:30.4539324Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:54:30.4539734Z loading model: 0it [00:03, ?it/s] 2023-09-06T13:54:30.4540044Z cuda train BERT_pytorch 2023-09-06T13:55:49.4251490Z pass 2023-09-06T13:55:55.1586254Z 2023-09-06T13:56:00.9244680Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:56:00.9245241Z loading model: 0it [00:05, ?it/s] 2023-09-06T13:56:00.9245795Z cuda train Background_Matting 2023-09-06T13:56:00.9246340Z pass_due_to_skip 2023-09-06T13:56:05.6787008Z 2023-09-06T13:56:16.4836089Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:56:16.4837317Z loading model: 0it [00:10, ?it/s] 2023-09-06T13:56:16.4838151Z Eager model failed to run 2023-09-06T13:56:16.4847627Z Traceback (most recent call last): 2023-09-06T13:56:16.4848360Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T13:56:16.4848781Z self.model_iter_fn(model, example_inputs) 2023-09-06T13:56:16.4849228Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 480, in forward_and_backward_pass 2023-09-06T13:56:16.4853652Z self.grad_scaler.scale(loss).backward() 2023-09-06T13:56:16.4855417Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 492, in backward 2023-09-06T13:56:16.4855821Z torch.autograd.backward( 2023-09-06T13:56:16.4856390Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 251, in backward 2023-09-06T13:56:16.4856927Z Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 2023-09-06T13:56:16.4857441Z RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn 2023-09-06T13:56:16.4857945Z 2023-09-06T13:56:16.4858162Z The above exception was the direct cause of the following exception: 2023-09-06T13:56:16.4858451Z 2023-09-06T13:56:16.4858660Z Traceback (most recent call last): 2023-09-06T13:56:16.4859113Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T13:56:16.4859474Z ) = runner.load_model( 2023-09-06T13:56:16.4859836Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T13:56:16.4860244Z self.validate_model(model, example_inputs) 2023-09-06T13:56:16.4862074Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T13:56:16.4862690Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T13:56:16.4863094Z NotImplementedError: Eager model failed to run 2023-09-06T13:56:16.4863363Z 2023-09-06T13:56:16.4863912Z WARNING:root:DALLE2_pytorch failed to load 2023-09-06T13:56:21.2709549Z 2023-09-06T13:56:25.5386671Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:56:25.5387014Z loading model: 0it [00:04, ?it/s] 2023-09-06T13:56:25.5387336Z cuda train LearningToPaint 2023-09-06T13:56:50.4273008Z pass 2023-09-06T13:56:55.9705104Z 2023-09-06T13:56:59.3548891Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:56:59.3549458Z loading model: 0it [00:03, ?it/s] 2023-09-06T13:56:59.3549838Z cuda train Super_SloMo 2023-09-06T13:58:41.8413478Z pass 2023-09-06T13:58:47.6179527Z 2023-09-06T13:58:49.5676613Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:58:49.5677804Z loading model: 0it [00:01, ?it/s] 2023-09-06T13:58:49.5678109Z cuda train alexnet 2023-09-06T13:59:14.4163870Z pass 2023-09-06T13:59:19.6243936Z 2023-09-06T13:59:28.8124787Z loading model: 0it [00:00, ?it/s] 2023-09-06T13:59:28.8125131Z loading model: 0it [00:09, ?it/s] 2023-09-06T13:59:28.8125507Z cuda train attention_is_all_you_need_pytorch 2023-09-06T14:00:57.2220689Z pass 2023-09-06T14:01:03.2237259Z 2023-09-06T14:01:06.1643495Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:01:06.1644015Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:01:06.1644495Z cuda train basic_gnn_edgecnn 2023-09-06T14:01:07.1246205Z [2023-09-06 14:01:07,123] [4/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:01:14.5931295Z skipping cudagraphs for unknown reason 2023-09-06T14:01:19.0756663Z pass 2023-09-06T14:01:24.0346733Z 2023-09-06T14:01:26.9309437Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:01:26.9310209Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:01:26.9313673Z cuda train basic_gnn_gcn 2023-09-06T14:01:35.0160754Z skipping cudagraphs for unknown reason 2023-09-06T14:01:35.0356522Z [2023-09-06 14:01:35,034] [14/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:01:36.4760448Z skipping cudagraphs for unknown reason 2023-09-06T14:01:37.8146228Z skipping cudagraphs for unknown reason 2023-09-06T14:01:38.2539164Z skipping cudagraphs for unknown reason 2023-09-06T14:01:40.0093746Z pass 2023-09-06T14:01:44.8783850Z 2023-09-06T14:01:47.9586409Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:01:47.9586758Z loading model: 0it [00:03, ?it/s] 2023-09-06T14:01:47.9587063Z cuda train basic_gnn_gin 2023-09-06T14:01:48.9472857Z [2023-09-06 14:01:48,946] [4/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:01:55.5970462Z skipping cudagraphs for unknown reason 2023-09-06T14:01:57.4546201Z pass 2023-09-06T14:02:02.3301246Z 2023-09-06T14:02:05.2658340Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:02:05.2658699Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:02:05.2658990Z cuda train basic_gnn_sage 2023-09-06T14:02:06.2344905Z [2023-09-06 14:02:06,233] [4/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:02:12.7318444Z skipping cudagraphs for unknown reason 2023-09-06T14:02:13.3856313Z pass 2023-09-06T14:02:18.2457944Z 2023-09-06T14:02:23.7399428Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:02:23.7400526Z loading model: 0it [00:05, ?it/s] 2023-09-06T14:02:23.7400810Z Eager model failed to run 2023-09-06T14:02:23.7406888Z Traceback (most recent call last): 2023-09-06T14:02:23.7407631Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T14:02:23.7408274Z self.model_iter_fn(model, example_inputs) 2023-09-06T14:02:23.7408775Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 480, in forward_and_backward_pass 2023-09-06T14:02:23.7409203Z self.grad_scaler.scale(loss).backward() 2023-09-06T14:02:23.7410262Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 492, in backward 2023-09-06T14:02:23.7410955Z torch.autograd.backward( 2023-09-06T14:02:23.7411724Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 251, in backward 2023-09-06T14:02:23.7412833Z Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 2023-09-06T14:02:23.7413561Z RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn 2023-09-06T14:02:23.7414071Z 2023-09-06T14:02:23.7414541Z The above exception was the direct cause of the following exception: 2023-09-06T14:02:23.7414993Z 2023-09-06T14:02:23.7415138Z Traceback (most recent call last): 2023-09-06T14:02:23.7415523Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T14:02:23.7415875Z ) = runner.load_model( 2023-09-06T14:02:23.7416238Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T14:02:23.7416644Z self.validate_model(model, example_inputs) 2023-09-06T14:02:23.7417054Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T14:02:23.7417498Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T14:02:23.7417885Z NotImplementedError: Eager model failed to run 2023-09-06T14:02:23.7418436Z 2023-09-06T14:02:23.7418589Z WARNING:root:cm3leon_generate failed to load 2023-09-06T14:02:28.3297449Z 2023-09-06T14:02:29.3133176Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:02:29.3133524Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:02:29.3133829Z cuda train dcgan 2023-09-06T14:02:41.3302974Z pass 2023-09-06T14:02:46.3470615Z 2023-09-06T14:02:50.6031798Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:02:50.6032673Z loading model: 0it [00:04, ?it/s] 2023-09-06T14:02:50.6033250Z cuda train demucs 2023-09-06T14:03:12.5322702Z ERROR:common:Constraints violated! 2023-09-06T14:03:12.5325427Z 1. Not all values of RelaxedUnspecConstraint(L['streams'].size()[0]) are valid because L['streams'].size()[0] was inferred to be a constant (4). For more information about why it is constant, run with TORCH_LOGS=dynamic. 2023-09-06T14:03:12.5325902Z 2023-09-06T14:03:12.5325909Z 2023-09-06T14:03:12.5326133Z You can suppress this exception and fall back to eager by setting: 2023-09-06T14:03:12.5332364Z import torch._dynamo 2023-09-06T14:03:12.5333518Z torch._dynamo.config.suppress_errors = True 2023-09-06T14:03:12.5333992Z Traceback (most recent call last): 2023-09-06T14:03:12.5334762Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T14:03:12.5335426Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T14:03:12.5336198Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T14:03:12.5336577Z return fn(*args, **kwargs) 2023-09-06T14:03:12.5336971Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1899, in run_n_iterations 2023-09-06T14:03:12.5337402Z self.model_iter_fn(mod, inputs, collect_outputs=False) 2023-09-06T14:03:12.5337871Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 475, in forward_and_backward_pass 2023-09-06T14:03:12.5338859Z cloned_inputs = clone_inputs(inputs) 2023-09-06T14:03:12.5339298Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 476, in 2023-09-06T14:03:12.5339722Z self.optimizer_zero_grad(mod) 2023-09-06T14:03:12.5340167Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 478, in 2023-09-06T14:03:12.5340583Z pred = mod(*cloned_inputs) 2023-09-06T14:03:12.5341177Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T14:03:12.5341602Z return self._call_impl(*args, **kwargs) 2023-09-06T14:03:12.5342173Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T14:03:12.5342582Z return forward_call(*args, **kwargs) 2023-09-06T14:03:12.5343145Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T14:03:12.5343588Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T14:03:12.5344216Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T14:03:12.5344681Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T14:03:12.5345271Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T14:03:12.5345660Z return fn(*args, **kwargs) 2023-09-06T14:03:12.5346217Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T14:03:12.5346618Z return _compile( 2023-09-06T14:03:12.5347148Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T14:03:12.5347617Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T14:03:12.5348417Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T14:03:12.5348806Z r = func(*args, **kwargs) 2023-09-06T14:03:12.5349567Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 542, in compile_inner 2023-09-06T14:03:12.5349996Z check_fn = CheckFunctionManager( 2023-09-06T14:03:12.5350553Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/guards.py", line 958, in __init__ 2023-09-06T14:03:12.5350958Z guard.create(local_builder, global_builder) 2023-09-06T14:03:12.5351496Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_guards.py", line 243, in create 2023-09-06T14:03:12.5351967Z return self.create_fn(self.source.select(local_builder, global_builder), self) 2023-09-06T14:03:12.5352585Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/guards.py", line 621, in SHAPE_ENV 2023-09-06T14:03:12.5353021Z guards = output_graph.shape_env.produce_guards( 2023-09-06T14:03:12.5353650Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3022, in produce_guards 2023-09-06T14:03:12.5354161Z raise ConstraintViolationError(f"Constraints violated!\n{err}") 2023-09-06T14:03:12.5354667Z torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated! 2023-09-06T14:03:12.5355621Z 1. Not all values of RelaxedUnspecConstraint(L['streams'].size()[0]) are valid because L['streams'].size()[0] was inferred to be a constant (4). For more information about why it is constant, run with TORCH_LOGS=dynamic. 2023-09-06T14:03:12.5356076Z 2023-09-06T14:03:12.5356082Z 2023-09-06T14:03:12.5356264Z You can suppress this exception and fall back to eager by setting: 2023-09-06T14:03:12.5356605Z import torch._dynamo 2023-09-06T14:03:12.5356919Z torch._dynamo.config.suppress_errors = True 2023-09-06T14:03:12.5357129Z 2023-09-06T14:03:12.5357490Z TorchDynamo optimized model failed to run because of following error 2023-09-06T14:03:12.5381423Z fail_to_run 2023-09-06T14:03:17.5331301Z 2023-09-06T14:03:21.4915914Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:03:21.4916271Z loading model: 0it [00:03, ?it/s] 2023-09-06T14:03:21.4916635Z cuda train densenet121 2023-09-06T14:05:59.4521059Z pass 2023-09-06T14:06:06.5383406Z 2023-09-06T14:06:08.0409258Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:06:08.0409647Z loading model: 0it [00:01, ?it/s] 2023-09-06T14:06:08.0410157Z FCOS train is not supported by upstream detectron2. See GH Issue: https://github.com/facebookresearch/detectron2/issues/4369. 2023-09-06T14:06:08.0415573Z Traceback (most recent call last): 2023-09-06T14:06:08.0416231Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T14:06:08.0419444Z ) = runner.load_model( 2023-09-06T14:06:08.0420146Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 368, in load_model 2023-09-06T14:06:08.0420575Z benchmark = benchmark_cls( 2023-09-06T14:06:08.0420985Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/util/model.py", line 25, in __call__ 2023-09-06T14:06:08.0421400Z obj = type.__call__(cls, *args, **kwargs) 2023-09-06T14:06:08.0425090Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fcos_r_50_fpn/__init__.py", line 15, in __init__ 2023-09-06T14:06:08.0426692Z super().__init__(variant="COCO-Detection/fcos_R_50_FPN_1x.py", test=test, device=device, 2023-09-06T14:06:08.0427234Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/util/framework/detectron2/model_factory.py", line 105, in __init__ 2023-09-06T14:06:08.0427787Z raise NotImplementedError("FCOS train is not supported by upstream detectron2. " \ 2023-09-06T14:06:08.0428394Z NotImplementedError: FCOS train is not supported by upstream detectron2. See GH Issue: https://github.com/facebookresearch/detectron2/issues/4369. 2023-09-06T14:06:08.0429505Z 2023-09-06T14:06:08.0429684Z WARNING:root:detectron2_fcos_r_50_fpn failed to load 2023-09-06T14:06:09.0572041Z accuracy pass_rate=78.57% 2023-09-06T14:06:09.0572436Z calls_captured gmean=0.00x mean=166.357x 2023-09-06T14:06:09.0574849Z unique_graphs gmean=0.00x mean=2.571x 2023-09-06T14:06:09.0575882Z graph_breaks gmean=0.00x mean=8.143x 2023-09-06T14:06:09.0577996Z unique_graph_breaks gmean=0.00x mean=5.071x 2023-09-06T14:06:09.8251490Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *cppwrapper-true* ]] 2023-09-06T14:06:09.8253729Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *freezing_cudagraphs-true* ]] 2023-09-06T14:06:09.8254431Z + [[ training == \i\n\f\e\r\e\n\c\e ]] 2023-09-06T14:06:09.8255324Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *aotinductor-true* ]] 2023-09-06T14:06:09.8256029Z + [[ training == \i\n\f\e\r\e\n\c\e ]] 2023-09-06T14:06:09.8256886Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *maxautotune-true* ]] 2023-09-06T14:06:09.8257564Z + for target in "${targets[@]}" 2023-09-06T14:06:09.8257883Z + target_flag=("--${target}") 2023-09-06T14:06:09.8258157Z + local target_flag 2023-09-06T14:06:09.8258450Z + [[ performance == \p\e\r\f\o\r\m\a\n\c\e ]] 2023-09-06T14:06:09.8258833Z + target_flag+=(--cold-start-latency) 2023-09-06T14:06:09.8259672Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *default-true* ]] 2023-09-06T14:06:09.8261128Z + python benchmarks/dynamo/torchbench.py --performance --cold-start-latency --training --amp --backend inductor --disable-cudagraphs --device cuda --total-partitions 4 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inductor_no_cudagraphs_torchbench_amp_training_cuda_performance.csv 2023-09-06T14:06:17.1377524Z 2023-09-06T14:06:18.4585699Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:06:18.4586211Z loading model: 0it [00:01, ?it/s] 2023-09-06T14:06:18.4586514Z cuda train torchrec_dlrm 2023-09-06T14:06:39.4515600Z 2023-09-06T14:06:39.5577910Z running benchmark: 0% 0/30 [00:00 2023-09-06T14:34:28.1046927Z torchbench_main() 2023-09-06T14:34:28.1047342Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 491, in torchbench_main 2023-09-06T14:34:28.1047773Z main(TorchBenchmarkRunner(), original_dir) 2023-09-06T14:34:28.1048258Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3031, in main 2023-09-06T14:34:28.1051974Z process_entry(0, runner, original_dir, args) 2023-09-06T14:34:28.1052399Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2988, in process_entry 2023-09-06T14:34:28.1056913Z return maybe_fresh_cache( 2023-09-06T14:34:28.1057289Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1659, in inner 2023-09-06T14:34:28.1059158Z return fn(*args, **kwargs) 2023-09-06T14:34:28.1059531Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3477, in run 2023-09-06T14:34:28.1065432Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2023-09-06T14:34:28.1065968Z AssertionError: nothing in example_inputs had a dim with 1024 2023-09-06T14:34:29.0647009Z ERROR 2023-09-06T14:34:32.6194337Z 2023-09-06T14:34:35.9221547Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:34:35.9221907Z loading model: 0it [00:03, ?it/s] 2023-09-06T14:34:35.9222203Z cuda train BERT_pytorch 2023-09-06T14:36:12.6150657Z 2023-09-06T14:36:12.7265258Z running benchmark: 0% 0/30 [00:00 2023-09-06T14:37:04.2513103Z self.optimizer_zero_grad(mod) 2023-09-06T14:37:04.2514145Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T14:37:04.2514621Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T14:37:04.2515247Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T14:37:04.2515715Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T14:37:04.2516283Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T14:37:04.2516675Z return fn(*args, **kwargs) 2023-09-06T14:37:04.2517255Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T14:37:04.2517651Z return _compile( 2023-09-06T14:37:04.2518178Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T14:37:04.2518628Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T14:37:04.2519234Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T14:37:04.2519615Z r = func(*args, **kwargs) 2023-09-06T14:37:04.2520160Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 542, in compile_inner 2023-09-06T14:37:04.2520563Z check_fn = CheckFunctionManager( 2023-09-06T14:37:04.2521112Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/guards.py", line 958, in __init__ 2023-09-06T14:37:04.2521531Z guard.create(local_builder, global_builder) 2023-09-06T14:37:04.2522067Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_guards.py", line 243, in create 2023-09-06T14:37:04.2522536Z return self.create_fn(self.source.select(local_builder, global_builder), self) 2023-09-06T14:37:04.2523185Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/guards.py", line 621, in SHAPE_ENV 2023-09-06T14:37:04.2523832Z guards = output_graph.shape_env.produce_guards( 2023-09-06T14:37:04.2524468Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3022, in produce_guards 2023-09-06T14:37:04.2524977Z raise ConstraintViolationError(f"Constraints violated!\n{err}") 2023-09-06T14:37:04.2525462Z torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated! 2023-09-06T14:37:04.2526457Z 1. Not all values of RelaxedUnspecConstraint(L['cloned_inputs'][3].size()[1]) are valid because L['cloned_inputs'][3].size()[1] was inferred to be a constant (4). For more information about why it is constant, run with TORCH_LOGS=dynamic. 2023-09-06T14:37:04.2527024Z 2023-09-06T14:37:04.2527029Z 2023-09-06T14:37:04.2527226Z You can suppress this exception and fall back to eager by setting: 2023-09-06T14:37:04.2527566Z import torch._dynamo 2023-09-06T14:37:04.2527889Z torch._dynamo.config.suppress_errors = True 2023-09-06T14:37:04.2528112Z 2023-09-06T14:37:06.6352039Z ERROR 2023-09-06T14:37:10.3497550Z 2023-09-06T14:37:21.8901024Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:37:21.8901712Z loading model: 0it [00:11, ?it/s] 2023-09-06T14:37:21.8901990Z Eager model failed to run 2023-09-06T14:37:21.8908832Z Traceback (most recent call last): 2023-09-06T14:37:21.8909669Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T14:37:21.8910264Z self.model_iter_fn(model, example_inputs) 2023-09-06T14:37:21.8910931Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 480, in forward_and_backward_pass 2023-09-06T14:37:21.8911485Z self.grad_scaler.scale(loss).backward() 2023-09-06T14:37:21.8914742Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 492, in backward 2023-09-06T14:37:21.8915396Z torch.autograd.backward( 2023-09-06T14:37:21.8917310Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 251, in backward 2023-09-06T14:37:21.8917878Z Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 2023-09-06T14:37:21.8918360Z RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn 2023-09-06T14:37:21.8918687Z 2023-09-06T14:37:21.8918912Z The above exception was the direct cause of the following exception: 2023-09-06T14:37:21.8919162Z 2023-09-06T14:37:21.8919297Z Traceback (most recent call last): 2023-09-06T14:37:21.8919679Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T14:37:21.8920026Z ) = runner.load_model( 2023-09-06T14:37:21.8920391Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T14:37:21.8920803Z self.validate_model(model, example_inputs) 2023-09-06T14:37:21.8921216Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T14:37:21.8921676Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T14:37:21.8922047Z NotImplementedError: Eager model failed to run 2023-09-06T14:37:21.8922254Z 2023-09-06T14:37:21.8922391Z WARNING:root:DALLE2_pytorch failed to load 2023-09-06T14:37:26.7701771Z 2023-09-06T14:37:31.5714828Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:37:31.5715188Z loading model: 0it [00:04, ?it/s] 2023-09-06T14:37:31.5715500Z cuda train LearningToPaint 2023-09-06T14:38:17.9686627Z 2023-09-06T14:38:18.0803275Z running benchmark: 0% 0/30 [00:00 2023-09-06T14:45:31.0125922Z self.optimizer_zero_grad(mod) 2023-09-06T14:45:31.0126388Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 478, in 2023-09-06T14:45:31.0126801Z pred = mod(*cloned_inputs) 2023-09-06T14:45:31.0128767Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T14:45:31.0129373Z return self._call_impl(*args, **kwargs) 2023-09-06T14:45:31.0130060Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T14:45:31.0130709Z return forward_call(*args, **kwargs) 2023-09-06T14:45:31.0131513Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T14:45:31.0132422Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T14:45:31.0133236Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T14:45:31.0134163Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T14:45:31.0134780Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T14:45:31.0135198Z return fn(*args, **kwargs) 2023-09-06T14:45:31.0135791Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T14:45:31.0136181Z return _compile( 2023-09-06T14:45:31.0136741Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T14:45:31.0163344Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T14:45:31.0164503Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T14:45:31.0165078Z r = func(*args, **kwargs) 2023-09-06T14:45:31.0166182Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 542, in compile_inner 2023-09-06T14:45:31.0166903Z check_fn = CheckFunctionManager( 2023-09-06T14:45:31.0167850Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/guards.py", line 958, in __init__ 2023-09-06T14:45:31.0168288Z guard.create(local_builder, global_builder) 2023-09-06T14:45:31.0168841Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_guards.py", line 243, in create 2023-09-06T14:45:31.0169302Z return self.create_fn(self.source.select(local_builder, global_builder), self) 2023-09-06T14:45:31.0169919Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/guards.py", line 621, in SHAPE_ENV 2023-09-06T14:45:31.0170355Z guards = output_graph.shape_env.produce_guards( 2023-09-06T14:45:31.0170992Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3022, in produce_guards 2023-09-06T14:45:31.0171511Z raise ConstraintViolationError(f"Constraints violated!\n{err}") 2023-09-06T14:45:31.0172460Z torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated! 2023-09-06T14:45:31.0173429Z 1. Not all values of RelaxedUnspecConstraint(L['streams'].size()[0]) are valid because L['streams'].size()[0] was inferred to be a constant (4). For more information about why it is constant, run with TORCH_LOGS=dynamic. 2023-09-06T14:45:31.0173882Z 2023-09-06T14:45:31.0173888Z 2023-09-06T14:45:31.0174086Z You can suppress this exception and fall back to eager by setting: 2023-09-06T14:45:31.0174450Z import torch._dynamo 2023-09-06T14:45:31.0174764Z torch._dynamo.config.suppress_errors = True 2023-09-06T14:45:31.0174956Z 2023-09-06T14:45:32.3415771Z ERROR 2023-09-06T14:45:36.0255240Z 2023-09-06T14:45:40.4595848Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:45:40.4596198Z loading model: 0it [00:04, ?it/s] 2023-09-06T14:45:40.4596502Z cuda train densenet121 2023-09-06T14:49:42.0941736Z 2023-09-06T14:49:42.2147373Z running benchmark: 0% 0/30 [00:00(*(FakeTensor(..., device='cuda:0', size=(4, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T14:52:50.7627665Z unhashable type: 'SymInt' 2023-09-06T14:52:50.7627903Z 2023-09-06T14:52:50.7628032Z from user code: 2023-09-06T14:52:50.7628908Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T14:52:50.7629911Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T14:52:50.7630296Z 2023-09-06T14:52:50.7630605Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T14:52:50.7630939Z 2023-09-06T14:52:50.7630946Z 2023-09-06T14:52:50.7631224Z You can suppress this exception and fall back to eager by setting: 2023-09-06T14:52:50.7631772Z import torch._dynamo 2023-09-06T14:52:50.7632344Z torch._dynamo.config.suppress_errors = True 2023-09-06T14:52:50.7632830Z Traceback (most recent call last): 2023-09-06T14:52:50.7633485Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T14:52:50.7634270Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T14:52:50.7635231Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T14:52:50.7636339Z return fn(*args, **kwargs) 2023-09-06T14:52:50.7636914Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1899, in run_n_iterations 2023-09-06T14:52:50.7637559Z self.model_iter_fn(mod, inputs, collect_outputs=False) 2023-09-06T14:52:50.7638240Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T14:52:50.7638841Z return mod(*inputs) 2023-09-06T14:52:50.7639823Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T14:52:50.7640611Z return self._call_impl(*args, **kwargs) 2023-09-06T14:52:50.7641542Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T14:52:50.7642153Z return forward_call(*args, **kwargs) 2023-09-06T14:52:50.7643005Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T14:52:50.7643711Z return func(*args, **kwargs) 2023-09-06T14:52:50.7644492Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T14:52:50.7645035Z model.eval() 2023-09-06T14:52:50.7645823Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T14:52:50.7646426Z out = fn(model, *args, **kwargs) 2023-09-06T14:52:50.7647236Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T14:52:50.7648173Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T14:52:50.7649250Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T14:52:50.7650368Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T14:52:50.7651376Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T14:52:50.7651961Z return func(*args, **kwargs) 2023-09-06T14:52:50.7652757Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T14:52:50.7653366Z model.eval() 2023-09-06T14:52:50.7654123Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T14:52:50.7654846Z out = fn(model, *args, **kwargs) 2023-09-06T14:52:50.7655628Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T14:52:50.7656168Z img = self.p_sample_loop( 2023-09-06T14:52:50.7656952Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T14:52:50.7657568Z return func(*args, **kwargs) 2023-09-06T14:52:50.7658374Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T14:52:50.7659063Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T14:52:50.7659993Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T14:52:50.7660573Z return func(*args, **kwargs) 2023-09-06T14:52:50.7661393Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T14:52:50.7661995Z img, x_start = self.p_sample( 2023-09-06T14:52:50.7663101Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T14:52:50.7663752Z return func(*args, **kwargs) 2023-09-06T14:52:50.7664861Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T14:52:50.7666294Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T14:52:50.7667967Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T14:52:50.7670681Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T14:52:50.7672175Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T14:52:50.7672750Z return d() if callable(d) else d 2023-09-06T14:52:50.7673653Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T14:52:50.7674711Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T14:52:50.7675995Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T14:52:50.7676603Z logits = self.forward(*args, **kwargs) 2023-09-06T14:52:50.7677695Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T14:52:50.7678272Z x = resnet_block(x, t, c) 2023-09-06T14:52:50.7679092Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T14:52:50.7679716Z return self._call_impl(*args, **kwargs) 2023-09-06T14:52:50.7680559Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T14:52:50.7681143Z return forward_call(*args, **kwargs) 2023-09-06T14:52:50.7681950Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T14:52:50.7682580Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T14:52:50.7683517Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T14:52:50.7684187Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T14:52:50.7685104Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T14:52:50.7685661Z return fn(*args, **kwargs) 2023-09-06T14:52:50.7686554Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T14:52:50.7687167Z return _compile( 2023-09-06T14:52:50.7687975Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T14:52:50.7688686Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T14:52:50.7689501Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T14:52:50.7690066Z r = func(*args, **kwargs) 2023-09-06T14:52:50.7690919Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T14:52:50.7691791Z out_code = transform_code_object(code, transform) 2023-09-06T14:52:50.7692688Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T14:52:50.7693406Z transformations(instructions, code_options) 2023-09-06T14:52:50.7694212Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T14:52:50.7694721Z tracer.run() 2023-09-06T14:52:50.7695482Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T14:52:50.7696001Z super().run() 2023-09-06T14:52:50.7696742Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T14:52:50.7697274Z and self.step() 2023-09-06T14:52:50.7698016Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T14:52:50.7698603Z getattr(self, inst.opname)(inst) 2023-09-06T14:52:50.7699440Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T14:52:50.7700043Z return inner_fn(self, inst) 2023-09-06T14:52:50.7700943Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T14:52:50.7701590Z self.call_function(fn, args, {}) 2023-09-06T14:52:50.7702549Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T14:52:50.7703312Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T14:52:50.7704253Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T14:52:50.7704815Z tensor_variable = wrap_fx_proxy( 2023-09-06T14:52:50.7705821Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T14:52:50.7706418Z return wrap_fx_proxy_cls( 2023-09-06T14:52:50.7707217Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T14:52:50.7707828Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T14:52:50.7708592Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T14:52:50.7709411Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T14:52:50.7710333Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T14:52:50.7710938Z return wrap_fake_exception( 2023-09-06T14:52:50.7711806Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T14:52:50.7712367Z return fn() 2023-09-06T14:52:50.7713308Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T14:52:50.7714025Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T14:52:50.7715012Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T14:52:50.7715873Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T14:52:50.7716973Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T14:52:50.7717534Z return node.target(*args, **kwargs) 2023-09-06T14:52:50.7718265Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T14:52:50.7719053Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T14:52:50.7719892Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T14:52:50.7720816Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T14:52:50.7721631Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T14:52:50.7722328Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T14:52:50.7723585Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(4, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T14:52:50.7724438Z unhashable type: 'SymInt' 2023-09-06T14:52:50.7724718Z 2023-09-06T14:52:50.7724870Z from user code: 2023-09-06T14:52:50.7725756Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T14:52:50.7726593Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T14:52:50.7726915Z 2023-09-06T14:52:50.7727248Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T14:52:50.7727666Z 2023-09-06T14:52:50.7727675Z 2023-09-06T14:52:50.7728003Z You can suppress this exception and fall back to eager by setting: 2023-09-06T14:52:50.7728551Z import torch._dynamo 2023-09-06T14:52:50.7729051Z torch._dynamo.config.suppress_errors = True 2023-09-06T14:52:50.7729326Z 2023-09-06T14:52:50.7729600Z TorchDynamo optimized model failed to run because of following error 2023-09-06T14:52:50.7730045Z fail_to_run 2023-09-06T14:52:57.1001862Z 2023-09-06T14:53:00.9638195Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:53:00.9638714Z loading model: 0it [00:03, ?it/s] 2023-09-06T14:53:00.9663295Z cuda eval LearningToPaint 2023-09-06T14:53:13.7106429Z pass 2023-09-06T14:53:19.0062218Z 2023-09-06T14:53:21.4165095Z loading model: 0it [00:00, ?it/s]WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T14:53:21.9351167Z 2023-09-06T14:53:21.9351674Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:53:21.9352711Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T14:53:21.9356618Z cuda eval Super_SloMo 2023-09-06T14:53:22.0385649Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T14:54:10.3361860Z pass 2023-09-06T14:54:16.0826885Z 2023-09-06T14:54:17.6325328Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:54:17.6326382Z loading model: 0it [00:01, ?it/s] 2023-09-06T14:54:17.6326697Z cuda eval alexnet 2023-09-06T14:54:27.2929893Z pass 2023-09-06T14:54:32.2473960Z 2023-09-06T14:54:39.2156712Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:54:39.2213022Z loading model: 0it [00:06, ?it/s] 2023-09-06T14:54:39.2213454Z cuda eval attention_is_all_you_need_pytorch 2023-09-06T14:55:06.9971826Z pass 2023-09-06T14:55:12.4998161Z 2023-09-06T14:55:15.3239147Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:55:15.3239630Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:55:15.3245820Z cuda eval basic_gnn_edgecnn 2023-09-06T14:55:15.9024524Z [2023-09-06 14:55:15,901] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:55:22.3642143Z pass 2023-09-06T14:55:27.1988776Z 2023-09-06T14:55:30.0549372Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:55:30.0550655Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:55:30.0554799Z cuda eval basic_gnn_gcn 2023-09-06T14:55:38.6415268Z [2023-09-06 14:55:38,639] [11/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:55:41.0178412Z pass 2023-09-06T14:55:45.8618879Z 2023-09-06T14:55:48.8350877Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:55:48.8351231Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:55:48.8359454Z cuda eval basic_gnn_gin 2023-09-06T14:55:49.5819990Z [2023-09-06 14:55:49,580] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:55:56.0378967Z pass 2023-09-06T14:56:00.8551277Z 2023-09-06T14:56:03.8281200Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:56:03.8281775Z loading model: 0it [00:02, ?it/s] 2023-09-06T14:56:03.8289148Z cuda eval basic_gnn_sage 2023-09-06T14:56:04.5514011Z [2023-09-06 14:56:04,550] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T14:56:10.8196169Z pass 2023-09-06T14:56:15.6102447Z 2023-09-06T14:56:21.0135328Z loading model: 0it [00:00, ?it/s] 2023-09-06T14:56:21.0136110Z loading model: 0it [00:05, ?it/s] 2023-09-06T14:56:21.0249480Z cuda eval cm3leon_generate 2023-09-06T15:00:06.5457637Z pass 2023-09-06T15:00:13.2773155Z 2023-09-06T15:00:14.1550793Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:00:14.1551160Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:00:14.1556250Z cuda eval dcgan 2023-09-06T15:00:21.7643211Z pass 2023-09-06T15:00:26.6607908Z 2023-09-06T15:00:29.9600035Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:00:29.9600557Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:00:29.9601012Z Eager model failed to run 2023-09-06T15:00:29.9613560Z Traceback (most recent call last): 2023-09-06T15:00:29.9615377Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:00:29.9615873Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:00:29.9616314Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:00:29.9616692Z return mod(*inputs) 2023-09-06T15:00:29.9623312Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:00:29.9623912Z return self._call_impl(*args, **kwargs) 2023-09-06T15:00:29.9624870Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:00:29.9625660Z return forward_call(*args, **kwargs) 2023-09-06T15:00:29.9626462Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/__init__.py", line 31, in forward 2023-09-06T15:00:29.9627221Z return sources, self.model(mix) 2023-09-06T15:00:29.9628041Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:00:29.9628467Z return self._call_impl(*args, **kwargs) 2023-09-06T15:00:29.9629051Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:00:29.9629864Z return forward_call(*args, **kwargs) 2023-09-06T15:00:29.9630306Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 209, in forward 2023-09-06T15:00:29.9630695Z x = self.lstm(x) 2023-09-06T15:00:29.9631259Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:00:29.9631679Z return self._call_impl(*args, **kwargs) 2023-09-06T15:00:29.9632219Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:00:29.9633017Z return forward_call(*args, **kwargs) 2023-09-06T15:00:29.9633452Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 27, in forward 2023-09-06T15:00:29.9633909Z x = self.lstm(x)[0] 2023-09-06T15:00:29.9634459Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:00:29.9634891Z return self._call_impl(*args, **kwargs) 2023-09-06T15:00:29.9635444Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:00:29.9635844Z return forward_call(*args, **kwargs) 2023-09-06T15:00:29.9636383Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/rnn.py", line 879, in forward 2023-09-06T15:00:29.9636844Z result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers, 2023-09-06T15:00:29.9637378Z RuntimeError: "_thnn_fused_lstm_cell_cuda" not implemented for 'BFloat16' 2023-09-06T15:00:29.9637637Z 2023-09-06T15:00:29.9637834Z The above exception was the direct cause of the following exception: 2023-09-06T15:00:29.9638072Z 2023-09-06T15:00:29.9638198Z Traceback (most recent call last): 2023-09-06T15:00:29.9638562Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:00:29.9638911Z ) = runner.load_model( 2023-09-06T15:00:29.9639299Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:00:29.9639706Z self.validate_model(model, example_inputs) 2023-09-06T15:00:29.9640117Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:00:29.9640543Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:00:29.9640925Z NotImplementedError: Eager model failed to run 2023-09-06T15:00:29.9641137Z 2023-09-06T15:00:29.9641262Z WARNING:root:demucs failed to load 2023-09-06T15:00:34.4695659Z 2023-09-06T15:00:36.3589569Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:00:36.3590356Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:00:36.3737071Z cuda eval densenet121 2023-09-06T15:01:19.9284446Z pass 2023-09-06T15:01:25.8139871Z 2023-09-06T15:01:30.7417869Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:01:30.7418232Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:01:30.7418510Z Eager model failed to run 2023-09-06T15:01:30.7434923Z Traceback (most recent call last): 2023-09-06T15:01:30.7435378Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:01:30.7435793Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:01:30.7441500Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:01:30.7441888Z return mod(*inputs) 2023-09-06T15:01:30.7443248Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:30.7443893Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:30.7444469Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:30.7444860Z return forward_call(*args, **kwargs) 2023-09-06T15:01:30.7445439Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:01:30.7445873Z return self.inference(batched_inputs) 2023-09-06T15:01:30.7446458Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:01:30.7446937Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:01:30.7447550Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:30.7447972Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:30.7448533Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:30.7449514Z return forward_call(*args, **kwargs) 2023-09-06T15:01:30.7450118Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:01:30.7450538Z box_features = self._shared_roi_transform( 2023-09-06T15:01:30.7451175Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:01:30.7451621Z x = self.pooler(features, boxes) 2023-09-06T15:01:30.7452197Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:30.7452694Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:30.7453495Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:30.7453927Z return forward_call(*args, **kwargs) 2023-09-06T15:01:30.7454490Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:01:30.7455037Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:01:30.7456148Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:30.7456599Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:30.7457164Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:30.7457568Z return forward_call(*args, **kwargs) 2023-09-06T15:01:30.7458143Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:01:30.7458503Z return roi_align( 2023-09-06T15:01:30.7459386Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:01:30.7459927Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:01:30.7460593Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:01:30.7461112Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:01:30.7461773Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:01:30.7462192Z v1 = masked_index(y_low, x_low) 2023-09-06T15:01:30.7462888Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:01:30.7463275Z return input[ 2023-09-06T15:01:30.7464248Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26902.82 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.54 GiB is free. Process 2181336 has 3.84 GiB memory in use. Of the allocated memory 2.99 GiB is allocated by PyTorch, and 335.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:01:30.7465161Z 2023-09-06T15:01:30.7465359Z The above exception was the direct cause of the following exception: 2023-09-06T15:01:30.7465605Z 2023-09-06T15:01:30.7465733Z Traceback (most recent call last): 2023-09-06T15:01:30.7466100Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:01:30.7466449Z ) = runner.load_model( 2023-09-06T15:01:30.7466830Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:01:30.7467233Z self.validate_model(model, example_inputs) 2023-09-06T15:01:30.7467632Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:01:30.7468238Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:01:30.7468671Z NotImplementedError: Eager model failed to run 2023-09-06T15:01:30.7468881Z 2023-09-06T15:01:30.7469047Z WARNING:root:detectron2_fasterrcnn_r_101_c4 failed to load 2023-09-06T15:01:35.4984059Z 2023-09-06T15:01:42.6139634Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:01:42.6140162Z loading model: 0it [00:07, ?it/s] 2023-09-06T15:01:42.6140443Z Eager model failed to run 2023-09-06T15:01:42.6155165Z Traceback (most recent call last): 2023-09-06T15:01:42.6156692Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:01:42.6157507Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:01:42.6158334Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:01:42.6158773Z return mod(*inputs) 2023-09-06T15:01:42.6160216Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:42.6160710Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:42.6161290Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:42.6161697Z return forward_call(*args, **kwargs) 2023-09-06T15:01:42.6162271Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:01:42.6162699Z return self.inference(batched_inputs) 2023-09-06T15:01:42.6163269Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:01:42.6163827Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:01:42.6164454Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:42.6165382Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:42.6165967Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:42.6166357Z return forward_call(*args, **kwargs) 2023-09-06T15:01:42.6166944Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:01:42.6167420Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:01:42.6168059Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:01:42.6168559Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:01:42.6169211Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:42.6169635Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:42.6170201Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:42.6170601Z return forward_call(*args, **kwargs) 2023-09-06T15:01:42.6171145Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:01:42.6171582Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:01:42.6172183Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:42.6172608Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:42.6173166Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:42.6173626Z return forward_call(*args, **kwargs) 2023-09-06T15:01:42.6174186Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:01:42.6174765Z return roi_align( 2023-09-06T15:01:42.6175303Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:01:42.6175809Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:01:42.6176464Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:01:42.6176984Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:01:42.6177660Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:01:42.6178087Z v1 = masked_index(y_low, x_low) 2023-09-06T15:01:42.6178626Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:01:42.6179012Z return input[ 2023-09-06T15:01:42.6179997Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13299.95 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.73 GiB is free. Process 2181443 has 4.65 GiB memory in use. Of the allocated memory 3.82 GiB is allocated by PyTorch, and 283.52 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:01:42.6181155Z 2023-09-06T15:01:42.6181370Z The above exception was the direct cause of the following exception: 2023-09-06T15:01:42.6181619Z 2023-09-06T15:01:42.6181750Z Traceback (most recent call last): 2023-09-06T15:01:42.6182131Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:01:42.6182471Z ) = runner.load_model( 2023-09-06T15:01:42.6182853Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:01:42.6183430Z self.validate_model(model, example_inputs) 2023-09-06T15:01:42.6183855Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:01:42.6184295Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:01:42.6184678Z NotImplementedError: Eager model failed to run 2023-09-06T15:01:42.6184888Z 2023-09-06T15:01:42.6185059Z WARNING:root:detectron2_fasterrcnn_r_101_dc5 failed to load 2023-09-06T15:01:47.2919324Z 2023-09-06T15:01:52.0280466Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:01:52.0280822Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:01:52.0281103Z Eager model failed to run 2023-09-06T15:01:52.0296354Z Traceback (most recent call last): 2023-09-06T15:01:52.0296942Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:01:52.0297652Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:01:52.0298476Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:01:52.0299142Z return mod(*inputs) 2023-09-06T15:01:52.0300644Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:52.0301507Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:52.0302518Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:52.0303269Z return forward_call(*args, **kwargs) 2023-09-06T15:01:52.0304351Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:01:52.0304769Z return self.inference(batched_inputs) 2023-09-06T15:01:52.0305355Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:01:52.0305835Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:01:52.0307001Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:52.0307422Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:52.0307969Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:52.0308455Z return forward_call(*args, **kwargs) 2023-09-06T15:01:52.0309250Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:01:52.0309721Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:01:52.0310367Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:01:52.0310873Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:01:52.0311525Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:52.0311956Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:52.0312514Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:52.0312918Z return forward_call(*args, **kwargs) 2023-09-06T15:01:52.0313451Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:01:52.0313911Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:01:52.0314530Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:01:52.0314953Z return self._call_impl(*args, **kwargs) 2023-09-06T15:01:52.0315486Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:01:52.0315887Z return forward_call(*args, **kwargs) 2023-09-06T15:01:52.0316630Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:01:52.0317012Z return roi_align( 2023-09-06T15:01:52.0317547Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:01:52.0318055Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:01:52.0318759Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:01:52.0319278Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:01:52.0319956Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:01:52.0320361Z v1 = masked_index(y_low, x_low) 2023-09-06T15:01:52.0320922Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:01:52.0321312Z return input[ 2023-09-06T15:01:52.0322278Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 19183.01 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.81 GiB is free. Process 2181535 has 4.57 GiB memory in use. Of the allocated memory 3.79 GiB is allocated by PyTorch, and 257.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:01:52.0323109Z 2023-09-06T15:01:52.0323308Z The above exception was the direct cause of the following exception: 2023-09-06T15:01:52.0323551Z 2023-09-06T15:01:52.0323677Z Traceback (most recent call last): 2023-09-06T15:01:52.0324040Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:01:52.0324391Z ) = runner.load_model( 2023-09-06T15:01:52.0324918Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:01:52.0325328Z self.validate_model(model, example_inputs) 2023-09-06T15:01:52.0325725Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:01:52.0326172Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:01:52.0326557Z NotImplementedError: Eager model failed to run 2023-09-06T15:01:52.0326767Z 2023-09-06T15:01:52.0326935Z WARNING:root:detectron2_fasterrcnn_r_101_fpn failed to load 2023-09-06T15:01:56.6523096Z 2023-09-06T15:02:00.9348849Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:02:00.9349418Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:02:00.9349904Z Eager model failed to run 2023-09-06T15:02:00.9364142Z Traceback (most recent call last): 2023-09-06T15:02:00.9364909Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:02:00.9366037Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:02:00.9366514Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:02:00.9367057Z return mod(*inputs) 2023-09-06T15:02:00.9370661Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:00.9371510Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:00.9372501Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:00.9373182Z return forward_call(*args, **kwargs) 2023-09-06T15:02:00.9374217Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:02:00.9374968Z return self.inference(batched_inputs) 2023-09-06T15:02:00.9376626Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:02:00.9377608Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:02:00.9378711Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:00.9379510Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:00.9380491Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:00.9381186Z return forward_call(*args, **kwargs) 2023-09-06T15:02:00.9382222Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:02:00.9382966Z box_features = self._shared_roi_transform( 2023-09-06T15:02:00.9384099Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:02:00.9384856Z x = self.pooler(features, boxes) 2023-09-06T15:02:00.9385862Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:00.9386576Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:00.9387556Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:00.9388257Z return forward_call(*args, **kwargs) 2023-09-06T15:02:00.9389643Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:02:00.9390421Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:02:00.9391518Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:00.9392214Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:00.9393220Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:00.9394311Z return forward_call(*args, **kwargs) 2023-09-06T15:02:00.9395289Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:02:00.9395977Z return roi_align( 2023-09-06T15:02:00.9396916Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:02:00.9397826Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:02:00.9398990Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:02:00.9399883Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:02:00.9401088Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:02:00.9401805Z v1 = masked_index(y_low, x_low) 2023-09-06T15:02:00.9402746Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:02:00.9403396Z return input[ 2023-09-06T15:02:00.9405062Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 27492.29 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.78 GiB is free. Process 2181632 has 2.61 GiB memory in use. Of the allocated memory 1.86 GiB is allocated by PyTorch, and 229.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:02:00.9406361Z 2023-09-06T15:02:00.9406747Z The above exception was the direct cause of the following exception: 2023-09-06T15:02:00.9407049Z 2023-09-06T15:02:00.9407179Z Traceback (most recent call last): 2023-09-06T15:02:00.9407916Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:02:00.9408505Z ) = runner.load_model( 2023-09-06T15:02:00.9408937Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:02:00.9409345Z self.validate_model(model, example_inputs) 2023-09-06T15:02:00.9409774Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:02:00.9410364Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:02:00.9410753Z NotImplementedError: Eager model failed to run 2023-09-06T15:02:00.9410968Z 2023-09-06T15:02:00.9411133Z WARNING:root:detectron2_fasterrcnn_r_50_c4 failed to load 2023-09-06T15:02:05.5682028Z 2023-09-06T15:02:12.0463269Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:02:12.0463860Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:02:12.0464139Z Eager model failed to run 2023-09-06T15:02:12.0477723Z Traceback (most recent call last): 2023-09-06T15:02:12.0478560Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:02:12.0479204Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:02:12.0479981Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:02:12.0480617Z return mod(*inputs) 2023-09-06T15:02:12.0481678Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:12.0482286Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:12.0483255Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:12.0483969Z return forward_call(*args, **kwargs) 2023-09-06T15:02:12.0485019Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:02:12.0485745Z return self.inference(batched_inputs) 2023-09-06T15:02:12.0487382Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:02:12.0488301Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:02:12.0489431Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:12.0490169Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:12.0491176Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:12.0491892Z return forward_call(*args, **kwargs) 2023-09-06T15:02:12.0492931Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:02:12.0493819Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:02:12.0494978Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:02:12.0495888Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:02:12.0497046Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:12.0497821Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:12.0498816Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:12.0499563Z return forward_call(*args, **kwargs) 2023-09-06T15:02:12.0500360Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:02:12.0501008Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:02:12.0501767Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:12.0502431Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:12.0503257Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:12.0503678Z return forward_call(*args, **kwargs) 2023-09-06T15:02:12.0504432Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:02:12.0504802Z return roi_align( 2023-09-06T15:02:12.0505346Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:02:12.0505877Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:02:12.0506546Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:02:12.0507076Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:02:12.0507825Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:02:12.0508405Z v1 = masked_index(y_low, x_low) 2023-09-06T15:02:12.0508988Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:02:12.0509736Z return input[ 2023-09-06T15:02:12.0510730Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13521.00 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.88 GiB is free. Process 2181725 has 3.50 GiB memory in use. Of the allocated memory 2.68 GiB is allocated by PyTorch, and 270.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:02:12.0511685Z 2023-09-06T15:02:12.0511888Z The above exception was the direct cause of the following exception: 2023-09-06T15:02:12.0512385Z 2023-09-06T15:02:12.0512555Z Traceback (most recent call last): 2023-09-06T15:02:12.0512926Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:02:12.0513282Z ) = runner.load_model( 2023-09-06T15:02:12.0513670Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:02:12.0514076Z self.validate_model(model, example_inputs) 2023-09-06T15:02:12.0514482Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:02:12.0515012Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:02:12.0515509Z NotImplementedError: Eager model failed to run 2023-09-06T15:02:12.0515723Z 2023-09-06T15:02:12.0515888Z WARNING:root:detectron2_fasterrcnn_r_50_dc5 failed to load 2023-09-06T15:02:16.7029467Z 2023-09-06T15:02:21.0067227Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:02:21.0067581Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:02:21.0067905Z Eager model failed to run 2023-09-06T15:02:21.0083288Z Traceback (most recent call last): 2023-09-06T15:02:21.0083925Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:02:21.0084578Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:02:21.0085414Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:02:21.0085823Z return mod(*inputs) 2023-09-06T15:02:21.0086618Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:21.0087051Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:21.0087652Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:21.0088065Z return forward_call(*args, **kwargs) 2023-09-06T15:02:21.0089150Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:02:21.0089609Z return self.inference(batched_inputs) 2023-09-06T15:02:21.0090202Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:02:21.0090683Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:02:21.0091304Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:21.0091714Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:21.0092323Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:21.0092733Z return forward_call(*args, **kwargs) 2023-09-06T15:02:21.0093329Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:02:21.0093852Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:02:21.0094487Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:02:21.0095008Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:02:21.0095665Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:21.0096096Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:21.0096643Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:21.0097041Z return forward_call(*args, **kwargs) 2023-09-06T15:02:21.0097601Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:02:21.0098064Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:02:21.0098904Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:02:21.0099317Z return self._call_impl(*args, **kwargs) 2023-09-06T15:02:21.0099875Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:02:21.0100278Z return forward_call(*args, **kwargs) 2023-09-06T15:02:21.0100830Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:02:21.0101195Z return roi_align( 2023-09-06T15:02:21.0101727Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:02:21.0102289Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:02:21.0102942Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:02:21.0103473Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:02:21.0104177Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:02:21.0104594Z v1 = masked_index(y_low, x_low) 2023-09-06T15:02:21.0105152Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:02:21.0105535Z return input[ 2023-09-06T15:02:21.0106515Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 21352.77 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.12 GiB is free. Process 2181817 has 3.27 GiB memory in use. Of the allocated memory 2.65 GiB is allocated by PyTorch, and 99.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:02:21.0107476Z 2023-09-06T15:02:21.0107688Z The above exception was the direct cause of the following exception: 2023-09-06T15:02:21.0107921Z 2023-09-06T15:02:21.0108054Z Traceback (most recent call last): 2023-09-06T15:02:21.0108439Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:02:21.0108795Z ) = runner.load_model( 2023-09-06T15:02:21.0109360Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:02:21.0109763Z self.validate_model(model, example_inputs) 2023-09-06T15:02:21.0110188Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:02:21.0110634Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:02:21.0111026Z NotImplementedError: Eager model failed to run 2023-09-06T15:02:21.0111238Z 2023-09-06T15:02:21.0111407Z WARNING:root:detectron2_fasterrcnn_r_50_fpn failed to load 2023-09-06T15:02:25.6684284Z 2023-09-06T15:02:29.7332495Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:02:29.7332909Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:02:29.7441761Z cuda eval detectron2_fcos_r_50_fpn 2023-09-06T15:03:17.3762895Z [2023-09-06 15:03:17,374] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (8) 2023-09-06T15:03:17.3763843Z [2023-09-06 15:03:17,374] torch._dynamo.convert_frame: [WARNING] function: 'forward' (/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/batch_norm.py:318) 2023-09-06T15:03:17.3765228Z [2023-09-06 15:03:17,374] torch._dynamo.convert_frame: [WARNING] to diagnose recompilation issues, set env variable TORCHDYNAMO_REPORT_GUARD_FAILURES=1 and also see https://pytorch.org/docs/master/compile/troubleshooting.html. 2023-09-06T15:04:17.8547019Z [2023-09-06 15:04:17,852] torch._dynamo.utils: [ERROR] Accuracy failed: allclose not within tol=0.01 2023-09-06T15:04:17.8547701Z [2023-09-06 15:04:17,853] torch._dynamo.utils: [ERROR] Accuracy failed for key name pred_boxes 2023-09-06T15:04:17.8548719Z [2023-09-06 15:04:17,853] torch._dynamo.utils: [ERROR] Accuracy failed for key name instances 2023-09-06T15:04:17.8695705Z fail_accuracy 2023-09-06T15:04:20.2956946Z accuracy pass_rate=80.00% 2023-09-06T15:04:20.2957546Z calls_captured gmean=0.00x mean=584.267x 2023-09-06T15:04:20.2958706Z unique_graphs gmean=0.00x mean=8.200x 2023-09-06T15:04:20.2961142Z graph_breaks gmean=0.00x mean=5.467x 2023-09-06T15:04:20.2962956Z unique_graph_breaks gmean=0.00x mean=1.067x 2023-09-06T15:04:21.0337491Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *cudagraphs-true* ]] 2023-09-06T15:04:21.0339953Z + python benchmarks/dynamo/torchbench.py --accuracy --no-translation-validation --inference --bfloat16 --backend inductor --device cuda --total-partitions 4 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inductor_with_cudagraphs_torchbench_bfloat16_inference_cuda_accuracy.csv 2023-09-06T15:04:28.3595112Z 2023-09-06T15:04:29.2653627Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:04:29.2654217Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:04:29.2654492Z Eager model failed to run 2023-09-06T15:04:29.2671256Z Traceback (most recent call last): 2023-09-06T15:04:29.2672016Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:04:29.2674597Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:04:29.2675370Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:04:29.2675927Z return mod(*inputs) 2023-09-06T15:04:29.2676742Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2677174Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2678234Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2678676Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2680316Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 893, in forward 2023-09-06T15:04:29.2680998Z logits = self.model(batch.dense_features, batch.sparse_features) 2023-09-06T15:04:29.2682025Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2682498Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2683080Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2683488Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2684028Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 570, in forward 2023-09-06T15:04:29.2684459Z embedded_dense = self.dense_arch(dense_features) 2023-09-06T15:04:29.2685119Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2685674Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2686246Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2686637Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2687191Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 149, in forward 2023-09-06T15:04:29.2687581Z return self.model(features) 2023-09-06T15:04:29.2688162Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2688625Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2689186Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2690036Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2690597Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 172, in forward 2023-09-06T15:04:29.2690964Z return self._mlp(input) 2023-09-06T15:04:29.2691532Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2691957Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2692527Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2692934Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2693486Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward 2023-09-06T15:04:29.2693868Z input = module(input) 2023-09-06T15:04:29.2694489Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2694923Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2695472Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2695870Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2696412Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 73, in forward 2023-09-06T15:04:29.2696833Z return self._activation_fn(self._linear(input)) 2023-09-06T15:04:29.2697425Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:04:29.2697840Z return self._call_impl(*args, **kwargs) 2023-09-06T15:04:29.2698397Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:04:29.2698845Z return forward_call(*args, **kwargs) 2023-09-06T15:04:29.2699639Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward 2023-09-06T15:04:29.2700083Z return F.linear(input, self.weight, self.bias) 2023-09-06T15:04:29.2700499Z RuntimeError: mat1 and mat2 must have the same dtype, but got Float and BFloat16 2023-09-06T15:04:29.2700760Z 2023-09-06T15:04:29.2700958Z The above exception was the direct cause of the following exception: 2023-09-06T15:04:29.2701208Z 2023-09-06T15:04:29.2701339Z Traceback (most recent call last): 2023-09-06T15:04:29.2701725Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:04:29.2702061Z ) = runner.load_model( 2023-09-06T15:04:29.2702446Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:04:29.2702855Z self.validate_model(model, example_inputs) 2023-09-06T15:04:29.2703269Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:04:29.2703706Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:04:29.2704096Z NotImplementedError: Eager model failed to run 2023-09-06T15:04:29.2704307Z 2023-09-06T15:04:29.2704442Z WARNING:root:torchrec_dlrm failed to load 2023-09-06T15:04:33.7858544Z 2023-09-06T15:04:36.8739825Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:04:36.8740200Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:04:36.8807043Z cuda eval BERT_pytorch 2023-09-06T15:05:02.8956821Z pass 2023-09-06T15:05:08.0281109Z 2023-09-06T15:05:11.6936559Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:05:11.6936916Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:05:11.6991177Z cuda eval Background_Matting 2023-09-06T15:05:11.6994330Z pass_due_to_skip 2023-09-06T15:05:16.2691721Z 2023-09-06T15:05:25.4259343Z loading model: 0it [00:00, ?it/s]WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:05:27.1375900Z 2023-09-06T15:05:27.1377021Z loading model: 0it [00:10, ?it/s] 2023-09-06T15:05:27.1378184Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:05:27.1381357Z cuda eval DALLE2_pytorch 2023-09-06T15:05:27.3817792Z WARNING:common:fp64 golden ref were not generated for DALLE2_pytorch. Setting accuracy check to cosine 2023-09-06T15:05:27.7809683Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:05:41.1215075Z [2023-09-06 15:05:41,119] [3/1] torch._dynamo.output_graph: [WARNING] nn.Module forward/_pre hooks are only partially supported, and were detected in your model. In particular, if you do not change/remove hooks after calling .compile(), you can disregard this warning, and otherwise you may need to set torch._dynamo.config.skip_nnmodule_hook_guards=False to ensure recompiling after changing hooks.See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:05:56.3238815Z [2023-09-06 15:05:56,322] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:56.6456255Z [2023-09-06 15:05:56,644] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:56.7557615Z [2023-09-06 15:05:56,754] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:56.8642584Z [2023-09-06 15:05:56,863] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:56.9715660Z [2023-09-06 15:05:56,970] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.0791727Z [2023-09-06 15:05:57,078] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.1897398Z [2023-09-06 15:05:57,188] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.3010113Z [2023-09-06 15:05:57,300] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.4121692Z [2023-09-06 15:05:57,411] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.5230291Z [2023-09-06 15:05:57,522] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.6313782Z [2023-09-06 15:05:57,630] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:05:57.7388845Z [2023-09-06 15:05:57,738] [5/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:06.4872904Z skipping cudagraphs due to multiple devices 2023-09-06T15:06:47.4983901Z [2023-09-06 15:06:47,496] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:47.8391592Z [2023-09-06 15:06:47,838] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:47.9544785Z [2023-09-06 15:06:47,953] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.0710445Z [2023-09-06 15:06:48,070] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.1879854Z [2023-09-06 15:06:48,187] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.3037658Z [2023-09-06 15:06:48,303] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.4188298Z [2023-09-06 15:06:48,417] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.5362063Z [2023-09-06 15:06:48,535] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.6567673Z [2023-09-06 15:06:48,655] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.7709007Z [2023-09-06 15:06:48,770] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:48.8868129Z [2023-09-06 15:06:48,885] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:49.0040648Z [2023-09-06 15:06:49,003] [29/0] torch._inductor.utils: [WARNING] DeviceCopy in input program 2023-09-06T15:06:51.8470631Z skipping cudagraphs due to multiple devices 2023-09-06T15:07:08.0793252Z ERROR:common:Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(4, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T15:07:08.0793878Z unhashable type: 'SymInt' 2023-09-06T15:07:08.0794041Z 2023-09-06T15:07:08.0794176Z from user code: 2023-09-06T15:07:08.0795001Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T15:07:08.0795773Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T15:07:08.0799435Z 2023-09-06T15:07:08.0800036Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:07:08.0800548Z 2023-09-06T15:07:08.0800651Z 2023-09-06T15:07:08.0801006Z You can suppress this exception and fall back to eager by setting: 2023-09-06T15:07:08.0801531Z import torch._dynamo 2023-09-06T15:07:08.0802004Z torch._dynamo.config.suppress_errors = True 2023-09-06T15:07:08.0802648Z Traceback (most recent call last): 2023-09-06T15:07:08.0803246Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:07:08.0803681Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:07:08.0804425Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:07:08.0804811Z return fn(*args, **kwargs) 2023-09-06T15:07:08.0805197Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1899, in run_n_iterations 2023-09-06T15:07:08.0805608Z self.model_iter_fn(mod, inputs, collect_outputs=False) 2023-09-06T15:07:08.0806065Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:07:08.0806699Z return mod(*inputs) 2023-09-06T15:07:08.0807741Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:07:08.0808412Z return self._call_impl(*args, **kwargs) 2023-09-06T15:07:08.0809816Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:07:08.0810433Z return forward_call(*args, **kwargs) 2023-09-06T15:07:08.0811251Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:07:08.0811826Z return func(*args, **kwargs) 2023-09-06T15:07:08.0812573Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:07:08.0813104Z model.eval() 2023-09-06T15:07:08.0813902Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T15:07:08.0814501Z out = fn(model, *args, **kwargs) 2023-09-06T15:07:08.0815263Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T15:07:08.0816073Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T15:07:08.0817121Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T15:07:08.0817896Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T15:07:08.0818908Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:07:08.0819472Z return func(*args, **kwargs) 2023-09-06T15:07:08.0820277Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:07:08.0820819Z model.eval() 2023-09-06T15:07:08.0821629Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T15:07:08.0822236Z out = fn(model, *args, **kwargs) 2023-09-06T15:07:08.0823389Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T15:07:08.0823957Z img = self.p_sample_loop( 2023-09-06T15:07:08.0824734Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:07:08.0825312Z return func(*args, **kwargs) 2023-09-06T15:07:08.0826078Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T15:07:08.0826764Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T15:07:08.0827633Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:07:08.0828164Z return func(*args, **kwargs) 2023-09-06T15:07:08.0829028Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T15:07:08.0829904Z img, x_start = self.p_sample( 2023-09-06T15:07:08.0830731Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:07:08.0831315Z return func(*args, **kwargs) 2023-09-06T15:07:08.0832115Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T15:07:08.0833646Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T15:07:08.0835672Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T15:07:08.0837089Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T15:07:08.0838381Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T15:07:08.0839001Z return d() if callable(d) else d 2023-09-06T15:07:08.0839824Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T15:07:08.0840940Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T15:07:08.0842223Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T15:07:08.0842828Z logits = self.forward(*args, **kwargs) 2023-09-06T15:07:08.0843584Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T15:07:08.0844109Z x = resnet_block(x, t, c) 2023-09-06T15:07:08.0844914Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:07:08.0845496Z return self._call_impl(*args, **kwargs) 2023-09-06T15:07:08.0846274Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:07:08.0846804Z return forward_call(*args, **kwargs) 2023-09-06T15:07:08.0847573Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T15:07:08.0848199Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T15:07:08.0849365Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T15:07:08.0850022Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T15:07:08.0850860Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T15:07:08.0851413Z return fn(*args, **kwargs) 2023-09-06T15:07:08.0852261Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T15:07:08.0852839Z return _compile( 2023-09-06T15:07:08.0853589Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T15:07:08.0854263Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T15:07:08.0855149Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:07:08.0855710Z r = func(*args, **kwargs) 2023-09-06T15:07:08.0856514Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T15:07:08.0857141Z out_code = transform_code_object(code, transform) 2023-09-06T15:07:08.0858088Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T15:07:08.0858818Z transformations(instructions, code_options) 2023-09-06T15:07:08.0859658Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T15:07:08.0860179Z tracer.run() 2023-09-06T15:07:08.0860923Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T15:07:08.0861449Z super().run() 2023-09-06T15:07:08.0862413Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:07:08.0863169Z and self.step() 2023-09-06T15:07:08.0863945Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:07:08.0864494Z getattr(self, inst.opname)(inst) 2023-09-06T15:07:08.0865261Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:07:08.0865854Z return inner_fn(self, inst) 2023-09-06T15:07:08.0866630Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T15:07:08.0867198Z self.call_function(fn, args, {}) 2023-09-06T15:07:08.0868005Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:07:08.0868611Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:07:08.0869668Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T15:07:08.0870261Z tensor_variable = wrap_fx_proxy( 2023-09-06T15:07:08.0871111Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T15:07:08.0871694Z return wrap_fx_proxy_cls( 2023-09-06T15:07:08.0872520Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T15:07:08.0873130Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T15:07:08.0873973Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T15:07:08.0874644Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T15:07:08.0875601Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T15:07:08.0876527Z return wrap_fake_exception( 2023-09-06T15:07:08.0877352Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T15:07:08.0877893Z return fn() 2023-09-06T15:07:08.0878698Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T15:07:08.0879353Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T15:07:08.0880197Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T15:07:08.0880889Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T15:07:08.0881764Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T15:07:08.0882305Z return node.target(*args, **kwargs) 2023-09-06T15:07:08.0883032Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T15:07:08.0883866Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T15:07:08.0884694Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T15:07:08.0885282Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T15:07:08.0886090Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T15:07:08.0886657Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T15:07:08.0887729Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(4, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T15:07:08.0888475Z unhashable type: 'SymInt' 2023-09-06T15:07:08.0888790Z 2023-09-06T15:07:08.0888931Z from user code: 2023-09-06T15:07:08.0889989Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T15:07:08.0890706Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T15:07:08.0890983Z 2023-09-06T15:07:08.0891276Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:07:08.0891623Z 2023-09-06T15:07:08.0891632Z 2023-09-06T15:07:08.0891917Z You can suppress this exception and fall back to eager by setting: 2023-09-06T15:07:08.0892414Z import torch._dynamo 2023-09-06T15:07:08.0892854Z torch._dynamo.config.suppress_errors = True 2023-09-06T15:07:08.0893153Z 2023-09-06T15:07:08.0893445Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:07:08.0893923Z fail_to_run 2023-09-06T15:07:14.1801340Z 2023-09-06T15:07:17.9345246Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:07:17.9345605Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:07:17.9375406Z cuda eval LearningToPaint 2023-09-06T15:07:30.7267184Z pass 2023-09-06T15:07:35.9424601Z 2023-09-06T15:07:38.3325864Z loading model: 0it [00:00, ?it/s]WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:07:38.8716573Z 2023-09-06T15:07:38.8717062Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:07:38.8717517Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:07:38.8717925Z cuda eval Super_SloMo 2023-09-06T15:07:38.9757212Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:08:18.4098961Z pass 2023-09-06T15:08:24.1185815Z 2023-09-06T15:08:25.6588750Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:08:25.6589775Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:08:25.6593431Z cuda eval alexnet 2023-09-06T15:08:34.5368097Z pass 2023-09-06T15:08:39.4326282Z 2023-09-06T15:08:46.3174901Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:08:46.3178382Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:08:46.3232833Z cuda eval attention_is_all_you_need_pytorch 2023-09-06T15:09:13.9574680Z pass 2023-09-06T15:09:19.4066361Z 2023-09-06T15:09:22.1411845Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:09:22.1415326Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:09:22.1420682Z cuda eval basic_gnn_edgecnn 2023-09-06T15:09:22.7146049Z [2023-09-06 15:09:22,713] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:09:28.5234617Z skipping cudagraphs for unknown reason 2023-09-06T15:09:28.8308658Z pass 2023-09-06T15:09:33.6596726Z 2023-09-06T15:09:36.5068002Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:09:36.5068375Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:09:36.5070864Z cuda eval basic_gnn_gcn 2023-09-06T15:09:44.4935355Z skipping cudagraphs for unknown reason 2023-09-06T15:09:44.5113872Z [2023-09-06 15:09:44,510] [11/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:09:45.7213929Z skipping cudagraphs for unknown reason 2023-09-06T15:09:46.3893204Z skipping cudagraphs for unknown reason 2023-09-06T15:09:46.7178373Z skipping cudagraphs for unknown reason 2023-09-06T15:09:46.8393850Z pass 2023-09-06T15:09:51.6768571Z 2023-09-06T15:09:54.7093883Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:09:54.7094299Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:09:54.7101769Z cuda eval basic_gnn_gin 2023-09-06T15:09:55.4232763Z [2023-09-06 15:09:55,422] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:10:01.1787170Z skipping cudagraphs for unknown reason 2023-09-06T15:10:01.5153438Z pass 2023-09-06T15:10:06.3290845Z 2023-09-06T15:10:09.2444071Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:10:09.2444596Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:10:09.2447015Z cuda eval basic_gnn_sage 2023-09-06T15:10:09.9605883Z [2023-09-06 15:10:09,959] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:10:15.6801284Z skipping cudagraphs for unknown reason 2023-09-06T15:10:16.0235808Z pass 2023-09-06T15:10:20.8203046Z 2023-09-06T15:10:26.1244455Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:10:26.1244805Z loading model: 0it [00:05, ?it/s] 2023-09-06T15:10:26.1347134Z cuda eval cm3leon_generate 2023-09-06T15:14:06.9282538Z pass 2023-09-06T15:14:13.5741165Z 2023-09-06T15:14:14.4513138Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:14:14.4513811Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:14:14.4515459Z cuda eval dcgan 2023-09-06T15:14:22.1918450Z pass 2023-09-06T15:14:27.0112978Z 2023-09-06T15:14:30.2873111Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:14:30.2873998Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:14:30.2874423Z Eager model failed to run 2023-09-06T15:14:30.2881668Z Traceback (most recent call last): 2023-09-06T15:14:30.2882636Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:14:30.2883349Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:14:30.2884213Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:14:30.2895525Z return mod(*inputs) 2023-09-06T15:14:30.2897107Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:14:30.2897533Z return self._call_impl(*args, **kwargs) 2023-09-06T15:14:30.2898102Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:14:30.2898563Z return forward_call(*args, **kwargs) 2023-09-06T15:14:30.2898995Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/__init__.py", line 31, in forward 2023-09-06T15:14:30.2899404Z return sources, self.model(mix) 2023-09-06T15:14:30.2899961Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:14:30.2900398Z return self._call_impl(*args, **kwargs) 2023-09-06T15:14:30.2901120Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:14:30.2901528Z return forward_call(*args, **kwargs) 2023-09-06T15:14:30.2901960Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 209, in forward 2023-09-06T15:14:30.2902332Z x = self.lstm(x) 2023-09-06T15:14:30.2902872Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:14:30.2903366Z return self._call_impl(*args, **kwargs) 2023-09-06T15:14:30.2903925Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:14:30.2904311Z return forward_call(*args, **kwargs) 2023-09-06T15:14:30.2904742Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 27, in forward 2023-09-06T15:14:30.2905131Z x = self.lstm(x)[0] 2023-09-06T15:14:30.2905942Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:14:30.2906369Z return self._call_impl(*args, **kwargs) 2023-09-06T15:14:30.2906911Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:14:30.2907312Z return forward_call(*args, **kwargs) 2023-09-06T15:14:30.2907847Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/rnn.py", line 879, in forward 2023-09-06T15:14:30.2908319Z result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers, 2023-09-06T15:14:30.2908834Z RuntimeError: "_thnn_fused_lstm_cell_cuda" not implemented for 'BFloat16' 2023-09-06T15:14:30.2909321Z 2023-09-06T15:14:30.2909576Z The above exception was the direct cause of the following exception: 2023-09-06T15:14:30.2909819Z 2023-09-06T15:14:30.2909947Z Traceback (most recent call last): 2023-09-06T15:14:30.2910339Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:14:30.2910686Z ) = runner.load_model( 2023-09-06T15:14:30.2911048Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:14:30.2911682Z self.validate_model(model, example_inputs) 2023-09-06T15:14:30.2912097Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:14:30.2912523Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:14:30.2912903Z NotImplementedError: Eager model failed to run 2023-09-06T15:14:30.2913110Z 2023-09-06T15:14:30.2913280Z WARNING:root:demucs failed to load 2023-09-06T15:14:34.7657272Z 2023-09-06T15:14:36.6466447Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:14:36.6466867Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:14:36.6612396Z cuda eval densenet121 2023-09-06T15:15:19.4618811Z pass 2023-09-06T15:15:25.2188661Z 2023-09-06T15:15:30.0111022Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:15:30.0111452Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:15:30.0111733Z Eager model failed to run 2023-09-06T15:15:30.0127913Z Traceback (most recent call last): 2023-09-06T15:15:30.0128643Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:15:30.0129311Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:15:30.0130000Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:15:30.0130683Z return mod(*inputs) 2023-09-06T15:15:30.0132115Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:30.0132533Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:30.0135160Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:30.0139261Z return forward_call(*args, **kwargs) 2023-09-06T15:15:30.0140463Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:15:30.0141220Z return self.inference(batched_inputs) 2023-09-06T15:15:30.0142279Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:15:30.0143093Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:15:30.0144149Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:30.0144858Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:30.0145821Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:30.0146625Z return forward_call(*args, **kwargs) 2023-09-06T15:15:30.0148436Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:15:30.0149061Z box_features = self._shared_roi_transform( 2023-09-06T15:15:30.0150283Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:15:30.0150738Z x = self.pooler(features, boxes) 2023-09-06T15:15:30.0151322Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:30.0151747Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:30.0152296Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:30.0152699Z return forward_call(*args, **kwargs) 2023-09-06T15:15:30.0153253Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:15:30.0153702Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:15:30.0154304Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:30.0154727Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:30.0155285Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:30.0155685Z return forward_call(*args, **kwargs) 2023-09-06T15:15:30.0156242Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:15:30.0156632Z return roi_align( 2023-09-06T15:15:30.0157162Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:15:30.0157694Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:15:30.0158413Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:15:30.0159175Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:15:30.0159851Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:15:30.0160275Z v1 = masked_index(y_low, x_low) 2023-09-06T15:15:30.0160829Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:15:30.0161212Z return input[ 2023-09-06T15:15:30.0162191Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26902.82 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.54 GiB is free. Process 2184289 has 3.84 GiB memory in use. Of the allocated memory 2.99 GiB is allocated by PyTorch, and 335.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:15:30.0164433Z 2023-09-06T15:15:30.0164636Z The above exception was the direct cause of the following exception: 2023-09-06T15:15:30.0164886Z 2023-09-06T15:15:30.0165013Z Traceback (most recent call last): 2023-09-06T15:15:30.0165383Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:15:30.0165740Z ) = runner.load_model( 2023-09-06T15:15:30.0166119Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:15:30.0166527Z self.validate_model(model, example_inputs) 2023-09-06T15:15:30.0166944Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:15:30.0167375Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:15:30.0167757Z NotImplementedError: Eager model failed to run 2023-09-06T15:15:30.0167970Z 2023-09-06T15:15:30.0168351Z WARNING:root:detectron2_fasterrcnn_r_101_c4 failed to load 2023-09-06T15:15:34.6482548Z 2023-09-06T15:15:41.5936019Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:15:41.5936639Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:15:41.5936923Z Eager model failed to run 2023-09-06T15:15:41.5951701Z Traceback (most recent call last): 2023-09-06T15:15:41.5952411Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:15:41.5953014Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:15:41.5953582Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:15:41.5953955Z return mod(*inputs) 2023-09-06T15:15:41.5955548Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:41.5956173Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:41.5957310Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:41.5958192Z return forward_call(*args, **kwargs) 2023-09-06T15:15:41.5959271Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:15:41.5960089Z return self.inference(batched_inputs) 2023-09-06T15:15:41.5961184Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:15:41.5961739Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:15:41.5962376Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:41.5962802Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:41.5963364Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:41.5963814Z return forward_call(*args, **kwargs) 2023-09-06T15:15:41.5964953Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:15:41.5965426Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:15:41.5966067Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:15:41.5966595Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:15:41.5967229Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:41.5967653Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:41.5968286Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:41.5968701Z return forward_call(*args, **kwargs) 2023-09-06T15:15:41.5969276Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:15:41.5969706Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:15:41.5970307Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:41.5970729Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:41.5971285Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:41.5971691Z return forward_call(*args, **kwargs) 2023-09-06T15:15:41.5972227Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:15:41.5972605Z return roi_align( 2023-09-06T15:15:41.5973140Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:15:41.5973844Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:15:41.5974508Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:15:41.5975028Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:15:41.5975709Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:15:41.5976133Z v1 = masked_index(y_low, x_low) 2023-09-06T15:15:41.5976695Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:15:41.5977064Z return input[ 2023-09-06T15:15:41.5978088Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13299.95 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.73 GiB is free. Process 2184396 has 4.65 GiB memory in use. Of the allocated memory 3.82 GiB is allocated by PyTorch, and 283.52 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:15:41.5978942Z 2023-09-06T15:15:41.5979147Z The above exception was the direct cause of the following exception: 2023-09-06T15:15:41.5979394Z 2023-09-06T15:15:41.5979522Z Traceback (most recent call last): 2023-09-06T15:15:41.5979901Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:15:41.5980257Z ) = runner.load_model( 2023-09-06T15:15:41.5980624Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:15:41.5981027Z self.validate_model(model, example_inputs) 2023-09-06T15:15:41.5981445Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:15:41.5981890Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:15:41.5982402Z NotImplementedError: Eager model failed to run 2023-09-06T15:15:41.5982616Z 2023-09-06T15:15:41.5982792Z WARNING:root:detectron2_fasterrcnn_r_101_dc5 failed to load 2023-09-06T15:15:46.3002994Z 2023-09-06T15:15:50.8913029Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:15:50.8913395Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:15:50.8913673Z Eager model failed to run 2023-09-06T15:15:50.8928851Z Traceback (most recent call last): 2023-09-06T15:15:50.8929648Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:15:50.8930417Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:15:50.8931042Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:15:50.8931414Z return mod(*inputs) 2023-09-06T15:15:50.8932213Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:50.8932893Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:50.8933463Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:50.8933870Z return forward_call(*args, **kwargs) 2023-09-06T15:15:50.8934441Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:15:50.8934851Z return self.inference(batched_inputs) 2023-09-06T15:15:50.8935439Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:15:50.8935912Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:15:50.8936525Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:50.8936940Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:50.8937912Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:50.8938338Z return forward_call(*args, **kwargs) 2023-09-06T15:15:50.8939017Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:15:50.8939481Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:15:50.8940115Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:15:50.8940620Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:15:50.8941261Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:50.8941684Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:50.8942237Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:50.8942633Z return forward_call(*args, **kwargs) 2023-09-06T15:15:50.8943192Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:15:50.8943657Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:15:50.8944274Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:50.8944689Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:50.8945228Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:50.8945624Z return forward_call(*args, **kwargs) 2023-09-06T15:15:50.8946168Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:15:50.8946540Z return roi_align( 2023-09-06T15:15:50.8947057Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:15:50.8947786Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:15:50.8948506Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:15:50.8949025Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:15:50.8950209Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:15:50.8950633Z v1 = masked_index(y_low, x_low) 2023-09-06T15:15:50.8951176Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:15:50.8951555Z return input[ 2023-09-06T15:15:50.8952531Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 19183.01 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.81 GiB is free. Process 2184490 has 4.57 GiB memory in use. Of the allocated memory 3.79 GiB is allocated by PyTorch, and 257.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:15:50.8953361Z 2023-09-06T15:15:50.8953560Z The above exception was the direct cause of the following exception: 2023-09-06T15:15:50.8953806Z 2023-09-06T15:15:50.8953935Z Traceback (most recent call last): 2023-09-06T15:15:50.8954298Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:15:50.8954648Z ) = runner.load_model( 2023-09-06T15:15:50.8955032Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:15:50.8955430Z self.validate_model(model, example_inputs) 2023-09-06T15:15:50.8956019Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:15:50.8956466Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:15:50.8956849Z NotImplementedError: Eager model failed to run 2023-09-06T15:15:50.8957061Z 2023-09-06T15:15:50.8957229Z WARNING:root:detectron2_fasterrcnn_r_101_fpn failed to load 2023-09-06T15:15:55.5361416Z 2023-09-06T15:15:59.8685134Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:15:59.8685832Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:15:59.8686113Z Eager model failed to run 2023-09-06T15:15:59.8698929Z Traceback (most recent call last): 2023-09-06T15:15:59.8699737Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:15:59.8700404Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:15:59.8701099Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:15:59.8701730Z return mod(*inputs) 2023-09-06T15:15:59.8703857Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:59.8704352Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:59.8705259Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:59.8706062Z return forward_call(*args, **kwargs) 2023-09-06T15:15:59.8707050Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:15:59.8707830Z return self.inference(batched_inputs) 2023-09-06T15:15:59.8708820Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:15:59.8709912Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:15:59.8711036Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:59.8712527Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:59.8713935Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:59.8714625Z return forward_call(*args, **kwargs) 2023-09-06T15:15:59.8715703Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:15:59.8716432Z box_features = self._shared_roi_transform( 2023-09-06T15:15:59.8717558Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:15:59.8718343Z x = self.pooler(features, boxes) 2023-09-06T15:15:59.8719347Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:59.8720075Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:59.8721070Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:59.8721992Z return forward_call(*args, **kwargs) 2023-09-06T15:15:59.8722968Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:15:59.8723791Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:15:59.8724985Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:15:59.8725726Z return self._call_impl(*args, **kwargs) 2023-09-06T15:15:59.8726697Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:15:59.8727436Z return forward_call(*args, **kwargs) 2023-09-06T15:15:59.8728378Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:15:59.8729597Z return roi_align( 2023-09-06T15:15:59.8730554Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:15:59.8731700Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:15:59.8732825Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:15:59.8733766Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:15:59.8735233Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:15:59.8735983Z v1 = masked_index(y_low, x_low) 2023-09-06T15:15:59.8736961Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:15:59.8737600Z return input[ 2023-09-06T15:15:59.8739464Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 27492.29 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.78 GiB is free. Process 2184586 has 2.61 GiB memory in use. Of the allocated memory 1.86 GiB is allocated by PyTorch, and 229.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:15:59.8741957Z 2023-09-06T15:15:59.8742299Z The above exception was the direct cause of the following exception: 2023-09-06T15:15:59.8742774Z 2023-09-06T15:15:59.8742921Z Traceback (most recent call last): 2023-09-06T15:15:59.8743295Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:15:59.8743839Z ) = runner.load_model( 2023-09-06T15:15:59.8744456Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:15:59.8745200Z self.validate_model(model, example_inputs) 2023-09-06T15:15:59.8745599Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:15:59.8746181Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:15:59.8746567Z NotImplementedError: Eager model failed to run 2023-09-06T15:15:59.8746777Z 2023-09-06T15:15:59.8746944Z WARNING:root:detectron2_fasterrcnn_r_50_c4 failed to load 2023-09-06T15:16:04.5045900Z 2023-09-06T15:16:10.9832785Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:16:10.9833599Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:16:10.9834042Z Eager model failed to run 2023-09-06T15:16:10.9848230Z Traceback (most recent call last): 2023-09-06T15:16:10.9848919Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:16:10.9849608Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:16:10.9850366Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:16:10.9850970Z return mod(*inputs) 2023-09-06T15:16:10.9852158Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:10.9852571Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:10.9853190Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:10.9853597Z return forward_call(*args, **kwargs) 2023-09-06T15:16:10.9854162Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:16:10.9854588Z return self.inference(batched_inputs) 2023-09-06T15:16:10.9855155Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:16:10.9855640Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:16:10.9856974Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:10.9857564Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:10.9858371Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:10.9858879Z return forward_call(*args, **kwargs) 2023-09-06T15:16:10.9859840Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:16:10.9860648Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:16:10.9861767Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:16:10.9862461Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:16:10.9863331Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:10.9863758Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:10.9864310Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:10.9864695Z return forward_call(*args, **kwargs) 2023-09-06T15:16:10.9865246Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:16:10.9865685Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:16:10.9866278Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:10.9866701Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:10.9867236Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:10.9867635Z return forward_call(*args, **kwargs) 2023-09-06T15:16:10.9868452Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:16:10.9868831Z return roi_align( 2023-09-06T15:16:10.9869667Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:16:10.9870193Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:16:10.9870851Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:16:10.9871368Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:16:10.9872046Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:16:10.9872449Z v1 = masked_index(y_low, x_low) 2023-09-06T15:16:10.9873057Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:16:10.9873445Z return input[ 2023-09-06T15:16:10.9874415Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13521.00 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.88 GiB is free. Process 2184678 has 3.50 GiB memory in use. Of the allocated memory 2.68 GiB is allocated by PyTorch, and 270.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:16:10.9875249Z 2023-09-06T15:16:10.9875447Z The above exception was the direct cause of the following exception: 2023-09-06T15:16:10.9875692Z 2023-09-06T15:16:10.9875819Z Traceback (most recent call last): 2023-09-06T15:16:10.9876183Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:16:10.9876531Z ) = runner.load_model( 2023-09-06T15:16:10.9877115Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:16:10.9877520Z self.validate_model(model, example_inputs) 2023-09-06T15:16:10.9877927Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:16:10.9878354Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:16:10.9878743Z NotImplementedError: Eager model failed to run 2023-09-06T15:16:10.9878955Z 2023-09-06T15:16:10.9879144Z WARNING:root:detectron2_fasterrcnn_r_50_dc5 failed to load 2023-09-06T15:16:15.5953846Z 2023-09-06T15:16:19.8911094Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:16:19.8911461Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:16:19.8911734Z Eager model failed to run 2023-09-06T15:16:19.8927850Z Traceback (most recent call last): 2023-09-06T15:16:19.8928587Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:16:19.8929537Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:16:19.8930134Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:16:19.8930499Z return mod(*inputs) 2023-09-06T15:16:19.8931298Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:19.8931734Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:19.8932300Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:19.8932707Z return forward_call(*args, **kwargs) 2023-09-06T15:16:19.8933282Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:16:19.8933691Z return self.inference(batched_inputs) 2023-09-06T15:16:19.8934273Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:16:19.8935275Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:16:19.8935907Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:19.8936319Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:19.8936871Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:19.8937279Z return forward_call(*args, **kwargs) 2023-09-06T15:16:19.8937857Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:16:19.8938324Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:16:19.8939008Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:16:19.8939532Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:16:19.8940186Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:19.8940605Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:19.8941144Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:19.8941542Z return forward_call(*args, **kwargs) 2023-09-06T15:16:19.8942092Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:16:19.8942584Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:16:19.8943201Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:16:19.8943601Z return self._call_impl(*args, **kwargs) 2023-09-06T15:16:19.8944340Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:16:19.8944754Z return forward_call(*args, **kwargs) 2023-09-06T15:16:19.8945316Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:16:19.8945676Z return roi_align( 2023-09-06T15:16:19.8946225Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:16:19.8946754Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:16:19.8947399Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:16:19.8947912Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:16:19.8948568Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:16:19.8949038Z v1 = masked_index(y_low, x_low) 2023-09-06T15:16:19.8949767Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:16:19.8950152Z return input[ 2023-09-06T15:16:19.8951118Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 21352.77 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.12 GiB is free. Process 2184770 has 3.27 GiB memory in use. Of the allocated memory 2.65 GiB is allocated by PyTorch, and 99.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:16:19.8952107Z 2023-09-06T15:16:19.8952308Z The above exception was the direct cause of the following exception: 2023-09-06T15:16:19.8952553Z 2023-09-06T15:16:19.8952680Z Traceback (most recent call last): 2023-09-06T15:16:19.8953328Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:16:19.8953678Z ) = runner.load_model( 2023-09-06T15:16:19.8954058Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:16:19.8954463Z self.validate_model(model, example_inputs) 2023-09-06T15:16:19.8954862Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:16:19.8955302Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:16:19.8955686Z NotImplementedError: Eager model failed to run 2023-09-06T15:16:19.8955894Z 2023-09-06T15:16:19.8956095Z WARNING:root:detectron2_fasterrcnn_r_50_fpn failed to load 2023-09-06T15:16:24.5822149Z 2023-09-06T15:16:28.6152892Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:16:28.6153503Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:16:28.6252605Z cuda eval detectron2_fcos_r_50_fpn 2023-09-06T15:16:42.9150997Z skipping cudagraphs for unknown reason 2023-09-06T15:16:44.5543543Z skipping cudagraphs due to input mutation 2023-09-06T15:17:12.1631582Z [2023-09-06 15:17:12,161] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (8) 2023-09-06T15:17:12.1632643Z [2023-09-06 15:17:12,161] torch._dynamo.convert_frame: [WARNING] function: 'forward' (/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/batch_norm.py:318) 2023-09-06T15:17:12.1634081Z [2023-09-06 15:17:12,161] torch._dynamo.convert_frame: [WARNING] to diagnose recompilation issues, set env variable TORCHDYNAMO_REPORT_GUARD_FAILURES=1 and also see https://pytorch.org/docs/master/compile/troubleshooting.html. 2023-09-06T15:17:23.7784393Z skipping cudagraphs due to input mutation 2023-09-06T15:17:23.9270151Z skipping cudagraphs for unknown reason 2023-09-06T15:17:24.7591273Z skipping cudagraphs due to input mutation 2023-09-06T15:17:24.8570110Z skipping cudagraphs for unknown reason 2023-09-06T15:17:25.6375876Z skipping cudagraphs due to input mutation 2023-09-06T15:17:26.4263664Z skipping cudagraphs due to input mutation 2023-09-06T15:18:07.7263331Z skipping cudagraphs due to input mutation 2023-09-06T15:18:07.7517441Z [2023-09-06 15:18:07,750] torch._dynamo.utils: [ERROR] Accuracy failed: allclose not within tol=0.01 2023-09-06T15:18:07.7518105Z [2023-09-06 15:18:07,751] torch._dynamo.utils: [ERROR] Accuracy failed for key name pred_boxes 2023-09-06T15:18:07.7518702Z [2023-09-06 15:18:07,751] torch._dynamo.utils: [ERROR] Accuracy failed for key name instances 2023-09-06T15:18:07.7669320Z fail_accuracy 2023-09-06T15:18:10.1948800Z accuracy pass_rate=80.00% 2023-09-06T15:18:10.1950352Z calls_captured gmean=0.00x mean=584.267x 2023-09-06T15:18:10.1950713Z unique_graphs gmean=0.00x mean=8.200x 2023-09-06T15:18:10.1951039Z graph_breaks gmean=0.00x mean=5.467x 2023-09-06T15:18:10.1953400Z unique_graph_breaks gmean=0.00x mean=1.067x 2023-09-06T15:18:10.9494464Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *dynamic-true* ]] 2023-09-06T15:18:10.9496191Z + python benchmarks/dynamo/torchbench.py --accuracy --no-translation-validation --inference --bfloat16 --backend inductor --dynamic-shapes --dynamic-batch-only --device cuda --total-partitions 4 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inductor_dynamic_torchbench_bfloat16_inference_cuda_accuracy.csv 2023-09-06T15:18:18.1632984Z 2023-09-06T15:18:19.0795802Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:18:19.0796399Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:18:19.0796685Z Eager model failed to run 2023-09-06T15:18:19.0812619Z Traceback (most recent call last): 2023-09-06T15:18:19.0813459Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:18:19.0814060Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:18:19.0814819Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:18:19.0815777Z return mod(*inputs) 2023-09-06T15:18:19.0817152Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0817576Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0822021Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0822563Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0823145Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 893, in forward 2023-09-06T15:18:19.0823670Z logits = self.model(batch.dense_features, batch.sparse_features) 2023-09-06T15:18:19.0824318Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0824752Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0825331Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0825736Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0826274Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 570, in forward 2023-09-06T15:18:19.0826703Z embedded_dense = self.dense_arch(dense_features) 2023-09-06T15:18:19.0827285Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0827706Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0828260Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0828669Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0829500Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 149, in forward 2023-09-06T15:18:19.0829986Z return self.model(features) 2023-09-06T15:18:19.0830924Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0831354Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0831920Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0832308Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0832846Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 172, in forward 2023-09-06T15:18:19.0833229Z return self._mlp(input) 2023-09-06T15:18:19.0833782Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0834193Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0834727Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0835137Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0835689Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward 2023-09-06T15:18:19.0836068Z input = module(input) 2023-09-06T15:18:19.0836604Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0837016Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0837564Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0837962Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0838499Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 73, in forward 2023-09-06T15:18:19.0838958Z return self._activation_fn(self._linear(input)) 2023-09-06T15:18:19.0839565Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:18:19.0840201Z return self._call_impl(*args, **kwargs) 2023-09-06T15:18:19.0840769Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:18:19.0841164Z return forward_call(*args, **kwargs) 2023-09-06T15:18:19.0841701Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward 2023-09-06T15:18:19.0842135Z return F.linear(input, self.weight, self.bias) 2023-09-06T15:18:19.0842542Z RuntimeError: mat1 and mat2 must have the same dtype, but got Float and BFloat16 2023-09-06T15:18:19.0842808Z 2023-09-06T15:18:19.0843010Z The above exception was the direct cause of the following exception: 2023-09-06T15:18:19.0843239Z 2023-09-06T15:18:19.0843364Z Traceback (most recent call last): 2023-09-06T15:18:19.0843751Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:18:19.0844102Z ) = runner.load_model( 2023-09-06T15:18:19.0844486Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:18:19.0844880Z self.validate_model(model, example_inputs) 2023-09-06T15:18:19.0845289Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:18:19.0845736Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:18:19.0846120Z NotImplementedError: Eager model failed to run 2023-09-06T15:18:19.0846327Z 2023-09-06T15:18:19.0846456Z WARNING:root:torchrec_dlrm failed to load 2023-09-06T15:18:23.5535565Z 2023-09-06T15:18:26.6188509Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:18:26.6188936Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:18:26.6255477Z cuda eval BERT_pytorch 2023-09-06T15:19:03.1785545Z pass 2023-09-06T15:19:08.4475399Z 2023-09-06T15:19:12.1304615Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:19:12.1304980Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:19:12.1378270Z cuda eval Background_Matting 2023-09-06T15:19:12.1380730Z pass_due_to_skip 2023-09-06T15:19:16.8297195Z 2023-09-06T15:19:26.0411557Z loading model: 0it [00:00, ?it/s]WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:19:27.8092864Z 2023-09-06T15:19:27.8093464Z loading model: 0it [00:10, ?it/s] 2023-09-06T15:19:27.8094129Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:19:27.8094571Z cuda eval DALLE2_pytorch 2023-09-06T15:19:28.0516504Z WARNING:common:fp64 golden ref were not generated for DALLE2_pytorch. Setting accuracy check to cosine 2023-09-06T15:19:28.4591370Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:19:39.7043115Z ERROR:common:name 'Eq' is not defined 2023-09-06T15:19:39.7043535Z Traceback (most recent call last): 2023-09-06T15:19:39.7044074Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:19:39.7044535Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:19:39.7046289Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:19:39.7046824Z return fn(*args, **kwargs) 2023-09-06T15:19:39.7047208Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1899, in run_n_iterations 2023-09-06T15:19:39.7047636Z self.model_iter_fn(mod, inputs, collect_outputs=False) 2023-09-06T15:19:39.7048255Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:19:39.7049001Z return mod(*inputs) 2023-09-06T15:19:39.7049614Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:19:39.7050043Z return self._call_impl(*args, **kwargs) 2023-09-06T15:19:39.7051250Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:19:39.7051985Z return forward_call(*args, **kwargs) 2023-09-06T15:19:39.7052774Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:19:39.7053172Z return func(*args, **kwargs) 2023-09-06T15:19:39.7053778Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:19:39.7054378Z model.eval() 2023-09-06T15:19:39.7055253Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T15:19:39.7055954Z out = fn(model, *args, **kwargs) 2023-09-06T15:19:39.7056993Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3313, in forward 2023-09-06T15:19:39.7057711Z @torch.no_grad() 2023-09-06T15:19:39.7058817Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:19:39.7059280Z return fn(*args, **kwargs) 2023-09-06T15:19:39.7059827Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/external_utils.py", line 17, in inner 2023-09-06T15:19:39.7060220Z return fn(*args, **kwargs) 2023-09-06T15:19:39.7060771Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3905, in forward 2023-09-06T15:19:39.7061171Z return compiled_fn(full_args) 2023-09-06T15:19:39.7061696Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1482, in g 2023-09-06T15:19:39.7062070Z return f(*args) 2023-09-06T15:19:39.7062784Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2533, in runtime_wrapper 2023-09-06T15:19:39.7063202Z all_outs = call_func_with_args( 2023-09-06T15:19:39.7064185Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1506, in call_func_with_args 2023-09-06T15:19:39.7064598Z out = normalize_as_list(f(args)) 2023-09-06T15:19:39.7065237Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1594, in rng_functionalization_wrapper 2023-09-06T15:19:39.7065673Z return compiled_fw(args) 2023-09-06T15:19:39.7066215Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 384, in __call__ 2023-09-06T15:19:39.7066620Z return self.get_current_callable()(inputs) 2023-09-06T15:19:39.7067174Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 689, in run 2023-09-06T15:19:39.7067564Z return compiled_fn(new_inputs) 2023-09-06T15:19:39.7068160Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 378, in deferred_cudagraphify 2023-09-06T15:19:39.7068741Z fn, out = cudagraphify(model, inputs, new_static_input_idxs, *args, **kwargs) 2023-09-06T15:19:39.7069707Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 405, in cudagraphify 2023-09-06T15:19:39.7070130Z return manager.add_function( 2023-09-06T15:19:39.7070710Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1921, in add_function 2023-09-06T15:19:39.7071103Z return fn, fn(inputs) 2023-09-06T15:19:39.7071628Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1741, in run 2023-09-06T15:19:39.7072046Z out = self._run(new_inputs, function_id) 2023-09-06T15:19:39.7072612Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1782, in _run 2023-09-06T15:19:39.7073044Z return self.run_eager(new_inputs, function_id) 2023-09-06T15:19:39.7073666Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1897, in run_eager 2023-09-06T15:19:39.7074258Z return node.run(new_inputs) 2023-09-06T15:19:39.7074807Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 603, in run 2023-09-06T15:19:39.7075237Z out = self.wrapped_function.model(new_inputs) 2023-09-06T15:19:39.7075827Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 411, in _run_from_cache 2023-09-06T15:19:39.7076252Z return compiled_graph.compiled_artifact(inputs) 2023-09-06T15:19:39.7076768Z File "/tmp/torchinductor_jenkins/rw/crws42g3jmmnbmezsagvvyimf775tzd4rq4yay4b333hj5tbdfyo.py", line 30, in call 2023-09-06T15:19:39.7077215Z return (Eq(s0, 1), ) 2023-09-06T15:19:39.7077557Z NameError: name 'Eq' is not defined 2023-09-06T15:19:39.7077930Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:19:39.7381701Z fail_to_run 2023-09-06T15:19:45.2075139Z 2023-09-06T15:19:49.0054929Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:19:49.0082795Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:19:49.0083143Z cuda eval LearningToPaint 2023-09-06T15:20:01.9640435Z pass 2023-09-06T15:20:07.1987413Z 2023-09-06T15:20:09.6091060Z loading model: 0it [00:00, ?it/s]WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:20:10.1076057Z 2023-09-06T15:20:10.1076619Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:20:10.1077157Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:20:10.1077565Z cuda eval Super_SloMo 2023-09-06T15:20:10.2108962Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:21:12.6118610Z pass 2023-09-06T15:21:18.4418073Z 2023-09-06T15:21:19.9785880Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:21:19.9786288Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:21:19.9793719Z cuda eval alexnet 2023-09-06T15:21:28.8420505Z pass 2023-09-06T15:21:33.8226791Z 2023-09-06T15:21:40.6405931Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:21:40.6406276Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:21:40.6460389Z cuda eval attention_is_all_you_need_pytorch 2023-09-06T15:22:24.1858137Z pass 2023-09-06T15:22:29.8112231Z 2023-09-06T15:22:32.4506057Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:22:32.4506437Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:22:32.4512828Z cuda eval basic_gnn_edgecnn 2023-09-06T15:22:33.0115961Z [2023-09-06 15:22:33,010] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:22:38.8444014Z skipping cudagraphs for unknown reason 2023-09-06T15:22:39.1719935Z pass 2023-09-06T15:22:43.8738965Z 2023-09-06T15:22:46.9113243Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:22:46.9113784Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:22:46.9116524Z cuda eval basic_gnn_gcn 2023-09-06T15:22:54.9859244Z skipping cudagraphs for unknown reason 2023-09-06T15:22:55.0044997Z [2023-09-06 15:22:55,003] [11/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:22:56.2165912Z skipping cudagraphs for unknown reason 2023-09-06T15:22:56.9055729Z skipping cudagraphs for unknown reason 2023-09-06T15:22:57.2256588Z skipping cudagraphs for unknown reason 2023-09-06T15:22:57.3486119Z pass 2023-09-06T15:23:02.0760028Z 2023-09-06T15:23:05.0051682Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:23:05.0052045Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:23:05.0059651Z cuda eval basic_gnn_gin 2023-09-06T15:23:05.7248198Z [2023-09-06 15:23:05,723] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:23:11.4646872Z skipping cudagraphs for unknown reason 2023-09-06T15:23:11.8012460Z pass 2023-09-06T15:23:16.5812512Z 2023-09-06T15:23:19.4844136Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:23:19.4844506Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:23:19.4848464Z cuda eval basic_gnn_sage 2023-09-06T15:23:20.2150711Z [2023-09-06 15:23:20,213] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:23:25.9628411Z skipping cudagraphs for unknown reason 2023-09-06T15:23:26.3089665Z pass 2023-09-06T15:23:31.1150060Z 2023-09-06T15:23:36.4202441Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:23:36.4202801Z loading model: 0it [00:05, ?it/s] 2023-09-06T15:23:36.4312727Z cuda eval cm3leon_generate 2023-09-06T15:28:22.1808137Z pass 2023-09-06T15:28:28.8444667Z 2023-09-06T15:28:29.6861691Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:28:29.6862240Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:28:29.6867779Z cuda eval dcgan 2023-09-06T15:28:37.4967153Z pass 2023-09-06T15:28:42.3115855Z 2023-09-06T15:28:45.6228903Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:28:45.6229493Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:28:45.6229775Z Eager model failed to run 2023-09-06T15:28:45.6243487Z Traceback (most recent call last): 2023-09-06T15:28:45.6244470Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:28:45.6244901Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:28:45.6245323Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:28:45.6247065Z return mod(*inputs) 2023-09-06T15:28:45.6248587Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:28:45.6249026Z return self._call_impl(*args, **kwargs) 2023-09-06T15:28:45.6249600Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:28:45.6250032Z return forward_call(*args, **kwargs) 2023-09-06T15:28:45.6250475Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/__init__.py", line 31, in forward 2023-09-06T15:28:45.6250867Z return sources, self.model(mix) 2023-09-06T15:28:45.6251456Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:28:45.6251897Z return self._call_impl(*args, **kwargs) 2023-09-06T15:28:45.6252651Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:28:45.6253215Z return forward_call(*args, **kwargs) 2023-09-06T15:28:45.6253893Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 209, in forward 2023-09-06T15:28:45.6254339Z x = self.lstm(x) 2023-09-06T15:28:45.6255095Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:28:45.6255856Z return self._call_impl(*args, **kwargs) 2023-09-06T15:28:45.6256765Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:28:45.6257456Z return forward_call(*args, **kwargs) 2023-09-06T15:28:45.6258849Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 27, in forward 2023-09-06T15:28:45.6259593Z x = self.lstm(x)[0] 2023-09-06T15:28:45.6260555Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:28:45.6261336Z return self._call_impl(*args, **kwargs) 2023-09-06T15:28:45.6262293Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:28:45.6263160Z return forward_call(*args, **kwargs) 2023-09-06T15:28:45.6264127Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/rnn.py", line 879, in forward 2023-09-06T15:28:45.6264956Z result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers, 2023-09-06T15:28:45.6265879Z RuntimeError: "_thnn_fused_lstm_cell_cuda" not implemented for 'BFloat16' 2023-09-06T15:28:45.6266336Z 2023-09-06T15:28:45.6266706Z The above exception was the direct cause of the following exception: 2023-09-06T15:28:45.6266951Z 2023-09-06T15:28:45.6267159Z Traceback (most recent call last): 2023-09-06T15:28:45.6267840Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:28:45.6268228Z ) = runner.load_model( 2023-09-06T15:28:45.6268728Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:28:45.6269712Z self.validate_model(model, example_inputs) 2023-09-06T15:28:45.6270288Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:28:45.6270719Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:28:45.6271407Z NotImplementedError: Eager model failed to run 2023-09-06T15:28:45.6271714Z 2023-09-06T15:28:45.6271840Z WARNING:root:demucs failed to load 2023-09-06T15:28:50.0605915Z 2023-09-06T15:28:51.9558604Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:28:51.9559681Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:28:51.9710002Z cuda eval densenet121 2023-09-06T15:29:34.8338335Z pass 2023-09-06T15:29:40.5902491Z 2023-09-06T15:29:45.3605103Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:29:45.3605670Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:29:45.3606118Z Eager model failed to run 2023-09-06T15:29:45.3623229Z Traceback (most recent call last): 2023-09-06T15:29:45.3623942Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:29:45.3624539Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:29:45.3625147Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:29:45.3625725Z return mod(*inputs) 2023-09-06T15:29:45.3629842Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:45.3630633Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:45.3631419Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:45.3631833Z return forward_call(*args, **kwargs) 2023-09-06T15:29:45.3632660Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:29:45.3633306Z return self.inference(batched_inputs) 2023-09-06T15:29:45.3633920Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:29:45.3634402Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:29:45.3635030Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:45.3635469Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:45.3636020Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:45.3637099Z return forward_call(*args, **kwargs) 2023-09-06T15:29:45.3638352Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:29:45.3639206Z box_features = self._shared_roi_transform( 2023-09-06T15:29:45.3639977Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:29:45.3640593Z x = self.pooler(features, boxes) 2023-09-06T15:29:45.3641431Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:45.3641999Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:45.3642895Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:45.3643604Z return forward_call(*args, **kwargs) 2023-09-06T15:29:45.3644582Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:29:45.3645362Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:29:45.3646406Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:45.3647140Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:45.3648178Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:45.3648893Z return forward_call(*args, **kwargs) 2023-09-06T15:29:45.3649834Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:29:45.3650525Z return roi_align( 2023-09-06T15:29:45.3651470Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:29:45.3652711Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:29:45.3653916Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:29:45.3654809Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:29:45.3656012Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:29:45.3656779Z v1 = masked_index(y_low, x_low) 2023-09-06T15:29:45.3657735Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:29:45.3658475Z return input[ 2023-09-06T15:29:45.3660133Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26902.82 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.54 GiB is free. Process 2187428 has 3.84 GiB memory in use. Of the allocated memory 2.99 GiB is allocated by PyTorch, and 335.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:29:45.3661608Z 2023-09-06T15:29:45.3661994Z The above exception was the direct cause of the following exception: 2023-09-06T15:29:45.3662380Z 2023-09-06T15:29:45.3662758Z Traceback (most recent call last): 2023-09-06T15:29:45.3663401Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:29:45.3664000Z ) = runner.load_model( 2023-09-06T15:29:45.3664702Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:29:45.3665382Z self.validate_model(model, example_inputs) 2023-09-06T15:29:45.3666083Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:29:45.3666944Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:29:45.3667644Z NotImplementedError: Eager model failed to run 2023-09-06T15:29:45.3667936Z 2023-09-06T15:29:45.3668105Z WARNING:root:detectron2_fasterrcnn_r_101_c4 failed to load 2023-09-06T15:29:49.8843670Z 2023-09-06T15:29:56.9178231Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:29:56.9178599Z loading model: 0it [00:07, ?it/s] 2023-09-06T15:29:56.9178951Z Eager model failed to run 2023-09-06T15:29:56.9195604Z Traceback (most recent call last): 2023-09-06T15:29:56.9196226Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:29:56.9196958Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:29:56.9197696Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:29:56.9198299Z return mod(*inputs) 2023-09-06T15:29:56.9199972Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:56.9200414Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:56.9200993Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:56.9201408Z return forward_call(*args, **kwargs) 2023-09-06T15:29:56.9201985Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:29:56.9202399Z return self.inference(batched_inputs) 2023-09-06T15:29:56.9202989Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:29:56.9203471Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:29:56.9204092Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:56.9204515Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:56.9205562Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:56.9205978Z return forward_call(*args, **kwargs) 2023-09-06T15:29:56.9206577Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:29:56.9207044Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:29:56.9207665Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:29:56.9208184Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:29:56.9208923Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:56.9209349Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:56.9209909Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:56.9210306Z return forward_call(*args, **kwargs) 2023-09-06T15:29:56.9210861Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:29:56.9211299Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:29:56.9211895Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:29:56.9212302Z return self._call_impl(*args, **kwargs) 2023-09-06T15:29:56.9212853Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:29:56.9213353Z return forward_call(*args, **kwargs) 2023-09-06T15:29:56.9214038Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:29:56.9214416Z return roi_align( 2023-09-06T15:29:56.9215215Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:29:56.9215739Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:29:56.9216399Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:29:56.9216917Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:29:56.9217591Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:29:56.9217997Z v1 = masked_index(y_low, x_low) 2023-09-06T15:29:56.9218557Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:29:56.9218995Z return input[ 2023-09-06T15:29:56.9219975Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13299.95 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.73 GiB is free. Process 2187531 has 4.65 GiB memory in use. Of the allocated memory 3.82 GiB is allocated by PyTorch, and 283.52 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:29:56.9220824Z 2023-09-06T15:29:56.9221026Z The above exception was the direct cause of the following exception: 2023-09-06T15:29:56.9221271Z 2023-09-06T15:29:56.9221401Z Traceback (most recent call last): 2023-09-06T15:29:56.9221765Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:29:56.9222150Z ) = runner.load_model( 2023-09-06T15:29:56.9222535Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:29:56.9222940Z self.validate_model(model, example_inputs) 2023-09-06T15:29:56.9223466Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:29:56.9223923Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:29:56.9224305Z NotImplementedError: Eager model failed to run 2023-09-06T15:29:56.9224516Z 2023-09-06T15:29:56.9224685Z WARNING:root:detectron2_fasterrcnn_r_101_dc5 failed to load 2023-09-06T15:30:01.5903032Z 2023-09-06T15:30:06.1720276Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:06.1720860Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:30:06.1721358Z Eager model failed to run 2023-09-06T15:30:06.1738422Z Traceback (most recent call last): 2023-09-06T15:30:06.1739227Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:30:06.1739972Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:30:06.1740718Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:30:06.1741339Z return mod(*inputs) 2023-09-06T15:30:06.1744662Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:06.1745111Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:06.1745729Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:06.1746141Z return forward_call(*args, **kwargs) 2023-09-06T15:30:06.1746721Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:30:06.1747149Z return self.inference(batched_inputs) 2023-09-06T15:30:06.1747720Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:30:06.1748200Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:30:06.1748900Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:06.1750212Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:06.1750785Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:06.1751189Z return forward_call(*args, **kwargs) 2023-09-06T15:30:06.1751796Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:30:06.1752263Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:30:06.1752895Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:30:06.1753394Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:30:06.1754048Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:06.1754485Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:06.1755043Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:06.1755427Z return forward_call(*args, **kwargs) 2023-09-06T15:30:06.1755987Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:30:06.1756448Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:30:06.1757070Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:06.1757494Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:06.1758036Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:06.1758436Z return forward_call(*args, **kwargs) 2023-09-06T15:30:06.1759244Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:30:06.1759626Z return roi_align( 2023-09-06T15:30:06.1760153Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:30:06.1760673Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:30:06.1761330Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:30:06.1761848Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:30:06.1762524Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:30:06.1762929Z v1 = masked_index(y_low, x_low) 2023-09-06T15:30:06.1763488Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:30:06.1763878Z return input[ 2023-09-06T15:30:06.1764849Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 19183.01 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.81 GiB is free. Process 2187629 has 4.57 GiB memory in use. Of the allocated memory 3.79 GiB is allocated by PyTorch, and 257.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:30:06.1766011Z 2023-09-06T15:30:06.1766213Z The above exception was the direct cause of the following exception: 2023-09-06T15:30:06.1766462Z 2023-09-06T15:30:06.1766590Z Traceback (most recent call last): 2023-09-06T15:30:06.1766974Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:30:06.1767306Z ) = runner.load_model( 2023-09-06T15:30:06.1767829Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:30:06.1768236Z self.validate_model(model, example_inputs) 2023-09-06T15:30:06.1768688Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:30:06.1769120Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:30:06.1769498Z NotImplementedError: Eager model failed to run 2023-09-06T15:30:06.1769714Z 2023-09-06T15:30:06.1769884Z WARNING:root:detectron2_fasterrcnn_r_101_fpn failed to load 2023-09-06T15:30:10.7955935Z 2023-09-06T15:30:15.0897491Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:15.0898055Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:30:15.0898334Z Eager model failed to run 2023-09-06T15:30:15.0913757Z Traceback (most recent call last): 2023-09-06T15:30:15.0914458Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:30:15.0915314Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:30:15.0916036Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:30:15.0916641Z return mod(*inputs) 2023-09-06T15:30:15.0917888Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:15.0918304Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:15.0918939Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:15.0919674Z return forward_call(*args, **kwargs) 2023-09-06T15:30:15.0920761Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:30:15.0921568Z return self.inference(batched_inputs) 2023-09-06T15:30:15.0922308Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:30:15.0923357Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:30:15.0924010Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:15.0924432Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:15.0924974Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:15.0925381Z return forward_call(*args, **kwargs) 2023-09-06T15:30:15.0925963Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:30:15.0926448Z box_features = self._shared_roi_transform( 2023-09-06T15:30:15.0927086Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:30:15.0927563Z x = self.pooler(features, boxes) 2023-09-06T15:30:15.0928189Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:15.0928612Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:15.0929164Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:15.0929566Z return forward_call(*args, **kwargs) 2023-09-06T15:30:15.0930104Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:30:15.0930538Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:30:15.0931129Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:15.0931554Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:15.0932089Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:15.0932680Z return forward_call(*args, **kwargs) 2023-09-06T15:30:15.0933280Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:30:15.0933653Z return roi_align( 2023-09-06T15:30:15.0934164Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:30:15.0934683Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:30:15.0935334Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:30:15.0935847Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:30:15.0936517Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:30:15.0936922Z v1 = masked_index(y_low, x_low) 2023-09-06T15:30:15.0937486Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:30:15.0937870Z return input[ 2023-09-06T15:30:15.0938833Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 27492.29 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.78 GiB is free. Process 2187725 has 2.61 GiB memory in use. Of the allocated memory 1.86 GiB is allocated by PyTorch, and 229.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:30:15.0939738Z 2023-09-06T15:30:15.0939939Z The above exception was the direct cause of the following exception: 2023-09-06T15:30:15.0940182Z 2023-09-06T15:30:15.0940312Z Traceback (most recent call last): 2023-09-06T15:30:15.0940690Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:30:15.0941138Z ) = runner.load_model( 2023-09-06T15:30:15.0941519Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:30:15.0941923Z self.validate_model(model, example_inputs) 2023-09-06T15:30:15.0942335Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:30:15.0942767Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:30:15.0943194Z NotImplementedError: Eager model failed to run 2023-09-06T15:30:15.0943405Z 2023-09-06T15:30:15.0943570Z WARNING:root:detectron2_fasterrcnn_r_50_c4 failed to load 2023-09-06T15:30:19.7506107Z 2023-09-06T15:30:26.1816230Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:26.1816749Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:30:26.1817161Z Eager model failed to run 2023-09-06T15:30:26.1833532Z Traceback (most recent call last): 2023-09-06T15:30:26.1834295Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:30:26.1834930Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:30:26.1835583Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:30:26.1836132Z return mod(*inputs) 2023-09-06T15:30:26.1837671Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:26.1838405Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:26.1839290Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:26.1839915Z return forward_call(*args, **kwargs) 2023-09-06T15:30:26.1840783Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:30:26.1841389Z return self.inference(batched_inputs) 2023-09-06T15:30:26.1842324Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:30:26.1843727Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:30:26.1844766Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:26.1845417Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:26.1846303Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:26.1846927Z return forward_call(*args, **kwargs) 2023-09-06T15:30:26.1847862Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:30:26.1848659Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:30:26.1849640Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:30:26.1850488Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:30:26.1851537Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:26.1852203Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:26.1853077Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:26.1853669Z return forward_call(*args, **kwargs) 2023-09-06T15:30:26.1854555Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:30:26.1855233Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:30:26.1856156Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:26.1856806Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:26.1858230Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:26.1858875Z return forward_call(*args, **kwargs) 2023-09-06T15:30:26.1859746Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:30:26.1860312Z return roi_align( 2023-09-06T15:30:26.1861112Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:30:26.1861886Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:30:26.1863081Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:30:26.1863863Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:30:26.1864948Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:30:26.1865660Z v1 = masked_index(y_low, x_low) 2023-09-06T15:30:26.1866647Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:30:26.1867230Z return input[ 2023-09-06T15:30:26.1868821Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13521.00 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.88 GiB is free. Process 2187818 has 3.50 GiB memory in use. Of the allocated memory 2.68 GiB is allocated by PyTorch, and 270.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:30:26.1870554Z 2023-09-06T15:30:26.1870901Z The above exception was the direct cause of the following exception: 2023-09-06T15:30:26.1871264Z 2023-09-06T15:30:26.1871887Z Traceback (most recent call last): 2023-09-06T15:30:26.1872457Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:30:26.1872994Z ) = runner.load_model( 2023-09-06T15:30:26.1873438Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:30:26.1874062Z self.validate_model(model, example_inputs) 2023-09-06T15:30:26.1874670Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:30:26.1875359Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:30:26.1875987Z NotImplementedError: Eager model failed to run 2023-09-06T15:30:26.1876335Z 2023-09-06T15:30:26.1876635Z WARNING:root:detectron2_fasterrcnn_r_50_dc5 failed to load 2023-09-06T15:30:30.8421157Z 2023-09-06T15:30:35.1173122Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:35.1173838Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:30:35.1174100Z Eager model failed to run 2023-09-06T15:30:35.1186498Z Traceback (most recent call last): 2023-09-06T15:30:35.1187176Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:30:35.1188063Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:30:35.1188755Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:30:35.1189508Z return mod(*inputs) 2023-09-06T15:30:35.1191807Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:35.1192242Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:35.1192805Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:35.1193198Z return forward_call(*args, **kwargs) 2023-09-06T15:30:35.1193773Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:30:35.1194663Z return self.inference(batched_inputs) 2023-09-06T15:30:35.1195269Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:30:35.1195759Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:30:35.1196368Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:35.1196799Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:35.1197356Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:35.1197881Z return forward_call(*args, **kwargs) 2023-09-06T15:30:35.1198464Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:30:35.1198916Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:30:35.1199572Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:30:35.1200146Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:30:35.1200794Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:35.1201215Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:35.1201755Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:35.1202154Z return forward_call(*args, **kwargs) 2023-09-06T15:30:35.1202703Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:30:35.1203172Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:30:35.1203784Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:35.1204408Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:35.1204974Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:35.1205377Z return forward_call(*args, **kwargs) 2023-09-06T15:30:35.1205926Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:30:35.1206286Z return roi_align( 2023-09-06T15:30:35.1206818Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:30:35.1207338Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:30:35.1208051Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:30:35.1208558Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:30:35.1209237Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:30:35.1209659Z v1 = masked_index(y_low, x_low) 2023-09-06T15:30:35.1210208Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:30:35.1210590Z return input[ 2023-09-06T15:30:35.1211535Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 21352.77 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.12 GiB is free. Process 2187912 has 3.27 GiB memory in use. Of the allocated memory 2.65 GiB is allocated by PyTorch, and 99.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:30:35.1212602Z 2023-09-06T15:30:35.1212905Z The above exception was the direct cause of the following exception: 2023-09-06T15:30:35.1213155Z 2023-09-06T15:30:35.1213285Z Traceback (most recent call last): 2023-09-06T15:30:35.1213665Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:30:35.1214015Z ) = runner.load_model( 2023-09-06T15:30:35.1214397Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:30:35.1214784Z self.validate_model(model, example_inputs) 2023-09-06T15:30:35.1215198Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:30:35.1215639Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:30:35.1216023Z NotImplementedError: Eager model failed to run 2023-09-06T15:30:35.1216234Z 2023-09-06T15:30:35.1216387Z WARNING:root:detectron2_fasterrcnn_r_50_fpn failed to load 2023-09-06T15:30:39.7098487Z 2023-09-06T15:30:43.8581605Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:43.8582492Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:30:43.8583010Z Traceback (most recent call last): 2023-09-06T15:30:43.8583691Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 495, in 2023-09-06T15:30:43.8585518Z torchbench_main() 2023-09-06T15:30:43.8586229Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 491, in torchbench_main 2023-09-06T15:30:43.8589930Z main(TorchBenchmarkRunner(), original_dir) 2023-09-06T15:30:43.8590730Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3031, in main 2023-09-06T15:30:43.8596875Z process_entry(0, runner, original_dir, args) 2023-09-06T15:30:43.8597686Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2988, in process_entry 2023-09-06T15:30:43.8602478Z return maybe_fresh_cache( 2023-09-06T15:30:43.8603267Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1659, in inner 2023-09-06T15:30:43.8605262Z return fn(*args, **kwargs) 2023-09-06T15:30:43.8605961Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3477, in run 2023-09-06T15:30:43.8613262Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2023-09-06T15:30:43.8613796Z AssertionError: nothing in example_inputs had a dim with 4 2023-09-06T15:30:44.9375164Z ERROR 2023-09-06T15:30:44.9417652Z accuracy pass_rate=80.00% 2023-09-06T15:30:44.9419524Z calls_captured gmean=0.00x mean=534.000x 2023-09-06T15:30:44.9422955Z unique_graphs gmean=0.00x mean=1.867x 2023-09-06T15:30:44.9423563Z graph_breaks gmean=0.00x mean=1.067x 2023-09-06T15:30:44.9427238Z unique_graph_breaks gmean=0.00x mean=0.267x 2023-09-06T15:30:45.7220827Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *cppwrapper-true* ]] 2023-09-06T15:30:45.7222237Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *freezing_cudagraphs-true* ]] 2023-09-06T15:30:45.7222986Z + [[ inference == \i\n\f\e\r\e\n\c\e ]] 2023-09-06T15:30:45.7224082Z + python benchmarks/dynamo/torchbench.py --accuracy --no-translation-validation --inference --bfloat16 --backend inductor --device cuda --total-partitions 4 --partition-id 0 --freezing --output /var/lib/jenkins/workspace/test/test-reports/inductor_with_cudagraphs_freezing_torchbench_bfloat16_inference_cuda_accuracy.csv 2023-09-06T15:30:52.9486575Z 2023-09-06T15:30:53.8561050Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:53.8561576Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:30:53.8562009Z Eager model failed to run 2023-09-06T15:30:53.8578435Z Traceback (most recent call last): 2023-09-06T15:30:53.8579183Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:30:53.8579876Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:30:53.8581731Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:30:53.8582318Z return mod(*inputs) 2023-09-06T15:30:53.8583725Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8584419Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8585269Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8585939Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8586785Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 893, in forward 2023-09-06T15:30:53.8587460Z logits = self.model(batch.dense_features, batch.sparse_features) 2023-09-06T15:30:53.8588632Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8589646Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8590606Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8591211Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8592072Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 570, in forward 2023-09-06T15:30:53.8592716Z embedded_dense = self.dense_arch(dense_features) 2023-09-06T15:30:53.8593672Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8594327Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8595220Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8595865Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8596783Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 149, in forward 2023-09-06T15:30:53.8597950Z return self.model(features) 2023-09-06T15:30:53.8598914Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8599564Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8600568Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8601246Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8602170Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 172, in forward 2023-09-06T15:30:53.8602796Z return self._mlp(input) 2023-09-06T15:30:53.8603764Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8604478Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8605493Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8606137Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8607133Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward 2023-09-06T15:30:53.8607816Z input = module(input) 2023-09-06T15:30:53.8608909Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8609663Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8610680Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8611385Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8612164Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 73, in forward 2023-09-06T15:30:53.8612842Z return self._activation_fn(self._linear(input)) 2023-09-06T15:30:53.8614390Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:30:53.8615206Z return self._call_impl(*args, **kwargs) 2023-09-06T15:30:53.8616228Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:30:53.8616867Z return forward_call(*args, **kwargs) 2023-09-06T15:30:53.8617809Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward 2023-09-06T15:30:53.8618648Z return F.linear(input, self.weight, self.bias) 2023-09-06T15:30:53.8619326Z RuntimeError: mat1 and mat2 must have the same dtype, but got Float and BFloat16 2023-09-06T15:30:53.8619779Z 2023-09-06T15:30:53.8620129Z The above exception was the direct cause of the following exception: 2023-09-06T15:30:53.8620540Z 2023-09-06T15:30:53.8620761Z Traceback (most recent call last): 2023-09-06T15:30:53.8621412Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:30:53.8622031Z ) = runner.load_model( 2023-09-06T15:30:53.8622632Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:30:53.8623269Z self.validate_model(model, example_inputs) 2023-09-06T15:30:53.8623919Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:30:53.8624709Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:30:53.8625381Z NotImplementedError: Eager model failed to run 2023-09-06T15:30:53.8625762Z 2023-09-06T15:30:53.8626008Z WARNING:root:torchrec_dlrm failed to load 2023-09-06T15:30:58.2937121Z 2023-09-06T15:31:01.4060605Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:31:01.4061526Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:31:01.4131716Z cuda eval BERT_pytorch 2023-09-06T15:31:36.6846986Z pass 2023-09-06T15:31:41.8715045Z 2023-09-06T15:31:45.5778460Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:31:45.5779689Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:31:45.5833230Z cuda eval Background_Matting 2023-09-06T15:31:45.5836208Z pass_due_to_skip 2023-09-06T15:31:50.2118262Z 2023-09-06T15:31:59.5228819Z loading model: 0it [00:00, ?it/s]WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:32:01.2582301Z 2023-09-06T15:32:01.2583213Z loading model: 0it [00:11, ?it/s] 2023-09-06T15:32:01.2583847Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:32:01.2584394Z cuda eval DALLE2_pytorch 2023-09-06T15:32:01.4971878Z WARNING:common:fp64 golden ref were not generated for DALLE2_pytorch. Setting accuracy check to cosine 2023-09-06T15:32:01.8708346Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:32:15.1469554Z [2023-09-06 15:32:15,145] [3/1] torch._dynamo.output_graph: [WARNING] nn.Module forward/_pre hooks are only partially supported, and were detected in your model. In particular, if you do not change/remove hooks after calling .compile(), you can disregard this warning, and otherwise you may need to set torch._dynamo.config.skip_nnmodule_hook_guards=False to ensure recompiling after changing hooks.See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:32:48.9742816Z skipping cudagraphs due to multiple devices 2023-09-06T15:33:50.7006975Z skipping cudagraphs due to multiple devices 2023-09-06T15:34:11.3728394Z ERROR:common:Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(4, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T15:34:11.3729555Z unhashable type: 'SymInt' 2023-09-06T15:34:11.3729843Z 2023-09-06T15:34:11.3732422Z from user code: 2023-09-06T15:34:11.3733584Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T15:34:11.3735197Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T15:34:11.3735636Z 2023-09-06T15:34:11.3735930Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:34:11.3736315Z 2023-09-06T15:34:11.3741887Z 2023-09-06T15:34:11.3742491Z You can suppress this exception and fall back to eager by setting: 2023-09-06T15:34:11.3743279Z import torch._dynamo 2023-09-06T15:34:11.3743942Z torch._dynamo.config.suppress_errors = True 2023-09-06T15:34:11.3744547Z Traceback (most recent call last): 2023-09-06T15:34:11.3745319Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:34:11.3746156Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:34:11.3747147Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:34:11.3747531Z return fn(*args, **kwargs) 2023-09-06T15:34:11.3747938Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1899, in run_n_iterations 2023-09-06T15:34:11.3748375Z self.model_iter_fn(mod, inputs, collect_outputs=False) 2023-09-06T15:34:11.3748790Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:34:11.3749441Z return mod(*inputs) 2023-09-06T15:34:11.3750276Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:34:11.3750886Z return self._call_impl(*args, **kwargs) 2023-09-06T15:34:11.3751723Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:34:11.3752320Z return forward_call(*args, **kwargs) 2023-09-06T15:34:11.3753302Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:34:11.3753957Z return func(*args, **kwargs) 2023-09-06T15:34:11.3755331Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:34:11.3755852Z model.eval() 2023-09-06T15:34:11.3756679Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T15:34:11.3757318Z out = fn(model, *args, **kwargs) 2023-09-06T15:34:11.3758241Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T15:34:11.3759019Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T15:34:11.3759755Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T15:34:11.3760302Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T15:34:11.3760984Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:34:11.3761393Z return func(*args, **kwargs) 2023-09-06T15:34:11.3761937Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:34:11.3762296Z model.eval() 2023-09-06T15:34:11.3762843Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T15:34:11.3763320Z out = fn(model, *args, **kwargs) 2023-09-06T15:34:11.3763873Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T15:34:11.3764257Z img = self.p_sample_loop( 2023-09-06T15:34:11.3764804Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:34:11.3765202Z return func(*args, **kwargs) 2023-09-06T15:34:11.3766035Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T15:34:11.3766545Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T15:34:11.3767184Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:34:11.3767573Z return func(*args, **kwargs) 2023-09-06T15:34:11.3768155Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T15:34:11.3768569Z img, x_start = self.p_sample( 2023-09-06T15:34:11.3769104Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:34:11.3769500Z return func(*args, **kwargs) 2023-09-06T15:34:11.3770047Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T15:34:11.3771076Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T15:34:11.3772534Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T15:34:11.3773347Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T15:34:11.3774227Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T15:34:11.3774765Z return d() if callable(d) else d 2023-09-06T15:34:11.3775334Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T15:34:11.3776099Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T15:34:11.3777024Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T15:34:11.3777458Z logits = self.forward(*args, **kwargs) 2023-09-06T15:34:11.3778032Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T15:34:11.3778409Z x = resnet_block(x, t, c) 2023-09-06T15:34:11.3778971Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:34:11.3779397Z return self._call_impl(*args, **kwargs) 2023-09-06T15:34:11.3779955Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:34:11.3780344Z return forward_call(*args, **kwargs) 2023-09-06T15:34:11.3780899Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T15:34:11.3781346Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T15:34:11.3781946Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T15:34:11.3782407Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T15:34:11.3783021Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T15:34:11.3783516Z return fn(*args, **kwargs) 2023-09-06T15:34:11.3784097Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T15:34:11.3784490Z return _compile( 2023-09-06T15:34:11.3785006Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T15:34:11.3785464Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T15:34:11.3786063Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:34:11.3786445Z r = func(*args, **kwargs) 2023-09-06T15:34:11.3786983Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T15:34:11.3787422Z out_code = transform_code_object(code, transform) 2023-09-06T15:34:11.3788078Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T15:34:11.3788557Z transformations(instructions, code_options) 2023-09-06T15:34:11.3789349Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T15:34:11.3789855Z tracer.run() 2023-09-06T15:34:11.3790394Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T15:34:11.3790768Z super().run() 2023-09-06T15:34:11.3791282Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:34:11.3791641Z and self.step() 2023-09-06T15:34:11.3792174Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:34:11.3792572Z getattr(self, inst.opname)(inst) 2023-09-06T15:34:11.3793202Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:34:11.3793773Z return inner_fn(self, inst) 2023-09-06T15:34:11.3794335Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T15:34:11.3794751Z self.call_function(fn, args, {}) 2023-09-06T15:34:11.3795324Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:34:11.3795770Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:34:11.3796360Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T15:34:11.3796791Z tensor_variable = wrap_fx_proxy( 2023-09-06T15:34:11.3797378Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T15:34:11.3797787Z return wrap_fx_proxy_cls( 2023-09-06T15:34:11.3798394Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T15:34:11.3798837Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T15:34:11.3799421Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T15:34:11.3799898Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T15:34:11.3800512Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T15:34:11.3800887Z return wrap_fake_exception( 2023-09-06T15:34:11.3801445Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T15:34:11.3801820Z return fn() 2023-09-06T15:34:11.3802326Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T15:34:11.3802967Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T15:34:11.3803548Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T15:34:11.3804015Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T15:34:11.3804616Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T15:34:11.3805011Z return node.target(*args, **kwargs) 2023-09-06T15:34:11.3805532Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T15:34:11.3806137Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T15:34:11.3806734Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T15:34:11.3807176Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T15:34:11.3807779Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T15:34:11.3808206Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T15:34:11.3809010Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(4, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T15:34:11.3809571Z unhashable type: 'SymInt' 2023-09-06T15:34:11.3809747Z 2023-09-06T15:34:11.3809843Z from user code: 2023-09-06T15:34:11.3810369Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T15:34:11.3810860Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T15:34:11.3811047Z 2023-09-06T15:34:11.3811239Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:34:11.3811484Z 2023-09-06T15:34:11.3811490Z 2023-09-06T15:34:11.3811693Z You can suppress this exception and fall back to eager by setting: 2023-09-06T15:34:11.3812177Z import torch._dynamo 2023-09-06T15:34:11.3812482Z torch._dynamo.config.suppress_errors = True 2023-09-06T15:34:11.3812687Z 2023-09-06T15:34:11.3812933Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:34:11.3813261Z fail_to_run 2023-09-06T15:34:17.6223696Z 2023-09-06T15:34:21.4637713Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:34:21.4638630Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:34:21.4664588Z cuda eval LearningToPaint 2023-09-06T15:34:37.8172342Z pass 2023-09-06T15:34:43.1248170Z 2023-09-06T15:34:45.5412592Z loading model: 0it [00:00, ?it/s]WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:34:46.0638031Z 2023-09-06T15:34:46.0643044Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:34:46.0643516Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:34:46.0643970Z cuda eval Super_SloMo 2023-09-06T15:34:46.1673203Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:35:37.6661836Z pass 2023-09-06T15:35:43.3047087Z 2023-09-06T15:35:44.8175717Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:35:44.8176136Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:35:44.8177998Z cuda eval alexnet 2023-09-06T15:35:55.6124156Z pass 2023-09-06T15:36:00.5494799Z 2023-09-06T15:36:07.3949295Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:36:07.3949657Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:36:07.4005491Z cuda eval attention_is_all_you_need_pytorch 2023-09-06T15:36:44.3589794Z pass 2023-09-06T15:36:49.7816821Z 2023-09-06T15:36:52.4786708Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:36:52.4787278Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:36:52.4792314Z cuda eval basic_gnn_edgecnn 2023-09-06T15:36:53.0444191Z [2023-09-06 15:36:53,043] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:36:59.4301388Z skipping cudagraphs for unknown reason 2023-09-06T15:36:59.7062795Z pass 2023-09-06T15:37:04.5130586Z 2023-09-06T15:37:07.4151324Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:37:07.4151892Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:37:07.4154636Z cuda eval basic_gnn_gcn 2023-09-06T15:37:15.5797503Z skipping cudagraphs for unknown reason 2023-09-06T15:37:15.5983762Z [2023-09-06 15:37:15,597] [11/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:37:16.9195583Z skipping cudagraphs for unknown reason 2023-09-06T15:37:18.6262081Z skipping cudagraphs for unknown reason 2023-09-06T15:37:19.0651388Z skipping cudagraphs for unknown reason 2023-09-06T15:37:19.1696043Z pass 2023-09-06T15:37:23.9729061Z 2023-09-06T15:37:27.0122030Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:37:27.0122727Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:37:27.0129778Z cuda eval basic_gnn_gin 2023-09-06T15:37:27.7374405Z [2023-09-06 15:37:27,736] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:37:34.1017977Z skipping cudagraphs for unknown reason 2023-09-06T15:37:34.4303418Z pass 2023-09-06T15:37:39.3050199Z 2023-09-06T15:37:42.3117630Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:37:42.3119526Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:37:42.3136486Z cuda eval basic_gnn_sage 2023-09-06T15:37:43.0148955Z [2023-09-06 15:37:43,013] [1/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:37:49.2557934Z skipping cudagraphs for unknown reason 2023-09-06T15:37:49.5912136Z pass 2023-09-06T15:37:54.3593916Z 2023-09-06T15:37:59.6294403Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:37:59.6295085Z loading model: 0it [00:05, ?it/s] 2023-09-06T15:37:59.6406988Z cuda eval cm3leon_generate 2023-09-06T15:42:53.7919553Z pass 2023-09-06T15:43:00.2252284Z 2023-09-06T15:43:01.0947448Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:43:01.0947806Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:43:01.0953548Z cuda eval dcgan 2023-09-06T15:43:10.1461804Z pass 2023-09-06T15:43:15.0196185Z 2023-09-06T15:43:18.3378100Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:43:18.3378858Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:43:18.3379140Z Eager model failed to run 2023-09-06T15:43:18.3388790Z Traceback (most recent call last): 2023-09-06T15:43:18.3389808Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:43:18.3390465Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:43:18.3391180Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:43:18.3391862Z return mod(*inputs) 2023-09-06T15:43:18.3393291Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:43:18.3393734Z return self._call_impl(*args, **kwargs) 2023-09-06T15:43:18.3394969Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:43:18.3395434Z return forward_call(*args, **kwargs) 2023-09-06T15:43:18.3395887Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/__init__.py", line 31, in forward 2023-09-06T15:43:18.3396297Z return sources, self.model(mix) 2023-09-06T15:43:18.3396879Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:43:18.3397301Z return self._call_impl(*args, **kwargs) 2023-09-06T15:43:18.3397858Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:43:18.3398262Z return forward_call(*args, **kwargs) 2023-09-06T15:43:18.3398682Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 209, in forward 2023-09-06T15:43:18.3399071Z x = self.lstm(x) 2023-09-06T15:43:18.3399622Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:43:18.3400055Z return self._call_impl(*args, **kwargs) 2023-09-06T15:43:18.3400593Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:43:18.3400996Z return forward_call(*args, **kwargs) 2023-09-06T15:43:18.3401426Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 27, in forward 2023-09-06T15:43:18.3401823Z x = self.lstm(x)[0] 2023-09-06T15:43:18.3402368Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:43:18.3402769Z return self._call_impl(*args, **kwargs) 2023-09-06T15:43:18.3403370Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:43:18.3403773Z return forward_call(*args, **kwargs) 2023-09-06T15:43:18.3404602Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/rnn.py", line 879, in forward 2023-09-06T15:43:18.3405061Z result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers, 2023-09-06T15:43:18.3405599Z RuntimeError: "_thnn_fused_lstm_cell_cuda" not implemented for 'BFloat16' 2023-09-06T15:43:18.3405846Z 2023-09-06T15:43:18.3406047Z The above exception was the direct cause of the following exception: 2023-09-06T15:43:18.3406288Z 2023-09-06T15:43:18.3406415Z Traceback (most recent call last): 2023-09-06T15:43:18.3406798Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:43:18.3407132Z ) = runner.load_model( 2023-09-06T15:43:18.3407510Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:43:18.3407916Z self.validate_model(model, example_inputs) 2023-09-06T15:43:18.3408331Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:43:18.3408772Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:43:18.3409159Z NotImplementedError: Eager model failed to run 2023-09-06T15:43:18.3409368Z 2023-09-06T15:43:18.3409494Z WARNING:root:demucs failed to load 2023-09-06T15:43:22.7970784Z 2023-09-06T15:43:24.6769120Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:43:24.6769489Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:43:24.6921754Z cuda eval densenet121 2023-09-06T15:44:47.2119591Z [2023-09-06 15:44:47,210] torch._dynamo.utils: [ERROR] RMSE (res-fp64): 0.01925, (ref-fp64): 0.00878 and shape=torch.Size([4, 1000]) 2023-09-06T15:44:47.2283614Z fail_accuracy 2023-09-06T15:44:52.9984407Z 2023-09-06T15:44:57.7860106Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:44:57.7860609Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:44:57.7861028Z Eager model failed to run 2023-09-06T15:44:57.7876854Z Traceback (most recent call last): 2023-09-06T15:44:57.7878116Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:44:57.7879048Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:44:57.7879782Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:44:57.7880385Z return mod(*inputs) 2023-09-06T15:44:57.7881149Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:44:57.7881582Z return self._call_impl(*args, **kwargs) 2023-09-06T15:44:57.7882157Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:44:57.7882645Z return forward_call(*args, **kwargs) 2023-09-06T15:44:57.7883540Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:44:57.7884121Z return self.inference(batched_inputs) 2023-09-06T15:44:57.7885712Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:44:57.7886231Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:44:57.7886893Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:44:57.7887336Z return self._call_impl(*args, **kwargs) 2023-09-06T15:44:57.7887908Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:44:57.7888312Z return forward_call(*args, **kwargs) 2023-09-06T15:44:57.7888941Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:44:57.7889384Z box_features = self._shared_roi_transform( 2023-09-06T15:44:57.7917348Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:44:57.7919018Z x = self.pooler(features, boxes) 2023-09-06T15:44:57.7920036Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:44:57.7920471Z return self._call_impl(*args, **kwargs) 2023-09-06T15:44:57.7921023Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:44:57.7921615Z return forward_call(*args, **kwargs) 2023-09-06T15:44:57.7922482Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:44:57.7923091Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:44:57.7923701Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:44:57.7924140Z return self._call_impl(*args, **kwargs) 2023-09-06T15:44:57.7924722Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:44:57.7925129Z return forward_call(*args, **kwargs) 2023-09-06T15:44:57.7925674Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:44:57.7926048Z return roi_align( 2023-09-06T15:44:57.7926564Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:44:57.7927082Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:44:57.7927725Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:44:57.7928236Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:44:57.7929252Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:44:57.7929684Z v1 = masked_index(y_low, x_low) 2023-09-06T15:44:57.7930236Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:44:57.7930620Z return input[ 2023-09-06T15:44:57.7931582Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26902.82 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.54 GiB is free. Process 2190647 has 3.84 GiB memory in use. Of the allocated memory 2.99 GiB is allocated by PyTorch, and 335.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:44:57.7932523Z 2023-09-06T15:44:57.7932724Z The above exception was the direct cause of the following exception: 2023-09-06T15:44:57.7932969Z 2023-09-06T15:44:57.7933109Z Traceback (most recent call last): 2023-09-06T15:44:57.7933477Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:44:57.7933823Z ) = runner.load_model( 2023-09-06T15:44:57.7934199Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:44:57.7934602Z self.validate_model(model, example_inputs) 2023-09-06T15:44:57.7935000Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:44:57.7935442Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:44:57.7935822Z NotImplementedError: Eager model failed to run 2023-09-06T15:44:57.7936030Z 2023-09-06T15:44:57.7936194Z WARNING:root:detectron2_fasterrcnn_r_101_c4 failed to load 2023-09-06T15:45:02.4978826Z 2023-09-06T15:45:09.4974589Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:45:09.4974952Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:45:09.4975407Z Eager model failed to run 2023-09-06T15:45:09.4988927Z Traceback (most recent call last): 2023-09-06T15:45:09.4989761Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:45:09.4990518Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:45:09.4991391Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:45:09.4991983Z return mod(*inputs) 2023-09-06T15:45:09.4993465Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:09.4993976Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:09.4994552Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:09.4994964Z return forward_call(*args, **kwargs) 2023-09-06T15:45:09.4995535Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:45:09.4995979Z return self.inference(batched_inputs) 2023-09-06T15:45:09.4996561Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:45:09.4997041Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:45:09.4997658Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:09.4998069Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:09.4998629Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:09.4999034Z return forward_call(*args, **kwargs) 2023-09-06T15:45:09.4999640Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:45:09.5000148Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:45:09.5001183Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:45:09.5001697Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:45:09.5002352Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:09.5002774Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:09.5003329Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:09.5003718Z return forward_call(*args, **kwargs) 2023-09-06T15:45:09.5004375Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:45:09.5004811Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:45:09.5005412Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:09.5005875Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:09.5006437Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:09.5006836Z return forward_call(*args, **kwargs) 2023-09-06T15:45:09.5007389Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:45:09.5007761Z return roi_align( 2023-09-06T15:45:09.5008272Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:45:09.5008794Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:45:09.5009445Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:45:09.5009966Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:45:09.5010927Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:45:09.5011332Z v1 = masked_index(y_low, x_low) 2023-09-06T15:45:09.5011881Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:45:09.5012264Z return input[ 2023-09-06T15:45:09.5013236Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13299.95 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.73 GiB is free. Process 2190754 has 4.65 GiB memory in use. Of the allocated memory 3.82 GiB is allocated by PyTorch, and 283.52 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:45:09.5014337Z 2023-09-06T15:45:09.5014550Z The above exception was the direct cause of the following exception: 2023-09-06T15:45:09.5014796Z 2023-09-06T15:45:09.5014924Z Traceback (most recent call last): 2023-09-06T15:45:09.5015308Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:45:09.5015661Z ) = runner.load_model( 2023-09-06T15:45:09.5016040Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:45:09.5016475Z self.validate_model(model, example_inputs) 2023-09-06T15:45:09.5016889Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:45:09.5017318Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:45:09.5017704Z NotImplementedError: Eager model failed to run 2023-09-06T15:45:09.5017911Z 2023-09-06T15:45:09.5018081Z WARNING:root:detectron2_fasterrcnn_r_101_dc5 failed to load 2023-09-06T15:45:14.1549301Z 2023-09-06T15:45:18.9109046Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:45:18.9110291Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:45:18.9110586Z Eager model failed to run 2023-09-06T15:45:18.9127592Z Traceback (most recent call last): 2023-09-06T15:45:18.9128433Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:45:18.9129153Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:45:18.9130025Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:45:18.9130642Z return mod(*inputs) 2023-09-06T15:45:18.9133131Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:18.9133578Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:18.9134154Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:18.9134584Z return forward_call(*args, **kwargs) 2023-09-06T15:45:18.9135226Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:45:18.9135658Z return self.inference(batched_inputs) 2023-09-06T15:45:18.9136256Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:45:18.9136750Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:45:18.9137380Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:18.9137808Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:18.9138355Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:18.9138771Z return forward_call(*args, **kwargs) 2023-09-06T15:45:18.9139361Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:45:18.9140271Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:45:18.9140908Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:45:18.9141435Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:45:18.9142097Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:18.9142521Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:18.9143139Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:18.9143540Z return forward_call(*args, **kwargs) 2023-09-06T15:45:18.9144101Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:45:18.9144582Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:45:18.9145205Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:18.9145653Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:18.9146218Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:18.9146645Z return forward_call(*args, **kwargs) 2023-09-06T15:45:18.9147212Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:45:18.9147606Z return roi_align( 2023-09-06T15:45:18.9148123Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:45:18.9148659Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:45:18.9149740Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:45:18.9150278Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:45:18.9150975Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:45:18.9151384Z v1 = masked_index(y_low, x_low) 2023-09-06T15:45:18.9151943Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:45:18.9152336Z return input[ 2023-09-06T15:45:18.9153364Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 19183.01 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.81 GiB is free. Process 2190847 has 4.57 GiB memory in use. Of the allocated memory 3.79 GiB is allocated by PyTorch, and 257.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:45:18.9154858Z 2023-09-06T15:45:18.9155066Z The above exception was the direct cause of the following exception: 2023-09-06T15:45:18.9155317Z 2023-09-06T15:45:18.9155444Z Traceback (most recent call last): 2023-09-06T15:45:18.9155811Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:45:18.9156165Z ) = runner.load_model( 2023-09-06T15:45:18.9156547Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:45:18.9156952Z self.validate_model(model, example_inputs) 2023-09-06T15:45:18.9157369Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:45:18.9157807Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:45:18.9158194Z NotImplementedError: Eager model failed to run 2023-09-06T15:45:18.9158583Z 2023-09-06T15:45:18.9158786Z WARNING:root:detectron2_fasterrcnn_r_101_fpn failed to load 2023-09-06T15:45:23.5732842Z 2023-09-06T15:45:27.8769606Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:45:27.8770195Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:45:27.8770633Z Eager model failed to run 2023-09-06T15:45:27.8782198Z Traceback (most recent call last): 2023-09-06T15:45:27.8782680Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:45:27.8783146Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:45:27.8783936Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:45:27.8784539Z return mod(*inputs) 2023-09-06T15:45:27.8785783Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:27.8786545Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:27.8787569Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:27.8788322Z return forward_call(*args, **kwargs) 2023-09-06T15:45:27.8789479Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:45:27.8790268Z return self.inference(batched_inputs) 2023-09-06T15:45:27.8791408Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:45:27.8791898Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:45:27.8792531Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:27.8792939Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:27.8793548Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:27.8794426Z return forward_call(*args, **kwargs) 2023-09-06T15:45:27.8795042Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:45:27.8795479Z box_features = self._shared_roi_transform( 2023-09-06T15:45:27.8796098Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:45:27.8796540Z x = self.pooler(features, boxes) 2023-09-06T15:45:27.8797111Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:27.8797530Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:27.8798068Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:27.8798468Z return forward_call(*args, **kwargs) 2023-09-06T15:45:27.8799023Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:45:27.8799467Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:45:27.8800057Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:27.8800493Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:27.8801049Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:27.8801456Z return forward_call(*args, **kwargs) 2023-09-06T15:45:27.8802001Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:45:27.8802358Z return roi_align( 2023-09-06T15:45:27.8802884Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:45:27.8803461Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:45:27.8804338Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:45:27.8804852Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:45:27.8805509Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:45:27.8805927Z v1 = masked_index(y_low, x_low) 2023-09-06T15:45:27.8806474Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:45:27.8806854Z return input[ 2023-09-06T15:45:27.8807823Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 27492.29 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.78 GiB is free. Process 2190939 has 2.61 GiB memory in use. Of the allocated memory 1.86 GiB is allocated by PyTorch, and 229.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:45:27.8808981Z 2023-09-06T15:45:27.8809181Z The above exception was the direct cause of the following exception: 2023-09-06T15:45:27.8809424Z 2023-09-06T15:45:27.8809550Z Traceback (most recent call last): 2023-09-06T15:45:27.8809915Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:45:27.8810263Z ) = runner.load_model( 2023-09-06T15:45:27.8810645Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:45:27.8811048Z self.validate_model(model, example_inputs) 2023-09-06T15:45:27.8811442Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:45:27.8811887Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:45:27.8812389Z NotImplementedError: Eager model failed to run 2023-09-06T15:45:27.8812611Z 2023-09-06T15:45:27.8812776Z WARNING:root:detectron2_fasterrcnn_r_50_c4 failed to load 2023-09-06T15:45:32.5539458Z 2023-09-06T15:45:39.1030666Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:45:39.1031371Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:45:39.1031649Z Eager model failed to run 2023-09-06T15:45:39.1044691Z Traceback (most recent call last): 2023-09-06T15:45:39.1045436Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:45:39.1046126Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:45:39.1046767Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:45:39.1047386Z return mod(*inputs) 2023-09-06T15:45:39.1048553Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:39.1049223Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:39.1049798Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:39.1050204Z return forward_call(*args, **kwargs) 2023-09-06T15:45:39.1050758Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:45:39.1051192Z return self.inference(batched_inputs) 2023-09-06T15:45:39.1051780Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:45:39.1052255Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:45:39.1052873Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:39.1053280Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:39.1053842Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:39.1054745Z return forward_call(*args, **kwargs) 2023-09-06T15:45:39.1055343Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:45:39.1055797Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:45:39.1056437Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:45:39.1056960Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:45:39.1057606Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:39.1058131Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:39.1058695Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:39.1059116Z return forward_call(*args, **kwargs) 2023-09-06T15:45:39.1059679Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:45:39.1060120Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:45:39.1060715Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:39.1061125Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:39.1061681Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:39.1062083Z return forward_call(*args, **kwargs) 2023-09-06T15:45:39.1062784Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:45:39.1063150Z return roi_align( 2023-09-06T15:45:39.1063881Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:45:39.1064416Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:45:39.1065080Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:45:39.1065602Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:45:39.1066266Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:45:39.1066682Z v1 = masked_index(y_low, x_low) 2023-09-06T15:45:39.1067236Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:45:39.1067621Z return input[ 2023-09-06T15:45:39.1068633Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13521.00 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.88 GiB is free. Process 2191037 has 3.50 GiB memory in use. Of the allocated memory 2.68 GiB is allocated by PyTorch, and 270.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:45:39.1069907Z 2023-09-06T15:45:39.1070112Z The above exception was the direct cause of the following exception: 2023-09-06T15:45:39.1070347Z 2023-09-06T15:45:39.1070479Z Traceback (most recent call last): 2023-09-06T15:45:39.1070864Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:45:39.1071247Z ) = runner.load_model( 2023-09-06T15:45:39.1071627Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:45:39.1072017Z self.validate_model(model, example_inputs) 2023-09-06T15:45:39.1072444Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:45:39.1073078Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:45:39.1073468Z NotImplementedError: Eager model failed to run 2023-09-06T15:45:39.1073679Z 2023-09-06T15:45:39.1073845Z WARNING:root:detectron2_fasterrcnn_r_50_dc5 failed to load 2023-09-06T15:45:43.7477571Z 2023-09-06T15:45:47.8803128Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:45:47.8803496Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:45:47.8803778Z Eager model failed to run 2023-09-06T15:45:47.8821701Z Traceback (most recent call last): 2023-09-06T15:45:47.8822280Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:45:47.8822987Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:45:47.8823823Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:45:47.8824459Z return mod(*inputs) 2023-09-06T15:45:47.8826793Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:47.8827263Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:47.8827832Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:47.8828299Z return forward_call(*args, **kwargs) 2023-09-06T15:45:47.8828878Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:45:47.8829516Z return self.inference(batched_inputs) 2023-09-06T15:45:47.8830096Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:45:47.8830575Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:45:47.8831191Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:47.8832075Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:47.8832629Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:47.8833036Z return forward_call(*args, **kwargs) 2023-09-06T15:45:47.8833622Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:45:47.8834092Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:45:47.8834732Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:45:47.8835232Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:45:47.8835882Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:47.8836302Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:47.8836874Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:47.8837260Z return forward_call(*args, **kwargs) 2023-09-06T15:45:47.8837817Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:45:47.8838343Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:45:47.8838968Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:45:47.8839390Z return self._call_impl(*args, **kwargs) 2023-09-06T15:45:47.8839924Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:45:47.8840324Z return forward_call(*args, **kwargs) 2023-09-06T15:45:47.8840873Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:45:47.8841474Z return roi_align( 2023-09-06T15:45:47.8841997Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:45:47.8842514Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:45:47.8843168Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:45:47.8843685Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:45:47.8844358Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:45:47.8844762Z v1 = masked_index(y_low, x_low) 2023-09-06T15:45:47.8845317Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:45:47.8845742Z return input[ 2023-09-06T15:45:47.8846720Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 21352.77 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.12 GiB is free. Process 2191129 has 3.27 GiB memory in use. Of the allocated memory 2.65 GiB is allocated by PyTorch, and 99.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:45:47.8847556Z 2023-09-06T15:45:47.8847754Z The above exception was the direct cause of the following exception: 2023-09-06T15:45:47.8847998Z 2023-09-06T15:45:47.8848126Z Traceback (most recent call last): 2023-09-06T15:45:47.8848543Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:45:47.8848876Z ) = runner.load_model( 2023-09-06T15:45:47.8849258Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:45:47.8849789Z self.validate_model(model, example_inputs) 2023-09-06T15:45:47.8850217Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:45:47.8850641Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:45:47.8851026Z NotImplementedError: Eager model failed to run 2023-09-06T15:45:47.8851235Z 2023-09-06T15:45:47.8851404Z WARNING:root:detectron2_fasterrcnn_r_50_fpn failed to load 2023-09-06T15:45:52.5029963Z 2023-09-06T15:45:56.7313596Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:45:56.7314006Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:45:56.7402649Z cuda eval detectron2_fcos_r_50_fpn 2023-09-06T15:46:11.2848342Z skipping cudagraphs for unknown reason 2023-09-06T15:46:13.0789264Z skipping cudagraphs due to input mutation 2023-09-06T15:46:58.0796529Z [2023-09-06 15:46:58,077] torch._dynamo.convert_frame: [WARNING] torch._dynamo hit config.cache_size_limit (8) 2023-09-06T15:46:58.0797470Z [2023-09-06 15:46:58,077] torch._dynamo.convert_frame: [WARNING] function: 'forward' (/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/batch_norm.py:318) 2023-09-06T15:46:58.0798952Z [2023-09-06 15:46:58,077] torch._dynamo.convert_frame: [WARNING] to diagnose recompilation issues, set env variable TORCHDYNAMO_REPORT_GUARD_FAILURES=1 and also see https://pytorch.org/docs/master/compile/troubleshooting.html. 2023-09-06T15:47:13.3502477Z skipping cudagraphs due to input mutation 2023-09-06T15:47:13.5422746Z skipping cudagraphs for unknown reason 2023-09-06T15:47:14.6348137Z skipping cudagraphs due to input mutation 2023-09-06T15:47:14.7599089Z skipping cudagraphs for unknown reason 2023-09-06T15:47:15.7983688Z skipping cudagraphs due to input mutation 2023-09-06T15:47:16.8376765Z skipping cudagraphs due to input mutation 2023-09-06T15:48:02.1699364Z skipping cudagraphs due to input mutation 2023-09-06T15:48:02.2082692Z pass 2023-09-06T15:48:04.5999697Z accuracy pass_rate=80.00% 2023-09-06T15:48:04.6001084Z calls_captured gmean=0.00x mean=569.800x 2023-09-06T15:48:04.6003286Z unique_graphs gmean=0.00x mean=7.800x 2023-09-06T15:48:04.6004857Z graph_breaks gmean=0.00x mean=5.067x 2023-09-06T15:48:04.6006991Z unique_graph_breaks gmean=0.00x mean=1.067x 2023-09-06T15:48:05.3594044Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *aotinductor-true* ]] 2023-09-06T15:48:05.3595053Z + [[ inference == \i\n\f\e\r\e\n\c\e ]] 2023-09-06T15:48:05.3596698Z + python benchmarks/dynamo/torchbench.py --accuracy --no-translation-validation --inference --bfloat16 --export-aot-inductor --disable-cudagraphs --device cuda --total-partitions 4 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inductor_aot_inductor_torchbench_bfloat16_inference_cuda_accuracy.csv 2023-09-06T15:48:12.6141759Z 2023-09-06T15:48:13.5346627Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:48:13.5347209Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:48:13.5347506Z Eager model failed to run 2023-09-06T15:48:13.5362366Z Traceback (most recent call last): 2023-09-06T15:48:13.5362962Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:48:13.5363523Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:48:13.5364238Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:48:13.5364714Z return mod(*inputs) 2023-09-06T15:48:13.5366612Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5370744Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5371854Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5372278Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5373351Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 893, in forward 2023-09-06T15:48:13.5373851Z logits = self.model(batch.dense_features, batch.sparse_features) 2023-09-06T15:48:13.5374493Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5374906Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5375460Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5375867Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5376403Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 570, in forward 2023-09-06T15:48:13.5376822Z embedded_dense = self.dense_arch(dense_features) 2023-09-06T15:48:13.5377417Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5377841Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5378420Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5378819Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5379344Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 149, in forward 2023-09-06T15:48:13.5379730Z return self.model(features) 2023-09-06T15:48:13.5380283Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5380704Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5381238Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5381636Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5382168Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 172, in forward 2023-09-06T15:48:13.5382821Z return self._mlp(input) 2023-09-06T15:48:13.5383381Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5383781Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5384339Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5384744Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5385292Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward 2023-09-06T15:48:13.5385660Z input = module(input) 2023-09-06T15:48:13.5386204Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5386622Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5387181Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5387570Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5388101Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 73, in forward 2023-09-06T15:48:13.5388520Z return self._activation_fn(self._linear(input)) 2023-09-06T15:48:13.5389323Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:13.5389747Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:13.5390285Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:13.5390684Z return forward_call(*args, **kwargs) 2023-09-06T15:48:13.5391225Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward 2023-09-06T15:48:13.5391659Z return F.linear(input, self.weight, self.bias) 2023-09-06T15:48:13.5392197Z RuntimeError: mat1 and mat2 must have the same dtype, but got Float and BFloat16 2023-09-06T15:48:13.5392479Z 2023-09-06T15:48:13.5392722Z The above exception was the direct cause of the following exception: 2023-09-06T15:48:13.5392966Z 2023-09-06T15:48:13.5393092Z Traceback (most recent call last): 2023-09-06T15:48:13.5393469Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:48:13.5393846Z ) = runner.load_model( 2023-09-06T15:48:13.5394207Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:48:13.5394623Z self.validate_model(model, example_inputs) 2023-09-06T15:48:13.5395032Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:48:13.5395475Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:48:13.5395845Z NotImplementedError: Eager model failed to run 2023-09-06T15:48:13.5396057Z 2023-09-06T15:48:13.5396192Z WARNING:root:torchrec_dlrm failed to load 2023-09-06T15:48:18.0133566Z 2023-09-06T15:48:21.1079893Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:48:21.1080808Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:48:21.1142959Z cuda eval BERT_pytorch 2023-09-06T15:48:23.1491502Z ERROR:common:Mutating module attribute mask during export. 2023-09-06T15:48:23.1491975Z 2023-09-06T15:48:23.1492128Z from user code: 2023-09-06T15:48:23.1492825Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/bert.py", line 47, in forward 2023-09-06T15:48:23.1493577Z x = transformer.forward(x, mask) 2023-09-06T15:48:23.1494292Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/transformer.py", line 46, in forward 2023-09-06T15:48:23.1494951Z self.lambda_module.set_mask(mask) 2023-09-06T15:48:23.1495660Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/transformer.py", line 17, in set_mask 2023-09-06T15:48:23.1500836Z self.mask = mask 2023-09-06T15:48:23.1501044Z 2023-09-06T15:48:23.1501348Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:48:23.1501988Z Traceback (most recent call last): 2023-09-06T15:48:23.1502485Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:48:23.1503368Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:48:23.1504143Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T15:48:23.1505055Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T15:48:23.1505990Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T15:48:23.1506748Z so_path, exported = torch._export.aot_compile( 2023-09-06T15:48:23.1507768Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 635, in aot_compile 2023-09-06T15:48:23.1508201Z ep = export(f, args, kwargs, constraints) 2023-09-06T15:48:23.1508765Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 307, in export 2023-09-06T15:48:23.1509610Z gm_torch_level, _ = torch._dynamo.export( 2023-09-06T15:48:23.1510194Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1150, in inner 2023-09-06T15:48:23.1510582Z result_traced = opt_f(*args, **kwargs) 2023-09-06T15:48:23.1511171Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:23.1511600Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:23.1512163Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:23.1512567Z return forward_call(*args, **kwargs) 2023-09-06T15:48:23.1513583Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:48:23.1513993Z return fn(*args, **kwargs) 2023-09-06T15:48:23.1514619Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:23.1515046Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:23.1515606Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:23.1516013Z return forward_call(*args, **kwargs) 2023-09-06T15:48:23.1516556Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T15:48:23.1517005Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T15:48:23.1517580Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T15:48:23.1517964Z return fn(*args, **kwargs) 2023-09-06T15:48:23.1518539Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T15:48:23.1518943Z return _compile( 2023-09-06T15:48:23.1519476Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T15:48:23.1519946Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T15:48:23.1520526Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:48:23.1520923Z r = func(*args, **kwargs) 2023-09-06T15:48:23.1521484Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T15:48:23.1521930Z out_code = transform_code_object(code, transform) 2023-09-06T15:48:23.1522581Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T15:48:23.1523284Z transformations(instructions, code_options) 2023-09-06T15:48:23.1523870Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T15:48:23.1524251Z tracer.run() 2023-09-06T15:48:23.1524768Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T15:48:23.1525125Z super().run() 2023-09-06T15:48:23.1525643Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:23.1526013Z and self.step() 2023-09-06T15:48:23.1526529Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:23.1526930Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:23.1527473Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:48:23.1527882Z return inner_fn(self, inst) 2023-09-06T15:48:23.1528453Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T15:48:23.1528860Z self.call_function(fn, args, {}) 2023-09-06T15:48:23.1529414Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:48:23.1529859Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:48:23.1530459Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T15:48:23.1530898Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:23.1531493Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:48:23.1531921Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:23.1532632Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:48:23.1533117Z return tx.inline_user_function_return( 2023-09-06T15:48:23.1533744Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:48:23.1534284Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:48:23.1534954Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:48:23.1535401Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:48:23.1536011Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:48:23.1536399Z tracer.run() 2023-09-06T15:48:23.1536911Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:23.1537301Z and self.step() 2023-09-06T15:48:23.1537829Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:23.1538249Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:23.1538792Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:48:23.1539191Z return inner_fn(self, inst) 2023-09-06T15:48:23.1539752Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T15:48:23.1540168Z self.call_function(fn, args, {}) 2023-09-06T15:48:23.1540737Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:48:23.1541159Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:48:23.1541766Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T15:48:23.1542400Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:23.1543046Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:48:23.1543476Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:23.1544072Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:48:23.1544504Z return tx.inline_user_function_return( 2023-09-06T15:48:23.1545128Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:48:23.1545669Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:48:23.1546320Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:48:23.1546793Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:48:23.1547406Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:48:23.1547796Z tracer.run() 2023-09-06T15:48:23.1548300Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:23.1548677Z and self.step() 2023-09-06T15:48:23.1549382Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:23.1549793Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:23.1550374Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1207, in STORE_ATTR 2023-09-06T15:48:23.1550730Z assert ( 2023-09-06T15:48:23.1551088Z AssertionError: Mutating module attribute mask during export. 2023-09-06T15:48:23.1551453Z 2023-09-06T15:48:23.1551885Z from user code: 2023-09-06T15:48:23.1552760Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/bert.py", line 47, in forward 2023-09-06T15:48:23.1553284Z x = transformer.forward(x, mask) 2023-09-06T15:48:23.1553767Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/transformer.py", line 46, in forward 2023-09-06T15:48:23.1554211Z self.lambda_module.set_mask(mask) 2023-09-06T15:48:23.1554689Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/transformer.py", line 17, in set_mask 2023-09-06T15:48:23.1555113Z self.mask = mask 2023-09-06T15:48:23.1555254Z 2023-09-06T15:48:23.1555448Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:48:23.1555687Z 2023-09-06T15:48:23.1555887Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:48:23.1589264Z fail_to_run 2023-09-06T15:48:27.8168611Z 2023-09-06T15:48:31.5698205Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:48:31.5698763Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:48:31.5753294Z cuda eval Background_Matting 2023-09-06T15:48:31.5757685Z pass_due_to_skip 2023-09-06T15:48:36.1889896Z 2023-09-06T15:48:45.4576982Z loading model: 0it [00:00, ?it/s]WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:48:47.1947947Z 2023-09-06T15:48:47.1949286Z loading model: 0it [00:11, ?it/s] 2023-09-06T15:48:47.1949792Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:48:47.1950198Z cuda eval DALLE2_pytorch 2023-09-06T15:48:47.4415463Z WARNING:common:fp64 golden ref were not generated for DALLE2_pytorch. Setting accuracy check to cosine 2023-09-06T15:48:47.8489164Z WARNING:common:Model DALLE2_pytorch does not support bfloat16, running with amp instead 2023-09-06T15:48:52.1996341Z ERROR:common:call_method NNModuleVariable() eval [] {} 2023-09-06T15:48:52.1996773Z 2023-09-06T15:48:52.1996927Z from user code: 2023-09-06T15:48:52.1999982Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/external_utils.py", line 17, in inner 2023-09-06T15:48:52.2000658Z return fn(*args, **kwargs) 2023-09-06T15:48:52.2001597Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:52.2002345Z return forward_call(*args, **kwargs) 2023-09-06T15:48:52.2006750Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:48:52.2007333Z return func(*args, **kwargs) 2023-09-06T15:48:52.2008464Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:48:52.2009207Z model.eval() 2023-09-06T15:48:52.2009454Z 2023-09-06T15:48:52.2009671Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:48:52.2010047Z Traceback (most recent call last): 2023-09-06T15:48:52.2010433Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:48:52.2010873Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:48:52.2011315Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T15:48:52.2011799Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T15:48:52.2012262Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T15:48:52.2012638Z so_path, exported = torch._export.aot_compile( 2023-09-06T15:48:52.2013220Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 635, in aot_compile 2023-09-06T15:48:52.2013635Z ep = export(f, args, kwargs, constraints) 2023-09-06T15:48:52.2014537Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 307, in export 2023-09-06T15:48:52.2014952Z gm_torch_level, _ = torch._dynamo.export( 2023-09-06T15:48:52.2015506Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1150, in inner 2023-09-06T15:48:52.2015911Z result_traced = opt_f(*args, **kwargs) 2023-09-06T15:48:52.2016484Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:48:52.2016902Z return self._call_impl(*args, **kwargs) 2023-09-06T15:48:52.2017438Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:52.2017840Z return forward_call(*args, **kwargs) 2023-09-06T15:48:52.2018434Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:48:52.2018811Z return fn(*args, **kwargs) 2023-09-06T15:48:52.2019350Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T15:48:52.2019795Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T15:48:52.2020366Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T15:48:52.2020741Z return fn(*args, **kwargs) 2023-09-06T15:48:52.2021309Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T15:48:52.2021690Z return _compile( 2023-09-06T15:48:52.2022212Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T15:48:52.2022671Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T15:48:52.2023260Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:48:52.2023825Z r = func(*args, **kwargs) 2023-09-06T15:48:52.2024382Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T15:48:52.2024819Z out_code = transform_code_object(code, transform) 2023-09-06T15:48:52.2025463Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T15:48:52.2025936Z transformations(instructions, code_options) 2023-09-06T15:48:52.2026497Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T15:48:52.2026867Z tracer.run() 2023-09-06T15:48:52.2027387Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T15:48:52.2027752Z super().run() 2023-09-06T15:48:52.2028293Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:52.2028670Z and self.step() 2023-09-06T15:48:52.2029389Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:52.2029790Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:52.2030336Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:48:52.2030734Z return inner_fn(self, inst) 2023-09-06T15:48:52.2031312Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1159, in CALL_FUNCTION_EX 2023-09-06T15:48:52.2031787Z self.call_function(fn, argsvars.items, kwargsvars.items) 2023-09-06T15:48:52.2032402Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:48:52.2032828Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:48:52.2033571Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 336, in call_function 2023-09-06T15:48:52.2034003Z return tx.inline_user_function_return( 2023-09-06T15:48:52.2034625Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:48:52.2035153Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:48:52.2035812Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:48:52.2036259Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:48:52.2036857Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:48:52.2037232Z tracer.run() 2023-09-06T15:48:52.2037732Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:52.2038109Z and self.step() 2023-09-06T15:48:52.2038678Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:52.2039075Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:52.2039614Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:48:52.2040012Z return inner_fn(self, inst) 2023-09-06T15:48:52.2040580Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1159, in CALL_FUNCTION_EX 2023-09-06T15:48:52.2041059Z self.call_function(fn, argsvars.items, kwargsvars.items) 2023-09-06T15:48:52.2041667Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:48:52.2042093Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:48:52.2042692Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T15:48:52.2043306Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:52.2043905Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:48:52.2044340Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:52.2044916Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:48:52.2045339Z return tx.inline_user_function_return( 2023-09-06T15:48:52.2045948Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:48:52.2046483Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:48:52.2047137Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:48:52.2047587Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:48:52.2048184Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:48:52.2048607Z tracer.run() 2023-09-06T15:48:52.2049128Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:52.2049485Z and self.step() 2023-09-06T15:48:52.2050006Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:52.2050410Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:52.2050970Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:48:52.2051349Z return inner_fn(self, inst) 2023-09-06T15:48:52.2052037Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1159, in CALL_FUNCTION_EX 2023-09-06T15:48:52.2052522Z self.call_function(fn, argsvars.items, kwargsvars.items) 2023-09-06T15:48:52.2053141Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:48:52.2053580Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:48:52.2054162Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:48:52.2054601Z return super().call_function(tx, args, kwargs) 2023-09-06T15:48:52.2055199Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:48:52.2055672Z return tx.inline_user_function_return( 2023-09-06T15:48:52.2056280Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:48:52.2056811Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:48:52.2057475Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:48:52.2057924Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:48:52.2058565Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:48:52.2058942Z tracer.run() 2023-09-06T15:48:52.2059442Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:48:52.2059821Z and self.step() 2023-09-06T15:48:52.2060348Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:48:52.2060747Z getattr(self, inst.opname)(inst) 2023-09-06T15:48:52.2061294Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:48:52.2061795Z return inner_fn(self, inst) 2023-09-06T15:48:52.2062365Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T15:48:52.2062985Z self.call_function(fn, args, {}) 2023-09-06T15:48:52.2063544Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:48:52.2064017Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:48:52.2064624Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 304, in call_function 2023-09-06T15:48:52.2065038Z return self.obj.call_method( 2023-09-06T15:48:52.2065599Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 601, in call_method 2023-09-06T15:48:52.2066026Z return super().call_method(tx, name, args, kwargs) 2023-09-06T15:48:52.2066625Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/base.py", line 329, in call_method 2023-09-06T15:48:52.2067090Z raise unimplemented(f"call_method {self} {name} {args} {kwargs}") 2023-09-06T15:48:52.2067684Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/exc.py", line 176, in unimplemented 2023-09-06T15:48:52.2068058Z raise Unsupported(msg) 2023-09-06T15:48:52.2068518Z torch._dynamo.exc.Unsupported: call_method NNModuleVariable() eval [] {} 2023-09-06T15:48:52.2068777Z 2023-09-06T15:48:52.2068875Z from user code: 2023-09-06T15:48:52.2069632Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/external_utils.py", line 17, in inner 2023-09-06T15:48:52.2070032Z return fn(*args, **kwargs) 2023-09-06T15:48:52.2070556Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:48:52.2071141Z return forward_call(*args, **kwargs) 2023-09-06T15:48:52.2071722Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T15:48:52.2072120Z return func(*args, **kwargs) 2023-09-06T15:48:52.2072648Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T15:48:52.2073021Z model.eval() 2023-09-06T15:48:52.2073172Z 2023-09-06T15:48:52.2073370Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:48:52.2073608Z 2023-09-06T15:48:52.2073805Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:48:52.2327346Z fail_to_run 2023-09-06T15:48:57.3426259Z 2023-09-06T15:49:01.0970960Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:49:01.0971305Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:49:01.0992573Z cuda eval LearningToPaint 2023-09-06T15:49:54.6251489Z pass 2023-09-06T15:49:59.8904981Z 2023-09-06T15:50:02.3179911Z loading model: 0it [00:00, ?it/s]WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:50:02.8422385Z 2023-09-06T15:50:02.8423029Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:50:02.8427159Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:50:02.8427944Z cuda eval Super_SloMo 2023-09-06T15:50:02.9447641Z WARNING:common:Model Super_SloMo does not support bfloat16, running with amp instead 2023-09-06T15:51:26.0528080Z pass 2023-09-06T15:51:31.9795585Z 2023-09-06T15:51:33.5078765Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:51:33.5079299Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:51:33.5082580Z cuda eval alexnet 2023-09-06T15:51:56.8778787Z pass 2023-09-06T15:52:01.8244708Z 2023-09-06T15:52:08.6779232Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:52:08.6779780Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:52:08.6842337Z cuda eval attention_is_all_you_need_pytorch 2023-09-06T15:53:14.5047114Z pass 2023-09-06T15:53:20.0123142Z 2023-09-06T15:53:22.8024098Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:53:22.8024800Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:53:22.8028256Z cuda eval basic_gnn_edgecnn 2023-09-06T15:53:23.3609070Z [2023-09-06 15:53:23,359] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:53:43.2849278Z pass 2023-09-06T15:53:48.2361500Z 2023-09-06T15:53:51.1410117Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:53:51.1410644Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:53:51.1413690Z cuda eval basic_gnn_gcn 2023-09-06T15:53:52.0258009Z [2023-09-06 15:53:52,024] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:53:54.3965782Z ERROR:common:aten.nonzero.default 2023-09-06T15:53:54.3966694Z 2023-09-06T15:53:54.3967047Z While executing %index : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%slice_1, [None, %ne]), kwargs = {}) 2023-09-06T15:53:54.3970021Z Original traceback: 2023-09-06T15:53:54.3973241Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch_geometric/nn/models/basic_gnn.py", line 222, in forward 2023-09-06T15:53:54.3973755Z x = self.convs[i](x, edge_index, edge_weight=edge_weight) 2023-09-06T15:53:54.3974601Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:53:54.3975022Z return forward_call(*args, **kwargs) 2023-09-06T15:53:54.3975793Z File "/tmp/jenkins_pyg/tmpjvozk9n_.py", line 221, in forward 2023-09-06T15:53:54.3976174Z edge_index, edge_weight = gcn_norm( # yapf: disable 2023-09-06T15:53:54.3976798Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch_geometric/nn/conv/gcn_conv.py", line 91, in gcn_norm 2023-09-06T15:53:54.3977245Z edge_index, edge_weight = add_remaining_self_loops( 2023-09-06T15:53:54.3978650Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch_geometric/utils/loop.py", line 370, in add_remaining_self_loops 2023-09-06T15:53:54.3979222Z edge_index = torch.cat([edge_index[:, mask], loop_index], dim=1) 2023-09-06T15:53:54.3979580Z Traceback (most recent call last): 2023-09-06T15:53:54.3980125Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:53:54.3980899Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:53:54.3981781Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T15:53:54.3982300Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T15:53:54.3982785Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T15:53:54.3983239Z so_path, exported = torch._export.aot_compile( 2023-09-06T15:53:54.3983890Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 645, in aot_compile 2023-09-06T15:53:54.3984368Z so_path = torch._inductor.aot_compile(ep.graph_module, list(all_args), options) 2023-09-06T15:53:54.3984993Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/__init__.py", line 48, in aot_compile 2023-09-06T15:53:54.3985430Z result = compile_fx_aot( 2023-09-06T15:53:54.3986299Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 874, in compile_fx_aot 2023-09-06T15:53:54.3986939Z return compile_fx( 2023-09-06T15:53:54.3988370Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 975, in compile_fx 2023-09-06T15:53:54.3989001Z return compile_fx( 2023-09-06T15:53:54.3990224Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 995, in compile_fx 2023-09-06T15:53:54.3990800Z return compile_fx( 2023-09-06T15:53:54.3992302Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T15:53:54.3993514Z return aot_autograd( 2023-09-06T15:53:54.3995050Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T15:53:54.3996318Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T15:53:54.3998058Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T15:53:54.3999280Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T15:53:54.4000895Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:53:54.4001942Z r = func(*args, **kwargs) 2023-09-06T15:53:54.4003577Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3379, in create_aot_dispatcher_function 2023-09-06T15:53:54.4004356Z fw_metadata = run_functionalized_fw_and_collect_metadata( 2023-09-06T15:53:54.4005471Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 757, in inner 2023-09-06T15:53:54.4006243Z flat_f_outs = f(*flat_f_args) 2023-09-06T15:53:54.4007330Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3496, in functional_call 2023-09-06T15:53:54.4007970Z out = Interpreter(mod).run(*args[params_len:], **kwargs) 2023-09-06T15:53:54.4008873Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/interpreter.py", line 138, in run 2023-09-06T15:53:54.4009283Z self.env[node] = self.run_node(node) 2023-09-06T15:53:54.4009836Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/interpreter.py", line 195, in run_node 2023-09-06T15:53:54.4010273Z return getattr(self, n.op)(n.target, args, kwargs) 2023-09-06T15:53:54.4010946Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/interpreter.py", line 267, in call_function 2023-09-06T15:53:54.4011674Z return target(*args, **kwargs) 2023-09-06T15:53:54.4012571Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 448, in __call__ 2023-09-06T15:53:54.4013238Z return self._op(*args, **kwargs or {}) 2023-09-06T15:53:54.4014049Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T15:53:54.4014564Z return fn(*args, **kwargs) 2023-09-06T15:53:54.4015409Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T15:53:54.4016072Z return self.dispatch(func, types, args, kwargs) 2023-09-06T15:53:54.4016924Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1532, in dispatch 2023-09-06T15:53:54.4017544Z op_impl_out = op_impl(self, func, *args, **kwargs) 2023-09-06T15:53:54.4018400Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 634, in index_tensor 2023-09-06T15:53:54.4019016Z out = meta_index_Tensor(*args, **kwargs) 2023-09-06T15:53:54.4019850Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_meta_registrations.py", line 2668, in meta_index_Tensor 2023-09-06T15:53:54.4020434Z nonzero = index.nonzero() 2023-09-06T15:53:54.4021174Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T15:53:54.4021709Z return fn(*args, **kwargs) 2023-09-06T15:53:54.4023056Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T15:53:54.4023700Z return self.dispatch(func, types, args, kwargs) 2023-09-06T15:53:54.4024547Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1532, in dispatch 2023-09-06T15:53:54.4025163Z op_impl_out = op_impl(self, func, *args, **kwargs) 2023-09-06T15:53:54.4026052Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 556, in nonzero 2023-09-06T15:53:54.4026689Z raise DynamicOutputShapeException(func) 2023-09-06T15:53:54.4027339Z torch._subclasses.fake_tensor.DynamicOutputShapeException: aten.nonzero.default 2023-09-06T15:53:54.4027756Z 2023-09-06T15:53:54.4028169Z While executing %index : [num_users=2] = call_function[target=torch.ops.aten.index.Tensor](args = (%slice_1, [None, %ne]), kwargs = {}) 2023-09-06T15:53:54.4028757Z Original traceback: 2023-09-06T15:53:54.4029769Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch_geometric/nn/models/basic_gnn.py", line 222, in forward 2023-09-06T15:53:54.4030410Z x = self.convs[i](x, edge_index, edge_weight=edge_weight) 2023-09-06T15:53:54.4031213Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:53:54.4031769Z return forward_call(*args, **kwargs) 2023-09-06T15:53:54.4032249Z File "/tmp/jenkins_pyg/tmpjvozk9n_.py", line 221, in forward 2023-09-06T15:53:54.4032772Z edge_index, edge_weight = gcn_norm( # yapf: disable 2023-09-06T15:53:54.4033682Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch_geometric/nn/conv/gcn_conv.py", line 91, in gcn_norm 2023-09-06T15:53:54.4034282Z edge_index, edge_weight = add_remaining_self_loops( 2023-09-06T15:53:54.4035164Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch_geometric/utils/loop.py", line 370, in add_remaining_self_loops 2023-09-06T15:53:54.4036136Z edge_index = torch.cat([edge_index[:, mask], loop_index], dim=1) 2023-09-06T15:53:54.4036472Z 2023-09-06T15:53:54.4036757Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:53:54.4037216Z fail_to_run 2023-09-06T15:53:59.2278089Z 2023-09-06T15:54:02.2498736Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:54:02.2499102Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:54:02.2508890Z cuda eval basic_gnn_gin 2023-09-06T15:54:02.9940504Z [2023-09-06 15:54:02,993] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:54:22.8313614Z pass 2023-09-06T15:54:27.7958545Z 2023-09-06T15:54:30.7584072Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:54:30.7584476Z loading model: 0it [00:02, ?it/s] 2023-09-06T15:54:30.7587437Z cuda eval basic_gnn_sage 2023-09-06T15:54:31.4949614Z [2023-09-06 15:54:31,493] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T15:54:51.6116397Z pass 2023-09-06T15:54:56.5944322Z 2023-09-06T15:55:01.9994780Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:55:01.9995138Z loading model: 0it [00:05, ?it/s] 2023-09-06T15:55:02.0102597Z cuda eval cm3leon_generate 2023-09-06T15:55:23.1853776Z ERROR:common:inline in skipfiles: _SpecialForm.__getitem__ | inner /opt/conda/envs/py_3.10/lib/python3.10/typing.py 2023-09-06T15:55:23.1854190Z 2023-09-06T15:55:23.1854340Z from user code: 2023-09-06T15:55:23.1857396Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/cm3leon_generate/model.py", line 1116, in forward 2023-09-06T15:55:23.1858352Z Dict[str, Dict[str, Optional[Tensor]]], {} 2023-09-06T15:55:23.1858558Z 2023-09-06T15:55:23.1858759Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:55:23.1859132Z Traceback (most recent call last): 2023-09-06T15:55:23.1859627Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:55:23.1860076Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:55:23.1860513Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T15:55:23.1861002Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T15:55:23.1864918Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T15:55:23.1865514Z so_path, exported = torch._export.aot_compile( 2023-09-06T15:55:23.1868218Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 635, in aot_compile 2023-09-06T15:55:23.1869043Z ep = export(f, args, kwargs, constraints) 2023-09-06T15:55:23.1870369Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 307, in export 2023-09-06T15:55:23.1870980Z gm_torch_level, _ = torch._dynamo.export( 2023-09-06T15:55:23.1871535Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1150, in inner 2023-09-06T15:55:23.1871948Z result_traced = opt_f(*args, **kwargs) 2023-09-06T15:55:23.1872527Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:55:23.1872953Z return self._call_impl(*args, **kwargs) 2023-09-06T15:55:23.1873491Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:55:23.1873895Z return forward_call(*args, **kwargs) 2023-09-06T15:55:23.1874806Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:55:23.1875199Z return fn(*args, **kwargs) 2023-09-06T15:55:23.1875753Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:55:23.1876177Z return self._call_impl(*args, **kwargs) 2023-09-06T15:55:23.1876728Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:55:23.1877136Z return forward_call(*args, **kwargs) 2023-09-06T15:55:23.1877772Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T15:55:23.1878204Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T15:55:23.1878784Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T15:55:23.1879224Z return fn(*args, **kwargs) 2023-09-06T15:55:23.1879798Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T15:55:23.1880207Z return _compile( 2023-09-06T15:55:23.1880721Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T15:55:23.1881202Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T15:55:23.1881802Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:55:23.1882184Z r = func(*args, **kwargs) 2023-09-06T15:55:23.1882712Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T15:55:23.1883156Z out_code = transform_code_object(code, transform) 2023-09-06T15:55:23.1883807Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T15:55:23.1884563Z transformations(instructions, code_options) 2023-09-06T15:55:23.1885145Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T15:55:23.1885533Z tracer.run() 2023-09-06T15:55:23.1886048Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T15:55:23.1886420Z super().run() 2023-09-06T15:55:23.1886937Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:55:23.1887296Z and self.step() 2023-09-06T15:55:23.1887870Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:55:23.1888267Z getattr(self, inst.opname)(inst) 2023-09-06T15:55:23.1888830Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:55:23.1889231Z return inner_fn(self, inst) 2023-09-06T15:55:23.1889756Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 168, in impl 2023-09-06T15:55:23.1890206Z self.push(fn_var.call_function(self, self.popn(nargs), {})) 2023-09-06T15:55:23.1890826Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 618, in call_function 2023-09-06T15:55:23.1891255Z result = handler(tx, *args, **kwargs) 2023-09-06T15:55:23.1891817Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 950, in call_getitem 2023-09-06T15:55:23.1892278Z return args[0].call_method(tx, "__getitem__", args[1:], kwargs) 2023-09-06T15:55:23.1892887Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/user_defined.py", line 302, in call_method 2023-09-06T15:55:23.1893473Z ).call_function(tx, args, kwargs) 2023-09-06T15:55:23.1894062Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T15:55:23.1894487Z return super().call_function(tx, args, kwargs) 2023-09-06T15:55:23.1895083Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:55:23.1895528Z return super().call_function(tx, args, kwargs) 2023-09-06T15:55:23.1896132Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:55:23.1896547Z return tx.inline_user_function_return( 2023-09-06T15:55:23.1897160Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:55:23.1897738Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:55:23.1898413Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:55:23.1898865Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:55:23.1899445Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2236, in inline_call_ 2023-09-06T15:55:23.1899933Z InliningInstructionTranslator.check_inlineable(func) 2023-09-06T15:55:23.1900587Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2217, in check_inlineable 2023-09-06T15:55:23.1900976Z unimplemented( 2023-09-06T15:55:23.1901494Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/exc.py", line 176, in unimplemented 2023-09-06T15:55:23.1901866Z raise Unsupported(msg) 2023-09-06T15:55:23.1902329Z torch._dynamo.exc.Unsupported: inline in skipfiles: _SpecialForm.__getitem__ | inner /opt/conda/envs/py_3.10/lib/python3.10/typing.py 2023-09-06T15:55:23.1902773Z 2023-09-06T15:55:23.1902877Z from user code: 2023-09-06T15:55:23.1903290Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/cm3leon_generate/model.py", line 1116, in forward 2023-09-06T15:55:23.1903713Z Dict[str, Dict[str, Optional[Tensor]]], {} 2023-09-06T15:55:23.1903906Z 2023-09-06T15:55:23.1904105Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:55:23.1904344Z 2023-09-06T15:55:23.1904545Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:55:23.1918984Z fail_to_run 2023-09-06T15:55:27.9473295Z 2023-09-06T15:55:28.7971817Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:55:28.7972411Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:55:28.7975786Z cuda eval dcgan 2023-09-06T15:55:49.6359793Z pass 2023-09-06T15:55:54.4559417Z 2023-09-06T15:55:57.7816469Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:55:57.7816857Z loading model: 0it [00:03, ?it/s] 2023-09-06T15:55:57.7817185Z Eager model failed to run 2023-09-06T15:55:57.7831710Z Traceback (most recent call last): 2023-09-06T15:55:57.7832470Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:55:57.7832889Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:55:57.7833316Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:55:57.7833742Z return mod(*inputs) 2023-09-06T15:55:57.7836856Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:55:57.7837908Z return self._call_impl(*args, **kwargs) 2023-09-06T15:55:57.7839216Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:55:57.7840298Z return forward_call(*args, **kwargs) 2023-09-06T15:55:57.7841269Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/__init__.py", line 31, in forward 2023-09-06T15:55:57.7841703Z return sources, self.model(mix) 2023-09-06T15:55:57.7842489Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:55:57.7843009Z return self._call_impl(*args, **kwargs) 2023-09-06T15:55:57.7843575Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:55:57.7843983Z return forward_call(*args, **kwargs) 2023-09-06T15:55:57.7844405Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 209, in forward 2023-09-06T15:55:57.7844790Z x = self.lstm(x) 2023-09-06T15:55:57.7845334Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:55:57.7845756Z return self._call_impl(*args, **kwargs) 2023-09-06T15:55:57.7846304Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:55:57.7846706Z return forward_call(*args, **kwargs) 2023-09-06T15:55:57.7847137Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs/demucs/model.py", line 27, in forward 2023-09-06T15:55:57.7847574Z x = self.lstm(x)[0] 2023-09-06T15:55:57.7848164Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:55:57.7848583Z return self._call_impl(*args, **kwargs) 2023-09-06T15:55:57.7849139Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:55:57.7849538Z return forward_call(*args, **kwargs) 2023-09-06T15:55:57.7850071Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/rnn.py", line 879, in forward 2023-09-06T15:55:57.7850530Z result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers, 2023-09-06T15:55:57.7851280Z RuntimeError: "_thnn_fused_lstm_cell_cuda" not implemented for 'BFloat16' 2023-09-06T15:55:57.7851527Z 2023-09-06T15:55:57.7851723Z The above exception was the direct cause of the following exception: 2023-09-06T15:55:57.7851965Z 2023-09-06T15:55:57.7852092Z Traceback (most recent call last): 2023-09-06T15:55:57.7852468Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:55:57.7852803Z ) = runner.load_model( 2023-09-06T15:55:57.7853233Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:55:57.7853635Z self.validate_model(model, example_inputs) 2023-09-06T15:55:57.7854080Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:55:57.7854510Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:55:57.7854890Z NotImplementedError: Eager model failed to run 2023-09-06T15:55:57.7855105Z 2023-09-06T15:55:57.7855230Z WARNING:root:demucs failed to load 2023-09-06T15:56:02.2692060Z 2023-09-06T15:56:04.1807901Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:56:04.1808268Z loading model: 0it [00:01, ?it/s] 2023-09-06T15:56:04.1954128Z cuda eval densenet121 2023-09-06T15:58:29.9260235Z pass 2023-09-06T15:58:35.9461155Z 2023-09-06T15:58:40.7426894Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:58:40.7427229Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:58:40.7427506Z Eager model failed to run 2023-09-06T15:58:40.7439762Z Traceback (most recent call last): 2023-09-06T15:58:40.7440452Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:58:40.7440979Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:58:40.7441681Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:58:40.7444635Z return mod(*inputs) 2023-09-06T15:58:40.7447142Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:40.7447624Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:40.7448314Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:40.7448875Z return forward_call(*args, **kwargs) 2023-09-06T15:58:40.7449459Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:58:40.7449897Z return self.inference(batched_inputs) 2023-09-06T15:58:40.7450489Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:58:40.7451108Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:58:40.7452196Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:40.7452629Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:40.7453200Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:40.7453600Z return forward_call(*args, **kwargs) 2023-09-06T15:58:40.7454265Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:58:40.7454710Z box_features = self._shared_roi_transform( 2023-09-06T15:58:40.7455326Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:58:40.7455841Z x = self.pooler(features, boxes) 2023-09-06T15:58:40.7456771Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:40.7457440Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:40.7458487Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:40.7459233Z return forward_call(*args, **kwargs) 2023-09-06T15:58:40.7459809Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:58:40.7460252Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:58:40.7460849Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:40.7461258Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:40.7461845Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:40.7462252Z return forward_call(*args, **kwargs) 2023-09-06T15:58:40.7463004Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:58:40.7463386Z return roi_align( 2023-09-06T15:58:40.7463975Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:58:40.7464507Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:58:40.7465155Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:58:40.7465673Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:58:40.7466343Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:58:40.7466745Z v1 = masked_index(y_low, x_low) 2023-09-06T15:58:40.7467298Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:58:40.7467685Z return input[ 2023-09-06T15:58:40.7468807Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 26902.82 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.54 GiB is free. Process 2197344 has 3.84 GiB memory in use. Of the allocated memory 2.99 GiB is allocated by PyTorch, and 335.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:58:40.7470139Z 2023-09-06T15:58:40.7470351Z The above exception was the direct cause of the following exception: 2023-09-06T15:58:40.7470597Z 2023-09-06T15:58:40.7470724Z Traceback (most recent call last): 2023-09-06T15:58:40.7471090Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:58:40.7471445Z ) = runner.load_model( 2023-09-06T15:58:40.7471826Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:58:40.7472229Z self.validate_model(model, example_inputs) 2023-09-06T15:58:40.7472662Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:58:40.7473091Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:58:40.7473474Z NotImplementedError: Eager model failed to run 2023-09-06T15:58:40.7473684Z 2023-09-06T15:58:40.7473897Z WARNING:root:detectron2_fasterrcnn_r_101_c4 failed to load 2023-09-06T15:58:45.4244627Z 2023-09-06T15:58:52.3659505Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:58:52.3660197Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:58:52.3660478Z Eager model failed to run 2023-09-06T15:58:52.3673373Z Traceback (most recent call last): 2023-09-06T15:58:52.3674125Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:58:52.3674856Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:58:52.3675588Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:58:52.3676975Z return mod(*inputs) 2023-09-06T15:58:52.3679539Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:52.3679992Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:52.3680561Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:52.3680970Z return forward_call(*args, **kwargs) 2023-09-06T15:58:52.3681551Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:58:52.3681965Z return self.inference(batched_inputs) 2023-09-06T15:58:52.3682553Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:58:52.3683029Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:58:52.3683741Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:52.3684175Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:52.3684714Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:52.3685120Z return forward_call(*args, **kwargs) 2023-09-06T15:58:52.3685700Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:58:52.3686205Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:58:52.3686846Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:58:52.3687347Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:58:52.3687992Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:52.3688696Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:52.3689259Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:52.3689660Z return forward_call(*args, **kwargs) 2023-09-06T15:58:52.3690195Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:58:52.3690630Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:58:52.3691224Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:58:52.3691648Z return self._call_impl(*args, **kwargs) 2023-09-06T15:58:52.3692188Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:58:52.3692586Z return forward_call(*args, **kwargs) 2023-09-06T15:58:52.3693182Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:58:52.3693566Z return roi_align( 2023-09-06T15:58:52.3694081Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:58:52.3694601Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:58:52.3695251Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:58:52.3695766Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:58:52.3696444Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:58:52.3696854Z v1 = masked_index(y_low, x_low) 2023-09-06T15:58:52.3697416Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:58:52.3697941Z return input[ 2023-09-06T15:58:52.3698905Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13299.95 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.73 GiB is free. Process 2197451 has 4.65 GiB memory in use. Of the allocated memory 3.82 GiB is allocated by PyTorch, and 283.52 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:58:52.3699738Z 2023-09-06T15:58:52.3699939Z The above exception was the direct cause of the following exception: 2023-09-06T15:58:52.3700182Z 2023-09-06T15:58:52.3700312Z Traceback (most recent call last): 2023-09-06T15:58:52.3700696Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:58:52.3701032Z ) = runner.load_model( 2023-09-06T15:58:52.3701422Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:58:52.3701826Z self.validate_model(model, example_inputs) 2023-09-06T15:58:52.3702246Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:58:52.3702673Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:58:52.3703057Z NotImplementedError: Eager model failed to run 2023-09-06T15:58:52.3703301Z 2023-09-06T15:58:52.3703472Z WARNING:root:detectron2_fasterrcnn_r_101_dc5 failed to load 2023-09-06T15:58:57.0627696Z 2023-09-06T15:59:01.7634934Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:01.7635642Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:59:01.7635901Z Eager model failed to run 2023-09-06T15:59:01.7651800Z Traceback (most recent call last): 2023-09-06T15:59:01.7652470Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:59:01.7653440Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:59:01.7654585Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:59:01.7654964Z return mod(*inputs) 2023-09-06T15:59:01.7655780Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:01.7656213Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:01.7656777Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:01.7657168Z return forward_call(*args, **kwargs) 2023-09-06T15:59:01.7657744Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:59:01.7658165Z return self.inference(batched_inputs) 2023-09-06T15:59:01.7658748Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:59:01.7659224Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:59:01.7659840Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:01.7660265Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:01.7660822Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:01.7661222Z return forward_call(*args, **kwargs) 2023-09-06T15:59:01.7661793Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:59:01.7662257Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:59:01.7663086Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:59:01.7663631Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:59:01.7664531Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:01.7664942Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:01.7665504Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:01.7665909Z return forward_call(*args, **kwargs) 2023-09-06T15:59:01.7666461Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:59:01.7666910Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:59:01.7667532Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:01.7667947Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:01.7668503Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:01.7668902Z return forward_call(*args, **kwargs) 2023-09-06T15:59:01.7669616Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:59:01.7669991Z return roi_align( 2023-09-06T15:59:01.7670525Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:59:01.7671056Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:59:01.7671699Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:59:01.7672221Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:59:01.7672899Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:59:01.7673518Z v1 = masked_index(y_low, x_low) 2023-09-06T15:59:01.7674082Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:59:01.7674451Z return input[ 2023-09-06T15:59:01.7675414Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 19183.01 GiB. GPU 0 has a total capacty of 39.39 GiB of which 34.81 GiB is free. Process 2197547 has 4.57 GiB memory in use. Of the allocated memory 3.79 GiB is allocated by PyTorch, and 257.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:59:01.7676254Z 2023-09-06T15:59:01.7676455Z The above exception was the direct cause of the following exception: 2023-09-06T15:59:01.7676699Z 2023-09-06T15:59:01.7676830Z Traceback (most recent call last): 2023-09-06T15:59:01.7677224Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:59:01.7677584Z ) = runner.load_model( 2023-09-06T15:59:01.7677951Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:59:01.7678353Z self.validate_model(model, example_inputs) 2023-09-06T15:59:01.7678768Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:59:01.7679207Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:59:01.7679571Z NotImplementedError: Eager model failed to run 2023-09-06T15:59:01.7679779Z 2023-09-06T15:59:01.7679965Z WARNING:root:detectron2_fasterrcnn_r_101_fpn failed to load 2023-09-06T15:59:06.4440843Z 2023-09-06T15:59:10.7320958Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:10.7321331Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:59:10.7321613Z Eager model failed to run 2023-09-06T15:59:10.7334453Z Traceback (most recent call last): 2023-09-06T15:59:10.7336578Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:59:10.7337209Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:59:10.7337632Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:59:10.7337997Z return mod(*inputs) 2023-09-06T15:59:10.7338994Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:10.7339407Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:10.7339973Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:10.7340377Z return forward_call(*args, **kwargs) 2023-09-06T15:59:10.7340947Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:59:10.7341369Z return self.inference(batched_inputs) 2023-09-06T15:59:10.7341956Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:59:10.7342429Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:59:10.7343048Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:10.7343553Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:10.7344094Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:10.7344496Z return forward_call(*args, **kwargs) 2023-09-06T15:59:10.7345080Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 477, in forward 2023-09-06T15:59:10.7345515Z box_features = self._shared_roi_transform( 2023-09-06T15:59:10.7346402Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 456, in _shared_roi_transform 2023-09-06T15:59:10.7346844Z x = self.pooler(features, boxes) 2023-09-06T15:59:10.7347425Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:10.7347845Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:10.7348398Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:10.7348782Z return forward_call(*args, **kwargs) 2023-09-06T15:59:10.7349634Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:59:10.7350278Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:59:10.7350895Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:10.7351315Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:10.7351874Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:10.7352270Z return forward_call(*args, **kwargs) 2023-09-06T15:59:10.7352815Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:59:10.7353240Z return roi_align( 2023-09-06T15:59:10.7353759Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:59:10.7354275Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:59:10.7354924Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:59:10.7355441Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:59:10.7356138Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:59:10.7356737Z v1 = masked_index(y_low, x_low) 2023-09-06T15:59:10.7357287Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:59:10.7357669Z return input[ 2023-09-06T15:59:10.7358637Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 27492.29 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.78 GiB is free. Process 2197639 has 2.61 GiB memory in use. Of the allocated memory 1.86 GiB is allocated by PyTorch, and 229.54 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:59:10.7359480Z 2023-09-06T15:59:10.7359683Z The above exception was the direct cause of the following exception: 2023-09-06T15:59:10.7359927Z 2023-09-06T15:59:10.7360070Z Traceback (most recent call last): 2023-09-06T15:59:10.7360433Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:59:10.7360780Z ) = runner.load_model( 2023-09-06T15:59:10.7361156Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:59:10.7361557Z self.validate_model(model, example_inputs) 2023-09-06T15:59:10.7361953Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:59:10.7362394Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:59:10.7362790Z NotImplementedError: Eager model failed to run 2023-09-06T15:59:10.7362998Z 2023-09-06T15:59:10.7363225Z WARNING:root:detectron2_fasterrcnn_r_50_c4 failed to load 2023-09-06T15:59:15.3782381Z 2023-09-06T15:59:21.9158571Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:21.9159274Z loading model: 0it [00:06, ?it/s] 2023-09-06T15:59:21.9159538Z Eager model failed to run 2023-09-06T15:59:21.9171070Z Traceback (most recent call last): 2023-09-06T15:59:21.9172026Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:59:21.9172651Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:59:21.9173160Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:59:21.9173635Z return mod(*inputs) 2023-09-06T15:59:21.9177155Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:21.9177753Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:21.9178732Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:21.9179551Z return forward_call(*args, **kwargs) 2023-09-06T15:59:21.9180456Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:59:21.9180910Z return self.inference(batched_inputs) 2023-09-06T15:59:21.9181497Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:59:21.9181976Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:59:21.9182577Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:21.9183058Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:21.9183624Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:21.9184030Z return forward_call(*args, **kwargs) 2023-09-06T15:59:21.9184605Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:59:21.9185060Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:59:21.9186192Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:59:21.9186702Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:59:21.9187404Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:21.9187826Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:21.9188365Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:21.9188771Z return forward_call(*args, **kwargs) 2023-09-06T15:59:21.9189650Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 246, in forward 2023-09-06T15:59:21.9190101Z return self.level_poolers[0](x[0], pooler_fmt_boxes) 2023-09-06T15:59:21.9190724Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:21.9191136Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:21.9191689Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:21.9192086Z return forward_call(*args, **kwargs) 2023-09-06T15:59:21.9192627Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:59:21.9193044Z return roi_align( 2023-09-06T15:59:21.9193575Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:59:21.9194125Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:59:21.9194779Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:59:21.9195480Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:59:21.9196160Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:59:21.9196581Z v1 = masked_index(y_low, x_low) 2023-09-06T15:59:21.9197134Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:59:21.9197517Z return input[ 2023-09-06T15:59:21.9198485Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 13521.00 GiB. GPU 0 has a total capacty of 39.39 GiB of which 35.88 GiB is free. Process 2197731 has 3.50 GiB memory in use. Of the allocated memory 2.68 GiB is allocated by PyTorch, and 270.78 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:59:21.9199622Z 2023-09-06T15:59:21.9199829Z The above exception was the direct cause of the following exception: 2023-09-06T15:59:21.9200074Z 2023-09-06T15:59:21.9200200Z Traceback (most recent call last): 2023-09-06T15:59:21.9200572Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:59:21.9200921Z ) = runner.load_model( 2023-09-06T15:59:21.9201299Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:59:21.9201697Z self.validate_model(model, example_inputs) 2023-09-06T15:59:21.9202093Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:59:21.9202535Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:59:21.9202950Z NotImplementedError: Eager model failed to run 2023-09-06T15:59:21.9203170Z 2023-09-06T15:59:21.9203426Z WARNING:root:detectron2_fasterrcnn_r_50_dc5 failed to load 2023-09-06T15:59:26.5661073Z 2023-09-06T15:59:30.8572800Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:30.8573571Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:59:30.8573851Z Eager model failed to run 2023-09-06T15:59:30.8588445Z Traceback (most recent call last): 2023-09-06T15:59:30.8588912Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:59:30.8589560Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:59:30.8590315Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:59:30.8590991Z return mod(*inputs) 2023-09-06T15:59:30.8592220Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:30.8593017Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:30.8593759Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:30.8594164Z return forward_call(*args, **kwargs) 2023-09-06T15:59:30.8594748Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 150, in forward 2023-09-06T15:59:30.8595174Z return self.inference(batched_inputs) 2023-09-06T15:59:30.8595760Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/rcnn.py", line 213, in inference 2023-09-06T15:59:30.8596237Z results, _ = self.roi_heads(images, features, proposals, None) 2023-09-06T15:59:30.8596858Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:30.8597264Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:30.8597814Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:30.8598220Z return forward_call(*args, **kwargs) 2023-09-06T15:59:30.8599309Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 747, in forward 2023-09-06T15:59:30.8599801Z pred_instances = self._forward_box(features, proposals) 2023-09-06T15:59:30.8600423Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/roi_heads/roi_heads.py", line 798, in _forward_box 2023-09-06T15:59:30.8600931Z box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) 2023-09-06T15:59:30.8601576Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:30.8601990Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:30.8602528Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:30.8602929Z return forward_call(*args, **kwargs) 2023-09-06T15:59:30.8603545Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/poolers.py", line 261, in forward 2023-09-06T15:59:30.8604018Z output.index_put_((inds,), pooler(x[level], pooler_fmt_boxes_level)) 2023-09-06T15:59:30.8604638Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:30.8605048Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:30.8605597Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:30.8605993Z return forward_call(*args, **kwargs) 2023-09-06T15:59:30.8606540Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/layers/roi_align.py", line 58, in forward 2023-09-06T15:59:30.8606900Z return roi_align( 2023-09-06T15:59:30.8607427Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 236, in roi_align 2023-09-06T15:59:30.8607952Z return _roi_align(input, rois, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned) 2023-09-06T15:59:30.8608830Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 168, in _roi_align 2023-09-06T15:59:30.8609351Z val = _bilinear_interpolate(input, roi_batch_ind, y, x, ymask, xmask) # [K, C, PH, PW, IY, IX] 2023-09-06T15:59:30.8610008Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 62, in _bilinear_interpolate 2023-09-06T15:59:30.8610427Z v1 = masked_index(y_low, x_low) 2023-09-06T15:59:30.8610976Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchvision/ops/roi_align.py", line 55, in masked_index 2023-09-06T15:59:30.8611355Z return input[ 2023-09-06T15:59:30.8612327Z torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 21352.77 GiB. GPU 0 has a total capacty of 39.39 GiB of which 36.12 GiB is free. Process 2197829 has 3.27 GiB memory in use. Of the allocated memory 2.65 GiB is allocated by PyTorch, and 99.25 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF 2023-09-06T15:59:30.8613221Z 2023-09-06T15:59:30.8613424Z The above exception was the direct cause of the following exception: 2023-09-06T15:59:30.8613652Z 2023-09-06T15:59:30.8613777Z Traceback (most recent call last): 2023-09-06T15:59:30.8614177Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:59:30.8614529Z ) = runner.load_model( 2023-09-06T15:59:30.8614908Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:59:30.8615300Z self.validate_model(model, example_inputs) 2023-09-06T15:59:30.8615713Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:59:30.8616156Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:59:30.8616537Z NotImplementedError: Eager model failed to run 2023-09-06T15:59:30.8616754Z 2023-09-06T15:59:30.8617036Z WARNING:root:detectron2_fasterrcnn_r_50_fpn failed to load 2023-09-06T15:59:35.5163574Z 2023-09-06T15:59:39.6771009Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:39.6771624Z loading model: 0it [00:04, ?it/s] 2023-09-06T15:59:39.6860330Z cuda eval detectron2_fcos_r_50_fpn 2023-09-06T15:59:44.1742587Z ERROR:common:Tried to use data-dependent value in the subsequent computation. This can happen when we encounter unbounded dynamic value that is unknown during tracing time.You will need to explicitly give hint to the compiler. Please take a look at constrain_as_value OR constrain_as_size APIs 2023-09-06T15:59:44.1743852Z 2023-09-06T15:59:44.1744026Z from user code: 2023-09-06T15:59:44.1745157Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/dense_detector.py", line 95, in forward 2023-09-06T15:59:44.1746060Z images = self.preprocess_image(batched_inputs) 2023-09-06T15:59:44.1747352Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/dense_detector.py", line 129, in preprocess_image 2023-09-06T15:59:44.1747855Z images = ImageList.from_tensors( 2023-09-06T15:59:44.1748769Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/structures/image_list.py", line 122, in from_tensors 2023-09-06T15:59:44.1749396Z batched_imgs = tensors[0].new_full(batch_shape, pad_value, device=device) 2023-09-06T15:59:44.1749648Z 2023-09-06T15:59:44.1749850Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:59:44.1750209Z Traceback (most recent call last): 2023-09-06T15:59:44.1750757Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1404, in run_node 2023-09-06T15:59:44.1751196Z return getattr(args[0], node.target)(*args[1:], **kwargs) 2023-09-06T15:59:44.1751738Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T15:59:44.1752612Z return fn(*args, **kwargs) 2023-09-06T15:59:44.1753250Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T15:59:44.1753716Z return self.dispatch(func, types, args, kwargs) 2023-09-06T15:59:44.1754297Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1495, in dispatch 2023-09-06T15:59:44.1755173Z return decomposition_table[func](*args, **kwargs) 2023-09-06T15:59:44.1755734Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_refs/__init__.py", line 4688, in new_full 2023-09-06T15:59:44.1756087Z return torch.full( 2023-09-06T15:59:44.1756650Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T15:59:44.1757024Z return fn(*args, **kwargs) 2023-09-06T15:59:44.1757605Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T15:59:44.1758045Z return self.dispatch(func, types, args, kwargs) 2023-09-06T15:59:44.1758632Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1532, in dispatch 2023-09-06T15:59:44.1759065Z op_impl_out = op_impl(self, func, *args, **kwargs) 2023-09-06T15:59:44.1759666Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 447, in constructors 2023-09-06T15:59:44.1760052Z r = func(*args, **new_kwargs) 2023-09-06T15:59:44.1760546Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 448, in __call__ 2023-09-06T15:59:44.1760927Z return self._op(*args, **kwargs or {}) 2023-09-06T15:59:44.1761474Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_meta_registrations.py", line 4433, in full 2023-09-06T15:59:44.1761868Z return torch.empty(size, *args, **kwargs) 2023-09-06T15:59:44.1762692Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 985, in guard_bool 2023-09-06T15:59:44.1763260Z r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node) 2023-09-06T15:59:44.1763941Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3491, in evaluate_expr 2023-09-06T15:59:44.1764384Z concrete_val = self.size_hint(orig_expr) 2023-09-06T15:59:44.1764956Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3292, in size_hint 2023-09-06T15:59:44.1765424Z raise self._make_data_dependent_error(result_expr, expr) 2023-09-06T15:59:44.1766725Z torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: It appears that you're trying to get a value out of symbolic int/float whose value is data-dependent (and thus we do not know the true value.) The expression we were trying to evaluate is Eq(12*i0*i1, 0) (unhinted: Eq(12*i0*i1, 0)). Scroll up to see where each of these data-dependent accesses originally occurred. 2023-09-06T15:59:44.1767467Z 2023-09-06T15:59:44.1767665Z The above exception was the direct cause of the following exception: 2023-09-06T15:59:44.1767906Z 2023-09-06T15:59:44.1768032Z Traceback (most recent call last): 2023-09-06T15:59:44.1768589Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T15:59:44.1768972Z return wrap_fake_exception( 2023-09-06T15:59:44.1769683Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T15:59:44.1770229Z return fn() 2023-09-06T15:59:44.1771026Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T15:59:44.1771683Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T15:59:44.1772604Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T15:59:44.1773766Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T15:59:44.1774689Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1404, in run_node 2023-09-06T15:59:44.1775365Z return getattr(args[0], node.target)(*args[1:], **kwargs) 2023-09-06T15:59:44.1776200Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T15:59:44.1776760Z return fn(*args, **kwargs) 2023-09-06T15:59:44.1777649Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T15:59:44.1778343Z return self.dispatch(func, types, args, kwargs) 2023-09-06T15:59:44.1779238Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1495, in dispatch 2023-09-06T15:59:44.1779929Z return decomposition_table[func](*args, **kwargs) 2023-09-06T15:59:44.1780945Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_refs/__init__.py", line 4688, in new_full 2023-09-06T15:59:44.1781337Z return torch.full( 2023-09-06T15:59:44.1782185Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T15:59:44.1782870Z return fn(*args, **kwargs) 2023-09-06T15:59:44.1783982Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T15:59:44.1784660Z return self.dispatch(func, types, args, kwargs) 2023-09-06T15:59:44.1785516Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1532, in dispatch 2023-09-06T15:59:44.1786119Z op_impl_out = op_impl(self, func, *args, **kwargs) 2023-09-06T15:59:44.1786950Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 447, in constructors 2023-09-06T15:59:44.1787896Z r = func(*args, **new_kwargs) 2023-09-06T15:59:44.1788654Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 448, in __call__ 2023-09-06T15:59:44.1789539Z return self._op(*args, **kwargs or {}) 2023-09-06T15:59:44.1790366Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_meta_registrations.py", line 4433, in full 2023-09-06T15:59:44.1790958Z return torch.empty(size, *args, **kwargs) 2023-09-06T15:59:44.1791801Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 985, in guard_bool 2023-09-06T15:59:44.1792507Z r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node) 2023-09-06T15:59:44.1793487Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3491, in evaluate_expr 2023-09-06T15:59:44.1794113Z concrete_val = self.size_hint(orig_expr) 2023-09-06T15:59:44.1794978Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3292, in size_hint 2023-09-06T15:59:44.1795629Z raise self._make_data_dependent_error(result_expr, expr) 2023-09-06T15:59:44.1796905Z RuntimeError: Failed running call_method new_full(*(FakeTensor(..., device='cuda:0', size=(3, 800, 1199), dtype=torch.bfloat16), [4, 3, FakeTensor(..., size=(), dtype=torch.int64), FakeTensor(..., size=(), dtype=torch.int64)], 0.0), **{'device': None}): 2023-09-06T15:59:44.1798776Z It appears that you're trying to get a value out of symbolic int/float whose value is data-dependent (and thus we do not know the true value.) The expression we were trying to evaluate is Eq(12*i0*i1, 0) (unhinted: Eq(12*i0*i1, 0)). Scroll up to see where each of these data-dependent accesses originally occurred. 2023-09-06T15:59:44.1799618Z 2023-09-06T15:59:44.1799868Z During handling of the above exception, another exception occurred: 2023-09-06T15:59:44.1800252Z 2023-09-06T15:59:44.1800765Z Traceback (most recent call last): 2023-09-06T15:59:44.1801300Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2135, in check_accuracy 2023-09-06T15:59:44.1801898Z new_result = optimized_model_iter_fn(model_copy, example_inputs) 2023-09-06T15:59:44.1802498Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T15:59:44.1803119Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T15:59:44.1803819Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T15:59:44.1804364Z so_path, exported = torch._export.aot_compile( 2023-09-06T15:59:44.1805231Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 635, in aot_compile 2023-09-06T15:59:44.1805799Z ep = export(f, args, kwargs, constraints) 2023-09-06T15:59:44.1806577Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 307, in export 2023-09-06T15:59:44.1807178Z gm_torch_level, _ = torch._dynamo.export( 2023-09-06T15:59:44.1807962Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1150, in inner 2023-09-06T15:59:44.1808531Z result_traced = opt_f(*args, **kwargs) 2023-09-06T15:59:44.1809315Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:44.1809900Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:44.1810681Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:44.1811242Z return forward_call(*args, **kwargs) 2023-09-06T15:59:44.1811969Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T15:59:44.1812499Z return fn(*args, **kwargs) 2023-09-06T15:59:44.1813618Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:44.1814232Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:44.1815005Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:44.1815564Z return forward_call(*args, **kwargs) 2023-09-06T15:59:44.1816363Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T15:59:44.1817004Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T15:59:44.1817817Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T15:59:44.1818338Z return fn(*args, **kwargs) 2023-09-06T15:59:44.1819109Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T15:59:44.1819645Z return _compile( 2023-09-06T15:59:44.1820369Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T15:59:44.1821031Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T15:59:44.1821847Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T15:59:44.1822371Z r = func(*args, **kwargs) 2023-09-06T15:59:44.1823104Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T15:59:44.1823780Z out_code = transform_code_object(code, transform) 2023-09-06T15:59:44.1824682Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T15:59:44.1825343Z transformations(instructions, code_options) 2023-09-06T15:59:44.1826172Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T15:59:44.1827050Z tracer.run() 2023-09-06T15:59:44.1827775Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T15:59:44.1828306Z super().run() 2023-09-06T15:59:44.1829043Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:59:44.1829789Z and self.step() 2023-09-06T15:59:44.1830551Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:59:44.1831100Z getattr(self, inst.opname)(inst) 2023-09-06T15:59:44.1831905Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:59:44.1832465Z return inner_fn(self, inst) 2023-09-06T15:59:44.1833326Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T15:59:44.1833917Z self.call_function(fn, args, {}) 2023-09-06T15:59:44.1834723Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:59:44.1835348Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:59:44.1836208Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T15:59:44.1836819Z return super().call_function(tx, args, kwargs) 2023-09-06T15:59:44.1837614Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:59:44.1838220Z return super().call_function(tx, args, kwargs) 2023-09-06T15:59:44.1839019Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:59:44.1839600Z return tx.inline_user_function_return( 2023-09-06T15:59:44.1840762Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:59:44.1841506Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:59:44.1842431Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:59:44.1843032Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:59:44.1843914Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:59:44.1844421Z tracer.run() 2023-09-06T15:59:44.1845162Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:59:44.1845693Z and self.step() 2023-09-06T15:59:44.1846438Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:59:44.1847006Z getattr(self, inst.opname)(inst) 2023-09-06T15:59:44.1847801Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:59:44.1848372Z return inner_fn(self, inst) 2023-09-06T15:59:44.1849207Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1171, in CALL_FUNCTION_KW 2023-09-06T15:59:44.1849821Z self.call_function(fn, args, kwargs) 2023-09-06T15:59:44.1850635Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:59:44.1851264Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:59:44.1852124Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T15:59:44.1852753Z return super().call_function(tx, args, kwargs) 2023-09-06T15:59:44.1853654Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T15:59:44.1854528Z return tx.inline_user_function_return( 2023-09-06T15:59:44.1855408Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T15:59:44.1856175Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T15:59:44.1857093Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T15:59:44.1857675Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T15:59:44.1858491Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T15:59:44.1859026Z tracer.run() 2023-09-06T15:59:44.1859740Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T15:59:44.1860233Z and self.step() 2023-09-06T15:59:44.1860946Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T15:59:44.1861490Z getattr(self, inst.opname)(inst) 2023-09-06T15:59:44.1862294Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T15:59:44.1863086Z return inner_fn(self, inst) 2023-09-06T15:59:44.1863961Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1171, in CALL_FUNCTION_KW 2023-09-06T15:59:44.1864567Z self.call_function(fn, args, kwargs) 2023-09-06T15:59:44.1865391Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T15:59:44.1866023Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T15:59:44.1867114Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/misc.py", line 594, in call_function 2023-09-06T15:59:44.1867841Z return self.obj.call_method(tx, self.name, args, kwargs).add_options(self) 2023-09-06T15:59:44.1868765Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/tensor.py", line 652, in call_method 2023-09-06T15:59:44.1869501Z return wrap_fx_proxy( 2023-09-06T15:59:44.1870306Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T15:59:44.1870865Z return wrap_fx_proxy_cls( 2023-09-06T15:59:44.1871697Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T15:59:44.1872340Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T15:59:44.1873223Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1371, in get_fake_value 2023-09-06T15:59:44.1873730Z raise UserError( 2023-09-06T15:59:44.1875197Z torch._dynamo.exc.UserError: Tried to use data-dependent value in the subsequent computation. This can happen when we encounter unbounded dynamic value that is unknown during tracing time.You will need to explicitly give hint to the compiler. Please take a look at constrain_as_value OR constrain_as_size APIs 2023-09-06T15:59:44.1876059Z 2023-09-06T15:59:44.1876184Z from user code: 2023-09-06T15:59:44.1877018Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/dense_detector.py", line 95, in forward 2023-09-06T15:59:44.1877630Z images = self.preprocess_image(batched_inputs) 2023-09-06T15:59:44.1878500Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/dense_detector.py", line 129, in preprocess_image 2023-09-06T15:59:44.1879101Z images = ImageList.from_tensors( 2023-09-06T15:59:44.1879925Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/structures/image_list.py", line 122, in from_tensors 2023-09-06T15:59:44.1880927Z batched_imgs = tensors[0].new_full(batch_shape, pad_value, device=device) 2023-09-06T15:59:44.1881274Z 2023-09-06T15:59:44.1881551Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T15:59:44.1881887Z 2023-09-06T15:59:44.1882151Z TorchDynamo optimized model failed to run because of following error 2023-09-06T15:59:44.1882619Z fail_to_run 2023-09-06T15:59:45.5502917Z accuracy pass_rate=60.00% 2023-09-06T15:59:45.5503653Z calls_captured gmean=0.00x mean=116.333x 2023-09-06T15:59:45.5506900Z unique_graphs gmean=0.00x mean=0.667x 2023-09-06T15:59:45.5507987Z graph_breaks gmean=0.00x mean=0.000x 2023-09-06T15:59:45.5510932Z unique_graph_breaks gmean=0.00x mean=0.000x 2023-09-06T15:59:46.3014272Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *maxautotune-true* ]] 2023-09-06T15:59:46.3015104Z + for target in "${targets[@]}" 2023-09-06T15:59:46.3015810Z + target_flag=("--${target}") 2023-09-06T15:59:46.3016102Z + local target_flag 2023-09-06T15:59:46.3016403Z + [[ performance == \p\e\r\f\o\r\m\a\n\c\e ]] 2023-09-06T15:59:46.3016770Z + target_flag+=(--cold-start-latency) 2023-09-06T15:59:46.3017628Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *default-true* ]] 2023-09-06T15:59:46.3019178Z + python benchmarks/dynamo/torchbench.py --performance --cold-start-latency --inference --bfloat16 --backend inductor --disable-cudagraphs --device cuda --total-partitions 4 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inductor_no_cudagraphs_torchbench_bfloat16_inference_cuda_performance.csv 2023-09-06T15:59:53.5435511Z 2023-09-06T15:59:54.4570869Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:54.4571404Z loading model: 0it [00:00, ?it/s] 2023-09-06T15:59:54.4571668Z Eager model failed to run 2023-09-06T15:59:54.4593145Z Traceback (most recent call last): 2023-09-06T15:59:54.4594661Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T15:59:54.4595291Z self.model_iter_fn(model, example_inputs) 2023-09-06T15:59:54.4595867Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T15:59:54.4596412Z return mod(*inputs) 2023-09-06T15:59:54.4599329Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4600171Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4600930Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4601328Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4601883Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 893, in forward 2023-09-06T15:59:54.4602354Z logits = self.model(batch.dense_features, batch.sparse_features) 2023-09-06T15:59:54.4603005Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4603438Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4604042Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4604465Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4605010Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 570, in forward 2023-09-06T15:59:54.4605452Z embedded_dense = self.dense_arch(dense_features) 2023-09-06T15:59:54.4606049Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4606522Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4607090Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4607860Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4608416Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 149, in forward 2023-09-06T15:59:54.4608791Z return self.model(features) 2023-09-06T15:59:54.4609353Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4609772Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4610333Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4610740Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4611297Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 172, in forward 2023-09-06T15:59:54.4611686Z return self._mlp(input) 2023-09-06T15:59:54.4612247Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4612732Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4613275Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4613720Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4614274Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward 2023-09-06T15:59:54.4614656Z input = module(input) 2023-09-06T15:59:54.4615214Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4615619Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4616180Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4616590Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4617322Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 73, in forward 2023-09-06T15:59:54.4617738Z return self._activation_fn(self._linear(input)) 2023-09-06T15:59:54.4618334Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T15:59:54.4618753Z return self._call_impl(*args, **kwargs) 2023-09-06T15:59:54.4619305Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T15:59:54.4619713Z return forward_call(*args, **kwargs) 2023-09-06T15:59:54.4620236Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward 2023-09-06T15:59:54.4620684Z return F.linear(input, self.weight, self.bias) 2023-09-06T15:59:54.4621105Z RuntimeError: mat1 and mat2 must have the same dtype, but got Float and BFloat16 2023-09-06T15:59:54.4621368Z 2023-09-06T15:59:54.4621574Z The above exception was the direct cause of the following exception: 2023-09-06T15:59:54.4621831Z 2023-09-06T15:59:54.4621943Z Traceback (most recent call last): 2023-09-06T15:59:54.4622326Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T15:59:54.4622690Z ) = runner.load_model( 2023-09-06T15:59:54.4623078Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T15:59:54.4623472Z self.validate_model(model, example_inputs) 2023-09-06T15:59:54.4623954Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T15:59:54.4624406Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T15:59:54.4624787Z NotImplementedError: Eager model failed to run 2023-09-06T15:59:54.4624998Z 2023-09-06T15:59:54.4625134Z WARNING:root:torchrec_dlrm failed to load 2023-09-06T15:59:58.9772701Z 2023-09-06T16:00:02.2963671Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:00:02.2965012Z loading model: 0it [00:03, ?it/s] 2023-09-06T16:00:02.3015655Z cuda eval BERT_pytorch 2023-09-06T16:00:30.9889993Z 2023-09-06T16:00:31.1066725Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:03:25.1023688Z out = fn(model, *args, **kwargs) 2023-09-06T16:03:25.1024246Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T16:03:25.1024794Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T16:03:25.1025520Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T16:03:25.1026065Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T16:03:25.1027068Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:03:25.1027465Z return func(*args, **kwargs) 2023-09-06T16:03:25.1027993Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T16:03:25.1028367Z model.eval() 2023-09-06T16:03:25.1028914Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T16:03:25.1029678Z out = fn(model, *args, **kwargs) 2023-09-06T16:03:25.1030235Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T16:03:25.1030629Z img = self.p_sample_loop( 2023-09-06T16:03:25.1031181Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:03:25.1031614Z return func(*args, **kwargs) 2023-09-06T16:03:25.1032288Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T16:03:25.1032816Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T16:03:25.1033455Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:03:25.1033855Z return func(*args, **kwargs) 2023-09-06T16:03:25.1034432Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T16:03:25.1034833Z img, x_start = self.p_sample( 2023-09-06T16:03:25.1035390Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:03:25.1035785Z return func(*args, **kwargs) 2023-09-06T16:03:25.1036521Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T16:03:25.1037551Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T16:03:25.1038721Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T16:03:25.1039561Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:03:25.1040455Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T16:03:25.1040852Z return d() if callable(d) else d 2023-09-06T16:03:25.1041414Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T16:03:25.1042177Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:03:25.1043126Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T16:03:25.1043560Z logits = self.forward(*args, **kwargs) 2023-09-06T16:03:25.1044114Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T16:03:25.1044503Z x = resnet_block(x, t, c) 2023-09-06T16:03:25.1045230Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:03:25.1045652Z return self._call_impl(*args, **kwargs) 2023-09-06T16:03:25.1046213Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:03:25.1046603Z return forward_call(*args, **kwargs) 2023-09-06T16:03:25.1047163Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:03:25.1047615Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:03:25.1048215Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:03:25.1048684Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:03:25.1049257Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:03:25.1049646Z return fn(*args, **kwargs) 2023-09-06T16:03:25.1050208Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:03:25.1050610Z return _compile( 2023-09-06T16:03:25.1051123Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:03:25.1051587Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:03:25.1052188Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:03:25.1052564Z r = func(*args, **kwargs) 2023-09-06T16:03:25.1053139Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:03:25.1053591Z out_code = transform_code_object(code, transform) 2023-09-06T16:03:25.1054405Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:03:25.1054884Z transformations(instructions, code_options) 2023-09-06T16:03:25.1055467Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:03:25.1055829Z tracer.run() 2023-09-06T16:03:25.1056347Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:03:25.1056716Z super().run() 2023-09-06T16:03:25.1057230Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:03:25.1057584Z and self.step() 2023-09-06T16:03:25.1058111Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:03:25.1058505Z getattr(self, inst.opname)(inst) 2023-09-06T16:03:25.1059070Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T16:03:25.1059470Z return inner_fn(self, inst) 2023-09-06T16:03:25.1060018Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T16:03:25.1060427Z self.call_function(fn, args, {}) 2023-09-06T16:03:25.1060991Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T16:03:25.1061427Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T16:03:25.1061996Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T16:03:25.1062408Z tensor_variable = wrap_fx_proxy( 2023-09-06T16:03:25.1063201Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T16:03:25.1063815Z return wrap_fx_proxy_cls( 2023-09-06T16:03:25.1064398Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T16:03:25.1064831Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T16:03:25.1065411Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T16:03:25.1065882Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T16:03:25.1066491Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T16:03:25.1066858Z return wrap_fake_exception( 2023-09-06T16:03:25.1067406Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T16:03:25.1067769Z return fn() 2023-09-06T16:03:25.1068270Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T16:03:25.1068716Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T16:03:25.1069605Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T16:03:25.1070077Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T16:03:25.1070678Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T16:03:25.1071071Z return node.target(*args, **kwargs) 2023-09-06T16:03:25.1071582Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T16:03:25.1072165Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T16:03:25.1072802Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T16:03:25.1073436Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T16:03:25.1074043Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T16:03:25.1074463Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T16:03:25.1075252Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(1, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T16:03:25.1075799Z unhashable type: 'SymInt' 2023-09-06T16:03:25.1075970Z 2023-09-06T16:03:25.1076062Z from user code: 2023-09-06T16:03:25.1076580Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T16:03:25.1077056Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T16:03:25.1077235Z 2023-09-06T16:03:25.1077426Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:03:25.1077666Z 2023-09-06T16:03:25.1077678Z 2023-09-06T16:03:25.1077876Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:03:25.1078210Z import torch._dynamo 2023-09-06T16:03:25.1078510Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:03:25.1078715Z 2023-09-06T16:03:27.7179113Z ERROR 2023-09-06T16:03:31.3267182Z 2023-09-06T16:03:35.8382407Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:03:35.8383018Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:03:35.8404594Z cuda eval LearningToPaint 2023-09-06T16:03:51.2955194Z 2023-09-06T16:03:51.4007386Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:06:30.9038036Z async_compile.wait(globals()) 2023-09-06T16:06:30.9038561Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:06:30.9038954Z scope[key] = result.result() 2023-09-06T16:06:30.9039510Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:06:30.9039896Z self.future.result() 2023-09-06T16:06:30.9040271Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 458, in result 2023-09-06T16:06:30.9040644Z return self.__get_result() 2023-09-06T16:06:30.9041037Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:06:30.9041406Z raise self._exception 2023-09-06T16:06:30.9041866Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:06:30.9042346Z CompilationError: at 11:70:def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): 2023-09-06T16:06:30.9042711Z xnumel = 209982 2023-09-06T16:06:30.9042992Z xoffset = tl.program_id(0) * XBLOCK 2023-09-06T16:06:30.9043300Z xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:06:30.9043595Z xmask = xindex < xnumel 2023-09-06T16:06:30.9043879Z x0 = xindex 2023-09-06T16:06:30.9044154Z tmp0 = tl.load(in_ptr0 + (209982 + x0), xmask) 2023-09-06T16:06:30.9044470Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:06:30.9045060Z tl.device_assert(((0 <= tmp1) & (tmp1 < 10000)) | ~xmask, "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:06:30.9045410Z tmp2 = 1.0 2023-09-06T16:06:30.9045744Z tl.atomic_add(out_ptr0 + (tl.broadcast_to(tmp1, [XBLOCK])), tmp2, xmask) 2023-09-06T16:06:30.9046122Z ^ 2023-09-06T16:06:30.9046511Z ValueError('atomic_add does not support bf16') 2023-09-06T16:06:30.9046728Z 2023-09-06T16:06:30.9046926Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:06:30.9047165Z 2023-09-06T16:06:30.9047170Z 2023-09-06T16:06:30.9047366Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:06:30.9047747Z import torch._dynamo 2023-09-06T16:06:30.9048054Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:06:30.9048267Z 2023-09-06T16:06:32.2899566Z ERROR 2023-09-06T16:06:35.9072893Z 2023-09-06T16:06:38.7129602Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:06:38.7130009Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:06:38.7136349Z cuda eval basic_gnn_gin 2023-09-06T16:06:39.2398805Z [2023-09-06 16:06:39,238] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:06:45.6995538Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:06:45.6996152Z Traceback (most recent call last): 2023-09-06T16:06:45.6996790Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:06:45.6997361Z fn(model, example_inputs) 2023-09-06T16:06:45.6998594Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:06:45.6999253Z return fn(*args, **kwargs) 2023-09-06T16:06:45.7003695Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:06:45.7005204Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:06:45.7006494Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:06:45.7007743Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:06:45.7009573Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:06:45.7010628Z return fn(*args, **kwargs) 2023-09-06T16:06:45.7012192Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:06:45.7013208Z return _compile( 2023-09-06T16:06:45.7014351Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:06:45.7015156Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:06:45.7015769Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:06:45.7016272Z r = func(*args, **kwargs) 2023-09-06T16:06:45.7017334Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:06:45.7018157Z out_code = transform_code_object(code, transform) 2023-09-06T16:06:45.7019342Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:06:45.7020129Z transformations(instructions, code_options) 2023-09-06T16:06:45.7021298Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:06:45.7022060Z tracer.run() 2023-09-06T16:06:45.7023265Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:06:45.7024035Z super().run() 2023-09-06T16:06:45.7025090Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:06:45.7025840Z and self.step() 2023-09-06T16:06:45.7026405Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:06:45.7026818Z getattr(self, inst.opname)(inst) 2023-09-06T16:06:45.7027462Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:06:45.7027883Z self.output.compile_subgraph( 2023-09-06T16:06:45.7028512Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:06:45.7029009Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:06:45.7029642Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:06:45.7029992Z return func(*args, **kwds) 2023-09-06T16:06:45.7030594Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:06:45.7031046Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:06:45.7031624Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:06:45.7032014Z r = func(*args, **kwargs) 2023-09-06T16:06:45.7032565Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:06:45.7033056Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:06:45.7033699Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:06:45.7034153Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:06:45.7034990Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:06:45.7035435Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:06:45.7036052Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:06:45.7036468Z return compile_fx(*args, **kwargs) 2023-09-06T16:06:45.7037033Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:06:45.7037406Z return aot_autograd( 2023-09-06T16:06:45.7037960Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:06:45.7038458Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:06:45.7039100Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:06:45.7039552Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:06:45.7040126Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:06:45.7040512Z r = func(*args, **kwargs) 2023-09-06T16:06:45.7041125Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:06:45.7041660Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:06:45.7042312Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:06:45.7042822Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:06:45.7043637Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:06:45.7044153Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:06:45.7044930Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:06:45.7045362Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:06:45.7045927Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:06:45.7046311Z r = func(*args, **kwargs) 2023-09-06T16:06:45.7046865Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T16:06:45.7047243Z return inner_compile( 2023-09-06T16:06:45.7047793Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:06:45.7048282Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:06:45.7048866Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:06:45.7049247Z return fn(*args, **kwargs) 2023-09-06T16:06:45.7049591Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:06:45.7049933Z return func(*args, **kwds) 2023-09-06T16:06:45.7050481Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:06:45.7050887Z return old_func(*args, **kwargs) 2023-09-06T16:06:45.7051435Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:06:45.7051913Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:06:45.7052544Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:06:45.7052983Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:06:45.7053693Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:06:45.7054255Z return self.compile_to_module().call 2023-09-06T16:06:45.7055135Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:06:45.7055715Z r = func(*args, **kwargs) 2023-09-06T16:06:45.7056566Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:06:45.7057259Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:06:45.7058334Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:06:45.7058976Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:06:45.7131510Z File "/tmp/tmpilbioyik/sg/csg4dekrvn722zlwdxgeznffs6lasdssqaiaj2b6l32ses22wwne.py", line 239, in 2023-09-06T16:06:45.7132762Z async_compile.wait(globals()) 2023-09-06T16:06:45.7133875Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:06:45.7134469Z scope[key] = result.result() 2023-09-06T16:06:45.7135385Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:06:45.7136099Z self.future.result() 2023-09-06T16:06:45.7136734Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:06:45.7137231Z return self.__get_result() 2023-09-06T16:06:45.7137853Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:06:45.7138426Z raise self._exception 2023-09-06T16:06:45.7139094Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:06:45.7139721Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:06:45.7140823Z xmask = xindex < xnumel 2023-09-06T16:06:45.7141100Z x1 = (xindex // 64) 2023-09-06T16:06:45.7141334Z x0 = xindex % 64 2023-09-06T16:06:45.7141813Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:06:45.7142315Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:06:45.7142675Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:06:45.7143053Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:06:45.7143440Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:06:45.7143827Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:06:45.7144228Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:06:45.7144575Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:06:45.7144886Z ^ 2023-09-06T16:06:45.7145268Z ValueError('atomic_add does not support bf16') 2023-09-06T16:06:45.7145468Z 2023-09-06T16:06:45.7145662Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:06:45.7145897Z 2023-09-06T16:06:45.7145903Z 2023-09-06T16:06:45.7146094Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:06:45.7146413Z import torch._dynamo 2023-09-06T16:06:45.7146723Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:06:45.7146931Z 2023-09-06T16:06:46.9525421Z ERROR 2023-09-06T16:06:50.5430220Z 2023-09-06T16:06:53.4193549Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:06:53.4194594Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:06:53.4196482Z cuda eval basic_gnn_sage 2023-09-06T16:06:53.9329187Z [2023-09-06 16:06:53,931] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:07:00.3711048Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:07:00.3711760Z Traceback (most recent call last): 2023-09-06T16:07:00.3712485Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:07:00.3713239Z fn(model, example_inputs) 2023-09-06T16:07:00.3715487Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:07:00.3716217Z return fn(*args, **kwargs) 2023-09-06T16:07:00.3717240Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:07:00.3718087Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:07:00.3719299Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:07:00.3720218Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:07:00.3721307Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:07:00.3722023Z return fn(*args, **kwargs) 2023-09-06T16:07:00.3723010Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:07:00.3723715Z return _compile( 2023-09-06T16:07:00.3724675Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:07:00.3725502Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:07:00.3726607Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:07:00.3727261Z r = func(*args, **kwargs) 2023-09-06T16:07:00.3728771Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:07:00.3729561Z out_code = transform_code_object(code, transform) 2023-09-06T16:07:00.3730674Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:07:00.3731482Z transformations(instructions, code_options) 2023-09-06T16:07:00.3732539Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:07:00.3733169Z tracer.run() 2023-09-06T16:07:00.3734066Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:07:00.3734711Z super().run() 2023-09-06T16:07:00.3735638Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:07:00.3736288Z and self.step() 2023-09-06T16:07:00.3737244Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:07:00.3737940Z getattr(self, inst.opname)(inst) 2023-09-06T16:07:00.3739102Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:07:00.3739841Z self.output.compile_subgraph( 2023-09-06T16:07:00.3740906Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:07:00.3741773Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:07:00.3742517Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:07:00.3743119Z return func(*args, **kwds) 2023-09-06T16:07:00.3744188Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:07:00.3744980Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:07:00.3746542Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:07:00.3747230Z r = func(*args, **kwargs) 2023-09-06T16:07:00.3748217Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:07:00.3749373Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:07:00.3750543Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:07:00.3751388Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:07:00.3752457Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:07:00.3753231Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:07:00.3754287Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:07:00.3755005Z return compile_fx(*args, **kwargs) 2023-09-06T16:07:00.3756008Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:07:00.3756696Z return aot_autograd( 2023-09-06T16:07:00.3757669Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:07:00.3758567Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:07:00.3759701Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:07:00.3760603Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:07:00.3761611Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:07:00.3762237Z r = func(*args, **kwargs) 2023-09-06T16:07:00.3763678Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:07:00.3764672Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:07:00.3765906Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:07:00.3766799Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:07:00.3767980Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:07:00.3768815Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:07:00.3769832Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:07:00.3770554Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:07:00.3771408Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:07:00.3771991Z r = func(*args, **kwargs) 2023-09-06T16:07:00.3772800Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T16:07:00.3773357Z return inner_compile( 2023-09-06T16:07:00.3774194Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:07:00.3774718Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:07:00.3775281Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:07:00.3775667Z return fn(*args, **kwargs) 2023-09-06T16:07:00.3776025Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:07:00.3776676Z return func(*args, **kwds) 2023-09-06T16:07:00.3777212Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:07:00.3777614Z return old_func(*args, **kwargs) 2023-09-06T16:07:00.3778176Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:07:00.3778707Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:07:00.3779338Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:07:00.3779750Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:07:00.3780314Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:07:00.3780727Z return self.compile_to_module().call 2023-09-06T16:07:00.3781283Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:07:00.3781653Z r = func(*args, **kwargs) 2023-09-06T16:07:00.3782200Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:07:00.3782674Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:07:00.3783296Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:07:00.3783712Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:07:00.3784188Z File "/tmp/tmplb7wnl15/p5/cp5hsqq7dr6hpemfmcthikvswgxiwpfsyzg6i7nf3xrdger2nme4.py", line 247, in 2023-09-06T16:07:00.3784661Z async_compile.wait(globals()) 2023-09-06T16:07:00.3785199Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:07:00.3785592Z scope[key] = result.result() 2023-09-06T16:07:00.3786552Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:07:00.3787176Z self.future.result() 2023-09-06T16:07:00.3787783Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:07:00.3788393Z return self.__get_result() 2023-09-06T16:07:00.3789264Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:07:00.3789829Z raise self._exception 2023-09-06T16:07:00.3790558Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:07:00.3791081Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:07:00.3791635Z xmask = xindex < xnumel 2023-09-06T16:07:00.3792018Z x1 = (xindex // 64) 2023-09-06T16:07:00.3792406Z x0 = xindex % 64 2023-09-06T16:07:00.3793133Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:07:00.3793959Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:07:00.3794489Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:07:00.3795139Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:07:00.3795821Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:07:00.3796538Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:07:00.3797163Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:07:00.3797690Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:07:00.3798158Z ^ 2023-09-06T16:07:00.3798881Z ValueError('atomic_add does not support bf16') 2023-09-06T16:07:00.3799176Z 2023-09-06T16:07:00.3799439Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:07:00.3799768Z 2023-09-06T16:07:00.3800123Z 2023-09-06T16:07:00.3800428Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:07:00.3800903Z import torch._dynamo 2023-09-06T16:07:00.3801340Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:07:00.3801627Z 2023-09-06T16:07:01.6365767Z ERROR 2023-09-06T16:07:05.1970309Z 2023-09-06T16:07:09.4201891Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:07:09.4202430Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:07:09.4287074Z cuda eval cm3leon_generate 2023-09-06T16:10:16.0538272Z 2023-09-06T16:10:18.1456149Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:19:59.1100380Z out = fn(model, *args, **kwargs) 2023-09-06T16:19:59.1100998Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T16:19:59.1101592Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T16:19:59.1102351Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T16:19:59.1102923Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T16:19:59.1103681Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:19:59.1104093Z return func(*args, **kwargs) 2023-09-06T16:19:59.1104656Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T16:19:59.1105049Z model.eval() 2023-09-06T16:19:59.1105602Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T16:19:59.1106336Z out = fn(model, *args, **kwargs) 2023-09-06T16:19:59.1106904Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T16:19:59.1107331Z img = self.p_sample_loop( 2023-09-06T16:19:59.1107905Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:19:59.1108295Z return func(*args, **kwargs) 2023-09-06T16:19:59.1108862Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T16:19:59.1109649Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T16:19:59.1110318Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:19:59.1110719Z return func(*args, **kwargs) 2023-09-06T16:19:59.1111305Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T16:19:59.1111726Z img, x_start = self.p_sample( 2023-09-06T16:19:59.1112287Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:19:59.1112682Z return func(*args, **kwargs) 2023-09-06T16:19:59.1113277Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T16:19:59.1114456Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T16:19:59.1115716Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T16:19:59.1116492Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:19:59.1117379Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T16:19:59.1117786Z return d() if callable(d) else d 2023-09-06T16:19:59.1118354Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T16:19:59.1119116Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:19:59.1120034Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T16:19:59.1120465Z logits = self.forward(*args, **kwargs) 2023-09-06T16:19:59.1121034Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T16:19:59.1121425Z x = resnet_block(x, t, c) 2023-09-06T16:19:59.1121967Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:19:59.1122388Z return self._call_impl(*args, **kwargs) 2023-09-06T16:19:59.1122954Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:19:59.1123408Z return forward_call(*args, **kwargs) 2023-09-06T16:19:59.1124139Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:19:59.1124573Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:19:59.1125180Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:19:59.1125648Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:19:59.1126236Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:19:59.1126609Z return fn(*args, **kwargs) 2023-09-06T16:19:59.1127185Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:19:59.1127582Z return _compile( 2023-09-06T16:19:59.1128109Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:19:59.1128580Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:19:59.1129159Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:19:59.1129537Z r = func(*args, **kwargs) 2023-09-06T16:19:59.1130085Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:19:59.1130532Z out_code = transform_code_object(code, transform) 2023-09-06T16:19:59.1131175Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:19:59.1131643Z transformations(instructions, code_options) 2023-09-06T16:19:59.1132221Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:19:59.1132593Z tracer.run() 2023-09-06T16:19:59.1133284Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:19:59.1133651Z super().run() 2023-09-06T16:19:59.1134169Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:19:59.1134540Z and self.step() 2023-09-06T16:19:59.1135061Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:19:59.1135446Z getattr(self, inst.opname)(inst) 2023-09-06T16:19:59.1136003Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T16:19:59.1136396Z return inner_fn(self, inst) 2023-09-06T16:19:59.1136964Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T16:19:59.1137363Z self.call_function(fn, args, {}) 2023-09-06T16:19:59.1137943Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T16:19:59.1138395Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T16:19:59.1138981Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T16:19:59.1139386Z tensor_variable = wrap_fx_proxy( 2023-09-06T16:19:59.1139945Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T16:19:59.1140349Z return wrap_fx_proxy_cls( 2023-09-06T16:19:59.1140927Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T16:19:59.1141376Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T16:19:59.1141930Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T16:19:59.1142541Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T16:19:59.1143153Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T16:19:59.1143596Z return wrap_fake_exception( 2023-09-06T16:19:59.1144157Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T16:19:59.1144514Z return fn() 2023-09-06T16:19:59.1145021Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T16:19:59.1145463Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T16:19:59.1146033Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T16:19:59.1146476Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T16:19:59.1147075Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T16:19:59.1147466Z return node.target(*args, **kwargs) 2023-09-06T16:19:59.1147993Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T16:19:59.1148580Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T16:19:59.1149317Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T16:19:59.1149765Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T16:19:59.1150350Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T16:19:59.1150782Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T16:19:59.1151753Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(1, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T16:19:59.1152324Z unhashable type: 'SymInt' 2023-09-06T16:19:59.1152499Z 2023-09-06T16:19:59.1152593Z from user code: 2023-09-06T16:19:59.1153133Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T16:19:59.1153656Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T16:19:59.1153841Z 2023-09-06T16:19:59.1154018Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:19:59.1154255Z 2023-09-06T16:19:59.1154261Z 2023-09-06T16:19:59.1154450Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:19:59.1154786Z import torch._dynamo 2023-09-06T16:19:59.1155098Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:19:59.1155303Z 2023-09-06T16:20:01.7610845Z ERROR 2023-09-06T16:20:05.3913706Z 2023-09-06T16:20:09.8305977Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:20:09.8306599Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:20:09.8325175Z cuda eval LearningToPaint 2023-09-06T16:20:26.4977090Z 2023-09-06T16:20:26.6014998Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:23:09.9606516Z async_compile.wait(globals()) 2023-09-06T16:23:09.9607062Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:23:09.9607457Z scope[key] = result.result() 2023-09-06T16:23:09.9608002Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:23:09.9608399Z self.future.result() 2023-09-06T16:23:09.9608764Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 458, in result 2023-09-06T16:23:09.9609130Z return self.__get_result() 2023-09-06T16:23:09.9609522Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:23:09.9609889Z raise self._exception 2023-09-06T16:23:09.9610343Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:23:09.9610903Z CompilationError: at 11:70:def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): 2023-09-06T16:23:09.9611264Z xnumel = 209982 2023-09-06T16:23:09.9611537Z xoffset = tl.program_id(0) * XBLOCK 2023-09-06T16:23:09.9611841Z xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:23:09.9612133Z xmask = xindex < xnumel 2023-09-06T16:23:09.9612379Z x0 = xindex 2023-09-06T16:23:09.9612655Z tmp0 = tl.load(in_ptr0 + (209982 + x0), xmask) 2023-09-06T16:23:09.9612963Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:23:09.9613420Z tl.device_assert(((0 <= tmp1) & (tmp1 < 10000)) | ~xmask, "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:23:09.9613768Z tmp2 = 1.0 2023-09-06T16:23:09.9614106Z tl.atomic_add(out_ptr0 + (tl.broadcast_to(tmp1, [XBLOCK])), tmp2, xmask) 2023-09-06T16:23:09.9614448Z ^ 2023-09-06T16:23:09.9614855Z ValueError('atomic_add does not support bf16') 2023-09-06T16:23:09.9615070Z 2023-09-06T16:23:09.9615450Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:23:09.9615698Z 2023-09-06T16:23:09.9615704Z 2023-09-06T16:23:09.9615904Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:23:09.9616247Z import torch._dynamo 2023-09-06T16:23:09.9616553Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:23:09.9616761Z 2023-09-06T16:23:11.4071845Z ERROR 2023-09-06T16:23:15.0100493Z 2023-09-06T16:23:17.9960745Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:23:17.9961321Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:23:17.9965270Z cuda eval basic_gnn_gin 2023-09-06T16:23:18.5262179Z [2023-09-06 16:23:18,525] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:23:24.9640710Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:23:24.9641528Z Traceback (most recent call last): 2023-09-06T16:23:24.9642110Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:23:24.9642635Z fn(model, example_inputs) 2023-09-06T16:23:24.9643788Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:23:24.9644396Z return fn(*args, **kwargs) 2023-09-06T16:23:24.9645303Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:23:24.9645984Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:23:24.9646950Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:23:24.9647688Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:23:24.9649267Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:23:24.9649923Z return fn(*args, **kwargs) 2023-09-06T16:23:24.9650803Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:23:24.9651398Z return _compile( 2023-09-06T16:23:24.9652180Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:23:24.9652935Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:23:24.9653931Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:24.9654594Z r = func(*args, **kwargs) 2023-09-06T16:23:24.9655584Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:23:24.9656381Z out_code = transform_code_object(code, transform) 2023-09-06T16:23:24.9657581Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:23:24.9658381Z transformations(instructions, code_options) 2023-09-06T16:23:24.9659457Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:23:24.9660148Z tracer.run() 2023-09-06T16:23:24.9661095Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:23:24.9661683Z super().run() 2023-09-06T16:23:24.9662576Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:23:24.9663372Z and self.step() 2023-09-06T16:23:24.9664297Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:23:24.9665401Z getattr(self, inst.opname)(inst) 2023-09-06T16:23:24.9666500Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:23:24.9667201Z self.output.compile_subgraph( 2023-09-06T16:23:24.9668244Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:23:24.9669058Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:23:24.9670083Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:23:24.9670741Z return func(*args, **kwds) 2023-09-06T16:23:24.9671760Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:23:24.9672592Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:23:24.9673547Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:24.9674258Z r = func(*args, **kwargs) 2023-09-06T16:23:24.9675273Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:23:24.9676120Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:23:24.9677179Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:23:24.9677994Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:23:24.9679054Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:23:24.9679868Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:23:24.9680883Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:23:24.9681623Z return compile_fx(*args, **kwargs) 2023-09-06T16:23:24.9682938Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:23:24.9683593Z return aot_autograd( 2023-09-06T16:23:24.9684540Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:23:24.9685319Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:23:24.9686408Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:23:24.9687189Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:23:24.9688183Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:24.9688840Z r = func(*args, **kwargs) 2023-09-06T16:23:24.9689918Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:23:24.9690881Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:23:24.9692081Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:23:24.9692961Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:23:24.9693991Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:23:24.9694654Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:23:24.9695564Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:23:24.9696145Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:23:24.9696926Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:24.9697333Z r = func(*args, **kwargs) 2023-09-06T16:23:24.9698123Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T16:23:24.9698503Z return inner_compile( 2023-09-06T16:23:24.9699054Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:23:24.9699562Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:23:24.9700130Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:23:24.9869850Z return fn(*args, **kwargs) 2023-09-06T16:23:24.9870787Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:23:24.9871267Z return func(*args, **kwds) 2023-09-06T16:23:24.9872349Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:23:24.9873019Z return old_func(*args, **kwargs) 2023-09-06T16:23:24.9873858Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:23:24.9874536Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:23:24.9875434Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:23:24.9876096Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:23:24.9876994Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:23:24.9877594Z return self.compile_to_module().call 2023-09-06T16:23:24.9878334Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:24.9878886Z r = func(*args, **kwargs) 2023-09-06T16:23:24.9880399Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:23:24.9881121Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:23:24.9882102Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:23:24.9882751Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:23:24.9883419Z File "/tmp/tmp3n8495bn/as/cas424wkcw5vhxbavdfw4mws6kakp6lj6ueru73e2476z2o7ctqc.py", line 239, in 2023-09-06T16:23:24.9884042Z async_compile.wait(globals()) 2023-09-06T16:23:24.9884822Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:23:24.9885392Z scope[key] = result.result() 2023-09-06T16:23:24.9886166Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:23:24.9886755Z self.future.result() 2023-09-06T16:23:24.9887297Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:23:24.9887793Z return self.__get_result() 2023-09-06T16:23:24.9888338Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:23:24.9888855Z raise self._exception 2023-09-06T16:23:24.9889612Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:23:24.9890228Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:23:24.9890736Z xmask = xindex < xnumel 2023-09-06T16:23:24.9891104Z x1 = (xindex // 64) 2023-09-06T16:23:24.9891450Z x0 = xindex % 64 2023-09-06T16:23:24.9892084Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:23:24.9892797Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:23:24.9893303Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:23:24.9894271Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:23:24.9894830Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:23:24.9895385Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:23:24.9895997Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:23:24.9896537Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:23:24.9896998Z ^ 2023-09-06T16:23:24.9897572Z ValueError('atomic_add does not support bf16') 2023-09-06T16:23:24.9897889Z 2023-09-06T16:23:24.9898185Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:23:24.9898573Z 2023-09-06T16:23:24.9898582Z 2023-09-06T16:23:24.9898898Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:23:24.9899505Z import torch._dynamo 2023-09-06T16:23:24.9900027Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:23:24.9900368Z 2023-09-06T16:23:26.1952235Z ERROR 2023-09-06T16:23:29.8118326Z 2023-09-06T16:23:32.7173714Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:23:32.7174312Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:23:32.7179049Z cuda eval basic_gnn_sage 2023-09-06T16:23:33.2453292Z [2023-09-06 16:23:33,244] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:23:39.6252905Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:23:39.6253858Z Traceback (most recent call last): 2023-09-06T16:23:39.6254539Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:23:39.6255164Z fn(model, example_inputs) 2023-09-06T16:23:39.6256969Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:23:39.6257728Z return fn(*args, **kwargs) 2023-09-06T16:23:39.6258710Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:23:39.6259617Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:23:39.6260747Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:23:39.6261219Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:23:39.6261793Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:23:39.6262175Z return fn(*args, **kwargs) 2023-09-06T16:23:39.6262947Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:23:39.6263374Z return _compile( 2023-09-06T16:23:39.6263935Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:23:39.6264406Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:23:39.6265000Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:39.6265381Z r = func(*args, **kwargs) 2023-09-06T16:23:39.6265934Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:23:39.6266364Z out_code = transform_code_object(code, transform) 2023-09-06T16:23:39.6267014Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:23:39.6267486Z transformations(instructions, code_options) 2023-09-06T16:23:39.6268369Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:23:39.6268736Z tracer.run() 2023-09-06T16:23:39.6269611Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:23:39.6270044Z super().run() 2023-09-06T16:23:39.6270578Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:23:39.6270959Z and self.step() 2023-09-06T16:23:39.6271470Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:23:39.6271867Z getattr(self, inst.opname)(inst) 2023-09-06T16:23:39.6272442Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:23:39.6272857Z self.output.compile_subgraph( 2023-09-06T16:23:39.6273465Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:23:39.6274007Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:23:39.6274433Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:23:39.6274780Z return func(*args, **kwds) 2023-09-06T16:23:39.6275344Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:23:39.6275784Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:23:39.6276338Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:39.6276715Z r = func(*args, **kwargs) 2023-09-06T16:23:39.6277277Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:23:39.6277759Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:23:39.6278589Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:23:39.6279045Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:23:39.6279653Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:23:39.6280093Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:23:39.6280655Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:23:39.6281061Z return compile_fx(*args, **kwargs) 2023-09-06T16:23:39.6281616Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:23:39.6282000Z return aot_autograd( 2023-09-06T16:23:39.6282534Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:23:39.6282998Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:23:39.6283630Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:23:39.6284134Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:23:39.6284700Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:39.6285064Z r = func(*args, **kwargs) 2023-09-06T16:23:39.6285664Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:23:39.6286197Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:23:39.6286861Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:23:39.6287479Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:23:39.6288171Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:23:39.6288685Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:23:39.6289327Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:23:39.6289767Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:23:39.6290310Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:39.6290690Z r = func(*args, **kwargs) 2023-09-06T16:23:39.6291246Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T16:23:39.6291646Z return inner_compile( 2023-09-06T16:23:39.6292180Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:23:39.6292630Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:23:39.6293188Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:23:39.6293563Z return fn(*args, **kwargs) 2023-09-06T16:23:39.6293966Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:23:39.6294295Z return func(*args, **kwds) 2023-09-06T16:23:39.6294836Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:23:39.6295234Z return old_func(*args, **kwargs) 2023-09-06T16:23:39.6295792Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:23:39.6296394Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:23:39.6297024Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:23:39.6297453Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:23:39.6298010Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:23:39.6298424Z return self.compile_to_module().call 2023-09-06T16:23:39.6298959Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:23:39.6299340Z r = func(*args, **kwargs) 2023-09-06T16:23:39.6299884Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:23:39.6300361Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:23:39.6300978Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:23:39.6301398Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:23:39.6301905Z File "/tmp/tmpij8clyza/my/cmyknr3jcbozhaifdt7jnixzvhwtidcnhpwzxgqynmxicfbcacvw.py", line 247, in 2023-09-06T16:23:39.6302381Z async_compile.wait(globals()) 2023-09-06T16:23:39.6302915Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:23:39.6303292Z scope[key] = result.result() 2023-09-06T16:23:39.6303869Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:23:39.6304255Z self.future.result() 2023-09-06T16:23:39.6304634Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:23:39.6304981Z return self.__get_result() 2023-09-06T16:23:39.6305515Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:23:39.6305890Z raise self._exception 2023-09-06T16:23:39.6306356Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:23:39.6306783Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:23:39.6307127Z xmask = xindex < xnumel 2023-09-06T16:23:39.6307386Z x1 = (xindex // 64) 2023-09-06T16:23:39.6307635Z x0 = xindex % 64 2023-09-06T16:23:39.6308193Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:23:39.6308695Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:23:39.6309054Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:23:39.6309785Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:23:39.6310158Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:23:39.6310554Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:23:39.6310964Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:23:39.6311324Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:23:39.6311635Z ^ 2023-09-06T16:23:39.6312022Z ValueError('atomic_add does not support bf16') 2023-09-06T16:23:39.6312230Z 2023-09-06T16:23:39.6312424Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:23:39.6312660Z 2023-09-06T16:23:39.6312666Z 2023-09-06T16:23:39.6312859Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:23:39.6313290Z import torch._dynamo 2023-09-06T16:23:39.6313760Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:23:39.6314071Z 2023-09-06T16:23:40.8638995Z ERROR 2023-09-06T16:23:44.4517098Z 2023-09-06T16:23:48.6459568Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:23:48.6460350Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:23:48.6544795Z cuda eval cm3leon_generate 2023-09-06T16:28:31.1401513Z 2023-09-06T16:28:32.4460932Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:38:36.4908481Z out = fn(model, *args, **kwargs) 2023-09-06T16:38:36.4909044Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T16:38:36.4909927Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T16:38:36.4910681Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T16:38:36.4911229Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T16:38:36.4911895Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:38:36.4912298Z return func(*args, **kwargs) 2023-09-06T16:38:36.4913231Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T16:38:36.4913619Z model.eval() 2023-09-06T16:38:36.4914174Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T16:38:36.4914589Z out = fn(model, *args, **kwargs) 2023-09-06T16:38:36.4915130Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T16:38:36.4915531Z img = self.p_sample_loop( 2023-09-06T16:38:36.4916082Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:38:36.4916484Z return func(*args, **kwargs) 2023-09-06T16:38:36.4917046Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T16:38:36.4917558Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T16:38:36.4918217Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:38:36.4918618Z return func(*args, **kwargs) 2023-09-06T16:38:36.4919192Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T16:38:36.4919593Z img, x_start = self.p_sample( 2023-09-06T16:38:36.4920150Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:38:36.4920550Z return func(*args, **kwargs) 2023-09-06T16:38:36.4921102Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T16:38:36.4922268Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T16:38:36.4923586Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T16:38:36.4924373Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:38:36.4925244Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T16:38:36.4925655Z return d() if callable(d) else d 2023-09-06T16:38:36.4926236Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T16:38:36.4927010Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:38:36.4927928Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T16:38:36.4928351Z logits = self.forward(*args, **kwargs) 2023-09-06T16:38:36.4928923Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T16:38:36.4929314Z x = resnet_block(x, t, c) 2023-09-06T16:38:36.4929871Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:38:36.4930296Z return self._call_impl(*args, **kwargs) 2023-09-06T16:38:36.4930977Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:38:36.4931383Z return forward_call(*args, **kwargs) 2023-09-06T16:38:36.4931948Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:38:36.4932405Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:38:36.4933031Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:38:36.4933548Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:38:36.4934136Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:38:36.4934528Z return fn(*args, **kwargs) 2023-09-06T16:38:36.4935103Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:38:36.4935505Z return _compile( 2023-09-06T16:38:36.4936043Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:38:36.4936505Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:38:36.4937098Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:38:36.4937462Z r = func(*args, **kwargs) 2023-09-06T16:38:36.4938012Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:38:36.4938451Z out_code = transform_code_object(code, transform) 2023-09-06T16:38:36.4939097Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:38:36.4939572Z transformations(instructions, code_options) 2023-09-06T16:38:36.4940275Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:38:36.4940656Z tracer.run() 2023-09-06T16:38:36.4941182Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:38:36.4941549Z super().run() 2023-09-06T16:38:36.4942054Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:38:36.4942432Z and self.step() 2023-09-06T16:38:36.4943004Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:38:36.4943409Z getattr(self, inst.opname)(inst) 2023-09-06T16:38:36.4943971Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T16:38:36.4944353Z return inner_fn(self, inst) 2023-09-06T16:38:36.4944930Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T16:38:36.4945349Z self.call_function(fn, args, {}) 2023-09-06T16:38:36.4945917Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T16:38:36.4946340Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T16:38:36.4946930Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T16:38:36.4947341Z tensor_variable = wrap_fx_proxy( 2023-09-06T16:38:36.4947918Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T16:38:36.4948324Z return wrap_fx_proxy_cls( 2023-09-06T16:38:36.4948887Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T16:38:36.4949839Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T16:38:36.4950443Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T16:38:36.4950926Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T16:38:36.4951522Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T16:38:36.4951916Z return wrap_fake_exception( 2023-09-06T16:38:36.4952464Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T16:38:36.4952897Z return fn() 2023-09-06T16:38:36.4953386Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T16:38:36.4953828Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T16:38:36.4954406Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T16:38:36.4954873Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T16:38:36.4955471Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T16:38:36.4955855Z return node.target(*args, **kwargs) 2023-09-06T16:38:36.4956379Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T16:38:36.4956966Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T16:38:36.4957571Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T16:38:36.4958011Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T16:38:36.4958580Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T16:38:36.4959270Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T16:38:36.4960097Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(1, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T16:38:36.4960649Z unhashable type: 'SymInt' 2023-09-06T16:38:36.4960832Z 2023-09-06T16:38:36.4960912Z from user code: 2023-09-06T16:38:36.4961458Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T16:38:36.4961945Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T16:38:36.4962129Z 2023-09-06T16:38:36.4962361Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:38:36.4962598Z 2023-09-06T16:38:36.4962604Z 2023-09-06T16:38:36.4962843Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:38:36.4963173Z import torch._dynamo 2023-09-06T16:38:36.4963493Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:38:36.4963708Z 2023-09-06T16:38:39.1671336Z ERROR 2023-09-06T16:38:42.8037352Z 2023-09-06T16:38:47.2928254Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:38:47.2928604Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:38:47.2948448Z cuda eval LearningToPaint 2023-09-06T16:39:03.9626320Z 2023-09-06T16:39:04.0667571Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:42:19.3644893Z async_compile.wait(globals()) 2023-09-06T16:42:19.3645419Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:42:19.3645811Z scope[key] = result.result() 2023-09-06T16:42:19.3646355Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:42:19.3646739Z self.future.result() 2023-09-06T16:42:19.3647113Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 458, in result 2023-09-06T16:42:19.3647455Z return self.__get_result() 2023-09-06T16:42:19.3647849Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:42:19.3648208Z raise self._exception 2023-09-06T16:42:19.3648664Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:42:19.3649118Z CompilationError: at 11:70:def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): 2023-09-06T16:42:19.3649470Z xnumel = 209982 2023-09-06T16:42:19.3649739Z xoffset = tl.program_id(0) * XBLOCK 2023-09-06T16:42:19.3650052Z xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:42:19.3650333Z xmask = xindex < xnumel 2023-09-06T16:42:19.3650578Z x0 = xindex 2023-09-06T16:42:19.3650852Z tmp0 = tl.load(in_ptr0 + (209982 + x0), xmask) 2023-09-06T16:42:19.3651174Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:42:19.3651562Z tl.device_assert(((0 <= tmp1) & (tmp1 < 10000)) | ~xmask, "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:42:19.3651924Z tmp2 = 1.0 2023-09-06T16:42:19.3652380Z tl.atomic_add(out_ptr0 + (tl.broadcast_to(tmp1, [XBLOCK])), tmp2, xmask) 2023-09-06T16:42:19.3652751Z ^ 2023-09-06T16:42:19.3653203Z ValueError('atomic_add does not support bf16') 2023-09-06T16:42:19.3653408Z 2023-09-06T16:42:19.3653608Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:42:19.3653841Z 2023-09-06T16:42:19.3653848Z 2023-09-06T16:42:19.3654044Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:42:19.3654383Z import torch._dynamo 2023-09-06T16:42:19.3654695Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:42:19.3654889Z 2023-09-06T16:42:20.7801490Z ERROR 2023-09-06T16:42:24.3926570Z 2023-09-06T16:42:27.1922886Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:42:27.1923521Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:42:27.1931432Z cuda eval basic_gnn_gin 2023-09-06T16:42:27.7005378Z [2023-09-06 16:42:27,699] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:42:34.1682258Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:42:34.1683116Z Traceback (most recent call last): 2023-09-06T16:42:34.1683705Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:42:34.1684277Z fn(model, example_inputs) 2023-09-06T16:42:34.1685574Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:42:34.1686230Z return fn(*args, **kwargs) 2023-09-06T16:42:34.1687379Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:42:34.1688169Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:42:34.1690101Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:42:34.1690943Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:42:34.1691932Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:42:34.1692627Z return fn(*args, **kwargs) 2023-09-06T16:42:34.1693631Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:42:34.1694288Z return _compile( 2023-09-06T16:42:34.1695231Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:42:34.1696030Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:42:34.1697090Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:34.1697711Z r = func(*args, **kwargs) 2023-09-06T16:42:34.1698671Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:42:34.1699436Z out_code = transform_code_object(code, transform) 2023-09-06T16:42:34.1700724Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:42:34.1701539Z transformations(instructions, code_options) 2023-09-06T16:42:34.1702574Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:42:34.1703218Z tracer.run() 2023-09-06T16:42:34.1704136Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:42:34.1704718Z super().run() 2023-09-06T16:42:34.1705954Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:42:34.1706589Z and self.step() 2023-09-06T16:42:34.1707528Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:42:34.1708213Z getattr(self, inst.opname)(inst) 2023-09-06T16:42:34.1709429Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:42:34.1710254Z self.output.compile_subgraph( 2023-09-06T16:42:34.1711292Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:42:34.1712112Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:42:34.1712812Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:42:34.1713461Z return func(*args, **kwds) 2023-09-06T16:42:34.1714477Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:42:34.1715316Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:42:34.1716270Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:34.1716978Z r = func(*args, **kwargs) 2023-09-06T16:42:34.1717952Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:42:34.1718634Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:42:34.1719455Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:42:34.1720149Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:42:34.1720952Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:42:34.1721656Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:42:34.1722407Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:42:34.1722809Z return compile_fx(*args, **kwargs) 2023-09-06T16:42:34.1723388Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:42:34.1723776Z return aot_autograd( 2023-09-06T16:42:34.1724322Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:42:34.1724762Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:42:34.1725394Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:42:34.1725851Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:42:34.1726599Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:34.1726979Z r = func(*args, **kwargs) 2023-09-06T16:42:34.1727564Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:42:34.1728096Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:42:34.1728766Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:42:34.1729275Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:42:34.1730001Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:42:34.1730501Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:42:34.1731355Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:42:34.1731814Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:42:34.1732381Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:34.1732744Z r = func(*args, **kwargs) 2023-09-06T16:42:34.1733464Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T16:42:34.1733867Z return inner_compile( 2023-09-06T16:42:34.1734422Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:42:34.1734873Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:42:34.1735414Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:42:34.1735809Z return fn(*args, **kwargs) 2023-09-06T16:42:34.1736167Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:42:34.1736508Z return func(*args, **kwds) 2023-09-06T16:42:34.1737037Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:42:34.1737435Z return old_func(*args, **kwargs) 2023-09-06T16:42:34.1738001Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:42:34.1738467Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:42:34.1739092Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:42:34.1739499Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:42:34.1740116Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:42:34.1740771Z return self.compile_to_module().call 2023-09-06T16:42:34.1741335Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:34.1741699Z r = func(*args, **kwargs) 2023-09-06T16:42:34.1742472Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:42:34.1743149Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:42:34.1744044Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:42:34.1744474Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:42:34.1745103Z File "/tmp/tmptmt20it8/vl/cvl6twpea3ikjocsfiuflqnu32rawonozy7bw3cehr2gdrs3s6pp.py", line 239, in 2023-09-06T16:42:34.1745765Z async_compile.wait(globals()) 2023-09-06T16:42:34.1746649Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:42:34.1747286Z scope[key] = result.result() 2023-09-06T16:42:34.1748096Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:42:34.1748669Z self.future.result() 2023-09-06T16:42:34.1749425Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:42:34.1750155Z return self.__get_result() 2023-09-06T16:42:34.1750537Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:42:34.1750903Z raise self._exception 2023-09-06T16:42:34.1751425Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:42:34.1751879Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:42:34.1752209Z xmask = xindex < xnumel 2023-09-06T16:42:34.1752474Z x1 = (xindex // 64) 2023-09-06T16:42:34.1753083Z x0 = xindex % 64 2023-09-06T16:42:34.1753544Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:42:34.1754032Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:42:34.1754393Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:42:34.1754793Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:42:34.1755176Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:42:34.1755569Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:42:34.1755961Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:42:34.1756328Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:42:34.1756644Z ^ 2023-09-06T16:42:34.1757026Z ValueError('atomic_add does not support bf16') 2023-09-06T16:42:34.1757242Z 2023-09-06T16:42:34.1757430Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:42:34.1757669Z 2023-09-06T16:42:34.1757675Z 2023-09-06T16:42:34.1757871Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:42:34.1758212Z import torch._dynamo 2023-09-06T16:42:34.1758524Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:42:34.1758734Z 2023-09-06T16:42:35.4261935Z ERROR 2023-09-06T16:42:39.0052369Z 2023-09-06T16:42:41.8166231Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:42:41.8166776Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:42:41.8167306Z cuda eval basic_gnn_sage 2023-09-06T16:42:42.3330449Z [2023-09-06 16:42:42,332] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:42:48.9037531Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:42:48.9038694Z Traceback (most recent call last): 2023-09-06T16:42:48.9039101Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:42:48.9039473Z fn(model, example_inputs) 2023-09-06T16:42:48.9040440Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:42:48.9040810Z return fn(*args, **kwargs) 2023-09-06T16:42:48.9041365Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:42:48.9041815Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:42:48.9042420Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:42:48.9042873Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:42:48.9043474Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:42:48.9043859Z return fn(*args, **kwargs) 2023-09-06T16:42:48.9044430Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:42:48.9044825Z return _compile( 2023-09-06T16:42:48.9045338Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:42:48.9045800Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:42:48.9046392Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:48.9046769Z r = func(*args, **kwargs) 2023-09-06T16:42:48.9047300Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:42:48.9047743Z out_code = transform_code_object(code, transform) 2023-09-06T16:42:48.9048924Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:42:48.9049404Z transformations(instructions, code_options) 2023-09-06T16:42:48.9050085Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:42:48.9050460Z tracer.run() 2023-09-06T16:42:48.9050967Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:42:48.9051339Z super().run() 2023-09-06T16:42:48.9051857Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:42:48.9052234Z and self.step() 2023-09-06T16:42:48.9052750Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:42:48.9053168Z getattr(self, inst.opname)(inst) 2023-09-06T16:42:48.9053750Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:42:48.9054168Z self.output.compile_subgraph( 2023-09-06T16:42:48.9054745Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:42:48.9055207Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:42:48.9055635Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:42:48.9055983Z return func(*args, **kwds) 2023-09-06T16:42:48.9056569Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:42:48.9057002Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:42:48.9057559Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:48.9058197Z r = func(*args, **kwargs) 2023-09-06T16:42:48.9058769Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:42:48.9059258Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:42:48.9059881Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:42:48.9060338Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:42:48.9060947Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:42:48.9061382Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:42:48.9061953Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:42:48.9062363Z return compile_fx(*args, **kwargs) 2023-09-06T16:42:48.9063130Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:42:48.9063515Z return aot_autograd( 2023-09-06T16:42:48.9064061Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:42:48.9064509Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:42:48.9065138Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:42:48.9065593Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:42:48.9066155Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:48.9066516Z r = func(*args, **kwargs) 2023-09-06T16:42:48.9067240Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:42:48.9067782Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:42:48.9068501Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:42:48.9069009Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:42:48.9070032Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:42:48.9070543Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:42:48.9071194Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:42:48.9071641Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:42:48.9072215Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:48.9072593Z r = func(*args, **kwargs) 2023-09-06T16:42:48.9073142Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T16:42:48.9073531Z return inner_compile( 2023-09-06T16:42:48.9074069Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:42:48.9074499Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:42:48.9075059Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:42:48.9075433Z return fn(*args, **kwargs) 2023-09-06T16:42:48.9075784Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:42:48.9076124Z return func(*args, **kwds) 2023-09-06T16:42:48.9076655Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:42:48.9077235Z return old_func(*args, **kwargs) 2023-09-06T16:42:48.9077801Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:42:48.9078319Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:42:48.9078937Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:42:48.9079365Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:42:48.9079922Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:42:48.9080333Z return self.compile_to_module().call 2023-09-06T16:42:48.9080869Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:42:48.9081243Z r = func(*args, **kwargs) 2023-09-06T16:42:48.9081805Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:42:48.9082267Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:42:48.9082893Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:42:48.9083292Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:42:48.9083775Z File "/tmp/tmpu259xzg7/2w/c2w45klm6swzml3hauo7i2lcowfxdbrhjfsbhmrodea23spqm27p.py", line 247, in 2023-09-06T16:42:48.9084225Z async_compile.wait(globals()) 2023-09-06T16:42:48.9084763Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:42:48.9085143Z scope[key] = result.result() 2023-09-06T16:42:48.9085688Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:42:48.9086074Z self.future.result() 2023-09-06T16:42:48.9086620Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:42:48.9087173Z return self.__get_result() 2023-09-06T16:42:48.9087741Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:42:48.9088366Z raise self._exception 2023-09-06T16:42:48.9089132Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:42:48.9089809Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:42:48.9090313Z xmask = xindex < xnumel 2023-09-06T16:42:48.9090708Z x1 = (xindex // 64) 2023-09-06T16:42:48.9091081Z x0 = xindex % 64 2023-09-06T16:42:48.9091793Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:42:48.9092547Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:42:48.9093106Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:42:48.9093734Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:42:48.9094308Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:42:48.9094878Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:42:48.9095497Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:42:48.9096041Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:42:48.9096518Z ^ 2023-09-06T16:42:48.9097137Z ValueError('atomic_add does not support bf16') 2023-09-06T16:42:48.9097448Z 2023-09-06T16:42:48.9097743Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:42:48.9098120Z 2023-09-06T16:42:48.9098226Z 2023-09-06T16:42:48.9098534Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:42:48.9099029Z import torch._dynamo 2023-09-06T16:42:48.9099946Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:42:48.9100262Z 2023-09-06T16:42:50.0963008Z ERROR 2023-09-06T16:42:53.6913084Z 2023-09-06T16:42:57.8657378Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:42:57.8657954Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:42:57.8742846Z cuda eval cm3leon_generate 2023-09-06T16:47:45.8276844Z 2023-09-06T16:47:47.1454894Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:51:06.5890106Z torchbench_main() 2023-09-06T16:51:06.5890874Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 491, in torchbench_main 2023-09-06T16:51:06.5891354Z main(TorchBenchmarkRunner(), original_dir) 2023-09-06T16:51:06.5891784Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3031, in main 2023-09-06T16:51:06.5894440Z process_entry(0, runner, original_dir, args) 2023-09-06T16:51:06.5894860Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2988, in process_entry 2023-09-06T16:51:06.5898543Z return maybe_fresh_cache( 2023-09-06T16:51:06.5899184Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1659, in inner 2023-09-06T16:51:06.5900799Z return fn(*args, **kwargs) 2023-09-06T16:51:06.5901175Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3477, in run 2023-09-06T16:51:06.5905816Z assert marked, f"nothing in example_inputs had a dim with {batch_size}" 2023-09-06T16:51:06.5906243Z AssertionError: nothing in example_inputs had a dim with 4 2023-09-06T16:51:07.7014580Z ERROR 2023-09-06T16:51:07.7062213Z speedup gmean=0.00x mean=1.282x 2023-09-06T16:51:07.7062666Z abs_latency gmean=0.00x mean=21.192x 2023-09-06T16:51:07.7066124Z compilation_latency mean=37.392 seconds 2023-09-06T16:51:07.7067345Z compression_ratio mean=0.485x 2023-09-06T16:51:07.7067970Z eager_peak_mem gmean=0.00x mean=0.667x 2023-09-06T16:51:07.7069408Z dynamo_peak_mem gmean=0.00x mean=0.908x 2023-09-06T16:51:07.7072169Z calls_captured gmean=0.00x mean=359.067x 2023-09-06T16:51:07.7074793Z unique_graphs gmean=0.00x mean=1.200x 2023-09-06T16:51:07.7076150Z graph_breaks gmean=0.00x mean=0.400x 2023-09-06T16:51:07.7078491Z unique_graph_breaks gmean=0.00x mean=0.133x 2023-09-06T16:51:08.4667349Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *cppwrapper-true* ]] 2023-09-06T16:51:08.4669755Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *freezing_cudagraphs-true* ]] 2023-09-06T16:51:08.4670531Z + [[ inference == \i\n\f\e\r\e\n\c\e ]] 2023-09-06T16:51:08.4671689Z + python benchmarks/dynamo/torchbench.py --performance --cold-start-latency --inference --bfloat16 --backend inductor --device cuda --total-partitions 4 --partition-id 0 --freezing --output /var/lib/jenkins/workspace/test/test-reports/inductor_with_cudagraphs_freezing_torchbench_bfloat16_inference_cuda_performance.csv 2023-09-06T16:51:15.6569600Z 2023-09-06T16:51:16.5863470Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:51:16.5863852Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:51:16.5864139Z Eager model failed to run 2023-09-06T16:51:16.5878996Z Traceback (most recent call last): 2023-09-06T16:51:16.5879671Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1859, in validate_model 2023-09-06T16:51:16.5880410Z self.model_iter_fn(model, example_inputs) 2023-09-06T16:51:16.5881144Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 472, in forward_pass 2023-09-06T16:51:16.5881809Z return mod(*inputs) 2023-09-06T16:51:16.5884175Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5885179Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5885766Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5886181Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5886735Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 893, in forward 2023-09-06T16:51:16.5887189Z logits = self.model(batch.dense_features, batch.sparse_features) 2023-09-06T16:51:16.5887815Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5888267Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5888927Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5889610Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5890587Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 570, in forward 2023-09-06T16:51:16.5891438Z embedded_dense = self.dense_arch(dense_features) 2023-09-06T16:51:16.5892053Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5892480Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5893040Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5893434Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5893992Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/models/dlrm.py", line 149, in forward 2023-09-06T16:51:16.5894386Z return self.model(features) 2023-09-06T16:51:16.5894947Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5895358Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5896160Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5896575Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5897121Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 172, in forward 2023-09-06T16:51:16.5897486Z return self._mlp(input) 2023-09-06T16:51:16.5898040Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5898453Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5899066Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5899471Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5900004Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward 2023-09-06T16:51:16.5900398Z input = module(input) 2023-09-06T16:51:16.5900950Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5901366Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5901898Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5902330Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5902863Z File "/var/lib/jenkins/.local/lib/python3.10/site-packages/torchrec/modules/mlp.py", line 73, in forward 2023-09-06T16:51:16.5903289Z return self._activation_fn(self._linear(input)) 2023-09-06T16:51:16.5903900Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:51:16.5904302Z return self._call_impl(*args, **kwargs) 2023-09-06T16:51:16.5904859Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:51:16.5905403Z return forward_call(*args, **kwargs) 2023-09-06T16:51:16.5905946Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward 2023-09-06T16:51:16.5906384Z return F.linear(input, self.weight, self.bias) 2023-09-06T16:51:16.5906782Z RuntimeError: mat1 and mat2 must have the same dtype, but got Float and BFloat16 2023-09-06T16:51:16.5907047Z 2023-09-06T16:51:16.5907243Z The above exception was the direct cause of the following exception: 2023-09-06T16:51:16.5907483Z 2023-09-06T16:51:16.5907611Z Traceback (most recent call last): 2023-09-06T16:51:16.5907987Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 3432, in run 2023-09-06T16:51:16.5908319Z ) = runner.load_model( 2023-09-06T16:51:16.5908696Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/torchbench.py", line 408, in load_model 2023-09-06T16:51:16.5909332Z self.validate_model(model, example_inputs) 2023-09-06T16:51:16.5909773Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1861, in validate_model 2023-09-06T16:51:16.5910217Z raise NotImplementedError("Eager model failed to run") from e 2023-09-06T16:51:16.5910586Z NotImplementedError: Eager model failed to run 2023-09-06T16:51:16.5910794Z 2023-09-06T16:51:16.5910932Z WARNING:root:torchrec_dlrm failed to load 2023-09-06T16:51:21.0633686Z 2023-09-06T16:51:24.2842712Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:51:24.2843077Z loading model: 0it [00:03, ?it/s] 2023-09-06T16:51:24.2893630Z cuda eval BERT_pytorch 2023-09-06T16:52:02.7900607Z 2023-09-06T16:52:02.8968611Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:55:28.3359667Z out = fn(model, *args, **kwargs) 2023-09-06T16:55:28.3360608Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3329, in forward 2023-09-06T16:55:28.3361472Z image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) 2023-09-06T16:55:28.3362782Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3332, in 2023-09-06T16:55:28.3363852Z images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) 2023-09-06T16:55:28.3365068Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:55:28.3365745Z return func(*args, **kwargs) 2023-09-06T16:55:28.3366766Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 95, in inner 2023-09-06T16:55:28.3367387Z model.eval() 2023-09-06T16:55:28.3368370Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 96, in 2023-09-06T16:55:28.3369030Z out = fn(model, *args, **kwargs) 2023-09-06T16:55:28.3370026Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3199, in sample 2023-09-06T16:55:28.3370710Z img = self.p_sample_loop( 2023-09-06T16:55:28.3371665Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:55:28.3372488Z return func(*args, **kwargs) 2023-09-06T16:55:28.3373476Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 3028, in p_sample_loop 2023-09-06T16:55:28.3374471Z return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) 2023-09-06T16:55:28.3376058Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:55:28.3376764Z return func(*args, **kwargs) 2023-09-06T16:55:28.3377805Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2885, in p_sample_loop_ddpm 2023-09-06T16:55:28.3378535Z img, x_start = self.p_sample( 2023-09-06T16:55:28.3379506Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context 2023-09-06T16:55:28.3380197Z return func(*args, **kwargs) 2023-09-06T16:55:28.3381163Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2822, in p_sample 2023-09-06T16:55:28.3382944Z model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) 2023-09-06T16:55:28.3385038Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in p_mean_variance 2023-09-06T16:55:28.3386392Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:55:28.3387967Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 65, in default 2023-09-06T16:55:28.3388662Z return d() if callable(d) else d 2023-09-06T16:55:28.3390217Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2787, in 2023-09-06T16:55:28.3391601Z model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) 2023-09-06T16:55:28.3393262Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2159, in forward_with_cond_scale 2023-09-06T16:55:28.3394148Z logits = self.forward(*args, **kwargs) 2023-09-06T16:55:28.3395147Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 2340, in forward 2023-09-06T16:55:28.3395812Z x = resnet_block(x, t, c) 2023-09-06T16:55:28.3396820Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T16:55:28.3397563Z return self._call_impl(*args, **kwargs) 2023-09-06T16:55:28.3398589Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T16:55:28.3399287Z return forward_call(*args, **kwargs) 2023-09-06T16:55:28.3400355Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:55:28.3401164Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:55:28.3402252Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:55:28.3403039Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:55:28.3404184Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:55:28.3404854Z return fn(*args, **kwargs) 2023-09-06T16:55:28.3405889Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:55:28.3406909Z return _compile( 2023-09-06T16:55:28.3407868Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:55:28.3408673Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:55:28.3409742Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:55:28.3410486Z r = func(*args, **kwargs) 2023-09-06T16:55:28.3411513Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:55:28.3412272Z out_code = transform_code_object(code, transform) 2023-09-06T16:55:28.3413301Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:55:28.3414207Z transformations(instructions, code_options) 2023-09-06T16:55:28.3415230Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:55:28.3415893Z tracer.run() 2023-09-06T16:55:28.3416789Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:55:28.3417434Z super().run() 2023-09-06T16:55:28.3418343Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:55:28.3418962Z and self.step() 2023-09-06T16:55:28.3419903Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:55:28.3420590Z getattr(self, inst.opname)(inst) 2023-09-06T16:55:28.3421585Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T16:55:28.3422243Z return inner_fn(self, inst) 2023-09-06T16:55:28.3423611Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T16:55:28.3424355Z self.call_function(fn, args, {}) 2023-09-06T16:55:28.3425378Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T16:55:28.3426138Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T16:55:28.3427183Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 731, in call_function 2023-09-06T16:55:28.3427915Z tensor_variable = wrap_fx_proxy( 2023-09-06T16:55:28.3428942Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T16:55:28.3429829Z return wrap_fx_proxy_cls( 2023-09-06T16:55:28.3430853Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T16:55:28.3431647Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T16:55:28.3432675Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1381, in get_fake_value 2023-09-06T16:55:28.3433461Z raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None 2023-09-06T16:55:28.3434617Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1342, in get_fake_value 2023-09-06T16:55:28.3435285Z return wrap_fake_exception( 2023-09-06T16:55:28.3436270Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 917, in wrap_fake_exception 2023-09-06T16:55:28.3436925Z return fn() 2023-09-06T16:55:28.3437800Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1343, in 2023-09-06T16:55:28.3438565Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T16:55:28.3439544Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T16:55:28.3440699Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T16:55:28.3441781Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1402, in run_node 2023-09-06T16:55:28.3442444Z return node.target(*args, **kwargs) 2023-09-06T16:55:28.3443350Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 483, in rearrange 2023-09-06T16:55:28.3444504Z return reduce(cast(Tensor, tensor), pattern, reduction='rearrange', **axes_lengths) 2023-09-06T16:55:28.3445506Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 412, in reduce 2023-09-06T16:55:28.3446273Z return _apply_recipe(recipe, tensor, reduction_type=reduction) 2023-09-06T16:55:28.3447295Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/einops/einops.py", line 235, in _apply_recipe 2023-09-06T16:55:28.3448052Z _reconstruct_from_shape(recipe, backend.shape(tensor)) 2023-09-06T16:55:28.3449451Z torch._dynamo.exc.TorchRuntimeError: Failed running call_function (*(FakeTensor(..., device='cuda:0', size=(1, 128, s0, s1)), 'b c ... -> b ... c'), **{}): 2023-09-06T16:55:28.3450427Z unhashable type: 'SymInt' 2023-09-06T16:55:28.3450712Z 2023-09-06T16:55:28.3450856Z from user code: 2023-09-06T16:55:28.3451774Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/dalle2_pytorch/dalle2_pytorch.py", line 1670, in forward 2023-09-06T16:55:28.3452610Z h = rearrange(h, 'b c ... -> b ... c') 2023-09-06T16:55:28.3452930Z 2023-09-06T16:55:28.3453267Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:55:28.3453770Z 2023-09-06T16:55:28.3453779Z 2023-09-06T16:55:28.3454108Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:55:28.3454670Z import torch._dynamo 2023-09-06T16:55:28.3455197Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:55:28.3455569Z 2023-09-06T16:55:31.0910848Z ERROR 2023-09-06T16:55:34.7503701Z 2023-09-06T16:55:39.2388240Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:55:39.2388612Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:55:39.2411172Z cuda eval LearningToPaint 2023-09-06T16:55:58.5526018Z 2023-09-06T16:55:58.6551774Z running benchmark: 0% 0/30 [00:00 2023-09-06T16:58:56.9645622Z async_compile.wait(globals()) 2023-09-06T16:58:56.9646159Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:58:56.9646549Z scope[key] = result.result() 2023-09-06T16:58:56.9647087Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:58:56.9647458Z self.future.result() 2023-09-06T16:58:56.9647834Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 458, in result 2023-09-06T16:58:56.9648192Z return self.__get_result() 2023-09-06T16:58:56.9648578Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:58:56.9648919Z raise self._exception 2023-09-06T16:58:56.9649373Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:58:56.9650004Z CompilationError: at 11:70:def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): 2023-09-06T16:58:56.9650358Z xnumel = 209982 2023-09-06T16:58:56.9650615Z xoffset = tl.program_id(0) * XBLOCK 2023-09-06T16:58:56.9650931Z xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:58:56.9651224Z xmask = xindex < xnumel 2023-09-06T16:58:56.9651467Z x0 = xindex 2023-09-06T16:58:56.9651724Z tmp0 = tl.load(in_ptr0 + (209982 + x0), xmask) 2023-09-06T16:58:56.9652049Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:58:56.9652457Z tl.device_assert(((0 <= tmp1) & (tmp1 < 10000)) | ~xmask, "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:58:56.9652797Z tmp2 = 1.0 2023-09-06T16:58:56.9653151Z tl.atomic_add(out_ptr0 + (tl.broadcast_to(tmp1, [XBLOCK])), tmp2, xmask) 2023-09-06T16:58:56.9653508Z ^ 2023-09-06T16:58:56.9653915Z ValueError('atomic_add does not support bf16') 2023-09-06T16:58:56.9654136Z 2023-09-06T16:58:56.9654329Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:58:56.9654565Z 2023-09-06T16:58:56.9654571Z 2023-09-06T16:58:56.9654767Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:58:56.9655089Z import torch._dynamo 2023-09-06T16:58:56.9655397Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:58:56.9655603Z 2023-09-06T16:58:58.4002135Z ERROR 2023-09-06T16:59:02.0385075Z 2023-09-06T16:59:05.0510025Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:59:05.0510905Z loading model: 0it [00:03, ?it/s] 2023-09-06T16:59:05.0515775Z cuda eval basic_gnn_gin 2023-09-06T16:59:05.5874621Z [2023-09-06 16:59:05,586] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:59:12.5975750Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:59:12.5976413Z Traceback (most recent call last): 2023-09-06T16:59:12.5977034Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:59:12.5977578Z fn(model, example_inputs) 2023-09-06T16:59:12.5978693Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:59:12.5979531Z return fn(*args, **kwargs) 2023-09-06T16:59:12.5980390Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:59:12.5981125Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:59:12.5982517Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:59:12.5983337Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:59:12.5984428Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:59:12.5984984Z return fn(*args, **kwargs) 2023-09-06T16:59:12.5985570Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:59:12.5985966Z return _compile( 2023-09-06T16:59:12.5986476Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:59:12.5986941Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:59:12.5987524Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:12.5987900Z r = func(*args, **kwargs) 2023-09-06T16:59:12.5988446Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:59:12.5989697Z out_code = transform_code_object(code, transform) 2023-09-06T16:59:12.5990387Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:59:12.5990860Z transformations(instructions, code_options) 2023-09-06T16:59:12.5991435Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:59:12.5991792Z tracer.run() 2023-09-06T16:59:12.5992305Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:59:12.5992668Z super().run() 2023-09-06T16:59:12.5993179Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:59:12.5993547Z and self.step() 2023-09-06T16:59:12.5994050Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:59:12.5994457Z getattr(self, inst.opname)(inst) 2023-09-06T16:59:12.5995023Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:59:12.5995435Z self.output.compile_subgraph( 2023-09-06T16:59:12.5995996Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:59:12.5996472Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:59:12.5996893Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:59:12.5997234Z return func(*args, **kwds) 2023-09-06T16:59:12.5997798Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:59:12.5998236Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:59:12.5999066Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:12.5999469Z r = func(*args, **kwargs) 2023-09-06T16:59:12.6000031Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:59:12.6000502Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:59:12.6001132Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:59:12.6001587Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:59:12.6002185Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:59:12.6002603Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:59:12.6003177Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:59:12.6003590Z return compile_fx(*args, **kwargs) 2023-09-06T16:59:12.6004145Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:59:12.6004526Z return aot_autograd( 2023-09-06T16:59:12.6005049Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:59:12.6005497Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:59:12.6006123Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:59:12.6006576Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:59:12.6007119Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:12.6007495Z r = func(*args, **kwargs) 2023-09-06T16:59:12.6008102Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:59:12.6008811Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:59:12.6009483Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:59:12.6009970Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:59:12.6010647Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:59:12.6011149Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:59:12.6011788Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:59:12.6012221Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:59:12.6012808Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 938, in fw_compiler_freezing 2023-09-06T16:59:12.6013233Z optimized_function = inner_compile( 2023-09-06T16:59:12.6013799Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:59:12.6014241Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:59:12.6014784Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:59:12.6015157Z return fn(*args, **kwargs) 2023-09-06T16:59:12.6015506Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:59:12.6015849Z return func(*args, **kwds) 2023-09-06T16:59:12.6016387Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:59:12.6016768Z return old_func(*args, **kwargs) 2023-09-06T16:59:12.6017447Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:59:12.6017921Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:59:12.6018547Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:59:12.6018991Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:59:12.6019546Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:59:12.6019953Z return self.compile_to_module().call 2023-09-06T16:59:12.6020496Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:12.6020866Z r = func(*args, **kwargs) 2023-09-06T16:59:12.6021394Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:59:12.6021878Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:59:12.6022496Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:59:12.6022905Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:59:12.6023365Z File "/tmp/tmpbjyyo5qo/32/c32dhwhhjzhfr33iqnakm6hbvlfnbqmeifrs2ojkz3kt352cmmhu.py", line 240, in 2023-09-06T16:59:12.6023822Z async_compile.wait(globals()) 2023-09-06T16:59:12.6024352Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:59:12.6024740Z scope[key] = result.result() 2023-09-06T16:59:12.6025279Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:59:12.6025649Z self.future.result() 2023-09-06T16:59:12.6026022Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:59:12.6026511Z return self.__get_result() 2023-09-06T16:59:12.6026894Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:59:12.6027243Z raise self._exception 2023-09-06T16:59:12.6027697Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:59:12.6028136Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:59:12.6028525Z xmask = xindex < xnumel 2023-09-06T16:59:12.6028834Z x1 = (xindex // 64) 2023-09-06T16:59:12.6029341Z x0 = xindex % 64 2023-09-06T16:59:12.6029882Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:59:12.6030385Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:59:12.6030730Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:59:12.6031116Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:59:12.6031508Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:59:12.6031895Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:59:12.6032298Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:59:12.6032642Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:59:12.6032951Z ^ 2023-09-06T16:59:12.6033332Z ValueError('atomic_add does not support bf16') 2023-09-06T16:59:12.6033533Z 2023-09-06T16:59:12.6033724Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:59:12.6033957Z 2023-09-06T16:59:12.6033963Z 2023-09-06T16:59:12.6034141Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:59:12.6034475Z import torch._dynamo 2023-09-06T16:59:12.6034997Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:59:12.6035377Z 2023-09-06T16:59:13.8565748Z ERROR 2023-09-06T16:59:17.4502749Z 2023-09-06T16:59:20.4281623Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:59:20.4282216Z loading model: 0it [00:02, ?it/s] 2023-09-06T16:59:20.4282974Z cuda eval basic_gnn_sage 2023-09-06T16:59:20.9555245Z [2023-09-06 16:59:20,954] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T16:59:27.6876270Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T16:59:27.6876671Z Traceback (most recent call last): 2023-09-06T16:59:27.6877144Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T16:59:27.6877828Z fn(model, example_inputs) 2023-09-06T16:59:27.6879533Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T16:59:27.6880543Z return fn(*args, **kwargs) 2023-09-06T16:59:27.6881119Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T16:59:27.6881570Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T16:59:27.6882169Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 634, in _convert_frame 2023-09-06T16:59:27.6882622Z result = inner_convert(frame, cache_entry, hooks, frame_state) 2023-09-06T16:59:27.6883222Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T16:59:27.6883600Z return fn(*args, **kwargs) 2023-09-06T16:59:27.6884170Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T16:59:27.6884567Z return _compile( 2023-09-06T16:59:27.6885090Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T16:59:27.6886120Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T16:59:27.6886729Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:27.6887110Z r = func(*args, **kwargs) 2023-09-06T16:59:27.6887644Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T16:59:27.6888090Z out_code = transform_code_object(code, transform) 2023-09-06T16:59:27.6888827Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T16:59:27.6889400Z transformations(instructions, code_options) 2023-09-06T16:59:27.6889980Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T16:59:27.6890360Z tracer.run() 2023-09-06T16:59:27.6890867Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T16:59:27.6891240Z super().run() 2023-09-06T16:59:27.6891752Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T16:59:27.6892123Z and self.step() 2023-09-06T16:59:27.6892624Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T16:59:27.6893023Z getattr(self, inst.opname)(inst) 2023-09-06T16:59:27.6893597Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2166, in RETURN_VALUE 2023-09-06T16:59:27.6974037Z self.output.compile_subgraph( 2023-09-06T16:59:27.6975180Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 881, in compile_subgraph 2023-09-06T16:59:27.6976471Z self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) 2023-09-06T16:59:27.6977126Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:59:27.6977622Z return func(*args, **kwds) 2023-09-06T16:59:27.6978543Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1008, in compile_and_call_fx_graph 2023-09-06T16:59:27.6979168Z compiled_fn = self.call_user_compiler(gm) 2023-09-06T16:59:27.6979962Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:27.6980509Z r = func(*args, **kwargs) 2023-09-06T16:59:27.6981340Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1075, in call_user_compiler 2023-09-06T16:59:27.6982012Z raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( 2023-09-06T16:59:27.6982945Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/output_graph.py", line 1060, in call_user_compiler 2023-09-06T16:59:27.6983614Z compiled_fn = compiler_fn(gm, self.example_inputs()) 2023-09-06T16:59:27.6984444Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper 2023-09-06T16:59:27.6985053Z compiled_gm = compiler_fn(gm, example_inputs) 2023-09-06T16:59:27.6985834Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py", line 9, in inductor 2023-09-06T16:59:27.6986404Z return compile_fx(*args, **kwargs) 2023-09-06T16:59:27.6987187Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T16:59:27.6987725Z return aot_autograd( 2023-09-06T16:59:27.6988533Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T16:59:27.6989404Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T16:59:27.6990709Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T16:59:27.6991372Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T16:59:27.6992197Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:27.6992730Z r = func(*args, **kwargs) 2023-09-06T16:59:27.6993598Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T16:59:27.6994360Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:59:27.6995318Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T16:59:27.6996047Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:59:27.6997042Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T16:59:27.6997773Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T16:59:27.6998770Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T16:59:27.6999398Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T16:59:27.7000270Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 938, in fw_compiler_freezing 2023-09-06T16:59:27.7000876Z optimized_function = inner_compile( 2023-09-06T16:59:27.7001704Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T16:59:27.7002348Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T16:59:27.7003406Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T16:59:27.7003999Z return fn(*args, **kwargs) 2023-09-06T16:59:27.7004502Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T16:59:27.7004979Z return func(*args, **kwds) 2023-09-06T16:59:27.7005742Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T16:59:27.7006297Z return old_func(*args, **kwargs) 2023-09-06T16:59:27.7007070Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T16:59:27.7007756Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T16:59:27.7008662Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T16:59:27.7009225Z compiled_fn = graph.compile_to_fn() 2023-09-06T16:59:27.7010009Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T16:59:27.7010582Z return self.compile_to_module().call 2023-09-06T16:59:27.7011368Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T16:59:27.7011901Z r = func(*args, **kwargs) 2023-09-06T16:59:27.7012716Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T16:59:27.7013368Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T16:59:27.7014291Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T16:59:27.7014873Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T16:59:27.7015527Z File "/tmp/tmp30z_gl9q/zr/czrploy62vzjqnp3kv423t5fasvgqbifboe4sc2b5claut7rlybg.py", line 248, in 2023-09-06T16:59:27.7016178Z async_compile.wait(globals()) 2023-09-06T16:59:27.7017269Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T16:59:27.7017879Z scope[key] = result.result() 2023-09-06T16:59:27.7018782Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T16:59:27.7019363Z self.future.result() 2023-09-06T16:59:27.7019914Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T16:59:27.7020437Z return self.__get_result() 2023-09-06T16:59:27.7020978Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T16:59:27.7021504Z raise self._exception 2023-09-06T16:59:27.7022232Z torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: 2023-09-06T16:59:27.7022894Z CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T16:59:27.7023398Z xmask = xindex < xnumel 2023-09-06T16:59:27.7023796Z x1 = (xindex // 64) 2023-09-06T16:59:27.7024156Z x0 = xindex % 64 2023-09-06T16:59:27.7024840Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T16:59:27.7025608Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T16:59:27.7026136Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T16:59:27.7026710Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T16:59:27.7027255Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T16:59:27.7027810Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T16:59:27.7028399Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T16:59:27.7029054Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T16:59:27.7029716Z ^ 2023-09-06T16:59:27.7030629Z ValueError('atomic_add does not support bf16') 2023-09-06T16:59:27.7030956Z 2023-09-06T16:59:27.7031211Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T16:59:27.7031545Z 2023-09-06T16:59:27.7031554Z 2023-09-06T16:59:27.7031830Z You can suppress this exception and fall back to eager by setting: 2023-09-06T16:59:27.7032305Z import torch._dynamo 2023-09-06T16:59:27.7032769Z torch._dynamo.config.suppress_errors = True 2023-09-06T16:59:27.7033138Z 2023-09-06T16:59:28.9470294Z ERROR 2023-09-06T16:59:32.5836078Z 2023-09-06T16:59:36.6751791Z loading model: 0it [00:00, ?it/s] 2023-09-06T16:59:36.6752312Z loading model: 0it [00:04, ?it/s] 2023-09-06T16:59:36.6840533Z cuda eval cm3leon_generate 2023-09-06T17:05:14.8456474Z 2023-09-06T17:05:16.1281284Z running benchmark: 0% 0/30 [00:00 2023-09-06T17:19:11.1464555Z self._precompile_config(c, warm_cache_only_with_cc) 2023-09-06T17:19:11.1465575Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 189, in _precompile_config 2023-09-06T17:19:11.1466169Z triton.compile( 2023-09-06T17:19:11.1467005Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/compiler.py", line 476, in compile 2023-09-06T17:19:11.1467619Z next_module = compile_kernel(module) 2023-09-06T17:19:11.1468677Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/compiler.py", line 381, in 2023-09-06T17:19:11.1469810Z lambda src: optimize_ttir(ast_to_ttir(src, signature, configs[0], constants, debug=debug, arch=arch), arch)) 2023-09-06T17:19:11.1471056Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1133, in ast_to_ttir 2023-09-06T17:19:11.1471876Z raise CompilationError(fn.src, node, repr(e)) from e 2023-09-06T17:19:11.1472691Z triton.compiler.errors.CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T17:19:11.1473401Z xmask = xindex < xnumel 2023-09-06T17:19:11.1473859Z x1 = (xindex // 64) 2023-09-06T17:19:11.1474291Z x0 = xindex % 64 2023-09-06T17:19:11.1475019Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T17:19:11.1475833Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T17:19:11.1476441Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T17:19:11.1477168Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T17:19:11.1477856Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T17:19:11.1478881Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T17:19:11.1479596Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T17:19:11.1480235Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T17:19:11.1480792Z ^ 2023-09-06T17:19:11.1481514Z ValueError('atomic_add does not support bf16') 2023-09-06T17:19:11.1481974Z """ 2023-09-06T17:19:11.1482200Z 2023-09-06T17:19:11.1482550Z The above exception was the direct cause of the following exception: 2023-09-06T17:19:11.1482984Z 2023-09-06T17:19:11.1483196Z Traceback (most recent call last): 2023-09-06T17:19:11.1483858Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T17:19:11.1484480Z fn(model, example_inputs) 2023-09-06T17:19:11.1485121Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T17:19:11.1485986Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T17:19:11.1486739Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T17:19:11.1487377Z so_path, exported = torch._export.aot_compile( 2023-09-06T17:19:11.1488491Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 645, in aot_compile 2023-09-06T17:19:11.1489363Z so_path = torch._inductor.aot_compile(ep.graph_module, list(all_args), options) 2023-09-06T17:19:11.1490493Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/__init__.py", line 48, in aot_compile 2023-09-06T17:19:11.1491156Z result = compile_fx_aot( 2023-09-06T17:19:11.1492174Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 874, in compile_fx_aot 2023-09-06T17:19:11.1492823Z return compile_fx( 2023-09-06T17:19:11.1493638Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 975, in compile_fx 2023-09-06T17:19:11.1494470Z return compile_fx( 2023-09-06T17:19:11.1495291Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 995, in compile_fx 2023-09-06T17:19:11.1495895Z return compile_fx( 2023-09-06T17:19:11.1496719Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T17:19:11.1497271Z return aot_autograd( 2023-09-06T17:19:11.1498105Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T17:19:11.1498765Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T17:19:11.1499673Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T17:19:11.1500360Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T17:19:11.1501153Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:11.1501692Z r = func(*args, **kwargs) 2023-09-06T17:19:11.1502550Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T17:19:11.1503284Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T17:19:11.1504213Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T17:19:11.1504890Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T17:19:11.1505842Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T17:19:11.1506538Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T17:19:11.1507674Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T17:19:11.1508357Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T17:19:11.1509326Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:11.1509867Z r = func(*args, **kwargs) 2023-09-06T17:19:11.1510654Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T17:19:11.1511225Z return inner_compile( 2023-09-06T17:19:11.1512051Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 219, in wrapper 2023-09-06T17:19:11.1512741Z compiled = inner_compile( 2023-09-06T17:19:11.1513383Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T17:19:11.1513994Z return func(*args, **kwds) 2023-09-06T17:19:11.1514989Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T17:19:11.1515765Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T17:19:11.1516665Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T17:19:11.1517212Z return fn(*args, **kwargs) 2023-09-06T17:19:11.1517704Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T17:19:11.1518282Z return func(*args, **kwds) 2023-09-06T17:19:11.1519117Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T17:19:11.1519702Z return old_func(*args, **kwargs) 2023-09-06T17:19:11.1520542Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T17:19:11.1521270Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T17:19:11.1522527Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T17:19:11.1523132Z compiled_fn = graph.compile_to_fn() 2023-09-06T17:19:11.1523941Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T17:19:11.1524507Z return self.compile_to_module().call 2023-09-06T17:19:11.1525268Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:11.1525798Z r = func(*args, **kwargs) 2023-09-06T17:19:11.1526586Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T17:19:11.1527258Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T17:19:11.1528158Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T17:19:11.1528725Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T17:19:11.1529341Z File "/tmp/tmp6z4_dxrj/fe/cfe3utb7wwz657ihqng4gtjywdsnd5dadvyblfn46tep5r36lkve.py", line 239, in 2023-09-06T17:19:11.1529917Z async_compile.wait(globals()) 2023-09-06T17:19:11.1530683Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T17:19:11.1531272Z scope[key] = result.result() 2023-09-06T17:19:11.1532075Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T17:19:11.1532655Z self.future.result() 2023-09-06T17:19:11.1533232Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T17:19:11.1533832Z return self.__get_result() 2023-09-06T17:19:11.1534508Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T17:19:11.1535429Z raise self._exception 2023-09-06T17:19:11.1536192Z triton.compiler.errors.CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T17:19:11.1536875Z xmask = xindex < xnumel 2023-09-06T17:19:11.1537317Z x1 = (xindex // 64) 2023-09-06T17:19:11.1537735Z x0 = xindex % 64 2023-09-06T17:19:11.1538665Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T17:19:11.1539457Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T17:19:11.1540007Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T17:19:11.1540619Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T17:19:11.1541221Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T17:19:11.1541828Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T17:19:11.1542452Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T17:19:11.1543056Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T17:19:11.1543542Z ^ 2023-09-06T17:19:11.1544147Z ValueError('atomic_add does not support bf16') 2023-09-06T17:19:12.3432756Z ERROR 2023-09-06T17:19:15.9690069Z 2023-09-06T17:19:18.7719549Z loading model: 0it [00:00, ?it/s] 2023-09-06T17:19:18.7720387Z loading model: 0it [00:02, ?it/s] 2023-09-06T17:19:18.7723524Z cuda eval basic_gnn_sage 2023-09-06T17:19:19.3061344Z [2023-09-06 17:19:19,305] [0/0] torch._dynamo.output_graph: [WARNING] nn.Module state_dict and backward hooks are not yet supported by torch.compile, but were detected in your model and will be silently ignored. See https://pytorch.org/docs/master/compile/nn-module.html for more information and limitations. 2023-09-06T17:19:25.8175541Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T17:19:25.8175992Z concurrent.futures.process._RemoteTraceback: 2023-09-06T17:19:25.8177445Z """ 2023-09-06T17:19:25.8177880Z Traceback (most recent call last): 2023-09-06T17:19:25.8179203Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1124, in ast_to_ttir 2023-09-06T17:19:25.8179876Z generator.visit(fn.parse()) 2023-09-06T17:19:25.8181000Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1017, in visit 2023-09-06T17:19:25.8181444Z ret = super().visit(node) 2023-09-06T17:19:25.8181877Z File "/opt/conda/envs/py_3.10/lib/python3.10/ast.py", line 418, in visit 2023-09-06T17:19:25.8182206Z return visitor(node) 2023-09-06T17:19:25.8182767Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 293, in visit_Module 2023-09-06T17:19:25.8183223Z ast.NodeVisitor.generic_visit(self, node) 2023-09-06T17:19:25.8183671Z File "/opt/conda/envs/py_3.10/lib/python3.10/ast.py", line 426, in generic_visit 2023-09-06T17:19:25.8184019Z self.visit(item) 2023-09-06T17:19:25.8184584Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1017, in visit 2023-09-06T17:19:25.8184983Z ret = super().visit(node) 2023-09-06T17:19:25.8185310Z File "/opt/conda/envs/py_3.10/lib/python3.10/ast.py", line 418, in visit 2023-09-06T17:19:25.8185639Z return visitor(node) 2023-09-06T17:19:25.8186212Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 362, in visit_FunctionDef 2023-09-06T17:19:25.8186660Z self.visit_compound_statement(node.body) 2023-09-06T17:19:25.8187269Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 288, in visit_compound_statement 2023-09-06T17:19:25.8187702Z ret_type = self.visit(stmt) 2023-09-06T17:19:25.8188249Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1017, in visit 2023-09-06T17:19:25.8188655Z ret = super().visit(node) 2023-09-06T17:19:25.8189588Z File "/opt/conda/envs/py_3.10/lib/python3.10/ast.py", line 418, in visit 2023-09-06T17:19:25.8189941Z return visitor(node) 2023-09-06T17:19:25.8190525Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 983, in visit_Expr 2023-09-06T17:19:25.8190967Z ast.NodeVisitor.generic_visit(self, node) 2023-09-06T17:19:25.8191364Z File "/opt/conda/envs/py_3.10/lib/python3.10/ast.py", line 428, in generic_visit 2023-09-06T17:19:25.8191683Z self.visit(value) 2023-09-06T17:19:25.8192218Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1017, in visit 2023-09-06T17:19:25.8192612Z ret = super().visit(node) 2023-09-06T17:19:25.8192956Z File "/opt/conda/envs/py_3.10/lib/python3.10/ast.py", line 418, in visit 2023-09-06T17:19:25.8193262Z return visitor(node) 2023-09-06T17:19:25.8193874Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 946, in visit_Call 2023-09-06T17:19:25.8194300Z return fn(*args, **extra_kwargs, **kws) 2023-09-06T17:19:25.8194850Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/language/core.py", line 30, in wrapper 2023-09-06T17:19:25.8195237Z return fn(*args, **kwargs) 2023-09-06T17:19:25.8195746Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/language/core.py", line 1137, in atomic_add 2023-09-06T17:19:25.8196213Z return semantic.atomic_add(pointer, val, mask, sem, _builder) 2023-09-06T17:19:25.8196813Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/language/semantic.py", line 1191, in atomic_add 2023-09-06T17:19:25.8197390Z ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'add', builder) 2023-09-06T17:19:25.8198028Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/language/semantic.py", line 1087, in atom_red_typechecking_impl 2023-09-06T17:19:25.8198539Z raise ValueError("atomic_" + op + " does not support " + str(element_ty)) 2023-09-06T17:19:25.8199095Z ValueError: atomic_add does not support bf16 2023-09-06T17:19:25.8199299Z 2023-09-06T17:19:25.8199495Z The above exception was the direct cause of the following exception: 2023-09-06T17:19:25.8199740Z 2023-09-06T17:19:25.8199869Z Traceback (most recent call last): 2023-09-06T17:19:25.8200271Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/process.py", line 246, in _process_worker 2023-09-06T17:19:25.8200696Z r = call_item.fn(*call_item.args, **call_item.kwargs) 2023-09-06T17:19:25.8201302Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1278, in _worker_compile 2023-09-06T17:19:25.8201744Z kernel.precompile(warm_cache_only_with_cc=cc) 2023-09-06T17:19:25.8202330Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 168, in precompile 2023-09-06T17:19:25.8202723Z self.launchers = [ 2023-09-06T17:19:25.8203297Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 169, in 2023-09-06T17:19:25.8203793Z self._precompile_config(c, warm_cache_only_with_cc) 2023-09-06T17:19:25.8204418Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 189, in _precompile_config 2023-09-06T17:19:25.8204811Z triton.compile( 2023-09-06T17:19:25.8205332Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/compiler.py", line 476, in compile 2023-09-06T17:19:25.8205745Z next_module = compile_kernel(module) 2023-09-06T17:19:25.8206300Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/compiler.py", line 381, in 2023-09-06T17:19:25.8206805Z lambda src: optimize_ttir(ast_to_ttir(src, signature, configs[0], constants, debug=debug, arch=arch), arch)) 2023-09-06T17:19:25.8207603Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/triton/compiler/code_generator.py", line 1133, in ast_to_ttir 2023-09-06T17:19:25.8208075Z raise CompilationError(fn.src, node, repr(e)) from e 2023-09-06T17:19:25.8208545Z triton.compiler.errors.CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T17:19:25.8208950Z xmask = xindex < xnumel 2023-09-06T17:19:25.8209198Z x1 = (xindex // 64) 2023-09-06T17:19:25.8209442Z x0 = xindex % 64 2023-09-06T17:19:25.8209887Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T17:19:25.8210389Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T17:19:25.8210732Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T17:19:25.8211126Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T17:19:25.8211504Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T17:19:25.8211890Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T17:19:25.8212291Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T17:19:25.8212651Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T17:19:25.8212956Z ^ 2023-09-06T17:19:25.8213341Z ValueError('atomic_add does not support bf16') 2023-09-06T17:19:25.8213639Z """ 2023-09-06T17:19:25.8213769Z 2023-09-06T17:19:25.8213966Z The above exception was the direct cause of the following exception: 2023-09-06T17:19:25.8214211Z 2023-09-06T17:19:25.8214338Z Traceback (most recent call last): 2023-09-06T17:19:25.8214737Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T17:19:25.8215102Z fn(model, example_inputs) 2023-09-06T17:19:25.8215483Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T17:19:25.8215970Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T17:19:25.8216591Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T17:19:25.8216985Z so_path, exported = torch._export.aot_compile( 2023-09-06T17:19:25.8217553Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 645, in aot_compile 2023-09-06T17:19:25.8218046Z so_path = torch._inductor.aot_compile(ep.graph_module, list(all_args), options) 2023-09-06T17:19:25.8218667Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/__init__.py", line 48, in aot_compile 2023-09-06T17:19:25.8219056Z result = compile_fx_aot( 2023-09-06T17:19:25.8219610Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 874, in compile_fx_aot 2023-09-06T17:19:25.8220030Z return compile_fx( 2023-09-06T17:19:25.8220590Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 975, in compile_fx 2023-09-06T17:19:25.8220992Z return compile_fx( 2023-09-06T17:19:25.8221526Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 995, in compile_fx 2023-09-06T17:19:25.8221891Z return compile_fx( 2023-09-06T17:19:25.8222421Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1167, in compile_fx 2023-09-06T17:19:25.8222806Z return aot_autograd( 2023-09-06T17:19:25.8223355Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn 2023-09-06T17:19:25.8223837Z cg = aot_module_simplified(gm, example_inputs, **kwargs) 2023-09-06T17:19:25.8224470Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified 2023-09-06T17:19:25.8224925Z compiled_fn = create_aot_dispatcher_function( 2023-09-06T17:19:25.8225492Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:25.8226047Z r = func(*args, **kwargs) 2023-09-06T17:19:25.8226650Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function 2023-09-06T17:19:25.8227196Z compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T17:19:25.8227861Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe 2023-09-06T17:19:25.8228376Z return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T17:19:25.8229057Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base 2023-09-06T17:19:25.8229855Z return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) 2023-09-06T17:19:25.8230527Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base 2023-09-06T17:19:25.8230980Z compiled_fw = compiler(fw_module, flat_args) 2023-09-06T17:19:25.8231538Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:25.8231901Z r = func(*args, **kwargs) 2023-09-06T17:19:25.8232460Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1109, in fw_compiler_base 2023-09-06T17:19:25.8232853Z return inner_compile( 2023-09-06T17:19:25.8233387Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 219, in wrapper 2023-09-06T17:19:25.8233818Z compiled = inner_compile( 2023-09-06T17:19:25.8234163Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T17:19:25.8234514Z return func(*args, **kwds) 2023-09-06T17:19:25.8235083Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper 2023-09-06T17:19:25.8235710Z inner_compiled_fn = compiler_fn(gm, example_inputs) 2023-09-06T17:19:25.8236447Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/debug.py", line 228, in inner 2023-09-06T17:19:25.8237172Z return fn(*args, **kwargs) 2023-09-06T17:19:25.8237797Z File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner 2023-09-06T17:19:25.8238322Z return func(*args, **kwds) 2023-09-06T17:19:25.8239178Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 55, in newFunction 2023-09-06T17:19:25.8239747Z return old_func(*args, **kwargs) 2023-09-06T17:19:25.8240563Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 348, in compile_fx_inner 2023-09-06T17:19:25.8241221Z compiled_graph: CompiledFxGraph = fx_codegen_and_compile( 2023-09-06T17:19:25.8242137Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 574, in fx_codegen_and_compile 2023-09-06T17:19:25.8242735Z compiled_fn = graph.compile_to_fn() 2023-09-06T17:19:25.8243603Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 991, in compile_to_fn 2023-09-06T17:19:25.8244186Z return self.compile_to_module().call 2023-09-06T17:19:25.8244956Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:25.8245503Z r = func(*args, **kwargs) 2023-09-06T17:19:25.8246277Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 946, in compile_to_module 2023-09-06T17:19:25.8246946Z mod = PyCodeCache.load_by_key_path(key, path, linemap=linemap) 2023-09-06T17:19:25.8247814Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1161, in load_by_key_path 2023-09-06T17:19:25.8248392Z exec(code, mod.__dict__, mod.__dict__) 2023-09-06T17:19:25.8249452Z File "/tmp/tmpu28elv2u/il/cilf2lo4zn4rlzmzsw4cf6x2m5glsbalgsle42aeaxht46querte.py", line 247, in 2023-09-06T17:19:25.8250123Z async_compile.wait(globals()) 2023-09-06T17:19:25.8250916Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1440, in wait 2023-09-06T17:19:25.8251479Z scope[key] = result.result() 2023-09-06T17:19:25.8252237Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 1299, in result 2023-09-06T17:19:25.8252774Z self.future.result() 2023-09-06T17:19:25.8253301Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 451, in result 2023-09-06T17:19:25.8253871Z return self.__get_result() 2023-09-06T17:19:25.8254367Z File "/opt/conda/envs/py_3.10/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result 2023-09-06T17:19:25.8254860Z raise self._exception 2023-09-06T17:19:25.8255433Z triton.compiler.errors.CompilationError: at 15:53: xindex = xoffset + tl.arange(0, XBLOCK)[:] 2023-09-06T17:19:25.8255982Z xmask = xindex < xnumel 2023-09-06T17:19:25.8256336Z x1 = (xindex // 64) 2023-09-06T17:19:25.8256654Z x0 = xindex % 64 2023-09-06T17:19:25.8257294Z tmp0 = tl.load(in_ptr0 + (200000 + x1), None, eviction_policy='evict_last') 2023-09-06T17:19:25.8257990Z tmp2 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') 2023-09-06T17:19:25.8258498Z tmp1 = tl.where(tmp0 < 0, tmp0 + 10000, tmp0) 2023-09-06T17:19:25.8259045Z tl.device_assert((0 <= tmp1) & (tmp1 < 10000), "index out of bounds: 0 <= tmp1 < 10000") 2023-09-06T17:19:25.8259577Z tmp3 = tl.where(tmp2 < 0, tmp2 + 10000, tmp2) 2023-09-06T17:19:25.8260134Z tl.device_assert((0 <= tmp3) & (tmp3 < 10000), "index out of bounds: 0 <= tmp3 < 10000") 2023-09-06T17:19:25.8260700Z tmp4 = tl.load(in_ptr1 + (x0 + (64*tmp3)), None).to(tl.float32) 2023-09-06T17:19:25.8261189Z tl.atomic_add(out_ptr0 + (x0 + (64*tmp1)), tmp4, None) 2023-09-06T17:19:25.8261914Z ^ 2023-09-06T17:19:25.8262482Z ValueError('atomic_add does not support bf16') 2023-09-06T17:19:27.0696986Z ERROR 2023-09-06T17:19:30.7203099Z 2023-09-06T17:19:34.9179225Z loading model: 0it [00:00, ?it/s] 2023-09-06T17:19:34.9179828Z loading model: 0it [00:04, ?it/s] 2023-09-06T17:19:34.9268117Z cuda eval cm3leon_generate 2023-09-06T17:19:43.5204053Z ERROR:common:Backend dynamo failed in warmup() 2023-09-06T17:19:43.5204644Z Traceback (most recent call last): 2023-09-06T17:19:43.5205048Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T17:19:43.5205403Z fn(model, example_inputs) 2023-09-06T17:19:43.5205795Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T17:19:43.5206289Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T17:19:43.5207170Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T17:19:43.5207761Z so_path, exported = torch._export.aot_compile( 2023-09-06T17:19:43.5210889Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 635, in aot_compile 2023-09-06T17:19:43.5211685Z ep = export(f, args, kwargs, constraints) 2023-09-06T17:19:43.5212471Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 307, in export 2023-09-06T17:19:43.5212948Z gm_torch_level, _ = torch._dynamo.export( 2023-09-06T17:19:43.5213511Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1150, in inner 2023-09-06T17:19:43.5213897Z result_traced = opt_f(*args, **kwargs) 2023-09-06T17:19:43.5214475Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T17:19:43.5214894Z return self._call_impl(*args, **kwargs) 2023-09-06T17:19:43.5215927Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T17:19:43.5216326Z return forward_call(*args, **kwargs) 2023-09-06T17:19:43.5216871Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T17:19:43.5217250Z return fn(*args, **kwargs) 2023-09-06T17:19:43.5217807Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T17:19:43.5218230Z return self._call_impl(*args, **kwargs) 2023-09-06T17:19:43.5218767Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T17:19:43.5219165Z return forward_call(*args, **kwargs) 2023-09-06T17:19:43.5219719Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T17:19:43.5220178Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T17:19:43.5220737Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T17:19:43.5221121Z return fn(*args, **kwargs) 2023-09-06T17:19:43.5221689Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T17:19:43.5222086Z return _compile( 2023-09-06T17:19:43.5222605Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T17:19:43.5223112Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T17:19:43.5223708Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:19:43.5224085Z r = func(*args, **kwargs) 2023-09-06T17:19:43.5224644Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T17:19:43.5225301Z out_code = transform_code_object(code, transform) 2023-09-06T17:19:43.5225956Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T17:19:43.5226427Z transformations(instructions, code_options) 2023-09-06T17:19:43.5227004Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T17:19:43.5227377Z tracer.run() 2023-09-06T17:19:43.5227878Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T17:19:43.5228243Z super().run() 2023-09-06T17:19:43.5228758Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T17:19:43.5229389Z and self.step() 2023-09-06T17:19:43.5230070Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T17:19:43.5230467Z getattr(self, inst.opname)(inst) 2023-09-06T17:19:43.5231029Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T17:19:43.5231428Z return inner_fn(self, inst) 2023-09-06T17:19:43.5231966Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 168, in impl 2023-09-06T17:19:43.5232398Z self.push(fn_var.call_function(self, self.popn(nargs), {})) 2023-09-06T17:19:43.5233057Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 618, in call_function 2023-09-06T17:19:43.5233481Z result = handler(tx, *args, **kwargs) 2023-09-06T17:19:43.5234053Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 950, in call_getitem 2023-09-06T17:19:43.5234503Z return args[0].call_method(tx, "__getitem__", args[1:], kwargs) 2023-09-06T17:19:43.5235298Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/user_defined.py", line 302, in call_method 2023-09-06T17:19:43.5235722Z ).call_function(tx, args, kwargs) 2023-09-06T17:19:43.5236304Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T17:19:43.5236746Z return super().call_function(tx, args, kwargs) 2023-09-06T17:19:43.5237322Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T17:19:43.5237761Z return super().call_function(tx, args, kwargs) 2023-09-06T17:19:43.5238350Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T17:19:43.5238781Z return tx.inline_user_function_return( 2023-09-06T17:19:43.5239397Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T17:19:43.5239930Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T17:19:43.5240591Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T17:19:43.5241039Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T17:19:43.5241632Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2236, in inline_call_ 2023-09-06T17:19:43.5242120Z InliningInstructionTranslator.check_inlineable(func) 2023-09-06T17:19:43.5242749Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2217, in check_inlineable 2023-09-06T17:19:43.5243191Z unimplemented( 2023-09-06T17:19:43.5243711Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/exc.py", line 176, in unimplemented 2023-09-06T17:19:43.5244242Z raise Unsupported(msg) 2023-09-06T17:19:43.5244692Z torch._dynamo.exc.Unsupported: inline in skipfiles: _SpecialForm.__getitem__ | inner /opt/conda/envs/py_3.10/lib/python3.10/typing.py 2023-09-06T17:19:43.5245023Z 2023-09-06T17:19:43.5245117Z from user code: 2023-09-06T17:19:43.5245531Z File "/var/lib/jenkins/workspace/torchbench/torchbenchmark/models/cm3leon_generate/model.py", line 1116, in forward 2023-09-06T17:19:43.5245967Z Dict[str, Dict[str, Optional[Tensor]]], {} 2023-09-06T17:19:43.5246160Z 2023-09-06T17:19:43.5246355Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T17:19:43.5246578Z 2023-09-06T17:19:44.7248048Z ERROR 2023-09-06T17:19:48.3201232Z 2023-09-06T17:19:49.1790226Z loading model: 0it [00:00, ?it/s] 2023-09-06T17:19:49.1791676Z loading model: 0it [00:00, ?it/s] 2023-09-06T17:19:49.1792559Z cuda eval dcgan 2023-09-06T17:20:10.7645882Z 2023-09-06T17:20:10.8647487Z running benchmark: 0% 0/30 [00:00 2023-09-06T17:24:21.5533343Z lambda: run_node(tx.output, node, args, kwargs, nnmodule) 2023-09-06T17:24:21.5534374Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1415, in run_node 2023-09-06T17:24:21.5535193Z raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e 2023-09-06T17:24:21.5536249Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1404, in run_node 2023-09-06T17:24:21.5537035Z return getattr(args[0], node.target)(*args[1:], **kwargs) 2023-09-06T17:24:21.5538080Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T17:24:21.5538737Z return fn(*args, **kwargs) 2023-09-06T17:24:21.5539898Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T17:24:21.5540702Z return self.dispatch(func, types, args, kwargs) 2023-09-06T17:24:21.5541713Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1495, in dispatch 2023-09-06T17:24:21.5542454Z return decomposition_table[func](*args, **kwargs) 2023-09-06T17:24:21.5543425Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_refs/__init__.py", line 4688, in new_full 2023-09-06T17:24:21.5544073Z return torch.full( 2023-09-06T17:24:21.5544985Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper 2023-09-06T17:24:21.5545964Z return fn(*args, **kwargs) 2023-09-06T17:24:21.5546996Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1290, in __torch_dispatch__ 2023-09-06T17:24:21.5547982Z return self.dispatch(func, types, args, kwargs) 2023-09-06T17:24:21.5549034Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1532, in dispatch 2023-09-06T17:24:21.5549969Z op_impl_out = op_impl(self, func, *args, **kwargs) 2023-09-06T17:24:21.5551014Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 447, in constructors 2023-09-06T17:24:21.5551720Z r = func(*args, **new_kwargs) 2023-09-06T17:24:21.5552598Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 448, in __call__ 2023-09-06T17:24:21.5553263Z return self._op(*args, **kwargs or {}) 2023-09-06T17:24:21.5554239Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_meta_registrations.py", line 4433, in full 2023-09-06T17:24:21.5554972Z return torch.empty(size, *args, **kwargs) 2023-09-06T17:24:21.5556036Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 985, in guard_bool 2023-09-06T17:24:21.5556915Z r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node) 2023-09-06T17:24:21.5558116Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3491, in evaluate_expr 2023-09-06T17:24:21.5558902Z concrete_val = self.size_hint(orig_expr) 2023-09-06T17:24:21.5559940Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 3292, in size_hint 2023-09-06T17:24:21.5560727Z raise self._make_data_dependent_error(result_expr, expr) 2023-09-06T17:24:21.5562688Z RuntimeError: Failed running call_method new_full(*(FakeTensor(..., device='cuda:0', size=(3, 800, 1199), dtype=torch.bfloat16), [4, 3, FakeTensor(..., size=(), dtype=torch.int64), FakeTensor(..., size=(), dtype=torch.int64)], 0.0), **{'device': None}): 2023-09-06T17:24:21.5565060Z It appears that you're trying to get a value out of symbolic int/float whose value is data-dependent (and thus we do not know the true value.) The expression we were trying to evaluate is Eq(12*i0*i1, 0) (unhinted: Eq(12*i0*i1, 0)). Scroll up to see where each of these data-dependent accesses originally occurred. 2023-09-06T17:24:21.5566082Z 2023-09-06T17:24:21.5566418Z During handling of the above exception, another exception occurred: 2023-09-06T17:24:21.5566835Z 2023-09-06T17:24:21.5567056Z Traceback (most recent call last): 2023-09-06T17:24:21.5567712Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 2288, in warmup 2023-09-06T17:24:21.5568376Z fn(model, example_inputs) 2023-09-06T17:24:21.5569035Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1190, in opt_aot_inductor 2023-09-06T17:24:21.5569929Z module, exported, output_tensors, output_spec = AOTInductorModelCache.load( 2023-09-06T17:24:21.5570741Z File "/var/lib/jenkins/workspace/benchmarks/dynamo/common.py", line 1134, in load 2023-09-06T17:24:21.5571424Z so_path, exported = torch._export.aot_compile( 2023-09-06T17:24:21.5572416Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 635, in aot_compile 2023-09-06T17:24:21.5573093Z ep = export(f, args, kwargs, constraints) 2023-09-06T17:24:21.5574012Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 307, in export 2023-09-06T17:24:21.5574712Z gm_torch_level, _ = torch._dynamo.export( 2023-09-06T17:24:21.5575648Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1150, in inner 2023-09-06T17:24:21.5576315Z result_traced = opt_f(*args, **kwargs) 2023-09-06T17:24:21.5577682Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T17:24:21.5617335Z return self._call_impl(*args, **kwargs) 2023-09-06T17:24:21.5618645Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T17:24:21.5619339Z return forward_call(*args, **kwargs) 2023-09-06T17:24:21.5620276Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 338, in _fn 2023-09-06T17:24:21.5620916Z return fn(*args, **kwargs) 2023-09-06T17:24:21.5621881Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl 2023-09-06T17:24:21.5622607Z return self._call_impl(*args, **kwargs) 2023-09-06T17:24:21.5623548Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl 2023-09-06T17:24:21.5624277Z return forward_call(*args, **kwargs) 2023-09-06T17:24:21.5625223Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 500, in catch_errors 2023-09-06T17:24:21.5625982Z return callback(frame, cache_entry, hooks, frame_state) 2023-09-06T17:24:21.5626942Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 140, in _fn 2023-09-06T17:24:21.5627575Z return fn(*args, **kwargs) 2023-09-06T17:24:21.5628609Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 382, in _convert_frame_assert 2023-09-06T17:24:21.5629480Z return _compile( 2023-09-06T17:24:21.5630346Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 562, in _compile 2023-09-06T17:24:21.5631142Z guarded_code = compile_inner(code, one_graph, hooks, transform) 2023-09-06T17:24:21.5632675Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper 2023-09-06T17:24:21.5633362Z r = func(*args, **kwargs) 2023-09-06T17:24:21.5634332Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 484, in compile_inner 2023-09-06T17:24:21.5635032Z out_code = transform_code_object(code, transform) 2023-09-06T17:24:21.5636119Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object 2023-09-06T17:24:21.5636904Z transformations(instructions, code_options) 2023-09-06T17:24:21.5637911Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 451, in transform 2023-09-06T17:24:21.5638477Z tracer.run() 2023-09-06T17:24:21.5639303Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2078, in run 2023-09-06T17:24:21.5639849Z super().run() 2023-09-06T17:24:21.5640636Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T17:24:21.5641177Z and self.step() 2023-09-06T17:24:21.5641919Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T17:24:21.5642503Z getattr(self, inst.opname)(inst) 2023-09-06T17:24:21.5643325Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T17:24:21.5643899Z return inner_fn(self, inst) 2023-09-06T17:24:21.5644706Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1119, in CALL_FUNCTION 2023-09-06T17:24:21.5645313Z self.call_function(fn, args, {}) 2023-09-06T17:24:21.5646131Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T17:24:21.5646756Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T17:24:21.5648167Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 307, in call_function 2023-09-06T17:24:21.5648783Z return super().call_function(tx, args, kwargs) 2023-09-06T17:24:21.5649648Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T17:24:21.5650277Z return super().call_function(tx, args, kwargs) 2023-09-06T17:24:21.5651159Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T17:24:21.5651752Z return tx.inline_user_function_return( 2023-09-06T17:24:21.5652653Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T17:24:21.5653491Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T17:24:21.5654485Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T17:24:21.5655134Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T17:24:21.5655991Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T17:24:21.5656536Z tracer.run() 2023-09-06T17:24:21.5657283Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T17:24:21.5657810Z and self.step() 2023-09-06T17:24:21.5658654Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T17:24:21.5659223Z getattr(self, inst.opname)(inst) 2023-09-06T17:24:21.5660032Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T17:24:21.5660587Z return inner_fn(self, inst) 2023-09-06T17:24:21.5661706Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1171, in CALL_FUNCTION_KW 2023-09-06T17:24:21.5662358Z self.call_function(fn, args, kwargs) 2023-09-06T17:24:21.5663463Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T17:24:21.5664117Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T17:24:21.5665051Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 261, in call_function 2023-09-06T17:24:21.5665665Z return super().call_function(tx, args, kwargs) 2023-09-06T17:24:21.5666515Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 90, in call_function 2023-09-06T17:24:21.5667138Z return tx.inline_user_function_return( 2023-09-06T17:24:21.5668168Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 601, in inline_user_function_return 2023-09-06T17:24:21.5668996Z result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) 2023-09-06T17:24:21.5670215Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2183, in inline_call 2023-09-06T17:24:21.5670876Z return cls.inline_call_(parent, func, args, kwargs) 2023-09-06T17:24:21.5671780Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2290, in inline_call_ 2023-09-06T17:24:21.5672343Z tracer.run() 2023-09-06T17:24:21.5673101Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 728, in run 2023-09-06T17:24:21.5673648Z and self.step() 2023-09-06T17:24:21.5674484Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 691, in step 2023-09-06T17:24:21.5675097Z getattr(self, inst.opname)(inst) 2023-09-06T17:24:21.5675922Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper 2023-09-06T17:24:21.5676913Z return inner_fn(self, inst) 2023-09-06T17:24:21.5677778Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1171, in CALL_FUNCTION_KW 2023-09-06T17:24:21.5678458Z self.call_function(fn, args, kwargs) 2023-09-06T17:24:21.5679306Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 565, in call_function 2023-09-06T17:24:21.5679925Z self.push(fn.call_function(self, args, kwargs)) 2023-09-06T17:24:21.5680858Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/misc.py", line 594, in call_function 2023-09-06T17:24:21.5681600Z return self.obj.call_method(tx, self.name, args, kwargs).add_options(self) 2023-09-06T17:24:21.5682581Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/tensor.py", line 652, in call_method 2023-09-06T17:24:21.5683206Z return wrap_fx_proxy( 2023-09-06T17:24:21.5684054Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1216, in wrap_fx_proxy 2023-09-06T17:24:21.5684667Z return wrap_fx_proxy_cls( 2023-09-06T17:24:21.5685551Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1303, in wrap_fx_proxy_cls 2023-09-06T17:24:21.5686234Z example_value = get_fake_value(proxy.node, tx) 2023-09-06T17:24:21.5687096Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1371, in get_fake_value 2023-09-06T17:24:21.5687659Z raise UserError( 2023-09-06T17:24:21.5689403Z torch._dynamo.exc.UserError: Tried to use data-dependent value in the subsequent computation. This can happen when we encounter unbounded dynamic value that is unknown during tracing time.You will need to explicitly give hint to the compiler. Please take a look at constrain_as_value OR constrain_as_size APIs 2023-09-06T17:24:21.5690650Z 2023-09-06T17:24:21.5690805Z from user code: 2023-09-06T17:24:21.5691704Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/dense_detector.py", line 95, in forward 2023-09-06T17:24:21.5692433Z images = self.preprocess_image(batched_inputs) 2023-09-06T17:24:21.5693475Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/modeling/meta_arch/dense_detector.py", line 129, in preprocess_image 2023-09-06T17:24:21.5694171Z images = ImageList.from_tensors( 2023-09-06T17:24:21.5695092Z File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/detectron2/structures/image_list.py", line 122, in from_tensors 2023-09-06T17:24:21.5695845Z batched_imgs = tensors[0].new_full(batch_shape, pad_value, device=device) 2023-09-06T17:24:21.5696221Z 2023-09-06T17:24:21.5696509Z Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information 2023-09-06T17:24:21.5696882Z 2023-09-06T17:24:22.8997042Z ERROR 2023-09-06T17:24:22.9045608Z speedup gmean=0.00x mean=0.815x 2023-09-06T17:24:22.9045988Z abs_latency gmean=0.00x mean=6.913x 2023-09-06T17:24:22.9048092Z compilation_latency mean=30.956 seconds 2023-09-06T17:24:22.9048519Z compression_ratio mean=0.338x 2023-09-06T17:24:22.9050938Z eager_peak_mem gmean=0.00x mean=0.445x 2023-09-06T17:24:22.9052490Z dynamo_peak_mem gmean=0.00x mean=0.721x 2023-09-06T17:24:22.9054827Z calls_captured gmean=0.00x mean=113.333x 2023-09-06T17:24:22.9056498Z unique_graphs gmean=0.00x mean=0.533x 2023-09-06T17:24:22.9058256Z graph_breaks gmean=0.00x mean=0.000x 2023-09-06T17:24:22.9059960Z unique_graph_breaks gmean=0.00x mean=0.000x 2023-09-06T17:24:23.6498553Z + [[ training-true-inference-true-default-true-dynamic-true-cudagraphs-true-aotinductor-true-freezing_cudagraphs-true == *maxautotune-true* ]] 2023-09-06T17:24:23.6667727Z ##[group]Run cat test/**/*.log || true 2023-09-06T17:24:23.6668066Z cat test/**/*.log || true 2023-09-06T17:24:23.6689260Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T17:24:23.6689573Z env: 2023-09-06T17:24:23.6689818Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:23.6690130Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:23.6690556Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:23.6690896Z ##[endgroup] 2023-09-06T17:24:23.6757302Z cat: 'test/**/*.log': No such file or directory 2023-09-06T17:24:23.6791878Z Prepare all required actions 2023-09-06T17:24:23.6820164Z ##[group]Run ./.github/actions/get-workflow-job-id 2023-09-06T17:24:23.6820477Z with: 2023-09-06T17:24:23.6821372Z github-token: *** 2023-09-06T17:24:23.6821600Z env: 2023-09-06T17:24:23.6821841Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:23.6822166Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:23.6822584Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:23.6823129Z ##[endgroup] 2023-09-06T17:24:23.6841675Z ##[group]Run set -eux 2023-09-06T17:24:23.6841970Z set -eux 2023-09-06T17:24:23.6842354Z GHA_WORKFLOW_JOB_ID=$(python3 .github/scripts/get_workflow_job_id.py "${GITHUB_RUN_ID}" "${RUNNER_NAME}") 2023-09-06T17:24:23.6842797Z echo "job-id=${GHA_WORKFLOW_JOB_ID}" >> "${GITHUB_OUTPUT}" 2023-09-06T17:24:23.6866431Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T17:24:23.6866775Z env: 2023-09-06T17:24:23.6867134Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:23.6867448Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:23.6867866Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:23.6868441Z GITHUB_TOKEN: *** 2023-09-06T17:24:23.6868687Z ##[endgroup] 2023-09-06T17:24:23.6916586Z ++ python3 .github/scripts/get_workflow_job_id.py 6093795712 gh-ci-gcp-a100-17 2023-09-06T17:24:24.7299798Z + GHA_WORKFLOW_JOB_ID=16535270177 2023-09-06T17:24:24.7300464Z + echo job-id=16535270177 2023-09-06T17:24:24.7333682Z ##[group]Run kill "$MONITOR_SCRIPT_PID" 2023-09-06T17:24:24.7334013Z kill "$MONITOR_SCRIPT_PID" 2023-09-06T17:24:24.7353353Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T17:24:24.7353721Z env: 2023-09-06T17:24:24.7353949Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:24.7354280Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:24.7354696Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:24.7355059Z MONITOR_SCRIPT_PID: 1951841 2023-09-06T17:24:24.7355298Z ##[endgroup] 2023-09-06T17:24:24.7476081Z Prepare all required actions 2023-09-06T17:24:24.7476748Z Getting action download info 2023-09-06T17:24:24.9984069Z Download action repository 'actions/upload-artifact@v3' (SHA:0b7f8abb1508181956e8e162db84b466c27e18ce) 2023-09-06T17:24:25.5958201Z ##[group]Run ./.github/actions/upload-test-artifacts 2023-09-06T17:24:25.5958539Z with: 2023-09-06T17:24:25.5958874Z file-suffix: test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177 2023-09-06T17:24:25.5959277Z use-gha: anything-non-empty-to-use-gha 2023-09-06T17:24:25.5959541Z env: 2023-09-06T17:24:25.5959769Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:25.5960093Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:25.5960502Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:25.5960824Z ##[endgroup] 2023-09-06T17:24:25.6026967Z ##[group]Run actions/upload-artifact@v3 2023-09-06T17:24:25.6027257Z with: 2023-09-06T17:24:25.6027696Z name: test-jsons-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip 2023-09-06T17:24:25.6028113Z retention-days: 14 2023-09-06T17:24:25.6028366Z if-no-files-found: warn 2023-09-06T17:24:25.6028629Z path: test/**/*.json 2023-09-06T17:24:25.6028860Z env: 2023-09-06T17:24:25.6029268Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:25.6029941Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:25.6030357Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:25.6030688Z ##[endgroup] 2023-09-06T17:24:25.8446269Z With the provided path, there will be 3 files uploaded 2023-09-06T17:24:25.8449202Z Starting artifact upload 2023-09-06T17:24:25.8450128Z For more detailed logs during the artifact upload process, enable step-debugging: https://docs.github.com/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging#enabling-step-debug-logging 2023-09-06T17:24:25.8450761Z Artifact name is valid! 2023-09-06T17:24:25.9662919Z Container for artifact "test-jsons-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip" successfully created. Starting upload of file(s) 2023-09-06T17:24:26.3040352Z Total size of all the files uploaded is 29080 bytes 2023-09-06T17:24:26.3041091Z File upload process has finished. Finalizing the artifact upload 2023-09-06T17:24:26.4083708Z Artifact has been finalized. All files have been successfully uploaded! 2023-09-06T17:24:26.4084007Z 2023-09-06T17:24:26.4084218Z The raw size of all the files that were specified for upload is 300200 bytes 2023-09-06T17:24:26.4084792Z The size of all the files that were uploaded is 29080 bytes. This takes into account any gzip compression used to reduce the upload size, time and storage 2023-09-06T17:24:26.4085156Z 2023-09-06T17:24:26.4085803Z Note: The size of downloaded zips can differ significantly from the reported size. For more information see: https://github.com/actions/upload-artifact#zipped-artifact-downloads 2023-09-06T17:24:26.4086267Z 2023-09-06T17:24:26.4086758Z Artifact test-jsons-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip has been successfully uploaded! 2023-09-06T17:24:26.4210711Z ##[group]Run actions/upload-artifact@v3 2023-09-06T17:24:26.4210999Z with: 2023-09-06T17:24:26.4211404Z name: test-reports-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip 2023-09-06T17:24:26.4211837Z retention-days: 14 2023-09-06T17:24:26.4212082Z if-no-files-found: ignore 2023-09-06T17:24:26.4212366Z path: test/**/*.xml test/**/*.csv 2023-09-06T17:24:26.4212612Z env: 2023-09-06T17:24:26.4212835Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:26.4213136Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:26.4213540Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:26.4213871Z ##[endgroup] 2023-09-06T17:24:26.6833131Z With the provided path, there will be 24 files uploaded 2023-09-06T17:24:26.6836449Z Starting artifact upload 2023-09-06T17:24:26.6837378Z For more detailed logs during the artifact upload process, enable step-debugging: https://docs.github.com/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging#enabling-step-debug-logging 2023-09-06T17:24:26.6838007Z Artifact name is valid! 2023-09-06T17:24:26.8993454Z Container for artifact "test-reports-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip" successfully created. Starting upload of file(s) 2023-09-06T17:24:28.6538204Z Total size of all the files uploaded is 16265 bytes 2023-09-06T17:24:28.6538699Z File upload process has finished. Finalizing the artifact upload 2023-09-06T17:24:28.7492951Z Artifact has been finalized. All files have been successfully uploaded! 2023-09-06T17:24:28.7493252Z 2023-09-06T17:24:28.7493513Z The raw size of all the files that were specified for upload is 30047 bytes 2023-09-06T17:24:28.7494130Z The size of all the files that were uploaded is 16265 bytes. This takes into account any gzip compression used to reduce the upload size, time and storage 2023-09-06T17:24:28.7494493Z 2023-09-06T17:24:28.7495166Z Note: The size of downloaded zips can differ significantly from the reported size. For more information see: https://github.com/actions/upload-artifact#zipped-artifact-downloads 2023-09-06T17:24:28.7496144Z 2023-09-06T17:24:28.7496648Z Artifact test-reports-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip has been successfully uploaded! 2023-09-06T17:24:28.7594556Z ##[group]Run actions/upload-artifact@v3 2023-09-06T17:24:28.7594845Z with: 2023-09-06T17:24:28.7595237Z name: usage-log-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip 2023-09-06T17:24:28.7595623Z retention-days: 14 2023-09-06T17:24:28.7595886Z if-no-files-found: ignore 2023-09-06T17:24:28.7596169Z path: usage_log.txt test/**/*.log 2023-09-06T17:24:28.7596419Z env: 2023-09-06T17:24:28.7596645Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:28.7596964Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:28.7597368Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:28.7597704Z ##[endgroup] 2023-09-06T17:24:29.0053224Z Multiple search paths detected. Calculating the least common ancestor of all paths 2023-09-06T17:24:29.0055640Z The least common ancestor is /home/weiwangmeta/actions-runner/_work/pytorch/pytorch. This will be the root directory of the artifact 2023-09-06T17:24:29.0058047Z With the provided path, there will be 1 file uploaded 2023-09-06T17:24:29.0060843Z Starting artifact upload 2023-09-06T17:24:29.0061805Z For more detailed logs during the artifact upload process, enable step-debugging: https://docs.github.com/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging#enabling-step-debug-logging 2023-09-06T17:24:29.0062443Z Artifact name is valid! 2023-09-06T17:24:29.1173792Z Container for artifact "usage-log-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip" successfully created. Starting upload of file(s) 2023-09-06T17:24:30.3800977Z Total size of all the files uploaded is 1254423 bytes 2023-09-06T17:24:30.3801455Z File upload process has finished. Finalizing the artifact upload 2023-09-06T17:24:30.4852596Z Artifact has been finalized. All files have been successfully uploaded! 2023-09-06T17:24:30.4852920Z 2023-09-06T17:24:30.4853295Z The raw size of all the files that were specified for upload is 65717852 bytes 2023-09-06T17:24:30.4854144Z The size of all the files that were uploaded is 1254423 bytes. This takes into account any gzip compression used to reduce the upload size, time and storage 2023-09-06T17:24:30.4854519Z 2023-09-06T17:24:30.4855187Z Note: The size of downloaded zips can differ significantly from the reported size. For more information see: https://github.com/actions/upload-artifact#zipped-artifact-downloads 2023-09-06T17:24:30.4855622Z 2023-09-06T17:24:30.4856516Z Artifact usage-log-runattempt1-test-inductor_torchbench_perf-1-4-linux.gcp.a100.large_16535270177.zip has been successfully uploaded! 2023-09-06T17:24:30.4992079Z ##[group]Run # shellcheck disable=SC2156 2023-09-06T17:24:30.4992430Z # shellcheck disable=SC2156 2023-09-06T17:24:30.4992949Z find . -iname "core.[1-9]*" -exec docker exec "${DOCKER_CONTAINER_ID}" sh -c "gdb python {} -ex 'bt' -ex 'q'" \; 2023-09-06T17:24:30.5012443Z shell: /usr/bin/bash -e {0} 2023-09-06T17:24:30.5012747Z env: 2023-09-06T17:24:30.5012989Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:30.5013322Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:30.5013731Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:30.5014054Z ##[endgroup] 2023-09-06T17:24:30.8080968Z ##[group]Run pytorch/test-infra/.github/actions/teardown-linux@main 2023-09-06T17:24:30.8081314Z with: 2023-09-06T17:24:30.8081522Z env: 2023-09-06T17:24:30.8081740Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:30.8082064Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:30.8082470Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:30.8082809Z ##[endgroup] 2023-09-06T17:24:30.8258522Z ##[group]Run set -eou pipefail 2023-09-06T17:24:30.8259096Z set -eou pipefail 2023-09-06T17:24:30.8259342Z  2023-09-06T17:24:30.8259677Z echo "Holding runner for 2 hours until all ssh sessions have logged out" 2023-09-06T17:24:30.8260039Z for _ in $(seq 1440); do 2023-09-06T17:24:30.8260335Z  # Break if no ssh session exists anymore 2023-09-06T17:24:30.8260652Z  if [ "$(who)" = "" ]; then 2023-09-06T17:24:30.8260939Z  break 2023-09-06T17:24:30.8261218Z  fi 2023-09-06T17:24:30.8261448Z  echo "." 2023-09-06T17:24:30.8261669Z  sleep 5 2023-09-06T17:24:30.8261896Z done 2023-09-06T17:24:30.8282038Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T17:24:30.8282349Z env: 2023-09-06T17:24:30.8282591Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:30.8282918Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:30.8283314Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:30.8283734Z ##[endgroup] 2023-09-06T17:24:30.8326887Z Holding runner for 2 hours until all ssh sessions have logged out 2023-09-06T17:24:30.8382886Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2023-09-06T17:24:30.8383513Z # ignore expansion of "docker ps -q" since it could be empty 2023-09-06T17:24:30.8383885Z # shellcheck disable=SC2046 2023-09-06T17:24:30.8384269Z docker stop $(docker ps -q) || true 2023-09-06T17:24:30.8384593Z # Prune all of the docker images 2023-09-06T17:24:30.8384877Z docker system prune -af 2023-09-06T17:24:30.8404261Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T17:24:30.8404570Z env: 2023-09-06T17:24:30.8404817Z GIT_DEFAULT_BRANCH: main 2023-09-06T17:24:30.8405146Z GPU_FLAG: --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all 2023-09-06T17:24:30.8405547Z DOCKER_CONTAINER_ID: 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:30.8405901Z ##[endgroup] 2023-09-06T17:24:31.4509611Z 36c47af667b5 2023-09-06T17:24:35.8214165Z Deleted Containers: 2023-09-06T17:24:35.8214844Z 36c47af667b537196146162b92493090315b5cd7ff3f07f8f64ee4bb99365a29 2023-09-06T17:24:35.8215234Z 2023-09-06T17:24:43.1517025Z Deleted Images: 2023-09-06T17:24:43.1518417Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks:9dd361d1c04129f8eaa9d6b43335917800dd6d24 2023-09-06T17:24:43.1520124Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks@sha256:ea376d3cb14a9400b57a5e0e5bc49830f955ac984dd12fde7eab8e45479d06ee 2023-09-06T17:24:43.1521028Z deleted: sha256:d5a715adf5384149f42b562408a0548773cf7fc344221f5b65a1c1a685e1c2a8 2023-09-06T17:24:43.1521849Z deleted: sha256:a6860550ba817cd2f1793140ea7cf179d23c260ab4072ee325e0ed2a1e249a60 2023-09-06T17:24:43.1522716Z deleted: sha256:0dbc01f49755a72fd098fd6c2d1ade3232b19cf4d36711a268597345f6b4aee9 2023-09-06T17:24:43.1523580Z deleted: sha256:f336a347fbc86157fe5445109f1117eb97c2e74a709b0c32057e9438ea1e23f4 2023-09-06T17:24:43.1524502Z deleted: sha256:93adc0249942a8898738f81fa44190a7fceeb883cf8a737ce7effd628d075132 2023-09-06T17:24:43.1525332Z deleted: sha256:245fc29afb2c682e83abe08c41c9b384903274dc44a62a690c60019f970691cd 2023-09-06T17:24:43.1525792Z deleted: sha256:7c02af11e936ad4089e62628e114ba1c4ee5516e4c32201f976d73adb15a4119 2023-09-06T17:24:43.1526665Z deleted: sha256:40b1aa0a0854c76d066d9bb2902e4d8504cc8eabda71ce1223ec9346a1c872ba 2023-09-06T17:24:43.1527400Z deleted: sha256:3630034928544cb0509cfc2515bcb2d4f92f1ee8fa0bb8ff5394fe9cb870f9d7 2023-09-06T17:24:43.1527914Z deleted: sha256:5861945ff388c9e45a595e11b6380f8967907e2545b8de3d965e62b4d177be63 2023-09-06T17:24:43.1528350Z deleted: sha256:90d0a508d21f8ec158e206f98b9c21f709caefa358bbb755925d7b84ae7d03c3 2023-09-06T17:24:43.1528805Z deleted: sha256:a592721ed0653085f29b9bfdafccaff21a6d2fb48b0b03e6bbba1259b6db436a 2023-09-06T17:24:43.1529475Z deleted: sha256:e99f945232c08867864c9aa87c50f515190f25bc67a229ace189400a05fb31f9 2023-09-06T17:24:43.1529905Z deleted: sha256:3e47d845dde1f8a984423ad9cc8f261305717a9b92e57aa9521f1d6255a89af4 2023-09-06T17:24:43.1530443Z deleted: sha256:30d0cdadfb570c7a543a49b53522ec0f293bc5dcb92cc2c094d50bc6cb68bfb5 2023-09-06T17:24:43.1530918Z deleted: sha256:542209ba17c53f1e699f48e5f90f2c80636abeaebbc373643e6108f545e75ce8 2023-09-06T17:24:43.1531372Z deleted: sha256:05e4dbd1ddd076f76ac590f1f0ae38200ae17c02a22c4aa1a204089ac0171abd 2023-09-06T17:24:43.1531827Z deleted: sha256:e5004623f4683537ea2a9cd21c6a0b3036f569b2620a18d61a24712c3d6317e9 2023-09-06T17:24:43.1532249Z deleted: sha256:4f9e0570e948c4510e75be415389c83c2f36b83ff78a5f4528325e4b1bb6a549 2023-09-06T17:24:43.1532785Z deleted: sha256:5b8c31773008e34484f73b1ca406ef11475238420e2cc93ca8be6f14e97a60ba 2023-09-06T17:24:43.1533316Z deleted: sha256:bc7e36046a4b3e944dd688750bbf14dffbbb423a68f4fe2281d20d3abb109bc8 2023-09-06T17:24:43.1533815Z deleted: sha256:2eb070c73312bf53948c78d07e247816b5cd9349f34719eae28fe0d42643e3a4 2023-09-06T17:24:43.1534268Z deleted: sha256:666690e29b73cba5f2bcff9e87d2bd54af5b3ab82d48f332130c44cb7da4dc24 2023-09-06T17:24:43.1534728Z deleted: sha256:31058a0b4b45b86e010a9da2699e7a8b601fb5a08e1befa48b13474d49ed3306 2023-09-06T17:24:43.1535177Z deleted: sha256:da96c92d4dc247ff972962b17c50229145eecd6786676a41eadc38be1955fbd0 2023-09-06T17:24:43.1535630Z deleted: sha256:ec645b413fcd663d08c12ca4859da2680cc8597cdfeef1bbc22202aa0254c737 2023-09-06T17:24:43.1536069Z deleted: sha256:3713ae5e7ffe5b09185393291002388f51a08126a72077ee527752f440467b75 2023-09-06T17:24:43.1536632Z deleted: sha256:e4ce9691a8267e62e43dad598091568b9500502990cedb210df2ca161025a2a6 2023-09-06T17:24:43.1537270Z deleted: sha256:c4367a260dc8cd805d4315fe8cfddcbd2f7596337273a8af0c586384b71cc929 2023-09-06T17:24:43.1537751Z deleted: sha256:bd8a7a181da8078799b432efaa7eac7a27129b42477c05dfb6bc41ca7e404037 2023-09-06T17:24:43.1538216Z deleted: sha256:6f4107fce1f5c1d3a14ae4dcfe63d1b32bcc0271fe9511c29a7a38a31f782089 2023-09-06T17:24:43.1538677Z deleted: sha256:b9f976d7987f9b5613cfb1f05ab9369e62147ec09e568a265157e0788f302ee0 2023-09-06T17:24:43.1539121Z deleted: sha256:ff4d86462bb0a5d0e899ba7a435a7d86a67f3da04a4e0e58d93d591280c2878f 2023-09-06T17:24:43.1539595Z deleted: sha256:cf1ca9efe25cee8c9c769fe2d61882d3f38a3681b4ee90a553473511925bac14 2023-09-06T17:24:43.1540059Z deleted: sha256:f80bf36cc0645a23594a1965bcb45bc77540d4b13dfe592c63e7678c63a7bece 2023-09-06T17:24:43.1540489Z deleted: sha256:105b6238d3d8fb98ce63c980fe2264e638318e8f722c716a7138d680d48fef34 2023-09-06T17:24:43.1540922Z deleted: sha256:e814e2932ca219f05fa61c9634d66f2ebbc3965a864d39666bd65267e7d1530d 2023-09-06T17:24:43.1541351Z deleted: sha256:48833ded82527862476e593e4552d21ff8b1b3d592db5273d434cbb63680c4a0 2023-09-06T17:24:43.1541804Z deleted: sha256:bd934d82d83dd7d51bf639691acf95a2c16c6639cc309b7ec6f0b4b445070259 2023-09-06T17:24:43.1542244Z deleted: sha256:202f5632f2ca3ac0f1b5ff02866d6dd48b88e076774f86e8607f353a7999e819 2023-09-06T17:24:43.1542696Z deleted: sha256:2b09a5cff18522e53e874f83c8e142cec00c1ecd25e1e80813b5106aa582ed77 2023-09-06T17:24:43.1543137Z deleted: sha256:3461a011917448b5cd441f64b32dfcc74df77cb34d294103fc15b2f499674ace 2023-09-06T17:24:43.1543579Z deleted: sha256:ca1a88204f52a1a7ed0ba3a8d4e727a81c3901adf00a0e82000090747edac77a 2023-09-06T17:24:43.1544073Z deleted: sha256:a03b7e5348e4a9f52a9bc6a7e6a721901f8ff81d9c990be285e9514896e60014 2023-09-06T17:24:43.1544718Z deleted: sha256:81df849664843e70024d3739aafc4ac07671e5b396c997460e01246e3fee8e5c 2023-09-06T17:24:43.1545145Z deleted: sha256:8dc7c12508965fc88f62760ae386c1e33c5632e593321d57d0662b2730c13ef6 2023-09-06T17:24:43.1545585Z deleted: sha256:a1640700f10f70cc1e95f62e6e85b58eedb2bf5667f1c5179541767d284dd3a2 2023-09-06T17:24:43.1546034Z deleted: sha256:6fa796fb0b1943c4085305943a995094fde9c1ee8293fbc08d9c90c88384e8d2 2023-09-06T17:24:43.1546469Z deleted: sha256:9d62fe17bb848700de25ca2d91e90e6b08c6d999ab20a4f2f1090eea5cd20a6e 2023-09-06T17:24:43.1546928Z deleted: sha256:74f7a2dd742da12cad04b173b7cdfa33547293e4cf3f0026a790917143185551 2023-09-06T17:24:43.1547614Z deleted: sha256:0c0b361cfce253427e6ca97978463a1c856229e198ddfaacfc8a7270f1379505 2023-09-06T17:24:43.1548074Z deleted: sha256:97e83f61281bbd15b6fc299c48bc0a291271c9eae6edc8ae779de269f9408a27 2023-09-06T17:24:43.1548511Z deleted: sha256:009bc094f59e67fa581a79042f8dda827bc86bd3645977bc67228fa8d99f6e2b 2023-09-06T17:24:43.1548978Z deleted: sha256:f2f5c8c8a2edc3ae51ad9976703fc85e6b5e34f569b789db6cd40800a8ca9de2 2023-09-06T17:24:43.1549777Z deleted: sha256:4f3e23ed3f49b8139feb925eec6c92e3577aea450dc80c7342a892451c64b9a0 2023-09-06T17:24:43.1550224Z deleted: sha256:4da783b7b3eb1789f68b48b4e6605b0608671188b3dfe9475811c51f835f86a7 2023-09-06T17:24:43.1550681Z deleted: sha256:51cc6bc5a58f435a446deb6a91cfcdce0fb3bf1e33e8ab27cd9bfbbc41bc5ed6 2023-09-06T17:24:43.1551168Z deleted: sha256:dac932e4e5486656bab1762b210caabc344f2b857c4a6e842508f4e7a322defc 2023-09-06T17:24:43.1551619Z deleted: sha256:34f782915cf51fa7bfebb671648424b4e5c60bc1ba619af822de17c622dc0860 2023-09-06T17:24:43.1552070Z deleted: sha256:535334b0e534587a4ca7fbe99074d8848adc6baf3a7d1d0bc5202428ad07a466 2023-09-06T17:24:43.1552521Z deleted: sha256:13f93f55af415a19540beedb91537d8aaeea9f47dde0558cf70883d7f8fb8b5d 2023-09-06T17:24:43.1552973Z deleted: sha256:991a554027e504dc8fdf1bd4ecf3ac527ff97c17ebd97f2b12754ddd224c3e64 2023-09-06T17:24:43.1553433Z deleted: sha256:d1a674dc61f6276fe006a383e273def82d1101a845a3a52e4cd8d424b919161c 2023-09-06T17:24:43.1553926Z deleted: sha256:a0224c222e71e7155aef719d5900e7373b81021b9e569fb84a2b45e2317342b8 2023-09-06T17:24:43.1554371Z deleted: sha256:ace98a62b5d75f64dc251f788a5ad5883e49859785a6db0c31fd79a11908961a 2023-09-06T17:24:43.1554839Z deleted: sha256:a2cd7462e4fdf5bc8c0d39a39fe58f2315e3dfbd66de33bb8bcaf12616a1cb1a 2023-09-06T17:24:43.1555321Z deleted: sha256:6f37ca73c74f2cef0ddefd960260f2033c16c84583c5507a4f37b1cf7631dc20 2023-09-06T17:24:43.1555767Z 2023-09-06T17:24:43.1555939Z Total reclaimed space: 36.76GB 2023-09-06T17:24:43.1628475Z Post job cleanup. 2023-09-06T17:24:43.1673857Z Post job cleanup. 2023-09-06T17:24:43.2824286Z [command]/usr/bin/git version 2023-09-06T17:24:43.2878797Z git version 2.25.1 2023-09-06T17:24:43.2928957Z Temporarily overriding HOME='/home/weiwangmeta/actions-runner/_work/_temp/fa53127c-e90b-496e-9f28-735ab5c175fb' before making global git config changes 2023-09-06T17:24:43.2929681Z Adding repository directory to the temporary git global config as a safe directory 2023-09-06T17:24:43.2936358Z [command]/usr/bin/git config --global --add safe.directory /home/weiwangmeta/actions-runner/_work/pytorch/pytorch 2023-09-06T17:24:43.2986942Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2023-09-06T17:24:43.3029863Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2023-09-06T17:24:43.3318222Z Entering 'android/libs/fbjni' 2023-09-06T17:24:43.3369823Z Entering 'third_party/FP16' 2023-09-06T17:24:43.3418087Z Entering 'third_party/FXdiv' 2023-09-06T17:24:43.3466003Z Entering 'third_party/NNPACK' 2023-09-06T17:24:43.3512553Z Entering 'third_party/QNNPACK' 2023-09-06T17:24:43.3561186Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T17:24:43.3607364Z Entering 'third_party/XNNPACK' 2023-09-06T17:24:43.3674697Z Entering 'third_party/benchmark' 2023-09-06T17:24:43.3721554Z Entering 'third_party/cpuinfo' 2023-09-06T17:24:43.3767014Z Entering 'third_party/cub' 2023-09-06T17:24:43.3816080Z Entering 'third_party/cudnn_frontend' 2023-09-06T17:24:43.3869874Z Entering 'third_party/cutlass' 2023-09-06T17:24:43.3926743Z Entering 'third_party/eigen' 2023-09-06T17:24:43.3977425Z Entering 'third_party/fbgemm' 2023-09-06T17:24:43.4024080Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T17:24:43.4070634Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T17:24:43.4117508Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T17:24:43.4172218Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T17:24:43.4217615Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T17:24:43.4265161Z Entering 'third_party/flatbuffers' 2023-09-06T17:24:43.4315713Z Entering 'third_party/fmt' 2023-09-06T17:24:43.4363529Z Entering 'third_party/foxi' 2023-09-06T17:24:43.4409934Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T17:24:43.4456915Z Entering 'third_party/gloo' 2023-09-06T17:24:43.4502356Z Entering 'third_party/googletest' 2023-09-06T17:24:43.4549403Z Entering 'third_party/ideep' 2023-09-06T17:24:43.4594311Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T17:24:43.4648352Z Entering 'third_party/ios-cmake' 2023-09-06T17:24:43.4694725Z Entering 'third_party/ittapi' 2023-09-06T17:24:43.4741913Z Entering 'third_party/kineto' 2023-09-06T17:24:43.4791312Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T17:24:43.4837826Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T17:24:43.4887571Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T17:24:43.4933451Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T17:24:43.4980534Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T17:24:43.5025259Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T17:24:43.5072852Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T17:24:43.5118927Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T17:24:43.5165667Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T17:24:43.5213138Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T17:24:43.5261947Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T17:24:43.5310468Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T17:24:43.5489408Z Entering 'third_party/mimalloc' 2023-09-06T17:24:43.5540178Z Entering 'third_party/nccl/nccl' 2023-09-06T17:24:43.5586582Z Entering 'third_party/neon2sse' 2023-09-06T17:24:43.5634054Z Entering 'third_party/nlohmann' 2023-09-06T17:24:43.5681614Z Entering 'third_party/onnx' 2023-09-06T17:24:43.5744461Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T17:24:43.5791505Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T17:24:43.5840040Z Entering 'third_party/onnx-tensorrt' 2023-09-06T17:24:43.5885016Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T17:24:43.5935935Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T17:24:43.5984619Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T17:24:43.6034353Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T17:24:43.6089031Z Entering 'third_party/pocketfft' 2023-09-06T17:24:43.6141765Z Entering 'third_party/protobuf' 2023-09-06T17:24:43.6195651Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T17:24:43.6244069Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T17:24:43.6293668Z Entering 'third_party/psimd' 2023-09-06T17:24:43.6342274Z Entering 'third_party/pthreadpool' 2023-09-06T17:24:43.6388573Z Entering 'third_party/pybind11' 2023-09-06T17:24:43.6437392Z Entering 'third_party/python-peachpy' 2023-09-06T17:24:43.6485630Z Entering 'third_party/sleef' 2023-09-06T17:24:43.6534269Z Entering 'third_party/tbb' 2023-09-06T17:24:43.6585126Z Entering 'third_party/tensorpipe' 2023-09-06T17:24:43.6635288Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T17:24:43.6682850Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T17:24:43.6728452Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T17:24:43.6776975Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T17:24:43.6821122Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T17:24:43.6873435Z Entering 'third_party/zstd' 2023-09-06T17:24:43.6940600Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2023-09-06T17:24:43.6975886Z http.https://github.com/.extraheader 2023-09-06T17:24:43.6989641Z [command]/usr/bin/git config --local --unset-all http.https://github.com/.extraheader 2023-09-06T17:24:43.7035093Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2023-09-06T17:24:43.7325582Z Entering 'android/libs/fbjni' 2023-09-06T17:24:43.7353406Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7392187Z Entering 'third_party/FP16' 2023-09-06T17:24:43.7419336Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7456014Z Entering 'third_party/FXdiv' 2023-09-06T17:24:43.7483857Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7521505Z Entering 'third_party/NNPACK' 2023-09-06T17:24:43.7549439Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7587489Z Entering 'third_party/QNNPACK' 2023-09-06T17:24:43.7615631Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7652832Z Entering 'third_party/VulkanMemoryAllocator' 2023-09-06T17:24:43.7680152Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7717282Z Entering 'third_party/XNNPACK' 2023-09-06T17:24:43.7744287Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7795857Z Entering 'third_party/benchmark' 2023-09-06T17:24:43.7823759Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7860259Z Entering 'third_party/cpuinfo' 2023-09-06T17:24:43.7887974Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7926819Z Entering 'third_party/cub' 2023-09-06T17:24:43.7953155Z http.https://github.com/.extraheader 2023-09-06T17:24:43.7990754Z Entering 'third_party/cudnn_frontend' 2023-09-06T17:24:43.8017583Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8062467Z Entering 'third_party/cutlass' 2023-09-06T17:24:43.8090973Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8140499Z Entering 'third_party/eigen' 2023-09-06T17:24:43.8168152Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8210756Z Entering 'third_party/fbgemm' 2023-09-06T17:24:43.8237426Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8277173Z Entering 'third_party/fbgemm/third_party/asmjit' 2023-09-06T17:24:43.8303519Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8342147Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2023-09-06T17:24:43.8370156Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8409812Z Entering 'third_party/fbgemm/third_party/cutlass' 2023-09-06T17:24:43.8437088Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8484824Z Entering 'third_party/fbgemm/third_party/googletest' 2023-09-06T17:24:43.8513094Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8552301Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2023-09-06T17:24:43.8579269Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8619549Z Entering 'third_party/flatbuffers' 2023-09-06T17:24:43.8647791Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8689893Z Entering 'third_party/fmt' 2023-09-06T17:24:43.8717946Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8755493Z Entering 'third_party/foxi' 2023-09-06T17:24:43.8783191Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8820251Z Entering 'third_party/gemmlowp/gemmlowp' 2023-09-06T17:24:43.8846294Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8882218Z Entering 'third_party/gloo' 2023-09-06T17:24:43.8910459Z http.https://github.com/.extraheader 2023-09-06T17:24:43.8946036Z Entering 'third_party/googletest' 2023-09-06T17:24:43.8972876Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9010362Z Entering 'third_party/ideep' 2023-09-06T17:24:43.9037162Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9073854Z Entering 'third_party/ideep/mkl-dnn' 2023-09-06T17:24:43.9101225Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9145855Z Entering 'third_party/ios-cmake' 2023-09-06T17:24:43.9172338Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9208200Z Entering 'third_party/ittapi' 2023-09-06T17:24:43.9236745Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9274567Z Entering 'third_party/kineto' 2023-09-06T17:24:43.9300817Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9339670Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2023-09-06T17:24:43.9367427Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9406782Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2023-09-06T17:24:43.9435099Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9476279Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2023-09-06T17:24:43.9504355Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9542574Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2023-09-06T17:24:43.9569363Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9607657Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2023-09-06T17:24:43.9635598Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9673633Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2023-09-06T17:24:43.9701836Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9742717Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2023-09-06T17:24:43.9769757Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9807816Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2023-09-06T17:24:43.9835161Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9875048Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2023-09-06T17:24:43.9902829Z http.https://github.com/.extraheader 2023-09-06T17:24:43.9942734Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2023-09-06T17:24:43.9969215Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0009512Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2023-09-06T17:24:44.0035953Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0074266Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2023-09-06T17:24:44.0099878Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0139778Z Entering 'third_party/mimalloc' 2023-09-06T17:24:44.0167010Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0205586Z Entering 'third_party/nccl/nccl' 2023-09-06T17:24:44.0231996Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0270924Z Entering 'third_party/neon2sse' 2023-09-06T17:24:44.0297450Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0335310Z Entering 'third_party/nlohmann' 2023-09-06T17:24:44.0363334Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0403447Z Entering 'third_party/onnx' 2023-09-06T17:24:44.0430564Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0487676Z Entering 'third_party/onnx/third_party/benchmark' 2023-09-06T17:24:44.0515871Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0554345Z Entering 'third_party/onnx/third_party/pybind11' 2023-09-06T17:24:44.0581627Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0624778Z Entering 'third_party/onnx-tensorrt' 2023-09-06T17:24:44.0653445Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0691861Z Entering 'third_party/onnx-tensorrt/third_party/onnx' 2023-09-06T17:24:44.0720743Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0765249Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/benchmark' 2023-09-06T17:24:44.0793342Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0832966Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11' 2023-09-06T17:24:44.0859759Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0898088Z Entering 'third_party/onnx-tensorrt/third_party/onnx/third_party/pybind11/tools/clang' 2023-09-06T17:24:44.0925327Z http.https://github.com/.extraheader 2023-09-06T17:24:44.0970122Z Entering 'third_party/pocketfft' 2023-09-06T17:24:44.0996620Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1033673Z Entering 'third_party/protobuf' 2023-09-06T17:24:44.1059769Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1100610Z Entering 'third_party/protobuf/third_party/benchmark' 2023-09-06T17:24:44.1127588Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1165297Z Entering 'third_party/protobuf/third_party/googletest' 2023-09-06T17:24:44.1191089Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1230270Z Entering 'third_party/psimd' 2023-09-06T17:24:44.1256984Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1292572Z Entering 'third_party/pthreadpool' 2023-09-06T17:24:44.1319537Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1356677Z Entering 'third_party/pybind11' 2023-09-06T17:24:44.1382277Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1419756Z Entering 'third_party/python-peachpy' 2023-09-06T17:24:44.1446985Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1483835Z Entering 'third_party/sleef' 2023-09-06T17:24:44.1510482Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1546219Z Entering 'third_party/tbb' 2023-09-06T17:24:44.1573762Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1611859Z Entering 'third_party/tensorpipe' 2023-09-06T17:24:44.1639018Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1675236Z Entering 'third_party/tensorpipe/third_party/googletest' 2023-09-06T17:24:44.1701179Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1737534Z Entering 'third_party/tensorpipe/third_party/libnop' 2023-09-06T17:24:44.1763964Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1799628Z Entering 'third_party/tensorpipe/third_party/libuv' 2023-09-06T17:24:44.1825729Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1862047Z Entering 'third_party/tensorpipe/third_party/pybind11' 2023-09-06T17:24:44.1888546Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1923304Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2023-09-06T17:24:44.1949404Z http.https://github.com/.extraheader 2023-09-06T17:24:44.1987904Z Entering 'third_party/zstd' 2023-09-06T17:24:44.2015106Z http.https://github.com/.extraheader 2023-09-06T17:24:44.2154875Z A job completed hook has been configured by the self-hosted runner administrator 2023-09-06T17:24:44.2183387Z ##[group]Run '/home/weiwangmeta/post-job.sh' 2023-09-06T17:24:44.2201477Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2023-09-06T17:24:44.2201804Z ##[endgroup] 2023-09-06T17:24:44.2242345Z The approximate cost for this shard is shown below (in $): 2023-09-06T17:24:44.2271120Z 22.673 2023-09-06T17:24:44.2478217Z Cleaning up orphan processes